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Abstract

Rossby waves play an important role in mediating the angular momentum of rotating spherical fluids, creating
weather on Earth and tuning exoplanet orbits in distant stellar systems. Their recent discovery in the solar
convection zone provides an exciting opportunity to appreciate the detailed astrophysics of Rossby waves. Large-
scale Rossby waves create subtle drifts in acoustic oscillations in the convection zone, which we measure using
helioseismology to image properties of Rossby waves in the interior. We analyze 20 yr of space-based
observations, from 1999 to 2018, to measure Rossby-mode frequencies, line widths, and amplitudes. Spatial
leakage affects the measurements of normal-mode eigenfunction coupling (which we refer to as “normal-mode
coupling” in this paper) and complicates the analysis of separating out specific harmonic degree and azimuthal
number of features on the Sun. Here we demonstrate a novel approach to overcome this difficulty and test it
by performing synthetic tests. We find that the rms velocity of the modes is of the order of 0.5 m s−1 at the surface.

Unified Astronomy Thesaurus concepts: Helioseismology (709); Astronomical techniques (1684); Internal waves
(819); Solar photosphere (1518); Solar interior (1500); Observational astronomy (1145)

1. Introduction

Rossby waves were first detected as large-scale weather
patterns in Earth’s atmosphere (Rossby 1939) and subsequently
in the ocean (Chelton & Schlax 1996). Theoretical analysis
(Papaloizou & Pringle 1978; Provost et al. 1981; Smeyers et al.
1981; Saio 1982; Unno et al. 1989) suggested that rotating
spherical fluids should show the presence of Rossby waves
(commonly known as r-mode oscillations in the astrophysical
context), in which the Coriolis force acts as a restoring force.
The Sun, a differentially rotating spherical fluid, satisfies this
condition. Long-term high-quality observations have encour-
aged several attempts in the past to detect Rossby waves (Kuhn
et al. 2000; Ulrich 2001; Sturrock et al. 2015). In all these
earlier studies, the dispersion relation was not measured, a
critical quantity in the identification of the governing physics.
Recently, Löptien et al. (2018), using granulation tracking and
the helioseismic technique of ring diagrams (Hill 1988)
measured a Rossby-dispersion relation, thereby unambiguously
detecting sectoral modes (where the azimuthal order of the
mode is the same as its harmonic degree) in the subsurface
through analyses of six years of data from the Helioseismic and
Magnetic Imager (HMI: Schou et al. 2012) on board the Solar
Dynamics Observatory (SDO). Subsequently, Liang et al.
(2019) and Hanasoge & Mandal (2019), using two different
methods, time-distance helioseismology (Duvall et al. 1993b)
and normal mode coupling respectively, further validated the
original detection. All the studies mentioned above have
focused on Rossby waves in the solar surface and near-surface
regions. Since Rossby waves exist in spherical rotating fluids, it
can also in principle exist in the solar atmosphere. McIntosh
et al. (2017), using the tracking of coronal bright points, found
evidence of Westward propagating large-scale Rossby-like
waves in the solar corona. It may be useful to characterize the
connection between solar internal Rossby waves and the
measurements of McIntosh et al. (2017). One important
difference between them is that solar internal Rossby waves
are retrograde waves whereas Rossby-like waves detected in

solar corona by McIntosh et al. (2017) are prograde propagat-
ing. Zaqarashvili et al. (2010a, 2010b, 2015) and Dikpati et al.
(2018a, 2018b) studied magnetized Rossby waves in a
magnetohydrodynamic shallow water model of the solar
tachocline in order to understand quasi-biennial oscillations
and Rieger-type periodicities1 in solar activity. It is therefore
important to characterize the properties of internal solar Rossby
waves from observations in order to determine how it affects
solar internal dynamics.
Normal-mode coupling, a seismic technique with an

illustrious history in geophysics (see, e.g., Dahlen & Tromp
1998), has seen limited adoption in helioseismology. Woodard
(1989) first described distortion of eigenfunctions of the
Sun due to latitudinal differential rotation. This method has
subsequently been used by several authors, e.g., Lavely &
Ritzwoller (1992), Woodard (2006, 2014, 2016), Roth &
Stix (2008), Schad et al. (2011, 2013), Woodard et al. (2013),
and Hanasoge (2017, 2018) in various studies ranging from
meridional circulation to convection. Roth & Stix (2003),
Woodard (2016), Hanasoge (2018), and Hanasoge et al. (2017)
have shown how this method may be used to glean information
about time-varying, nonaxisymmetric features in the Sun. The
fundamental measurement comprises cross-correlated Fourier
coefficients of the wavefield, ( ) ( )f w f wá ¢ ñ¢ ¢ℓ m ℓm* , where angular
brackets denote ensemble averaging, f the line-of-sight
Doppler velocity, ℓ and m harmonic degree and azimuthal
order respectively, and ω the temporal frequency. In the
absence of perturbations, the expected value of this correlation
is precisely obtained by considering leakage and by modeling
modes as independently and identically distributed2 random
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1 Solar activity follows a dominant 11 yr cycle. Two other timescales have
also been observed in solar activity indicators, the first presenting timescales of
around 150–160 days—commonly known as Rieger-type periodicity and the
second following an approximately 2 yr periodicity, known as quasi-biennial
oscillations.
2 If an outcome of a random sampling is independent of the random variables
that came before it, then we call the process independent and identically
distributed, in short i.i.d.
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processes. Depending on the structure of the perturbations,
specific spatio-temporal wavenumbers show enhanced power
above the background systematic floor. This constitutes a
detection of a perturbation at those spatial and temporal scales.
The difference between temporal frequencies s w w= ¢ -
captures information about the perturbation timescale, whereas
the difference between harmonic degrees, ¢ -ℓ ℓ, and
azimuthal number, m′−m, carries information about the
length scale, and toroidal and poloidal nature of flows.
Hanasoge & Mandal (2019) used this formalism to detect
Rossby waves in the Sun with the first 2 yr of HMI data,
thereby validating the methodology. In this work, we have
extended the analysis of Hanasoge & Mandal (2019) with 12
and 8 yr of solar oscillation data from the Michelson Doppler
Imager (MDI) on board the Solar and Heliospheric Observa-
tory (SOHO) and HMI, respectively, to estimate frequencies,
line widths, and amplitudes of Rossby modes and compare
them with parameters obtained from earlier studies by Löptien
et al. (2018) and Liang et al. (2019). Because we do not
observe the entire Sun, spatial and temporal leakage affects our
measurements. We perform several synthetic tests in order to
characterize the effect of leakage, in order to be able to place
faith in our inferences, e.g., to recover the depth profile of
Rossby modes accurately from a synthetic measurement with
added noise. This will help us further determine depth profiles
of Rossby waves in the convection zone, which are still
unknown and are active areas of research.

2. Data Analysis

The mode-coupling measurement procedure for Rossby
waves is described in detail in Hanasoge & Mandal (2019)
and Hanasoge (2018). We follow the same notations as
Hanasoge (2018) for convenience. The raw data are global time
series of line-of-sight Doppler velocity projected onto spherical
harmonics, i.e., fℓm from MDI and HMI. We calculate the
cross-correlation function ( ) ( )f w f w sá + ñ+ℓm ℓm t* . Analyzing
this quantity at each frequency, ω, is less tractable, and we
therefore define B-coefficients as a linear least-square fit to the
raw wavefield correlations,
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where the first term on the right-hand side of Equation (2) is a
Wigner-3j symbol and ¢ ¢Lℓm

ℓ m is the leakage matrix, which
describes how spatial windowing in the data, i.e., arising from
our limited vantage of the Sun, causes “leakage” from mode
( )ℓ m, to mode ( )¢ ¢ℓ m, . B-coefficients are calculated for all
identified radial orders, (n) and harmonic degrees in the
range ℓä[10, 180]. wRℓm describes the power spectrum
of a mode (labeled using three quantum numbers n ℓ m, , )

(Anderson et al. 1990; Duvall et al. 1993a),
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where wnℓm is an eigenfrequency and Gnℓ is the full width
at half maximum. We use observed values, i.e., obtained
through fits of spectra by the global-mode pipeline, for
these parameters. We assume that errors in measurements of

( ) ( )f w f w sá + ñ+ℓm ℓm t* are uncorrelated, have equal variances,
and zero expectation value. This allows us to invoke the Gauss-
Markov theorem which ensures that B-coefficients estimated
from Equation (1) as an unregularized least-square estimate of
the cross-correlation measurement are unbiased. Differential
rotation advects features on the Sun at a variety of different
speeds. In order to appropriately follow these perturbations, we
adopt a corotating frame, i.e., apply a tracking rate. The
temporal frequencies of the perturbation in the corotating
frame, σ, will be transformed to σ+tΩ in the inertial frame,
where Ω is the rotation frequency of the Sun. A variety of
tracking rates may be chosen since the Sun is differentially
rotating: here, we choose 453 nHz, which is the value at the
equator. We extend the frequency range from our earlier work
(Hanasoge & Mandal 2019) to σä[0, 200] nHz in order to
appreciate the spectra of the perturbations better.

3. Inversion

We assume Rossby waves are sufficiently well described by
a toroidal flow, allowing it to be expressed as follows

( ) ( ) ˆ ( ) ( )åq f q f= ´s s ru r w r Y, , , , 4
st

st h st

where ( )q fr, , and (ˆ ˆ ˆ )q fr, , are radius, colatitude, longitude,
and corresponding unit vectors respectively, h is the
horizontal covariant derivative, and Yst is a spherical harmonic
of degree s and azimuthal order t. ( )sw rst determines the depth
variation of Rossby waves.
We observe only the near side of the Sun, the angular extent

that appears in the field of view of the telescope. This results in
spatial and temporal leakage in the measurements (see
Section 4.1). B-coefficients as estimated in Section 2 will
encounter leakage from neighboring harmonic degrees and
azimuthal number (see Equation (26) of Hanasoge 2018)
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B- and b-coefficients refer to different quantities and are only in
special cases (as discussed below) identical. sBst and

sbst are also
functions of radial order, n. In this work we consider the
coupling between modes with the same radial order and
therefore omit it in the expression for notational brevity. nℓ is

2
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the sensitivity kernel for the mode ( )n ℓ, , and ¢-fℓ ℓ s, is obtained
from an asymptotic analysis of the kernels (Vorontsov 2011;
Woodard 2014; Hanasoge 2018). This asymptotic kernel is
only valid when s=ℓ or s=ℓ′ (see, for example, Brussaard
& Tolhoek 1957; Vorontsov 2011). Hanasoge (2018) have
shown a comparison between kernels obtained from asymptotic
analysis and the exact expression (Figure 10 of that paper) and
found that the comparison gets slightly worse when s≈ℓ but is
otherwise very accurate when s<ℓ. In this work, we search for
coupling between p-modes with harmonic degree in the range
ℓ ä [10, 180], and are interested in Rossby modes with harmonic
degree s�20, thereby justifying the use of asymptotic kernels.
In case of full-sphere observations, we show in Appendix A that
the measured B-coefficients from Equation (1) will be reduced to
Equation (7), a simple relation with which to invert for the
velocity profile swst .

Inverting Equation (5) is complicated in the general case, as
explained in Hanasoge (2018) due to leakage contributions
from neighboring modes into the target measurement channel.
For solar Rossby waves, we know from earlier studies by
Löptien et al. (2018), Liang et al. (2019), and Hanasoge &
Mandal (2019) that nonsectoral modes ( ∣ ∣)¹s t are either
absent or appear at amplitude levels well below the detection
threshold. Due to this condition, Equation (5) would be
simplified after substituting d»s s

- -b bst s t s s,
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Although Equation (8) is much simpler than Equation (5), we
still need to show that we can separate out desired specific
spatial scales using our measurement. We follow two
approaches as discussed below for that. In our first approach,
we do not consider leakage and invert Equation (7), assuming
s
-bs s, is the same as s

-Bs s, , as considered in our earlier work
(Hanasoge & Mandal 2019). This approximation will only hold
if there is no leakage, i.e., d d=¢ ¢

¢ ¢Lℓm
ℓ m

ℓℓ mm . The approximation
affects our inferences and to quantify this, we perform synthetic
tests. In our second approach we consider leakage, a discussion
of which is presented in Section 4.2. We choose two inversion
techniques, Optimally Localized Averaging (OLA; Backus &
Gilbert 1967) and Regularized Least Square (RLS) for
this work.

3.1. OLA

In OLA, the inverted flow profile at depth r0 is written as a
linear combination of all the measurements as follows,
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where α needs to be determined by minimizing the following
misfit function
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the first term of Equation (10) ensures that the averaging kernel
obtained after minimizing Equation (10) has a large value at
depth r0 and a small value elsewhere. We can choose to
perform the inversion separately for each frequency bin or once
for all frequency bins. In this technique, we choose the latter
approach: nℓ is obtained from s nℓ after summing over all the
frequency bins, σ, where s nℓ is the diagonal component of the
noise covariance matrix. In the next section we perform an
inversion for each frequency bin separately using the RLS
method.

3.2. RLS

In this method, we expand the flow profile in the B-spline
basis

( ) ( ) ( )å b=s sw r B r , 11st
k

st k

where Bk is the B-spline basis function of order three. We
choose a total of 50 knots for the inversion up to depth 0.1Re.
We determine β by minimizing the following misfit function
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where we consider second-derivative smoothing where λ is the
regularization parameter. The Equation (12) may be minimized
if we solve the following system of equations
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where rk denotes points on the radial grid. As opposed to earlier
methods, we must perform inversions for separate frequency
bins in RLS.

Figure 1. Rossby modes of harmonic degree s and frequency σs leak into
degree +s 2 with frequency s + W2s . Red dashed lines in the lower and upper
parts of the figure show the classical Rossby-wave dispersion relation
(Equation (16)) and leakage of those modes into higher frequencies.
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4. Results

4.1. Modeling Leakage

Hanasoge & Mandal (2019) considered a frequency analysis
σ in the range (0.0, 0.5) μHz. In this work, we expand the range
of σ up to 2 μHz and show in Figure 1 that Rossby modes
leak into higher frequencies, as observed by Liang et al. (2019).
The sectoral mode of harmonic degree s and corresponding
frequency ( )s = W +s2 1s leaks into a harmonic degree
s+2 at frequency σs+2Ω. Spatial windowing of the rotating
Sun results in simultaneous spatial and temporal leakage,
which we verify through a synthetic test.

We consider sectoral modes of Rossby waves for odd
harmonic degrees. Rossby waves in the rotating Sun are
multiplied by a spatial window function—which is unity for the
visible portion of the disk, and otherwise zero. We perform
spherical harmonic and temporal Fourier transforms in order to
estimate vs(ω). Since we only detect sectoral retrograde modes,
i.e., t=−s, we use both t and s equivalently to denote Rossby
waves. Analytical calculations suggest (see Equation (35) in
Appendix B) that the observed vs(ω) contains contributions
from neighboring modes s′ due to leakage ¢Ls

s ,

( ) ( ( )) ( )åw d w s= - + ¢W
¢

¢
¢ ¢v L w t . 15s

s
s
s

s t

The Delta function is invoked assuming that Rossby modes
have power close to the classical dispersion frequency

∣ ∣
( )s =

W
+t

2

2 1
, 16t

where σt is the frequency of the Rossby mode with azimuthal
number t in a corotating frame with rotation frequency Ω. From
Equation (15) we see that neighboring modes s′ will corrupt the
measurements of our desired mode s by an amount that

depends on the value of leakage ¢Ls
s .

As explained in Appendix B, the dispersion relation of
Rossby waves either leaks into Ω or 2Ω depending on the value
of

¢Ls
s . In order to appreciate whether +L ,s

s 1 or +Ls
s 2 is more

significant, we calculate B-coefficients using Equation (8)
without considering tracking and obtain the quantity
( ( ) ( ))å - sB n ℓ1 ,n

ℓ
st

2. From the left panel in Figure 2, we see

that power from odd s leaks to odd s and not to even s for our
measurements, which implies that +Ls

s 2 is more significant than
+Ls

s 1. Because of this reason, we observe leakage at w + W2t
but not at w + Wt . The right panel of Figure 2 shows the effect
of leakage if we track the data, similar to the spectrum observed
in Figure 1. There might be other systematics, e.g., P- or
B-angle corrections, that can affect the properties of leakage as
discussed above.

4.2. Synthetic Inversions Taking Leakage into Account

Hanasoge (2018) have shown that leakage complicates the
inversion using Equation (5). Therefore in our earlier work
(Hanasoge & Mandal 2019), we performed inversions using
Equation (7) for the sake of simplicity instead of the full
Equation (5). This simplifying assumption might diminish the
accuracy in retrieving the depth profiles of Rossby waves.
In our synthetic test, we use cubic polynomials to characterize
the depth profiles, with the condition that they are set to zero
at depths 0.9Re and below. We subsequently calculate the
B-coefficient using Equation (5). In our first approach, we
ignore leakage and assume sbst is the same as sBst and then
use Equation (7) to invert for the profile swst .
Next, we take leakage into account and proceed with the

following approach. We write Equation (8) using the following
compressed form
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is the new sensitivity kernel which relates observed
B-coefficients to properties of Rossby waves s

-ws s. The off-

diagonal terms Q ¢
s
s quantify contributions from neighboring

modes ( )¢ - ¢s s, to our desired mode ( )-s s, in the observed

B-coefficient. The term ( )sQ ¢
s
s depends on the leakage matrix

¢ ¢Lℓm
ℓ m . We have shown in Section 4.1 that leakage from

neighboring modes ¢s occurs at the same temporal frequency as

Figure 2. Left panel displays leakage of modes when tracking is not applied. Leakage then occurs at the same frequency. The right panel displays leakage of modes
when tracking is considered and bears a strong resemblance to observations, i.e., Figure 1. In both cases, modes with odd harmonic degrees leak into neighboring odd
harmonic degrees.

4

The Astrophysical Journal, 891:125 (10pp), 2020 March 10 Mandal & Hanasoge



that of the mode s ¢s if we do not employ tracking. If the data
are tracked, this leakage moves to higher temporal frequencies.
Since we are performing inversions at each frequency bin in the
range [0.0, 0.5] μHz and since the contribution to our desired
frequency bins from neighboring modes is negligible in
that range, we consider diagonal terms only, i.e., Qs

s in
Equation (18) for the inversion.

( ) ( ) ( ) ( )ò s= Qs s
- -B n ℓ dr n ℓ r w r, , , , . 19s s s

s
s s, ,

We apply Equation (19) to invert for B-coefficients, estimated
using Equation (5). In the left panel of Figure 3, we compare our
inversion results with the original profile, demonstrating that
choosing diagonal terms in Equation (19) improves the inverted
profile. This test also shows that choosing Equation (7) is not a
particularly bad assumption for this problem, and that our
inferred amplitude might at worst be off by a factor of a few. It is
the kernel that is responsible for differences in the inferred
amplitudes. To compare the two kernels, we plot f s nℓ0, andQs

s

in the right panel of Figure 3 for a mode with radial order n=2
and harmonic degree, ℓ=131. It can be seen in Figure 3 that
though the shape of the kernels remains the same in two cases,
the values are different, resulting in changes in the inferred
amplitude. In order to test the inversion algorithm with noise
added to the measurement, we choose an artificial profile that
goes to zero at the base of the convection zone. The magnitude at
the surface is set to 4 ms−1, which is close to the observed value.
We calculate B-coefficients in a similar manner as described
above using Equation (5) and add random Gaussian noise in
proportion to the observed level, s nℓ. We then perform
inversions assuming Equation (7) and compare our inversion
results with the original profile in Figure 4. In order to get error
in the inverted profile we repeat this process multiple times and
estimate the standard deviation of these values, thereby obtaining
the error in the inferential profile.

4.3. Frequencies and Line Widths of r-modes

After validating our method we estimate B-coefficients as
described in Section 2 from the observed oscillation data. We

divide 12 yr of MDI data into three four-year chunks and 8 yr
of HMI data into two four-year chunks. We analyze each data
set chunk separately and do the inversion to obtain swst from the
measured B-coefficients. We then take the average of these
results and plot the average power spectra which is shown in
Figure 5. In order to quantify frequencies, line widths, and
amplitude of these modes, we fit a Lorentzian function plus a
constant background

( )
[( ) ( )]

( )w
w w t

=
+ -

+F
A

B
1 2

, 20
0

2

to ∣ ∣wst
2 for each s. Here A is the maximum amplitude of the

Lorentzian, ω0 is the central frequency, Γ is the full width at
half maximum, and B is constant background power. We use
the curve_fit module implemented in scipy.optimize to fit the
power spectrum. We have tabulated values of these parameters
for all modes starting from s=1 to s=15 obtained through
analyses of HMI and MDI data in Tables1 and2 respectively.
Fitted spectrum for HMI and MDI are shown in Figures 6
and7 respectively. The s=3 mode parameters obtained from

Figure 3. Left panel shows inversion results without noise. The input profile is plotted using a solid line and the inverted profile with and without leakage are marked
by dashed and dotted–dashed lines respectively. In the right panel we compare kernels, ( )f rs nℓ0, (red dashed line) with Q -

-
s s
s s
,
, (black solid line) for s=7. It can be

seen that two kernels are of the same shape but slightly differing in magnitude from each other.

Figure 4. Plot shows the inversion result with noise. In this case, we ignore
leakage. The black solid line is the original profile we put in. The red dashed
line is the inferred profile and the corresponding error (±1σ around the mean)
in the inferred profile is shown by the orange shaded area.
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HMI data are similar to the values reported by Löptien et al.
(2018), whereas the MDI analysis is similar to the findings of
Liang et al. (2019). The s=13 mode obtained from the
analysis of HMI data does not clearly stand out and so we do
not fit this mode. Amplitudes of all the modes are varying with
harmonic degrees and becoming very small for harmonic
degrees s�13. Since our analysis period covers cycles 23 and
24, differences in parameter values between Tables1 and2
(obtained from analysis of HMI and MDI data respectively)
may in principle carry information about the solar cycle
dependence of Rossby modes. However, this interpretation is
complicated because of our use of data from two different
instruments that we have not cross-calibrated. Liang et al.
(2017) have performed this in the context of time-distance
helioseismology. A similar task is required for normal mode
coupling in order to combine MDI and HMI analyses.

4.4. Is the Mode of Degree s=1 Due to Systematics in the
Method?

Hanasoge & Mandal (2019) detect the s=1 Rossby mode.
Since the tracking rate is the same as the frequency of the
mode, s=1, systematics in our method might induce spurious

power in the related spatial and temporal frequency bins. To
investigate if it is due to tracking, we choose different values
for it and calculate the B-coefficient for each case. If the
tracking rate changes, so will the frequency of each mode in
the power spectrum plot in Figure 5. We plot the frequency of
the mode, s=1 versus tracking rate and compare it with the
theoretical value in Figure 8. We also see that the s=1 mode
is leaking to mode s=3 in Figure 1, which would be unlikely
to occur if it were due to systematics in the method. These
arguments are in favor of the theory that the s=1 power is
associated with Rossby waves and not due to systematics. We
also plot the power for harmonic degree, s=1, and azimuthal
number, t=1, in the right panel of Figure 8. We do not find
extra power close to the frequency 453 nHz. Nevertheless,
caution should be taken when interpreting this mode as we
might not have accounted for all the systematics in our method.
One possibility might be a center-to-limb systematic which is
viewed as an outflow from the disk center to the limb. This is a
poloidal flow. Nevertheless, if there is a component of this
poloidal outflow that leaks to a toroidal component with
harmonic degree, s=1, and azimuthal number, t=−1,
spurious power at this temporal and spatial scale would show
up in the spectrum. This fictitious flow is static from an inertial

Figure 5. Left panel shows the normalized average power spectrum of Rossby waves at depth R0.98 by analyzing 12 yr of MDI data divided into three four-year
chunks. The right panel shows the same as the left panel but with 8 yr of HMI data divided into two four-year chunks. The specific configuration of measurements we
use allows us to only detect Rossby modes with odd harmonic degrees. The black dashed line in each panel represents the theoretical dispersion relation of sectoral
Rossby modes in a corotating frame with rotation frequency 453 nHz.

Table 1
Analysis of HMI Data

MC Löptien et al. (2018) Liang et al. (2019)

s
W
+s

2

1 ( )w p20 ( )w p20 ( )w p20 ( )pG 2 A B
nHz nHz nHz nHz nHz cm s−1

1 453 451 ± 0.1 — — 5 ± 0.5 538 ± 157 31 ± 647
3 226.5 233 ± 3 259 254 ± 2 58 ± 11 70 ± 24 6 ± 155
5 151 156 ± 0.4 157 ± 4 156 ± 2 12 ± 1 68 ± 15 131 ± 22
7 113 111 ± 0.1 112 ± 4 110 ± 4 6 ± 1 124 ± 66 119 ± 19
9 90.6 76 ± 4 86 ± 6 -

+82 5
4 53 ± 12 32 ± 12 47 ± 34

11 75.5 54 ± 2 75 ± 7 46 ± 7 66 ± 7 26 ± 7 31 ± 12
15 56.6 18 ± 1 -

+47 6
7

-
+22 3

2 10 ± 3 25 ± 12 42 ± 6

Note. Mode frequency ω0, amplitude A , full width at half maximum Γ, and background power B that give best Lorentzian fits to the observed B-coefficient spectra
are tabulated in the corotating frame. The second column in the table gives the theoretical frequencies of modes in a corotating frame with tracking frequency 453 nHz.
For comparison, we list the observed frequencies from two other studies, Löptien et al. (2018) and Liang et al. (2019). The fitted spectrum is plotted in Figure 6. Here,
MC stands for mode coupling.
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Figure 6. Averaged power spectrum from the analysis of SDO/HMI data (blue solid line with cycle). We fit a Lorentzian profile with a constant background to the
power spectrum as described in Section 4.3. The fitted parameter values are tabulated in Table 1. The fitted spectrum is shown by the red solid line.

Table 2
Same As in Table 1, Except Parameter Values Are Obtained from Analyzing MDI Data

MC Löptien et al. (2018) Liang et al. (2019)

s
W
+s

2

1 ( )w p20 ( )w p20 ( )w p20 Γ/(2π) A B
nHz nHz nHz nHz nHz cm s−1

1 453 451 ± 0.1 — — 5 ± 1 391 ± 136 1357± 480
3 226.5 249 ± 0.4 259 254 ± 2 12 ± 2 107 ± 37 306 ± 72
5 151 153 ± 1 157 ± 4 156 ± 2 15 ± 3 38 ± 14 97 ± 22
7 113 112 ± 0.6 112 ± 4 110 ± 4 14 ± 2 55 ± 15 93 ± 24
9 90.6 85 ± 3 86 ± 6 -

+82 5
4 52 ± 9 26 ± 9 23 ± 18

11 75.5 56 ± 2 75 ± 7 46 ± 7 41 ± 5 19 ± 5 30 ± 6
13 64.7 48 ± 4 40 ± 10 24 ± 7 65 ± 12 12 ± 4 24 ± 4
15 56.6 25 ± 2 -

+47 6
7

-
+22 3

2 41 ± 6 15 ± 3 24 ± 4

Note. The fitted spectrum is shown in Figure 7.
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frame and therefore in a corotating frame its frequency will be
equal to the tracking rate Ω, which is the same as the Rossby
mode (s, t)=(1,−1).

5. Conclusion

We have extended the work by Hanasoge & Mandal (2019)
by analyzing 8 yr of HMI data by considering all observed
oscillation modes of harmonic degree in the range [10, 180] to
measure frequencies, line widths, and amplitude of Rossby
modes. We also analyze 12 yr of SOHO/MDI data from
1999–2011. In this work, we do not combine these two data
sets, since a more sophisticated analysis to correct for P- and
B-angle variations is required (as demonstrated by Liang et al.
(2017), in the context of time-distance helioseismology).
Therefore, we show results from the two data sets separately.

In order to understand how Rossby-mode eigenfunctions
vary with depth, we first validate our inversion technique by
recovering a synthetic profile that we introduce. We first use
Equation (7) and perform the inversion. Next we consider the
diagonal term in Equation (17) for the inversion. In Figure 3,
we compare the inverted and original profiles. Choosing the
diagonal term for the inversion provides a higher quality
inference than when simply choosing Equation (7).
We performed tests to verify if the s=1 mode that we

detect is due to systematics in our measurement since the
frequency of this mode is the same as the tracking rate we
choose, Ω. We choose different tracking rates and find that
the observed frequency of the s=1 mode follows the
theoretical prediction for that tracking rate. We also see that
s=1 leaks to s=3 (see Figure 1), which is unlikely to occur

Figure 7. Same as in Figure 6. Averaged power spectrum (blue solid line with cycle) and corresponding fit (red solid line) from the MDI analysis. The fitted parameter
values are listed in Table 2.
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if it were to be due to systematics in our method. However,
we remain skeptical and will not declare detection of the
s=1 mode.

Our approach of modeling leakage and measurement techni-
que differs from that of Schad et al. (2013), who studied
meridional circulation in the Sun using a variant of the
measurement we apply here. Here, we consider coupling of
identical-harmonic-degree p-modes, which limits us to the study
of Rossby waves of odd harmonic degrees. In order to investigate
the even harmonic degrees, we need to consider coupling
between p-modes of different harmonic degrees, with δℓ=1, 3,
K(as δℓ increases, frequency separation also increases, which in
turn decreases the sensitivity of the coupling, as may be seen
from Equations (1) and (2)). Additionally, in order to image
meridional circulation and differential rotation, we have to
estimate B-coefficients as defined in Equation (1) at σ=0 (since
we assume that these features only weakly evolve in time). We
also mention in Section 4.2 how the particular problem of Rossby
waves in which we are interested becomes simplified because of
its finite σ. Our future attempts will be to address more general
problems in helioseismology using this technique.

K.M. acknowledges financial support from the Department
of Atomic Energy, India. S.M.H. acknowledges support from
the Max Planck Partner Group award.

Appendix A
Partial to Full Sphere Observation by Ignoring Leakage

In case of full-sphere observations of the Sun, there is no
leakage, i.e., d d=¢ ¢

¢ ¢Lℓm
ℓ m

ℓℓ mm . The general expression for the
B-coefficient is

( )

( )
( )

g g

= å

´ ¢ 

s s
w

s s s

¢  ¢ ¢ ¢
¢ ¢

+
 ¢+ ¢

¢ ¢
 ¢ ¢

¢  ¢ ¢ ¢ ¢

B n ℓ N L

L H H b ℓ ℓ

,

, .

21

st ℓst ℓ ℓ m m s t ℓm
ℓ m

ℓm t
ℓ m t

tm
ℓsℓ

ℓℓmt t m
ℓ s ℓ

ℓ ℓ m t s t

, , , , , ,
,

*

If we substitute d d=¢ ¢
¢ ¢Lℓm

ℓ m
ℓℓ mm into Equation (21) we obtain

( )

( )
∣ ∣ ( ) ( )

d d d d

g g

g g

= å

´ ¢ 

= å

s s
w

s s s

s
w

s s

¢  ¢ ¢ ¢ ¢ ¢  + ¢+ ¢

¢ ¢
 ¢ ¢

¢  ¢ ¢ ¢ ¢

¢
¢

¢

B n ℓ N

H H b ℓ ℓ

N H b n ℓ

,

,

, . 22

st ℓst ℓ ℓ m m s t ℓℓ mm ℓℓ m t m t

tm
ℓsℓ

ℓℓmt t m
ℓ s ℓ

ℓ ℓ m t s t

ℓst ms tm
ℓsℓ

tm
ℓs ℓ

ℓℓmt s t

, , , , , ,

2*

Note that we have put dependence on radial order n back in the
last step of the above equation. We currently observe only
sectoral Rossby modes, i.e., s=−t in the Sun. If we apply
this condition to the above equation and use Equation (6), we
arrive at

( ) ( )

( ) ( )

=

=

s s
s

s

s

- -
-

-

-

B n ℓ N
N

b nℓ

b nℓ

,
1

,

. 23

s s ℓs s
ℓs s

s s

s s

Note that, to arrive at the final Equation (23), we have assumed
that only sectoral modes of Rossby waves exist.

Appendix B
Spatial and Temporal Leakage

We observe only a part of the solar disk that comes into the
field of view of the telescope. If ( )q fv T, ;R is the velocity field
due to Rossby waves, our measurement will be ( )q fv T, ; and
these two fields are related by the following expression

( ) ( ) ( ) ( )q f q f q f=v T W v T, ; , , ; . 24R

( )q fW , is the window function unity over the visible part of
the solar disk and otherwise zero. In our convention, T denotes
time and t is used for azimuthal number. We assume that the
velocity field for Rossby waves, ( )q fv T, ;R , is scalar for
simplicity. The velocity field of Rossby waves in the corotating
frame may be written as

( ) ( ) ( ) ( )åq f w w q f¢ ¢ ¢ = ¢ ¢ ¢v w Y, ; , , 25R
s t

st st
,

where Yst is the spherical harmonic with azimuthal number t
and harmonic degree s. ( )wwst is the inferred toroidal velocity
field at that spatio-temporal frequency bin and radius. The
prime denotes the coordinates of a corotating frame at angular
frequency Ω rotating (with respect to the inertial frame).
Coordinate and frequency transformations from one to another
coordinate system are given by

( )q q f f w w¢ = ¢ = + W ¢ = - WT t, , . 26

Figure 8. Left panel: frequencies of the mode s=1 (circles) for different tracking rates and corresponding theoretical values (triangle) are plotted. Right panel: we plot
the power for harmonic degree, s=1, and azimuthal number, t=1. In the spectra, we do not find any extra power close to frequency 453 nHz (dashed vertical line).
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We omit the prime on θ in all equations below. Substituting
Equation (26) into(25) and using(24), we obtain

( ) ( ) ( )

( ) ( ) ( ) ( )

ò

ò

q f
p

w w q f

q f
p

w w q f

+ W = ¢ å ¢

= å - W

w

w

¢ Wv T T d e w Y e

v T d e w t Y

, ;
1

2
, ,

, ;
1

2
, . 27

R
i T

s st st
it T

R
i T

s st st

Using Equations (27) and(24), we have

( ) ( ) ( ) ( )

( )

ò åq f q f
p

w w q f= - Wwv T W d e w t Y, ; ,
1

2
, .

28

i T

s
st st

Performing a spherical-harmonic transform of Equation (28),
we obtain

( ) ( ) ( )òp
w w= - Ww¢ ¢

¢ ¢v T L d e w t
1

2
, 29st st

s t i T
s t

where ¢ ¢Lst
s t denotes leakage from mode ( )s t, to ( )¢ ¢s t, ,

( ) ( ) ( ) ( )ò q q f q f q f q f=¢ ¢
¢ ¢L d d Y Y Wsin , , , . 30st

s t
st s t,*

Access to the full-sphere observation would have meant
d d=¢ ¢

¢ ¢Lst
s t

ss tt . After performing a temporal Fourier transform
of Equation (29), we obtain

( ) ( )

( )

( ) ( )

ò
ò ò

w

p
w w

w

¢ =

= - W

= - W

w

w

- ¢

¢ ¢
¢ ¢

¢ ¢
¢ ¢

v dTv T e

dTL d e w t

L w t

,

1

2
,

. 31

st st
i T

st
s t i T

s t

st
s t

s t

Since we only detect sectoral modes of Rossby waves, we drop
s or t keeping in mind that t=−s. With this substitution,
Equation (31) becomes

( ) ( ) ( )åw w= - ¢W
¢

¢
¢v L w t . 32s

s
s
s

s

The frequencies of Rossby waves in the inertial frame follow
the relation

( )w s= + Wt , 33t

where σt is the frequency of Rossby wave modes with
azimuthal order t which obeys Equation (16). The power of
these modes lies close to these frequencies (since the line
widths are small, see, e.g., Table 1). For simplicity, we choose
a delta function

( ) [ ( )] ( )w d w s= - + Ww t . 34s t

After substituting Equations (34) into(32), we obtain

( ) [ ( )] ( )åw d w s= - + W
¢

¢v L t . 35s
s

s
s

t

At frequencies close to s + Wtt we have

( ) [( ) ( )] ( )ås d s s+ W = + W - + ¢W
¢

¢
¢v t L t t , 36s t

s
s
s

t t

which is nonzero only when = ¢t t

( ) ( ) ( )s d+ W =v t L 0 , 37s t s
s

which in turn is the classical Rossby-wave dispersion relation
in an inertial frame. For frequencies ( )s + + W+ t 1t 1 and

( )s + + W+ t 2t 2 , we recover

( ( ) ) ( ) ( )s d+ + W =+
+v t L1 0 , 38s t s

s
1

1

( ( ) ) ( ) ( )s d+ + W =+
+v t L2 0 . 39s t s

s
2

2

We would see power at frequency s + W+t 1 in a corotating
frame with azimuthal order t if +Ls

s 1 were to be significant.
Similarly, power at s + W+ 2t 2 is observed if +Ls

s 2 were to be
large.
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