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Abstract.  We develop a field-theoretic perturbation method preserving the 
fluctuation–dissipation relation (FDR) for the dynamics of the density fluctuations 
of a noninteracting colloidal gas plunged in a quenched Gaussian random field. 
It is based on an expansion about the Brownian noninteracting gas and can be 
considered and justified as a low-disorder or high-temperature expansion. The 
first-order bare theory yields the same memory integral as the mode-coupling 
theory (MCT) developed for (ideal) fluids in random environments, apart from 
the bare nature of the correlation functions involved. It predicts an ergodic 
dynamical behavior for the relaxation of the density fluctuations, in which the 
memory kernels and correlation functions develop long-time algebraic tails. An 
FDR-consistent renormalized theory is also constructed from the bare theory. It 
is shown to display a dynamic ergodic–nonergodic transition similar to the one 
predicted by the MCT at the level of the density fluctuations, but, at variance 
with the MCT, the transition does not fully carry over to the self-diusion, 
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which always reaches normal diusive behavior at long time, in agreement with 
known rigorous results.

Keywords: diusion in random media, mode coupling theory, memory eects, 
Brownian motion
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1.  Introduction

In a number of circumstances, simple fluids may generically develop slow and complex 
dynamics. For instance, glassy dynamics unfolds in the low-temperature and high-
density regimes corresponding to supercooled or overcompressed liquid states. It is 
characterized by a considerable slowing-down of the structural relaxation, eventually 
leading to the fluid falling out of equilibrium at the glass transition [1–3]. Another 
example is provided by fluids in quenched-random environments, with either geometric 
or energetic disorder. Their single-particle dynamics is often characterized by diusion 
anomalies, possibly leading to diusion-localization transitions or other types of noner-
godic behaviors [4–6].

A versatile framework to investigate such problems on unified grounds from first 
principles is provided by the mode-coupling theory (MCT), more specifically a self-
consistent current-relaxation theory, as termed by Götze [7, 8]. In its first few years, 
this very scheme could indeed be successively applied to liquid helium at zero temper
ature [9, 10], to noninteracting electrons in a random impurity potential [11–13], to the 
random Lorentz gas [14–16], and to simple glassforming liquids [17, 18].

It is in the field of glassy dynamics that the MCT has had the strongest influence. It 
was indeed quickly realized that the theory seems to satisfactorily capture many non-
trivial aspects of the dynamics of simple glassforming liquids, at least on a qualitative 
or semi-quantitative level [19, 20]. This triggered and shaped an intensive experimental 
and computational eort and stimulated numerous further theoretical developments. A 
diculty has however been nagging all along, for the main results of the MCT essen-
tially follow from the analysis of a predicted sharp transition between a fluid-like ergo-
dic state and a glass-like nonergodic one. In fact, such a kinetic transition is absent in 
the actual dynamics of glassforming liquids, and it must be interpreted as giving rise 
to a dynamical crossover in the moderately supercooled or overcompressed regimes in 
order to make contact between observations and theory.

From this unsettling situation and the need to clear it up emerged an interest for 
theoretical approaches in which the MCT, or a MCT-like theory, would be the out-
come of a well-defined and controlled approximation scheme, amenable to systematic 
corrections and improvements. Indeed, the original derivation of the MCT within the  
Mori–Zwanzig projection-operator formalism does not really lend itself to such a 

https://doi.org/10.1088/1742-5468/ab632e


Dynamics of a noninteracting colloidal fluid in a quenched Gaussian random potential

4https://doi.org/10.1088/1742-5468/ab632e

J. S
tat. M

ech. (2020) 023301

program, although proposed extensions exist [21–26]. By contrast, field-theoretic 
approaches appear as methods of choice for such a purpose, and a number of them 
have accordingly been developed [27–37]. In particular, the most recent studies have 
paid special attention to the symmetries of the dynamical action, from which crucial 
equilibrium results readily stem, such as the fluctuation–dissipation relation (FDR) 
[32–38]. It is actually one of the great strengths of field theories to oer command on 
these aspects.

In the present work, we follow the lead of the latter studies, but, instead of glass-
forming liquids, we focus on noninteracting fluids in quenched-random environments. 
This indeed appears as an interesting new window on the use of field theory and its 
relation with MCT, complementary to what has already been done. Note that, within 
MCT, the presence of interactions does not actually lead to any particular technical 
diculty [39–42]. However, for more general considerations, it clearly seems advis-
able to first isolate the eects of disorder from those of interactions, hence the present 
restriction to noninteracting systems. In this respect, it should be borne in mind that 
the dynamics of a pure noninteracting gas, while essentially trivial in a particle-based 
formalism, is not so simple from a field-theoretic perspective [38].

Before being more specific about our approach, it is worth mentioning that fluids 
in quenched-random environments have recently received renewed attention, thanks 
to ingenious experimental developments leading to novel realizations of such systems. 
Important examples, further investigated by computer simulations, include colloids and 
aerosols in optical speckle patterns [43–54], binary mixtures of superparamagnetic par-
ticles squeezed between glass slides [55–58], and colloids diusing over rough randomly 
packed colloidal monolayers [59]. Therefore, beyond purely technical considerations, it 
also seems timely to try and achieve further theoretical progress in this field.

In practice, we here study the equilibrium dynamics of the density fluctuations of 
a gas of noninteracting Brownian particles plunged in a random external potential-
energy landscape with Gaussian statistics. This specific nature of the disorder indeed 
appears as particularly well suited for our initial field-theoretic developments, being 
itself formulated as a very simple and nonsingular field theory.

The time evolution of the density fluctuations is governed by the so-called 
Dean–Kawasaki (DK) equation (generalized to include the random potential), a non-
linear Langevin equation  for the density field with a multiplicative thermal noise  
[60, 61]. Using the functional formalism of Martin–Siggia–Rose–Janssen–de Dominicis 
(MSRJD) [62–64], this equation can be turned into a dynamical action functional. As 
alluded above, it was recently recognized that such an action possesses properties of 
time-reversal (TR) invariance under specific sets of field transformations, intimately 
connected to the FDR [32, 65]. These TR symmetries can play the role of guiding 
principles as to how to develop perturbation theories consistent with the FDR at each 
order of expansion. Indeed, a diculty that defeats too naive approaches is that the 
Gaussian and non-Gaussian components of the action are not separately invariant 
under these field transformations [31, 32]. One such FDR-preserving theory for the 
full DK equation (with interactions and without random potential) has recently been 
developed via the linearization of one of the TR transformations, called the U -trans-
formation, at the expense of introducing a new set of conjugated fields. Further details 
can be found in [37].

https://doi.org/10.1088/1742-5468/ab632e
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Another TR transformation, known as the T -transformation, suggests an expan-
sion about the pure noninteracting system as a possible approach. The action is thus 
decomposed into its free and disorder-induced components, then the latter is treated 
perturbatively around the former which is non-Gaussian. This procedure can actually 
be considered and motivated as a weak-disorder or high-temperature expansion. The 
rationale behind this scheme is that the corresponding nonlinear TR field transforma-
tion leaves separately invariant the two decomposed parts of the action. Consistency 
with the FDR however requires the free part of the action to be treated exactly. 
Notwithstanding its non-Gaussianity due to the multiplicative nature of the thermal 
noise, this is made possible thanks to the special form of its cubic nonlinearity (qua-
dratic in the noise-response field) and to causality. This aspect is a novel feature of this 
perturbation method. It is also advantageous that one is freed from introducing extra 
fields into the problem.

The present method per se is a bare perturbation theory, that is, the perturbative 
corrections are naturally expressed in terms of the bare correlation and response func-
tions. It is not a loop expansion, and it would be a challenge to develop the two-par-
ticle-irreducible eective action method for the strongly non-Gaussian noninteracting 
gas. Note that the approach could also be applied to the full DK equation, with a per-
turbative treatment of the interactions. This will be examined separately in the future.

We now summarize the main results of our work. The first-order bare theory (FOBT) 
gives a dynamical equation for the density correlation function that can be put in the 
same form as that of the self-consistent MCT developed by one of us [39–42], albeit with 
a memory term written in terms of the bare correlation function (see equations (9.29) 
and (9.18) below). From this equation, one can compute the mean-squared displace-
ment (MSD) and characterize the long-time tails that develop due to the quenched 
randomness. The corresponding dynamics is found to always remain ergodic, until the 
theory breaks down at too strong disorder.

A first-order renormalized theory (FORT) has also been developed out of the bare 
perturbation theory. It is self-consistently derived from a second-order bare calculation, 
with empirical adjustments constrained by the requirements of consistency with the 
FDR and with the FOBT, and eventually singled out through numerical considerations. 
This theory is distinct from the MCT, but shows some structural similarity with it. In 
particular, a self-closed dynamical equation for the density correlation function is again 
obtained (see equations  (10.17)–(10.19) below). However, its predictions noticeably 
improve upon those of the MCT. Indeed, an ergodicity-breaking transition is still pre-
dicted for the density fluctuations, but, at variance with the MCT, it does only partially 
carry over to the MSD, which always reaches a normal diusive behavior at long time, 
in agreement with the known rigorous results [66]. Note that, if the Brownian dynam-
ics is replaced with a Newtonian energy-conserving one, then a diusion-localization 
transition does occur [67–69], as found in the MCT. Therefore, the confrontation of 
the MCT and of the present theory might well represent a first step towards an under-
standing of the phenomenon of avoided or rounded kinetic transitions.

The paper is organized as follows. In sections 2 and 3, we present the time evo
lution equation for the density fluctuations of Brownian particles in a frozen Gaussian 
random potential, and the corresponding dynamical action. The time-reversal sym-
metries of the action and the resulting FDRs are contained in section  4. Section  5 
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describes the FDR-preserving perturbation expansion method about the non-Gaussian 
pure noninteracting state. We write down in section 6 the nonperturbative form of the 
dynamical equations for the correlation and response functions. Section 7 recalls the 
solution for the pure noninteracting reference state. Sections 8–10 present the main 
results of the paper, namely, the first-order perturbation corrections to the simple free 
diusion. Summary and outlook are given in the last section.

2. Time-evolution equation for the density fluctuations of colloidal particles  
moving in a (random) external potential

In the present work, we investigate a situation where N colloidal particles in a volume 
V , hence the average fluid density ρ0 = N/V , move in a (random) external potential. 
The particle positions are denoted by {ri}, i = 1, 2, . . . ,N . As a first step, the deriva-
tion of the time-evolution equation  for the density fluctuations of these particles is 
required. This task can be carried out in a rather general way, following an approach 
due to Dean [60]. We consider the case of interacting particles, as this does not intro-
duce any particular diculty at this stage.

The motion of the individual particles is assumed to be described by the  
overdamped Langevin equation,

ṙi(t) =
D0

T
Fi(t) + fi(t),� (2.1)

where D0 is the bare diusion coecient, T is the temperature of the system (the 
Boltzmann constant kB is set to unity throughout), and fi(t) is a Gaussian thermal noise 
with zero mean and variance

〈 fα
i (t) f

β
j (t

′)〉 = 2D0δijδαβδ(t− t′),� (2.2)

α and β denoting vector components in Cartesian coordinates. The force Fi(t) acting 
on the i th particle is given by

Fi(t) = Fint
i (t) + Fext

i (t),� (2.3)

where

Fint
i (t) = − ∂

∂ri(t)

N∑
j=1

u(|ri(t)− rj(t)|)� (2.4)

is due to the interactions between the fluid particles with pair potential u(r) (for sim-
plicity, ∇u(0) = 0 is assumed), and

Fext
i (t) = −∂v(ri(t))

∂ri(t)
� (2.5)

derives from the external potential with one-body potential energy v(r).

https://doi.org/10.1088/1742-5468/ab632e
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The microscopic fluid density is defined as

ρ(r, t) ≡
N∑
i=1

δ(r− ri(t)) =
N∑
i=1

ρi(r, t),� (2.6)

where we introduced the single-particle densities, ρi(r, t) ≡ δ(r− ri(t)), i = 1, 2, . . . ,N . 
Its fluctuations about the average fluid density are denoted by

δρ(r, t) ≡ ρ(r, t)− ρ0.� (2.7)
In order to derive the dynamical equation for ρ(r, t), we follow the Itô prescription. 

Consider the following set of stochastic equations for the variables xa(t) (using the sum-
mation convention),

dxa(t)

dt
= ha + gabξb(t),� (2.8)

where the correlation of the Gaussian white noise ξb(t) is defined as

〈ξb(t)ξb′(t′)〉 = δbb′δ(t− t′).� (2.9)
The Itô chain rule then gives the stochastic equation for a variable y [{x}] in the form

dy(t)

dt
=

dxa(t)

dt

∂y

∂xa

+
1

2

∂2y

∂xa∂xb

gacgcb.� (2.10)

Using this rule, we get the dynamical equation

∂tρ(r, t) = D0∇2ρ(r, t)−
N∑
i=1

ṙi(t) · ∇ρi(r, t)

= D0∇2ρ(r, t)−
N∑
i=1

∇ρi(r, t) ·
[
D0

T
Fi(t) + fi(t)

]
.

�

(2.11)

One can express the force contributions in equation (2.11) in terms of the fluid density, 
as

−
N∑
i=1

∇ρi(r, t) · Fint
i (t) = ∇ ·

[
N∑
i=1

δ(r− ri(t))
∂

∂ri(t)

∫
dr′ u(|ri(t)− r′|)

N∑
j=1

δ(r′ − rj(t))

]

= ∇ ·
[
ρ(r, t)∇

∫
dr′u(|r− r′|)ρ(r′, t)

]�

(2.12)

and

−
N∑
i=1

∇ρi(r, t) · Fext
i (t) = ∇ ·

[
N∑
i=1

δ(r− ri(t))
∂v(ri(t))

∂ri(t)

]
= ∇ · [ρ(r, t)∇v(r)] .

�

(2.13)

Also, the thermal noise defined as η(r, t) ≡ −
∑N

i=1 ρi(r, t)fi(t) keeps a Gaussian char-
acter with zero mean and correlations given by

https://doi.org/10.1088/1742-5468/ab632e
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〈ηα(r, t)ηβ(r′, t′)〉 =
N∑
i=1

N∑
j=1

δ(r− ri(t))δ(r
′ − rj(t

′))〈 fα
i (t) f

β
j (t

′)〉

= 2D0ρ(r, t)δαβδ(r− r′)δ(t− t′).

�

(2.14)

Substituting equations  (2.12)–(2.14) into equation  (2.11), one obtains the desired 
dynamical equation,

∂tρ(r, t) = D0∇2ρ(r, t) +
D0

T
∇ ·

[
ρ(r, t)∇

∫
dr′u(|r− r′|)ρ(r′, t)

]

+
D0

T
∇ · [ρ(r, t)∇v(r)] +∇ ·

[√
ρ(r, t)ξ(r, t)

]
,

� (2.15)where ξ(r, t) is a Gaussian thermal noise with zero mean and variance

〈ξα(r, t) ξβ(r′, t′)〉 = 2D0δαβδ(r− r′)δ(t− t′).� (2.16)

Equation (2.15) can be expressed in terms of a free-energy density functional F [ρ; v] 
as

∂tρ(r, t) =
D0

T
∇ ·

[
ρ(r, t)∇ δF [ρ; v]

δρ(r)

∣∣∣∣
ρ(r,t)

]
+∇ ·

[√
ρ(r, t)ξ(r, t)

]
,� (2.17)

where

F [ρ; v] = Fid[ρ] + Fint[ρ] + Fext[ρ; v],� (2.18a)

Fid[ρ] = T

∫
dr ρ(r) [ln (ρ(r)/ρ0)− 1] ,� (2.18b)

Fint[ρ] =
1

2

∫ ∫
drdr′u(|r− r′|)δρ(r)δρ(r′),� (2.18c)

Fext[ρ; v] =

∫
dr v(r)δρ(r).� (2.18d)

The Fokker–Planck equation for equation (2.17) reads

∂

∂t
P [ρ, t; v] = −D0

∫
dr

δ

δρ(r)
∇ · ρ(r)∇

[
δ

δρ(r)
+

1

T

δF [ρ; v]

δρ(r)

]
P [ρ, t; v].� (2.19)

Evidently, the equilibrium Boltzmann distribution Peq[ρ; v] ∝ exp (−F [ρ; v]/T ) is a sta-
tionary solution of this equation.

Finally, within the functional formalism of MSRJD [62–64], the time evolution 
described by equations (2.15)–(2.17) can be recast into a dynamical generating functional

Z[l, l̂; v] =

∫
Dρ

∫
Dρ̂ J(ρ)eS[ρ,ρ̂;v]e

∫
r,t[ρ(r,t)l(r,t)+ρ̂(r,t)l̂(r,t)],� (2.20)

https://doi.org/10.1088/1742-5468/ab632e
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where the action S[ρ, ρ̂; v] takes the form

S[ρ, ρ̂; v] =

∫

r,t

{
iρ̂(r, t)

(
∂tρ(r, t)−

D0

T
∇ ·

[
ρ(r, t)∇ δF [ρ; v]

δρ(r)

∣∣∣∣
ρ(r,t)

])
−D0ρ(r, t)[∇ρ̂(r, t)]2

}
,

� (2.21)
with 

∫
r,t

≡
∫
dr

∫
dt. Here, the thermal average has already been performed, and the term 

proportional to ρ(∇ρ̂)2 comes from the average over the multiplicative thermal noise. 

The Jacobian J(ρ) guarantees that the normalization condition Z[l = 0, l̂ = 0; v] = 1, of 
critical importance in applications of the formalism to quenched-disordered systems, 
indeed holds. In the Itô discretization scheme, J(ρ) becomes a constant and can be 
absorbed into the functional measure. From the knowledge of Z[l, l̂; v], the time-depen-
dent correlation functions of the fields ρ and ρ̂ can be straightforwardly obtained as 
functional derivatives with respect to l and l̂  at l  =  0, l̂ = 0. More generally, dynamical 
quantities averaged over the thermal noise can be evaluated with respect to the action 
S[ρ, ρ̂; v] as

〈A[ρ, ρ̂]〉 =
∫

ρ,ρ̂

A[ρ, ρ̂]eS[ρ,ρ̂;v],� (2.22)

where 
∫
ρ,ρ̂

≡
∫
Dρ

∫
Dρ̂ and 〈· · · 〉 generically denotes a thermal average.

3. Noninteracting Brownian gas in a Gaussian random potential

We may now specialize the above equations in accordance with the aim of the pres-
ent study, which is to investigate the eect of a quenched-random environment on the 
dynamics of colloids. To this end, we consider what appears to be the simplest non-
trivial case. First, in most of this work, we will simply ignore the particle interactions 
and set u(r) = 0 for all r, in order to merely focus on the aspect of quenched disorder. 
Second, the one-body potential energy function v(r), from which the external potential 
is built, should be sampled from a convenient functional probability space. A natural 
option is to turn to a homogeneous and isotropic Gaussian random field, whose statis-
tical properties are fully encoded in its mean, which can be set to zero without loss of 
generality, and its covariance. Therefore, we shall assume Gaussian statistics for v(r), 
with

v(r) ≡ 0, v(r)v(r′) ≡ wΦ(|r− r′|),� (3.1)

where · · · denotes an average over the random-field distribution. The normalized 
random-field covariance Φ(r) obeys Φ(0) = 1, so that w appears as a straightforward 
measure of the disorder strength. It will determine the behavior of the system and 
should be compared with the typical thermal energy fluctuations, a purpose readily 
served by a single dimensionless control parameter representing the relative disorder 
strength, λ ≡ w/T 2.

Although we choose to introduce Gaussian statistics for the external potential from 
the outset, it might be useful to recall that this represents a common assumption in a 
number of simple circumstances of interest. For instance, a standard argument based 

https://doi.org/10.1088/1742-5468/ab632e
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on the central limit theorem and used in a variety of related problems [70–72] states 
that the one-body potential generated by a statistically homogeneous frozen matrix of 
randomly placed interaction sites is expected to develop Gaussian statistics under suit-
able conditions, as it is a sum of a large number of random fluid-matrix pair interac-
tions in the thermodynamic limit. It should nevertheless be stressed that, although this 
argument can be made rigorous in some special limits [73, 74], it can lead to diculties 
in more generic cases [75, 76]. Other possible situations expected to yield Gaussian 
random fields are associated with linear combinations of random Fourier modes  
[77, 78] or with coarse-graining of a random field, be it Gaussian or not, over extended 
enough regions [79]. The latter approach is practically relevant to polarizable colloids 
in speckle patterns, in the regime where the eective external potential results from the 
integrated eect of the random light intensity field over the whole volume of a particle 
[43, 45, 47].

Before considering the dynamics, a few structural properties of the system should 
be derived. From a configurational point of view, one actually deals with an ideal gas 
in an external potential. Its one-particle configurational integral is readily shown to be 
self-averaging, with the nonrandom limit

lim
V→+∞

1

V

∫

V

dr e−v(r)/T = e−v(r)/T = eλ/2.

�

(3.2)

Therefore, for any single realization of v(r) in the thermodynamic limit, one straighfor-
wardly gets

〈ρ(r)〉 = ρ0e
−λ/2e−v(r)/T ,� (3.3a)

〈ρ(r)ρ(r′)〉 = ρ0e
−λ/2e−v(r)/T δ(r− r′) + ρ20e

−λe−[v(r)+v(r′)]/T ,� (3.3b)

where the normalization factors precisely stem from the one-particle configurational 

integral. Computing now disorder averaged quantities, one gets 〈ρ(r)〉 = ρ0, as it 
should, and

Cst(|r− r′|) ≡ 〈δρ(r)δρ(r′)〉 = ρ0δ(r− r′) + ρ20

[
eλΦ(|r−r′|) − 1

]
,� (3.4a)

Cd(|r− r′|) ≡ 〈δρ(r)〉〈δρ(r′)〉 = ρ20

[
eλΦ(|r−r′|) − 1

]
,� (3.4b)

where Cst(r) denotes the static density correlation function and Cd(r) the so-called 
disconnected density correlation function. In reciprocal space, the same density cor-
relations are described in terms of the static and disconnected structure factors, Sst

k  
and Sd

k . They are obtained by Fourier transforming Cst(r) and Cd(r), respectively, and 
normalizing by ρ0. Since

Cst(|r− r′|)− Cd(|r− r′|) = ρ0δ(r− r′),� (3.5)
the structure factors obey Sst

k = 1 + Sd
k . Note that, in fact, both equalities generically 

hold for a noninteracting gas in any type of homogeneous and isotropic random environ
ment. The actual dependence of the above structural quantities on |r− r′| or on the 
wavevector modulus k follows from this property of homogeneity and isotropy.
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We now turn to dynamics. Since Z[l = 0, l̂ = 0; v] is normalized to 1, hence indepen-
dent from any specific random potential-energy realization, the noise-averaged dynami-
cal quantities given by equation (2.22) can be further disorder-averaged as [80]

〈A[ρ, ρ̂]〉 =
∫

ρ,ρ̂

A[ρ, ρ̂]eS[ρ,ρ̂;v] ≡
∫

ρ,ρ̂

A[ρ, ρ̂]eSeff [ρ,ρ̂] ≡ 〈A[ρ, ρ̂]〉eff ,� (3.6)

where the eective action Seff [ρ, ρ̂] generically consists of two terms,

Seff [ρ, ρ̂] = Sbulk[ρ, ρ̂] + Sdis[ρ, ρ̂].� (3.7)
The first one is that part of S[ρ, ρ̂; v] that does not explicitly involve v(r) and is there-
fore left unaected by the disorder average. It generically reads

Sbulk[ρ, ρ̂] =

∫

r,t

{
iρ̂(r, t)

(
∂tρ(r, t)−

D0

T
∇ ·

[
ρ(r, t)∇ δFbulk[ρ]

δρ(r)

∣∣∣∣
ρ(r,t)

])
−D0ρ(r, t)[∇ρ̂(r, t)]2

}
,

� (3.8)
with Fbulk[ρ] ≡ Fid[ρ] + Fint[ρ], and describes the dynamics of a bulk fluid in the absence 
of an external field. In the present noninteracting case (we have set u(r) = 0 for all r), 
Fbulk[ρ] reduces to Fid[ρ], and Sbulk[ρ, ρ̂] to

Sfree[ρ, ρ̂] =

∫

r,t

{
iρ̂(r, t)

(
∂t −D0∇2

)
ρ(r, t)−D0ρ(r, t)[∇ρ̂(r, t)]2

}
,� (3.9)

which rules ‘free’ dynamics in the absence of disorder and interactions. Note that 
Sfree[ρ, ρ̂] is non-Gaussian and possesses a cubic nonlinearity arising from the multipli-
cative thermal noise. Since the quenched randomness has Gaussian statistics, one can 
readily perform the disorder average on the remaining factor in eS[ρ,ρ̂;v],

exp

(
−D0

T

∫

r,t

iρ̂(r, t)∇ · [ρ(r, t)∇v(r)]

)
≡ eSdis[ρ,ρ̂],� (3.10)

and obtain the second term,

Sdis[ρ, ρ̂] =
1

2
λD2

0

∫

r,t

∫

r′,t′
[∇α∇βΦ(|r− r′|)][ρ(r, t)∇αρ̂(r, t)][ρ(r′, t′)∇′β ρ̂(r′, t′)],

� (3.11)
where the summation convention is implied for the Cartesian indices (this will system-
atically be the case in the following) and the ∇′ operator acts on r′. As is common with 
quenched-random systems [80], the disorder-induced contribution becomes nonlocal in 
time after disorder averaging, i.e. it does not only couple the fields at any given time, 
but also between dierent time slices. In fact, Sdis[ρ, ρ̂] represents an eective time-
persistent dynamical interaction between the fluid particles induced by the presence 
of the quenched random potential. It displays both cubic and quartic nonlinearities in 
ρ̂(r, t) and δρ(r, t). Through integration by parts, it can be rewritten as

Sdis[ρ, ρ̂] = −1

2
λ

∫

r,t

∫

r′,t′
Φ(|r− r′|)Λ(r, t)Λ(r′, t′),� (3.12)
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where we introduce the composite response field

Λ(r, t) ≡ D0∇ · [ρ(r, t)∇ρ̂(r, t)] .� (3.13)
The latter leads to the physical response function, as discussed in the next section.

4. Physical response function, time-reversal symmetry, and fluctuation–dissipation 
relation

We now define our main quantities of interest and discuss some crucial relations between 
them. For the sake of generality, we retain interactions between the colloids, as they 
barely add any additional complexity.

A fundamental feature of the fluid systems when studied at the level of the density 
field is that the physical response function R(r, t; r′, t′), pertaining to the change of the 
local average density under a small external field coupled to the density fluctuation, 
diers from the ordinary response function (to the thermal noise) G(r, t; r′, t′), because 
of the multiplicative nature of the noise in the original Langevin equation, equa-
tion (2.15) [31]. The main quantities of interest are thus the density correlation func-
tion C(r, t; r′, t′) and the above response functions, defined as

C(r, t; r′, t′) = 〈δρ(r, t)δρ(r′, t′)〉eff ,� (4.1a)

G(r, t; r′, t′) = −i〈ρ(r, t)ρ̂(r′, t′)〉eff ,� (4.1b)

R(r, t; r′, t′) =
i

T
〈ρ(r, t)Λ(r′, t′)〉eff

= −ρ0D0

T
∇2G(r, t; r′, t′) + i

D0

T
〈ρ(r, t)∇′ · [δρ(r′, t′)∇′ρ̂(r′, t′)]〉eff .

� (4.1c)
It is also useful to introduce the so-called connected density correlation function,

F (r, t; r′, t′) = C(r, t; r′, t′)− Cd(|r− r′|).� (4.2)
Note that the physical response function involves the composite response field, equa-
tion (3.13), hence has two contributions: one is simply proportional to the noise-response 
function, while an additional ‘anomalous’ term arises from the multiplicative thermal 
noise. Due to the explicit appearance of the temperature T in the expression of the 
physical response function R(r, t; r′, t′), it is found convenient to instead use the func-
tion R(r, t; r′, t′) defined as

R(r, t; r′, t′) ≡ TR(r, t; r′, t′) = i〈ρ(r, t)Λ(r′, t′)〉eff .� (4.3)
Causality commands that the response functions obey

G(r, t; r′, t′) = 0, R(r, t; r′, t′) = 0, t � t′.� (4.4)
In terms of the fields, this means

〈ρ(r, t)ρ̂(r′, t′)〉eff = 0, 〈ρ(r, t)Λ(r′, t′)〉eff = 0, t � t′.� (4.5)
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Moreover, the normalization condition on the dynamical generating functional in the 
MSRJD formalism results in additional causality constraints, among which

〈ρ̂(r, t)〉eff = 0, 〈ρ̂(r, t)ρ̂(r′, t′)〉eff = 0, 〈Λ(r, t)〉eff = 0, 〈Λ(r, t)Λ(r′, t′)〉eff = 0.�
(4.6)

As with static quantities, the actual spatial dependence of the above correla-
tion and response functions is on |r− r′|, because of the homogeneity and isotropy 
of the random field. When time-translation invariance additionnally holds, we will 
therefore write C(r, t; r′, t′) ≡ C(|r− r′|, t− t′), G(r, t; r′, t′) ≡ G(|r− r′|, t− t′), and 
R(r, t; r′, t′) ≡ R(|r− r′|, t− t′).

Equilibrium dynamics is known to possess time-reversal symmetry. This symmetry 
is reflected in the invariance (up to irrelevant boundary terms) of the eective action, 
equation (3.7), under special field transformations with time reversal [32, 38, 65].

The approach developed in the present work is motivated by the invariance of the 
action under the so-called T -transformation [32, 38, 65], as shown in appendix A. This 
transformation reads

T :

{
ρ(r, t) → ρ(r,−t),

ρ̂(r, t) → ρ̂(r,−t) + ih(r,−t),� (4.7)

with the function h(r, t) defined through the equation

D0∇ · [ρ(r, t)∇h(r, t)] = ∂tρ(r, t),� (4.8)
which can be solved in Fourier space [38].

This definition implies the relation

T Λ(r, t) = Λ(r,−t)− i∂tρ(r,−t)� (4.9)
for the composite response field. Thus, with the identification of the physical response 
function R(r, t; r′, t′) in equation (4.3), the FDR is immediately obtained from equa-
tions (4.7) and (4.9). Indeed, from the Ward–Takahashi identities [81]

〈ρ(r, t)ρ(r′, t′)〉eff = 〈[T ρ(r, t)][T ρ(r′, t′)]〉eff = 〈ρ(r,−t)ρ(r′,−t′)〉eff ,� (4.10a)

〈ρ(r, t)Λ(r′, t′)〉eff = 〈[T ρ(r, t)][T Λ(r′, t′)]〉eff = 〈ρ(r,−t)Λ(r′,−t′)〉eff − i∂t′〈ρ(r,−t)ρ(r′,−t′)〉eff ,
� (4.10b)

follows the relation

R(r, t; r′, t′) = R(r,−t; r′,−t′) + ∂t′C(r, t; r′, t′),� (4.11)
i.e. with time-translation invariance,

R(|r− r′|, t− t′)−R(|r− r′|, t′ − t) = −∂tC(|r− r′|, t− t′).� (4.12)
For future reference, we note that causality, equation  (4.4), and the FDR, equa-
tion (4.12), imply

∫ +∞

−∞
dt′ R(|r− r′|, t− t′) = Cst(|r− r′|)− Cd(|r− r′|),� (4.13)

where the equilibrium relations C(|r− r′|, 0) = Cst(|r− r′|) and C(|r− r′|, t → +∞) =
Cd(|r− r′|) have been used.
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Another field transformation exists, that leaves the eective action invariant. It will 
play a minor role in the present work, but should be mentioned for completeness and 
because it might be of general interest in dynamical studies of random-field systems. 
Interestingly, it does not involve a time reversal in its primary formulation and there-
fore holds in generic out-of-equilibrium situations. However, it can be usefully special-
ized to equilibrium dynamics through composition with the T -transformation.

Thus, guided by [65], we show in appendix A that Seff [ρ, ρ̂] is invariant under the 
U ′-transformation defined as

U ′ :

{
ρ(r, t) → ρ(r, t),

ρ̂(r, t) → −ρ̂(r, t) + 2i
∫
r′,t′

K−1
λ (r, t; r′, t′)Det([ρ], r′, t′).� (4.14)

The functional Det([ρ], r, t) represents the deterministic nonrandom part of the density 
evolution equation and here reads (see equation (2.17))

Det([ρ], r, t) = ∂tρ(r, t)−
D0

T
∇ ·

[
ρ(r, t)∇ δFbulk[ρ]

δρ(r)

∣∣∣∣
ρ(r,t)

]
.� (4.15)

The kernel K−1
λ (r, t; r′, t′) is the inverse of the density-dependent symmetric kernel 

characterizing both the Gaussian noise and disorder in the system,

Kλ(r, t; r
′, t′) ≡

{
∇α∇′β [2D0ρ(r, t)δαβδ(r− r′)δ(t− t′) + λD2

0ρ(r, t)ρ(r
′, t′)∇α∇′βΦ(|r− r′|)

]}

≡ K0(r, t; r
′, t′) + λ∆K(r, t; r′, t′),

� (4.16)
and is accordingly defined through

δ(r− r′′)δ(t− t′′) =

∫

r′,t′
Kλ(r, t; r

′, t′)K−1
λ (r′, t′; r′′, t′′).� (4.17)

The composition of T  and U ′ yields the U -transformation. It obviously leaves the 
action invariant, since T  and U ′ separately do, and involves a time reversal inherited 
from T . As shown in appendix A, it reads

U :





ρ(r, t) → ρ(r,−t),

ρ̂(r, t) → −ρ̂(r,−t) + i
T

δFbulk[ρ]
δρ(r)

∣∣∣
ρ(r,−t)

+iλD0

∫
r′,t′

K−1
λ (r,−t; r′,−t′)∇′ ·

{
ρ(r′,−t′)∇′ ∫

r′′,t′′
Φ(|r′ − r′′|)T Det([ρ], r′′, t′′)

}
,

� (4.18)
with

T Det([ρ], r, t) = ∂tρ(r,−t)− D0

T
∇ ·

[
ρ(r,−t)∇ δFbulk[ρ]

δρ(r)

∣∣∣∣
ρ(r,−t)

]
.� (4.19)

It is clear that, in the absence of a random field (λ = 0), this transformation reduces 
to the U -transformation as defined in [32] for bulk fluids, hence the shared naming. It 
becomes nonlocal in time in the presence of a random field. Note that, in principle, the 
integral over t′′ of the total time derivative ∂t′′ρ(r

′′,−t′′) contained in T Det([ρ], r′′, t′′) 
vanishes in an equilibrium setting, but we found that explicitly keeping such terms 
makes some calculations in appendix A more straightforward.
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As the T -transformation, the U -transformation can be used to derive relations 
between response functions and correlations. In particular, as shown in appendix A, 
the Ward–Takahashi identity

〈ρ(r, t)ρ̂(r′, t′)〉eff = 〈[Uρ(r, t)][U ρ̂(r′, t′)]〉eff� (4.20)
leads to the following decomposition of the noise-response function,

G(|r− r′|, t− t′) +G(|r− r′|, t′ − t)

=

∫

r′′
C(|r− r′′|, t− t′)Q−1(|r′′ − r′|) + ∆CnG(|r− r′|, t− t′) + ∆Cdis(|r− r′|, t− t′).

� (4.21)

Here, Q−1(|r− r′|) is the functional inverse of the static density correlation func-
tion of the bulk fluid if its free energy is restricted to its Gaussian approximation, 
∆CnG(|r− r′|, t− t′) originates in the non-Gaussian nature of Fbulk[ρ] due to Fid[ρ], and 
∆Cdis(|r− r′|, t− t′) is a disorder-induced contribution. Their detailed expressions can 
be found in appendix A.

For systems with a Gaussian bulk free energy and no random potential, 
Q−1(|r− r′|) = C−1(|r− r′|, 0), while ∆CnG(|r− r′|, t− t′) and ∆Cdis(|r− r′|, t− t′) 
vanish. One then recovers the familiar Deker–Haake–Miyazaki–Reichman (DHMR) lin-
ear relation between the noise-response function and the density correlation function 
(Deker and Haake first considered the case of additive noise [82], then Miyazaki and 
Reichman extended the result to multiplicative noise [31]).

In the following, it will be found convenient to work in reciprocal space, i.e. with 
correlation and response functions Fourier transformed with respect to their spatial 
variations. Thus, in Fourier space, equations (4.12) and (4.21) take the form (setting 
t′ = 0)

Rk(t)−Rk(−t) = −∂tCk(t),� (4.22a)

Gk(t) +Gk(−t) =
Ck(t)

Qk

+∆CnG
k (t) + ∆Cdis

k (t).� (4.22b)

For noninteracting colloids, Qk = ρ0.

5. Expansion around the disorder-free dynamics

We now describe the main theoretical development at the heart of the present work, 
which is a perturbative expansion dictated by the T -transformation, equation  (4.7). 
The key point here is that the two contributions Sfree[ρ, ρ̂] (to which Sbulk[ρ, ρ̂] reduces 
in the noninteracting case) and Sdis[ρ, ρ̂] to the eective action Seff [ρ, ρ̂] are separately 
invariant under this transformation, as shown in appendix A. Therefore, with a due 
account of this property, it should be possible to lay out a scheme that preserves the 
FDR, which precisely stems from the T -transformation, order by order.

The present perturbative approach first involves an expansion in terms of Sdis[ρ, ρ̂] 
about the free dynamics ruled by Sfree[ρ, ρ̂], as
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〈A[ρ, ρ̂]〉eff =
∫

ρ,ρ̂

A[ρ, ρ̂]eSfree[ρ,ρ̂]eSdis[ρ,ρ̂] =

∫

ρ,ρ̂

A[ρ, ρ̂]eSfree[ρ,ρ̂]

∞∑
ndis=0

Sdis[ρ, ρ̂]
ndis

ndis!
.

� (5.1)
This step can be seen as a weak-disorder or high-temperature expansion, since Sdis[ρ, ρ̂] 
is proportional to the relative disorder strength λ = w/T 2. Defining the average over 
the free part of the action as

〈A[ρ, ρ̂]〉f ≡
∫

ρ,ρ̂

A[ρ, ρ̂]eSfree[ρ,ρ̂],� (5.2)

we thus have

〈A[ρ, ρ̂]〉eff =
∞∑

ndis=0

1

ndis!
〈A[ρ, ρ̂]Sdis[ρ, ρ̂]

ndis〉f .� (5.3)

Now, the free part of the action has a non-Gaussian cubic nonlinearity due to the 
multiplicative thermal noise. In order to maintain the invariance of Sfree[ρ, ρ̂] under the 
T -transformation and preserve the FDR order by order, this nonlinearity should be 
treated exactly. It turns out that this can be readily achieved thanks to the causality 
conditions and the presence of two ρ̂ fields in this cubic contribution. Indeed, splitting 
the free part of the action into its Gaussian and non-Gaussian components, S0[ρ, ρ̂] and 
Sm[ρ, ρ̂], respectively, with

S0[ρ, ρ̂] ≡
∫

r,t

{
iρ̂(r, t)

(
∂t −D0∇2

)
δρ(r, t)−D0ρ0 [∇ρ̂(r, t)]2

}
,� (5.4)

Sm[ρ, ρ̂] ≡ −D0

∫

r,t

δρ(r, t)[∇ρ̂(r, t)]2,� (5.5)

one can rewrite the averages over the free dynamics as

〈B[ρ, ρ̂]〉f =
∫

ρ,ρ̂

B[ρ, ρ̂]eS0[ρ,ρ̂]eSm[ρ,ρ̂] = 〈B[ρ, ρ̂]eSm[ρ,ρ̂]〉0 =
∞∑

nm=0

1

nm!
〈B[ρ, ρ̂]Sm[ρ, ρ̂]

nm〉0,� (5.6)

where 〈· · · 〉0 denotes the Gaussian average defined as

〈B[ρ, ρ̂]〉0 ≡
∫

ρ,ρ̂

B[ρ, ρ̂]eS0[ρ,ρ̂].� (5.7)

The key observation is that, due to the twice faster increase of the number of ρ̂ fields 
with nm, the summation in equation (5.6) will be rapidly terminated at a low order. 
Indeed, consider a generic product of δρ and ρ̂ fields or space derivatives thereof. If it 
has an odd number of factors, its Gaussian average trivially vanishes. If its number 
of factors is even, one can use Wick’s theorem to decompose its Gaussian average as 
a sum of products of two-point averages. Then, if the number of noise-response fields 
exceeds the number of density fields (necessarily, by at least two), each term in the sum 
will unavoidably have a factor of the form 〈ρ̂(ri, ti)ρ̂(rj, tj)〉0. Such factors identically 
vanish due to causality (equation (4.6) also holds with the Gaussian action S0), hence 
the whole Gaussian average vanishes. For instance, one generically gets
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〈δρ(ri, ti)δρ(rj, tj)ρ̂(rk, tk)ρ̂(rl, tl)〉0 �= 0,� (5.8)

〈δρ(ri, ti)δρ(rj, tj)ρ̂(rk, tk)ρ̂(rl, tl)ρ̂(rm, tm)ρ̂(rn, tn)〉0 = 0.� (5.9)
Now, if B[ρ, ρ̂] is such a generic product with p  density fields and q response fields, then 
the term of order nm in equation (5.6) also involves such a product, with p+ nm den-
sity fields and q + 2nm response fields. As just shown, its Gaussian average vanishes if 
q + 2nm > p+ nm, i.e. nm > p− q. It is precisely this simplification that makes possible 
an exact treatment of the cubic nonlinearity due to the multiplicative thermal noise. 
Indeed, if p � q, the expansion in equation (5.6) terminates at most at nm = p− q, while 
for p   <  q, the first term of equation (5.6) already vanishes and one gets 〈B[ρ, ρ̂]〉f = 0.

Note that the bound on nm is the same for all terms in equation  (5.3). Indeed, 
Sdis[ρ, ρ̂] given by equation (3.11) can be rewritten as

Sdis[ρ, ρ̂] =
1

2
λD2

0

∫

r,t

∫

r′,t′
[∇α∇βΦ(|r− r′|)]

× [ρ20 + 2ρ0δρ(r, t) + δρ(r, t)δρ(r′, t′)][∇αρ̂(r, t)][∇′β ρ̂(r′, t′)],
� (5.10)

where the factor 2 in the integrand comes from the exchange symmetry between the 
dummy indices r, t and r′, t′. So, if A[ρ, ρ̂] is a product of p  density fields and q response 
fields, then the term of order ndis in equation (5.3) involves products of p  to p+ 2ndis 
density fields and q + 2ndis response fields. Following the above argument, its Gaussian 
average vanishes if nm > p+ 2ndis − q − 2ndis = p− q (the bound is imposed by the 
product with the largest number of density fields), independent of ndis. Accordingly, for 
p   <  q, one also gets 〈A[ρ, ρ̂]〉eff = 0.

Further simplifications might occur in the computation of Gaussian-averaged prod-
ucts when space-time points are repeated. Indeed, through equation (4.5), which also 
holds with the Gaussian action S0, causality directly sets 〈ρ(ri, ti)ρ̂(ri, ti)〉0 = 0. Less 
directly, the time ordering in equation (4.5) also imposes the vanishing of certain prod-
ucts of two-point averages with loop-like time dependence. For instance, one gets

〈ρ(ri, ti)ρ̂(rj, tj)〉0〈ρ(rj, tj)ρ̂(ri, ti)〉0 = 0,� (5.11)

〈ρ(ri, ti)ρ̂(rj, tj)〉0〈ρ(rj, tj)ρ̂(rk, tk)〉0〈ρ(rk, tk)ρ̂(ri, ti)〉0 = 0.� (5.12)
These equalities typically lead to a reduction in the number of terms in the expansion 
of Gaussian averages. Occasionally, they result in a truncation of equation (5.6) below 
the above-mentioned threshold.

These crucial features of the theory were first pointed out by Andreanov et al [32] 
and discussed in detail by Velenich et al [38], who demonstrated how they can be used 
to exactly compute arbitrary multi-point correlation functions in the noninteracting 
Brownian gas without external field. In this respect, the present work is, to the best of 
our knowledge, the first nontrivial extension of this early study, aiming at including the 
eect of a Gaussian quenched-random potential on the gas.
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6. Dynamical equations for the correlation and response functions

It remains to derive the dynamical equations for the correlation and response functions, 
to which the above perturbation scheme will be applied. To this end, the following 
identities can be used, which are easily proved by functional integration by parts:

〈
δSeff

δρ̂(1)
ρ̂(2)

〉

eff

= −δ(12),� (6.1a)

〈
δSeff

δρ̂(1)
Λ(2)

〉

eff

= −ρ0D0∇2δ(12),� (6.1b)

〈
δSeff

δρ̂(1)
ρ(2)

〉

eff

= 0.� (6.1c)

In the above expressions and in the following, the notation 1, 2, 3, etc, is used to refer 
to space-time points, in order to shorten the equations. Specifically, we set 1 = (r, t) and 
2 = (r′, t′), then i = (ri, ti), i � 3. Since

δSeff

δρ̂(1)
= i(∂t −D0∇2)δρ(1) + 2Λ(1)− λD0∇ ·

(
ρ(1)

∫

3

[∇Φ(13)]Λ(3)

)
,� (6.2)

where Φ(13) ≡ Φ(|r− r3|), one obtains the exact equations

(∂t −D0∇2)G(12) = δ(12)− λD0∇ ·
(∫

3

[∇Φ(13)]〈ρ(1)Λ(3)ρ̂(2)〉eff
)
,� (6.3a)

(∂t −D0∇2)R(12) = −ρ0D0∇2δ(12) + λD0∇ ·
(∫

3

[∇Φ(13)]〈ρ(1)Λ(3)Λ(2)〉eff
)
,

� (6.3b)

(∂t −D0∇2)C(12) = 2R(21)− iλD0∇ ·
(∫

3

[∇Φ(13)]〈ρ(1)Λ(3)ρ(2)〉eff
)
.�

(6.3c)

These equations show an evident hierarchical structure, which calls for a perturbative 
study building on an expansion scheme such as the one developed in the previous sec-
tion. In appendix A, we report an alternative derivation of equation (6.3c) based on the 
T - and U -transformations.

Substituting ρ(i) = ρ0 + δρ(i) and removing terms that vanish due to the various 
simple causality conditions, the multi-point averages in equation (6.3) can be simplified 
to (with the summation convention for the Cartesian indices)

〈ρ(1)Λ(3)ρ̂(2)〉eff = D0∇γ
3〈δρ(1)δρ(3)[∇

γ
3 ρ̂(3)]ρ̂(2)〉eff ,� (6.4a)

〈ρ(1)Λ(3)Λ(2)〉eff = D2
0∇

β
2∇

γ
3〈δρ(1) [δρ(3)ρ0 + ρ0δρ(2) + δρ(3)δρ(2)] [∇γ

3 ρ̂(3)][∇
β
2 ρ̂(2)]〉eff ,�

(6.4b)

〈ρ(1)Λ(3)ρ(2)〉eff = −iρ0
[
R(13) +R(23)

]
+D0∇γ

3〈δρ(1) [ρ0 + δρ(3)] δρ(2)[∇γ
3 ρ̂(3)]〉eff .� (6.4c)
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7. Zeroth-order theory: disorder-free case

In the absence of a random potential (λ = 0), the particle system is a noninteracting 
Brownian gas, whose properties are very well known [38].

In Fourier space, the equations of motion simply reduce to (setting t′ = 0)

(∂t + Γk)G
0
k(t) = δ(t),� (7.1a)

(∂t + Γk)R
0

k(t) = ρ0Γkδ(t),� (7.1b)

(∂t + Γk)C
0
k(t) = 2R

0

k(−t),� (7.1c)

where Γk ≡ D0k
2 and the superscript 0 on the correlation and response functions denotes 

the absence of a random potential. The solutions are given by

G0
k(t) = θ(t)e−Γkt,� (7.2a)

R
0

k(t) = θ(t)ρ0Γke
−Γkt,� (7.2b)

C0
k(t) = ρ0e

−Γk|t|,� (7.2c)

where we used the static input for the density correlation function C0
k(0) = ρ0, since 

C(|r− r′|, 0) = 〈δρ(r)δρ(r′)〉 = ρ0δ(r− r′) for the noninteracting system in the absence 
of an external random potential. This ρ0 factor in C0

k(t) is also the one required for 
consistency with the FDR.

For future use, it is interesting to note that this free dynamics can be fully charac-
terized through suitable specializations of the definitions and symmetry-derived rela-
tions given in section  4. Indeed, it appears as the equilibrium dynamics for which 
equations (4.1c), (4.22a), and (4.22b), reduce to

R
0

k(t) = ρ0ΓkG
0
k(t),� (7.3a)

R
0

k(t)−R
0

k(−t) = −∂tC
0
k(t),� (7.3b)

G0
k(t) +G0

k(−t) =
C0

k(t)

ρ0
,� (7.3c)

thereby demonstrating that the three functions of interest are directly related in a 
simple but fundamental way. In this respect, it should be fully appreciated that the 
considered dynamics involves both multiplicative noise and a non-Gaussian free energy. 
Therefore, the absence of an anomalous contribution to the physical response func-
tion in equation (7.3a) and the validity of the DHMR linear relation shown by equa-
tion  (7.3c) are nontrivial observations. They result from a specific interplay of both 
aspects and from the cancellation eects discussed in section 5.

Regarding this, it might be useful to briefly show how the field-theoretic calcul
ation unfolds in the present simple case. This serves as a preparation for the more 
complicated random-field situation and as a confirmation of the identity between the 
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correlation and response functions of the disorder-free noninteracting gas and those of 
the Gaussian theory based on S0[ρ, ρ̂]. To this end, we introduce the compact notations

δρ(i) ≡ i, ρ̂(i) ≡ î, ∇µ
i ρ̂(i) ≡ îµ,� (7.4)

to be used for the evaluation of averages here, in the next section, and in appendices 
C–E. With them, the cubic thermal noise term, equation (5.5), can be written as

Sm[ρ, ρ̂] ≡ −D0

∫

4

44̂δ4̂δ,� (7.5)

and eSm[ρ,ρ̂] in equation (5.6) expanded accordingly,

eSm[ρ,ρ̂] = 1−D0

∫

4

44̂δ4̂δ +
1

2
D2

0

∫

4

∫

5

454̂δ4̂δ5̂ε5̂ε + · · · .� (7.6)

From equation  (4.1b), we get G0(12) = −i〈ρ(1)ρ̂(2)〉f = −i〈δρ(1)ρ̂(2)〉f ≡ −i〈12̂〉f. 
With one density field and one noise-response field, the expansion (5.6) terminates at 
its first term and

〈12̂〉f = 〈12̂〉0.� (7.7)

The anomalous term in R
0
(12) reads iD0∇β

2 〈ρ(1)δρ(2)∇
β
2 ρ̂(2)〉f = iD0∇β

2 〈δρ(1)δρ(2)∇
β
2 ρ̂(2)〉f ≡  

iD0∇β
2 〈122̂β〉f , and the Gaussian expansion of 〈122̂β〉f is

〈122̂β〉f = 〈122̂β〉0 −D0

∫

4

〈1242̂β 4̂δ4̂δ〉0 = 0,� (7.8)

where we used 〈22̂β〉0 = 〈44̂δ〉0 = 0 and 〈24̂δ〉0〈42̂β〉0 = 0. Therefore, 

R
0
(12) = −ρ0D0∇2G0(12) as expected. Finally, C0(12) = 〈δρ(1)δρ(2)〉f ≡ 〈12〉f  expands 

to

〈12〉f = 〈12〉0 −D0

∫

4

〈1244̂δ4̂δ〉0 +
1

2
D2

0

∫

4

∫

5

〈12454̂δ4̂δ5̂ε5̂ε〉0 = 〈12〉0,� (7.9)

where we used 〈44̂δ〉0 = 〈55̂ε〉0 = 0 and 〈45̂ε〉0〈54̂δ〉0 = 0.

8. First-order perturbation calculation

We may now perturbatively compute the three-point averages in equation (6.3) and 
obtain the first-order corrections to the free dynamics due to the random potential.

Applying equation (5.3) to the dierent terms in the simplified equation (6.4), one 
gets

〈δρ(1)δρ(3)[∇γ
3 ρ̂(3)]ρ̂(2)〉eff ≡ 〈133̂γ 2̂〉eff = 〈133̂γ 2̂〉f +O(λ),� (8.1a)

〈δρ(1)δρ(3)[∇γ
3 ρ̂(3)][∇

β
2 ρ̂(2)]〉eff ≡ 〈133̂γ 2̂β〉eff = 〈133̂γ 2̂β〉f +O(λ),� (8.1b)

〈δρ(1)δρ(2)[∇γ
3 ρ̂(3)][∇

β
2 ρ̂(2)]〉eff ≡ 〈123̂γ 2̂β〉eff = 〈123̂γ 2̂β〉f +O(λ),� (8.1c)
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〈δρ(1)δρ(3)δρ(2)[∇γ
3 ρ̂(3)][∇

β
2 ρ̂(2)]〉eff ≡ 〈1323̂γ 2̂β〉eff = 〈1323̂γ 2̂β〉f +O(λ),

� (8.1d)
〈δρ(1)δρ(2)[∇γ

3 ρ̂(3)]〉eff ≡ 〈123̂γ〉eff = 〈123̂γ〉f +O(λ),� (8.1e)

〈δρ(1)δρ(3)δρ(2)[∇γ
3 ρ̂(3)]〉eff ≡ 〈1323̂γ〉eff = 〈1323̂γ〉f +O(λ),� (8.1f )

where we used the compact notations introduced above. For a first-order calculation, 
it is enough to compute the first term in the right-hand side of each line in equa-
tion (8.1), since the contributions in which the three-point averages appear in equa-
tion (6.3) already involve λ as a prefactor.

With equation (5.6), the free averages are turned into Gaussian averages defined 
through equation (5.7). As discussed in section 5, the number of useful terms in equa-
tion (5.6) is a priori determined by the number of δρ and ρ̂ fields in the quantity to be 
averaged, through the requirements of causality.

The first average in equation (8.1) is thus obtained as

〈133̂γ 2̂〉f = 〈133̂γ 2̂〉0 = 〈13̂γ〉0〈32̂〉0,� (8.2a)

where we used 〈3̂γ 2̂〉0 = 0 and 〈33̂γ〉0 = 0. Similarly, the second and third are

〈133̂γ 2̂β〉f = 〈133̂γ 2̂β〉0 = 〈13̂γ〉0〈32̂β〉0,� (8.2b)

〈123̂γ 2̂β〉f = 〈123̂γ 2̂β〉0 = 〈12̂β〉0〈23̂γ〉0.� (8.2c)

The average 〈1323̂γ 2̂β〉f is shown to vanish,

〈1323̂γ 2̂β〉f = 〈1323̂γ 2̂β〉0 −D0

∫

4

〈13243̂γ 2̂β 4̂δ4̂δ〉0 = 0,� (8.2d)

since 〈34̂δ〉0〈43̂γ〉0 = 0 and 〈32̂β〉0〈24̂δ〉0〈43̂γ〉0 = 0. One analogously gets

〈123̂γ〉f = 〈123̂γ〉0 −D0

∫

4

〈1243̂γ 4̂δ4̂δ〉0 = −2D0

∫

4

〈14̂δ〉0〈24̂δ〉0〈43̂γ〉0.� (8.2e)

Note that the eect of the multiplicative noise enters in equation  (8.2e), making a 
nonperturbative contribution from the point of view of the free dynamics. Finally, one 
computes the remaining average as

〈1323̂γ〉f = 〈1323̂γ〉0 −D0

∫

4

〈13243̂γ 4̂δ4̂δ〉0 +
1

2
D2

0

∫

4

∫

5

〈132453̂γ 4̂δ4̂δ5̂ε5̂ε〉0

= 〈13̂γ〉0〈32〉0 + 〈13〉0〈23̂γ〉0,
�

(8.2f )

since one gets 〈132453̂γ 4̂δ4̂δ5̂ε5̂ε〉0 = 0 due to the repeated space-time points.
Taking the necessary spatial derivatives of the nonvanishing terms, one finally gets

∇γ
3〈133̂γ 2̂〉f = ∇γ

3 [〈13̂γ〉0〈32̂〉0] = ∇β
3 [〈13̂β〉0〈32̂〉0],� (8.3a)

∇β
2∇

γ
3〈133̂γ 2̂β〉f = ∇β

2∇
γ
3 [〈13̂γ〉0〈32̂β〉0] = ∇γ

3 [〈13̂γ〉0∇2
2〈32̂〉0] = ∇β

3 [〈13̂β〉0∇2
3〈32̂〉0],� (8.3b)
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∇β
2∇

γ
3〈123̂γ 2̂β〉f = ∇β

2∇
γ
3 [〈12̂β〉0〈23̂γ〉0] = ∇β

2 [〈12̂β〉0∇2
3〈23̂〉0] = ∇β

2 [〈12̂β〉0∇2
2〈23̂〉0],� (8.3c)

∇γ
3〈123̂γ〉f = ∇γ

3

[
−2D0

∫

4

〈14̂δ〉0〈24̂δ〉0〈43̂γ〉0
]
= −2D0

∫

4

〈14̂δ〉0〈24̂δ〉0∇2
3〈43̂〉0

= −2D0

∫

4

〈14̂β〉0〈24̂β〉0∇2
4〈43̂〉0

�

(8.3d)

∇γ
3〈1323̂γ〉f = ∇γ

3 [〈13̂γ〉0〈32〉0 + 〈13〉0〈23̂γ〉0] = ∇β
3 [〈13̂β〉0〈32〉0 + 〈13〉0〈23̂β〉0].

�

(8.3e)

In the final expressions, all dummy Cartesian indices have been uniformly denoted  
by β .

With these results, the dynamical equations can be written down, up to the first 
order of the disorder-strength expansion. Restoring the explicit field notation, they 
read :

(∂t −D0∇2)G(12) = δ(12)− λD2
0∇α

(∫

3

[∇αΦ(13)]∇β
3{〈δρ(1)∇

β
3 ρ̂(3)〉0〈δρ(3)ρ̂(2)〉0}

)
,� (8.4a)

(∂t −D0∇2)R(12) = −ρ0D0∇2δ(12)

− iλD2
0∇α

(∫

3

[∇αΦ(13)]∇β
3{〈δρ(1)∇

β
3 ρ̂(3)〉0[iρ0D0∇2

3〈δρ(3)ρ̂(2)〉0]}
)

− iλD2
0∇α

(∫

3

[∇αΦ(13)]∇β
2{〈δρ(1)∇

β
2 ρ̂(2)〉0[iρ0D0∇2

2〈δρ(2)ρ̂(3)〉0]}
)
,

� (8.4b)

(∂t −D0∇2)C(12) = 2R(21)− λρ0D0∇α

(∫

3

[∇αΦ(13)][R
0
(13) +R

0
(23)]

)

− iλD2
0∇α

(∫

3

[∇αΦ(13)]∇β
3{〈δρ(1)∇

β
3 ρ̂(3)〉0〈δρ(3)δρ(2)〉0 + 〈δρ(1)δρ(3)〉0〈δρ(2)∇β

3 ρ̂(3)〉0}
)

+ 2λD2
0∇α

(∫

3

∫

4

[∇αΦ(13)]〈δρ(1)∇β
4 ρ̂(4)〉0〈δρ(2)∇

β
4 ρ̂(4)〉0[iρ0D0∇2

4〈δρ(4)ρ̂(3)〉0]
)
.

�

(8.4c)

In these evolution equations, there are four space-time integrals in which the time 
integral can actually be detached from the corresponding space integral. We shall 
refer to these situations as isolated time integrals, which are due to the nonlocality 
in time induced by the quenched randomness. Indeed, they appear when a space-time 
integral acts on a variable which is present both in the time-independent random-field 
covariance and in a single time-dependent response function. Then, the time integral 
obviously acts on the response function only. We will next focus on these isolated time 
integrals to structure our analysis.

In our derivation, two of these isolated time integrals are directly obtained as ∫
dt3R

0
(13) and 

∫
dt3R

0
(23). They correspond to the first integral in equation (8.4c) 

and originate from the first term in equation (6.4c). We have purposefully arranged the 
above formulas to make the two others specifically appear as 

∫
dt3[iρ0D0∇2

2〈δρ(2)ρ̂(3)〉0] 
and 

∫
dt3[iρ0D0∇2

4〈δρ(4)ρ̂(3)〉0], in the last integrals of equations  (8.4b) and (8.4c), 
respectively. Indeed, although it might look like there are two distinct types of isolated 
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time integrals, our claim is that the dierence is only superficial. To see this, it must 
be kept in mind that, within the zeroth-order theory, there is no distinction between 

R
0
(12) and −ρ0D0∇2G0(12). Therefore, one can safely replace iρ0D0∇2

2〈δρ(2)ρ̂(3)〉0 and 

iρ0D0∇2
4〈δρ(4)ρ̂(3)〉0 with R

0
(23) and R

0
(43) in the corresponding integrals. A direct 

hint in favor of this substitution is provided by a third appearance of this specific com-
bination, iρ0D0∇2

3〈δρ(3)ρ̂(2)〉0, in the first integral of equation (8.4b). Indeed, it is only 

when it is interpreted as R
0
(32) that the equations for G, R, and C, share the typical 

structure of the Schwinger–Dyson equation with the same self-energy. Accordingly, we 
translate equation (8.4) as

(∂t −D0∇2)G(12) = δ(12) + λD2
0∇α

(∫

3

[∇αΦ(13)]∇β
3

{
[∇β

3G
0(13)]G0(32)

})
,

�

(8.5a)

(∂t −D0∇2)R(12) = −ρ0D0∇2δ(12) + λD2
0∇α

(∫

3

[∇αΦ(13)]∇β
3

{
[∇β

3G
0(13)]R

0
(32)

})

+ λD2
0∇α

(∫

3

[∇αΦ(13)]∇β
2

{
[∇β

2G
0(12)]R

0
(23)

})
,

�
(8.5b)

(∂t −D0∇2)C(12) = 2R(21)− λρ0D0∇α

(∫

3

[∇αΦ(13)][R
0
(13) +R

0
(23)]

)

+ λD2
0∇α

(∫

3

[∇αΦ(13)]∇β
3

{
[∇β

3G
0(13)]C0(32) + C0(13)[∇β

3G
0(23)]

})

− 2λD2
0∇α

(∫

3

∫

4

[∇αΦ(13)][∇β
4G

0(14)][∇β
4G

0(24)]R
0
(43)

)
.

�

(8.5c)

Note that, when the bare perturbation expansion is pushed to the second order, one can 
actually recognize the first-order expansion of R precisely at the places where the pro-
posed substitution is possible, as seen in the derivations of equations (D.12) and (E.15) 
in appendices D and E. As a corollary, the first-order renormalized theory deriving 
from the second-order bare theory also features isolated time integrals that are mere 
integrals of the now renormalized density response function, as seen in equations (D.13) 
and (E.16). These observations clearly lend further support to the above substitutions. 
More broadly, they hint at the possibility of a generic reduction of the isolated time 
integrals to integrals of the physical response function within the present framework, 
although a formal proof hereof is currently lacking.

Finally, once an isolated time integral is expressed as an integral of the physical 
response function, any reference to the corresponding space-time point can be fully 
eliminated, thanks to equations (4.13) and (3.5) giving

∫ +∞

−∞
dt′ R(|r− r′|, t− t′) = ρ0δ(r− r′).� (8.6)

This relation has for sole basic ingredients the exact FDR and the exact equilib-
rium statistical mechanics of ideal gases. It thus holds nonperturbatively as well as at 
any order in λ of the present FDR-preserving perturbation scheme. Although techni-
cally unrelated to the substitutions advocated above, it acts as a natural continuation 
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thereof, making the structure of the dynamical equations immediately simpler. Thus, 
specializing equation (8.6) to the equilibrium free dynamics with R ≡ R

0, one eventu-
ally gets from equation (8.5) (after some rearrangements using integrations by parts 
and space-translation invariance to make all spatial derivatives act on 1 = (r, t)),

(∂t −D0∇2)G(12) = δ(12)− λD2
0

∫

3

∇α
(
[∇α∇βΦ(13)][∇βG0(13)]

)
G0(32),

� (8.7a)
(∂t −D0∇2)R(12) = −ρ0D0∇2δ(12)− λD2

0

∫

3

∇α
(
[∇α∇βΦ(13)][∇βG0(13)]

)
R

0
(32)

+ λρ0D
2
0∇α∇β

(
[∇αΦ(12)][∇βG0(12)]

)
,

�
(8.7b)

(∂t −D0∇2)C(12) = 2R(21)− λρ20D0∇2Φ(12)

− λD2
0

∫

3

∇α
(
[∇α∇βΦ(13)][∇βG0(13)]

)
C0(32)

+ λD2
0

∫

3

∇α∇β
(
[∇α∇βΦ(13)]C0(13)

)
G0(23)

+ 2λρ0D
2
0

∫

3

∇α∇β
(
[∇αΦ(13)][∇βG0(13)]

)
G0(23).

�

(8.7c)

One sees that the time integral 
∫
dt3R

0
(23) has generated a mere time-persistent term 

in the equation for the density correlation function (the contribution from 
∫
dt3R

0
(13) 

vanishes by isotropy of the random field), while the last term in equation (8.7b) is now 
evidently local in time. The last term in equation (8.7c) is entirely due to the multipli-
cative thermal noise (see the comment about equation (8.2e) above).

The latter equations will be the basis for all developments in the remainder of this 
work.

9. Equilibrium dynamics: first-order bare theory

By itself, equation (8.7) forms an FOBT for the equilibrium dynamics of a noninteract-
ing Brownian gas plunged in a quenched Gaussian random field. After Fourier trans-
formation, under the assumption of time-translation invariance, one gets the following 
equilibrium dynamical equations (setting t � t′ = 0),

(∂t + Γk)Gk(t) = δ(t)−
∫ t

0

dsΣ0
k(t− s)G0

k(s),� (9.1a)

(∂t + Γk)Rk(t) = ρ0Γkδ(t)−
∫ t

0

dsΣ0
k(t− s)R

0

k(s) + L0
k(t),� (9.1b)

(∂t + Γk)Ck(t) = λρ20ΓkΦk −
∫ t

0

dsΣ0
k(t− s)C0

k(s) +N0
k (t).� (9.1c)
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There appear three memory kernels. The memory functions Σ0
k(t) and L0

k(t) are 
explicitly given by

Σ0
k(t) = λD2

0

∫

q

q · p[k · qΦq]G
0
p(t),� (9.2)

L0
k(t) = λρ0D

2
0

∫

q

k · p[k · qΦq]G
0
p(t),� (9.3)

where 
∫
q
≡

∫
dq/(2π)d and p ≡ k− q. Note that the kernel L0

k(t) would be absent in 

the usual case of a Langevin equation with additive thermal noise. It is hence associ-
ated with the anomalous part of the physical response function, arising from the mul-
tiplicative nature of the basic stochastic equation for the density variable.

In fact, one can further investigate the origin of L0
k(t) by going back to the initial 

dynamics. Indeed, within the operator formalism of Martin, Siggia, and Rose [62, 83], 
an evolution equation for R(r, t; r′, t′) can be obtained from equation (2.15), through 
multiplication by iΛ(r′, t′) and double-averaging over thermal fluctuations and dis
order. The contribution of the random forces deriving from the external potential then 
reads (∇ and ∇′ act on r and r′, respectively)

i
D0

T
〈∇ · [ρ(r, t)∇v(r)] Λ(r′, t′)〉 = i

D2
0

T
∇ · 〈ρ(r, t)∇′ · [ρ(r′, t′)∇′ρ̂(r′, t′)]〉∇v(r),

� (9.4)
where a realization-dependent physical response function is clearly visible. Now, we may 
split ρ(r′, t′) as 〈ρ(r′)〉+ ρ(r′, t′)− 〈ρ(r′)〉, where 〈ρ(r′)〉 corresponds to the static density 
profile induced by the random field and ρ(r′, t′)− 〈ρ(r′)〉 to the thermal fluctuations 
about this profile. Focusing on the first contribution, one gets

i
D2

0

T
∇ · 〈ρ(r, t)∇′ · [〈ρ(r′)〉∇′ρ̂(r′, t′)]〉∇v(r) = i

D2
0

T
∇α∇′β[∇′β〈ρ(r, t)ρ̂(r′, t′)〉][∇α{〈ρ(r′)〉v(r)}],

� (9.5)
where a noise-response function appears. If the latter is evaluated with respect to the 
free dynamics, in the spirit of the present FOBT, the averages factorize and one obtains

i
D2

0

T
∇α∇′β[∇′β〈ρ(r, t)ρ̂(r′, t′)〉f ][∇α{〈ρ(r′)〉v(r)}]

= i
D2

0

T
∇α∇′β

{
[∇′β〈ρ(r, t)ρ̂(r′, t′)〉f ][∇α〈ρ(r′)〉v(r)]

}

= λρ0D
2
0∇α∇β

(
[∇βG0(r, t; r′, t′)][∇αΦ(|r− r′|)]

)
= L0(r, t; r′, t′),

�

(9.6)

where the real-space expression for L0(r, t; r′, t′) is read o equation  (8.7b). In these 
final steps, we used equation (3.3a) to compute the disorder average over the Gaussian 
random field, and translational invariance to replace ∇′β with −∇β. Eventually, it thus 
appears that the kernel L0

k(t) arises, at least in part, from the interplay of the multipli-
cative nature of the thermal noise and of the static density heterogeneities imprinted 
in the fluid by the random external potential. Note that, if one repeats all these steps 
in the case of the density correlation function, i.e. starting with equation (2.15) mul-
tiplied by ρ(r′, t′) and double-averaged, one obtains the term −λρ20D0∇2Φ(|r− r′|) of 
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equation  (8.7c), which gives λρ20ΓkΦk in equation  (9.1c). Indeed, to show this, one 
begins with

D0

T
〈∇ · [ρ(r, t)∇v(r)] ρ(r′, t′)〉 = D0

T
∇ · 〈ρ(r, t)ρ(r′, t′)〉∇v(r),� (9.7)

which, after replacing ρ(r′, t′) with its thermal average, becomes

D0

T
∇ · 〈ρ(r, t)〈ρ(r′)〉〉∇v(r) =

D0

T
∇ · 〈ρ(r, t)〉[∇{〈ρ(r′)〉v(r)}].� (9.8)

Then, if ρ(r, t) is set to evolve according to the free dynamics, one gets

D0

T
∇ · 〈ρ(r, t)〉f [∇{〈ρ(r′)〉v(r)}] = D0

T
∇ ·

{
〈ρ(r, t)〉f [∇〈ρ(r′)〉v(r)]

}
= −λρ20D0∇2Φ(|r− r′|),

� (9.9)
as announced. As discussed below, this contribution is clearly an outgrowth of the 
disorder-induced static density profile.

The kernel N0
k (t) originally consists of three integrals,

N0
k (t) = −λD2

0

∫ 0

−∞
ds

∫

q

q · p[k · qΦq]G
0
p(t− s)C0

k(s)

+ λD2
0

∫ 0

−∞
ds

∫

q

k · q[k · qΦq]C
0
p(t− s)G0

k(−s)

+ 2λρ0D
2
0

∫ 0

−∞
ds

∫

q

k · p[k · qΦq]G
0
p(t− s)G0

k(−s),

�

(9.10)

but actually reduces to a local function of time if one uses the identities (7.3) to rear-
range this expression. Indeed, using equation (7.3c) to distribute the last integral over 
the first two, one gets

N0
k (t) = λD2

0

∫ 0

−∞
ds

∫

q

[k · qΦq]
[
p2G0

p(t− s)C0
k(s) + C0

p(t− s)k2G0
k(−s)

]
,

� (9.11)
which, with equation (7.3a) followed by equation (7.3b), leads to

N0
k (t) =

λD0

ρ0

∫ 0

−∞
ds

∫

q

[k · qΦq] ∂s
[
C0

p(t− s)C0
k(s)

]
= λD0

∫

q

[k · qΦq]C
0
p(t).

� (9.12)
The memory functions have to be related with one another, in order for equa-

tion (9.1) to obey the FDR. Using ρ0ΓpG
0
p(t) = R

0

p(t) to rewrite

Σ0
k(t) = λ

D0

ρ0

∫

q

q · p
p2

[k · qΦq]R
0

p(t),� (9.13)

L0
k(t) = λD0

∫

q

k · p
p2

[k · qΦq]R
0

p(t),� (9.14)

and forming the combination ρ0Σ
0
k(t)− L0

k(t), one immediately finds that the kernels 
obey the FDR-like relation
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ρ0Σ
0
k(t)− L0

k(t) = ∂tN
0
k (t)� (9.15)

as a mere corollary of the FDR R
0

p(t) = −∂tC
0
p(t).

Another interesting rearrangement of equation (9.10) through ρ0ΓkG
0
k(t) = R

0

k(t) is 

[31, 82]

N0
k (t) = −

∫ 0

−∞
dsΣ0

k(t− s)C0
k(s) +

∫ 0

−∞
dsD0

k(t− s)R
0

k(−s),� (9.16)

where the new kernel D0
k(t) consists of two parts:

D0
k(t) ≡ M0

k (t) +
2

ρ0Γk

L0
k(t),� (9.17)

M0
k (t) ≡

λD0

ρ0

∫

q

(k̂ · q)2ΦqC
0
p(t).� (9.18)

Here, k̂ denotes the unit vector k/k and M0
k (t) turns out to be the MCT memory kernel 

[39–42], albeit in its ‘bare’ form (see below). It is then straightforward to show that 

M0
k (t) is related to N0

k (t) and L0
k(t) (after using ρ0G

0
p(t) = C0

p(t) in equation (9.3)) as

M0
k (t) =

1

ρ0

(
N0

k (t)−
L0
k(t)

Γk

)
.� (9.19)

In combination with equations (9.15) and (9.17), this immediately leads to

D0
k(t) =

1

ρ0

(
N0

k (t) +
L0
k(t)

Γk

)
,� (9.20)

∂tD
0
k(t) = Σ0

k(t) +
1

ρ0Γk

(∂t − Γk)L
0
k(t).� (9.21)

Again, one can see that the presence of L0
k(t) deeply changes the structure of the dynamics. 

Indeed, if the kernel L0
k(t) were absent, one would simply get D0

k(t) = M0
k (t) = N0

k (t)/ρ0 
with the familiar relation ∂tD

0
k(t) = Σ0

k(t), as found in the case of Langevin dynamics 
with additive thermal noise [82, 84].

We now consider some key features of these dynamical equations.

9.1. Consistency with the FDR

The present perturbation expansion is dictated by the time reversal invariance of the 
eective dynamical action. It is hence guaranteed to preserve the FDR at each order 
of the expansion. This is confirmed by explicitly showing that the above first-order 
dynamical equations for Rk (t) and Ck (t) are indeed consistent with the FDR.

Taking the time derivative of the FDR, Rk(t) = −θ(t)∂tCk(t), one gets

∂tRk(t) = −δ(t)∂tCk(0)− θ(t)∂2
tCk(t).� (9.22)
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With the second derivative of Ck (t) obtained from equation (9.1c),

∂2
tCk(t) = −Γk∂tCk(t)− Σ0

k(t)C
0
k(0)−

∫ t

0

dsΣ0
k(t− s)∂sC

0
k(s) + ∂tN

0
k (t).

� (9.23)
Equation (9.22) takes the form

(
∂t + Γk

)
Rk(t) = −δ(t)∂tCk(0)−

∫ t

0

dsΣ0
k(t− s)R

0

k(s) + L0
k(t),� (9.24)

where equations (4.22a) and (9.15) (C0
k(0) = ρ0) have been used.

Comparing equation (9.24) with equation (9.1b), we see that the dynamics obeys the 
FDR under the condition ρ0Γk = −∂tCk(0) = Γk[Ck(0)− λρ20Φk], where the last equal-

ity follows from equation (9.1c) at t  =  0, knowing that N0
k (0) = λρ0D0

∫
q
k · qΦq = 0 by 

isotropy. This requires that

Ck(0) = ρ0 + λρ20Φk.� (9.25)

9.2. Presence of a static nonvanishing component

Since the memory terms in equation (9.1) only involve the bare correlation and response 
functions that are exponentially relaxing in time, the present FOBT does not sustain 
the possibility of a transition to a kinetically generated nonergodic state driven by the 
Gaussian random potential. This feature is at variance with the self-consistent MCT 
predictions [42].

Yet, it follows from equation (9.1c) that the density correlation function Ck (t) does 
exhibit a disorder-induced time-persistent component,

Ck(t → +∞) = λρ20Φk.� (9.26)

This contribution is of a strictly static nature and must be distinguished from a kin
etically generated nonergodicity parameter such as predicted by the MCT, for instance.

9.3. Disorder-induced static structure factors

We are examining the equilibrium dynamics, hence the initial condition for the density 
correlation function Ck (0) should yield the equilibrium static structure factor of the 
fluid Sst

k , through the relation Ck(0) = ρ0S
st
k . The latter acquires a disorder-induced 

contribution in the presence of the Gaussian random potential and equation  (9.25) 
gives Sst

k = 1 + λρ0Φk.
The time-persistent component of the density correlation function Ck(t → +∞) 

should similarly be related to the disorder-induced disconnected static structure factor 
Sd
k through Ck(t → +∞) = ρ0S

d
k , and one gets Sd

k = λρ0Φk from equation (9.26).
Both expressions for Sst

k  and Sd
k agree to first order with the exact static results, 

equation (3.4). In particular, the equality Sst
k = 1 + Sd

k is obeyed, ensuring the validity 
of the crucial relation (3.5).

In summary, it comes out of these first three points that the present FOBT is 
plainly consistent both with the FDR and with the equilibrium static results at the 
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same level of approximation. Hence, it manifestly fulfills all the basic requirements for 
a bona fide theory of equilibrium dynamics.

Once Ck(t → +∞) is linked to the disconnected static structure factor, it might 
be subtracted from the density correlation function to get its connected component, 
Fk(t) = Ck(t)− ρ0S

d
k , according to equation (4.2). Rewriting equation (9.1c), Fk (t) obeys

(
∂t + Γk

)
Fk(t) = −

∫ t

0

dsΣ0
k(t− s)C0

k(s) +N0
k (t),� (9.27)

with Fk(0) = ρ0, based on equations (9.25) and (9.26). It is clear that Fk (t) can only 
relax to zero.

9.4. Bare mode-coupling equations for the connected density correlation function

We may further try and simplify the dynamical equations for the connected density 
correlation function Fk (t). With the FDR for the kernels, equation  (9.15), Σ0

k(t) is 
straightforwardly eliminated from equation (9.27), to get

(
∂t + Γk

)
Fk(t) = − 1

ρ0

∫ t

0

dsN0
k (t− s)∂sC

0
k(s)−

1

ρ0

∫ t

0

dsL0
k(t− s)C0

k(s),

� (9.28)
where N0

k (0) = 0 is used in an integration by parts. With the diusion equa-
tion  ∂sC

0
k(s) = −ΓkC

0
k(s), which follows from equation  (7.3), one can put the above 

equation into the form

(∂t + Γk)Fk(t) = −
∫ t

0

dsM0
k (t− s)∂sC

0
k(s),� (9.29)

where we used equation (9.19). The explicit expression for the kernel M0
k (t) is found in 

equation (9.18). Note that there is a significant qualitative dierence between the pres-
ent use of equation (7.3) and the previous ones. Indeed, up to now, these equations were 
invoked to make substitutions within the kernels only, while here, a change in the for-
mal structure of equation (9.28), hence of equation (9.1c), is achieved.

Apart from the bare nature of the memory term, equations (9.29) and (9.18) have 
the same form as those of the self-consistent MCT developed by one of us for the study 
of fluids in random environments [39–42]. Indeed, using the present notations, the lat-
ter read for a noninteracting Brownian gas:

(∂t + Γk)Fk(t) = −
∫ t

0

dsMk(t− s)∂sFk(s),� (9.30a)

Mk(t) =
D0

ρ20

∫

q

(k̂ · q)2Sd
qFp(t),� (9.30b)

with Fk(0) = ρ0 and Sd
q  the exact disconnected structure factor. These equations can 

immediately be brought forth from the former through a simple ad hoc renormalization 
scheme in which the linearized disconnected structure factor ρ0λΦq is replaced with 

its exact value Sd
q  and the bare density correlation function C0

k(t) is replaced with the 
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connected density correlation function Fk (t) (note that both Ck (t) and Fk (t) reduce to 
C0

k(t) in the absence of disorder).

9.5. Mean-squared displacement and related quantities

In many studies, the interest mostly revolves around the mean-squared displacement 
(MSD) of a particle. Thus, this is a quantity of choice to investigate here.

Since we are dealing with a noninteracting gas, the connected density correlation 
function Fk (t) coincides with the self intermediate scattering function (with an addi-
tional ρ0 factor). The MSD ∆(t) can therefore be obtained through the standard low-k 
expansion

Fk(t) = ρ0

[
1− k2∆(t)

2d
+O(k4)

]
,� (9.31)

where d is the space dimension.
Equation (9.29) (since equations (9.27), (9.28), and (9.29), are fully equivalent, the 

choice of the starting equation is immaterial) can be straightforwardly integrated to get

Fk(t) = C0
k(t)

[
1−

∫ t

0

dsC0
k(s)

−1

∫ s

0

duM0
k (s− u)∂uC

0
k(u)

]
,� (9.32)

which, in the low-k limit, yields

∆(t)

2dD0

= t−
∫ t

0

ds

∫ s

0

duM0
0 (u),� (9.33)

with

M0
0 (t) = lim

k→0
M0

k (t) =
λD0

dρ0

∫

q

q2ΦqC
0
q (t).� (9.34)

Equation (9.19) implies M0
0 (t) = − limk→0[L

0
k(t)/(ρ0Γk)], since limk→0N

0
k (t) = 0. Thus, 

we observe that the diusion of a particle is fully determined by the small-wavevector 
behavior of the sole kernels M0

k (t) or L0
k(t). With a direct integration of equation (2.1) 

leading to

∆(t)

2dD0

= t+
D0

2dT 2

∫ t

0

ds

∫ t

0

du〈Fi(s)Fi(u)〉 = t+
D0

dT 2

∫ t

0

ds

∫ s

0

du〈Fi(s)Fi(u)〉,

� (9.35)
these low-k kernels are immediately recognized as approximations for the force autocor-
relation function.

Using the diusion equation C0
q (t) = −∂tC

0
q (t)/(D0q

2) in equation (9.34) to perform 
the inner time integration in equation (9.33), one alternatively obtains

∆(t)

2dD0

=

(
1− λ

d

)
t+

∫ t

0

dsm0(s),� (9.36)

with

m0(t) =
λ

ρ0d

∫

q

ΦqC
0
q (t) =

λ

ρ0d

∫

r

Φ(r)C0(r, t).� (9.37)
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The second expression involving the bare diusion kernel C0(r, t) = ρ0(4πD0t)
−d/2e−r2/(4D0t) 

results from Parseval’s theorem.
From these relations, expressions for the time-dependent diusion coecient 

D(t) = ∆̇(t)/(2d) and the velocity autocorrelation function Z(t) = ∆̈(t)/(2d) immedi-
ately follow, which read

D(t)

D0

= 1−
∫ t

0

dsM0
0 (s) = 1− λ

d
+m0(t),� (9.38)

Z(t)

D0

= −M0
0 (t) = ṁ0(t).� (9.39)

These results show that the present FOBT fully agrees with earlier perturbative 
calculations at the same order [76] in predicting for the long-time diusion coecient

D∞

D0

= lim
t→+∞

D(t)

D0

= 1− λ

d
.� (9.40)

They also unambiguously demonstrate the breakdown of the approach at strong dis
order, since negative values of D∞, hence of ∆(t), are obtained when λ exceeds the 
space dimension d. Correspondingly, anomalies (nonmonotonicity, overshoot above the 
initial value) appear in the density correlation functions at low k when this threshold 
is approached.

9.6. Asymptotic analysis and long-time tails

Making use of the explicit forms of C0
k(t) or C    0(r,t) in equations  (9.18), (9.34), and 

(9.37), the presence of long-time tails in the problem is straightforwardly demonstrated, 
since one obtains for the memory kernels

M0
k (t) ∼

D0k
2λΦk

(4πD0t)d/2
, t → +∞, k �= 0,� (9.41a)

M0
0 (t) ∼

2πD0λΦ0

(4πD0t)d/2+1
, t → +∞,� (9.41b)

m0(t) ∼ λΦ0

d(4πD0t)d/2
, t → +∞.� (9.41c)

The qualitative behavior of the velocity autocorrelation function Z(t) (see equa-
tion (9.39)), which is thus found negative, linear in the disorder strength, and relaxing 
as  −t−(d/2+1), is exactly the same as in the Brownian random Lorentz gas [85]. More gen-
erally, these results are in agreement with previous phenomenological calculations [86].

In order to discuss the correlation functions, equation (9.32) is first explicitly writ-
ten as

Fk(t) = ρ0e
−D0k2t

[
1 +D0k

2

∫ t

0

ds

∫ s

0

duM0
k (u) e

D0k2u

]
,

� (9.42)
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then, after an integration by parts,

Fk(t) = ρ0

[
e−D0k2t +D0k

2

∫ t

0

dsM0
k (s) (t− s)e−D0k2(t−s)

]
.

� (9.43)
Standard analysis based on Laplace transforms then allows one to obtain

Fk(t) ∼ ρ0
λΦk

(4πD0t)d/2
, t → +∞, k �= 0.

� (9.44)
For completeness, we also report the short-time expansions,

M0
k (t) ∼

D0λ

d

[∫

q

q2Φq −D0t

∫

q

q2(k2 + q2)Φq

]
, t → 0,

� (9.45a)

m0(t) ∼ λ

d

[
1−D0t

∫

q

q2Φq

]
, t → 0,� (9.45b)

Fk(t) ∼ ρ0

[
1−D0k

2t+
(D0t)

2

2
k2

(
k2 +

λ

d

∫

q

q2Φq

)]
, t → 0.� (9.45c)

9.7. Explicit example

In order to report complete solutions of the FOBT, we have to particularize the covari-
ance of the Gaussian random field. Since it allows one to analytically perform the wave-
vector integrals appearing in the definitions of M0

k (t) and m0(t), a Gaussian covariance,

Φ(r) = e−r2/(2R2), Φk = (2πR2)d/2e−k2R2/2,� (9.46)

where R controls the range of the random-field correlations, appears as a particularly 
convenient choice. One then obtains (see appendix B)

M0
k (t) =

λ

2
· 2D0

R2
· 1 + 2D0t/R

2 + k2R2(2D0t/R
2)2

(1 + 2D0t/R2)d/2+2
· exp

[
−k2R2(2D0t/R

2)

2(1 + 2D0t/R2)

]
,

� (9.47)

m0(t) =
λ

d
· 1

(1 + 2D0t/R2)d/2
.� (9.48)

With these formulas, the MSD can be expressed in closed form, and reads

∆(t)

dR2
=

2D0t

R2

(
1− λ

d

)
+

λ

d





2
(√

1 + 2D0t/R2 − 1
)

if d = 1,

ln (1 + 2D0t/R
2) if d = 2,

2
d−2

[
1− 1

(1+2D0t/R2)d/2−1

]
if d � 3.

� (9.49)

In these expressions, the natural units of length and time, R and τ = R2/(2D0), 
respectively, have been made evident. The time τ  merely is the time at which the 
characteristic lengthscale of free diusion 

√
2D0t reaches the correlation length of the 

disorder.
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The eect of the relative disorder strength λ on the time dependence of the MSD 
is shown in figure  1 for space dimensions d  =  1 and d  =  3. Note that the theory is 
clearly pushed well beyond its range of validity, since results up to λ = d and slightly 
above, where its breakdown is obvious, are shown for completeness. The curve at λ = d 
emphasizes the transient between the short- and long-time normal diusive regimes.

The correlation functions can be computed by a direct numerical integration of 
equation (9.43) with M0

k (t) given by equation (9.47). Figure 2 shows the typical behav-
ior of Fk(t)/ρ0 versus time obtained from this numerical solution with d  =  1 and d  =  3, 
kR = π/3, for dierent values of the relative disorder strength λ. In this log-log plots, 

the algebraic tail Fk(t)/ρ0 ∼ λ[R2/(2D0t)]
d/2e−k2R2/2 is clearly visible as a linear asymp-

tote at long times.

10. Equilibrium dynamics: first-order renormalized theory

So far, a bare perturbation theory has been discussed, where the corrections due to the 
disorder were expressed in terms of the bare correlation and response functions. We 
now consider renormalized theories, where the bare correlation and response functions 
are replaced with renormalized ones in a self-consistent manner and based on the exact 
second order perturbation calculation.

Out of the bare perturbation expansion up to the second order (see appendices 
C–E), one identifies equations (C.13), (D.15), and (E.19), as a set of first-order renor
malized dynamical equations, which should obey the FDR and reproduce the bare 
theory (we set t � t′ = 0):

(∂t + Γk)Gk(t) = δ(t)−
∫ t

0

dsΣk(t− s)Gk(s),� (10.1a)

(∂t + Γk)Rk(t) = ρ0Γkδ(t)−
∫ t

0

dsΣk(t− s)Rk(s) + Lk(t),� (10.1b)

(∂t + Γk)Fk(t) = −
∫ t

0

dsΣk(t− s)Fk(s) +Nk(t).� (10.1c)

In the latter equation, the static time-persistent part of the density correlation func-
tion has been absorbed into the connected density correlation function, according to 
its definition (4.2). Clearly, these equations are structurally similar to the bare equa-
tions (9.1a), (9.1b), and (9.27). At this stage, the explicit expressions for the memory 
kernels Σk(t), Lk (t), and Nk (t), are left unspecified.

The relations between these kernels should be constrained by the FDR, equa-
tion (4.22a), also expressible as

Rk(t) = −θ(t)∂tFk(t).� (10.2)
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Taking the time derivative of the above and using equation (10.1c), one gets

(∂t + Γk)Rk(t) = −δ(t)∂tFk(0)−
∫ t

0

dsΣk(t− s)Rk(s) + ρ0Σk(t)− ∂tNk(t).

� (10.3)
Comparing with equation (10.1b), one sees that the FDR demands the two relations

∂tFk(0) = −ρ0Γk,� (10.4a)

∂tNk(t) = ρ0Σk(t)− Lk(t).� (10.4b)
Setting t  =  0 in equation (10.1c), one gets the initial condition Nk (0)  =  0 from equa-
tion (10.4a) and Fk(0) = ρ0, to be used in equation (10.4b). Therefore, one should have

Figure 1.  Time evolution of the mean-squared displacement in a noninteracting 
Brownian gas exposed to a Gaussian random field with Gaussian covariance 
(specified in equation (9.46)) in space dimensions d  =  1 (top) and d  =  3 (bottom), 
according to the first-order bare theory. From left to right, top to bottom: λ = 0, 
λ = d(1− 1/4n) with n = 1, 2, . . . , 6, λ = d (dashed line), and λ = d(1 + 1/4n) with 
n  =  6 (dotted line, unphysically diverging to −∞).
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Nk(t) =

∫ t

0

ds[ρ0Σk(s)− Lk(s)].� (10.5)

Using equation (10.4b) to eliminate Σk(t) in equation (10.1c), the latter becomes, 
after an integration by parts,

(∂t + Γk)Fk(t) = − 1

ρ0

∫ t

0

dsNk(t− s)∂sFk(s)−
1

ρ0

∫ t

0

dsLk(t− s)Fk(s).� (10.6)

This equation, a renormalized version of equation (9.28), is clearly reminiscent of those 
that can be obtained with standard projection-operator techniques in the memory-
function formalism [87]. However, one can interestingly note that it mixes two types of 
convolution integrals which are usually found to be mutually exclusive and only con-
verted into one another by making use of special rearrangements [21, 88, 89].

Figure 2.  Time evolution of the connected density correlation function in a 
noninteracting Brownian gas exposed to a Gaussian random field with Gaussian 
covariance in space dimensions d  =  1 (top) and d  =  3 (bottom), according to the 
first-order bare theory. The wavevector is kR = π/3. From left to right, bottom 
to top: λ = 0, λ = d/2n with n = 6, 5, . . . , 1, λ = d (dashed line). The dotted line 
illustrates the long-time decay Fk(t)/ρ0 ∝ t−d/2.
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Another possibility to eliminate Σk(t) is through mere Laplace transforms of equa-
tion (10.1). One then obtains nonlinear relations (once the kernels are specified) express-
ing the physical response and correlation functions in terms of the noise-response 
function, as

Rk(t) = ρ0ΓkGk(t) +

∫ t

0

dsLk(t− s)Gk(s),� (10.7)

Fk(t) = ρ0Gk(t) +

∫ t

0

dsNk(t− s)Gk(s).� (10.8)

These expressions will be extremely useful in the following to perform first-order consis-
tent substitutions, i.e. replacements of one function with another that entail corrections 
strictly beyond the first order.

We might now close the set of dynamical equations with explicit expressions for the 
first-order renormalized kernels, which are self-consistently determined from a second-
order bare perturbation calculation.

10.1. Native first-order renormalized theory

We first consider the FORT that derives in the most literal way from the second-order 
bare theory. For this reason, we choose to term it native.

As seen in appendices C–E, one gets (equations (C.14) and (D.16))

Σk(t) = λD2
0

∫

q

q · p[k · qΦq]Gp(t),� (10.9)

Lk(t) = λρ0D
2
0

∫

q

k · p[k · qΦq]Gp(t).� (10.10)

As for the remaining kernel Nk (t), it is in principle given by equation (E.20). However, 
as pointed out there, it is very likely that this expression does not fully comply with 
the requirements of a bona fide equilibrium dynamics. Yet, a possible workaround is 
to force consistency with the FDR, through the use of equation (10.4b). One then gets

∂tNk(t) = −λD0

∫

q

[k · qΦq][ρ0D0p
2Gp(t)],� (10.11)

hence

Nk(t) = −λD0

∫ t

0

ds

∫

q

[k · qΦq][ρ0D0p
2Gp(s)].� (10.12)

In appendix E, we check the suitability of this step, by showing that, thanks to equa-
tions (10.7), (10.8), and (10.1a), equation (E.20) can indeed be rewritten within its order 
of validity in λ, such that it agrees with equation (10.12) to first order in λ. Note that, 
in the present scheme, the explicit expression of Nk (t) is actually not needed for the 
computation of the three functions of interest. Indeed, with the above form of Σk(t), the 
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dynamical equation for the noise-response function Gk (t) is self-closed. Its solution can 
be fed into the dynamical equation for the physical response function, equation (10.1b), 
or equivalently equation (10.7), to obtain Rk(t), from which Fk (t) is retrieved by inte-
gration of the FDR, equation (10.2). Self-consistency implies that this solution for Fk (t) 
be the same as that from equations (10.1c), (10.6), or (10.8).

Unfortunately, this theory as it stands does not appear to bring one very far. Indeed, 
our numerical attempts at computing Gk (t), which is the required first step, faced 
instabilities that seem to prevent the application of the theory beyond rather modest 
disorder strengths (with a Gaussian random field covariance, equation (9.46), spurious 
divergences occur for λ/d > 0.272 in d  =  1 and λ/d > 0.345 in d  =  3, i.e. significantly 
below the threshold λ/d = 1 beyond which the FOBT produces blatantly unphysical 
results). Note that these calculations were based on computing the integrated response 

function Hk(t) =
∫ t

0
dsGk(s) as an intermediate [90], whose evolution equation obtained 

from equations (10.1a) and (10.9) reads

(∂t + Γk)Hk(t) = 1−
∫ t

0

dsSk(t− s)∂sHk(s), Sk(t) = λD2
0

∫

q

q · p[k · qΦq]Hp(t).� (10.13)

This is exactly the type of nonlinear integro-dierential equation met within the MCT, 
for which a well-established and ecient iterative numerical solution scheme has been 
developed long ago [91]. It usually shows remarkable stability, provided the underly-
ing equations are themselves stable. Therefore, this suggests that the instabilities are 
intrinsic to the above renormalized equations, which in particular fail to guarantee that 
the kernels Σk(t) and Sk (t) are nonnegative functions of time, while this is the case for 
overdamped dynamics with the standard MCT kernels.

10.2. Modified first-order renormalized theory

In order to try and overcome these diculties, one might exploit the freedom oered by 
the first-order consistent substitutions to generate variants of the theory, at the cost of 
an increased degree of empiricism in its derivation. Since Σk(t), Lk (t), hence ∂tNk(t) via 
equation (10.4b), naturally acquire the character of response functions within the native 
FORT, we focused on the possibilities provided by equation (10.7) to replace Gp (t) with 

Rp(t)/(ρ0Γp) in equations (10.9), (10.10), or (10.11). By separately making one or the 
other choice for two kernels, the third one being fixed by equation (10.4b), one obtains 
eight FDR-consistent theories in total, including the native one above entirely based 
on Gp (t).

With respect to the criteria of consistency with the FDR and with the FOBT, these 
eight theories are all equally possible and valid by construction. Therefore, if one of 
them is to be favoured, this has to be based on arguments of a dierent nature. Since 
we identified diculties with the native theory through numerical considerations, we 
shall pursue this line of reasoning here. We already know that the instabilities of the 
native theory will be present in two other variants of the FORT, for their Σk(t) is also 
given by equation (10.9).

After trying to numerically solve the dynamical equations for the eight variants of 
the theory, we find that one of them clearly stands out. Indeed, for some relevant choices 
of parameters, it appears unique in its ability to deliver physically acceptable numerical 
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results. This is particularly the case in the regime of sizeable disorder strengths, corre

sponding to λ/d > 1. The theory in question, to which we shall refer as the modified 

FORT, is the one entirely based on Rp(t), i.e. with

Σk(t) = λ
D0

ρ0

∫

q

q · p
p2

[k · qΦq]Rp(t),� (10.14)

Lk(t) = λD0

∫

q

k · p
p2

[k · qΦq]Rp(t),� (10.15)

∂tNk(t) = −λD0

∫

q

[k · qΦq]Rp(t),� (10.16)

hence

Nk(t) = λD0

∫

q

[k · qΦq]Fp(t),� (10.17)

where we used the FDR and 
∫
q
k · qΦq = 0 by isotropy. Note that these expressions 

achieve consistency with the FDR in a most natural way, since equation (10.4b) merely 
appears as a trivial corollary of equation (10.2).

Beyond the numerical arguments, some aspects of the theory discussed previously 
might actually be seen as further hints in favor of these equations. For instance, in our 
physical interpretation of Lk (t) at the bare level (see equations (9.4)–(9.6)), the kernel 
is proposed to initially involve a composite response field, as precisely does Rk(t). Also, 
the straightforward appearance of the combination ρ0ΓpGp(s) in equation (10.11) of the 

native theory suggests that a substitution by Rp(t) might be in order, as we repeatedly 
assumed at the bare level (see the transition from equations (8.5) to (8.7)). On the other 
hand, the second-order result of appendix C does not provide one with any obvious 
reason to favour equation (10.14) over equation (10.9), since both expressions are seen 
to remain approximate at this order.

At the level of the response functions, it is now the dynamical equation for Rk(t), 
equation (10.1b), which is self-closed. However, from a physical point of view, the closed 
coupled set consisting of equations (10.1a) and (10.7) looks more telling, as it shows a 
mixed feedback scheme that might be pictorial of dynamics with multiplicative noise. 
Indeed, on the one hand, equation  (10.7) formally represents the density response 
function as a mere byproduct of the noise-response function, in line with the fact that 
fluctuations and dynamics do fundamentally come to the system precisely through 
thermal noise. But, on the other hand, the couplings and memory eects represented 
by Σk(t) and Lk (t) are ruled by the density response function itself, as a reflection of 
the density dependence of the multiplicative thermal noise.

Formally, it is still possible to close equation (10.1a) and have the modified the-
ory rest upon the mere determination of Gk (t), as does the native one. Indeed, equa-
tions (10.7) and (10.15) can be recursively used to express Rk(t) as an infinite sum of 
integrals of all orders in the disorder strength and involving Gk (t) only. A similar series 
expansion can be derived for Fk (t), based on equations (10.8) and (10.17). When injected 
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into equations (10.14)–(10.17), these expressions characterize the present approach as 
some kind of resummation scheme beyond the native FORT.

Thanks to the FDR, the dynamical equations for the density correlation function, 
equations (10.1c) and (10.6), are self-closed as well. In particular, the latter can be use-
fully written as

(∂t + Γk)Fk(t) = − 1

ρ0

∫ t

0

dsNk(t− s)∂sFk(s)−
1

ρ0

∫ t

0

ds∂t−sΛk(t− s)Fk(s),

�

(10.18)

where Nk (t) is given by equation (10.17) and Λk(t) follows from equation (10.15) and 
the FDR, equation (10.2), as

Λk(t) = −λD0

∫

q

k · p
p2

[k · qΦq]Fp(t).� (10.19)

For definiteness, we recall the initial condition Fk(0) = ρ0. Interestingly, these equa-
tions are clearly distinct from those obtained within the MCT, equation  (9.30), but 
they belong to the same class of self-consistent nonlinear problems and can be analyti-
cally studied [7, 8, 92] and numerically solved [91] by the same means.

Therefore, we might now discuss the main features of their solutions, considering 
again the case of a Gaussian random-field covariance, equation (9.46), for the purpose 
of illustration.

10.3. Numerical solution of the modified first-order renormalized theory

The evolution of the correlation function Fk(t)/ρ0 with increasing disorder strength 
λ is displayed in figure 3 for a representative wavevector kR = π/3 in space dimen-
sions d  =  1 and d  =  3. First, as one would expect, the dynamics simply slows down as 
λ increases, and a long-time relaxation tail gradually develops. Then, at a threshold 
λc(d), obeying λc(d) < d (the importance of this inequality will be manifest later), the 
dynamics becomes nonergodic, i.e. a time-persistent plateau starts to continuously grow 
from zero with increasing positive λ− λc(d), reflecting a partial arrest of the relaxation 
of the density fluctuations. The so-called nonergodicity parameter Fk(t → +∞)/ρ0, 
corresponding to the height of this plateau, is solution of the nonlinear equation

Fk(t → +∞)

ρ0
=

Nk(t → +∞)

ρ0Γk +Nk(t → +∞) + Λk(t → +∞)− Λk(0)
,� (10.20)

where Nk(t → +∞) and Λk(t → +∞) are linear functionals of Fk(t → +∞), as pre-
scribed by equations (10.17) and (10.19). The wavevector dependence of Fk(t → +∞)/ρ0 
is shown in figure 4 for the values of the disorder strength corresponding to nonergodic 
states in figure 3.

The details of the critical dynamics near the threshold are illustrated by figure 5. 
The long-time relaxation tail is seen to be algebraic, Fk(t)/ρ0 ∝ t−1/2, independently of 
the space dimension. It lasts longer and longer as λc(d) is approached from below, and 
gradually recedes, giving way to the time-persistent plateau, as λc(d) is left from above. 
These evolutions are symmetric on both sides of λc(d), with a diverging characteristic 
timescale ∝ [λ− λc(d)]

−2 . In the partially arrested state, the nonergodicity parameter 
grows ∝ [λ− λc(d)] to leading order.
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In most respects, this scenario is the same as the one found within the MCT [42]. 
This similarity can be traced back to the linearity of the kernels with the density corre-
lation functions, which generically enforces continuous ergodicity-breaking transitions, 
if any [7, 8]. Such a linearity is an expected generic feature of MCT-like approaches 
to fluids in random fields, which has been found in all previous studies, either strictly 
[11–16] or to leading order in the strong disorder regime [39–42]. There is however 
one important dierence with regard to the behavior of the nonergodicity parameter. 
Indeed, within the MCT, the evolution of the latter with increasing disorder strength 
mainly consists of the continuous broadening of a low-wavevector peak with maximum 
F0(t → +∞)/ρ0 = 1, which appears with a vanishing width at the ergodicity-breaking 
transition (this behavior is illustrated for the case of a fluid in a random porous solid 
in [41] and [93]). This implies the existence of a localization length in the nonergodic 
phase, which diverges as the transition is approached from above. There is no such 
thing in the present theory, as readily seen in figure 4. This dierence can be traced 
back to the contrasting low-wavevector behaviors of the kernels in the two theories. 
Here, both Nk (t) and Λk(t) are O(k2), so that Fk(t → +∞)/ρ0 in equation (10.20) does 
not have to go to one as k → 0, while it does have to in the MCT, where Mk(t) is O(k0) 
(see equation (9.30b)) and Fk(t → +∞)/ρ0 = Mk(t → +∞)/[Γk +Mk(t → +∞)].

The absence of a localized state in the nonergodic phase is readily seen in the full 
wavevector dependence of the dynamics, as reported in figure 6. Indeed, as the den-
sity correlation functions relax toward their infinite-time limits, a peak forms on top 
of the nonergodicity parameter curve at low wavevectors, which becomes narrower 
and narrower with time. From equation (9.31), it is clear that this peak relates to the 
diusional properties of the fluid and that its vanishing width with increasing time 
implies a diverging mean-squared displacement (MSD), hence a delocalized state. In 
passing, note that an occasional slight inaccuracy of the theory can be spotted in the 
top panel of figure 6. Indeed, at low wavevectors (below kR � 0.4), the nonergodicity 
parameter is reached from below, meaning a slightly nonmonotonic behavior of the 
density correlation function. Quantitatively, the phenomenon is very small, but, in 
principle, it violates the property that autocorrelation functions be completely mono-
tone functions of time for overdamped dynamics.

The above reasoning is confirmed by a direct computation of the MSD. Using 
the low-k expansion  (9.31) in equation  (10.6), knowing that limk→0Nk(t) = 0 and 
Lk(t) = O(k2), one generically obtains

∆(t)

2dD0

= t+

∫ t

0

ds

∫ s

0

du lim
k→0

Lk(u)

ρ0Γk

,� (10.21)

which again connects the low-wavevector limit of Lk (t) to the force autocorrelation func-
tion through equation (9.35). Then, within the modified FORT, where Lk(t) = ∂tΛk(t) 
and Λk(t) is given by equation (10.19), this can be rewritten as

∆(t)

2dD0

=

(
1− λ

d

)
t+

∫ t

0

dsm(s),� (10.22)
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with

m(t) =
λ

ρ0d

∫

q

ΦqFq(t) =
λ

ρ0d

∫

r

Φ(r)F (r, t),� (10.23)

which is an obvious renormalized version of equation (9.37). The corresponding results 
for the influence of the relative disorder strength on the time dependence of the MSD 
are shown in figure  7. Remarkably, it is found that a normal diusive behavior is 
reached at long times for all disorder strengths, even those leading to nonergodic states. 
This feature is definitely at variance with the MCT predictions, where the ergodic-
ity-breaking transition is also a diusion-localization transition [42], and in complete 
agreement with the known rigorous results [66].

Figure 3.  Time evolution of the connected density correlation function in a 
noninteracting Brownian gas immersed in a Gaussian random field with Gaussian 
covariance in space dimensions d  =  1 (top) and d  =  3 (bottom), according to the 
modified first-order renormalized theory. The wavevector is kR = π/3. From 
left to right, bottom to top: λ = 0, 0.25, 0.5, . . . , 1.75, 2, for d  =  1; λ = 0, 0.5, 
1, . . . , 4.5, 5, for d  =  3. Ergodicity is broken for λ larger than λc(d = 1) = 0.763 59 
and λc(d = 3) = 2.346 86. The corresponding critical density correlation functions 
are reported with dashed lines.
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diusion coecient D(t), given by

D(t)

D0

=
∆̇(t)

2dD0

= 1− λ

d
+m(t),� (10.24)

or, more specifically, its long-time limit D∞ = limt→+∞ D(t). It is plotted in figure 8 
for d  =  1 and d  =  3. For λ < λc(d), the system is ergodic, m(t) vanishes at long times 
because Fq (t) does for all q, and equation (9.40) from the FOBT is recovered. On the 
other hand, for λ > λc(d), ergodicity is broken and one gets

D∞

D0

= 1− λ

d
+

λ

ρ0d

∫

q

ΦqFq(t → +∞) > 1− λ

d
.� (10.25)

As shown by the numerical results, the additional nonergodic contribution strongly 
restricts the decrease of D∞ with the disorder strength compared to the ergodic 

Figure 4.  Wavevector dependence of the nonergodicity parameter of a 
noninteracting Brownian gas plunged in a Gaussian random field with Gaussian 
covariance in space dimensions d  =  1 (top) and d  =  3 (bottom), according to the 
modified first-order renormalized theory. From bottom to top: λ = 1, 1.25, 1.5, 
1.75, 2, for d  =  1; λ = 2.5, 3, 3.5, 4, 4.5, 5, for d  =  3.

https://doi.org/10.1088/1742-5468/ab632e


Dynamics of a noninteracting colloidal fluid in a quenched Gaussian random potential

43https://doi.org/10.1088/1742-5468/ab632e

J. S
tat. M

ech. (2020) 023301regime. The breakdown of equation (9.40) at λ = d is therefore avoided, so that D∞ 
remains strictly positive. Note that this obviously requires the condition λc(d) < d. 
Unfortunately, this mechanism generates a corner singularity in D∞ at λc(d), as a 
result of the leading linear growth of Fq(t → +∞) above λc(d). This is clearly a spurious 
feature of the present theory, as no such corner exists in the known exact results for 
D∞ in d  =  1 and d  =  2 [76] and there is no obvious reason why this should be dierent 
in other space dimensions. As for the aspect of quantitative accuracy, comparison with 
the law D∞/D0 = e−λ/d, which is known to be exact in d  =  1 and a good approximation 
in d  =  3 [76], immediately shows that there is room for improvement. For complete-
ness, we also report an analytic result from the MCT with an additional hydrodynamic 
approximation [16, 41], D∞/D0 = 1− (eλ − 1)/d, which shows its predicted vanishing 
of the diusion coecient. Note that this expression is based on an exact treatment of 

Figure 5.  Time evolution of the connected density correlation function in a 
noninteracting Brownian gas in a Gaussian random field with Gaussian covariance 
in space dimensions d  =  1 (top) and d  =  3 (bottom), according to the modified first-
order renormalized theory. The wavevector is kR = π/3. From left to right, bottom 
to top: λ = 0, 0.9λc, 0.99λc, 0.999λc, 0.9999λc, 0.999 99λc, λc, 1.000 01λc, 1.0001λc, 
1.001λc, 1.01λc, 1.1λc, 2λc, with λc(d = 1) = 0.763 59 and λc(d = 3) = 2.346 86. The 
dotted line illustrates the long-time critical decay Fk(t)/ρ0 ∝ t−1/2.
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the static correlations. If the structure factors are truncated to linear order in λ, this 
version of the MCT simply reproduces D∞/D0 from the FOBT in the ergodic phase.

10.4. Relation between the present theory and the MCT

We close this section by considering how the present FORT can be related to the 
MCT. Indeed, as mentioned in introduction, a major motivation for the development 
of field-theoretic approaches to particle dynamics came from the search of an improved 
derivation of the MCT, with better controlled approximations. It is thus interesting to 
see where the present results stand from this perspective.

With equations (10.6) or (10.18), which are evocative of the memory-function for-
malism, and the closures (10.15), (10.17), and (10.19), the modified FORT manifestly 

Figure 6.  Wavevector dependence of the connected density correlation function 
at fixed times in a noninteracting Brownian gas exposed to a Gaussian random 
field with Gaussian covariance in space dimensions d  =  1 (top) and d  =  3 (bottom), 
according to the modified first-order renormalized theory. For d  =  1, λ = 1.25; 
for d  =  3, λ = 3. In both cases, λ > λc(d) and the system is nonergodic. From top 
to bottom: 2D0t/R

2 = 2n × 10−8, n = 24, . . . , 37. The nonergodicity parameter is 
shown as a dashed line.
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self-consistent dynamical equations for the density correlation function only.

In order to actually get the MCT equations from the present framework, one needs 
additional manipulations. In particular, the derivation of the bare MCT from the 
FOBT in the previous section shows that the use of first-order consistent substitutions 
has to be pushed further. Thus, keeping equation (10.17) for Nk (t), equation (10.8) is 
invoked to set

Lk(t) = λD2
0

∫

q

k · p[k · qΦq]Fp(t),� (10.26)

instead of equations (10.10) or (10.15). One then has the equality

1

ρ0

[
Nk(t)−

Lk(t)

Γk

]
=

λD0

ρ0

∫

q

(k̂ · q)2ΦqFp(t) ≡ Mk(t),

� (10.27)

Figure 7.  Time evolution of the mean-squared displacement in a noninteracting 
Brownian gas in a Gaussian random field with Gaussian covariance in space 
dimensions d  =  1 (top) and d  =  3 (bottom), according to the modified first-order 
renormalized theory. From left to right, top to bottom: λ = 0, 0.5, 1, . . . , 5.5, 6, for 
d  =  1; λ = 0, 1, 2, . . . , 8, 9, for d  =  3.
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which reproduces the MCT kernel Mk(t), equation (9.30b), with the linearized discon-
nected structure factor Sd

k = λρ0Φk. Therefore, it suces to eventually replace Fk (s) 
with −∂sFk(s)/Γk in the second convolution integral of equation (10.6) to get the MCT 
equations (9.30). The first-order compatibility of the latter substitution follows from the 
combination of the FDR, of equation (10.7), and of equation (10.8), or, more directly, 
from equations (10.1c) or (10.6). With this last step, however, the structure of the theory 
is changed and not only the details of the kernels. The equivalence of equations (10.1c) 
and (10.6) through the FDR corollary for the kernels, equation (10.4b), is broken, with 
issues for the consistency of the theory. For instance, changing equation  (10.4b) to 

Figure 8.  Disorder-strength dependence of the long-time diusion coecient of a 
noninteracting Brownian gas plunged in a Gaussian random field with Gaussian 
covariance in space dimensions d  =  1 (top) and d  =  3 (bottom). Continuous line: 
modified first-order renormalized theory; the ergodicity-breaking transition at λc(d) 
is signalled by a corner singularity where the slope of D∞/D0 is discontinuous. Dotted 
line: first-order bare theory, D∞/D0 = 1− λ/d. Dashed line: D∞/D0 = e−λ/d; this 
expression is exact in d  =  1 and a good approximation in d  =  3. Dash-dotted line: 
mode-coupling theory with hydrodynamic approximation, D∞/D0 = 1− (eλ − 1)/d.
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restore this equivalence would in turn compromise the consistency of equations (10.1b) 
and (10.1c) with the FDR.

There would be no such diculty if the relations

Rk(t) = ρ0ΓkGk(t),� (10.28)

Fk(t) = ρ0Gk(t),� (10.29)
complemented by the FDR, held exactly. They amount to a mere truncation of both 
equations (10.7) and (10.8) to their first term and actually coincide with the defining 
equations  of the dynamics of the noninteracting Brownian gas without field, equa-
tion  (7.3). Generically, equation  (10.28) holds for dynamics with additive noise, and 
equation  (10.29), the DHMR relation, for nondisordered systems with Gaussian free 
energy and either additive or multiplicative noise [31, 82]. Their simultaneous valid-
ity for the noninteracting Brownian gas without field, a non-Gaussian system with 
multiplicative noise, stems from special circumstances described in section 5. Those 
obviously do not survive in the presence of a Gaussian random field (otherwise, the 
dynamics should be the same with and without field), as shown by equation (4.22b), in 
particular.

We thus conclude that the modified FORT is of a fundamentally distinct nature 
from the MCT.

11. Summary and outlook

The time evolution of the density fluctuations in a system of colloidal (Brownian) par-
ticles is characterized by a Langevin equation with multiplicative thermal noise, which 
drives the system into an equilibrium state governed by a highly non-Gaussian free-
energy density functional. The multiplicative nature of the time-evolution equation at 
the density level generates unique dynamical features compared to the usual cases of 
Langevin equations with additive noise. Indeed, the corresponding free action is a non-
Gaussian cubic field theory, and the physical response function is not the same as the 
usual noise-response function, but is given by a three-point function. It results that the 
direct loop expansion for the action fails to satisfy the FDR at each order [31]. These 
features pose a theoretical challenge as to how one can develop an FDR-compatible 
perturbation theory for the equilibrium dynamics. A profound resolution of this issue 
has recently been proposed, based on the TR symmetry of the action, i.e. its invariance 
properties under certain field transformations when time is reversed [32, 37]. This TR 
symmetry can indeed dictate perturbation theories that preserve the FDR.

In the present work, we have developed one such FDR-preserving perturbation the-
ory to study the equilibrium dynamics of the density fluctuations of a noninteracting 
Brownian gas embedded in a frozen random potential-energy landscape with Gaussian 
statistics. Technically, it is quite dierent from previous work on bulk interacting liq-
uids by one of us and others [32–34, 37], as it is motivated by the T - rather than the 
U -transformation, does not require the introduction of extra fields into the problem, 
and does not rely on a loop expansion. In practice, the present perturbation theory 
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involves a double expansion: (i) an expansion about the dynamics of the pure system, 
in terms of the disorder-induced contribution to the dynamical action, then (ii) an 
expansion in terms of the cubic contribution generated by the multiplicative thermal 
noise in the free dynamics. The first expansion can be seen as a weak-disorder or high-
temperature expansion, since the disorder-induced part of the action is proportional 
to λ ≡ w/T 2, w being the strength of the Gaussian random potential. An essential and 
novel aspect of the present perturbation theory is the nonperturbative (exact) nature 
of the second expansion. Indeed, the TR symmetry requires that the second expansion 
be carried out exactly. This is made possible by the form of the cubic term (containing 
two noise-response fields as factors) and by the causality requirements on the vanishing 
of averages involving hatted variables. The latter lead to a quick termination of the 
second expansion at each order of the first one.

We carried out a first-order calculation within this FDR-preserving perturbation 
scheme. The corresponding results, the first-order bare theory, consist of a set of dynam-
ical equations for the correlation and response functions, which was explicitly checked 
to be consistent with the FDR, as intended. Using the properties of the dynamics of 
the pure noninteracting Brownian gas, the equation for the density correlation function 
can be rearranged as a MCT equation,

(∂t + Γk)Fk(t) = −
∫ t

0

dsM0
k (t− s)∂sC

0
k(s), M0

k (t) =
λD0

ρ0

∫

q

(k̂ · q)2ΦqC
0
p(t),

�

(11.1)

albeit with the memory integral expressed in terms of the bare density correlation func-
tion. Apart from this, the equation is the same as in the self-consistent MCT developed 
by one of us [39–42]. The bare theory allows one to compute the MSD, for which we 
recover results from earlier calculations at the same order [76], and to characterize the 
disorder-induced tails that develop in the long-time dynamics. The latter reproduce in 
detail the behavior found in the Brownian random Lorentz gas, thereby confirming the 
universal behavior of the persistent correlations induced by quenched disorder [85, 86]. 
Finally, the bare theory is clearly found to break down at too strong disorder, when 
λ exceeds the space dimension d. Below this threshold, the dynamics always remains 
ergodic.

From the second-order bare perturbation expansion, we also developed a first-order 
renormalized theory, constrained to obey the FDR. Out of dierent candidates, all 
consistent to first order, it is singled out as the only one delivering useful numerical 
results (without response functions that blow up, for instance) over a significant range 
of disorder strengths. It turns out that this theory is distinct from the MCT, but might 
be described as MCT-like, in the sense that the dynamical equation for the density cor-
relation function is also self-closed:

(∂t + Γk)Fk(t) = − 1

ρ0

∫ t

0

dsNk(t− s)∂sFk(s)−
1

ρ0

∫ t

0

ds∂t−sΛk(t− s)Fk(s),

�

(11.2a)

Nk(t) = λD0

∫

q

[k · qΦq]Fp(t), Λk(t) = −λD0

∫

q

k · p
p2

[k · qΦq]Fp(t).

�

(11.2b)

Interestingly, its predictions somewhat improve upon those of the MCT. Indeed, in 
both cases, an ergodicity-breaking transition occurs in the dynamics of the density 
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fluctuations at strong enough disorder, but, in the present theory, it does not lead to 
a diusion-localization transition in the MSD, at variance with the MCT. This is in 
agreement with known rigorous results, stating that normal diusion is always obtained 
at long time for Brownian dynamics [66]. The reason for these contrasting predictions 
can be traced back to the distinct low-wavevector asymptotics of the two theories. 
Actually, the low-wavevector behavior of the single-particle MCT kernel has repeatedly 
been found to be a source of diculties in the theory and is usually considered as spuri-
ous [11–13, 93–95]. It is therefore promising that the present approach seems to natu-
rally circumvent this issue. It remains that the sharp ergodicity-breaking transition 
and the corresponding singularity in the long-time diusion coecient certainly are 
artifacts of the self-consistent theory. Indeed, the exact expressions of D∞ are known 
in d  =  1 and d  =  2 [76]. They are infinitely dierentiable functions of the relative dis
order strength, and the same can naturally be expected in other space dimensions. An 
ergodicity-breaking transition would have to display quite unusual characteristics to be 
consistent with such a behavior. However, recent computer simulations in d  =  1 have 
evidenced strong transient, but long-lived, nonergodic eects in the system at hand 
[96]. In this respect, the theoretical predictions do not appear as an unreasonable first 
approximation.

In the present work, we took the initiative of developing a perturbative expansion 
method about the highly non-Gaussian pure noninteracting state. Compared to the 
maturity of the fully renormalized theories such as the loop expansion, such approaches 
are still at an early stage. It would be important for the future to gain a better under-
standing of their working principles. For instance, it would be useful to put the some-
what ad hoc arguments used in the derivation of the first-order renormalized theory on 
firm theoretical grounds. This would allow one to further investigate non-equilibrium 
phenomena, where by definition the equilibrium theorems cannot be used as guides. In 
this respect, we note that, in principle, the prediction of an ergodicity-breaking trans
ition in the equilibrium theory calls for a reassessment within an out-of-equilibrium 
two-time formalism. Finally, it would be most interesting to apply the present pertur-
bation scheme to the interacting Dean–Kawasaki equation (with or without the ran-
dom potential). This would certainly enrich our current perspective on the use of field 
theory in particle-system dynamics, its relation with the MCT, and the possibilities to 
go beyond the latter.
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Appendix A. Symmetries of the eective dynamical action for colloids  
in a Gaussian random field

In this Appendix, we provide the technical proofs for the invariance properties quoted 
in section 4, together with some of their implications.

A.1. The T -transformation

We first show the invariance of Sbulk[ρ, ρ̂], Sdis[ρ, ρ̂], and Seff [ρ, ρ̂], under the T -transfor-
mation, equation (4.7).

With integrations by parts and the definition of the composite response field, equa-
tion (3.8) is easily rewritten as

Sbulk[ρ, ρ̂] =

∫

r,t

ρ̂(r, t)[i∂tρ(r, t) + Λ(r, t)]−
∫

r,t

Λ(r, t)
i

T

δFbulk[ρ]

δρ(r)

∣∣∣∣
ρ(r,t)

.� (A.1)

The structure of the first term clearly calls for a field transformation of the form of 
equation (4.9), requiring equation (4.8). With the explicit application of the field trans-
formation, one indeed finds

Sbulk[T ρ, T ρ̂] =

∫

r,t

[ρ̂(r,−t) + ih(r,−t)]Λ(r,−t)−
∫

r,t

[Λ(r,−t)− i∂tρ(r,−t)]
i

T

δFbulk[ρ]

δρ(r)

∣∣∣∣
ρ(r,−t)

=

∫

r,t

[ρ̂(r, t) + ih(r, t)]Λ(r, t)−
∫

r,t

[Λ(r, t) + i∂tρ(r, t)]
i

T

δFbulk[ρ]

δρ(r)

∣∣∣∣
ρ(r,t)

,

�

(A.2)

where the second line merely follows from the change of variable t → −t in the int
egrals. Integrations by parts restore the initial form of the first integral and, recognizing 
the chain rule in the second one, one gets for now

Sbulk[T ρ, T ρ̂] = Sbulk[ρ, ρ̂] +
1

T

∫

t

∂tF [ρ(r, t)].� (A.3)

We may repeat the calculation for Sdis[ρ, ρ̂] as given by equation (3.12). One first 
gets

Sdis[T ρ, T ρ̂] = −1

2
λ

∫

r,t

∫

r′,t′
Φ(|r− r′|)[Λ(r,−t)− i∂tρ(r,−t)][Λ(r′,−t′)− i∂t′ρ(r

′,−t′)]

= −1

2
λ

∫

r,t

∫

r′,t′
Φ(|r− r′|)[Λ(r, t) + i∂tρ(r, t)][Λ(r

′, t′) + i∂t′ρ(r
′, t′)],

�
(A.4)

with again the change of variables t → −t, t′ → −t′ in the integrals to obtain the sec-
ond line. Then, the result can be rearranged as

Sdis[T ρ, T ρ̂] = Sdis[ρ, ρ̂]− iλ

∫

t

∂t

[∫

r

∫

r′,t′
Φ(|r− r′|)ρ(r, t)Λ(r′, t′)

]

+
1

2
λ

∫

t

∂t

∫

t′
∂t′

[∫

r

∫

r′
Φ(|r− r′|)ρ(r, t)ρ(r′, t′)

]
.

�

(A.5)
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Since the dierences Sbulk[T ρ, T ρ̂]− Sbulk[ρ, ρ̂] and Sdis[T ρ, T ρ̂]− Sdis[ρ, ρ̂] are mere 
integrals of total time derivatives, both Sbulk[ρ, ρ̂] and Sdis[ρ, ρ̂] are invariant under the 
T -transformation at equilibrium. This obviously implies the invariance of Seff [ρ, ρ̂].

A.2. The U- and U ′-transformations

A shared feature of the present theory and of the theory of Langevin processes with 
colored noise developed in [65] is that the dynamical action is a sum of quadratic and 
linear terms in the hatted variables, as a consequence of the Gaussianity of the noise 
and/or disorder. In the latter work, a symmetry of the action was unveiled, which can 
actually be related to this observation. We show that a similar one holds in the present 
case as well.

Denoting the thermal-noise contribution to the eective dynamical action as

Snoise[ρ, ρ̂] = −D0

∫

r,t

ρ(r, t)[∇ρ̂(r, t)]2,� (A.6)

and adding it to the random-field term Sdis[ρ, ρ̂], restoration of the noise variance, equa-
tion (2.16), and integrations by parts can be used to get

Snoise[ρ, ρ̂] + Sdis[ρ, ρ̂] = −1

2

∫

r,t

∫

r′,t′
Kλ(r, t; r

′, t′)ρ̂(r, t)ρ̂(r′, t′),� (A.7)

where the density-dependent symmetric kernel Kλ(r, t; r
′, t′) is given by equation (4.16). 

Now, the remaining part of the action, which only involves the deterministic nonran-
dom part of the density evolution equation defined in equation (4.15) and thus reads

Sbulk[ρ, ρ̂]− Snoise[ρ, ρ̂] =

∫

r,t

iρ̂(r, t)Det([ρ], r, t),� (A.8)

can be rewritten as

Sbulk[ρ, ρ̂]− Snoise[ρ, ρ̂] = i

∫

r,t

∫

r′,t′
Kλ(r, t; r

′, t′)ρ̂(r, t)

∫

r′′,t′′
K−1

λ (r′, t′; r′′, t′′)Det([ρ], r′′, t′′),

� (A.9)
through injection of equation (4.17) and minor reorganizations. It results that

Seff [ρ, ρ̂] = −1

2

∫

r,t

∫

r′,t′
Kλ(r, t; r

′, t′)ρ̂(r, t)

{
ρ̂(r′, t′)− 2i

∫

r′′,t′′
K−1

λ (r′, t′; r′′, t′′)Det([ρ], r′′, t′′)
}
.

� (A.10)
This expression is manifestly invariant under the U ′-transformation, equation (4.14), 
thanks to the symmetry of Kλ(r, t; r

′, t′).
Although one can directly use equation  (4.14) to compose U ′ with T , we find it 

useful to first reorganize U ′ρ̂(r, t). Indeed, this allows one to isolate contributions with 
distinct physical origins and facilitates comparisons with previous results. Once the 
explicit expression of Det([ρ], r, t) is restored, equation (4.8) and a single integration 
by parts lead to

U ′ρ̂(r, t) = −ρ̂(r, t)− 2iD0

∫

r′,t′
ρ(r′, t′)[∇′K−1

λ (r, t; r′, t′)] ·

(
∇′

[
h(r′, t′)− 1

T

δFbulk[ρ]

δρ(r′)

∣∣∣∣
ρ(r′,t′)

])
.

� (A.11)
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Treating the integral in the same way as Snoise[ρ, ρ̂], one then gets

U ′ρ̂(r, t) = −ρ̂(r, t)− i

∫

r′,t′

∫

r′′,t′′
K−1

λ (r, t; r′, t′)K0(r
′, t′; r′′, t′′)

[
h(r′′, t′′)− 1

T

δFbulk[ρ]

δρ(r′′)

∣∣∣∣
ρ(r′′,t′′)

]
,

� (A.12)
where K0(r, t; r

′, t′) is nothing but Kλ(r, t; r
′, t′) at λ = 0. Using equation (4.16), it can 

be replaced with Kλ(r, t; r
′, t′)− λ∆K(r, t; r′, t′) to obtain

U ′ρ̂(r, t) =− ρ̂(r, t)− ih(r, t) +
i

T

δFbulk[ρ]

δρ(r)

∣∣∣∣
ρ(r,t)

+ iλ

∫

r′,t′

∫

r′′,t′′
K−1

λ (r, t; r′, t′)∆K(r′, t′; r′′, t′′)

[
h(r′′, t′′)− 1

T

δFbulk[ρ]

δρ(r′′)

∣∣∣∣
ρ(r′′,t′′)

]
.

� (A.13)It remains to use the expression of ∆K(r, t; r′, t′) to eventually get

U ′ρ̂(r, t) =− ρ̂(r, t)− ih(r, t) +
i

T

δFbulk[ρ]

δρ(r)

∣∣∣∣
ρ(r,t)

+ iλD0

∫

r′,t′
K−1

λ (r, t; r′, t′)∇′ ·
{
ρ(r′, t′)∇′

∫

r′′,t′′
Φ(|r′ − r′′|)Det([ρ], r′′, t′′)

}

� (A.14)
after a last pair of integrations by parts. This formula can be used as an alternative to 
the second line of equation (4.14).

We may now compose U ′ and T  to get the U -transformation with time reversal. 
Since the application of T  to equation (4.8) gives D0∇ · [ρ(r,−t)∇T h(r, t)] = ∂tρ(r,−t), 
hence T h(r, t) = −h(r,−t), the function h(r, t) disappears when T  is applied to U ′ρ̂(r, t), 
giving equation (4.18) as the final result.

Obviously, if U ′ρ̂(r, t) from equation (4.14) is left untouched, the expression

U ρ̂(r, t) = −ρ̂(r,−t)− ih(r,−t) + 2i

∫

r′,t′
K−1

λ (r,−t; r′,−t′)T Det([ρ], r′, t′)

�

(A.15)

is a valid replacement for the second line of equation (4.18).

A.3.  Implications of the U-transformation

As the T -transformation, the U -transformation can be used to derive equilibrium rela-
tions between correlations and responses.

In particular, a generalized form of the FDR can be obtained for the noise-response 
function. Indeed, expanding the Ward–Takahashi identity equation (4.20), one gets

G(|r− r′|, t− t′) +G(|r− r′|, t′ − t) =

〈
ρ(r, t)

1

T

δFbulk[ρ]

δρ(r′)

∣∣∣∣
ρ(r′,t′)

〉

eff

+ λD0

〈
ρ(r, t)

∫

r′′,t′′
K−1

λ (r′, t′; r′′, t′′)∇′′ ·
{
ρ(r′′, t′′)∇′′

∫

r′′′,t′′′
Φ(|r′′ − r′′′|)Det([ρ], r′′′, t′′′)

}〉

eff

,

� (A.16)
where we used time-translation invariance and the time-reversal symmetry of the 
correlations.
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Using the explicit expression of Fbulk[ρ], the first average in the right-hand side of 
equation (A.16) can be rewritten as
〈
ρ(r, t)

1

T

δFbulk[ρ]

δρ(r′)

∣∣∣∣
ρ(r′,t′)

〉

eff

=

〈
ρ(r, t)

[
δρ(r′, t′)

ρ0
+

1

T

∫

r′′
u(|r′ − r′′|)δρ(r′′, t′)

]〉

eff

+

〈
ρ(r, t)

[
ln

(
1 +

δρ(r′, t′)

ρ0

)
− δρ(r′, t′)

ρ0

]〉

eff

.

�

(A.17)

The first term is due to the Gaussian part of the free energy,

Fbulk,G[ρ] =
T

2

∫

r

∫

r′
Q−1(|r− r′|)δρ(r)δρ(r′),� (A.18)

where

Q−1(|r− r′|) = δ(r− r′)

ρ0
+

u(|r− r′|)
T

� (A.19)

is the functional inverse of the static density correlation function in the Gaussian 
theory defined by Fbulk,G[ρ]. One can thus write
〈
ρ(r, t)

[
δρ(r′, t′)

ρ0
+

1

T

∫

r′′
u(|r′ − r′′|)δρ(r′′, t′)

]〉

eff

=

∫

r′′
C(|r− r′′|, t− t′)Q−1(|r′′ − r′|).

� (A.20)
The second term, which we shall denote by ∆CnG(|r− r′|, t− t′), arises from the non-
Gaussian nature of Fid[ρ]. As such, it already appears in the absence of a random field.

The second average in the right-hand side of equation (A.16) manifestly arises from 
the presence of the quenched random potential (it has λ as a prefactor). Accordingly, 
we shall denote it by ∆Cdis(|r− r′|, t− t′), for which we could not find any obvious 
simpler expression.

Combining these notations, equation (4.21) is finally obtained.
As an interesting consistency check, it is also possible to get the dynamical equa-

tions for the density correlation function, equations (6.1c) and (6.3c), directly from the 
T - and U -transformations. Indeed, consider the Ward–Takahashi identity
〈[∫

r′′,t′′
Kλ(r, t; r

′′, t′′)ρ̂(r′′, t′′)

]
ρ(r′, t′)

〉

eff

=

〈[
U
∫

r′′,t′′
Kλ(r, t; r

′′, t′′)ρ̂(r′′, t′′)

]
[Uρ(r′, t′)]

〉

eff

.

� (A.21)
The direct application of the U -transformation, equation (A.15), gives

U
∫

r′′,t′′
Kλ(r, t; r

′′, t′′)ρ̂(r′′, t′′)

=

∫

r′′,t′′
Kλ(r,−t; r′′,−t′′) [−ρ̂(r′′,−t′′)− ih(r′′,−t′′)] + 2iT Det([ρ], r, t).

�

(A.22)

Using
∫

r′′,t′′
Kλ(r, t; r

′′, t′′)ρ̂(r′′, t′′) = −2Λ(r, t) + λD0∇ ·
[
ρ(r, t)∇

∫

r′′,t′′
Φ(|r− r′′|)Λ(r′′, t′′)

]
� (A.23)
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and
∫

r′′,t′′
Kλ(r, t; r

′′, t′′)h(r′′, t′′) = −2∂tρ(r, t) + λD0∇ ·
[
ρ(r, t)∇

∫

r′′,t′′
Φ(|r− r′′|)∂t′′ρ(r′′, t′′)

]
,

� (A.24)
this becomes

U
∫

r′′,t′′
Kλ(r, t; r

′′, t′′)ρ̂(r′′, t′′) = 2iT Det([ρ], r, t) + 2Λ(r,−t)− 2i∂tρ(r,−t)

−λD0∇ ·
[
ρ(r,−t)∇

∫

r′′,t′′
Φ(|r− r′′|) {Λ(r′′,−t′′)− i∂t′′ρ(r

′′,−t′′)}
]
.

�

(A.25)

The Ward–Takahashi identity, equation (A.21), now explicitly reads

−2〈Λ(r, t)ρ(r′, t′)〉eff + λD0

〈
∇ ·

[
ρ(r, t)∇

∫

r′′,t′′
Φ(|r− r′′|)Λ(r′′, t′′)

]
ρ(r′, t′)

〉

eff

= 2i〈T Det([ρ], r, t)ρ(r′,−t′)〉eff + 2〈Λ(r,−t)ρ(r′,−t′)〉eff − 2i 〈∂tρ(r,−t)ρ(r′,−t′)〉eff

−λD0

〈
∇ ·

[
ρ(r,−t)∇

∫

r′′,t′′
Φ(|r− r′′|) {Λ(r′′,−t′′)− i∂t′′ρ(r

′′,−t′′)}
]
ρ(r′,−t′)

〉

eff

.

�

(A.26)

The T -transformation gives

〈T Det([ρ], r, t)ρ(r′,−t′)〉eff = 〈Det([ρ], r, t)ρ(r′, t′)〉eff ,� (A.27)

〈Λ(r, t)ρ(r′, t′)〉eff = 〈Λ(r,−t)ρ(r′,−t′)〉eff − i〈∂tρ(r,−t)ρ(r′,−t′)〉eff ,� (A.28)
and
〈
∇ ·

[
ρ(r, t)∇

∫

r′′,t′′
Φ(|r− r′′|)Λ(r′′, t′′)

]
ρ(r′, t′)

〉

eff

=

〈
∇ ·

[
ρ(r,−t)∇

∫

r′′,t′′
Φ(|r− r′′|){Λ(r′′,−t′′)− i∂t′′ρ(r

′′,−t′′)}
]
ρ(r′,−t′)

〉

eff

.

�

(A.29)

Therefore, one gets
〈{

iDet([ρ], r, t) + 2Λ(r, t)− λD0∇ ·
[
ρ(r, t)∇

∫

r′′,t′′
Φ(|r− r′′|)Λ(r′′, t′′)

]}
ρ(r′, t′)

〉

eff

= 0,

� (A.30)
which is nothing but

〈
δSeff

δρ̂(r, t)
ρ(r′, t′)

〉

eff

= 0.� (A.31)

Appendix B. Calculation of the memory kernel M0
k (t) for a Gaussian covariance

We analytically compute the memory kernel M0
k (t) given in equation  (9.18) for the 

Gaussian random potential with Gaussian covariance:
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M0
k (t) = Ak

∫
dq(k · q)2e−q2R2/2e−D0(k−q)2t, Ak ≡

λD0R
d

k2(2π)d/2
.� (B.1)

The integral can be arranged as

M0
k (t) = Ake

−D0k2t

∫
dq(k · q)2e−(R2/2+D0t)q2+2D0tk·q.� (B.2)

Completing the square in the argument of the exponential, we have

M0
k (t) = Ake

−D0k
2R2t

R2+2D0t

∫
dq(k · q)2e−(R2/2+D0t)

(
q− D0t

R2/2+D0t
k
)2

.� (B.3)

Now, shifting the integration variable via u ≡ q− D0t
R2/2+D0t

k, we get

M0
k (t) = Ake

−D0k
2R2t

R2+2D0t

∫
du

[
(k · u)2 + 2k · u k2D0t

R2/2 +D0t
+

(
k2D0t

R2/2 +D0t

)2
]
e−(R2/2+D0t)u2

.

� (B.4)
By isotropy, the first term (k · u)2 can be replaced with k2u2/d and the second term 
involving k · u vanishes. We thus have

M0
k (t) = Ake

−D0k
2R2t

R2+2D0t

∫
du

[
k2u2

d
+

(
2k2D0t

R2 + 2D0t

)2
]
e−(R2/2+D0t)u2

.� (B.5)

Using the integration formulas
∫

due−αu2

=
(π
α

)d/2

,

∫
duu2e−αu2

=
d

2α

(π
α

)d/2

,� (B.6)

we obtain

M0
k (t) = Ake

−D0k
2R2t

R2+2D0t

[
k2

R2 + 2D0t
+

(
2k2D0t

R2 + 2D0t

)2
](

2π

R2 + 2D0t

)d/2

.� (B.7)

Putting the explicit expression for Ak, we have the final expression for the memory 
kernel,

M0
k (t) = λD0R

de
−D0k

2R2t

R2+2D0t
R2 + 2D0t+ (2D0t)

2k2

(R2 + 2D0t)
2

(
1

R2 + 2D0t

)d/2

,� (B.8)

which is equation (9.47).

Appendix C. Renormalized equation for the noise-response function

The full dynamical equation for the noise-response function G(12) is given by equa-
tion (6.3a) and, after simplification, reads

(∂t −D0∇2)G(12) = δ(12)− λD2
0∇α

(∫

3

[∇α∇γΦ(13)]〈133̂γ 2̂〉
)
.� (C.1)
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Since there is no risk of confusion in these appendices, we shall here denote the averages 
over the eective action simply as 〈. . .〉.

It is straightforward to calculate the multi-point average up to the first order, as

〈133̂γ 2̂〉 = 〈133̂γ 2̂〉f + 〈133̂γ 2̂Sdis〉f +O(λ2).� (C.2)

The first term corresponds to equation  (8.2a), and the first-order average involves 
Sdis[ρ, ρ̂], given by equation (5.10) and rewritten as

Sdis[ρ, ρ̂] =
1

2
λD2

0

∫

6

∫

9

[∇a
6∇b

6Φ(69)][ρ
2
0 + 2ρ0δρ(6) + δρ(6)δρ(9)][∇a

6ρ̂(6)][∇b
9ρ̂(9)],

� (C.3)
where a and b denote summed-upon Cartesian indices. With these expressions, one 
readily obtains

〈133̂γ 2̂〉 = 〈13̂γ〉0〈32̂〉0 +
1

2
λD2

0

∫

6

∫

9

[∇a
6∇b

6Φ(69)]〈13693̂γ 6̂a9̂b2̂〉0 +O(λ2),� (C.4)

hence

〈133̂γ 2̂〉 = 〈13̂γ〉0〈32̂〉0

+ λD2
0

∫

6

∫

9

[∇a
6∇b

6Φ(69)][〈13̂γ〉0〈36̂a〉0〈69̂b〉0〈92̂〉0 + 〈16̂a〉0〈69̂b〉0〈93̂γ〉0〈32̂〉0

+ 〈16̂a〉0〈63̂γ〉0〈39̂b〉0〈92̂〉0] +O(λ2).
�

(C.5)

On the other hand, one has the following (first-order) result for the noise-response 
function itself,

〈13̂γ〉 = 〈13̂γ〉f + 〈13̂γSdis〉f +O(λ2)

= 〈13̂γ〉0 +
1

2
λD2

0

∫

6

∫

9

[∇a
6∇b

6Φ(69)]〈1696̂a9̂b3̂γ〉0 +O(λ2)

= 〈13̂γ〉0 + λD2
0

∫

6

∫

9

[∇a
6∇b

6Φ(69)]〈16̂a〉0〈69̂b〉0〈93̂γ〉0 +O(λ2).

�

(C.6)

Equivalently, one can express the bare response in terms of the renormalized one as

〈13̂γ〉0 = 〈13̂γ〉 − λD2
0

∫

6

∫

9

[∇a
6∇b

6Φ(69)]〈16̂a〉〈69̂b〉〈93̂γ〉+O(λ2).� (C.7)

Likewise, one has

〈32̂〉0 = 〈32̂〉 − λD2
0

∫

6

∫

9

[∇a
6∇b

6Φ(69)]〈36̂a〉〈69̂b〉〈92̂〉+O(λ2).� (C.8)

Substituting these expressions into equation (C.5), one straightforwardly obtains

〈133̂γ 2̂〉 = 〈13̂γ〉〈32̂〉+ λD2
0

∫

6

∫

9

[∇a
6∇b

6Φ(69)]〈16̂a〉〈63̂γ〉〈39̂b〉〈92̂〉+O(λ2).

� (C.9)
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The dynamical equation for G(12) is then given by (up to second order in λ)

(∂t −D0∇2)G(12) = δ(12)− λD2
0∇α

(∫

3

[∇α∇γΦ(13)]〈13̂γ〉〈32̂〉
)

−λ2D4
0∇α

(∫

3

∫

6

∫

9

[∇α∇γΦ(13)][∇a
6∇b

6Φ(69)]〈16̂a〉〈63̂γ〉〈39̂b〉〈92̂〉
)
.

�

(C.10)

Note that equation (C.6) takes the form of the Schwinger–Dyson equation,

G = G0 +G0 · Σ[G] ·G = G0 +G0 · Σ0[G0] ·G0 + . . . ,� (C.11)

and equation (C.10) would equivalently take the form

G−1
0 ·G = I + Σ[G] ·G,� (C.12)

where G−1
0  is given by G−1

0 (12) = (∂t −D0∇2)δ(12).
The Fourier-transformed dynamical equation for G is eventually given by (up to 

first order)

(∂t + Γk)Gk(t− t′) = δ(t− t′)−
∫ t

t′
dsΣk(t− s)Gk(s− t′),� (C.13)

Σk(t) = λD2
0

∫

q

q · p[k · qΦq]Gp(t).� (C.14)

Appendix D. Renormalized equation for the physical response function

The full dynamical equation  for the physical response function is given by equa-
tion (6.3b), leading to

(∂t −D0∇2)R(12) = −ρ0D0∇2δ(12)

+ λD3
0∇α

(∫

3

[∇αΦ(13)]∇β
2∇

γ
3 [ρ0〈133̂γ 2̂β〉+ ρ0〈123̂γ 2̂β〉+ 〈1323̂γ 2̂β〉]

)
.

�
(D.1)

The first two multi-point averages have already been computed (see equation (C.9)):

〈133̂γ 2̂β〉 = 〈13̂γ〉〈32̂β〉+ λD2
0

∫

6

∫

9

[∇a
6∇b

6Φ(69)]〈16̂a〉〈63̂γ〉〈39̂b〉〈92̂β〉+O(λ2),

�

(D.2)

〈123̂γ 2̂β〉 = 〈12̂β〉〈23̂γ〉+ λD2
0

∫

6

∫

9

[∇a
6∇b

6Φ(69)]〈16̂a〉〈62̂β〉〈29̂b〉〈93̂γ〉+O(λ2).

�

(D.3)

The last one is obtained up to the first order as (see equation (8.2d) for the first term)

〈1323̂γ 2̂β〉 = 〈1323̂γ 2̂β〉f + 〈1323̂γ 2̂βSdis〉f +O(λ2)

= λρ0D
2
0

∫

6

∫

9

[∇a
6∇b

6Φ(69)]〈12362̂β 3̂γ 6̂a9̂b〉0 +O(λ2)

= λρ0D
2
0

∫

6

∫

9

[∇a
6∇b

6Φ(69)][〈12̂β〉0〈26̂a〉0〈63̂γ〉0〈39̂b〉0 + 〈13̂γ〉0〈36̂a〉0〈62̂β〉0〈29̂b〉0

+ 〈16̂a〉0〈62̂β〉0〈23̂γ〉0〈39̂b〉0 + 〈16̂a〉0〈63̂γ〉0〈32̂β〉0〈29̂b〉0] +O(λ2),
� (D.4)
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where we used 
∫
9
[∇a

6∇b
6Φ(69)]〈69̂b〉0 = 0 by isotropy.

Now, recall that the physical response function R(12) is related to the noise-response 
function G(12) as shown by equation (4.1c), hence

R(12) = iρ0D0∇2〈12̂〉+ iD0∇β
2 〈122̂β〉.� (D.5)

The three-point average 〈122̂β〉 is evaluated up to the first order as

〈122̂β〉 = 〈122̂β〉f + 〈122̂βSdis〉f +O(λ2)

= λρ0D
2
0

∫

6

∫

9

[∇a
6∇b

6Φ(69)]〈1262̂β 6̂a9̂b〉0 +O(λ2)

= λρ0D
2
0

∫

6

∫

9

[∇a
6∇b

6Φ(69)]〈16̂a〉0〈62̂β〉0〈29̂b〉0 +O(λ2).

�

(D.6)

One thus has

R(23) = iρ0D0∇2
2〈23̂〉+ iD0∇γ

3〈233̂γ〉,� (D.7)

R(32) = iρ0D0∇2
3〈32̂〉+ iD0∇β

2 〈322̂β〉,� (D.8)

with

〈233̂γ〉 = λρ0D
2
0

∫

6

∫

9

[∇a
6∇b

6Φ(69)]〈26̂a〉0〈63̂γ〉0〈39̂b〉0 +O(λ2),� (D.9)

〈322̂β〉 = λρ0D
2
0

∫

6

∫

9

[∇a
6∇b

6Φ(69)]〈36̂a〉0〈62̂β〉0〈29̂b〉0 +O(λ2).� (D.10)

Crucially, the above integrals can be straightforwardly recognized in the first two terms 
of the right-hand side of equation (D.4). These terms are thus associated with the first-
order expansion of R and should be accounted for accordingly in the renormalization 
process.

Hence, from equations (D.2), (D.3), (D.4), (D.9), and (D.10), the following first-order 
renormalized expressions result:

〈133̂γ 2̂β〉 = 〈13̂γ〉〈32̂β〉, 〈123̂γ 2̂β〉 = 〈12̂β〉〈23̂γ〉, 〈1323̂γ 2̂β〉 = 〈13̂γ〉〈322̂β〉+ 〈12̂β〉〈233̂γ〉.�
(D.11)

They provide one with the first-order renormalization

D3
0∇

β
2∇

γ
3 [ρ0〈133̂γ 2̂β〉+ ρ0〈123̂γ 2̂β〉+ 〈1323̂γ 2̂β〉]

= D2
0∇

γ
3 [〈13̂γ〉(ρ0D0∇β

2 〈32̂β〉+D0∇β
2 〈322̂β〉)] +D2

0∇
β
2 [〈12̂β〉(ρ0D0∇γ

3〈23̂γ〉+D0∇γ
3〈233̂γ〉)]

= D2
0∇

γ
3 [〈13̂γ〉(ρ0D0∇2

2〈32̂〉+D0∇β
2 〈322̂β〉)] +D2

0∇
β
2 [〈12̂β〉(ρ0D0∇2

3〈23̂〉+D0∇γ
3〈233̂γ〉)]

= D2
0∇

β
3 [〈13̂β〉(ρ0D0∇2

3〈32̂〉+D0∇γ
2〈322̂γ〉)] +D2

0∇
β
2 [〈12̂β〉(ρ0D0∇2

2〈23̂〉+D0∇γ
3〈233̂γ〉)]

= −iD2
0{∇

β
3 [〈13̂β〉R(32)] +∇β

2 [〈12̂β〉R(23)]}.
�

(D.12)

Therefore, one obtains the first-order renormalized dynamical equation

(∂t −D0∇2)R(12) = −ρ0D0∇2δ(12)

− iλD2
0∇α

(∫

3

[∇αΦ(13)]{∇β
3 [〈13̂β〉R(32)] +∇β

2 [〈12̂β〉R(23)]}
)
,

� (D.13)
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or, through elimination of the isolated time integral thanks to the FDR,

(∂t −D0∇2)R(12) = −ρ0D0∇2δ(12)

− iλD2
0∇α

(∫

3

[∇α∇βΦ(13)]〈13̂β〉R(32)

)
+ iλρ0D

2
0∇α∇β([∇αΦ(12)]〈12̂β〉).

� (D.14)
In Fourier space, this equation takes the form

(∂t + Γk)Rk(t− t′) = ρ0Γkδ(t− t′)−
∫ t

t′
dsΣk(t− s)Rk(s− t′) + Lk(t− t′),

� (D.15)
where the kernel Σk(t) is given in equation (C.14). As for the new kernel Lk (t) arising 
from the composite nature of the physical response function, it can be obtained from 
equation (D.14) as

Lk(t) = λρ0D
2
0

∫

q

k · p[k · qΦq]Gp(t).� (D.16)

Appendix E. Renormalized equation for the correlation function

From equation (6.3c), the full dynamical equation for the correlation function is given 
by

(∂t −D0∇2)C(12) = 2R(21)− λρ0D0∇α

(∫

3

[∇αΦ(13)][R(13) +R(23)]

)

−iλD2
0∇α

(∫

3

[∇αΦ(13)]∇γ
3 [ρ0〈123̂γ〉+ 〈1233̂γ〉]

)
.

�

(E.1)

We calculate the multi-point averages up to the first order in λ with the bare per-
turbation expansion. The three-point average is given by

〈123̂γ〉 = 〈123̂γ〉f + 〈123̂γSdis〉f +O(λ2).� (E.2)

The first term corresponds to equation (8.2e). The first-order contribution reads

〈123̂γSdis〉f =
1

2
λD2

0

∫

6

∫

9

[∇a
6∇b

6Φ(69)][2ρ0〈1263̂γ 6̂a9̂b〉0 + 〈12693̂γ 6̂a9̂be−D0

∫
4 44̂

δ 4̂δ〉0]

=
1

2
λD2

0

∫

6

∫

9

[∇a
6∇b

6Φ(69)]

[
2ρ0〈1263̂γ 6̂a9̂b〉0 −D0

∫

4

〈124693̂γ 4̂δ4̂δ6̂a9̂b〉0
]

= λρ0D
2
0

∫

6

∫

9

[∇a
6∇b

6Φ(69)][〈16̂a〉0〈29̂b〉0 + 〈19̂b〉0〈26̂a〉0]〈63̂γ〉0

− 2λD3
0

∫

4

∫

6

∫

9

[∇a
6∇b

6Φ(69)]{〈14̂δ〉0[〈46̂a〉0〈69̂b〉0〈93̂γ〉0]〈24̂δ〉0

+ 〈14̂δ〉0〈43̂γ〉0[〈26̂a〉0〈69̂b〉0〈94̂δ〉0] + [〈16̂a〉0〈69̂b〉0〈94̂δ〉0]〈43̂γ〉0〈24̂δ〉0}

− 2λD3
0

∫

4

∫

6

∫

9

[∇a
6∇b

6Φ(69)]{〈14̂δ〉0[〈49̂b〉0〈93̂γ〉0][〈26̂a〉0〈64̂δ〉0]

+ [〈16̂a〉0〈64̂δ〉0][〈49̂b〉0〈93̂γ〉0]〈24̂δ〉0 + [〈16̂a〉0〈64̂δ〉0]〈43̂γ〉0[〈29̂b〉0〈94̂δ〉0]}.
� (E.3)
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In the right-hand side of this equation, the first line is part of the second-order contrib
ution to the time-persistent term (whose first-order expression is −λρ20D0∇2Φ(12), see 
equation (8.7c)). The next three terms are those that contribute to renormalize equa-
tion (8.2e), whereas the last contributions belong to the second-order renormalization. 
Therefore, apart from the time-persistent terms, one has the renormalized expression

〈123̂γ〉 = −2D0

∫

4

〈14̂δ〉〈43̂γ〉〈24̂δ〉+O(λ).� (E.4)

Now, the four-point average in equation (E.1) is given by

〈1233̂γ〉 = 〈1233̂γ〉f + 〈1233̂γSdis〉f +O(λ2).� (E.5)

The first term is already computed in equation (8.2f ). The first-order contribution con-
sists of three Gaussian averages:

〈1233̂γSdis〉f =
1

2
λD2

0

∫

6

∫

9

[∇a
6∇b

6Φ(69)]

× {ρ20〈1233̂γ 6̂a9̂b〉0 + 2ρ0〈12363̂γ 6̂a9̂be−D0

∫
4 44̂

δ 4̂δ〉0 + 〈123693̂γ 6̂a9̂be−D0

∫
4 44̂

δ 4̂δ〉0}.
�

(E.6)

These averages are straightforward to compute. The first one is given by

1

2
ρ20〈1233̂γ 6̂a9̂b〉0 = ρ20(〈13̂γ〉0〈36̂a〉0〈29̂b〉0 + 〈16̂a〉0〈39̂b〉0〈23̂γ〉0).� (E.7)

It is also part of the time-persistent contribution at second order. Combining this term 
with the previous one of the same nature in equation (E.3) and using the procedure 
introduced in section 8 to eliminate the isolated time integrals, one gets

−iλD2
0∇α

(∫

3

[∇αΦ(13)]∇γ
3

[
λρ20D

2
0

∫

6

∫

9

[∇a
6∇b

6Φ(69)]

×{[〈16̂a〉0〈29̂b〉0 + 〈19̂b〉0〈26̂a〉0]〈63̂γ〉0 + 〈13̂γ〉0〈36̂a〉0〈29̂b〉0 + 〈16̂a〉0〈39̂b〉0〈23̂γ〉0}

])

= −ρ20D0∇2

[
λ2Φ(12)2

2

]
.

�

(E.8)

Adding the first-order term −ρ20D0∇2[λΦ(12)], one recognizes the second-order expan-
sion of −D0∇2Cd(12), with Cd(12) ≡ Cd(|r− r′|), according to the exact static equilib-
rium calculation, equation (3.4b). Such an identification is actually required to insure 
consistency between statics and dynamics.

The remaining Gaussian averages in equation (E.6) are given by

ρ0〈12363̂γ 6̂a9̂be−D0

∫
4 44̂

δ 4̂δ〉0 = −ρ0D0

∫

4

〈123463̂γ 4̂δ4̂δ6̂a9̂b〉0

= −2ρ0D0

∫

4

{〈13̂γ〉0[〈34̂δ〉0〈46̂a〉0〈69̂b〉0〈24̂δ〉0 + 〈34̂δ〉0〈49̂b〉0〈26̂a〉0〈64̂δ〉0 + 〈36̂a〉0〈64̂δ〉0〈49̂b〉0〈24̂δ〉0]

+ 〈14̂δ〉0[〈46̂a〉0〈69̂b〉0〈34̂δ〉0 + 〈49̂b〉0〈36̂a〉0〈64̂δ〉0]〈23̂γ〉0 + 〈16̂a〉0〈64̂δ〉0〈49̂b〉0〈34̂δ〉0〈23̂γ〉0
+ 〈14̂δ〉0[〈46̂a〉0〈63̂γ〉0〈39̂b〉0]〈24̂δ〉0
+ 〈14̂δ〉0[〈43̂γ〉0〈39̂b〉0〈64̂δ〉0 + 〈49̂b〉0〈63̂γ〉0〈34̂δ〉0]〈26̂a〉0
+ 〈16̂a〉0[〈63̂γ〉0〈34̂δ〉0〈49̂b〉0 + 〈64̂δ〉0〈43̂γ〉0〈39̂b〉0]〈24̂δ〉0}
�

(E.9)
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and

1

2
〈123693̂γ 6̂a9̂be−D0

∫
4 44̂

δ 4̂δ〉0 =
1

2
〈123693̂γ 6̂a9̂b〉0

= 〈13〉0[〈26̂a〉0〈69̂b〉0〈93̂γ〉0] + 〈16〉0〈39̂b〉0〈96̂a〉0〈23̂γ〉0
+ 〈13̂γ〉0[〈39̂b〉0〈96̂a〉0〈62〉0 + 〈26̂a〉0〈39〉0〈69̂b〉0 + 〈26̂a〉0〈39̂b〉0〈69〉0]
+ [〈16̂a〉0〈69̂b〉0〈93̂γ〉0]〈32〉0 + 〈16̂a〉0[〈39̂b〉0〈69〉0〈23̂γ〉0 + 〈39〉0〈69̂b〉0〈23̂γ〉0]
+ [〈16〉0〈36̂a〉0 + 〈16̂a〉0〈63〉0]〈29̂b〉0〈93̂γ〉0 + 〈16̂a〉0〈63̂γ〉0[〈39̂b〉0〈92〉0 + 〈29̂b〉0〈93〉0].

�

(E.10)
We now need to calculate the correlation function itself up to the first order of the 

bare perturbation expansion:

〈13〉 = 〈13〉f + 〈13Sdis〉f +O(λ2)

= 〈13〉0 +
1

2
λD2

0

∫

6

∫

9

[∇a
6∇b

6Φ(69)]

{
ρ20〈136̂a9̂b〉0 − 2ρ0D0

∫

4

〈13464̂δ4̂δ6̂a9̂b〉0 + 〈13696̂a9̂b〉0
}
+O(λ2)

= 〈13〉0 + λD2
0

∫

6

∫

9

[∇a
6∇b

6Φ(69)]
{
ρ20〈16̂a〉0〈39̂b〉0

− 2ρ0D0

∫

4

(〈14̂δ〉0[〈46̂a〉0〈69̂b〉0〈34̂δ〉0 + 〈49̂b〉0〈36̂a〉0〈64̂δ〉0] + 〈16̂a〉0〈64̂δ〉0〈49̂b〉0〈34̂δ〉0)

+〈16〉0〈39̂b〉0〈96̂a〉0 + 〈16̂a〉0〈39〉0〈69̂b〉0 + 〈16̂a〉0〈39̂b〉0〈69〉0
}
+O(λ2)

�

(E.11)

and

〈32〉 = 〈32〉0 + λD2
0

∫

6

∫

9

[∇a
6∇b

6Φ(69)]
{
ρ20〈36̂a〉0〈29̂b〉0

− 2ρ0D0

∫

4

(〈34̂δ〉0[〈46̂a〉0〈69̂b〉0〈24̂δ〉0 + 〈49̂b〉0〈26̂a〉0〈64̂δ〉0] + 〈36̂a〉0〈64̂δ〉0〈49̂b〉0〈24̂δ〉0)

+〈26〉0〈39̂b〉0〈96̂a〉0 + 〈26̂a〉0〈39〉0〈69̂b〉0 + 〈26̂a〉0〈39̂b〉0〈69〉0
}
+O(λ2).

�
(E.12)

The first term in each integral corresponds to the first-order contribution to the time-
persistent part of the correlation function, λρ20Φ(13) in 〈13〉 and λρ20Φ(32) in 〈32〉. It 
should be discarded to avoid double-counting with equation (E.8) and we accordingly 
define 〈13〉c and 〈32〉c, where c stands for connected, from equations (E.11) and (E.12) 
without this term.

Therefore, we identify the first-order renormalization for the average 〈1233̂γ〉, apart 
from the time-persistent terms, as

〈1233̂γ〉 = 〈13̂γ〉〈32〉c + 〈13〉c〈23̂γ〉 − 2D0

∫

4

〈14̂δ〉〈433̂γ〉〈24̂δ〉.� (E.13)

The bare first-order expression for 〈433̂γ〉 is given by (see equation (D.9))

〈433̂γ〉 = λρ0D
2
0

∫

6

∫

9

[∇a
6∇b

6Φ(69)]〈46̂a〉0〈63̂γ〉0〈39̂b〉0 +O(λ2),� (E.14)

and can be spotted in equation (E.9). Again, the corresponding term appears associated 
with the first-order expansion of R, as in equation (D.4).
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Collecting equations (E.4) and (E.13), we have

∇γ
3 [ρ0〈123̂γ〉+ 〈1233̂γ〉]

= ∇γ
3 [〈13̂γ〉〈32〉c + 〈13〉c〈23̂γ〉]− 2

∫

4

〈14̂δ〉[ρ0D0∇2
4〈43̂〉+D0∇γ

3〈433̂γ〉]〈24̂δ〉

= ∇γ
3 [〈13̂γ〉〈32〉c + 〈13〉c〈23̂γ〉] + 2i

∫

4

〈14̂δ〉R(43)〈24̂δ〉,

�

(E.15)

where we used (see equation (D.5)) R(43) = iρ0D0∇2
4〈43̂〉+ iD0∇γ

3〈433̂γ〉.
We are now ready to write down the first-order renormalized dynamical equa-

tion for the density correlation function. It reads, ignoring 2R(21) and performing the 
first integral in the right-hand side of equation (E.1),

(∂t −D0∇2)C(12) = −D0∇2Cd(12)− iλD2
0∇α

(∫

3

[∇αΦ(13)]∇γ
3 [〈13̂γ〉〈32〉c + 〈13〉c〈23̂γ〉]

)

+2λD2
0∇α

(∫

3

[∇αΦ(13)]

∫

4

〈14̂γ〉R(43)〈24̂γ〉
)
,

� (E.16)
or, integrating out the physical response function in the last term and introducing the 
connected density correlation function,

(∂t −D0∇2)F (12)

= −iλD2
0∇α

(∫

3

[∇αΦ(13)]∇γ
3 [〈13̂γ〉〈32〉c + 〈13〉c〈23̂γ〉]

)
+ 2λρ0D

2
0∇α

(∫

4

[∇αΦ(14)]〈14̂γ〉〈24̂γ〉
)
.

� (E.17)
We then get the Fourier-transformed equation of motion,

(∂t + Γk)Fk(t− t′) = −λD2
0

∫ t

−∞
ds

∫

q

q · p[k · qΦq]Gp(t− s)Fk(s− t′)

+ λD2
0

∫ t′

−∞
ds

∫

q

k · q[k · qΦq]Fp(t− s)Gk(t
′ − s)

+ 2λρ0D
2
0

∫ t′

−∞
ds

∫

q

k · p[k · qΦq]Gp(t− s)Gk(t
′ − s),

� (E.18)
which we rewrite as

(∂t + Γk)Fk(t− t′) = −
∫ t

t′
dsΣk(t− s)Fk(s− t′) +Nk(t− t′),� (E.19)

Nk(t− t′) ≡ −λD2
0

∫ t′

−∞
ds

∫

q

q · p[k · qΦq]Gp(t− s)Fk(t
′ − s)

+ λD2
0

∫ t′

−∞
ds

∫

q

k · q[k · qΦq]Fp(t− s)Gk(t
′ − s)

+ 2λρ0D
2
0

∫ t′

−∞
ds

∫

q

k · p[k · qΦq]Gp(t− s)Gk(t
′ − s).

�

(E.20)
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Note that, in the absence of simple relations between the response and correlation 
functions beyond the FDR, it is not guaranteed that the sum of three integrals in equa-
tion (E.20) actually reduces to a local function of time as posited in equation (E.19). 
For the same reason, it is not obvious that the time derivative of Nk(t− t′), given by

∂tNk(t− t′) = ρ0Σk(t− t′)− λD2
0

∫ t′

−∞
ds

∫

q

q · p[k · qΦq]Gp(t− s)Rk(t
′ − s)

− λD2
0

∫ t′

−∞
ds

∫

q

k · q[k · qΦq]Rp(t− s)Gk(t
′ − s)

+ 2λρ0D
2
0

∫ t′

−∞
ds

∫

q

k · p[k · qΦq]
[
∂tGp(t− s)

]
Gk(t

′ − s),

�

(E.21)

where the FDR and integrations by parts have been used, equals ρ0Σk(t− t′)− Lk(t− t′), 
as required for consistency with the FDR. In fact, general arguments support the exact 
opposite [31, 32].

However, using the following first-order consistent substitutions (see equations (10.7), 
(10.8), and (10.1a))

Fk(t) = ρ0Gk(t) +O(λ),� (E.22a)

Rk(t) = ρ0D0k
2Gk(t) +O(λ),� (E.22b)

∂tGk(t) = −D0k
2Gk(t) +O(λ),� (E.22c)

in the above integrals, one can easily show, with calculations similar to those performed 
in section 9, that these properties hold to first order. One can use, in particular, the 
identity k2q · p+ p2(k · q+ 2k · p) = k · p(k2 + p2).

As an example, we may show that, within the first order, equation (E.20) is indeed 
compatible with equation  (10.12), which is FDR-consistent. One first uses equa-
tion (E.22a) in (E.20) to get

Nk(t− t′) = λρ0D
2
0

∫ t′

−∞
ds

∫

q

[k · qΦq][ p
2Gp(t− s)Gk(t

′ − s) +Gp(t− s)k2Gk(t
′ − s)] +O(λ2).

� (E.23)
Then, equation (E.22c) gives

Nk(t− t′) = λρ0D0

∫ t′

−∞
ds

∫

q

[k · qΦq]∂s[Gp(t− s)Gk(t
′ − s)] +O(λ2),� (E.24)

hence

Nk(t− t′) = λρ0D0

∫

q

[k · qΦq]Gp(t− t′) +O(λ2).� (E.25)

Since Gp (0)  =  1 and 
∫
q
k · qΦq = 0 by isotropy, this can be rewritten as

Nk(t− t′) = λρ0D0

∫ t

t′
ds

∫

q

[k · qΦq]∂sGp(s− t′) +O(λ2),� (E.26)
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and, with one last use of equation (E.22c), one gets

Nk(t− t′) = −λD0

∫ t

t′
ds

∫

q

[k · qΦq][ρ0D0p
2Gp(s− t′)] +O(λ2).� (E.27)

Truncated to first order, this is nothing but equation (10.12).
Finally, Nk(t− t′) can also be written as

Nk(t− t′) = −
∫ t′

−∞
dsΣk(t− s)Fk(t

′ − s) +

∫ t′

−∞
dsDk(t− s)[ρ0ΓkGk(t

′ − s)],

� (E.28)
with

Dk(t) = Mk(t) +
2

ρ0Γk

Lk(t),� (E.29)

where Mk (t) is the mode-coupling kernel defined in equation  (10.27). One can thus 
readily transpose the discussion around equation (9.16) of the bare theory to the renor
malized framework.
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