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Abstract

Most planetary systems—including our own—are born within stellar clusters, where interactions with neighboring
stars can help shape the system architecture. This paper develops an orbit-averaged formalism to characterize the
cluster’s mean-field effects, as well as the physics of long-period stellar encounters. Our secular approach allows
for an analytic description of the dynamical consequences of the cluster environment on its constituent planetary
systems. We analyze special cases of the resulting Hamiltonian, corresponding to eccentricity evolution driven by
planar encounters, as well as hyperbolic perturbations upon dissipative disks. We subsequently apply our results to
the early evolution of our solar system, where the cluster’s collective potential perturbs the solar system’s plane,
and stellar encounters act to increase the velocity dispersion of the Kuiper Belt. Our results are twofold. First, we
find that cluster effects can alter the mean plane of the solar system by 1° and are thus insufficient to explain the
ψ≈6° obliquity of the Sun. Second, we delineate the extent to which stellar flybys excite the orbital dispersion of
the cold classical Kuiper Belt and show that while stellar flybys may grow the cold belt’s inclination by the
observed amount, the resulting distribution is incompatible with the data. Correspondingly, our calculations place
an upper limit on the product of the stellar number density and residence time of the Sun in its birth cluster,
η τ2×104 Myr pc−3.

Unified Astronomy Thesaurus concepts: Celestial mechanics (211); Kuiper belt (893); Young star clusters (1833)

1. Introduction

Most stars—and the planetary systems they host—form
within young stellar associations (Lada & Lada 2003; Porras
et al. 2003). An important and ongoing line of inquiry is to
understand the manner in which these cluster environments
shape the properties of their constituent planetary systems and
thereby further diversify the orbital characteristics of the
galactic planetary census. Even the solar system itself exhibits
an elaborate and intricate dynamical structure in its distant
regions, which is routinely attributed to cluster-induced
evolution (Morbidelli & Levison 2004; Brasser et al. 2006).
Although a full explanation for this complexity remains
unresolved, the notion that the solar system’s birth environment
played an important role in sculpting its long-period archi-
tecture is rarely contested (Adams 2010). The goal of this paper
is to explore one aspect of this problem: the consequences of
long-range interactions between planetary systems and indivi-
dual passing stars, as well as the cumulative gravitational
potential of the birth cluster. An understanding of these effects,
in turn, provides an important step toward unraveling the age-
old question of how planetary systems form and evolve.

Broadly speaking, the theory of planet formation can be
divided into two separate themes: the conglomeration of
protoplanetary material and the subsequent dynamical evol-
ution of the planetary system. Although these physical
processes are not strictly separable, they nevertheless operate
on distinct temporal scales. In particular, assembly of planets is
expected to unfold within a geometrically thin disk of gas and
dust that dissipates over the course of the first 1–10Myr of the
host star’s lifetime (Armitage 2011). In contrast, the subsequent
dynamical evolution can transpire over much longer timescales,

spanning hundreds of Myr (Tsiganis et al. 2005; Nesvorný &
Morbidelli 2012) or even several Gyr (Laskar & Gastineau
2009; Davies et al. 2014; Batygin et al. 2015). Moreover, while
the process of planet assembly is primarily controlled by local
physics taking place within protoplanetary disks (Lambrechts
et al. 2014), the dynamical evolution that ensues after a
newborn planetary system emerges from its natal nebula can be
strongly influenced by its external environment (see Hernández
et al. 2007; Malmberg et al. 2007, and references therein).
Various lines of evidence, including meteoritic enrichment

in short-lived radiogenic isotopes, as well as the orbital
architecture of the solar system’s trans-Neptunian region,
suggest that the Sun itself was born in a cluster of N∼103–104

stars, where the cluster likely persisted for τ∼10–100Myr
(Portegies Zwart 2009; Adams 2010; Brasser et al. 2012;
Pfalzner 2013). An important consequence of this picture is
that planetary systems born within stellar clusters will
necessarily experience gravitational perturbations from passing
stars. Over the past two decades, extensive numerical
investigations of this process have been carried out (see, e.g.,
Adams & Laughlin 2001; Malmberg et al. 2007, 2011;
Portegies Zwart 2009; Pfalzner 2013; Li & Adams 2015, 2016;
Pfalzner et al. 2015, and references therein). This body of work
cumulatively demonstrates how perturbations from stellar
encounters and the collective cluster potential can contribute
to shaping the orbital architectures of the constituent planetary
systems. Nevertheless, a full assessment of these processes is
complicated by the diverse nature of stellar birth clusters,
which have a wide range of cluster membership size N, lifetime
τ, and characteristic velocity dispersion á ñv , calling for the
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construction of an analytic framework that can unify the
relevant dynamical regimes.

The aforementioned studies that consider the interactions of
planetary systems with passing stars have primarily been done
with the aid of numerical simulations. Moreover, most of these
studies have focused on the strongest form of the interactions,
corresponding to the closest encounters. Such an approach is
largely motivated by the characteristic length scales of the
problem: the expected distances of closest approach within
typical cluster environments are on the order of 100–1000 au
(Proszkow & Adams 2009), and the orbits of interest within the
solar system also span this range, extending from 30 au (i.e.,
Neptune orbit) to∼500–5000 au (roughly corresponding to the
inner Oort cloud; Brown et al. 2004; Sheppard et al. 2019).
Additionally, the outer edges of circumstellar disks are
observed to have radii ~ 100 au (e.g., see the review of
Williams & Cieza 2011) and thus also fall within the confines
of expected periastron distances.6

The rough coincidence of these length scales (and the
corresponding velocity scales) leads to hard encounters having
enhanced influence (Adams & Laughlin 2001). On the other
hand, distant encounters are much more common, and the
accumulation of their resulting weaker effects can also be
important (e.g., Malmberg et al. 2011). In this work, we
develop an analytical framework to model distant encounters
with passing stars, as well as the collective effects of the
cluster, and apply our results to the trans-Neptunian region of
the solar system. More specifically, we consider an orbit-
averaged approach to quantifying the dynamics (Rasio &
Heggie 1995) and limit our analysis to instances where the
orbital period of the solar system objects is much shorter than
the timescale of the perturbation (e.g., the time required for a
flyby encounter to take place). As we discuss below, this
regime of interactions is of considerable interest for the
characterization of the classical Kuiper Belt’s evolution within
the cluster. Moreover, our analytic approach allows for a
greater understanding of the underlying dynamics while
providing an efficient calculational framework to include the
effects of many distant encounters, thus complementing
numerical studies of hard (close) encounters that were carried
out previously.

For completeness, we note that in conjunction with
dynamical interactions, cluster environments provide additional
influences on planetary systems, including background radia-
tion fields. In particular, massive stars within the cluster
produce copious amounts of EUV and FUV radiation (Fatuzzo
& Adams 2008; Thompson 2013), which can drive the
evaporation of disk material (e.g., Adams et al. 2004, 2006).
This radiation, along with X-rays that arise from more
distributed sources within the cluster, also provide an important
source of ionization and heating within the disk. These
processes, in turn, affect disk accretion mechanisms in the
early phases of evolution and possibly even alter the chemical
composition of growing planets. Although these radiative
effects are important, they are beyond the scope of this present
work, which focuses on gravitational dynamics.

The remainder of this paper is structured as follows.
Section 2 derives a dynamical model for the secular restricted
three-body problem within a model cluster potential and

outlines a link between the ensuing dynamics and the Kozai–
Lidov mechanism (Kozai 1962; Lidov 1962). Section 3
develops the secular approximation in the hyperbolic regime
relevant to stellar flybys. Special cases are examined in
Section 4, including the evolution of eccentricity enhancements
of test particles and, separately, the accumulation of increases
in the inclination angles. In Section 5, we apply this formalism
to our solar system, with an emphasis on the dynamical
architecture of the cold classical population of the Kuiper Belt.
These results place a constraint on the stellar density and
lifetime of the Sun’s birth environment. The paper concludes in
Section 6 with a summary of our results and a brief discussion
of their implications.

2. Cluster Mean-field Effects

Dynamical evolution induced upon a planetary system by its
host star cluster can generically be separated into two parts:
mean-field effects and stellar flybys. Of course, both of these
classes of perturbations arise from nothing more than the
gravitational potential of the stars (and, at early stages, gas)
present within the cluster, but they are distinct in the length
scales that they capture. Namely, mean-field effects ensue from
the nearly smooth, collective potential of the distant stars
within the cluster, while stellar flybys facilitate stochastic
gravitational kicks from (comparatively) short-range interac-
tions. In this section, we will focus on mean-field effects, which
are simpler to quantify.
In addition to characterizing long-term evolution that results

from the cluster potential, a secondary goal of this section is to
delineate the relevant approximation scheme, which we will
employ again in the next section, for the more involved
problem of stellar flybys. Specifically, we will develop our
model within a well-studied framework: the secular evolution
of a test particle under perturbations from a distant massive
body (in this case, the cluster). We note that although the
original practical motivation7 for this now-classic problem
stemmed from early spaceflight (Lidov 1962), it was quickly
realized that ensuing long-term dynamics also materialize in
numerous astrophysical settings, including the asteroid belt
(Kozai 1962; Morbidelli & Henrard 1991), hierarchical triple
star/black hole systems (Kiseleva et al. 1998; Mardling &
Aarseth 2001), and extrasolar planets (Wu & Murray 2003;
Fabrycky & Tremaine 2007; Naoz 2016).

2.1. Potential–Density Pairs

As a first step in quantifying the long-term effects of the
cluster, we must define the functional form of the cluster’s
gravitational potential. An archetypal model of a stellar cluster
was first formulated over a century ago by Plummer (1915).
Within the context of this model, the system is taken to be
spherically symmetric, and the usual Ψ∝1/r potential is
softened by a characteristic length scale, c, such that Ψ
approaches a constant value for r=c and a point-mass
potential for r?c. In the same vein, here we consider a class
of softened potentials of the form

( )
( )

x
Y = -

Y
+ u u1

, 1c
1

6 It is worth noting that a significant fraction of young stars reside in binary
systems, with the peak of the binary distribution falling at ∼42 au for solar-type
stars (Duquennoy & Mayor 1991).

7 In a recently published paper, Ito & Ohtsuka (2019) pointed out that the
basic structure of the Kozai–Lidov mechanism was already outlined in the
work of von Zeipel (1910).
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where ξ=r/c is the dimensionless radius and Ψc�0 by
convention.

Equation (1) is of considerable practical interest because it
corresponds to a cluster of finite mass and simultaneously acts
as a generalization of select routinely employed models from
the literature. In particular, with the choice of υ=1, we
recover the Hernquist potential, and for υ=2, we obtain the
Plummer model. More generally, υ is a parameter that controls
the sharpness of the potential turnover across the characteristic
length scale.

The radial density profile corresponding to the above
potential can be easily obtained from the Poisson equation:

( )
( )

( )r
p p

u
x x

=
 Y

=
Y +

+u u u- +  c4 4

1

1
. 2

2
c

2 2 2 1

Figure 1 shows Ψ and ρ (appropriately scaled) as functions
of ξ for υ=1/2, 1, and 2. It is worth noting that the υ=2
Plummer sphere is the only model where the central density has
a finite value.

Equation (2) demonstrates that the only physically sensible
choices for the sharpness parameter c lie in the range 0<υ�2,
since υ=0 corresponds to constant potential (which is not of
interest), and for υ>2, the central density always approaches
zero (corresponding to a Rayleigh–Taylor unstable, hollowed-out
structure). At a given dimensionless radius, the enclosed mass of
the cluster is determined by the integral

( )
( ) ( )( )ò

x x
x

x=
+

= +
x u

u u
u u u

¥
+

- +M

M

d

1
1 1 , 3

0 2 1
1

and the total mass of the system, M∞, is related to the potential
via

( )Y = ¥ M

c
. 4c

With the relevant expressions delineated, let us now consider the
characteristic quantities of a real cluster. Observational surveys
indicate that the average stellar number density in clusters with
N∼102–104 stars is approximately há ñ ~ 102 pc−3 (the cluster
membership dependence of this quantity is rather weak, although
the radius dependence is significant, with central values reaching
upward of ηc104 pc−3; Hillenbrand & Hartmann 1998). As an

illustrative example, we can consider a cluster with a total mass of
=¥M M1200 (roughly comparable to the mass of the Orion

Nebular Cluster (ONC)) and set the mean number density of stars
interior to the =¥M M 95% radius (which evaluates to
r95%=5.36 c for a υ=2 profile from Equation (3)) to
há ñ = -100 pc 3, adopting a mean initial mass function stellar
mass of á ñ =M M0.38 (Kroupa 2001). This fixes the Plummer
radius to c=0.35 pc. In turn, this choice of parameters implies a

cluster core radius of = - =r c2 1 0.23core pc and a
central number density of h r= á ñ = ´M 1.7 10c c

4 pc−3. Both
of these quantities are in close agreement with the properties of the
Trapezium cluster (embedded within the ONC), which has a
radius of r≈0.24 pc and a number density of η≈1.4×
104 pc−3 (Lada & Lada 2003).
For completeness, we note that actual clusters generally have

more complicated initial conditions than those considered
herein. That is, the initial states are not fully spherically
symmetric and contain substructures on a broad range of scales.
As shown below, however, the effects of interest to this paper
accumulate over 10–100Myr, and the starting states are largely
smoothed out over these timescales.

2.2. Phase-averaged Dynamics

Having specified the functional form of the cluster potential
in terms of physical quantities, we are now in a position to
quantify the dynamical evolution induced upon a test particle
orbiting a central star of mass Må, which itself orbits within its
birth cluster at a (dimensionless) radius ξ. We begin by
expressing the components of the astrocentric radius vector

( )=r x y z, , of the test particle in terms of Keplerian orbital
elements (Murray & Dermott 1999):

( )

( ( ) )( ( ) ( ) ( ) ( ) ( )
( )( ( ) ( ) ( ) ( ) ( )

( ( ) )( ( ) ( ) ( ) ( ) ( )

( )( ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ( ) )

w w

w w
w w

w w

w w

= - W - W

- - W + W
= - W + W

+ - W - W

= - +
´ -













5

x a e i

a e i
y a e i

a e i

z a e i a i
e

cos cos cos cos sin sin

1 sin cos cos sin sin cos
cos cos sin cos cos sin

1 sin cos cos cos sin sin

1 sin cos sin sin sin
cos ,

2

2

2

Figure 1. Cluster potential–density pairs considered in this work. The left panel shows the cluster’s gravitational potential (Equation (1)), scaled by its central value as
a function of the dimensionless radius, ξ. The right panel shows the corresponding scaled density profiles, which connect to the potential profiles through Equation (2).
In both panels, gray, blue, and red curves correspond to sharpness parameters of u = 1 2, 1 (Hernquist profile), and 2 (Plummer profile), respectively. Note that
unlike u< <0 2 models, the u = 2 Plummer profile yields a finite central density.
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where a is the semimajor axis, e is the eccentricity, i is the
inclination, ω is the argument of pericenter, Ω is the longitude
of the ascending node, and  is the eccentric anomaly. For
simplicity, we restrict the orbit of the central star within the
cluster to the reference plane and assume that it is circular8

(Figure 2). In the frame of the central star, we then have (e.g.,
Touma & Wisdom 1998)

( ) ( ) ( )¢ = ¢ ¢ ¢ = ¢ ¢ ¢ = x a y a zcos sin 0, 6

where x¢ =a c and ¢ is the central body’s mean anomaly (as
measured from the cluster’s center).

Following Kaula (1962), we define the semimajor axis ratio
a = ¢ <a a 1 as a small parameter9 inherent to the problem
and expand Ψ as a power series in α. The first relevant term
appears at second order in α:
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Although cumbersome, this expression has a well-defined
physical meaning: Ψ(2) represents the quadrupolar component
of the cluster’s gravitational potential.

Under the assumption that the test particle’s motion around
the star and the star’s motion around the cluster core are not
locked into any discernible mean-motion resonance, we may
employ the secular approximation and average Ψ(2) (which is
the negative disturbing function) over the mean anomalies of
the star and the test particle. Because the action conjugate to the
mean anomaly of the test particle is solely a function of a, the
averaging procedure results in the semimajor axis being a
constant of motion. As a consequence, under this approx-
imation, the Keplerian term of the full Hamiltonian can be
dropped (e.g., Touma et al. 2009), implying that for the
problem of interest, ¯̄ ¯̄ Y (where the double overbar
signifies phase-averaging over both the particle’s and the star’s
orbits).
While Equation (7) is expressed in terms of the test particle’s

eccentric anomaly,  , the averaging procedure must be carried
out in terms of the mean anomaly,. The two quantities are
related through Kepler’s equation:

( ) ( )= -  e sin . 8

Taking a derivative of both sides yields the Jacobian necessary
to carry out the averaging process in terms of  . With all of the
relevant parameters defined, we have

∮ ∮¯̄ ( ( )
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Simplified expressions for ¯̄ are provided in Appendix A for the
specific choices of υ=1 (Hernquist) and υ=2 (Plummer).
The resulting Hamiltonian displays many of the same

characteristics as the well-known Kozai–Lidov Hamiltonian
(e.g., Kinoshita & Nakai 1999; Hamilton & Rafikov 2019). That
is, Equation (9) depends on the argument of periastron, ω, but not
the longitude of ascending node, Ω, which renders its conjugate
action ( )= - e i1 cos2 an integral of motion.10 As a
consequence, dynamical evolution facilitated by Equation (9)
can simply be understood by projecting level curves of ¯̄ onto
the e–ω plane for a specified value of  . In turn, by evaluating
 at e=0, we can obtain a maximal value of the inclination,
imax, attainable on a given diagram (see, e.g., Morbidelli 2002).
For the standard Kozai–Lidov resonance, the topology of the

phase-space portrait is independent of the orbital separation, since
this value only appears in the prefactor of the Hamiltonian and thus
only regulates the secular frequency (Fabrycky & Tremaine 2007).
This characteristic is shared by Equation (9) in the limit of x  ¥
(wherein the cluster is taken to be distant enough to effectively act
as a faraway point mass). In the ξ1 limit, on the other hand, the
structure of the phase-space portrait itself is determined by ξ, and
for certain parameter combinations, the typical feature of Kozai–
Lidov dynamics, where the e=0 equilibrium becomes secularly
unstable below a critical value of  , vanishes (see also Brasser
et al. 2006; Hamilton & Rafikov 2019, and references therein). An
example of this behavior can be easily demonstrated for the
Plummer profile.8 Lifting the assumption of a circular orbit introduces octupole-level terms

into the secular Hamiltonian. Because our analysis is carried out only to
quadrupolar order, the assumption of a circular orbit is not strongly limiting.
9 An alternative approach would be to take the ratio a/c as a small parameter.
The two approaches give equivalent results.

10 The physical meaning of  corresponds to the ẑ -component of the test
particle’s angular momentum vector, as defined by the plane of the orbit of the
central star within the cluster (see Figure 2).
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Examining Equation (48), it is easy to see that the prefactor
of the Hamiltonian has a well-defined maximum at
x = 2 3max , where the rate of cluster-induced secular
evolution is fastest. Setting ξ=ξmax and υ=2, we plot the
level curves of the mean-field Equation (9) of the Plummer
cluster model in Figure 3. The four panels shown on the figure
depict the topology of ¯̄ for imax=5°, 30°, 55°, and 75° in
terms of the rectangular coordinates (ecos(ω), esin(ω)). As is
usual for Kozai–Lidov-type dynamics, we see the emergence of
a broad second-order secular resonance with elliptic equili-
brium points located at ω=90° and 270° (Kozai 1962;
Morbidelli & Henrard 1991). However, unlike the standard
Kozai–Lidov picture, the circular orbit does not become
unstable for any value of imax. We emphasize that this secular
stability of the circular orbit is not a generic feature of
Equation (9) and is instead a consequence of the specific choice
of ξ=ξmax and υ=2. Indeed, for a broad range of other
parameter combinations, the e=0 equilibrium can be rendered
hyperbolic above a critical inclination whose value itself
depends on ξ (see Appendix A for an illustration).

Concisely speaking, the analysis presented in this section
points to the fact that the smooth component of the cluster
potential can have a considerable impact on modulating the
orbital eccentricities of secondary bodies, but this effect is a
sensitive function of both the orbital separation of the particle
from its host star and the location of the star within the cluster.
At the same time, we note that Kozai–Lidov-type dynamics
is notoriously susceptible to suppression by external (e.g.,
planetary) sources of periapse precession, which—if strong

enough—can trivialize the phase-space portrait to resemble the
imax=5° panel of Figure 3 for all values of  (e.g., Batygin
et al. 2011b). This suggests that within the early solar system,
the class of objects whose eccentricities could have been
appreciably affected by the smooth component of the cluster
potential is restricted to the long-period tail of the primordial
scattered disk, i.e., the Sedna population11 (where a∼500 au
and period P∼10,000 yr; Morbidelli & Levison 2004; Brasser
et al. 2006). For the remainder of the solar system, the effect of
the cluster was likely limited to slow rotation of the total
angular momentum vector, which occurs even if the Kozai–
Lidov ω-resonance itself is fully suppressed. We will revisit
these effects in Section 5.

3. Secular Theory of Stellar Flybys

Let us now shift our focus away from the cluster’s
collective potential and consider the gravitational effects of
passing stars. Traditionally, the motivation for understanding
stellar perturbations upon planetary systems stemmed from
the need to characterize cometary dynamics (Oort 1950;
Duncan et al. 1987, 1988). By now, there exists a rich
literature on the interactions between long-period comets (and
wide binaries in general) and stellar encounters (see, e.g.,
Heisler & Tremaine 1986; Kaib et al. 2013; Torres et al. 2019,

Figure 2. Geometrical setup of the problem. The origin of the astrocentric coordinate system corresponds to the location of the reference star of mass Må. In
calculations where the cluster’s mean field is considered, the z=0 plane is taken to coincide with the orbit of the reference star within the cluster, thus defining the
inclination i and argument of pericenter ω. As discussed in the text, the doubly phase-averaged dynamics in this case are parameterized by the normalized vertical
component of the angular momentum,  . In calculations where perturbations due to passing stars are considered, the reference plane is taken to correspond to the
plane of the hyperbolic trajectory, and the reference direction is chosen to point toward the flyby’s point of closest approach. Accordingly, the longitude of ascending
node Ω is measured from this axis, while the orientation of the test particle orbit’s major axis (in particular, the periastron) is informed by the dogleg longitude of
pericenter, v w= W + .

11 It is worth noting that the Sedna population is thought to predate the
formation of the Oort cloud and, unlike the majority of KBOs, was likely
emplaced into its current orbital neighborhood before the dissipation of the
proto-solar nebula (Morbidelli & Nesvorny 2020).
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and references therein). A typical approach to modeling the
energy/angular momentum drift of long-period comets due to
stellar encounters invokes the impulse approximation (e.g.,
Binney & Tremaine 1987) under the assumption that the rate
of encounters is sufficiently large that numerous encounters
occur over the course of a single orbital period.

Unlike the cometary case, the effects of passing stars upon
planets in young clusters lie in the regime where a single
encounter occurs over numerous planetary orbital periods (in
other words, the period hierarchy is switched; Rasio &
Heggie 1995). In this case, the impulse approximation is not
applicable, and it is sensible to instead employ the secular
approximation for the planet (which we can securely treat as a
test particle), as above, and consider an averaged description of
the orbital dynamics (Hamers 2018). In addition to the obvious
requirement that ( ) ¢ = ¢ - ¢a q a e1 , a crude criterion for this
approximation to hold can be written as

( ) p
~

¢
á ñ

=
b

v n
P

2 2
, 10enc

where ¢b is the impact parameter of the encounter, á ñv is the
characteristic velocity dispersion of the cluster, and n is the
particle’s the mean motion. As an example, note that in young
embedded clusters, á ñ ~v 1km s−1, which means that the

characteristic timescale for an encounter with ¢ ~b 500 au
(approximately the semimajor axis of Sedna; Brown et al.
2004) is of order ~ 5000enc yr—more than an order of
magnitude longer than Neptune’s orbital period. Obviously,
more distant encounters satisfy the above criterion
(Equation (10)) even better.
To a reasonable degree of accuracy, stellar flybys within a

birth cluster can be assumed to be isotropically distributed.
Accordingly, one avenue toward modeling the effects of
individual encounters is to define an inertial coordinate system
and follow the evolution of a particle’s orbit, subject to
hyperbolic perturbations arising from random directions. A
physically equivalent but more mathematically advantageous
route is to rotate the coordinate system to coincide with the
orbital plane, as well as the perihelion direction of the
encounter, and compute the changes in the particles’
eccentricity (Runge–Lenz), as well as angular momentum
vectors, assuming that the particle orbit itself is randomly
oriented. This is the approach we adopt herein.
Without loss of generality, we can consider a reference frame

where the ẑ -axis is orthogonal to the plane of the perturbing
star’s orbit, and the x̂-axis corresponds to the direction of
closest approach between the two stars (Figure 2). The
components of the perturbing object’s stellocentric radius

Figure 3. Phase-space portraits corresponding to the orbit-averaged evolution of a test particle perturbed by the mean-field potential of the cluster. Each panel depicts
the level curves of Equation (9) parameterized by a unique value of the integral of motion ( )= icos max . The origin of each diagram corresponds to a circular test
particle orbit, while the maximal attainable eccentricity in each portrait is limited by the conservation of  , such that ( )= -e i1 cosmax max . Secular trajectories
corresponding to the libration of ω are shown in gray, while those that exhibit ω circulation are shown in orange. In this example, the cluster is assumed to follow the
u = 2 Plummer profile, and the central star is taken to reside at a dimensionless radius x = 2 3 , where the rate of cluster-induced secular dynamics is maximized. In
contrast with the standard picture of the Kozai–Lidov resonance, note that for this specific combination of parameters, the circular orbit is secularly stable for all values
of  .
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vector are then

( ( ) )

( ) ( )

¢ = ¢ ¢ - ¢

¢ = ¢ ¢ - ¢





x a e

y a e

cosh

1 sinh , 112

where ¢ is the hyperbolic eccentric anomaly,12 and as before,
we set ¢ =z 0.

With this definition, we follow the same procedure as in the
preceding section—namely, we expand the perturber-particle
potential ∣ ∣F = - ¢ - ¢ r rm in powers of the ratio of
characteristic length scales. For consistency with the previous
section, we retain the definition of a = ¢a a as the small
parameter inherent to the problem but remark that developing
the expansion of Φ in the ratio of particle semimajor axis to
perturber impact parameter, ¢a b , yields identical results. To
this end, we further note that for ¢ >e 2 and 2, the perturber’s
impact parameter and periastron distance exceed its semimajor
axis, respectively.

As in Equation (7), the first relevant term in the expansion of
the potential appears at second order in α. Averaging Φ(2) over
the planetary mean anomaly,, we have
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Importantly, in addition to the secular degrees of freedom of
the planetary orbit related to the (e, ω) and (i, Ω) variable pairs,
this Hamiltonian also possesses an implicit time dependence
that enters through the hyperbolic eccentric anomaly of the
passing star, ¢ .

Ultimately, the primary goal of the envisioned calculation is
to compute the cumulative changes in the orbital parameters of
the planet due to a stellar encounter with a given geometry. In
order to do this, we introduce scaled Delaunay action-angle
coordinates:

( ) ( )

w= - =

= - = W

G e g

H e i h

1

1 cos . 13

2

2

In contrast to the standard expression for these coordinates (see,
e.g., Murray & Dermott 1999; Morbidelli 2002), the above
variables have been reduced by a factor of  M a .
Correspondingly, in order to maintain symplecticity, we must
also divide the averaged Hamiltonian itself by the same
constant factor (recall that the semimajor axis is rendered

invariant by phase-averaging): ¯̂ ¯=   M a .
In principle, it is possible to compute the changes in the

orbital elements of the test particle by applying Hamilton’s
equations to ¯̂ (Equation (12)) and integrating the resulting
coupled ordinary differential equations with respect to ¢ .
Indeed, this approach can yield accurate results at a decreased
computational cost, compared with direct numerical integration
(Rasio & Heggie 1995). However, this procedure is cumber-
some and offers little insight into the governing dynamics
beyond that which can be obtained through the N-body route.
Fortunately, for the problem at hand, we can take an additional
step to further simplify the Hamiltonian. In particular, we
invoke a second separation of timescales, wherein the secular
evolution induced upon the test particle by the stellar encounter
is envisioned to operate on a much longer timescale than the
flyby time itself. In other words, we assume that numerous
stellar flybys are required to precess the secular angles ω and Ω
by 2π, such that

( )
⎛
⎝⎜

⎞
⎠⎟  p

w
p p

D D W
¢

á ñ 

b

v n

2
,

2 2 2
. 14

enc enc

If the timescale hierarchy (Equation (14)) holds, then (to
leading order) we can hold the particle orbit fixed over the
encounter and integrate the Hamiltonian over the encounter
before deriving the equations of motion. In this way,
application of Hamilton’s equations to the time-integrated
Hamiltonian yields a discrete mapping that transforms the
unperturbed test particle orbit to its postencounter state
(Lichtenberg & Lieberman 1983). Accordingly, we arrive at
the cumulative changes in the Delaunary actions in the
following manner:

¯̂ ¯̂ ¯̄

¯̂ ¯̂ ¯̄
( )

ò ò

ò ò

w w
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¥











G
g

dt dt

H
h

dt dt , 15

with similar expressions for the changes in the angles, Δω and
ΔΩ. We remark that because ̄ is a measure of orbit-averaged
specific energy and  M a corresponds to the maximal
specific angular momentum attainable by the test particle orbit,

the reduced Hamiltonian ¯̂ is a measure of secular frequency.
Therefore, the time-integrated Hamiltonian ¯̄ is dimensionless.
To evaluate the integral that transforms ¯̂ ¯̄ , we employ

the hyperbolic variant of Kepler’s equation,

( ) ( )¢ = ¢ ¢ - ¢  e sinh , 16

where ( )¢ = - + ¢ ¢ = ¢  M m a t n t3 is the hyperbolic
mean anomaly and ¢n is the correspondent mean motion. This
allows us to carry out the integration with respect to the
hyperbolic eccentric anomaly, ¢d , with the appropriate

12 Note that unlike the elliptic eccentric anomaly ( ]pÎ 0, 2 , the hyperbolic
eccentric anomaly ( )Î -¥ ¥ , .
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Jacobian. The time-integrated Hamiltonian thus takes the form
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The secular harmonics of the above Hamiltonian have well-
defined physical interpretations. Qualitatively, the second line
of Equation (17) governs the hyperbolic variant of the Kozai–
Lidov resonance discussed in the previous section. On the other
hand, the term on the third line regulates the interactions
between the orbital planes (equivalently, angular momentum
vectors) of the planet and the perturber. Finally, the last two
lines of ¯̄ respectively facilitate prograde and retrograde
eccentricity coupling (i.e., interactions between the Runge–
Lenz vectors) between the particle and the passing star.

Physical meanings of the harmonics aside, recall that by
virtue of adopting a coordinate system that is aligned with the
hyperbolic orbit of the perturber, in practice, each individual
encounter must be modeled assuming a new, isotropically
distributed orientation of the particle orbit, which translates to
correspondent random values of its inclination, argument of
perihelion, and longitude of ascending node. It is further
important to note that at first glance, all critical arguments other
than the Kozai–Lidov angle, 2 ω, in Equation (17) appear to not
satisfy the D’Almbert rules. This issue is, however, illusory and
stems from our choice of coordinate system. That is, an implicit
assumption of Equation (11) is that both w¢ = 0 and W¢ = 0,
meaning that even though the harmonics ( )W - W¢2 ,

( )w w+ W - ¢ - W¢2 , and ( )w w- W - ¢ + W¢2 constitute
differences of longitudes that satisfy the D’Almbert rules, the
primed quantities do not explicitly appear in Equation (17).

4. Special Cases

The secular flyby Hamiltonian obtained in the previous
section possesses two coupled degrees of freedom and is
therefore generally not integrable (Morbidelli 2002). Never-
theless, the integrability of ¯̄ is still attainable under certain
restrictive assumptions, and in this section, we consider such
simplified special cases. Although primarily of academic
interest (see also Sorokovich 1982), this analysis allows for
an illuminating exploration of the qualitative features of the
emergent dynamics and a simple comparison between analytic
and numerical results. We begin by considering a 2D
configuration where the plane of the particle orbit is taken to
coincide with that of the passing star’s trajectory.

4.1. Eccentricity Evolution in the Plane

Setting i=0 or π and dropping the constant terms, the
Hamiltonian takes on the following rudimentary form:

¯̄ ( ) ( ) ( )
⎡
⎣⎢

⎤
⎦⎥k v=

¢ ¢
¢

+
¢

¢ -
a

b

n

n

m

M
e

e

e
e

3

4

5

4
1 cos 2 , 19

3

3
2

2

2
2 3 2

where ϖ=ω±Ω is the longitude (as opposed to argument)
of perihelion. Because the action conjugate to the angle γ=
−ϖ is the second Poincaré momentum G = - - e1 1 2—

which is a sole function of e—this Hamiltonian is integrable.
This means that the dynamics encapsulated by Equation (19)
can be explored simply by projecting its contours onto the e–ϖ
plane. An illustrative example of such a projection for
perturbations characterized by ¢ =e 3 is shown in Figure 4,
where analytic level curves of ¯̄ are depicted with dotted lines,
as well as the background color scale.
Comparison with N-body simulations—The contours shown

in Figure 4 provide a simple testing ground for the evaluation
of assumptions inherent to the analytical model described
above. In particular, our perturbative analysis suggests that a
test particle orbit subjected to repeated coplanar encounters
with ¢ =e 3 will evolve along a secular trajectory that will trace
the contours of Equation (19). In an effort to test this
expectation, we conducted a sequence of numerical N-body
experiments, where a test particle with initial ϖ0=0 and
e0=0.05, 0.15, 0.25, K, 0.95 was subjected to recurrent
encounters with an ¢ = m M perturber that followed a
hyperbolic trajectory characterized by ¢ =a b 0.035. The
encounters were simulated such that the perturbing object
would originate with a hyperbolic mean anomaly of
¢ = - 105 rad and persist until ¢ = 105 rad, after which

the phase of the passing star would be abruptly reset to its
initial value and the encounter would repeat, perturbing the
orbit of the test particle further.
To carry out the N-body simulations, we used the well-

tested mercury6 gravitational dynamics software package
(Chambers 1999). The integrations were performed using the
conservative variant of the Bulirsch–Stoer algorithm (Press
et al. 1992), with an accuracy parameter set to one part in 10
billion and an initial time step equal to 0.5% of the test
particle’s orbital period. The results from this set of numerical
experiments are shown as purple curves in Figure 4. Clearly,
the agreement between analytical and numerical results is
satisfactory, although not exact: while analytical Equation (19)
is exactly symmetric about ϖ=π/2, numerical results show a
subtle asymmetry at low eccentricities. It is likely that this
detail can be attributed to the fact that ¯̄ is a second-order
Legendre polynomial expansion of the full Hamiltonian, and
accounting for higher-order terms (Hamers & Samsing 2019)
may resolve this minor discrepancy. More importantly, the
confluence of analytic and numerical results depicted in
Figure 4 illuminates an intriguing aspect of scattering
dynamics: the elliptic stability of nearly circular obits and
the existence of a critical contour of ¯̄ that divides bound
and unbound evolution. Let us explore this attribute of
Equation (17) further.
An interesting feature of Figure 4 is that only high-

eccentricity elliptic orbits connect smoothly to parabolic ones.
This is evident by inspection of numerical results pertaining to
orbits with e0� 0.35, all of which get driven upward in e asϖ
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precesses away from zero. On the other hand, examination
of the three low-eccentricity numerical solutions shown in
Figure 4 demonstrate that after a large number of gravitational
scattering events, these orbits not only remain bound to their
host star, they predictably return to their initial states. Put
simply, this means that already-eccentric orbits are readily
made more eccentric by close encounters, while circular orbits
have a tendency to remain circular. Curiously, this type of
evolution signals a sharp contrast between the fundamental
nature of perturbations facilitated by secular and short-periodic
gravitational encounters. Specifically, while the former can lead
to closed orbits in phase space, as shown in Figure 4, the
impulsive evolution driven by the latter class of events leads to
an essentially diffusive random walk through phase space,
which always results in ejection, given sufficient time
(Laughlin & Adams 2000).

Secular stability of circular orbits—Is the elliptic stability of
(nearly) circular orbits globally ensured for all phase-averaged
planar perturbations? To answer this question, let us examine
the stationary solutions to Hamilton’s equations in greater
detail. For convenience, we appeal to canonical Cartesian
analogs of Poincaré action-angle variables (not to be confused
with the Cartesian coordinates used in Equation (5); Morbidelli
2002):

( )g g= G = Gx y2 cos 2 sin . 20

In terms of these variables, Equation (19) reads
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and its equilibria are specified by the relations

¯̄ ¯̄
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dt y
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dt x
0 0. 22

In general, Equation (22) admits nine solutions, but only five
of them are physical. That is, Equation (21) has real fixed
points at ( ) ( )=x y, 2 , 0 , ( )0, 2 , ( )- 2 , 0 , ( )-0, 2 , and
(0, 0). As is evident from the definitions of the variables
(Equation (20)), the equilibrium point located at the origin
corresponds to a circular orbit, while the other four fixed points
translate to parabolic (e= 1) trajectories. The remaining four
solutions to Equation (22) all lie outside of the x2+y2�2
domain and therefore entail imaginary eccentricities.
The Hessian matrix of ¯̄, evaluated at (x, y)=(0, 0), reads
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where ( ) ( )( )= ¢ ¢ ¢ a a n n m M3 . While the first (top left;
¯̄¶ ¶ x2 2) element ofH is positive definite, the fourth (bottom

right; ¯̄¶ ¶ y2 2) element is positive for ¢ ~e 1 but negative for
¢e 1. This means that the secular fixed point of ¯̄ that

corresponds to e=0 is a local maximum for low e′ but
becomes a saddle point at sufficiently large values of the
perturber’s eccentricity. Thus, the critical value of e′ at which
the origin becomes a hyperbolic equilibrium is simply given by
the solution to ( )k ¢ - ¢ - =e e3 5 1 02 2 3 2 and quantitatively
evaluates to ¢ »e 3.59c . Note that the critical value of the
perturber’s eccentricity does not depend on its mass, mean
motion, or impact parameter, since all of these quantities
appear outside of the square brackets of Equation (19) and
therefore only determine the rate at which secular evolution
unfolds.
Figure 5 shows the phase-space portraits of Equation (21) for

a sequence of perturber eccentricities. Specifically, the four
panels depict subcritical ¢ =e 2 (top left), nearly critical ¢ =e 3
(top right), critical ¢ = ¢ »e e 3.59c (bottom left), and super-
critical ¢ =e 5 (bottom right) phase-space diagrams of the test
particle. Notably, equivalent portraits with e′ significantly in
excess of ¢ec are qualitatively similar to the bottom right panel
of Figure 5, and we omit them to curtail redundancy.
To further exemplify the dependence of the ( ) ( )=x y, 0, 0

fixed point on e′, we performed an additional set of numerical
experiments. In particular, Figure 6 depicts the temporal
evolution of initially circular orbits, subjected to repeated
encounters with ¢ = m M , ¢ =a b 0.03 stars, for the same
values of e′ as those quoted in Figure 5. We reiterate that the
resulting evolution shown in Figure 6 was computed in a self-
consistent N-body fashion as described above, rather than with
the aid of our secular model. In agreement with analytic
expectations, for ¢ e 3.6, initially circular orbits remain nearly
circular for all time, while in the simulation with ¢ =e 5, the
circular orbit is rendered long-term unstable, achieving a
parabolic shape after »N 2000enc stellar passages.
Critical impact parameter—In light of the approximation

scheme employed above, it is obvious that our analytic results

Figure 4. Integrable secular dynamics corresponding to planar (2D)
encounters. The figure depicts a projection of the level curves of Equation (19)
onto the ( )ve, plane for ¢ =e 3. The dashed curves and background color
scale are obtained analytically, while the solid purple curves represent
evolution resulting from direct N-body simulations of repeated encounters
with ¢ =a b 0.035.

9

The Astronomical Journal, 159:101 (23pp), 2020 March Batygin et al.



can only hold true as long as a leading-order expansion of the
Hamiltonian in the semimajor axis ratio provides an adequate
representation of the dynamics. Accordingly, before leaving
this subsection, let us employ the p=i 0, special case to
perform one more test, in order to determine the characteristic
value of ¢a b at which the discrepancy between numerical and
analytical results becomes large. To quantify the approximate
value of ¢a b above which our secular formalism breaks down,
we carried out a sequence of Monte Carlo simulations,
comparing analytical and numerical results across a broad
range of system parameters.

For definitiveness, we performed three suites of analytical
and numerical simulations, setting the perturber’s eccentricity
to ¢ =e 2, 3, and 5 as in Figures 5 and 6. Then, for each choice
of e′, we simulated 2500 encounters, randomly selecting the
particle’s eccentricity and longitude of perihelion from uniform
distributions spanning the range ( )Î -e 0, 1 , ( )v pÎ 0, 2 , and
drawing the semimajor axis from a log-flat distribution, such
that ( )¢ Î -a blog 2, 010 . Employing canonical Cartesian
analogs of Equation (15), we computed the analytic estimates
of the changes in the canonical eccentricity vector (D Dx y, )an

and compared them with the corresponding values computed
using the direct N-body approach (D Dx y, )num. We then
computed the fractional error

( ) ( )
( )z =

D - D + D - D

D + D

x x y y

x y
24num an

2
num an

2

num
2

num
2

for each encounter.
Figure 7 shows ζ as a function of ¢a b , where we have

employed the same color scheme for perturber eccentricities as
that in Figure 6. Overall, irrespective of e′, the results portray a
consistent picture: the error inherent to our analytic approx-
imation scheme is essentially negligible for ¢ ~a b 0.01 but
grows approximately as ( )z µ ¢a b 3 2, such that at ¢ ~a b 0.1,
it can be as large as a few percent. Cumulatively, this analysis
suggests that the secular perturbation theory employed in the
derivation of Equation (17) is adequate for impact parameters
that obey ¢ a b 0.1. Given that the semimajor axes of
classical Kuiper Belt objects (KBOs) do not extend beyond
~a 50 au, ¢ ~b 500 au represents a critical impact parameter

below which application of the developed framework to the
solar system becomes suspect. Notably, the minimum expected
impact parameter corresponding h h~ á ñ » 100 pc−3 and t ~
100 Myr exceeds ¢ b 1000min au.

4.2. Inclination Evolution of Circular Orbits

Having just characterized coplanar encounters with eccentric
perturbers, let us now consider the opposite extreme: inclined
encounters with test particles on circular orbits. One astro-
physically relevant setting where such dynamics emerges
naturally is the evolution of protoplanetary disks residing
within stellar associations. Owing to hydrodynamic forces and
viscosity, fluid astrophysical nebulae have a natural tendency to

Figure 5. Phase-space portraits of planar encounter dynamics in the secular regime. The level curves of Equation (21) are shown in terms of Cartesian analogs of the

Poincaré action-angle coordinates, where G = - - e1 1 2 is the scaled angular momentum deficit in the plane and g v= - is the negative longitude of pericenter.
In each panel, the separatrix is shown as a bold red curve. The topology of the phase-space diagram—and, in particular, the secular stability of the e=0 orbit (origin)
—depends on e′: below a critical perturber eccentricity ¢ »e 3.59c , the circular orbit corresponds to an elliptic equilibrium point in phase space, while above the critical
eccentricity, this fixed point becomes hyperbolic.
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relax toward nearly axisymmetric structures, justifying the
e 0 assumption (Fragner & Nelson 2010; Picogna &

Marzari 2014; Xiang-Gruess & Papaloizou 2014). For defini-
tiveness, we will begin our discussion with the simple example
of a test particle, as above, and subsequently generalize our
results to radially extended structures.

Setting e=0 and dropping constant terms, Equation (17)
simplifies to the following integrable form:

¯̄ [ ( )

( ) ( ) ( )]

( )
[ ( )

( ) ( ) ( )] ( )

k

a
k

=
¢ ¢ ¢

¢
¢

+ ¢ - W

= -
¢ ¢ - ¢

¢
¢ -

+ ¢ - -


a

e b

n

n

m

M
e i

e i

e e

n

n

m

M
e H

e H h

8
3 cos 2

2 1 sin cos 2

8 1
3 2 1

2 1 1 cos 2 . 25

3

2 3
2

2 3 2 2

3

2 2 3 2
2 2

2 3 2 2

An intriguing feature of this Hamiltonian is that for ¢e 1, the
dependence of ¯̄ on e′ simplifies considerably. In particular,
recalling the series expansion for κ from Equation (18), we
have

¯̄ [ ( ) ( )] ( )a
= -

¢ ¢
¢

+ -
e

n

n

m

M
H H h

4
3 1 cos 2 . 26

3

2
2 2

Compared with the planar special case described in the
previous section, the fixed points of Equation (25) are also
considerably simpler. Specifically, noting the quadratic and
cosinusoidal dependence of the Hamiltonian on H and h,
respectively, the equilibrium equations

¯̄ ¯̄
( ) ( )=

¶
¶

µ = = -
¶
¶

µ =
 dh

dt H
H

dH

dt h
h0 sin 2 0 27

imply that all fixed points of Equation (25) reside at p=i 2
and Ω=0, π/2, π, 3π/2, independent of e′. Inspection of
Equation (26) further reveals that ¯̄ is locally elliptic at
Ω=π/2 and 3π/2 but hyperbolic at Ω=0 and π.

The phase-space portrait of Equation (25) for ¢ =e 3 is
shown in Figure 8. Specifically, the background color scale, as
well as the dotted lines, represent level curves of Equation (25).
Qualitatively, Equation (25) possesses the typical structure of a
mathematical pendulum; i.e., retrograde and prograde circula-
tion trajectories at i∼0 and π enclose a second-order
resonance centered on i=π/2 (Morbidelli 2002). The
separatrix of the resonance that partitions regions of Ω libration
from circulation is emphasized with a solid red curve.
The inclination half-width of this resonance is readily

calculated by evaluating the separatrix equation at its Ω=
π/2 apex:

( )
( )

( )
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟p

k
D = -

¢ -
¢ - + ¢

i
e

e e2
arccos

2 1

1 3
. 28

2 3 2

2 3 2 2

Examination of this expression as a function of e′ illustrates
that in the extreme limit of ¢ e 1, D i 0. Conversely, for
¢e 1, the resonance half-width asymptotically approaches

( )p pD  - =i 2 arccos 1 2 4. Indeed, unlike the case of
planar encounters considered above, where the topology of the
dynamical portrait changed at a critical value of ¢ »e 3.59
(Figure 5), the qualitative features of the phase-space diagram
shown in Figure 8 apply across all perturber eccentricities.
Accordingly, to avoid redundancy, we will omit displaying a
counterpart to Figure 5 pertinent to i–Ω dynamics.
As in the previous section, we can turn to the integrability of

Equation (25) to directly compare our analytic results to
numerical experiments. In particular, we carried out a series of
N-body simulations employing the same setup as above (i.e.,

¢ =a b 0.03, ¢ =m M 1, etc.) to recreate the level curves of
our secular model without resorting to orbit-averaging.
Notably, in order to enforce the e=0 limit, in these
simulations, we artificially restored the test particle’s eccen-
tricity back to zero after every encounter, allowing all other
parameters to evolve self-consistently. The resulting i–Ω
evolution computed using direct N-body integration over
thousands of encounters is depicted in Figure 8 using solid
purple lines. In light of the self-evident similarity between
analytical and numerical contours depicted on the graph, we

Figure 7. Fractional error of the analytic approximation scheme, ζ, as a
function of the semimajor axis to impact parameter ratio. The figure reports the
results of three sets of N-body simulations, with red, green, and blue points
corresponding to perturber eccentricities of ¢ =e 2, 3, and 5, respectively.
Clearly, our analytic approximation scheme becomes inadequate for a
semimajor axis to impact parameter ratio of ¢ a b 0.1.

Figure 6. Effective time series of test particle evolution under repeated
encounters with planar ¢ = m M perturbers with eccentricity ¢ =e 2 (red),
¢ =e 3 (green), ¢ »e 3.59c (purple), and ¢ =e 5 (blue). For all simulations, the
ratio of particle semimajor axis to perturber impact parameter was set to

¢ =a b 0.03. As predicted by analytic theory, when subjected to repeated
perturbations from flybys with ¢ e 3.6, orbits that originate with low
eccentricity remain roughly circular. Conversely, for ¢ e 3.6, initially circular
orbits can be rendered parabolic given a sufficient number of encounters, as
demonstrated by the approximately exponential rise in eccentricity of the
¢ =e 5 numerical experiment.
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confirm the validity of our approximation scheme in the e=0
special case of the hyperbolic encounter problem. To
complement the phase-space diagram shown in Figure 8, in
Figure 9, we also show the numerically generated time series of
test particle orbital inclination resulting from thousands of
repeated encounters with ¢ =e 3 companions over a single
circulation/libration period of Ω.

Extension to astrophysical disks—With the test particle limit
of the hyperbolic encounter problem quantified, let us now
consider the dynamics of a radially extended axisymmetric
disk, subject to slow perturbations from passing stars. For the
purposes of this work, we will limit the scope of our
calculations to an idealized scenario where the internal
(magneto)hydrodynamic and self-gravitational forces of the
disk are envisioned to maintain perfect coplanarity among
neighboring annuli, meaning that we will treat the disk as a
rigid body. Under this assumption, every infinitesimal ring that
comprises the disk has the same i and Ω, meaning that the
Hamiltonian of the system can be obtained by averaging the
system radially, weighing each annulus by its orbital angular
momentum (e.g., Batygin 2012).

Let us suppose that the disk is characterized by a power law
of the surface density profile (Armitage 2011),

( )⎜ ⎟⎛
⎝

⎞
⎠S = S
ba

a
, 290

0

where β<5/2. Then, the angular momentum stored in an
annulus of radial extent da is pL = S  d a M a da2 .

Noting that all semimajor axis dependence of ¯̄ is in the factor
that proceeds the square brackets in Equation (25), it will be the
only quantity affected by the angular momentum–weighted
radial averaging process. Accordingly, the prefactor of the rigid
disk Hamiltonian takes the form
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where  is the radial extent of the disk, and we have assumed
that the inner truncation radius of the disk is much smaller
than .

An important conclusion that Equation (30) illuminates is
that with the exception of an order-of-unity reduction of the
energy scale of the governing Hamiltonian, the dynamics of a
rigid disk are qualitatively identical to those of a test particle
orbiting at the disk’s outer edge. Although the exact magnitude
of the enhancement of the evolutionary timescale is dependent
upon the specific index of the surface density power law, if we
adopt a Mestel (1963)–type profile with β=1, we find that the
energy scale of the disk Hamiltonian is only reduced by a factor
of (2β−5)/(2β−8)=2 when compared with a test particle
Hamiltonian evaluated at = a . In other words, the restricted
three-body problem results at e=0 depicted in Figures 8
and 9 and trivially translate to the more astrophysically relevant

problem of stochastic gravitational perturbations exerted upon
fluid nebulae by passing stars, and we will utilize this
correspondence in the next section.

5. Early Evolution of the Solar System

Let us now digress from the academic curiosities considered
in the previous section and apply the secular formalism
developed above to a pair of specific examples. The first of
these exercises is a direct application of the results outlined in
Section 2 and addresses the evolution of the total angular
momentum vector of the giant planets of the solar system,
subject to the collective potential of the birth cluster. The
primary result of this analysis is that even if the solar system
spent τ∼100Myr embedded within an open cluster composed
of N∼3000 stars, the obliquity acquired by the Sun would not
exceed ψ1°. Thus, it is very unlikely that the Sun’s 6° spin–
orbit misalignment could plausibly be attributed to the twist of
the angular momentum vector ensuing from the cluster
potential.
The second example concerns a less trivial calculation of the

response of the cold classical Kuiper Belt to stochastic
perturbations from passing stars. In particular, we apply the
stochastic secular impulse formalism outlined in Section 3 to the
outer solar system to derive limits on the birth environment of
the solar system that ensue from the preservation of the cold belt’s
muted inclination dispersion (Brown 2001). Quantitatively, this
constraint translates to the solar system’s stellar number density–
weighted cluster residence time of less than∼2×104Myr pc−3.
Based upon our results, we further argue that the distribution of
orbital inclinations within the cold classical population is largely
primordial (Parker & Kavelaars 2010; Batygin et al. 2011a;

Figure 8. Phase-space portrait of Equation (25) for ¢ =e 3, projected onto the
( )Wi, plane. As in Figure 4, the background color scale and dotted lines are
obtained analytically, while the purple curves represent the results of N-body
simulations where the test particle eccentricity is restored to zero between
encounters. The phase-space diagram is characterized by a pendulum-like
second-order resonant structure with equilibria corresponding to an orthogonal
orbital configuration with = i 90 .
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Nesvorný et al. 2019) and stems almost exclusively from
gravitational self-stirring.

5.1. Twist of the Solar System

Consider the response of the giant planets of the solar system
to the phase-averaged evolution facilitated by Equation (9). For
simplicity, let us adopt the υ=2 Plummer profile and envision
that the Sun’s orbital radius within the cluster corresponds to
ξmax (i.e., ¢ =a c2 3 ), such that our estimates yield an
effective upper limit on the computed effect. In the same vein,
let us recall the fiducial model cluster parameters quoted in
Section 2: =¥M M1200 and c=0.35 pc, yielding Ψc≈
2/3 (au yr−1)2.

With these specifications in place, the characteristic
frequency of cluster-induced perihelion precession can be
obtained by setting i 0 in Equation (48) and applying
Hamilton’s relation

¯̄
( )⎜ ⎟⎛

⎝
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⎠ 
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
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1 9

25

3

5
. 31

2
c

For our baseline cluster parameters and a40 au, the above
expression evaluates to dϖ/dt0 001 yr−1. By comparison,
the secular eigenfrequencies of the Lagrange–Laplace solution
of the outer solar system are on the order of g1″ yr−1 and
thus exceed cluster-induced perihelion precession by more than
3 orders of magnitude13 (Brouwer & van Woerkom 1950;
Murray & Dermott 1999). As briefly mentioned in Section 2,
this implies that the cluster-induced Kozai–Lidov resonance
will be adiabatically suppressed by planet–planet interactions.
In turn, this means that the harmonic term in Equation (9)
can be ignored (that is, averaged over), and the planetary
eccentricities can be taken to be null.

After these simplifications, Equation (9) reduces to

¯̄ ( ) ( )⎜ ⎟⎛
⎝

⎞
⎠= -

Y


a

c
i

9

100

3

5
cos . 32c

2
2

A key characteristic of this expression is that the only
dynamical variable it depends on is the inclination. Therefore,
for the system at hand, the sole consequence of the birth
cluster’s mean field will be the nodal regression of the solar
system’s mean plane, as defined by the solar orbit within the
cluster.
Following the same reasoning as in Section 4.2, we treat the

giant planet orbits as a set of rigid rings confined to a common
plane and compute the nodal regression rate of the system by
applying Hamilton’s equation ( ¯̄ ) W = ¶ ¶ d dt H M a
and weighting each planet’s contribution by its angular
momentum,
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where X = å m aj j j . In order to evaluate this expression, we
have to specify the architecture of the giant planets. In this
regard, it is crucial to note that the orbits of the giant planets
almost certainly experienced significant divergent migration
early in the solar system’s lifetime, owing to a transient
dynamical instability that ensued due to their interactions with
an∼20M⊕ primordial disk of planetesimals extending
from∼15 au to Neptune’s present-day orbit (Tsiganis et al.
2005; Nesvorný & Morbidelli 2012). This means that during
the epoch relevant to cluster-induced dynamics, the orbital
configuration of the giant planets was likely more tightly
packed than today’s solar system.
The inferred existence of the Oort cloud (Oort 1950; Kaib

et al. 2019, and references therein) necessitates that the (Nice
model) dynamical instability unfolded after the dispersal of the
birth cluster. This is because the outward ejection of∼20M⊕
of planetesimals that occurred during the instability was the last
major expulsion of icy material into the trans-Neptunian region,
and had this event occurred while the cluster was still present,
the Oort cloud would have been rendered unbound by passing
stars. Consequently, for the calculation at hand, we adopt a
compact multiresonant configuration for the giant planets
where Jupiter and Saturn, as well as Uranus and Neptune, are
locked into 3:2 mean-motion resonances, while Saturn and
Uranus are entrained into a 4:3 resonance, which has been
previously shown to adequately serve as an initial condition for
the Nice model instability (although we also note that the
specific choice of resonance indexes does not affect our results
on a qualitative level; Batygin & Brown 2010; Nesvorný &
Morbidelli 2012). The planetesimal disk is modeled as a series
of 20 concentric rings, equally spaced between 15 and 35 au,
each containing 1M⊕ of material.
For our fiducial cluster parameters and a cluster lifetime of

τ=100Myr, the total change in the node of the solar
system’s mean plane given by Equation (33) is a mere

 tDW = áWñ » 0 .7 for ( ) ~icos 1. Translated into solar
obliquity, ψ, we obtain an even smaller quantity. That is, if we
assume that the spin axis of the Sun is not adiabatically coupled
to the planets as the most optimistic scenario (see, e.g., Bailey
et al. 2016), then a twist of the solar system’s mean plane
necessarily results in spin–orbit misalignment, but its magnitude

Figure 9. Inclination evolution of a circular test particle with ¢ =a b 0.03
under repeated encounters with an ¢ = m M , ¢ =e 3 perturber. Orbits entrained
in a secular inclination resonance with the perturber are shown in red, while
trajectories outside of the resonant domain are shown in blue. The evolution is
plotted over a single circulation/libration period in Ω.

13 It is likely that at the early stages of the solar system’s postnebular
evolution, the orbital architecture of the giant planets was more compact than it
is today (Tsiganis et al. 2005), yielding even faster secular perihelion
precession than that entailed by the Lagrange–Laplace solution applied to the
present-day solar system.
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cannot exceed 2 i in principle. It is trivial to demonstrate that
solar obliquity generated by the process takes the form

( ( )( ( ) )) ( ) ( )y = + DW - » DWi iarccos 1 sin cos 1 sin . 34

Given that ( ) ( ) i isin cos 1 2, our nominal cluster parameters
yield ψ 0.35°—more than an order of magnitude smaller
than the Sun’s actual 6° obliquity.

For completeness, we repeated the above calculation with
the υ=1 Hernquist profile, keeping M∞ and c the same but
setting the dimensionless radius to a somewhat lower value of
ξ=1/2. This choice alters the coefficient in front of
Equation (32) to 5/27—less than a factor of 3 larger than the
Plummer value and thus only boosting the degree of stellar
obliquity excited over 100Myr to ψ≈1°. To translate this
estimate to even lower (a priori improbable; Adams 2010)
values of ξ, we note that unlike the Plummer profile,
Equation (47) shows that the Hamiltonian associated with the
Hernquist profile does not have a maximum in ξ and instead
grows monotonically as∼1/ξ for ξ1.

Cumulatively, the analysis carried out in this section
indicates that the solar obliquity is very unlikely to be rooted
in long-term interactions of the planetary orbits with the Sun’s
birth cluster. While it is possible to consider alternative
combinations of variables (e.g., a more massive, longer-lived
open cluster) to engineer the desired result, such a solution
would almost unavoidably be contrived. In other words, the
procedure of simply choosing astrophysically plausible cluster
parameters is unlikely to yield values of ψ in excess of∼1°.

5.2. Heating the Cold Classical Kuiper Belt

Having quantified the smooth component of the secular
forcing exerted upon the solar system by the cumulative cluster
potential, we now examine a less trivial but arguably more
consequential ramification of cluster-induced evolution of the
outer solar system. Namely, this section will be dedicated to
quantifying the extent of dynamical heating of the outer solar
system generated by the integrated effect of individual stellar
flybys. By and large, in this section, we will make use of the
stochastic secular formalism outlined in Section 4.2.

Among the first major results that stemmed from observa-
tional mapping of the trans-Neptunian region two decades ago
(Jewitt & Luu 1993) was the determination that the classical
Kuiper Belt—which is primarily made up of icy debris with
semimajor axes in the a∼42–47 au range14—is comprised of
two dynamically separate components: the hot and cold
populations (Brown 2001). The boundary between these two
constituents of the classical belt is not sharp but is nonetheless
often drawn at an orbital inclination of i≈5°, with less
inclined objects classified as being dynamically cold (Brown
2001; Gladman et al. 2008; Figure 10). However, because
orbital inclination is conventionally measured from the ecliptic
plane, this oft-cited value significantly overstates the true
inclination dispersion of the cold belt (Brown et al. 2004).

An additional point of considerable importance is that
because classical KBOs are affected by (secular) gravitational
perturbations from Neptune, the observed orbital inclinations of
KBOs can be decomposed into so-called forced and free
components (Murray & Dermott 1999). Qualitatively, the
forced component of the inclination is a baseline quantity that

arises from interactions with the giant planets and would persist
even if some dissipative force were to be applied to the cold
belt. On the contrary, the free component of the inclination is
fully determined by the initial conditions of the system and is
the quantity of interest for the problem at hand. To a good
approximation,15 a cold classical KBO’s (observed) complex
inclination vector, ( )V = Wi ıexp , can be decomposed into the
free and forced elements as follows (e.g., Batygin et al. 2011a):
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are the coupling coefficients of the Lagrange–Laplace secular
theory (Brouwer & van Woerkom 1950).
Figure 11 shows the histogram of the free inclination of the

cold classical Kuiper Belt. The probability density functions
comprised by the data are well matched by a Rayleigh
distribution with a scale parameter of σi= 1.7°, which is
shown with a dashed black line in the figure. It is worth noting
that by comparison, the hot classical Kuiper Belt has an
inclination dispersion of∼15° (Brown 2001). Moreover, we
remark that the orbital eccentricities of the cold population of
the classical belt are on the order of e∼0.05 and, on average,
lower than those of the hot component, although the difference
between the two populations in this degree of freedom is less
dramatic (Figure 10).
Intriguingly, orbital structure comprises only one of the

many characteristics in which the cold classicals appear
different from the remainder of the Kuiper Belt. In particular,
both the (mostly red) colors and top-heavy size distribution
(characterized predominantly by ~ 300 km objects) of cold
classical KBOs are distinct from other subpopulations of the
Kuiper Belt (Trujillo & Brown 2002; Lykawka & Mukai 2005;
Fraser et al. 2010). Equally as importantly, wide binaries—
which would have been disrupted had these objects experi-
enced close encounters with Neptune—are present within the
cold classical belt in appreciable proportion while being
markedly absent from the other classes of KBOs (Parker &
Kavelaars 2010). Cumulatively, these lines of evidence point
toward an in situ formation history of the cold belt, in sharp
contrast with the remainder of the Kuiper Belt, which was
likely dynamically emplaced from smaller heliocentric dis-
tances during the solar system’s transient period of dynamical
instability (Levison et al. 2008; Batygin et al. 2011a; Dawson
& Murray-Clay 2012; Nesvorný 2015; see also Morbidelli &
Nesvorny 2020 for a recent review).
If the cold classical Kuiper Belt is primordial, then the

maintenance of its dynamically unexcited state is a constraint
that must be satisfied by the solar system’s birth environment.
More generally, in light of the fact that the cold classicals may

14 Notably, this range of semimajor axes approximately coincides with the
locations of Neptune’s exterior 3:2 and 2:1 mean-motion resonances.

15 In this approximation, we only account for orbit-averaged gravitational
coupling of the KBOs with Neptune and only retain the components of
Neptune’s secular evolution corresponding to the degenerate f5 (invariable
plane) and f8 modes of the Lagrange–Laplace solution (see Murray &
Dermott 1999 for more details).
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be the only population of planetesimals in the solar system that
has not been significantly stirred by giant planet migration, it is
of considerable interest to determine the extent of extrinsic
excitation that the cold belt could have plausibly experienced
and thus illuminate the primordial inclination dispersion of
planetary building blocks in the outer regions of the proto-solar
nebula.

Indeed, a considerable amount of work along these lines of
reasoning has already been carried out. For example, published
results of numerical simulations of gravitational scattering (see,
e.g., Li & Adams 2015, 2016, and references therein) have
demonstrated that the geometrical cross-section for large-scale
dynamical disruption of the giant planets is σ≈2.5×105 au2,
which translates to a distance of closest approach of
rmin≈50 au, where gravitational focusing is assumed to ensue
with =¥v 1 km s−1 and ¢ = á ñ »m M M0.4 . Keeping in
mind the somewhat more stringent restrictions entailed by the
existence of the Kuiper Belt, as a starting point of our
calculations, we adopt twice this value as a fiducial estimate for
the smallest perihelion distance, rmin�100 au, that can be
expected within the lifetime of the cluster.

Because a given expectation value for the distance of closest
approach can be equivalently obtained from either spending a
short amount of time in a high-density stellar environment or
spending a long period of time in a low-density stellar
environment, it is convenient to define a stellar number
density–weighted residence time

( )òc =
t

n dt. 37
0

Then, the standard relationship

( ) ( )p c+ Q á ñ r v1 1, 38min
2

where ( )Q = + ¢ á ñ M m r v2 min
2 is the Safronov number,

implies c ´ 5 104 Myr pc−3 for the aforementioned crude
estimate of rmin. Limited by this product of stellar number
density and cluster lifetime, let us now examine a rudimentary
description of the cluster-induced evolution of a prototypical
cold classical KBO on analytic, as well as numerical, grounds.

Excitation from the plane—A simple model that can be
envisioned for the early secular dynamics of the cold classical

belt is that of a single test particle located at a=45 au,
evolving subject to the combined action of the fixed, phase-
averaged gravitational fields of the giant planets and the
stochastic perturbations arising from passing stars. Within the
context of this picture, giant planets force a precession of
the test particle’s longitudes of perihelion and ascending node
with the characteristic frequency (Murray & Dermott 1999)
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Referencing the results of the previous subsection, it is trivial to
check that this frequency exceeds its counterpart arising from
Equation (9) by a large margin, implying that the Kozai–Lidov-
like mean-field dynamics of the cluster discussed in Section 2
will be suppressed (see Batygin et al. 2011b for a closely
related discussion). As a result, it suffices to only model the
stellar flybys for the problem at hand.
At the same time, it is also trivial to check that in magnitude,

W d dt 1 enc. The fact that this frequency is much slower
than the inverse stellar crossing time means that extrinsic
perturbations from passing stars will act as secular impulses
that abruptly transport the KBO in phase space on a timescale
that is essentially instant compared with its usual nodal
regression period. To this end, we note that if the nodal
precession rate due to the giant planets greatly exceeded the
rate of the KBO’s nodal regression induced by the star during
the flyby, ~DW  , then the inclination excitation due to
stellar flybys would be adiabatically suppressed, just like the
Kozai-like mean-field dynamics of the cluster quoted above. As
we will demonstrate below, this is not the case for the system at
hand, so we do not account for secular forcing due to the giant
planets during the stellar encounters in our analytic framework
for computational ease. Furthermore, we assume that the orbital
eccentricity remains low enough for us to neglect all terms of
order ( ) e2 in the quadrupole-level expansion of the potential
(Equation (12)). All of these simplifications will be further
substantiated by direct numerical integrations that will follow.

Figure 10. Observational census of the classical region of the Kuiper Belt. The left and right panels of the figure show the semimajor axis–eccentricity and semimajor
axis–inclination distributions of detected trans-Neptunian objects. The classical Kuiper Belt, primarily residing in between the exterior 3:2 and 2:1 mean-motion
resonances with Neptune, is subdivided into the dynamically “hot” and “cold” populations. The cold belt is nominally taken to be comprised of objects with i 5
and is highlighted on the figure in blue. The data shown were retrieved from the Minor Planet Center database on 2019 June 1.
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With the above approximations in hand, we repeatedly apply
the secular impulse mapping stemming from Equation (25) to
compute the inclination evolution of the test particle. The most
practically straightforward approach is to employ Cartesian
Poincaré variables (Morbidelli 2002),

( )= = p z q z2 cos 2 sin , 40

where ( )= - i1 cos and z=−Ω. In terms of these
coordinates, the mapping equations take the form
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We note that the effects of individual encounters necessitate
randomly drawing passing stars within the Sun’s immediate
neighborhood in a homogeneous manner, accounting for the
distribution of masses, velocities, and impact parameters. To do
so, we follow the procedure outlined in Heisler et al. (1987) to
simulate 19 distinct species of main-sequence stars with masses
ranging from ∼0.1 to ∼20Me. Tables summarizing the
specific stellar masses and relative number densities are
provided in Heisler et al. (1987). To fix an upper limit on the
frequency of modeled encounters, we set the maximal impact
parameter of resolved flybys to ¢ =b 0.1max pc, having checked
that increasing this value does not appreciably change the
results. Finally, in contrast to Heisler et al. (1987), we assume a
common velocity dispersion á ñ =v 1 km s−1 for all stars and
draw velocities from the Maxwell–Boltzmann distribution with
a scale parameter16 á ñv2 (Binney & Tremaine 1987). This
choice is motivated by observational surveys of clusters (Lada
& Lada 2003), as well as the expectation that the timescale for
dynamical relaxation of the cluster is comparable to the typical
lifetimes of these systems.

The top panel of Figure 12 depicts the results of our
analytical calculations, where the test particle was initialized at
i=0 and subjected to perturbations arising from 30 different
realizations of the cluster over a number density–weighted
timescale of c = ´5 104 Myr pc−3. As expected, the velocity
dispersion of the simulated particles grows in time, such that
the average inclination at the end of the calculation is on the
order of a degree. Naively, one may expect that the growth of
the test particle’s inclination can be understood as a diffusion-
like process, wherein random perturbations from passing stars
accumulate in an incoherent manner, akin to integrating over
noise. As we show in Appendix B, however, the distribution of
forcings experienced by the test particle is strongly non-
Gaussian, and the stochastic progress of the system is always
dominated by the single largest kick rather than the sum of a
large number of smaller perturbations. Let us characterize this
process further from purely analytical grounds.

An analytical estimate of inclination growth—As is well
known, the characteristic rate of interactions between the solar
system and passing stars can be written as p h¡ ~ ¢ á ñb v2 .

The impact parameter of the closest expected approach at time
τ can thus be readily derived from ϒ τ∼1. Relating the typical
perturber’s semimajor axis to the cluster velocity dispersion via

m¢ = - á ña v 2, we obtain the minimal expected eccentricity
of a perturber as a function of time:
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We then assume that at any value of χ, the perturbations from
the lowest-e′ encounter dominate over the integrated effects of
all preceding flybys (see Appendix B) and simply compute the
change in orbital inclination, Δi, adopting i=0 as an initial
condition.
To account for the spherically isotropic geometry of stellar

encounters in the cluster, we express the secular impulse
(Equation (41)) in terms of the Poincaré action-angle
coordinates ( z, ) and average the relevant expression over
the azimuthal and latitudinal angles:
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Substituting Equation (42) into Equation (43) thus yields the
expected inclination of the cold belt as a function of stellar
number density–weighted time. The resulting curve for
á ñ =v 1 km s−1 and ¢ =m M0.1 is shown in each panel of
Figure 12 as a black line.
Given the simplicity of the physical setup considered herein,

the outlined calculation represents an additional testing ground
of the secular mapping in a realistic cluster environment.
Accordingly, we repeated the performed simulations with an
N-body model, drawing passing stars from the same distribu-
tion as above. Moreover, to assess the effect of the orbit-
averaged potential of the giant planets, we carried out two sets
of runs: one without a quadrupole moment and one with a solar

Figure 11. Distribution of free inclinations of the cold classical Kuiper Belt.
The observational data—shown here as a purple histogram—are well described
by a Rayleigh distribution with a scale parameter of s = 1 . 7i .

16 The factor of 2 arises because we are considering stellar velocity relative
to the Sun, which is itself moving through the cluster.
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intended to mimic the nodal regression induced upon the test
particle by Jupiter, Saturn, Uranus, and Neptune. In the latter
simulation suite, we set the solar radius = 5 au. The details
of the simulations (integration method, etc.) were identical to
those carried out in Section 4. As in the analytical calculations,
we only resolved encounters with an impact parameter of
¢ b 0.1 pc and subjected the a=45 au test particle to 30
different realizations of the cluster for χ=5×104 Myr pc−3.

The results of these calculations are shown in the middle
panel (red; no J2) and bottom panel (green; with J2) of
Figure 12. The similarity of the test particle’s evolutionary
tracks depicted in the three panels of the figure point to the fact
that cluster-induced excitation of primordial planetesimals at
the outer edge of the solar system is well captured by the
secular mapping (Equation (41)), and that J2-forced nodal
regression does not appreciably suppress secular impulses
facilitated by the passing stars.

An additional notion informed by the N-body simulations
shown in Figure 12 is that the application of the secular
formalism is not sensible too far beyond χ5×
104 Myr pc−3 for a á ñ =v 1 km s−1 cluster, because the
probability of having an encounter that either ejects or
significantly alters the specific energy of the a=45 au particle
becomes appreciable. To this end, in the bottom panel of
Figure 12, we show vertical tick marks corresponding to values
of χ where the fraction of particles17 with a between 40 and
50 au equals 100%, K , 70%. Given that the chances of large-
scale disruption of the Kuiper Belt are approximately∼1/3 at
the end of the simulations, it is not worth considering greater
values of χ further.

Inclination of the mean plane of the solar system—We
carried out the preceding calculation under the assumption that
the giant planets of the solar system retain a common
inclination of á ñ »i 0 throughout the simulations. Let us now
briefly verify this assumption. As already discussed in
Section 4.2, the dynamical response of a rigid set of orbits to
external perturbations can be effectively modeled as the
evolution of a single representative orbit where the accumu-
lated changes in angular momentum are shared by the
constituent wires. Accordingly, from Equation (25), it is easy
to compute that the angular momentum–weighted response of
the four giants planets (initialized in a compact multiresonant
configuration as before) to stellar perturbations is equivalent to
that of a test wire with a semimajor axis of a=6.4 au.

Carrying out the perturbative analysis for the giant planets,
we find that over a number density–weighted timescale of
χ=5×104 Myr pc−3, the inclination of the mean plane of
the solar system is only altered by Δigp 0.1°, i.e., more than
an order of magnitude less than the inclination acquired by a
test particle at a=45 au. This mismatch in the acquired
magnitude of Δi validates our assumption of ignoring the
inclination evolution of the giant planets and modeling them as
a fixed quadrupolar potential. We further note that accounting
for the presence of an∼20M⊕ planetesimal disk that extends

to 30 au only boosts Δigp by a factor of ∼1.5 and does not
significantly alter our conclusion.
Inclination distribution of synthetic KBOs—While the

analysis carried out above demonstrates that orbital inclinations
of primordial trans-Neptunian planetesimals can be excited by
passing stars to the point where they become comparable in
magnitude to the observed inclination dispersion of the cold
belt, it leaves open the question of whether the resulting orbital

Figure 12. Excitation of orbital inclination in the classical region of the Kuiper
Belt by stellar flybys. An initially planar test particle in orbit around the Sun at
a=45 au is subjected to perturbations from passing stars, residing in a cluster
with a velocity dispersion á ñ =v 1 km s−1. Each line represents a unique
Monte Carlo realization of the cluster environment, totaling 30 samples. The
top panel depicts results computed using our analytical secular impulse model,
while the middle and bottom panels show evolutions obtained through direct
N-body integrations, with and without accounting for the phase-averaged
quadrupole-level potentials of the giant planets. In the panels corresponding to
N-body simulations, the fraction of simulations where the test particles remain
in the classical KBO region are labeled with large vertical ticks. The thick black
lines shown in each panel correspond to the analytical inclination growth
estimates given by Equation (43).

17 The inclination evolution of particles whose semimajor axes have been
strongly altered is almost always off-axis, so we simply do not plot the
inclination once the semimajor axis is out of the 40–50 au range.
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element distribution would be compatible with the actual
structure of the belt. After all, if all objects that comprise the
cold classical belt traced the evolution of a single test particle
exactly, the resulting distribution would simply be a δ-function.
In a detailed sense, however, this cannot happen because the
cold classical belt spans a finite range in semimajor axis, which
in turn implies differential nodal regression. Accordingly, once
a finite inclination with respect to the mean plane of the solar
system is acquired, each KBO would, in time, acquire different
coordinates (p, q) and thus respond to a stellar flyby in a
marginally distinct manner, broadening the distribution. It is,
however, unclear if this process can yield a sufficiently
dispersed distribution to match the real cold belt.

To answer this question quantitatively, we carried out the
following elementary Monte Carlo simulation. We began by
initializing an array of 100 coplanar test particles with
semimajor axes uniformly occupying the a=42–47 au range.
We then subjected this group of particles to perturbations from
passing stars, modifying their inclinations in accord with
Equation (41). To maximize the degree of spreading of the
inclination distribution, we assumed that differential nodal
regression fully randomizes the longitudes of ascending nodes
of the entire cold belt between encounters. As before, we
continued the integration forward over a time span corresp-
onding to χ=5×104 Myr pc−3 for 30 distinct realizations of
the cluster.

The probability density functions of the orbital inclinations
of the generated synthetic cold belts are shown in Figure 13 in
different colors. The σi= 1.7° Rayleigh distribution (corresp-
onding to the observed free inclinations of the cold belt;
Figure 11) is also shown on the figure as a dashed black curve
for comparison. Even without doing any rigorous statistical
analysis, it is clear that the synthetic cold populations produced
in our Monte Carlo simulations look nothing like the actual
cold belt. As anticipated above, the inclination distributions are
much more sharply peaked than the observed distribution. As a
result, we conclude that the inclination dispersion of the cold
belt is highly unlikely to have been strongly excited by passing
stars.

If passing stars do not appreciably modify the orbital
structure of the cold belt, and the transient dynamical instability
of the giant planets tends to preserve the cold belt’s dynamical
architecture (Batygin et al. 2011a; Nesvorný 2018), then it is
sensible to conclude that the free inclination of the cold Kuiper
Belt is largely primordial in nature. In this scenario, the
observed inclination distribution would be a product of
gravitational self-stirring, yielding a velocity dispersion of a
planetesimal disk that is comparable to the escape velocity of
the planetesimals. The characteristic inclination scale is then
given by the ratio of the typical escape velocity to orbital
velocity. Recalling that representative cold classical KBOs
have a diameter of ~ 300 km (Nesvorný et al. 2019) and
assuming a density of r̄ = 1.4 g cc–1, this ratio evaluates to
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in agreement with the observations. Moreover, the stochastic
self-stirring process naturally yields Gaussian distributions of
the phase-space variables (p, q), and, noting that the Rayleigh
distribution describes the magnitude of a 2D vector with
normally distributed components, we can readily conclude that
the observed inclination dispersion of the cold belt is fully

compatible with a local origin in both magnitude and
distribution.
A constraint on χ—In light of the above results, a distinct

question arises, namely, under what conditions can the
primordial architecture of the cold belt be maintained in the
face of cluster-induced evolution? To derive constraints on χ

from the preservation of an unexcited orbital state of the cold
classical population, we repeated the above Monte Carlo
experiment, this time initializing the test particles in accord
with the σi= 1.7° Rayleigh distribution. As these distributions
evolve forward in time within the 30 realizations of the cluster,
more and more of them become incompatible with the
observations. In this manner, an upper bound on the product
of number density and cluster lifetime can be interpreted as the
value of χ when a significant enough fraction of the simulated
synthetic Kuiper belts attain an inclination dispersion that does
not match that of the observations.
As a criterion for rejection of a given distribution at a given

χ, we adopted a p-value smaller than 0.003 (i.e., 3σ) computed
via the Kolmogorov–Smirnov (K-S) test.18 Figure 14 shows the
fraction of cluster realizations, f, within which the simulated
cold classical belt becomes incompatible with the observed
one. This time series is well matched by the approximate
expression

( )c
»

-
f

6.5 Myr pc
, 46

3

which is shown as a black line in the figure. Notably for
χ≈1.6×104 and χ=3.3×104 Myr pc−3, the probability
of significantly altering the orbital structure of the cold
population is∼25% and∼50%, respectively. For reference,
the probability density functions of the simulated synthetic cold
belts at these times, as well as at χ=0, are shown in
Figure 15. Cumulatively, these results indicate that the upper

Figure 13. Dispersion of orbital inclinations in the Kuiper Belt, generated
solely by perturbations from passing stars. Orbital distributions corresponding
to discrete realizations of the solar system’s birth cluster are shown with
individual colors, and the s = 1 . 7i Rayleigh distribution is shown with a
dashed black line for comparison. Owing to a similar response to stellar flybys
exhibited by all particles that comprise the model Kuiper Belt, the generated
distributions are much more sharply peaked than the observational data.

18 In practice, we found that changing the critical p-value to either 2σ or 4σ or,
alternatively, employing the Cramér–von Mises criterion instead of the K-S test
did not qualitatively affect our results.
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bound on the number density–weighted lifetime of the solar
system in the cluster lies at χ2–3×104 Myr pc−3.

6. Summary

The vast majority of stars—and the planetary systems they
host—are born in young stellar associations. Dynamical
interactions that ensue within these birth clusters give rise to
an added degree of architectural diversity within the emergent
census of planetary systems. Developing an analytical frame-
work for quantifying the gravitational perturbations exerted
upon nascent planetary systems by their birth environments,
with a particular focus on the early evolution of the solar
system, has been the primary purpose of this work. In this
concluding section, we provide a qualitative summary of the
obtained results and briefly discuss their implications.

As with the current galactic environment of the Sun, which
affects solar system objects via both a smooth tide and impulsive
kicks from passing stars (Heisler & Tremaine 1986; Kaib et al.
2013; Torres et al. 2019), the gravitational effects of star clusters
can be subdivided into mean-field interactions and stellar flybys.
In Section 2, we considered the former category of perturbations
and demonstrated that for a specific subset of potential–density
pairs, which include the widely used Hernquist (1990) and
Plummer (1915) models, the dynamical evolution enforced upon
planetary systems by the collective potential of the cluster can be
understood via a Kozai–Lidov-type Hamiltonian (Equation (9);
see also Brasser et al. 2006; Hamilton & Rafikov 2019, and
references therein). We remark that although the phase-space
portrait associated with mean-field cluster interactions exhibits
the usual second-order resonance in the argument of perihelion,
ω (Kinoshita & Nakai 1999), there exists a sizable range of
parameter combinations where the circular orbit remains
secularly stable even if the libration of ω is possible at high
eccentricity. Slow precession of the test particle’s angular
momentum vector, on the other hand, is an inescapable
consequence of the cluster’s potential.

Employing the same orbit-averaged framework, in Section 3
we developed a secular formalism (Rasio & Heggie 1995;

Hamers 2018) for modeling perturbations arising from distant
stellar flybys. In particular, we demonstrated that by averaging
the interaction potential over the particle’s orbit and integrating
the resulting expression over the encounter path, we can obtain
a simple Hamiltonian that adequately captures the ensuing
dynamics. More specifically, this Hamiltonian contains four
secular harmonics, which encapsulate three distinct physical
effects: (i) perturbations of the orbital planes (angular
momentum vector coupling), (ii) hyperbolic Kozai–Lidov
interactions (e–i coupling), and (iii) prograde/retrograde
apsidal eccentricity resonances (Runge–Lenz vector coupling).
Comparison of our analytic results with direct N-body
integrations across a broad range of test particle parameters

Figure 14. Fraction of simulated cluster environments that are incompatible
with the data, f, as a function of stellar number density–weighted cluster
residence time, χ. In these calculations, the synthetic cold classical Kuiper Belt
is initialized in accord with a Rayleigh distribution that adequately matches the
data, yielding f=0 at c = 0 by construction. As cluster-induced evolution of
the cold belt unfolds, however, stellar encounters deform the distributions such
that by c = ´2 104 Myr pc−3, more than a quarter of the models can be
rejected at the 3σ level. The linear fit to the simulation data given by
Equation (46) is also shown with a solid black line.

Figure 15. Smoothed probability density functions of the synthetic Kuiper
belts at various values of χ. The top panel depicts the starting conditions, where
30 model cold classical Kuiper belts, each composed of 100 particles, are
initialized following a Rayleigh distribution with s = 1 . 7i . The middle and
bottom panels respectively show evolved inclination distributions where one-
quarter and one-half of the simulations exhibit inclination dispersions that are
incompatible with the observational data.
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and perturber eccentricities shows agreement to better than a
few percent for the particle semimajor axis to perturber impact
parameter ratio of a/b′0.1.

The Hamiltonian describing flyby interactions is rendered
integrable in two distinctive regimes: either where the particle’s
orbital plane coincides with that of the perturbing star (i=0,
π) or where some dissipative process (e.g., hydrodynamic
interactions; Fragner & Nelson 2010; Xiang-Gruess &
Papaloizou 2014) is envisioned to consistently recircularize
the particle’s orbit (e= 0). We consider these special cases
sequentially in Section 4. In the case of planar encounters, our
analysis shows that the circular orbit is stable below a critical
perturber eccentricity ¢ »e 3.59crit (for larger values, it becomes
a hyperbolic fixed point). This transition in the topological
structure of the phase-space portrait is akin to the destabiliza-
tion of the circular orbit that occurs in the context of the Kozai–
Lidov resonance above a critical inclination of ¢ » i 39crit (see
Naoz 2016 for a review). An interesting consequence of the
existence of a critical perturber eccentricity with the orbit-
averaged flyby problem is that in 2D, the strongest encounters
—which correspond to low values of e′—are rather incon-
sequential for dynamically cold systems.

Our examination of the e=0 limit of the secular flyby
problem reveals a relatively simple picture, where the phase-
space portrait of the Hamiltonian corresponds to that of a
simple mathematical pendulum (see, e.g., Morbidelli 2002). In
particular, the resonance domain of this Hamiltonian is
centered around an orthogonal ( = i 90 ) orbital configuration,
and the resonance width approaches D i 0 and D  i 45
in the ¢ e 1 and ¢  ¥e limits, respectively. For both, the

p=i 0, and e=0 special cases of the secular flyby problem,
we compared the analytic phase-space portraits of the
governing Hamiltonian with their numeric counterparts (com-
puted via direct N-body integration with ¢ =a b 0.035) and
found that they are essentially indistinguishable. We also
considered a trivial extension of this model to account for
stellar perturbations of rigid astrophysical disks and showed
that radially extended structures can be modeled as test
particles residing at the outer boundaries of the disk by
reducing the effective stellar mass by a factor of order of a few
(e.g., exactly two for a S µ r1 Mestel 1963–type disk).

We applied the formalism developed in Sections 2–4 to the solar
system’s early evolution in Section 5. We began by quantifying the
integrated change in the orientation of the solar system’s mean
plane due to the birth cluster’s cumulative potential (Section 5.1).
Particular emphasis was placed on the generation of misalignment
between the planetary orbits and the spin axis of the Sun, with an
eye toward characterizing the cluster’s contribution to the Sun’s
present-day 6° obliquity. To this end, our analysis suggests that
even if the Sun spent t ~ 100 Myr within an ~¥M M1000
ONC-type cluster environment, the cluster-induced spin–orbit
misalignment of the Sun would fall short of explaining the
observations by nearly an order of magnitude. While it is always
possible to conjure up parameters (e.g., u x= 1, 1) that can
yield values of ψ on the order of ~ 10 , such configurations are
a priori unlikely and would almost certainly violate other solar
system constraints (Adams 2010).

While our results largely rule out cluster-induced rotation of
the solar system’s mean plane as a viable option for excitation of
solar obliquity, we note that there exist multiple other processes
that are unrelated to the birth cluster that naturally produce
significant stellar obliquities. In particular, viable theories for the

generation of large spin–orbit misalignments during the natal
disk-bearing phase of stars include magnetospheric disk–star
interactions (Lai et al. 2011; Spalding & Batygin 2015), disk
torquing (Batygin 2012; Batygin & Adams 2013; Lai 2014;
Spalding & Batygin 2014), and asymmetric infall of nebular
material from protostellar cores (Bate et al. 2010; Fielding et al.
2015; see also Spalding 2019 and references therein). Moreover,
observational surveys indicate that the vast majority of young
embedded clusters are expected to have lifetimes of order
t ~ 10 Myr, much shorter than that required to significantly
affect spin–orbit alignments. As a result, in addition to
applications to our solar system, our results indicate that
cluster-induced evolution likely plays a negligible role in
sculpting the observed distribution of spin–orbit misalignments
in extrasolar planetary systems (Winn & Fabrycky 2015).
In Section 5.2 we carried out the second portion of our

applied analysis and considered the constraints on the solar
system’s birth environment emerging from the long-term
preservation of the dynamically unexcited state of the cold
classical population of the Kuiper Belt (Batygin et al. 2011a;
Dawson & Murray-Clay 2012; Nesvorný 2015). In particular,
we simulated the evolution of trans-Neptunian objects subject
to perturbations from passing stars in three ways: (i) using the
secular impulse framework developed in Section 3; (ii) via
direct N-body integration of the restricted three-body problem,
where stellar encounters were modeled self-consistently; and
(iii) through N-body simulations of the primordial solar system
where, in addition to stellar flybys, quadrupolar perturbations
from the giant planets were also taken into account.
Overall, we found broad quantitative agreement between all

three of these approaches, implying that our analytic theory
readily reproduces the results of direct N-body simulations at a
greatly reduced computational cost, as long as stellar flybys are
not catastrophic (such that the Kuiper Belt is not destroyed).
Furthermore, we derived an almost-linear scaling of inclination
growth with time that can be understood as a tracer of the
single strongest perturbation experienced by the system, rather
than a diffusion-type process (see Appendix B). In this vein,
Equation (43) suggests that in order for a =¥v 1 km s−1 star
to disperse the Kuiper Belt by ~ 1 (a value comparable to the
observed inclination dispersion), an almost parabolic encounter
with ¢ »e 1.16 (corresponding to an asymptotic turning angle
of about 150 ) is required, which in turn necessitates
c » ´4 104 Myr pc−3. At the same time, we note that this
estimate is close to the upper limit anyway, since the number
density–weighted cluster lifetime itself is bounded by the fact
that beyond c ´ 5 104 Myr pc−3, encounters become
sufficiently violent that the cold belt is likely to be destroyed
altogether (Li & Adams 2015).
Beyond the magnitude of secular perturbations experienced

by trans-Neptunian objects due to stellar flybys, we found that a
somewhat more stringent constraint on the solar system’s
cluster environment can be derived by considering the spread
of (free) orbital inclinations within the cold classical popula-
tion. That is, while the inclination distribution of cold classicals
is well approximated by a Rayleigh distribution with a scale
parameter of s ~ 1 .7i , stellar encounters generate a much
tighter dispersion of orbital tilts than the data, to the extent that
it becomes incompatible with the observations, even if the
average inclination is reproduced. In light of this disparity, we
argued that the inclination dispersion of the cold classical
population must be largely primordial. Indeed, a rudimentary
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estimate of gravitational self-stirring among ~ 300 km
bodies within the cold belt yields an adequate explanation for
the dynamical state of the cold classical population. Corre-
spondingly, we obtained a second limit on χ by initializing the
cold belt’s free inclinations to follow a Rayleigh distribution
with s ~ 1 .7i and demanding that stellar encounters do not
alter it strongly enough to become incompatible in its starting
state. Characterizing the solar system’s birth environment in
this way, we obtained an upper bound of number density–
weighted cluster residence time of c ´ 2 104 Myr pc−3.
Through an sn v-type calculation, this estimate implies that in
order for the cold classical Kuiper Belt to have maintained its
dynamically unexcited architecture, the heliocentric distance of
closest approach of a passing star within the solar system’s
birth cluster must have been greater than r 240min au.
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Greg Laughlin, Gongjie Li, and Dimitri Veras for insightful
discussions. We thank the anonymous referee for a careful
review of the manuscript. K.B. is grateful to the David and
Lucile Packard Foundation and the Alfred P. Sloan Foundation
for their generous support.

Appendix A
Mean-field Dynamics: Special Cases

Equation (9) represents the doubly orbit-averaged interaction
potential of a test particle orbiting a central body that is
immersed in a spherically symmetric background potential

whose analytic form is given by Equation (1). Recall that in
these expressions, the parameter u< 0 2 controls the
sharpness of the changeover in the potential’s shape across
the softening length, c. For u = 1, corresponding to the
Hernquist (1990) profile, Equation (9) can be written as
follows:

¯̄
( )

(( )(( ) ( )

) ( ) ( ) ( )))
( )
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⎝
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x x w
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Since Y = ¥M c0 is only a measure of the cluster’s potential,
it is evident that the above expression is independent of the mass
of the central body, M, which the test particle is orbiting. This
characteristic is a consequence of the implicit assumption that
 ¥M M , which is well satisfied for the problem of interest.
For the u = 2 Plummer (1915) profile, the Hamiltonian

takes the form

¯̄
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2
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This expression agrees with the one given in Brasser et al.
(2006; see also the recent work of Hamilton & Rafikov 2019).
As mentioned in the main text, the prefactor of this
Hamiltonian ( )x xµ +12 2 5 2 is maximized at x = 2 3 .

Figure 16. Equivalent to Figure 3 but for ξ corresponding to the half-mass radius of the Plummer sphere. Note that unlike the x < 1 case shown in Figure 3, the e=0
equilibrium point becomes secularly unstable above a critical inclination in this figure (akin to the standard Kozai–Lidov picture). The homoclinic curve running
through the origin is shown with a black line.
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Conversely, in the x  ¥ limit, both Equations (47) and (48)
approach the standard Kozai–Lidov Hamiltonian (Kinoshita &
Nakai 1999) for a test particle perturbed by a distant mass.

To complement Figure 3, which shows the level curves of
Equation (48) for x » 0.8, in Figure 16, we show an equivalent
set of phase-space portraits for the dimensionless half-mass
radius ( )x = + »1 2 3 1.31 3 . Here, trajectories that circu-
late in ω are shown in gray, and ones that librate in ω are
depicted in orange. Notably, the origin of the phase-space
portrait already becomes hyperbolic for < i 25max for this
choice of parameters, i.e., at a somewhat larger value of than
the standard Kozai–Lidov resonance.

Appendix B
Collective Diffusion versus Individual Encounters

In this appendix, we compare the efficacy of changing the
orbital elements of test particles (KBOs) due to stochastic
phase-space transport associated with numerous long-range
stellar perturbations and that driven by the single closest flyby.
In the former case, the orbital elements change due to the
accumulation of many weak (distant) encounters and thus
require a description of an ensemble of stellar kicks. Since the
effects of these encounters are not correlated, the evolution can
be approximately modeled as a random walk, where the total
change in elements is determined by the corresponding
diffusion constant.

To keep the algebraic expressions light, we consider the
simple case of inclination evolution of a circular orbit in the
¢e 1 regime and start with the reduced, time-integrated

Hamiltonian, ¯̄, from Equation (26) in the main text. To within
a multiplier of order unity, the typical dimensionless step
length,  , that characterizes the random walk of the inclination
angle i is given by the analytic prefactor of Equation (26),
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¢ ¢
¢
~

¢
¢
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n

n

m

M

a a

b2
, 49

3
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3

4

where we have assumed that ¢ » ¢ ¢b a e and that the masses of
the passing stars and the Sun (or host star) are comparable, such
that ¢ » m M . Indeed, a similar expression can be obtained
directly from Equation (43) by taking the ¢e 1 limit.

For small increments of the phase-space variations driven by
weak encounters, the changes accumulate with an effective
diffusion coefficient given by

( )= á ¡ñ  , 502

where ϒ is the rate at which the solar system encounters other
stars with impact parameter ¢b , i.e.,

( ) ( )h p¡ = ¢ á ñb v . 512

The diffusion constant is thus given by

( )
( )

( )
( )

⎛
⎝⎜

⎞
⎠⎟

ò h p
p

p

p h

=
¢
¢

¢ á ñ
¢ ¢
¢

=
¢ á ñ

¢
¢
¢

¢

¢


a a

b
b v

b db

b

a a v

b

b

b

2

2

log , 52

b

b 3

4
2

max
2

3

max
2

max

min

min

max

where ¢bmin and ¢bmax correspond to the smallest impact
parameter flyby encountered by the host star and the effective
radius of the cluster, respectively.

Importantly, ¢bmin is linked to the cluster residence time by
the simple relation t¡ ~ 1. Correspondingly, under the
assumption of standard diffusive progress, the accrued change
in inclination is given by
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This expression can be readily compared with the change in
inclination resulting from a single encounter with impact
parameter ¢bmin using Equation (49) to give
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The smallness of the above ratio implies that we should expect
the closest encounters to dominate over the integrated effect of
distant stellar perturbations.
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