ournal of Statistical Mechanics: Theory and Experiment

An IOP and SISSA journal

PAPER: Disordered systems, classical and quantum

Dynamics of a noninteracting colloidal
fluid in a quenched Gaussian random
potential: a time-reversal-symmetry-
preserving field-theoretic approach

Bongsoo Kim!2, Matthias Fuchs3
and Vincent Krakoviack?

! Department of Physics, Changwon National University, Changwon 51140,

Republic of Korea

Institute for Soft and Bio Matter Science, Changwon National University,
Changwon 51140, Republic of Korea

Fachbereich Physik, Universitdt Konstanz, 78457 Konstanz, Germany
Université de Lyon, ENS de Lyon, Université Claude Bernard Lyon 1,
CNRS, Laboratoire de Chimie and Centre Blaise Pascal, F-69342 Lyon,
France

E-mail: vincent.krakoviack@ens-lyon.fr

Received 17 September 2019
Accepted for publication 28 November 2019 @
Published 12 February 2020
CrossMark

Online at stacks.iop.org/JSTAT/2019/023301
https://doi.org/10.1088/1742-5468 /ab632e

Abstract. We develop a field-theoretic perturbation method preserving the
fluctuation—dissipation relation (FDR) for the dynamics of the density fluctuations
of a noninteracting colloidal gas plunged in a quenched Gaussian random field.
It is based on an expansion about the Brownian noninteracting gas and can be
considered and justified as a low-disorder or high-temperature expansion. The
first-order bare theory yields the same memory integral as the mode-coupling
theory (MCT) developed for (ideal) fluids in random environments, apart from
the bare nature of the correlation functions involved. It predicts an ergodic
dynamical behavior for the relaxation of the density fluctuations, in which the
memory kernels and correlation functions develop long-time algebraic tails. An
FDR-consistent renormalized theory is also constructed from the bare theory. It
is shown to display a dynamic ergodic—nonergodic transition similar to the one
predicted by the MCT at the level of the density fluctuations, but, at variance
with the MCT, the transition does not fully carry over to the self-diffusion,
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which always reaches normal diffusive behavior at long time, in agreement with
known rigorous results.

Keywords: diffusion in random media, mode coupling theory, memory effects,
Brownian motion
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1. Introduction

In a number of circumstances, simple fluids may generically develop slow and complex
dynamics. For instance, glassy dynamics unfolds in the low-temperature and high-
density regimes corresponding to supercooled or overcompressed liquid states. It is
characterized by a considerable slowing-down of the structural relaxation, eventually
leading to the fluid falling out of equilibrium at the glass transition [1-3]. Another
example is provided by fluids in quenched-random environments, with either geometric
or energetic disorder. Their single-particle dynamics is often characterized by diffusion
anomalies, possibly leading to diffusion-localization transitions or other types of noner-
godic behaviors [4-6].

A versatile framework to investigate such problems on unified grounds from first
principles is provided by the mode-coupling theory (MCT), more specifically a self-
consistent current-relaxation theory, as termed by Gotze [7, 8]. In its first few years,
this very scheme could indeed be successively applied to liquid helium at zero temper-
ature [9, 10], to noninteracting electrons in a random impurity potential [11-13], to the
random Lorentz gas [14-16], and to simple glassforming liquids [17, 18].

It is in the field of glassy dynamics that the MCT has had the strongest influence. It
was indeed quickly realized that the theory seems to satisfactorily capture many non-
trivial aspects of the dynamics of simple glassforming liquids, at least on a qualitative
or semi-quantitative level [19, 20]. This triggered and shaped an intensive experimental
and computational effort and stimulated numerous further theoretical developments. A
difficulty has however been nagging all along, for the main results of the MCT essen-
tially follow from the analysis of a predicted sharp transition between a fluid-like ergo-
dic state and a glass-like nonergodic one. In fact, such a kinetic transition is absent in
the actual dynamics of glassforming liquids, and it must be interpreted as giving rise
to a dynamical crossover in the moderately supercooled or overcompressed regimes in
order to make contact between observations and theory.

From this unsettling situation and the need to clear it up emerged an interest for
theoretical approaches in which the MCT, or a MCT-like theory, would be the out-
come of a well-defined and controlled approximation scheme, amenable to systematic
corrections and improvements. Indeed, the original derivation of the MCT within the
Mori—Zwanzig projection-operator formalism does not really lend itself to such a
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program, although proposed extensions exist [21-26]. By contrast, field-theoretic
approaches appear as methods of choice for such a purpose, and a number of them
have accordingly been developed [27-37]. In particular, the most recent studies have
paid special attention to the symmetries of the dynamical action, from which crucial
equilibrium results readily stem, such as the fluctuation—dissipation relation (FDR)
[32-38]. It is actually one of the great strengths of field theories to offer command on
these aspects.

In the present work, we follow the lead of the latter studies, but, instead of glass-
forming liquids, we focus on noninteracting fluids in quenched-random environments.
This indeed appears as an interesting new window on the use of field theory and its
relation with MCT, complementary to what has already been done. Note that, within
MCT, the presence of interactions does not actually lead to any particular technical
difficulty [39-42]. However, for more general considerations, it clearly seems advis-
able to first isolate the effects of disorder from those of interactions, hence the present
restriction to noninteracting systems. In this respect, it should be borne in mind that
the dynamics of a pure noninteracting gas, while essentially trivial in a particle-based
formalism, is not so simple from a field-theoretic perspective [38].

Before being more specific about our approach, it is worth mentioning that fluids
in quenched-random environments have recently received renewed attention, thanks
to ingenious experimental developments leading to novel realizations of such systems.
Important examples, further investigated by computer simulations, include colloids and
aerosols in optical speckle patterns [43—-54], binary mixtures of superparamagnetic par-
ticles squeezed between glass slides [55-58], and colloids diffusing over rough randomly
packed colloidal monolayers [59]. Therefore, beyond purely technical considerations, it
also seems timely to try and achieve further theoretical progress in this field.

In practice, we here study the equilibrium dynamics of the density fluctuations of
a gas of noninteracting Brownian particles plunged in a random external potential-
energy landscape with Gaussian statistics. This specific nature of the disorder indeed
appears as particularly well suited for our initial field-theoretic developments, being
itself formulated as a very simple and nonsingular field theory.

The time evolution of the density fluctuations is governed by the so-called
Dean—Kawasaki (DK) equation (generalized to include the random potential), a non-
linear Langevin equation for the density field with a multiplicative thermal noise
[60, 61]. Using the functional formalism of Martin—Siggia—Rose—Janssen—de Dominicis
(MSRJD) [62-64], this equation can be turned into a dynamical action functional. As
alluded above, it was recently recognized that such an action possesses properties of
time-reversal (TR) invariance under specific sets of field transformations, intimately
connected to the FDR [32, 65]. These TR symmetries can play the role of guiding
principles as to how to develop perturbation theories consistent with the FDR at each
order of expansion. Indeed, a difficulty that defeats too naive approaches is that the
Gaussian and non-Gaussian components of the action are not separately invariant
under these field transformations [31, 32]. One such FDR-preserving theory for the
full DK equation (with interactions and without random potential) has recently been
developed via the linearization of one of the TR transformations, called the U-trans-
formation, at the expense of introducing a new set of conjugated fields. Further details
can be found in [37].
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Another TR transformation, known as the 7 -transformation, suggests an expan-
sion about the pure noninteracting system as a possible approach. The action is thus
decomposed into its free and disorder-induced components, then the latter is treated
perturbatively around the former which is non-Gaussian. This procedure can actually
be considered and motivated as a weak-disorder or high-temperature expansion. The
rationale behind this scheme is that the corresponding nonlinear TR field transforma-
tion leaves separately invariant the two decomposed parts of the action. Consistency
with the FDR however requires the free part of the action to be treated ezactly.
Notwithstanding its non-Gaussianity due to the multiplicative nature of the thermal
noise, this is made possible thanks to the special form of its cubic nonlinearity (qua-
dratic in the noise-response field) and to causality. This aspect is a novel feature of this
perturbation method. It is also advantageous that one is freed from introducing extra
fields into the problem.

The present method per se is a bare perturbation theory, that is, the perturbative
corrections are naturally expressed in terms of the bare correlation and response func-
tions. It is not a loop expansion, and it would be a challenge to develop the two-par-
ticle-irreducible effective action method for the strongly non-Gaussian noninteracting
gas. Note that the approach could also be applied to the full DK equation, with a per-
turbative treatment of the interactions. This will be examined separately in the future.

We now summarize the main results of our work. The first-order bare theory (FOBT)
gives a dynamical equation for the density correlation function that can be put in the
same form as that of the self-consistent MCT developed by one of us [39-42], albeit with
a memory term written in terms of the bare correlation function (see equations (9.29)
and (9.18) below). From this equation, one can compute the mean-squared displace-
ment (MSD) and characterize the long-time tails that develop due to the quenched
randomness. The corresponding dynamics is found to always remain ergodic, until the
theory breaks down at too strong disorder.

A first-order renormalized theory (FORT) has also been developed out of the bare
perturbation theory. It is self-consistently derived from a second-order bare calculation,
with empirical adjustments constrained by the requirements of consistency with the
FDR and with the FOBT, and eventually singled out through numerical considerations.
This theory is distinct from the MCT, but shows some structural similarity with it. In
particular, a self-closed dynamical equation for the density correlation function is again
obtained (see equations (10.17)—(10.19) below). However, its predictions noticeably
improve upon those of the MCT. Indeed, an ergodicity-breaking transition is still pre-
dicted for the density fluctuations, but, at variance with the MCT, it does only partially
carry over to the MSD, which always reaches a normal diffusive behavior at long time,
in agreement with the known rigorous results [66]. Note that, if the Brownian dynam-
ics is replaced with a Newtonian energy-conserving one, then a diffusion-localization
transition does occur [67-69], as found in the MCT. Therefore, the confrontation of
the MCT and of the present theory might well represent a first step towards an under-
standing of the phenomenon of avoided or rounded kinetic transitions.

The paper is organized as follows. In sections 2 and 3, we present the time evo-
lution equation for the density fluctuations of Brownian particles in a frozen Gaussian
random potential, and the corresponding dynamical action. The time-reversal sym-
metries of the action and the resulting FDRs are contained in section 4. Section 5
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describes the FDR-preserving perturbation expansion method about the non-Gaussian
pure noninteracting state. We write down in section 6 the nonperturbative form of the
dynamical equations for the correlation and response functions. Section 7 recalls the
solution for the pure noninteracting reference state. Sections 8-10 present the main
results of the paper, namely, the first-order perturbation corrections to the simple free
diffusion. Summary and outlook are given in the last section.

2. Time-evolution equation for the density fluctuations of colloidal particles
moving in a (random) external potential

In the present work, we investigate a situation where N colloidal particles in a volume
V', hence the average fluid density po = N/V, move in a (random) external potential.
The particle positions are denoted by {r;}, i =1,2,..., N. As a first step, the deriva-
tion of the time-evolution equation for the density fluctuations of these particles is
required. This task can be carried out in a rather general way, following an approach
due to Dean [60]. We consider the case of interacting particles, as this does not intro-
duce any particular difficulty at this stage.

The motion of the individual particles is assumed to be described by the
overdamped Langevin equation,

£(1) = 2R (1) + (1), @.1)

where Dy is the bare diffusion coefficient, 7' is the temperature of the system (the
Boltzmann constant kg is set to unity throughout), and f;(¢) is a Gaussian thermal noise
with zero mean and variance

(f2(t) f(¢)) = 2Do6j0ap6(t — t'), (2.2)

a and B denoting vector components in Cartesian coordinates. The force F;(t) acting
on the ith particle is given by

Fy(t) = F™(t) + F{(2), (2.3)
where
. 9 <
Fi"(t) = ~ 0 le u(|ry(t) —r;(t)]) (2.4)

is due to the interactions between the fluid particles with pair potential u(r) (for sim-
plicity, Vu(0) = 0 is assumed), and

B Ov(r;(t))

ext o
F7(t) = 0 (2.5)

derives from the external potential with one-body potential energy v(r).
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The microscopic fluid density is defined as

t) = Z o(r —ri(t)) = Z pi(r,t), (2.6)

where we introduced the single-particle densities, p;(r,t) = d(r —r;(t)), i =1,2,...,N.
Its fluctuations about the average fluid density are denoted by
op(r,t) = p(r,t) — po. (2.7)

In order to derive the dynamical equation for p(r,t), we follow the Itd prescription.
Consider the following set of stochastic equations for the variables z,(?) (using the sum-
mation convention),

dx,(t

% = ha + gans (1), (2.8)
where the correlation of the Gaussian white noise &,(t) is defined as

((t)&w () = o (t —1). (2.9)

The It6 chain rule then gives the stochastic equation for a variable y[{z}] in the form
dy(t) _ dao(t) 0y 1 0%

dt —  dt Oz,  20z,0m Jaceb: (2.10)
Using this rule, we get the dynamical equation
N
atp(ra t) = DOV2p<r7 t) - Z rz(t) ’ sz'(ra t)
i=1
9 Dy
= DoV?p va (r,1) - | ZFi(t) + £i(1) |- (2.11)

One can express the force contributions in equation (2.11) in terms of the fluid density,
as

N

— Z Vpi(r,t) - FiM (¢ [Z d(r 8(t) /dr’u(|ri(t) —1'|) Z 5(r' — rj(t))]

J=1

[ V/dru p(r’ t)] (2.12)
and

— ZV[’Z CFOU(t) = [25 r—r(t 81(;(:( ))] =V - [p(r,t)Vo(r)]. (2.13)

Also, the thermal noise defined as n(r,t) = — S_~ | pi(r, t)fi(t) keeps a Gaussian char-
acter with zero mean and correlations given by

https://doi.org/10.1088/1742-5468 /ab632e 7
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(n* (e, )" (', 1)) = Y Y e —ri(6)a(x — x5 () { f2(1) £ ()

i=1 j=1

= 2Dop(r, )66 (r — ¥')S(t — t'). (2.14)

Substituting equations (2.12)—(2.14) into equation (2.11), one obtains the desired
dynamical equation,

ip(r,t) = DeVp(r, )+— [ V/dru )p(r', t)}
+ %V [p(r,t)Vou(r)] + V - [\/p(r,t)ﬁ(r,t)} ,

(2.15)

where &(r, ) is a Gaussian thermal noise with zero mean and variance
(& (r, 1) 7 (r',)) = 2Doapd (r — ')d(t — t). (2.16)

Equation (2.15) can be expressed in terms of a free-energy density functional F/[p; v]

a0t = PV ey LRS- [Vileee o] ean
where
Flp;v] = Falp] + Fnelp] + Fexclp; v, (2.180a)
Fald =T / dr p(r) [In (p(x) /po) — 1], (2.18b)
Fintlp / / drdr’u(|r —1'[)dp(r)op(r’), (2.18¢)
Flpr0] = / dr v(r)p(x). (2.180)

The Fokker—Planck equation for equation (2.17) reads

) 1 6F|p;v] ‘
(r)V 5p(r)+? 5o(0) Plp,t;v]. (2.19)

0
gLl ol =—Do

)
dr
op(r)

Evidently, the equilibrium Boltzmann distribution P.,[p;v] o exp (—F[p;v]/T) is a sta-
tionary solution of this equation.

Finally, within the functional formalism of MSRJD [62—-64], the time evolution
described by equations (2.15)—(2.17) can be recast into a dynamical generating functional

Z(1,1;0] = /Dp/DﬁJ( ool e PO I(e0] (2.20)

https://doi.org/10.1088/1742-5468 /ab6:32e 8
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where the action S[p, p; v] takes the form

Slp, piv] = /t {iﬁ(r,t) <8tp(r,t) - %V. [p(r,t)v 5;}[51;.)@]

( )D - Dop(r,t)[Vﬁ(rvt)]z},
" (2.21)

with [ = [dr [ dt. Here, the thermal average has already been performed, and the term
propor‘&ional to p(Vp)? comes from the average over the multiplicative thermal noise.
The Jacobian J(p) guarantees that the normalization condition Z[l = 0,1 = 0;v] = 1, of
critical importance in applications of the formalism to quenched-disordered systems,
indeed holds. In the Itd discretization scheme, J(p) becomes a constant and can be
absorbed into the functional measure. From the knowledge of Z[, [ ;v], the time-depen-
dent correlation functions of the fields p and p can be straightforwardly obtained as
functional derivatives with respect to [and [ at [= 0, [ = 0. More generally, dynamical
quantities averaged over the thermal noise can be evaluated with respect to the action
Slp, p;v] as

(Alp, p]) = / Alp, pler, (2.22)
P

P

where fpﬁ = [Dp [ Dp and (- - -) generically denotes a thermal average.

3. Noninteracting Brownian gas in a Gaussian random potential

We may now specialize the above equations in accordance with the aim of the pres-
ent study, which is to investigate the effect of a quenched-random environment on the
dynamics of colloids. To this end, we consider what appears to be the simplest non-
trivial case. First, in most of this work, we will simply ignore the particle interactions
and set u(r) = 0 for all r, in order to merely focus on the aspect of quenched disorder.
Second, the one-body potential energy function v(r), from which the external potential
is built, should be sampled from a convenient functional probability space. A natural
option is to turn to a homogeneous and isotropic Gaussian random field, whose statis-
tical properties are fully encoded in its mean, which can be set to zero without loss of
generality, and its covariance. Therefore, we shall assume Gaussian statistics for v(r),
with

v(r) =0, v(r)u(r’) = wd(r —1r'|), (3.1)

where = denotes an average over the random-field distribution. The normalized
random-field covariance ®(r) obeys ®(0) = 1, so that w appears as a straightforward
measure of the disorder strength. It will determine the behavior of the system and
should be compared with the typical thermal energy fluctuations, a purpose readily
served by a single dimensionless control parameter representing the relative disorder
strength, A = w/T>

Although we choose to introduce Gaussian statistics for the external potential from
the outset, it might be useful to recall that this represents a common assumption in a
number of simple circumstances of interest. For instance, a standard argument based

https://doi.org/10.1088/1742-5468 /ab632e 9
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on the central limit theorem and used in a variety of related problems [70-72] states
that the one-body potential generated by a statistically homogeneous frozen matrix of
randomly placed interaction sites is expected to develop Gaussian statistics under suit-
able conditions, as it is a sum of a large number of random fluid-matrix pair interac-
tions in the thermodynamic limit. It should nevertheless be stressed that, although this
argument can be made rigorous in some special limits [73, 74], it can lead to difficulties
in more generic cases [75, 76]. Other possible situations expected to yield Gaussian
random fields are associated with linear combinations of random Fourier modes
[77, 78] or with coarse-graining of a random field, be it Gaussian or not, over extended
enough regions [79]. The latter approach is practically relevant to polarizable colloids
in speckle patterns, in the regime where the effective external potential results from the
integrated effect of the random light intensity field over the whole volume of a particle
(43, 45, 47].

Before considering the dynamics, a few structural properties of the system should
be derived. From a configurational point of view, one actually deals with an ideal gas
in an external potential. Its one-particle configurational integral is readily shown to be
self-averaging, with the nonrandom limit

1 -
VLHE —/ dre V0T — g=v()/T = M2, (3.2)
o0 v

Therefore, for any single realization of v(r) in the thermodynamic limit, one straighfor-
wardly gets

(p(r)) = poe e ™I, (3.30)

(p(r)p(t')) = poe 26" O (x — v') + pho e N, (3.3b)

where the normalization factors precisely stem from the one-particle configurational

integral. Computing now disorder averaged quantities, one gets (p(r)) = poy, as it
should, and

th—fDE<M@ﬁMﬂ»=p&@—rﬁ+%[@““*“—4, (3.40)

Calle = v')) = @)} p()} = pf [ XD — 1] (3.41)

where Cy(r) denotes the static density correlation function and Cy(r) the so-called
disconnected density correlation function. In reciprocal space, the same density cor-
relations are described in terms of the static and disconnected structure factors, S;*
and S. They are obtained by Fourier transforming Cy; (1) and Cy4(r), respectively, and
normalizing by py. Since

Cat(|r = 1) = Ca(r — x']) = pod(r — 1), (3.5)

the structure factors obey S§* = 1+ S%. Note that, in fact, both equalities generically
hold for a noninteracting gas in any type of homogeneous and isotropic random environ-
ment. The actual dependence of the above structural quantities on |r —r'| or on the
wavevector modulus k follows from this property of homogeneity and isotropy.

https://doi.org/10.1088/1742-5468 /ab632e 10


https://doi.org/10.1088/1742-5468/ab632e

Dynamics of a noninteracting colloidal fluid in a quenched Gaussian random potential

We now turn to dynamics. Since Z[l = 0, [=0; v] is normalized to 1, hence indepen-
dent from any specific random potential-energy realization, the noise-averaged dynami-
cal quantities given by equation (2.22) can be further disorder-averaged as [80]

A} = [ Alp. fleTT = [ lp, g2 = (Alp, (3.6
pip pip
where the effective action Se[p, o] generically consists of two terms,
Sest[ps p] = Sbui[p; p] + Sais|p, P (3.7

The first one is that part of S[p, p; v] that does not explicitly involve v(r) and is there-
fore left unaffected by the disorder average. It generically reads

D
Sbulk[pv pA} = / {iﬁ(rv t) (atp(rv t) - ?Ov ' ]) - Dop(rv t) [Vﬁ(l‘, t)]2} )
r,t p(r,t)
(3.8)
with Fou[p] = Fialp] + Fint|p), and describes the dynamics of a bulk fluid in the absence

of an external field. In the present noninteracting case (we have set u(r) = 0 for all r),
]:bulk[ ] reduces to ]:1d and Sbulk [p, ]

Sl 7] /{w — DoV?) plr, 1) — Dop(r, DIVAE O}, (3.9)

5-7:bu1k [,0}
op(r)

p(r,t)V

which rules ‘free’ dynamics in the absence of disorder and interactions. Note that
Steee|p, p] 18 non-Gaussian and possesses a cubic nonlinearity arising from the multipli-
cative thermal noise. Since the quenched randomness has Gaussian statistics, one can
readily perform the disorder average on the remaining factor in e5l»#:]

D . Mo
exp (_?0/ lp(r7 t)V ' [,0(1', t)VU(I')]) = eSdIS[p’p]J (310)
r,t
and obtain the second term,
Suclpudl = 308 [ [ [90VPRr ot 09 e ), )9 500 )],
r,tJrt
(3.11)

where the summation convention is implied for the Cartesian indices (this will system-
atically be the case in the following) and the V' operator acts on r’. As is common with
quenched-random systems [80], the disorder-induced contribution becomes nonlocal in
time after disorder averaging, i.e. it does not only couple the fields at any given time,
but also between different time slices. In fact, Sgs[p, p] represents an effective time-
persistent dynamical interaction between the fluid particles induced by the presence
of the quenched random potential. It displays both cubic and quartic nonlinearities in
p(r,t) and ép(r,t). Through integration by parts, it can be rewritten as

Sais|p, p] = ——A/ / (Jr = '[)A(r, t)A(x', 1), (3.12)
rt Jr' it
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where we introduce the composite response field
A(r,t) = DoV - [p(r, 1) V(r,1)] . (3.13)

The latter leads to the physical response function, as discussed in the next section.

4. Physical response function, time-reversal symmetry, and fluctuation—dissipation
relation

We now define our main quantities of interest and discuss some crucial relations between
them. For the sake of generality, we retain interactions between the colloids, as they
barely add any additional complexity.

A fundamental feature of the fluid systems when studied at the level of the density
field is that the physical response function R(r,¢;r’,t’), pertaining to the change of the
local average density under a small external field coupled to the density fluctuation,
differs from the ordinary response function (to the thermal noise) G(r,t;1’,t"), because
of the multiplicative nature of the noise in the original Langevin equation, equa-
tion (2.15) [31]. The main quantities of interest are thus the density correlation func-
tion C(r,t;1’,t') and the above response functions, defined as

C(r,t;x', 1) = (0p(r, t)0p(x', '))etr, (4.1q)

G(r,t;x',t") = —i{p(r, t) p(r', ') e, (4.1b)

R(r. 50, ) = Z(p(r, OAG 1))t

D D
= UGG, ) + I (e ) (508 )V 5 ) e
(4.1¢)
It is also useful to introduce the so-called connected density correlation function,
F(r,t;v' t") = C(r, t;x',¢") — Cq(Jr — 1')). (4.2)

Note that the physical response function involves the composite response field, equa-
tion (3.13), hence has two contributions: one is simply proportional to the noise-response
function, while an additional ‘anomalous’ term arises from the multiplicative thermal
noise. Due to the explicit appearance of the temperature 7 in the expression of the
physical response function R(r,t¢;r’,t'), it is found convenient to instead use the func-
tion R(r,t;1',t') defined as

R(r,t;x', 1) = TR(r, t;x', ') = i{p(r, ) A(r',1'))esr- (4.3)
Causality commands that the response functions obey
G(r,t;r',t) =0, R(r,t;r',t") =0, t<t. (4.4)
In terms of the fields, this means
(p(r, )p(x", ))etr =0, (p(r, A, ¥))err =0, < T (4.5)
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Moreover, the normalization condition on the dynamical generating functional in the
MSRJD formalism results in additional causality constraints, among which

</5(r7t)>eff = 07 <ﬁ(r7 t)ﬁ(l‘/, tl)>eff = 0, <A(I‘, t)>eff = 07 <A(r7t)A(rlvtl)>eff = 0.
(4.6)

As with static quantities, the actual spatial dependence of the above correla-
tion and response functions is on |r — 1’|, because of the homogeneity and isotropy
of the random field. When time-translation invariance additionnally holds, we will
therefore write C(r,t;v',t')=C(|r —v/|,t —t'), G(r,t;r',¢')=G(r —1|,t —t'), and
R(r,t;v',t') = R(jr — v/|, t — t').

Equilibrium dynamics is known to possess time-reversal symmetry. This symmetry
is reflected in the invariance (up to irrelevant boundary terms) of the effective action,
equation (3.7), under special field transformations with time reversal [32, 38, 65].

The approach developed in the present work is motivated by the invariance of the
action under the so-called 7 -transformation [32, 38, 65], as shown in appendix A. This
transformation reads

T - {p(r,t) - p(I‘, —t),

p(r,t) = plr, —t) + ih(r, —1), (4.7
with the function h(r,t) defined through the equation
DoV - [p(x, ) Vh(r,1)] = Oip(r, 1), (4.8)

which can be solved in Fourier space [38].
This definition implies the relation

TA(I‘, t) - A(I’, _t) - iatp(ra _t) (49)

for the composite response field. Thus, with the identification of the physical response
function R(r,t;r’,t') in equation (4.3), the FDR is immediately obtained from equa-
tions (4.7) and (4.9). Indeed, from the Ward-Takahashi identities [81]

(e, )p(r', 1)ete = ([T (e, OITp(', ))ete = (p(x, =t)p(r', =t))ert,  (4.10a)

(o, A, 1))ete = ([T, OITAX, 1) et = (p(r; = )A(X, =1))ete — 100 (p(r, =t)p(r', —t)) s,

(4.100)
follows the relation
R(r,t;v',t') = R(r, —t;1', —t') + 0,C(r, ;1 t'), (4.11)
i.e. with time-translation invariance,
R(r—1'|,t—t)—R(r —v'|,t' —t) = =0,C(|r —1'|,t — ). (4.12)

For future reference, we note that causality, equation (4.4), and the FDR, equa-
tion (4.12), imply

“+o00
/ 4 R(r - v'l,t — #) = Cullr — v']) — Callr — ']}, 4.13)

where the equilibrium relations C(Jr —1'|,0) = Cs(|r — r/|) and C(|r — 1|, — +00) =
Cq4(|r — 1'|) have been used.
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Another field transformation exists, that leaves the effective action invariant. It will
play a minor role in the present work, but should be mentioned for completeness and
because it might be of general interest in dynamical studies of random-field systems.
Interestingly, it does not involve a time reversal in its primary formulation and there-
fore holds in generic out-of-equilibrium situations. However, it can be usefully special-
ized to equilibrium dynamics through composition with the 7 -transformation.

Thus, guided by [65], we show in appendix A that Seg[p, g] is invariant under the
U'-transformation defined as

e p(r,t) — p(r,t),
o) = —p(r,t) +2i [, K (x4, ) DET([p], v/, ). (4.14)

The functional DET([p], r, t) represents the deterministic nonrandom part of the density
evolution equation and here reads (see equation (2.17))

S Fbuik ]

DET([p],r,t) = Oyp(r,t) — %V ' 5p(r)

p(r, 1)V

] . (4.15)
p(r;t)

The kernel K '(r,t;1',t') is the inverse of the density-dependent symmetric kernel
characterizing both the Gaussian noise and disorder in the system,

K(r,t;x',t") = {V*V? [2Dop(r, 1)8a50(r — v')5(t — t') + AD3p(x, t)p(r', ¢ )VOVP@(|r — 1'])] }

= Ko(r,t;0',t") + NMAK (v, 61/, 1),
(4.16)

and is accordingly defined through

d(r—r")o(t —t") = KA(r,t;r',t’)Kgl(r’,t';r”,t"). (4.17)
r/t
The composition of 7 and U’ yields the U-transformation. It obviously leaves the
action invariant, since 7 and U’ separately do, and involves a time reversal inherited
from 7. As shown in appendix A, it reads

p(I‘, t) - p(I’, *t),

o 5 .
s QPO = =l =)+ 1 S

p(r,—1)

+iADy fr,’t, K '(r,—t;1', —t")V' - {p(r’, -tV fr”,t” O(|r' — r”|)TDET([p],r”7t”)} )
4.18
with ( )
Dy 5]:bu1k[/)]
TDET(p],1,1) = Dpl(r, 1) — 2V - | plx, —) v 20kl @19
([ ] ) t ( T ) 5/)(1,) P ( )

It is clear that, in the absence of a random field (A = 0), this transformation reduces
to the U-transformation as defined in [32] for bulk fluids, hence the shared naming. It
becomes nonlocal in time in the presence of a random field. Note that, in principle, the
integral over t” of the total time derivative 0y p(r”, —t") contained in T DET([p],r",t")
vanishes in an equilibrium setting, but we found that explicitly keeping such terms
makes some calculations in appendix A more straightforward.
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As the T -transformation, the U-transformation can be used to derive relations
between response functions and correlations. In particular, as shown in appendix A,
the Ward-Takahashi identity

(p(r, )p(x', t))ets = ([Up(r, OIUH(X )] )ers (4.20)
leads to the following decomposition of the noise-response function,
G(r—r'[,t —t)+G(jr —1'|,t' — 1)

—/ C(lr —1"|,t —)Q (" —1'|) + AC™C(|r —v'|,t — ') + ACY(|r — v/|, ¢ — /). (4.21)

Here, Q7 '(Jr —r|) is the functional inverse of the static density correlation func-
tion of the bulk fluid if its free energy is restricted to its Gaussian approximation,
AC"S(|r — 1|, t — t') originates in the non-Gaussian nature of F[p] due to Fiq[p], and
ACY(Jr —1'|,t — t') is a disorder-induced contribution. Their detailed expressions can
be found in appendix A.

For systems with a Gaussian bulk free energy and no random potential,
QY(r—1'|) = C7(Jr —1'|,0), while AC*“(|r —1'|,t —t) and ACY(|r —1'|,t — )
vanish. One then recovers the familiar Deker—Haake-Miyazaki—-Reichman (DHMR) lin-
ear relation between the noise-response function and the density correlation function
(Deker and Haake first considered the case of additive noise [82], then Miyazaki and
Reichman extended the result to multiplicative noise [31]).

In the following, it will be found convenient to work in reciprocal space, i.e. with
correlation and response functions Fourier transformed with respect to their spatial
variations. Thus, in Fourier space, equations (4.12) and (4.21) take the form (setting
t'=0)

Ri(t) = Ri(—t) = —0Ci(1), (4.220)

Ci(1)
Qk

For noninteracting colloids, Qx = po.

Gi(t) + Gi(—t) =

+ ACYS(t) + ACTS (). (4.22b)

5. Expansion around the disorder-free dynamics

We now describe the main theoretical development at the heart of the present work,
which is a perturbative expansion dictated by the 7T -transformation, equation (4.7).
The key point here is that the two contributions Spec[p, p] (to which Spui[p, p] reduces
in the noninteracting case) and Sgis[p, p] to the effective action Se[p, p] are separately
invariant under this transformation, as shown in appendix A. Therefore, with a due
account of this property, it should be possible to lay out a scheme that preserves the
FDR, which precisely stems from the 7T -transformation, order by order.

The present perturbative approach first involves an expansion in terms of Sg;s[p, gl
about the free dynamics ruled by Sgec[p, f], as
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S is , Ndis
Alp, ple Stree 18] Sais [P,F)] :/ Alp, ple Stree[050] Z ais[p, P ‘] _

PP ngis=0 Mdis:

(5.1)
This step can be seen as a weak-disorder or high-temperature expansion, since Sgis[p, 9]
is proportional to the relative disorder strength A\ = w/T?. Defining the average over
the free part of the action as

(Alp, pl)ett = /

0:P

(Alp, pl)s = / Alp, pleSecled], (5.2)
PP
we thus have
A s 1 n,
(Alp, plete = - (Alp, p]Saislp, pI"**); - (5.3)

Now, the free part of the action has a non-Gaussian cubic nonlinearity due to the
multiplicative thermal noise. In order to maintain the invariance of Spee[p, p] under the
T -transformation and preserve the FDR order by order, this nonlinearity should be
treated exactly. It turns out that this can be readily achieved thanks to the causality
conditions and the presence of two p fields in this cubic contribution. Indeed, splitting
the free part of the action into its Gaussian and non-Gaussian components, Sy[p, o] and
Sml|p, p], respectively, with

o, p) = / t {ip(r,t) (9 — DoV?) dp(r, t) — Dopo [Vp(x, 1))}, (5.4)
Sulp. 1= Do | Sote Valr. 0 6.5
one can rewrite the averages over the free dynamics as
(Blp, pl)e = / Blo.fle SolefleSnle sl — (Blp, ple=1P7l) = f) nl (Ble. p)Swmlp: o™ )0, (5.6)
, i P!
where (- - - )o denotes the Gaussian average defined as
(Blp, plho = /pﬁB[p plelPr, (5.7)

The key observation is that, due to the twice faster increase of the number of p fields
with n.,,, the summation in equation (5.6) will be rapidly terminated at a low order.
Indeed, consider a generic product of dp and p fields or space derivatives thereof. If it
has an odd number of factors, its Gaussian average trivially vanishes. If its number
of factors is even, one can use Wick’s theorem to decompose its Gaussian average as
a sum of products of two-point averages. Then, if the number of noise-response fields
exceeds the number of density fields (necessarily, by at least two), each term in the sum
will unavoidably have a factor of the form (p(r;,t;)p(r;,t;))o. Such factors identically
vanish due to causality (equation (4.6) also holds with the Gaussian action Sy), hence
the whole Gaussian average vanishes. For instance, one generically gets
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(0p(ri, ti)op(ry, t5)p(re, tr)p(re, ti))o # 0, (5.8)

<5p(1‘z, )5p(I‘J, )p(rk‘7 tk)p(rlv tl)ﬁ<rm> tm)ﬁ<rn7 tn»o =0. (5.9)

Now, if Blp, p] is such a generic product with p density fields and g response fields, then
the term of order n,, in equation (5.6) also involves such a product, with p + n,, den-
sity fields and g + 2n,, response fields. As just shown, its Gaussian average vanishes if
q+2ny, > p+ Ny, i.e. ny > p — q. It is precisely this simplification that makes possible
an exact treatment of the cubic nonlinearity due to the multiplicative thermal noise.
Indeed, if p > ¢, the expansion in equation (5.6) terminates at most at n,, = p — ¢, while
for p < g, the first term of equation (5.6) already vanishes and one gets (Blp, p])¢ = 0.

Note that the bound on n,, is the same for all terms in equation (5.3). Indeed,
Sais|p, p] given by equation (3.11) can be rewritten as

Sais|p, p ——)\DQ/ / [VVAd(|r — 1))
rtJr' t

% [p5 + 2p0dp(r, 1) + dp(r, t)op(r', 1)V p(r, ][V p(x', )],
(5.10)

where the factor 2 in the integrand comes from the exchange symmetry between the
dummy indices r,t and 1, . So, if A[p, p| is a product of p density fields and ¢ response
fields, then the term of order ngis in equation (5.3) involves products of p to p + 2ng;s
density fields and g + 2ng;s response fields. Following the above argument, its Gaussian
average vanishes if ny, > p+ 2ngis — ¢ — 2ngs = p — ¢ (the bound is imposed by the
product with the largest number of density fields), independent of ngis. Accordingly, for
p < g, one also gets (A[p, p])etr = 0.

Further simplifications might occur in the computation of Gaussian-averaged prod-
ucts when space-time points are repeated. Indeed, through equation (4.5), which also
holds with the Gaussian action Sy, causality directly sets (p(r;,¢;)p(ri, t;))o = 0. Less
directly, the time ordering in equation (4.5) also imposes the vanishing of certain prod-
ucts of two-point averages with loop-like time dependence. For instance, one gets

(p(ri, t:)p(r, :))o(p(x) t;)p(ris ti))o = 0, (5.11)

(p(ri, t:)p(r;, t5))olp(r;, t5)p(rr, ti))o(p(re, k) p(rs, ti))o = 0. (5.12)

These equalities typically lead to a reduction in the number of terms in the expansion
of Gaussian averages. Occasionally, they result in a truncation of equation (5.6) below
the above-mentioned threshold.

These crucial features of the theory were first pointed out by Andreanov et al [32]
and discussed in detail by Velenich et al [38], who demonstrated how they can be used
to exactly compute arbitrary multi-point correlation functions in the noninteracting
Brownian gas without external field. In this respect, the present work is, to the best of
our knowledge, the first nontrivial extension of this early study, aiming at including the
effect of a Gaussian quenched-random potential on the gas.
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6. Dynamical equations for the correlation and response functions

It remains to derive the dynamical equations for the correlation and response functions,
to which the above perturbation scheme will be applied. To this end, the following
identities can be used, which are easily proved by functional integration by parts:

éseff N
2 = —90(12
<5ﬁ(1>p< )>eff (12), (6.1a)
0Sets > 9
Pl A2)) = —poDyV25(12),
<5p(1) (2)) =—rDeVio12) (6.1b)
5Seff
2 = 0.
<5ﬁ(1)p< )>eff (.10

In the above expressions and in the following, the notation 1, 2, 3, etc, is used to refer
to space-time points, in order to shorten the equations. Specifically, we set 1 = (r,¢) and
2 = (r',t'), then i = (r;,;), i > 3. Since

5Se . 2
5/3(?) = i(9, — DoV?)dp(1) + 2A(1) — AD,V - (p(1) /3[V<I>(13)]A(3)> . (6.2)

where ®(13) = ®(|r — r3]), one obtains the exact equations

(0, — DyV*)G(12) = 5(12) — ADyV - ( / [vcmsn<p<1>A<3>ﬁ<2>>eff) . (630

(0 — DoV R(12) = —poDoV?§(12) + XD,V - (/3[V<I>(13)]<p(1)A(3)A(2)>eff) ,
(6.3b)

(0, — DyV)C(12) = 2R(21) — iADyV - ( /3 [vq>(13)]<p(1)A(3)p(2)>eff) .
(6.30)

These equations show an evident hierarchical structure, which calls for a perturbative
study building on an expansion scheme such as the one developed in the previous sec-
tion. In appendix A, we report an alternative derivation of equation (6.3¢) based on the
T - and U-transformations.

Substituting p(i) = po + 0p(i) and removing terms that vanish due to the various
simple causality conditions, the multi-point averages in equation (6.3) can be simplified
to (with the summation convention for the Cartesian indices)

(P(DAB)A(2))ete = DoV3{0p(1)dp(3)[V3(3)]5(2))esr, (6.4a)

(P(DAB)A(2))err = DFVEVI(0p(1) [6p(3)p0 + podp(2) + 5p(3)5p(2)] [V3ABVEA(2)]etr,
(6.4b)

(p(LA(3)p(2))err = —ipo [R(13) + R(23)] + DoV3(dp(1) [po + 6p(3)] 0p(2)[V3H(3)])etr  (6.40)
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7. Zeroth-order theory: disorder-free case

In the absence of a random potential (A = 0), the particle system is a noninteracting
Brownian gas, whose properties are very well known [38].
In Fourier space, the equations of motion simply reduce to (setting t' = 0)

(0 + Ti)GR(t) = 6(1), (7.1a)
(9, + Do) Re(t) = polkd (1), (7.1b)
(8 + Ty)CR(t) = 2R, (), (7.1c)

where I'y, = Dok? and the superscript 0 on the correlation and response functions denotes
the absence of a random potential. The solutions are given by

Gr(t) = 0(t)e ", (7.20)
Ry () = () poT e+, (7.25)
CP(t) = poe "kl (7.20)

where we used the static input for the density correlation function CP(0) = po, since
C(lr —1'[,0) = (dp(r)dp(r')) = pod(r — ') for the noninteracting system in the absence
of an external random potential. This po factor in CP(t) is also the one required for
consistency with the FDR.

For future use, it is interesting to note that this free dynamics can be fully charac-
terized through suitable specializations of the definitions and symmetry-derived rela-
tions given in section 4. Indeed, it appears as the equilibrium dynamics for which
equations (4.1c¢), (4.22a), and (4.22b), reduce to

Ro(t) = polxGY(L), (7.30)

Ry(t) = Ry(—t) = —9,C0(b), (7.3D)
CO(t

Gr(t) + Gh(—t) = ’;)E ), (7.3¢)

thereby demonstrating that the three functions of interest are directly related in a
simple but fundamental way. In this respect, it should be fully appreciated that the
considered dynamics involves both multiplicative noise and a non-Gaussian free energy.
Therefore, the absence of an anomalous contribution to the physical response func-
tion in equation (7.3a) and the validity of the DHMR linear relation shown by equa-
tion (7.3¢) are nontrivial observations. They result from a specific interplay of both
aspects and from the cancellation effects discussed in section 5.

Regarding this, it might be useful to briefly show how the field-theoretic calcul-
ation unfolds in the present simple case. This serves as a preparation for the more
complicated random-field situation and as a confirmation of the identity between the
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correlation and response functions of the disorder-free noninteracting gas and those of
the Gaussian theory based on Sy[p, p|. To this end, we introduce the compact notations

op(i) =i,  pli) =i,  Vip(i) =, (7.4)

to be used for the evaluation of averages here, in the next section, and in appendices
C-E. With them, the cubic thermal noise term, equation (5.5), can be written as

Swmlp, p] = —Dy / 44°4° (7.5)
4

and e[ in equation (5.6) expanded accordingly,
N kA 1 AsAsA_ A
R / 4087 4 2D / / 4540005557 4+ (7.6)
4 4Js

From equation (4.1b), we get G°(12) = —i(p(1)p(2)); = —i(p(1)p(2)); = —i(12)s.
With one density field and one noise-response field, the expansion (5.6) terminates at
its first term and

(12)¢ = (12),. (7.7)

The anomalous term in §0(12) reads iDyV5 (p(1)6p(2)V5 p(2))¢ = iDo V5 (3p(1)8p(2) V5 5(2)) =
iDyV5(1227);, and the Gaussian expansion of (122%)¢ is

(122%); = (122%)y — Dy /<124Qﬁ215215>0 =0, (7.8)

4
W%lere we used  (220)g = (449 =0 and = (24%),(42°%), =
R (12) = —poDoyV2GY(12) as expected. Finally, C°(12) = (6p(1)dp(2))s
to

0. Therefore,
= (12)¢ expands

" A 1 NeAsa A
(12); = (12>o—Do/<1244545>o+5D§//(124545455€5€>0: (12)0, (7.9
4.J5

4

where we used (44%)y = (55)g = 0 and (45°)¢(54%)¢ = 0.

8. First-order perturbation calculation

We may now perturbatively compute the three-point averages in equation (6.3) and
obtain the first-order corrections to the free dynamics due to the random potential.

Applying equation (5.3) to the different terms in the simplified equation (6.4), one
gets

(3p(1)0p(3)[V3A(3)]A(2))etr = (13372)esr = (13372); + O(N), (8.1a)
(p(1)3p(3)[V3AB3)][VA(2)])etr = (13372%)ess = (13372%)¢ + O(N), (8.10)
(p(1)3p(2)[V3AB)[VA(2)])etr = (12372%)eis = (12372%)¢ + O(N), (8.10)
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(6p(1)5p(3)5p(2)[V3A(B3)N[V5p(2))etr = (132372%) o5 = (132372°) + O(N),

) ) (8.1d)
(6p(1)0p(2)[V3(3) et = (1237 )ese = (1237)¢ + O(N), 8.1¢)
(0p(1)3p(3)0p(2)[V3A(3) hetr = (13237 )esr = (13237)¢ + O(N), 8.1)

where we used the compact notations introduced above. For a first-order calculation,
it is enough to compute the first term in the right-hand side of each line in equa-
tion (8.1), since the contributions in which the three-point averages appear in equa-
tion (6.3) already involve A as a prefactor.

With equation (5.6), the free averages are turned into Gaussian averages defined
through equation (5.7). As discussed in section 5, the number of useful terms in equa-
tion (5.6) is a priori determined by the number of dp and p fields in the quantity to be
averaged, through the requirements of causality.

The first average in equation (8.1) is thus obtained as

(13372); = (13372) = (137)¢(32)0, (8.2a)
where we used (372)y = 0 and (337)¢ = 0. Similarly, the second and third are

(13372%); = (133727 = (137)0(327),, (8.20)

(12372°); = (12372%) = (12%)(23"),. (8.2¢)

The average (132372°); is shown to vanish,

(132372°%); = (132372%); — Dy /(1324372521521% =0, (8.2d)
4
since (34%)0(437)g = 0 and (32%)(24%)(437)¢ = 0. One analogously gets
(1237)¢ = (1237)g — Dy /(124:%%521%0 = —2D, /(1215>0<2215>0<4:§7)0. (8.2¢)
4 4

Note that the effect of the multiplicative noise enters in equation (8.2¢), making a
nonperturbative contribution from the point of view of the free dynamics. Finally, one
computes the remaining average as

AAAAA

X X N s 1
(13237); = (13237)g — Dy /4 (1324374°4%) + 5Dg /4 / (13245374°4°5°5¢)
5

= (137)¢(32)0 + (13)0(23"),, (8.2f)

Taking the necessary spatial derivatives of the nonvanishing terms, one finally gets

V3(13372); = V3[(137)0(32)0] = V5[(137)0(32)0], (8.30)

V5V3(13372%) = V5 V3[(137)0(32%)0] = V3[(137)0V3(32)0] = V5 [(137),V3(32)0], (8.30)
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VoV3(12372%) = V5V3[(127)0(237)0] = V5 [(12%)V5(23)o] = V5[(12%)9V3(23)], (8.30)

V(1287 = V) [—QDO / <1215>0<2215>0<437>0} YN / (170219, V2 (43),

= —200/<121ﬁ>0<2215>0v§<4§)0 (8.3d)
V3(13237); = VI[(137)0(32)0 + (13)0(237)o] = V5[(13%)0(32)0 + (13)0(23°)o]. (8.3¢)

In the final expressions, all dummy Cartesian indices have been uniformly denoted
by S.

With these results, the dynamical equations can be written down, up to the first
order of the disorder-strength expansion. Restoring the explicit field notation, they
read :

(0: — DoV*)G(12) = 6(12) — ADGV*® (/S[VQ‘P(B)]V?{<5p(1)V§ﬁ(3)>o<5p(3)ﬁ(2)>o}) ; (8.40)

(0 — DoV*)R(12) = —po Do V?5(12)

—iADGV* ( /3 [V®(13)]V5 {<5P(1)V§ﬁ(3)>o[ipoDoV§<5p(3)/3(2)>o]})

—iIADGV® ( /3 [Vo®(13)]V5 {<5p(1)V§ﬁ(2)>o[ipoDoV3<5p(2>ﬁ(3)>o]}) ,
(8.4b)
(9, — DyV?)C(12) = 2R(21) — ApyDoV® < / (Ved(13)][R(13) + R0(23)]>

A ( /3 [VeD(13)]V5{(3p(1)V55(3))0(0p(3)3p(2))o + <6p<1>6p<3>>o<5p(2>V§ﬁ<3>>o})

208w ([ 900800 Vs GpD VAN DTEGp0pEN] ) . (840

In these evolution equations, there are four space-time integrals in which the time
integral can actually be detached from the corresponding space integral. We shall
refer to these situations as isolated time integrals, which are due to the nonlocality
in time induced by the quenched randomness. Indeed, they appear when a space-time
integral acts on a variable which is present both in the time-independent random-field
covariance and in a single time-dependent response function. Then, the time integral
obviously acts on the response function only. We will next focus on these isolated time
integrals to structure our analysis.

In our derivation, two of these isolated time integrals are directly obtained as

i dt; R (13) and Ik dt;R'(23). They correspond to the first integral in equation (8.4c)
and originate from the first term in equation (6.4c). We have purposefully arranged the
above formulas to make the two others specifically appear as [ d¢3[ipgDoV3(6p(2)5(3))o]
and [ dts[ipoDoV3(dp(4)p(3))o, in the last integrals of equations (8.4b) and (8.4¢),
respectively. Indeed, although it might look like there are two distinct types of isolated
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time integrals, our claim is that the difference is only superficial. To see this, it must
be kept in mind that, within the zeroth-order theory, there is no distinction between
R’(12) and —pyDyV2GP(12). Therefore, one can safely replace ipyDoV2(5p(2)(3))o and
ipoDoV3{0p(4)p(3))o with EO(ZS) and }_20(43) in the corresponding integrals. A direct
hint in favor of this substitution is provided by a third appearance of this specific com-
bination, ipgDoV2(dp(3)p(2))e, in the first integral of equation (8.4b). Indeed, it is only
when it is interpreted as E0(32) that the equations for G, R, and C, share the typical

structure of the Schwinger—Dyson equation with the same self-energy. Accordingly, we
translate equation (8.4) as

(0 — DoV2)G(12) = §(12) + AD2V® (/[va<1>(13)]v§’ {[V§G°(13)]G0(32)}) , (8.50)

(0 — DoV R(12) = —poDoV28(12) + AD2V® ( / [Ved(13)]V" {[vﬁc%m)]ﬁ“(m)})

L AD2Ve (/[vacbus)]vg {[ngO(m)]TzO(zs)}) , (8.5b)

3

(0, — DyV2)C(12) = 2R(21) — A\po DoV < / [Vod(13)][R"(13) + Tzo(zs)])

L ADRVE ( / Voo (13)]V? {[v§G0(13)]00(32) + 00(13)[v§00(23)]})

— 2AD2V ( / / [va<1>(13)][VEGO(M)][vfG0(24)]E°(43)) . (8.50)

Note that, when the bare perturbation expansion is pushed to the second order, one can
actually recognize the first-order expansion of R precisely at the places where the pro-
posed substitution is possible, as seen in the derivations of equations (D.12) and (E.15)
in appendices D and E. As a corollary, the first-order renormalized theory deriving
from the second-order bare theory also features isolated time integrals that are mere
integrals of the now renormalized density response function, as seen in equations (D.13)
and (E.16). These observations clearly lend further support to the above substitutions.
More broadly, they hint at the possibility of a generic reduction of the isolated time
integrals to integrals of the physical response function within the present framework,
although a formal proof hereof is currently lacking.

Finally, once an isolated time integral is expressed as an integral of the physical
response function, any reference to the corresponding space-time point can be fully
eliminated, thanks to equations (4.13) and (3.5) giving

+oo
/ dt’ R(|r — ', t — t') = pod(r — 1). (8.6)
—00

This relation has for sole basic ingredients the exact FDR and the exact equilib-
rium statistical mechanics of ideal gases. It thus holds nonperturbatively as well as at
any order in A of the present FDR-preserving perturbation scheme. Although techni-
cally unrelated to the substitutions advocated above, it acts as a natural continuation
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thereof, making the structure of the dynamical equations immediately simpler. Thus,
specializing equation (8.6) to the equilibrium free dynamics with |} = R°, one eventu-
ally gets from equation (8.5) (after some rearrangements using integrations by parts
and space-translation invariance to make all spatial derivatives act on 1 = (r,t)),

(0, — DoV G(12) = §(12) — AD} / Ve ([VevPe(13)][VPGO(13)]) G°(32),

(8.7a)
(0, — DoV R(12) = —poDyV?5(12) — AD? / Ve ([VeVPa(13)][VPG°(13)]) R (32)
+ Ao DVVP (V2 0(12)][VPGO(12))) (8.7D)
(0, — DoV*)C(12) = 2R(21) — Api Do V*®(12)
— \D}? / Ve ([VevPe(13)][VPGO(13)]) C°(32)
3
+AD? / Veve ([VevPe(13)]C0(13)) G°(23)
3
+ 2X\po D2 / Vev? ([Vea(13)][VPG0(13)]) G°(23). (8.70)
3

One sees that the time integral [ dt3R0(23) has generated a mere time-persistent term
in the equation for the density correlation function (the contribution from [ dt3§0(13)
vanishes by isotropy of the random field), while the last term in equation (8.7b) is now
evidently local in time. The last term in equation (8.7¢) is entirely due to the multipli-
cative thermal noise (see the comment about equation (8.2¢) above).

The latter equations will be the basis for all developments in the remainder of this
work.

9. Equilibrium dynamics: first-order bare theory

By itself, equation (8.7) forms an FOBT for the equilibrium dynamics of a noninteract-
ing Brownian gas plunged in a quenched Gaussian random field. After Fourier trans-
formation, under the assumption of time-translation invariance, one gets the following
equilibrium dynamical equations (setting t > t' = 0),

t
(0 + ) Gi(t) = 8(t) — / dsZp(t — s)GR(s), (9.1a)
0
t
@+ DO Ralt) = mlad(t) — [ szt = s)Rs) + Li0), ©.1)
0
t
(0 + T'k) Ci(t) = Mool i — / dsp(t — 5)CR(s) + Ny (2). (9.1¢)
0
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There appear three memory kernels. The memory functions X?(¢) and L{(t) are
explicitly given by

Sh(t) IADS/q-p[kqu)q]Gg(t), (9.2)
q
LY(t) = Apo D§ / k- plk - q®,|G)(t), (9.3)
q

where fq = [dq/(27)? and p =k — q. Note that the kernel L)(¢) would be absent in
the usual case of a Langevin equation with additive thermal noise. It is hence associ-
ated with the anomalous part of the physical response function, arising from the mul-
tiplicative nature of the basic stochastic equation for the density variable.

In fact, one can further investigate the origin of L?(¢) by going back to the initial
dynamics. Indeed, within the operator formalism of Martin, Siggia, and Rose [62, 83],
an evolution equation for R(r,t;r’,¢) can be obtained from equation (2.15), through
multiplication by iA(r’,#') and double-averaging over thermal fluctuations and dis-
order. The contribution of the random forces deriving from the external potential then
reads (V and V’ act on r and r’, respectively)

. Do Dj

OV ol VO] A, 7)) = i

V- A{p(r, )V - [p(x', t)V'p(r', ")) Vo(r),

(9.4)
where a realization-dependent physical response function is clearly visible. Now, we may
split p(r',t') as (p(r’)) + p(r',t') — (p(r)), where (p(r’)) corresponds to the static density
profile induced by the random field and p(r',#') — (p(r’)) to the thermal fluctuations
about this profile. Focusing on the first contribution, one gets

2 2
i%v Ao, V- [(p(e))V'p(x' T)]) Vo(r) = i%VaV'B[V’WP(IUt)ﬁ(r’,t’)>][V°‘{<P(r’)>v(r)}],
(9.5)
where a noise-response function appears. If the latter is evaluated with respect to the
free dynamics, in the spirit of the present FOBT, the averages factorize and one obtains

i%V“V’B [V’ﬁ<p(r, t)ﬁ(r’, t’)>f] [Va{<p(r/)>,u<r)}]

= 100V {1V (e, ), )V Tl o]
= Ao DgVeV? (VPG (xr, ;1 1)][Vo®(lr — '|)]) = LO(r, ;7. ¢), (9.6)

where the real-space expression for L°(r,t;1',t') is read off equation (8.7b). In these
final steps, we used equation (3.3a) to compute the disorder average over the Gaussian
random field, and translational invariance to replace V'? with —V?2. Eventually, it thus
appears that the kernel L)(t) arises, at least in part, from the interplay of the multipli-
cative nature of the thermal noise and of the static density heterogeneities imprinted
in the fluid by the random external potential. Note that, if one repeats all these steps
in the case of the density correlation function, i.e. starting with equation (2.15) mul-
tiplied by p(r’,t') and double-averaged, one obtains the term —ApZDyV?®(|r —r'|) of
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equation (8.7¢), which gives A\pi[y®; in equation (9.1¢). Indeed, to show this, one
begins with

%(V'[p(r,t)Vv(r)] p(r', 1) =—V {p(r, )p(r’, 1)) Vo(r), 9.7

which, after replacing p(r’,t') with its thermal average, becomes

209 - e Do) = 22 - ol V(o)) 0.9)

Then, if p(r,t) is set to evolve according to the free dynamics, one gets

2V Tl Ve = 229 - { (ot Voot | = ~Aj DoV (e — v,
9.9
as announced. As discussed below, this contribution is clearly an outgrowth of the
disorder-induced static density profile.
The kernel NP (t) originally consists of three integrals,

NO(t) = —AD? / s / a-plk - q@,JG2(t — 5)C2(s)

0
+>\D§/ ds/k-q[k-q@q]()g(t—s)Gg<—s)
Y

0
+ 2D / ds / k- plk - qB, ]Gt — $)GI(—s). 9.10)
e

but actually reduces to a local function of time if one uses the identities (7.3) to rear-
range this expression. Indeed, using equation (7.3¢) to distribute the last integral over
the first two, one gets

NO(t) = AD / ds / k- q@,] [2G0(t — $)C2(s) + OOt — $)K2GI(—5)]

which, with equation (7.3a) followed by equation (7.35), leads to ©-11)

N ADo/ ds/k a®,] 0, [COt — 5)C2(s)] :ADO/[k-qéq]CS(t)-

q
(9.12)
The memory functions have to be related with one another, in order for equa-
tion (9.1) to obey the FDR. Using poI', G (t) = Ro(t) to rewrite

S0(t) = Ap—o" / Pl a, (o). ©.13)
q

k
LO(t) = AD / P
q P

and forming the combination pyX{(t) — LY(t), one immediately finds that the kernels
obey the FDR-like relation

k-, )R, (t), (9.14)
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poXi(t) — Ly(t) = 9N (1) (9.15)

as a mere corollary of the FDR Eg(t) = —0,C(t).
Another interesting rearrangement of equation (9.10) through poI'xG9(t) = RZ(t) is
[31, 82]

0 0
Niw) = [ asshe- 908 + [ aspite - E(-s) (9.16)

where the new kernel DY(t) consists of two parts:

2
DV(t) = M2(t) + LY(¢),
k(1) k(1) P k() (9.17)
ADo [ -
M =22 [ are,cho. ©.18)
q

Here, k denotes the unit vector k/k and M}(t) turns out to be the MCT memory kernel
[39-42], albeit in its ‘bare’ form (see below). It is then straightforward to show that

MQ(t) is related to N}(t) and Lj(t) (after using poGY(t) = CJ(t) in equation (9.3)) as

1 LY(t
Mg(e) = - (8210 - 2. 919
Po Ly
In combination with equations (9.15) and (9.17), this immediately leads to
1 LY(t
Dy(t) = — (N;?(t) + 1’1( >> : (9.20)
Po k
DO(4) = 30 — 1) L2(1).
Dy (t) = T(t) + Ts (Or — L) Ly (t) (9.21)

Again, one can see that the presence of LY (¢) deeply changes the structure of the dynamics.
Indeed, if the kernel LY (¢) were absent, one would simply get DY(t) = MP(t) = NP(t)/po
with the familiar relation 9;D{(t) = 3%(t), as found in the case of Langevin dynamics
with additive thermal noise [82, 84].

We now consider some key features of these dynamical equations.

9.1. Consistency with the FDR

The present perturbation expansion is dictated by the time reversal invariance of the
effective dynamical action. It is hence guaranteed to preserve the FDR at each order
of the expansion. This is confirmed by explicitly showing that the above first-order
dynamical equations for R;, (t) and Ci(#) are indeed consistent with the FDR.

Taking the time derivative of the FDR, Ry(t) = —0(t)9,Cy(t), one gets

DR, (t) = —6(t)0,Cr(0) — O(£)I2Cy(2). (9.22)
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With the second derivative of Cj. (%) obtained from equation (9.1c¢),

0; Ci(t) = ~Tkd,Ci(t) — Zp(H)CR(0) — /t ds ZR(t — 5)0,Ci(s) + AN (2).

0
Equation (9.22) takes the form (9.23)

(@44%)§Aw::—decam—1/Zb2%t—sﬁi@)+L%w, (9.24)

where equations (4.22a) and (9.15) (C(0) = pp) have been used.

Comparing equation (9.24) with equation (9.1b4), we see that the dynamics obeys the
FDR under the condition pol'y = —9;Cx(0) = [x[Ck(0) — A\pZ®4], where the last equal-
ity follows from equation (9.1¢) at t = 0, knowing that NP(0) = ApoDy fq k-qd,=0by
isotropy. This requires that

Cr(0) = po + APy @y (9.25)

9.2. Presence of a static nonvanishing component

Since the memory terms in equation (9.1) only involve the bare correlation and response
functions that are exponentially relaxing in time, the present FOBT does not sustain
the possibility of a transition to a kinetically generated nonergodic state driven by the
Gaussian random potential. This feature is at variance with the self-consistent MCT
predictions [42].

Yet, it follows from equation (9.1¢) that the density correlation function Cj (%) does
exhibit a disorder-induced time-persistent component,

Cr(t = 400) = A\p2d. (9.26)

This contribution is of a strictly static nature and must be distinguished from a kin-
etically generated nonergodicity parameter such as predicted by the MCT, for instance.

9.3. Disorder-induced static structure factors

We are examining the equilibrium dynamics, hence the initial condition for the density
correlation function Cj(0) should yield the equilibrium static structure factor of the
fluid S§*, through the relation C%(0) = ppS;t. The latter acquires a disorder-induced
contribution in the presence of the Gaussian random potential and equation (9.25)
gives S5 = 1+ A\po®y.

The time-persistent component of the density correlation function Cy(t — 400)
should similarly be related to the disorder-induced disconnected static structure factor
Sd through Cy(t — +00) = ppSY, and one gets ST = Ap®;, from equation (9.26).

Both expressions for Sf* and S{ agree to first order with the exact static results,
equation (3.4). In particular, the equality S = 1 + S¢ is obeyed, ensuring the validity
of the crucial relation (3.5).

In summary, it comes out of these first three points that the present FOBT is
plainly consistent both with the FDR and with the equilibrium static results at the
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same level of approximation. Hence, it manifestly fulfills all the basic requirements for
a bona fide theory of equilibrium dynamics.

Once Cy(t — +00) is linked to the disconnected static structure factor, it might
be subtracted from the density correlation function to get its connected component,
F.(t) = Ci(t) — poSY, according to equation (4.2). Rewriting equation (9.1c¢), Fj.(t) obeys

(at + Fk>Fk(t) = /0]t dsX0(t — s)CR(s) + N2(), (9.27)

with Fi(0) = po, based on equations (9.25) and (9.26). It is clear that F}(t) can only
relax to zero.

9.4. Bare mode-coupling equations for the connected density correlation function

We may further try and simplify the dynamical equations for the connected density
correlation function Fj(#). With the FDR for the kernels, equation (9.15), ¥2(¢) is
straightforwardly eliminated from equation (9.27), to get

1 t 1 t
<8t + Fk) F(t) = —— [ dsNQ(t — 5)0,Cp(s) — —/ dsLy(t — s)C(s),
Po Jo Po Jo
(9.28)
where NP(0) =0 is used in an integration by parts. With the diffusion equa-
tion 9,C%(s) = —T'xCP(s), which follows from equation (7.3), one can put the above
equation into the form
t
(0, + ) Fi(t) = — / dsMO(t — $)9,C(s). 9.29)
0

where we used equation (9.19). The explicit expression for the kernel MY (¢) is found in
equation (9.18). Note that there is a significant qualitative difference between the pres-
ent use of equation (7.3) and the previous ones. Indeed, up to now, these equations were
invoked to make substitutions within the kernels only, while here, a change in the for-
mal structure of equation (9.28), hence of equation (9.1c¢), is achieved.

Apart from the bare nature of the memory term, equations (9.29) and (9.18) have
the same form as those of the self-consistent MCT developed by one of us for the study
of fluids in random environments [39-42]. Indeed, using the present notations, the lat-
ter read for a noninteracting Brownian gas:

t
(8 +T) Fult) = — / AsMu(t — $)0,F(s), 9.300)
0

M (t) =
() 1%

/ (k- q)°SiF,(t), (9.300)
q
with Fi(0) = pp and SJ the exact disconnected structure factor. These equations can

immediately be brought forth from the former through a simple ad hoc renormalization
scheme in which the linearized disconnected structure factor pgA®, is replaced with

its exact value Sg and the bare density correlation function CP(t) is replaced with the
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connected density correlation function Fj.(t) (note that both Cj(f) and F} () reduce to
C2(t) in the absence of disorder).

9.5. Mean-squared displacement and related quantities

In many studies, the interest mostly revolves around the mean-squared displacement
(MSD) of a particle. Thus, this is a quantity of choice to investigate here.

Since we are dealing with a noninteracting gas, the connected density correlation
function Fj(f) coincides with the self intermediate scattering function (with an addi-
tional py factor). The MSD A(t) can therefore be obtained through the standard low-k
expansion

Fu(t) = po [1 - ini(t) + O(k:‘*)] : (9.31)

where d is the space dimension.
Equation (9.29) (since equations (9.27), (9.28), and (9.29), are fully equivalent, the
choice of the starting equation is immaterial) can be straightforwardly integrated to get

t s
il = ) 1 [ sl [ auns - wa,c] 932
0 0
which, in the low-£ limit, yields
At) C T 0
2D t—/o ds/0 duMy (u), (9.33)
with
AD.
M (0) = i M) = 52 [ 70,000 .39
Lo q

Equation (9.19) implies MY (t) = — limg_o[L2(t)/(polx)], since limg_,o NP(¢) = 0. Thus,
we observe that the diffusion of a particle is fully determined by the small-wavevector
behavior of the sole kernels M?(t) or L{(t). With a direct integration of equation (2.1)
leading to

Alt
Qd(Do 2de/ds/du >_t+ﬁ ds/ du(F;(s)F;(u)),
(9.35)
these low-k kernels are immediately recognized as approximations for the force autocor-
relation function.
Using the diffusion equation C?(t) = —0,C{(t)/(Dog?) in equation (9.34) to perform
the inner time integration in equation (9.33), one alternatively obtains

Alt) A T
2dDe = <1 — E) t +/0 dsm’(s), (9.36)
with
A A
m’(t) = pod/@ Colt) = pod/ (r)C°(r,1). (9.37)
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The second expression involving the bare diffusion kernel CO(r, t) = po (4w Dyt)~%2e="*/(4Dot)
results from Parseval’s theorem.
From these relations, expressions for the time-dependent diffusion coefficient

D(t) = A(t)/(2d) and the velocity autocorrelation function Z(t) = A(t)/(2d) immedi-
ately follow, which read

D(t ! A

D(o) =1- /o dsMJ(s) =1— p +mO(t), (9.38)

Z

z§t) — MO = m0(e). 9.39)
0

These results show that the present FOBT fully agrees with earlier perturbative
calculations at the same order [76] in predicting for the long-time diffusion coefficient
D, D(t) A

2o —1-2

They also unambiguously demonstrate the breakdown of the approach at strong dis-
order, since negative values of D, hence of A(t), are obtained when A exceeds the
space dimension d. Correspondingly, anomalies (nonmonotonicity, overshoot above the
initial value) appear in the density correlation functions at low k£ when this threshold
is approached.

9.6. Asymptotic analysis and long-time tails

Making use of the explicit forms of CP(t) or C%r,t) in equations (9.18), (9.34), and
(9.37), the presence of long-time tails in the problem is straightforwardly demonstrated,
since one obtains for the memory kernels

Dok*\®,,
M) ~ o L Hoo k0, (9.410)
21 Do AP
0 0 0
Mg (t) ~ (@n Dot) /21 t — +00, (9.41b)
AP
0 0
m"(t) A(@r Dyt t — +o0. (9.41¢)

The qualitative behavior of the velocity autocorrelation function Z(t) (see equa-
tion (9.39)), which is thus found negative, linear in the disorder strength, and relaxing
as —t~(¥>*D is exactly the same as in the Brownian random Lorentz gas [85]. More gen-
erally, these results are in agreement with previous phenomenological calculations [86].

In order to discuss the correlation functions, equation (9.32) is first explicitly writ-
ten as

t s
Fy(t) = poe Dok [1 + D0k2/ ds/ du M0 (u) ePoF* v | |
0 0 (9.42)
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then, after an integration by parts,

t
Fk(t) = o |:e—D0k2t + D0k2/ ds MIS(S) (t . S)e_DOk2(t_S)

0
(9.43)
Standard analysis based on Laplace transforms then allows one to obtain
AP
Fi(t) ~ pp— t — +o0, k # 0.
4 D d/2 Y )
(47 Dot) (9.44)

For completeness, we also report the short-time expansions,

MP(t) ~ - [/ P, — Dot/q?(k2 + q2)<1>q} .t — 0,
q q

(9.450)
0 A [ 2
mo(t) ~ 5 |1 - Dot/q @q} t—0, (9.45b)
L q
[ Dot)? A

9.7. Explicit example

In order to report complete solutions of the FOBT, we have to particularize the covari-
ance of the Gaussian random field. Since it allows one to analytically perform the wave-
vector integrals appearing in the definitions of M} (t) and m’(#), a Gaussian covariance,

O(r) =/ @ = (2nR?) W2 M2, (9.46)

where R controls the range of the random-field correlations, appears as a particularly
convenient choice. One then obtains (see appendix B)

MO(t) = A 2Dy 1+2Dot/R* + k*R*(2Dot/R*)* _ K’R*(2Dot/ R?)
YT R (1 + 2Dyt / R2)4/2+2 P\ 7o 2Dot/RYY |
(9.47)
mo(t) = 2 !
" d (14 2Dot/R?)4/2 (9.48)
With these formulas, the MSD can be expressed in closed form, and reads
A 2(\/1+2D0t/R2—1> ifd=1,
t 2Dyt A A .
T = (1 — 3) + 1112(1 + 2D0t/R23 ?f d=2, (9.49)
) [1 o (1+2D0t/R2)d/2*1] if d>3.

In these expressions, the natural units of length and time, R and 7= R?/(2D,),
respectively, have been made evident. The time 7 merely is the time at which the
characteristic lengthscale of free diffusion /2Dyt reaches the correlation length of the
disorder.

https://doi.org/10.1088/1742-5468 /ab6:32e 32


https://doi.org/10.1088/1742-5468/ab632e

Dynamics of a noninteracting colloidal fluid in a quenched Gaussian random potential

The effect of the relative disorder strength A on the time dependence of the MSD
is shown in figure 1 for space dimensions d =1 and d= 3. Note that the theory is
clearly pushed well beyond its range of validity, since results up to A = d and slightly
above, where its breakdown is obvious, are shown for completeness. The curve at A = d
emphasizes the transient between the short- and long-time normal diffusive regimes.

The correlation functions can be computed by a direct numerical integration of
equation (9.43) with M (¢) given by equation (9.47). Figure 2 shows the typical behav-
ior of Fy(t)/po versus time obtained from this numerical solution with d =1 and d = 3,
kR = 7/3, for different values of the relative disorder strength A. In this log-log plots,
the algebraic tail Fj,(t)/py ~ A[R2/(2Dot)]%2e /2 is clearly visible as a linear asymp-
tote at long times.

10. Equilibrium dynamics: first-order renormalized theory

So far, a bare perturbation theory has been discussed, where the corrections due to the
disorder were expressed in terms of the bare correlation and response functions. We
now consider renormalized theories, where the bare correlation and response functions
are replaced with renormalized ones in a self-consistent manner and based on the exact
second order perturbation calculation.

Out of the bare perturbation expansion up to the second order (see appendices
C-E), one identifies equations (C.13), (D.15), and (E.19), as a set of first-order renor-
malized dynamical equations, which should obey the FDR and reproduce the bare
theory (we set t >t/ = 0):

0+ () = o0) - | ' dSTi(t — 5)Ca(s), 10.10)
O+ TOR0) = wiadl®) — [ dsult = 5)Tule) + La() (10.15)
O+ TR = — [ 4Bt~ S)F4(s) + Neto). (1010

In the latter equation, the static time-persistent part of the density correlation func-
tion has been absorbed into the connected density correlation function, according to
its definition (4.2). Clearly, these equations are structurally similar to the bare equa-
tions (9.1a), (9.1b), and (9.27). At this stage, the explicit expressions for the memory
kernels X (t), Li(t), and Ni(1), are left unspecified.

The relations between these kernels should be constrained by the FDR, equa-
tion (4.22a), also expressible as

Ri(t) = —0(t)0, Fy(t). (10.2)
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Figure 1. Time evolution of the mean-squared displacement in a noninteracting
Brownian gas exposed to a Gaussian random field with Gaussian covariance
(specified in equation (9.46)) in space dimensions d =1 (top) and d = 3 (bottom),
according to the first-order bare theory. From left to right, top to bottom: A = 0,
A=d(1—-1/4") with n=1,2,...,6, A =d (dashed line), and A = d(1 + 1/4") with
n =6 (dotted line, unphysically diverging to —oco).

Taking the time derivative of the above and using equation (10.1c), one gets

(0 + TR Ri(t) = —6(t)9,Fi(0) — /0 t AsSi(t — $)Ri(s) + poZi(t) — 9Nk (8).

(10.3)
Comparing with equation (10.1b), one sees that the FDR demands the two relations

0iF,(0) = —pol'y, (10.4a)
Qi Nk (t) = poZi(t) — Ly(t). (10.4b)

Setting t= 0 in equation (10.1c¢), one gets the initial condition N.(0) =0 from equa-
tion (10.4a) and F(0) = po, to be used in equation (10.4b). Therefore, one should have
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Figure 2. Time evolution of the connected density correlation function in a
noninteracting Brownian gas exposed to a Gaussian random field with Gaussian
covariance in space dimensions d =1 (top) and d = 3 (bottom), according to the
first-order bare theory. The wavevector is kR = 7/3. From left to right, bottom
to top: A =0, A =d/2" with n=6,5,...,1, A =d (dashed line). The dotted line
illustrates the long-time decay F(t)/po oc t=%2.

Nk(t)z/0 ds[poXk(s) — Li(s)]- (10.5)

Using equation (10.4b) to eliminate Y4 (¢) in equation (10.1c¢), the latter becomes,
after an integration by parts,
I I
(0 + T Fu(t) = —— / dsNy(t — $)0,Fi(s) — / ALt — ) Fy(s). (10.6)
Po Jo Po Jo
This equation, a renormalized version of equation (9.28), is clearly reminiscent of those
that can be obtained with standard projection-operator techniques in the memory-
function formalism [87]. However, one can interestingly note that it mixes two types of
convolution integrals which are usually found to be mutually exclusive and only con-
verted into one another by making use of special rearrangements [21, 88, 89].
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Another possibility to eliminate ¥ (¢) is through mere Laplace transforms of equa-
tion (10.1). One then obtains nonlinear relations (once the kernels are specified) express-
ing the physical response and correlation functions in terms of the noise-response
function, as

t
Ri(t) = pol'1Gi(t) +/ dsLi(t — s)Gr(s), (10.7)
0

Rut) = mGult) + [ dsNilt = )Gl 10.8)

These expressions will be extremely useful in the following to perform first-order consis-
tent substitutions, i.e. replacements of one function with another that entail corrections
strictly beyond the first order.

We might now close the set of dynamical equations with explicit expressions for the
first-order renormalized kernels, which are self-consistently determined from a second-
order bare perturbation calculation.

10.1. Native first-order renormalized theory

We first consider the FORT that derives in the most literal way from the second-order
bare theory. For this reason, we choose to term it native.
As seen in appendices C-E, one gets (equations (C.14) and (D.16))

Yi(t) = ADS/q-p[k-q@q]Gp(t), (10.9)
q
Ly (t) ZApoD(%/k-p[k-q@q]Gp(t)- (10.10)
q

As for the remaining kernel Ny (%), it is in principle given by equation (E.20). However,
as pointed out there, it is very likely that this expression does not fully comply with
the requirements of a bona fide equilibrium dynamics. Yet, a possible workaround is
to force consistency with the FDR, through the use of equation (10.4b). One then gets

DNy (t) = —ADy / k- 4B, [po DapGy (1)), 10.11)
q
hence
t
Ni(t) = —=ADyg / ds / k- q®,)[po Dop*Gyp(s)]. (10.12)
0 q

In appendix E, we check the suitability of this step, by showing that, thanks to equa-
tions (10.7), (10.8), and (10.1a), equation (E.20) can indeed be rewritten within its order
of validity in A, such that it agrees with equation (10.12) to first order in A. Note that,
in the present scheme, the explicit expression of Ni(%) is actually not needed for the
computation of the three functions of interest. Indeed, with the above form of ¥ (), the
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dynamical equation for the noise-response function Gj(t) is self-closed. Its solution can
be fed into the dynamical equation for the physical response function, equation (10.15),
or equivalently equation (10.7), to obtain Rj(t), from which Fy(#) is retrieved by inte-
gration of the FDR, equation (10.2). Self-consistency implies that this solution for Fj.(t)
be the same as that from equations (10.1¢), (10.6), or (10.8).

Unfortunately, this theory as it stands does not appear to bring one very far. Indeed,
our numerical attempts at computing Gy(t), which is the required first step, faced
instabilities that seem to prevent the application of the theory beyond rather modest
disorder strengths (with a Gaussian random field covariance, equation (9.46), spurious
divergences occur for A\/d > 0.272 in d=1 and \/d > 0.345 in d = 3, i.e. significantly
below the threshold A/d =1 beyond which the FOBT produces blatantly unphysical
results). Note that these calculations were based on computing the integrated response

function Hy(t) = fot dsGy(s) as an intermediate [90], whose evolution equation obtained
from equations (10.1a) and (10.9) reads

(0p + i) Hi(t) = 1 —/O dsSi(t — s)0sHi(s),  Sk(t) = /\Dg/q plk-a®Hy(t). (10.13)

This is exactly the type of nonlinear integro-differential equation met within the MCT,
for which a well-established and efficient iterative numerical solution scheme has been
developed long ago [91]. It usually shows remarkable stability, provided the underly-
ing equations are themselves stable. Therefore, this suggests that the instabilities are
intrinsic to the above renormalized equations, which in particular fail to guarantee that
the kernels ¥, (t) and Sj(f) are nonnegative functions of time, while this is the case for
overdamped dynamics with the standard MCT kernels.

10.2. Modified first-order renormalized theory

In order to try and overcome these difficulties, one might exploit the freedom offered by
the first-order consistent substitutions to generate variants of the theory, at the cost of
an increased degree of empiricism in its derivation. Since ¥ (t), Li (%), hence 0; Ni(t) via
equation (10.4b), naturally acquire the character of response functions within the native
FORT, we focused on the possibilities provided by equation (10.7) to replace G,() with
R,(t)/(pol'p) in equations (10.9), (10.10), or (10.11). By separately making one or the
other choice for two kernels, the third one being fixed by equation (10.454), one obtains
eight FDR-consistent theories in total, including the native one above entirely based
on Gy(1).

With respect to the criteria of consistency with the FDR and with the FOBT, these
eight theories are all equally possible and valid by construction. Therefore, if one of
them is to be favoured, this has to be based on arguments of a different nature. Since
we identified difficulties with the native theory through numerical considerations, we
shall pursue this line of reasoning here. We already know that the instabilities of the
native theory will be present in two other variants of the FORT, for their ¥ (¢) is also
given by equation (10.9).

After trying to numerically solve the dynamical equations for the eight variants of
the theory, we find that one of them clearly stands out. Indeed, for some relevant choices
of parameters, it appears unique in its ability to deliver physically acceptable numerical
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results. This is particularly the case in the regime of sizeable disorder strengths, corre-
sponding to A/d > 1. The theory in question, to which we shall refer as the modified
FORT, is the one entirely based on R,(t), i.e. with

Si(t) = A% /q q];2p[k~q<1>q]§p(t), (10.14)

Li(t) = ADy / < Pl a, By o), (10.15)

ANL(t) = —ADs / k- q0,JR, (1), (10.16)
hence

Ni(t) = ADg / k- ab,|Fy(t), (10.17)

where we used the FDR and qu -q®, = 0 by isotropy. Note that these expressions
achieve consistency with the FDR in a most natural way, since equation (10.4b) merely
appears as a trivial corollary of equation (10.2).

Beyond the numerical arguments, some aspects of the theory discussed previously
might actually be seen as further hints in favor of these equations. For instance, in our
physical interpretation of L;(f) at the bare level (see equations (9.4)-(9.6)), the kernel
is proposed to initially involve a composite response field, as precisely does Ry(t). Also,
the straightforward appearance of the combination pol',G,(s) in equation (10.11) of the
native theory suggests that a substitution by Ep(t) might be in order, as we repeatedly
assumed at the bare level (see the transition from equations (8.5) to (8.7)). On the other
hand, the second-order result of appendix C does not provide one with any obvious
reason to favour equation (10.14) over equation (10.9), since both expressions are seen
to remain approximate at this order.

At the level of the response functions, it is now the dynamical equation for Ry(t),
equation (10.1b), which is self-closed. However, from a physical point of view, the closed
coupled set consisting of equations (10.1a) and (10.7) looks more telling, as it shows a
mixed feedback scheme that might be pictorial of dynamics with multiplicative noise.
Indeed, on the one hand, equation (10.7) formally represents the density response
function as a mere byproduct of the noise-response function, in line with the fact that
fluctuations and dynamics do fundamentally come to the system precisely through
thermal noise. But, on the other hand, the couplings and memory effects represented
by X (t) and Lj(f) are ruled by the density response function itself, as a reflection of
the density dependence of the multiplicative thermal noise.

Formally, it is still possible to close equation (10.1a) and have the modified the-
ory rest upon the mere determination of Gj(f), as does the native one. Indeed, equa-
tions (10.7) and (10.15) can be recursively used to express Ry (t) as an infinite sum of
integrals of all orders in the disorder strength and involving Gy(f) only. A similar series
expansion can be derived for F}(), based on equations (10.8) and (10.17). When injected
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into equations (10.14)—(10.17), these expressions characterize the present approach as
some kind of resummation scheme beyond the native FORT.

Thanks to the FDR, the dynamical equations for the density correlation function,
equations (10.1¢) and (10.6), are self-closed as well. In particular, the latter can be use-
fully written as

t t
(0 + T Fu(t) = —— / dsN,(t — 8)0,Fi(s) — / dsd Au(t — s)Fe(s),  (10.18)
Po Jo Po Jo

where Ni(%) is given by equation (10.17) and A(¢) follows from equation (10.15) and
the FDR, equation (10.2), as

k .
Ai(t) = =MDy / pzp k- q®,]F,(1). (10.19)
q

For definiteness, we recall the initial condition Fj(0) = po. Interestingly, these equa-
tions are clearly distinct from those obtained within the MCT, equation (9.30), but
they belong to the same class of self-consistent nonlinear problems and can be analyti-
cally studied [7, 8, 92] and numerically solved [91] by the same means.

Therefore, we might now discuss the main features of their solutions, considering
again the case of a Gaussian random-field covariance, equation (9.46), for the purpose
of illustration.

10.3. Numerical solution of the modified first-order renormalized theory

The evolution of the correlation function Fy(t)/po with increasing disorder strength
A is displayed in figure 3 for a representative wavevector kR = 7/3 in space dimen-
sions d =1 and d = 3. First, as one would expect, the dynamics simply slows down as
A increases, and a long-time relaxation tail gradually develops. Then, at a threshold
Ac(d), obeying A.(d) < d (the importance of this inequality will be manifest later), the
dynamics becomes nonergodic, i.e. a time-persistent plateau starts to continuously grow
from zero with increasing positive A — A.(d), reflecting a partial arrest of the relaxation
of the density fluctuations. The so-called nonergodicity parameter Fj(t — 400)/po,
corresponding to the height of this plateau, is solution of the nonlinear equation

Fi(t — +o00) Ni(t = +00)

(10.20)

where Ni(t — +o0) and Ag(t — +o0) are linear functionals of Fj(t — +00), as pre-
scribed by equations (10.17) and (10.19). The wavevector dependence of Fy(t — +00)/po
is shown in figure 4 for the values of the disorder strength corresponding to nonergodic
states in figure 3.

The details of the critical dynamics near the threshold are illustrated by figure 5.
The long-time relaxation tail is seen to be algebraic, Fi.(t)/po o t~*/2, independently of
the space dimension. It lasts longer and longer as A.(d) is approached from below, and
gradually recedes, giving way to the time-persistent plateau, as A.(d) is left from above.
These evolutions are symmetric on both sides of A.(d), with a diverging characteristic
timescale o< [\ — A(d)]™2 . In the partially arrested state, the nonergodicity parameter
grows o [\ — A.(d)] to leading order.
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In most respects, this scenario is the same as the one found within the MCT [42].
This similarity can be traced back to the linearity of the kernels with the density corre-
lation functions, which generically enforces continuous ergodicity-breaking transitions,
if any [7, 8]. Such a linearity is an expected generic feature of MCT-like approaches
to fluids in random fields, which has been found in all previous studies, either strictly
[11-16] or to leading order in the strong disorder regime [39—42]. There is however
one important difference with regard to the behavior of the nonergodicity parameter.
Indeed, within the MCT, the evolution of the latter with increasing disorder strength
mainly consists of the continuous broadening of a low-wavevector peak with maximum
Fy(t — +00)/po = 1, which appears with a vanishing width at the ergodicity-breaking
transition (this behavior is illustrated for the case of a fluid in a random porous solid
in [41] and [93]). This implies the existence of a localization length in the nonergodic
phase, which diverges as the transition is approached from above. There is no such
thing in the present theory, as readily seen in figure 4. This difference can be traced
back to the contrasting low-wavevector behaviors of the kernels in the two theories.
Here, both Nj.(t) and Ay(t) are O(K?), so that Fj(t — +00)/py in equation (10.20) does
not have to go to one as k — 0, while it does have to in the MCT, where M (t)is O(K")
(see equation (9.300)) and Fi(t — +00)/po = My(t = +00)/[I'x + My (t = +00)].

The absence of a localized state in the nonergodic phase is readily seen in the full
wavevector dependence of the dynamics, as reported in figure 6. Indeed, as the den-
sity correlation functions relax toward their infinite-time limits, a peak forms on top
of the nonergodicity parameter curve at low wavevectors, which becomes narrower
and narrower with time. From equation (9.31), it is clear that this peak relates to the
diffusional properties of the fluid and that its vanishing width with increasing time
implies a diverging mean-squared displacement (MSD), hence a delocalized state. In
passing, note that an occasional slight inaccuracy of the theory can be spotted in the
top panel of figure 6. Indeed, at low wavevectors (below kR ~ 0.4), the nonergodicity
parameter is reached from below, meaning a slightly nonmonotonic behavior of the
density correlation function. Quantitatively, the phenomenon is very small, but, in
principle, it violates the property that autocorrelation functions be completely mono-
tone functions of time for overdamped dynamics.

The above reasoning is confirmed by a direct computation of the MSD. Using
the low-k expansion (9.31) in equation (10.6), knowing that limy o Nk(t) =0 and
Li(t) = O(kQ) one generically obtains

2dD0 t+/ ds/ dull€1_>0 Py k, (10.21)

which again connects the low-wavevector limit of L; (%) to the force autocorrelation func-
tion through equation (9.35). Then, within the modified FORT, where Ly (t) = 0;Ax(t)
and Ag(t) is given by equation (10.19), this can be rewritten as

A(t) A ¢
2D, (1— d)t+/0 dsm(s), (10.22)
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Figure 3. Time evolution of the connected density correlation function in a
noninteracting Brownian gas immersed in a Gaussian random field with Gaussian
covariance in space dimensions d =1 (top) and d = 3 (bottom), according to the
modified first-order renormalized theory. The wavevector is kR = 7/3. From
left to right, bottom to top: A =0, 0.25, 0.5,...,1.75, 2, for d=1; A=0, 0.5,
1,...,4.5, 5, for d= 3. Ergodicity is broken for A larger than \.(d =1) = 0.763 59
and A.(d = 3) = 2.34686. The corresponding critical density correlation functions
are reported with dashed lines.

A A
m(t) = = / BF(0) = 2 / (1) F(r, 1), (10.23)

which is an obvious renormalized version of equation (9.37). The corresponding results
for the influence of the relative disorder strength on the time dependence of the MSD
are shown in figure 7. Remarkably, it is found that a normal diffusive behavior is
reached at long times for all disorder strengths, even those leading to nonergodic states.
This feature is definitely at variance with the MCT predictions, where the ergodic-
ity-breaking transition is also a diffusion-localization transition [42], and in complete
agreement with the known rigorous results [66].
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Figure 4. Wavevector dependence of the nonergodicity parameter of a
noninteracting Brownian gas plunged in a Gaussian random field with Gaussian
covariance in space dimensions d =1 (top) and d = 3 (bottom), according to the
modified first-order renormalized theory. From bottom to top: A =1, 1.25, 1.5,
1.75, 2, for d=1; A= 2.5, 3, 3.5, 4, 4.5, 5, for d = 3.

Further insight into this finding can be gained by considering the time-dependent
diffusion coefficient D(t), given by

D(t) A1) A

—_—m ]_ _— t .

Dy 5dDq 7 + m(t), (10.24)
or, more specifically, its long-time limit D, = lim; o, D(t). It is plotted in figure 8
for d=1 and d=3. For A < A.(d), the system is ergodic, m(t) vanishes at long times
because F';(t) does for all ¢, and equation (9.40) from the FOBT is recovered. On the
other hand, for A > \.(d), ergodicity is broken and one gets

D A A A

—=1-=4+— [ ®,F,(t — >1——.

Dy d+p0d/q gFy(t = +00) g (10.25)
As shown by the numerical results, the additional nonergodic contribution strongly
restricts the decrease of D, with the disorder strength compared to the ergodic
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Figure 5. Time evolution of the connected density correlation function in a
noninteracting Brownian gas in a Gaussian random field with Gaussian covariance
in space dimensions d = 1 (top) and d = 3 (bottom), according to the modified first-
order renormalized theory. The wavevector is kR = 7/3. From left to right, bottom
to top: A =0, 0.9A;, 0.99X;, 0.999X., 0.9999X., 0.99999\., A, 1.00001\., 1.0001\,
1.001), 1.01A, 1.1A, 2A, with Ac(d = 1) = 0.76359 and A.(d = 3) = 2.34686. The
dotted line illustrates the long-time critical decay Fj(t)/py oc t=1/2

regime. The breakdown of equation (9.40) at A = d is therefore avoided, so that D
remains strictly positive. Note that this obviously requires the condition A.(d) < d.
Unfortunately, this mechanism generates a corner singularity in D, at A.(d), as a
result of the leading linear growth of F,(t — +00) above A.(d). This is clearly a spurious
feature of the present theory, as no such corner exists in the known exact results for
Dy in d=1 and d = 2 [76] and there is no obvious reason why this should be different
in other space dimensions. As for the aspect of quantitative accuracy, comparison with
the law Do, /Dy = e~*?, which is known to be exact in d = 1 and a good approximation
in d=3 [76], immediately shows that there is room for improvement. For complete-
ness, we also report an analytic result from the MCT with an additional hydrodynamic
approximation [16, 41], D /Dy = 1 — (e* — 1) /d, which shows its predicted vanishing
of the diffusion coefficient. Note that this expression is based on an exact treatment of
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1 < T

Fy(t)/po

Fy.(t)/po

kR

Figure 6. Wavevector dependence of the connected density correlation function
at fixed times in a noninteracting Brownian gas exposed to a Gaussian random
field with Gaussian covariance in space dimensions d = 1 (top) and d = 3 (bottom),
according to the modified first-order renormalized theory. For d=1, A = 1.25;
for d=3, A = 3. In both cases, A > A.(d) and the system is nonergodic. From top
to bottom: 2Dgt/R* = 2" x 1078, n = 24,...,37. The nonergodicity parameter is
shown as a dashed line.

the static correlations. If the structure factors are truncated to linear order in A, this
version of the MCT simply reproduces D, /Dy from the FOBT in the ergodic phase.

10.4. Relation between the present theory and the MCT

We close this section by considering how the present FORT can be related to the
MCT. Indeed, as mentioned in introduction, a major motivation for the development
of field-theoretic approaches to particle dynamics came from the search of an improved
derivation of the MCT, with better controlled approximations. It is thus interesting to
see where the present results stand from this perspective.

With equations (10.6) or (10.18), which are evocative of the memory-function for-
malism, and the closures (10.15), (10.17), and (10.19), the modified FORT manifestly
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Figure 7. Time evolution of the mean-squared displacement in a noninteracting
Brownian gas in a Gaussian random field with Gaussian covariance in space
dimensions d =1 (top) and d =3 (bottom), according to the modified first-order
renormalized theory. From left to right, top to bottom: A =0, 0.5, 1,...,5.5, 6, for
d=1;,A=0,1,2,...,8,9, for d=3.

appears as an FDR-consistent MCT-like theory, in the sense that it relies on closed
self-consistent dynamical equations for the density correlation function only.

In order to actually get the MCT equations from the present framework, one needs
additional manipulations. In particular, the derivation of the bare MCT from the
FOBT in the previous section shows that the use of first-order consistent substitutions

has to be pushed further. Thus, keeping equation (10.17) for Ny(?), equation (10.8) is
invoked to set

Li(t) =AD§/k~p[k-q@q]Fp(t), (10.26)

q

instead of equations (10.10) or (10.15). One then has the equality

1 . Lk(t):| — ADo /(f{ . q)z(I)qu(t) = Mk(t)a

— | Np(t
Po{k() L'y Po

(10.27)
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Figure 8. Disorder-strength dependence of the long-time diffusion coefficient of a
noninteracting Brownian gas plunged in a Gaussian random field with Gaussian
covariance in space dimensions d =1 (top) and d = 3 (bottom). Continuous line:
modified first-order renormalized theory; the ergodicity-breaking transition at \.(d)
is signalled by a corner singularity where the slope of D,/ Dy is discontinuous. Dotted
line: first-order bare theory, D, /Dy = 1 — A/d. Dashed line: D,,/Dy = e 4; this
expression is exact in d =1 and a good approximation in d = 3. Dash-dotted line:
mode-coupling theory with hydrodynamic approximation, Dy, /Dy = 1 — (e* — 1)/d.

which reproduces the MCT kernel My(t), equation (9.300), with the linearized discon-
nected structure factor SZ = Apy®y. Therefore, it suffices to eventually replace FJ.(s)
with —0,F}(s)/T'x in the second convolution integral of equation (10.6) to get the MCT
equations (9.30). The first-order compatibility of the latter substitution follows from the
combination of the FDR, of equation (10.7), and of equation (10.8), or, more directly,
from equations (10.1c¢) or (10.6). With this last step, however, the structure of the theory
is changed and not only the details of the kernels. The equivalence of equations (10.1c¢)
and (10.6) through the FDR corollary for the kernels, equation (10.4b), is broken, with
issues for the consistency of the theory. For instance, changing equation (10.4b) to

https://doi.org/10.1088/1742-5468 /ab632e 46


https://doi.org/10.1088/1742-5468/ab632e

Dynamics of a noninteracting colloidal fluid in a quenched Gaussian random potential

restore this equivalence would in turn compromise the consistency of equations (10.1b)
and (10.1¢) with the FDR.
There would be no such difficulty if the relations

Ry (t) = pol'rGi(t), (10.28)

Fi(t) = poGi(t), (10.29)

complemented by the FDR, held exactly. They amount to a mere truncation of both
equations (10.7) and (10.8) to their first term and actually coincide with the defining
equations of the dynamics of the noninteracting Brownian gas without field, equa-
tion (7.3). Generically, equation (10.28) holds for dynamics with additive noise, and
equation (10.29), the DHMR relation, for nondisordered systems with Gaussian free
energy and either additive or multiplicative noise [31, 82]. Their simultaneous valid-
ity for the noninteracting Brownian gas without field, a non-Gaussian system with
multiplicative noise, stems from special circumstances described in section 5. Those
obviously do not survive in the presence of a Gaussian random field (otherwise, the
dynamics should be the same with and without field), as shown by equation (4.22b), in
particular.

We thus conclude that the modified FORT is of a fundamentally distinct nature
from the MCT.

11. Summary and outlook

The time evolution of the density fluctuations in a system of colloidal (Brownian) par-
ticles is characterized by a Langevin equation with multiplicative thermal noise, which
drives the system into an equilibrium state governed by a highly non-Gaussian free-
energy density functional. The multiplicative nature of the time-evolution equation at
the density level generates unique dynamical features compared to the usual cases of
Langevin equations with additive noise. Indeed, the corresponding free action is a non-
Gaussian cubic field theory, and the physical response function is not the same as the
usual noise-response function, but is given by a three-point function. It results that the
direct loop expansion for the action fails to satisfy the FDR at each order [31]. These
features pose a theoretical challenge as to how one can develop an FDR-compatible
perturbation theory for the equilibrium dynamics. A profound resolution of this issue
has recently been proposed, based on the TR symmetry of the action, i.e. its invariance
properties under certain field transformations when time is reversed [32, 37]. This TR
symmetry can indeed dictate perturbation theories that preserve the FDR.

In the present work, we have developed one such FDR-preserving perturbation the-
ory to study the equilibrium dynamics of the density fluctuations of a noninteracting
Brownian gas embedded in a frozen random potential-energy landscape with Gaussian
statistics. Technically, it is quite different from previous work on bulk interacting lig-
uids by one of us and others [32-34, 37], as it is motivated by the 7T - rather than the
U-transformation, does not require the introduction of extra fields into the problem,
and does not rely on a loop expansion. In practice, the present perturbation theory
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involves a double expansion: (i) an expansion about the dynamics of the pure system,
in terms of the disorder-induced contribution to the dynamical action, then (ii) an
expansion in terms of the cubic contribution generated by the multiplicative thermal
noise in the free dynamics. The first expansion can be seen as a weak-disorder or high-
temperature expansion, since the disorder-induced part of the action is proportional
to A = w/T? w being the strength of the Gaussian random potential. An essential and
novel aspect of the present perturbation theory is the nonperturbative (exact) nature
of the second expansion. Indeed, the TR symmetry requires that the second expansion
be carried out exactly. This is made possible by the form of the cubic term (containing
two noise-response fields as factors) and by the causality requirements on the vanishing
of averages involving hatted variables. The latter lead to a quick termination of the
second expansion at each order of the first one.

We carried out a first-order calculation within this FDR-preserving perturbation
scheme. The corresponding results, the first-order bare theory, consist of a set of dynam-
ical equations for the correlation and response functions, which was explicitly checked
to be consistent with the FDR, as intended. Using the properties of the dynamics of
the pure noninteracting Brownian gas, the equation for the density correlation function
can be rearranged as a MCT equation,

t
@+ TR = - [ M- 90080, M0 =22 [deara,cyn, LD

0 0 Jqg
albeit with the memory integral expressed in terms of the bare density correlation func-
tion. Apart from this, the equation is the same as in the self-consistent MCT developed
by one of us [39-42]. The bare theory allows one to compute the MSD, for which we
recover results from earlier calculations at the same order [76], and to characterize the
disorder-induced tails that develop in the long-time dynamics. The latter reproduce in
detail the behavior found in the Brownian random Lorentz gas, thereby confirming the
universal behavior of the persistent correlations induced by quenched disorder [85, 86].
Finally, the bare theory is clearly found to break down at too strong disorder, when
A exceeds the space dimension d. Below this threshold, the dynamics always remains
ergodic.

From the second-order bare perturbation expansion, we also developed a first-order
renormalized theory, constrained to obey the FDR. Out of different candidates, all
consistent to first order, it is singled out as the only one delivering useful numerical
results (without response functions that blow up, for instance) over a significant range
of disorder strengths. It turns out that this theory is distinct from the MCT, but might
be described as MCT-like, in the sense that the dynamical equation for the density cor-
relation function is also self-closed:

t t
(0 + T Fu(t) = —— / dsN,(t — 8)0,Fi(s) — / dsdy Au(t— $)Fy(s),  (11.20)
Po Jo Po Jo
k.
Ni(t) = ADq / k- q®Fy(t),  Ax(t) =—ADo / p2p k- q®,]F,(t). (11.20)
q q

Interestingly, its predictions somewhat improve upon those of the MCT. Indeed, in
both cases, an ergodicity-breaking transition occurs in the dynamics of the density
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fluctuations at strong enough disorder, but, in the present theory, it does not lead to
a diffusion-localization transition in the MSD, at variance with the MCT. This is in
agreement with known rigorous results, stating that normal diffusion is always obtained
at long time for Brownian dynamics [66]. The reason for these contrasting predictions
can be traced back to the distinct low-wavevector asymptotics of the two theories.
Actually, the low-wavevector behavior of the single-particle MCT kernel has repeatedly
been found to be a source of difficulties in the theory and is usually considered as spuri-
ous [11-13, 93-95]. It is therefore promising that the present approach seems to natu-
rally circumvent this issue. It remains that the sharp ergodicity-breaking transition
and the corresponding singularity in the long-time diffusion coefficient certainly are
artifacts of the self-consistent theory. Indeed, the exact expressions of D, are known
in d=1 and d=2 [76]. They are infinitely differentiable functions of the relative dis-
order strength, and the same can naturally be expected in other space dimensions. An
ergodicity-breaking transition would have to display quite unusual characteristics to be
consistent with such a behavior. However, recent computer simulations in d =1 have
evidenced strong transient, but long-lived, nonergodic effects in the system at hand
[96]. In this respect, the theoretical predictions do not appear as an unreasonable first
approximation.

In the present work, we took the initiative of developing a perturbative expansion
method about the highly non-Gaussian pure noninteracting state. Compared to the
maturity of the fully renormalized theories such as the loop expansion, such approaches
are still at an early stage. It would be important for the future to gain a better under-
standing of their working principles. For instance, it would be useful to put the some-
what ad hoc arguments used in the derivation of the first-order renormalized theory on
firm theoretical grounds. This would allow one to further investigate non-equilibrium
phenomena, where by definition the equilibrium theorems cannot be used as guides. In
this respect, we note that, in principle, the prediction of an ergodicity-breaking trans-
ition in the equilibrium theory calls for a reassessment within an out-of-equilibrium
two-time formalism. Finally, it would be most interesting to apply the present pertur-
bation scheme to the interacting Dean-Kawasaki equation (with or without the ran-
dom potential). This would certainly enrich our current perspective on the use of field
theory in particle-system dynamics, its relation with the MCT, and the possibilities to
go beyond the latter.
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Appendix A. Symmetries of the effective dynamical action for colloids
in a Gaussian random field

In this Appendix, we provide the technical proofs for the invariance properties quoted
in section 4, together with some of their implications.

A.1. The T -transformation

We first show the invariance of Syuu[p, o, Saislp, A, and See[p, |, under the T -transfor-
mation, equation (4.7).

With integrations by parts and the definition of the composite response field, equa-
tion (3.8) is easily rewritten as

Shulk[p, p] = /tﬁ(r,t)[iatp(r,t) + A(r,t)] — /tA(r’t)% 5?[:(15[:0]

(A1)
p(r,t)
The structure of the first term clearly calls for a field transformation of the form of
equation (4.9), requiring equation (4.8). With the explicit application of the field trans-
formation, one indeed finds

e ~) +ihfr, <A ~0) ~ [ [A(r.~0) ~ 0plr, 0] ‘5?;;1;)[”

N / 1plx &) +ih(r ]A(r, ¢) - / Alr, 1) +iatp(r,t)}% 6?;‘21;‘)[’) ]

rt

Shulk [7-,0, Tﬁ] = /

r,t

p(r,ft)

' A2
‘p(r,t) ( )

where the second line merely follows from the change of variable ¢ — —¢ in the int-
egrals. Integrations by parts restore the initial form of the first integral and, recognizing
the chain rule in the second one, one gets for now

1
Sour[Tp, Tpl = Svulp, p + 7 / AF[p(r,t)]. (A.3)
t

We may repeat the calculation for Sgs[p, p| as given by equation (3.12). One first
gets

SilTp Tl = =5 [ [ @ =Dl ~1) = i0hplr, ~O][A, ~¢) = i0pp(x', 1)
= —%)\ /r,t /r',t/ O(Jr — v'|)[A(r, t) + i0:p(r, )] [A(, ') +10pp(x', 1], (A.4)

with again the change of variables t — —¢, ' — —t’ in the integrals to obtain the sec-
ond line. Then, the result can be rearranged as

SulT0. 71 = Sl =it [o| [ [ ol =shote0ae.1)]

i fo foc| [ [ate=riownpeo)|. s
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Since the differences Suux[T p, TP] — Svu[p, ] and Sais[T p, T p| — Sais[p, p] are mere
integrals of total time derivatives, both Spux[p, p] and Sgis[p, p] are invariant under the
T -transformation at equilibrium. This obviously implies the invariance of Seg[p, o]

A.2. The U- and U’-transformations

A shared feature of the present theory and of the theory of Langevin processes with
colored noise developed in [65] is that the dynamical action is a sum of quadratic and
linear terms in the hatted variables, as a consequence of the Gaussianity of the noise
and/or disorder. In the latter work, a symmetry of the action was unveiled, which can
actually be related to this observation. We show that a similar one holds in the present
case as well.

Denoting the thermal-noise contribution to the effective dynamical action as

Snoelps 5] = =Dy / [T ), (A.6)

)

and adding it to the random-field term Syis[p, p, restoration of the noise variance, equa-
tion (2.16), and integrations by parts can be used to get

~ ~ 1 TR N
Snoise[pa P] + Sdis[pa :0] = _5 / K)\<I', t; r 7t )p(I‘, t)p(r 7t )7 (A7)

!
rtJr't

where the density-dependent symmetric kernel K, (r,;1’,t') is given by equation (4.16).
Now, the remaining part of the action, which only involves the deterministic nonran-
dom part of the density evolution equation defined in equation (4.15) and thus reads

Sbulk[p7 ,6] - Snoise[pv :5] - / iﬁ(n t)DET([p],I‘,t), (AS)
r,t

)

can be rewritten as

Sbulk[P, /5] - SnOise[pa )6] = 1/ KA(r,t;r’,t')ﬁ(r,t) K}TI(rlvt/;rllat//)DET([p]’r/lvt//)v
rtJr r/ i
(A.9)
through injection of equation (4.17) and minor reorganizations. It results that

K)Tl(l‘/, t/; I'//, t”)DET([,O], I‘//7 t//)} )

(A.10)
This expression is manifestly invariant under the U’-transformation, equation (4.14),
thanks to the symmetry of K,(r,t;r’,t").

Although one can directly use equation (4.14) to compose U’ with 7, we find it
useful to first reorganize U'p(r,t). Indeed, this allows one to isolate contributions with
distinct physical origins and facilitates comparisons with previous results. Once the
explicit expression of DET([p],r,t) is restored, equation (4.8) and a single integration

by parts lead to
p(F’ﬂ)]) '

(A.11)
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Treating the integral in the same way as Spise[p, o], one then gets

/A ~ . — ’og 1oyt g "o 1 6]:1)1111{[ ]
Up(r,t) =—p(r,t —1/ KN, tr  U)Ko(x', t': 2" t") | h(x" t ,
( ) ( ) vt S A ( ) 0( ) ( ) T (5/)( ) p(x’ ")
(A.12)
where Ky(r,t;1/,t') is nothlng but Ky(r,t;r g ') at A = 0. Using equation (4.16), it can
be replaced with K,(r,#;1',t') — AAK(r,t;1',t') to obtain
N N . 1 5~7:bu1k[P]
u/p(rvt) = p(rv t) - lh(r7t)
T 5p( ) p(r,t)
. _ 1 0Fpunlp]
—|—1)\/ K (r,t; v, )AK (', t;x" t") |h(", 1" .
ot S A ( ) ( ) ( ) T 6p( ) p(r” ")

It remains to use the expression of AK(r,¢;1',t') to eventually get (A.13)

i dFbuik[p]
T dp(r) o(r)

+iADy K ', t;0 ¢V {p(r/,t/)V’

/.t

ulﬁ(ra t) = ﬁ(ra t) - ih(I‘, t) +

(1 — DT ([, ",t”>}

(A.14)
after a last pair of integrations by parts. This formula can be used as an alternative to
the second line of equation (4.14).

We may now compose U’ and T to get the U-transformation with time reversal.
Since the application of T to equation (4.8) gives DoV - [p(r, —t)VT h(r,t)] = Op(r, —t),
hence Th(r,t) = —h(r, —t), the function h(r,t) disappears when 7T is applied to U’ p(r, t),
giving equation (4.18) as the final result.

Obviously, if U’'p(r,t) from equation (4.14) is left untouched, the expression

I.// ’t//

Up(r,t) = —p(r, —t) — ih(r, —t) + 2i K Y(r,—t;v', —t)TDET([p], ¥, 1) (A.15)

r’t’

is a valid replacement for the second line of equation (4.18).

A.3. Implications of the U-transformation

As the T -transformation, the U-transformation can be used to derive equilibrium rela-
tions between correlations and responses.

In particular, a generalized form of the FDR can be obtained for the noise-response
function. Indeed, expanding the Ward-Takahashi identity equation (4.20), one gets

p(r',t") > off

B(|r" — " |)DET([o], t>}>

(A.16)
where we used time-translation invariance and the time-reversal symmetry of the
correlations.

1 6Fbuic p]
T op(r')

Gl — ']t =) + Gljr ¥~ 1) = <p<r,t>

+ADy <p<r,t> SR D\ {p<r",t">V" /

r ,t” 11 ’t/II
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Using the explicit expression of Fyuyp], the first average in the right-hand side of
equation (A.16) can be rewritten as

<p( g sl pw> = (pte) |2 2t —aante )|
+ <p(r,t) [m (1 + 5”(r"t/)> _ 5’)(‘”/”51)} >eff. (A.17)

£o Po

The first term is due to the Gaussian part of the free energy,

T
Fualdl =5 [ [ @71 = ¥Doptwsole) (A1)

where

o(r 1) ullr —r')

—1 I
Q (r—r)= . L (A.19)

is the functional inverse of the static density correlation function in the Gaussian
theory defined by Fux c[p] One can thus write

<p(r,t) {5”(;;”5/) —I—%/ruuﬂ )Sp(t", ') D / Clle =)t — )Q (" —¥)).

(A.20)

The second term, which we shall denote by AC"G(|r — 1|, — t'), arises from the non-
Gaussian nature of Fiq[p|. As such, it already appears in the absence of a random field.

The second average in the right-hand side of equation (A.16) manifestly arises from
the presence of the quenched random potential (it has A as a prefactor). Accordingly,
we shall denote it by ACY(|r —1'|,t —t'), for which we could not find any obvious
simpler expression.

Combining these notations, equation (4.21) is finally obtained.

As an interesting consistency check, it is also possible to get the dynamical equa-
tions for the density correlation function, equations (6.1¢) and (6.3c¢), directly from the
T - and U-transformations. Indeed, consider the Ward—Takahashi identity

< |: K)\(I', t; I'”, t")ﬁ(r", t//)] p(I‘/, t/)> _ < [u K, (I‘, t; I‘”, t”)ﬁ(l‘”, t//):| [Up(r/, t/)}>
r//7t// r//’t//

eff

eff

(A.21)
The direct application of the U-transformation, equation (A.15), gives
U K)\<I‘, t: I'//, t”),é(r”, t//)
I.//7t//
= Ky(r,—t;v", —t") [—p(x”, —t") — ih(x", —t")] + 21T DET([p], ¥, t). (A.22)

I‘N7t"

Using

Ky(r, ;2" t")p(x" t") = —2A(r,t) + A\DoV - {p(r, Vv O(|r — A", ") | (A.23)

r.l/7t// I.//7t//

https://doi.org/10.1088/1742-5468 /ab632e 53


https://doi.org/10.1088/1742-5468/ab632e

Dynamics of a noninteracting colloidal fluid in a quenched Gaussian random potential

and

Ky(r,t;x" " h(x" t") = —20,p(r,t) + ADyV - {p(r, Vv O(|r — ") O p(x”, t")} ,

I'”,t” r//7t//

(A.24)
this becomes
U Ky(r,t;x" t")p(x", ") = 20T DET([p], r, t) + 2A(r, —t) — 2i0;p(r, —t)
r//’t//
—AD,V - [p(r, —t)V O(jr — ")) {A(x", —t") — 10 p(x”, —t”)}} : (A.25)
r//’t//

The Ward-Takahashi identity, equation (A.21), now explicitly reads

—2(A(r, t)p(r',t"))eer + XDy <V : {p(r, )V ) P(|r — r"|)A(r", t")} p(r', t')>
r/t! eff
= 2(TDET([p], v, 1) p(r', —t'))est + 2(A(x, =t)p(r', =t"))etr — 21 (Dep(r, —t)p(r', 1)) ¢

AD (T ol =07 [ alle = 2D A" ) 0uple” D] o)) - a6

eff

The 7 -transformation gives

(TDET([p],x,t)p(x', =t))etr = (DET([p], v, 1) p(x', ') et (A.27)

<A(I‘, t)p(r/, t/)>9ff = <A(I‘, —t)p(r/, _t,»eff - i<atp(1‘, —t)p(r/, _t,»effv (A.28)

and

(v [pte0w [ e =rpaaren| o))

I.// 7t/l

eff

= <V : {p(r, —t)V/ O(jr — ") {A”, —t") — 10 p(x”, —t")}} p(r', —t’)> . (A.29)
r//’t// eff
Therefore, one gets

<{iDET([p], r,t) + 2A(r, ) — AD,V - {p(r, Hv [ &(r — AR, t”)] } p(r, t’)>eff —0,

r//,t/l
L . (A.30)
which is nothing but
OSeft 4 >
- p(r,t = 0. A.31
<5,0(r,t) ( ) eff (431

Appendix B. Calculation of the memory kernel M} (t) for a Gaussian covariance

We analytically compute the memory kernel Mp(¢) given in equation (9.18) for the
Gaussian random potential with Gaussian covariance:
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MO A da(k 2 —q¢?R?/2_—Do(k—q)%t A, = )‘DORd
k() = Ay q(k-q)%e e ) E= W. (B.1)
The integral can be arranged as
Completing the square in the argument of the exponential, we have
2 p2 2
M}S(t) = Ase g‘gizgoi /dq(k ) q)ZG*(RQ/2+DOt) (q* R‘z/gfpotk) ) (B.3)
Now, shifting the integration variable via u = q — %k, we get
_ Dok?R%t k2Dt kE2Dgt 2 2 2
MO H=A RZ+2Dgt d k - 2 9k - 0 0 —(R2/2+Dot)u .
O(t) = Ao Hiamy / u[( w2 g (R2/2+D0t o

(B.4)
By isotropy, the first term (k- u)? can be replaced with k?u?/d and the second term
involving k - u vanishes. We thus have

_ Dok?R%t k?u? 2]€2D0t 2 2 2
MOt) = A.e R2+2Dot [ ( —(R*/2+Dot)u”
(t) = Aye R0 / u[ a (R2+2Dot) ‘ ®-5)

Using the integration formulas

/ due " — (g)d/ ° / duuZe—% = % (g)dﬂ, (B.6)

_ Dgk*R%t

MO(t) = Aye” "o

we obtain

k2 2k2Dot \ 2 o 4/2
2 + 2 2 - (B.7)
R2 4+ 2Dyt R2 4+ 2Dyt R? + 2Dt

Putting the explicit expression for A;, we have the final expression for the memory
kernel,

_Dok?R%t R2 4 9 Dot + (2Dgt)?k? 1 42
M(t) = ADgR% #+2bo!
+(0) e T (R2+2Dgt) (R2 + 2Dot) (B

which is equation (9.47).

Appendix C. Renormalized equation for the noise-response function

The full dynamical equation for the noise-response function G(12) is given by equa-
tion (6.3a) and, after simplification, reads

(0, — DoVHG(12) = 6(12) — ADEV* (/3[vav7c1>(13)]<13:§ﬁ>) : (C.1)
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Since there is no risk of confusion in these appendices, we shall here denote the averages
over the effective action simply as (.. .).
It is straightforward to calculate the multi-point average up to the first order, as

(13372) = (13372)¢ 4 (13372S4i)s + O(N?). (C.2)

The first term corresponds to equation (8.2a), and the first-order average involves
Sais|p, pl, given by equation (5.10) and rewritten as

Sunlpofl = 3303 | [ [V3VER(E0I% + 2050(6) + 50(0)50(O)[V3HGNIV50(0)]
(C.3)

where a and b denote summed-upon Cartesian indices. With these expressions, one
readily obtains

(13372) = (13”)0<3ﬁ)0+%)\D§ /6 /9 [VaV5d(69)](136937679°2) 4+ O(A?), (C.49)
hence
(13372) = (137)¢(32)¢
+AD? /6 / [VEVE®(69)][(137)0(36“)0(69”)0(92)0 + (16“)6(69")0(937)0(32)0
+ (16%)0(637)0(39°)0(92)0] + O(N?). €5

On the other hand, one has the following (first-order) result for the noise-response
function itself,

(137) = (137)¢ + (137 Sgie)r + O(N?)
= (137) + %AD@ /6 /9 [VaVE®(69)](1696°9°3) + O(A?)
= (130 +ADF [ [[V5ViRE9 160690030 + 0. (.
Equivalently, one can express the bare response in terms of the renormalized one as
(15 = (13 -3 | [[Vaviaoa6 6 o3 + 000 e
Likewise, one has |
B3)0 = (33) = A0} | [[V3940(69)136) (69 93) + O0%) @8
Substituting these expressions into equation (C.5), one straightforwardly obtains

(13373) — (187)(33) + AD? / / VEVRB(69)](167) (637) (30%)(92) + O(\2).
(C.9
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The dynamical equation for G(12) is then given by (up to second order in \)
(0, — DoV*)G(12) = §(12) — ADEV® (/[vav7q>(13)]<137><3§>)

XDV ( I[] [vavw(l:a)][vzvz@wz)]<16“><637><39b><9é>). (C.10)

Note that equation (C.6) takes the form of the Schwinger—-Dyson equation,
G=Gy+Gy-Z[G]-G=Gy+Goy-XGo] -Gy + ..., (C.11)
and equation (C.10) would equivalently take the form
Gyt G=1+3%[G]-G, (C.12)

where Gy is given by Gy'(12) = (9, — DyV?)3(12).
The Fourier-transformed dynamical equation for G is eventually given by (up to
first order)

t

@+ DGt~ 1) =t =) = [ dsSult = 5)Guls — ) (C.13)

t/

() ZADS/q-p[k-q@q]Gp(t)- (C.14)

q

Appendix D. Renormalized equation for the physical response function

The full dynamical equation for the physical response function is given by equa-
tion (6.30), leading to

(0, — DoVHR(12) = —poDyV25(12)

+ AD3ve ( / [VeD(13)]VEVI[p0(13372%) + po(123727) + <13237§5>]) . (D.1)
3
The first two multi-point averages have already been computed (see equation (C.9)):
(13372°) = (137)(32°%) + \D2 / / [Vavid(69)](16%)(637)(39°)(927) + O(N?), (D.2)
6J9
(123727) = (12°)(23") 4+ AD? / / [VaVh®(69)](164)(62%)(20°)(937) + O(X?). D.3)
6J9

The last one is obtained up to the first order as (see equation (8.2d) for the first term)
(132372%) = (132372°); 4 (1323725 S4i)s + O(N?)
= \poD? / / [Veved(69)](12362°376°9%)¢ + O(\?)
6J9

— Ao D2 / / TEVEB(60)][(12%)0(26°)0 (637)0 (3070 + (137)0(36%)0(62%)0 (20%),

+ (167)(627)0(237)0(39")0 4 (167)0(637)0(32%)0(29°)0] + O(N?),
(D.4)
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where we used [,[VaV5®(69)](69°)g = 0 by isotropy.
Now, recall that the physical response function R(12)is related to the noise-response
function G(12) as shown by equation (4.1¢), hence

R(12) = ipyDyV?3(12) 4 1Dy V5 (122°). (D.5)
The three-point average (122°) is evaluated up to the first order as
(122°) = (122%); + (122° Sgis)s + O(N?)
= \poD? /6 /9 [Vavid(69)](1262°6°9) + O(A?)

= \poD? / / [VaVE®(69)](16%)0(62°)0(29%)¢ + O(N?). (D.6)
One thus has
R(23) = ipoDoV2(23) +iDyV1(2337), (D.7)
R(32) = ipoDyV2(32) 4+ 1D,V (322°), (D.8)
with
(2357) = AuDf [ [ 1VEVER(69)(26%)0(63)0(30")a + 00X, ©.9)
6J9
(322%) = D3 | [ IV3A0(60)1(36)0(63)o 200+ 00 (D.10)

Crucially, the above integrals can be straightforwardly recognized in the first two terms
of the right-hand side of equation (D.4). These terms are thus associated with the first-
order expansion of R and should be accounted for accordingly in the renormalization
process.

Hence, from equations (D.2), (D.3), (D.4), (D.9), and (D.10), the following first-order
renormalized expressions result:

(133728 = (137)(32%), (12372°) = (12°)(237), (132372°) = (137)(322°) + <1éﬁ><23?ﬂ>.D
(D.11)

They provide one with the first-order renormalization

= —iD3{V3[(13°)R(32)] + V,[(12°)R(23)

DEVEVI[po(13372°) + p(12372°) 4 (1323727)]
= D3V3[(137)(po Do V5 (32°) + Do V5 (322°))] + DgV5[(12°) (po Do V3 (237) + DoV3(2337))]
= DV3[{137)(po Do V5 (32) + DoV5 (3227))] + DiV5[(12%) (po Do V3(23) + DyV3(2337))]
= D3V3[(13%)(po Do V3(32) + DoV3(3227))] + DiV5[(12°) (po Do V3(23) + Dy V3(2337))]
I} (D.12)

Therefore, one obtains the first-order renormalized dynamical equation

(&t — DOVQ)E(U) = —p0D0V25(12)
— DGV ( / [Ve(13){V5[(13°)R(32)] + V5 [<125>E<23)]}) , O

3
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or, through elimination of the isolated time integral thanks to the FDR,
(0, — DoV R(12) = —poDyV?5(12)
—iAD2V? ( / [vav5¢(13)]<135>ﬁ(32)> +iApo DEVAVA([VeD(12)](12°)).
3

D.14
In Fourier space, this equation takes the form ( )

t
(0, + TW) Bt — ') = poT(t — t') — / AsSh(t — ) Fuls — ¢') + Lu(t — 1),
t (D.15)

where the kernel ¥, (t) is given in equation (C.14). As for the new kernel L;(t) arising
from the composite nature of the physical response function, it can be obtained from
equation (D.14) as

Li(t) = Apo Dj / k-plk-q®,|G,(t). (D.16)

q

Appendix E. Renormalized equation for the correlation function

From equation (6.3¢), the full dynamical equation for the correlation function is given
by

(0, — DoV?)C(12) = 2R(21) — Apy Dy V* ( / [Ve®(13)][R(13) + ﬁ(zs)])

—iAD2V? ( / [Vo®(13)]V3[po(1237) + <123§ﬂ>]) . (E.1)

3

We calculate the multi-point averages up to the first order in A with the bare per-
turbation expansion. The three-point average is given by

(1237) = (1237)¢ + (1237 Sqs)s + O(N?). (E.2)

The first term corresponds to equation (8.2¢e). The first-order contribution reads

~ 1 o o L
(1237 Sais)e = §AD§ / / [Vavia(69)][200(126376%9%) + (1269376290 [148°4%) 1
6J9

AAAAA

1 N
= 5ADS / / [Vavid(69)] [2;)0<126:>ﬂ6’“9”>O — Dy / (12469374°4°69),,
6J9 4

~

=D} [ [ (VEVEBEOI6)0(20)0 + (197)0(26%)] (637
—2\D} / / / [VEVED(69)]{(14%)0[(467)0(69)(937)0](24%)¢

+ (14%)0(437)0[(26)0(69") 0(94°)o] + [(16%)0(69”)0(94%) 0] (437)0(24%)}
— oD} / / / VIV (69)] { (140 (400937} ][(26%) (61)]
16

“)o(64°)0] [(49%)0(937)0](24)0 + [(16)0(64°)] (437)0[(20°)0(94°) ]}
(E.3)
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In the right-hand side of this equation, the first line is part of the second-order contrib-
ution to the time-persistent term (whose first-order expression is —Ap3 Dy V2®(12), see
equation (8.7c)). The next three terms are those that contribute to renormalize equa-
tion (8.2¢), whereas the last contributions belong to the second-order renormalization.
Therefore, apart from the time-persistent terms, one has the renormalized expression

(1237) — —2D, /4 (1% (437)(23%) + O( ). E4)

Now, the four-point average in equation (E.1) is given by
(12337) = (12337)¢ 4 (12337 Sais)s + O(N?). (E.5)

The first term is already computed in equation (8.2f). The first-order contribution con-
sists of three Gaussian averages:

A 1
(12337 Syis)s = §AD§ / / [Vavid(69)]
6J9
x {p2(123376%9%) + 2p0(1236376%9P e Do L 4%y | 1 (12369376790 Do [ 4474y v (E.6)
These averages are straightforward to compute. The first one is given by
1 PP N o A~ A N N
5P0(123376°9%)g = p((137)0(36")0(29")0 + (167)(39")0(237)o). (E.7)

It is also part of the time-persistent contribution at second order. Combining this term
with the previous one of the same nature in equation (E.3) and using the procedure
introduced in section 8 to eliminate the isolated time integrals, one gets

—iwgva< / VoD (13)]V]

NAD? / / VEVED(69)]

) {[(16%)0(29%)¢ + (19%)0(26)0](637)o + (137)0(36%)¢(29%)¢ + <16a>0<39b>0<237>0}] )

(E.8)

A2P(12)?
- o [ 2o02)

Adding the first-order term —p2 Dy VZ[A®(12)], one recognizes the second-order expan-
sion of —DyV2Cy(12), with Cq(12) = Cy4(Jr — r’]), according to the exact static equilib-
rium calculation, equation (3.4b6). Such an identification is actually required to insure
consistency between statics and dynamics.

The remaining Gaussian averages in equation (E.6) are given by

p0(1236376°9%e D0 [144°4% " — _ 5 Dy / (12346374°496°0%),
4

— —2pyDy / {(187)0[(33%)0(46")0(697)0(24%)0 + (317)0(487)0(26%)(647)0 + (36%)(64°) (40°)(247),]

(E.9)
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and
1 Aypadb.—Do [, 44°49 agb
5 (1236037690 Ji #4145 = 2(12369376 9,

= (13)0[(26%)0(69”)0(937)o] + (16)0(39°)0(96%)0(237)o

+ (137)0[(39%)0(96*)0(62)0 + (267)0(39)0(69°)0 + (26%)0(39")o (69)o]
+ [{16)0(69")0(937)o](32)0 + (167)0 [<39> (69)0(237)0 + (39)0(69")0(237)o]
+ [{16)0(36")0 + (167)0(63)0](20)0(937)o + (16%)0(637)o[(39°)0(92)o + (29°)0(93)o].

(E.10)

We now need to calculate the correlation function itself up to the first order of the
bare perturbation expansion:

(13) = (13)¢ + (13Sais)¢ + O(N?)
= (13) + %wg / / [Vavid(69)] { P (136°9%) g — 2po Dy / (13464°496°9%), + (13696“9b)0} +0(\?)
— (13)0-+ D3 [ [(V5950(69)] {#516%)0(30)o
—2po Do /4((1‘1%[<46a>0<69b>0<34‘;>0 + (49°)0(36%)0(64°)o] + (16%)0(64°)(49°)0(34°)0)
+(16)0(307)0(96%)0 + (16)0(39)0(69%)0 + (162)0(30)0(69)0} + O(A?) (E.11)
and
82) = 200+ A0} | [[V940(69)] {p3(36)0 20"
—2po Dy /4(<3‘16>o[(46a>0<69b>0<2‘1§>0 + (49%)0(26%)0(64°)0] + (36*)0(64)0(49%)0(24°)0)

+(26)(397)0(96") o + (26")0(39)0(69")0 + (26")0(397)0(69)0 } + O(N?). (E.12)

The first term in each integral corresponds to the first-order contribution to the time-
persistent part of the correlation function, Ap3®(13) in (13) and A\p2®(32) in (32). It
should be discarded to avoid double-counting with equation (E.8) and we accordingly
define (13). and (32)., where ¢ stands for connected, from equations (E.11) and (E.12)
without this term.

Therefore, we identify the first-order renormalization for the average (12337), apart
from the time-persistent terms, as

(12337) = (137)(32), + (13).(23") — 2D, /4 (14°)(4337)(24°). (E.13)

The bare first-order expression for (4337> is given by (see equation (D.9))
(4357) = AuDf [ [ 1VEVER(69)46%)0(63)0(30")a + 00X, (E.19
6J9

and can be spotted in equation (E.9). Again, the corresponding term appears associated
with the first-order expansion of R, as in equation (D.4).
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Collecting equations (E.4) and (E.13), we have
Vilpo(1287) + (12337)]
= V3[(137)(32) + (13)c(237)] — 2 /<145>[poDoVZ<43> + DoV3(4337))(24°)
4

= VI[(137)(32) + (13).(23")] + 21/(145>T%(43)<2215>, (E.15)

4

where we used (see equation (D.5)) R(43) = ipyDyV?2(43) + 1Dy V3 (4337).

We are now ready to write down the first-order renormalized dynamical equa-
tion for the density correlation function. It reads, ignoring 2R(21) and performing the
first integral in the right-hand side of equation (E.1),

(9, — DyV?)C(12) = —DyV2Cy(12) — IADEV™ (/g[va@(13)]vg[<1§7><32>c + (13>C(2?ﬂ>]>

+2AD;V ( /3 [Ve®(13)] /4 <12m}_%(43)<22p>> 7
(E.16)

or, integrating out the physical response function in the last term and introducing the
connected density correlation function,

(0; — DoV?)F(12)
= —iAD2V*~ (/[va@(13)]vg[<137><32>c + <13>C(2:3ﬂ>}> + 2\po DV (/[va@(14)}<12m<22n>) .

(E.17)
We then get the Fourier-transformed equation of motion,

t
(0 + Tp)E(t —t') = —)\Dg/ ds/q -plk - q®,|G,(t — s)Fi(s —t')
e Ja
t/
+ wg/ ds/k cqlk - g Fy(t — )Gt — )
oo Ja

t/
s [ ds [kl av 6, - )G~ )
oo q
which we rewrite as (E.18)
t

(8t + Fk)Fk(t — t/) = —/ dsZk(t — S)Fk(s - t/) + Nk(t - t/), (Elg)
t/
tl

Ne(t —t) = —AD@/

—0o0

ds / q- plk - qb ]G, (t — ) Fu(t — s)
+AD} /t/ ds/k-q[k-q(I)q]Fp(t—S)Gk(t’—s)

t/
+2)\P0D3/ ds/k'p[k'qq)q]Gp(t—S)Gk(t/—s). (E.20)
o g
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Note that, in the absence of simple relations between the response and correlation
functions beyond the FDR, it is not guaranteed that the sum of three integrals in equa-
tion (E.20) actually reduces to a local function of time as posited in equation (E.19).
For the same reason, it is not obvious that the time derivative of Ny(t — '), given by

t/
O Ni(t —t") = poXi(t — t') — AD?)/ ds / q-pk-q®]G,(t — s)Ri(t' — s)
e q
t/
D2 / ds / k- qlk - g, T (t — 5)Gi(t — s)
e Ja

t/
+ 2)\p0D(2)/ ds / k- plk-q®][0:G,(t — )]Gt — s), (E.21)
o Jq

where the FDR and integrations by parts have been used, equals poXg(t — ') — Lg(t — t'),
as required for consistency with the FDR. In fact, general arguments support the exact
opposite [31, 32].

However, using the following first-order consistent substitutions (see equations (10.7),
(10.8), and (10.1a))

Fi(t) = poGr(t) + O(N), (E.220a)
Bi(t) = poDok*Gi(t) + O(N), (E.22b)
0,G(t) = —Dok*Gy(t) + O(N), (E.22¢)

in the above integrals, one can easily show, with calculations similar to those performed
in section 9, that these properties hold to first order. One can use, in particular, the
identity k*q-p + p*(k-q+ 2k - p) = k- p(k* + p?).

As an example, we may show that, within the first order, equation (E.20) is indeed
compatible with equation (10.12), which is FDR-consistent. One first uses equa-
tion (E.22a) in (E.20) to get

tl
Ni(t — ') = Apo D2 / ds / [k - qB)[12G, (t — $)Gi(t' — 8) + Gyt — S2CA(F — 5)] + ON2).
o Jq
(E.23)
Then, equation (E.22¢) gives

Ni(t —=t') = A\poDy /t ds/[k - qPyJ0s[Gy(t — $)Gr(t' — 5)] + O(N?), (E.24)

hence

Ne(t — 1) = ApoDy / k- q®,]G,(t — t') + O(A2). (E.25)

q

Since G,(0) =1 and fq k - q®, = 0 by isotropy, this can be rewritten as

t
Ni(t —t") = Apo Dy / ds / k- q®4)0,Gp(s — t') + O(N?), (E.26)
t q
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and, with one last use of equation (E.22c¢), one gets
t
Ni(t —t') = =ADy / ds / [k - q®,][poDop*Gp(s — )] + O(N?). (E.27)
t’ q

Truncated to first order, this is nothing but equation (10.12).
Finally, Ni(t —t') can also be written as

Ni(t—t)=— /t/ dsYp(t — s)Fp(t' — s) + /t/ dsDy(t — 8)[pel' kG (t' — 5)],

with (£-28)

Dy (t) = My(t) + Li(t), (E.29)

pol'x

where M;(t) is the mode-coupling kernel defined in equation (10.27). One can thus
readily transpose the discussion around equation (9.16) of the bare theory to the renor-
malized framework.
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