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Abstract

We present a conservative numerical method for radiation magnetohydrodynamics with frequency-dependent full
transport in stationary spacetimes. This method is stable and accurate for both large and small optical depths and
radiation pressures. The radiation stress–energy tensor is evolved in flux-conservative form, and closed with a
swarm of samples that each transport a multigroup representation of the invariant specific intensity along a null
geodesic. In each zone, the enclosed samples are used to efficiently construct a Delaunay triangulation of the unit
sphere in the comoving frame, which in turn is used to calculate the Eddington tensor, average source terms, and
adaptively refine the sample swarm. Radiation four-forces are evaluated in the moment sector in a semi-implicit
fashion. The radiative transfer equation is solved in invariant form deterministically for each sample. Since each
sample carries a discrete representation of the full spectrum, the cost of evaluating the transport operator is
independent of the number of frequency groups, representing a significant reduction of algorithmic complexity for
transport in frequency-dependent problems. The major approximation we make in this work is performing
scattering in an angle-averaged way. Local adaptivity in samples also makes this scheme more amenable to
nonuniform meshes than a traditional Monte Carlo method. We describe the method and present results on a suite
of test problems. We find that Method of Characteristics Moment Closure converges at least as ∼N−1, rather than
the canonical Monte Carlo N−1/2, where N is the number of samples per zone.

Unified Astronomy Thesaurus concepts: High energy astrophysics (739); Black holes (162); Relativistic fluid
dynamics (1389); Compact radiation sources (289); Computational methods (1965)

1. Introduction

In astrophysics, radiation often plays an important role in
transporting energy and momentum. Accretion disks around
neutron stars and black holes are subject to perturbative
radiative cooling (Esin et al. 1997; Ryan et al. 2017; Saḑowski
et al. 2017) at the lowest accretion rates, efficient local radiative
losses (Shakura & Sunyaev 1973; Jiang et al. 2019) near the
Eddington limit, and significant photon trapping and dominant
radiation pressures at super-Eddington rates (Abramowicz et al.
1988; Jiang et al. 2014b; McKinney et al. 2014; Saḑowski
et al. 2014). At least some core-collapse supernova explosions
are probably driven by energy transfer via neutrinos (Burrows
et al. 1995; Janka et al. 2007; Vartanyan et al. 2019). The
composition of ejecta from merging binary neutron stars,
probably crucial for setting the color of kilonovae (Metzger
et al. 2010), is affected by neutrino fluxes, as the neutrinos also
transport lepton number (Surman et al. 2008; Wanajo et al.
2014; Foucart et al. 2015, 2016; Richers et al. 2015; Miller
et al. 2019a, 2019b). The envelopes of high-mass stars can be
supported by radiation pressure (Paxton et al. 2013; Jiang et al.
2018).

In such systems, magnetohydrodynamic (MHD) turbulence
also often plays an important role. In particular, MHD
turbulence may dominate angular momentum transport in
black hole accretion disks (Balbus & Hawley 1991; Hawley
et al. 1995). Here and in other relativistic flows, the fluid sound
speed is approximately the speed of light. Therefore, coupling
time-dependent radiative transfer to time-dependent MHD
turbulence is required for accurately modeling these systems
from first principles.

Solving the equations of radiation hydrodynamics presents
significant difficulties. In particular, the specific intensity is in
general a function of spatial location, frequency, and direction.
This leads to a high dimensional integration (3 space +3
momentum +1 time). For global turbulent flows, where the
requirement for resolving the flow locally can impose a large
minimum number of grid zones and irregular spatial grids, a
lack of computational efficiency can be prohibitive. Additional
conceptual difficulties can also arise when considering
radiation transport in curvilinear coordinates and/or with large
Lorentz factors. Timescales for energy and momentum
exchange between fluid and radiation can also be short,
compared to global dynamical timescales.
For large optical depths τ, the Eddington approximation

along with averaging opacities over the Planck function is a
straightforward, effective approach. However, there is not a
clear hierarchical process by which this approach can be
extended out of the optically thick regime. The M1 family of
closures, in which the entire four-momentum rather than just
the comoving radiation energy density is used to close the
second moment of the radiation, is frequently adopted
(Minerbo 1978; Levermore 1984; Scheck et al. 2006; Saḑowski
et al. 2013; McKinney et al. 2014; Foucart et al. 2015; Roberts
et al. 2016; Skinner et al. 2019). However, while it recovers the
optically thick isotropic limit, M1 can represent only a specific
case of optically thin transport in which the radiation is
isotropic in the rest frame of some timelike observer. Truncated
moment methods without a separate solution of the radiative
transfer equation will in general be forced to make assumptions
about the frequency and angular structure of the radiation
distribution function, and such a closure that is accurate across
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problems of interest in astrophysical radiation transport is
unknown.

A classic approach to radiation transport is the Monte Carlo
method (e.g., Fleck & Cummings 1971; Pozdnyakov et al.
1983; Dolence et al. 2009; Abdikamalov et al. 2012; Schnitt-
man & Krolik 2013; Wollaeger et al. 2013; Roth & Kasen 2015;
Ryan et al. 2015; Wollaber 2016). In Monte Carlo methods, the
radiation is randomly sampled and these samples undergo
transport and interactions as if they were individual particles.
Advantages of this method include the unbiased nature of
Monte Carlo sampling, simple extension to frequency depend-
ence (even to a continuous energy approach), and the simplicity
of interpreting the method as individual physical interactions.
However, the method converges with the number of samples N
only as N−1/2, although there is no scaling with number of
dimensions. This error will be roughly divided by βr, the ratio
of gas-to-radiation pressure, before being felt by the fluid;
reducing sampling error sufficiently when radiation pressures
are large is generally not practical. The requirement of
resolving interactions in an unbiased manner is also onerous
when optical depths are large.

Monte Carlo methods can be extended in several ways.
Implicit Monte Carlo (IMC; Fleck & Cummings 1971;
Wollaber 2016 for a review) linearizes the source terms and
converts a fraction of emission and absorption events into
effective scatterings. To be precise, this method is semi-
implicit; the linearization can lead to unphysical behavior like
violation of a maximum principle (Larsen & Mercier 1987,
although see also, e.g., Cleveland & Wollaber 2018). Inelastic
scattering (e.g., Compton scattering) is also not amenable to the
effective scattering approach, and poses a particular challenge
(Densmore et al. 2010). Additionally, the method can still
experience significant slowdowns due to large numbers of
effective scatterings in optically thick regions. Random walk
methods (Fleck & Canfield 1984) alleviate this by updating
particle positions according to a probabilistic solution of a
diffusion equation. In a similar vein, Discrete Diffusion Monte
Carlo (Densmore et al. 2007) changes the character of optically
thick zones and can be combined with IMC (Abdikamalov
et al. 2012; Densmore et al. 2012; Wollaeger et al. 2013), but
this requires a heuristic choice of interface between optically
thin and thick regions. These modifications do little to enhance
stability when the radiation pressure is large.

Another standard approach, in which the intensity is
discretized into rays on a per-zone basis, is the method of
discrete ordinates (e.g., Liebendörfer et al. 2004; Hubeny &
Burrows 2007; Ott et al. 2008; Davis et al. 2012; Ohsuga &
Takahashi 2016; Nagakura et al. 2017). It is straightforward to
make this method stable and efficient for both optically thick
and radiation pressure–dominated flows, as the transport
equation is solved in a deterministic fashion. However, these
methods suffer from ray effects in optically thin regions; the
truncation error is highly anisotropic (Castor 2004; Zhu et al.
2015). Additionally, when these methods are made frequency
dependent, a separate transport update is required for every
frequency element of every angle, producing a scheme that is
often prohibitively expensive.

Another approach to transport intended to yield good
stability properties in radiation hydrodynamics problems is
the variable Eddington tensor (VET) scheme (Takeuchi 1971;
Stone et al. 1992; Davis et al. 2012; Jiang et al. 2012). Here, the
zeroth and first moments of the radiation are evolved, but the

Eddington tensor is evaluated with a separate solution of the
full transport equation. Foucart (2018) adopted a similar
approach for relativistic systems, using Monte Carlo rather
than discrete ordinates to evaluate the Eddington tensor. The
VET allows for full transport while evaluating radiation-fluid
interactions for only a few degrees of freedom (the four-
momentum), which can greatly simplify semi-implicit methods
often required for stability.
Here, we introduce a method that we term Method of

Characteristics Moment Closure (MOCMC). As in previous
VET approaches, we evolve the frequency-integrated (gray)
moments of the specific intensity, closed by a solution of the
full transport equation. However, instead of using a Monte
Carlo or discrete ordinates method to obtain the transport
solution, we adopt a Method of Characteristics approach
(Askew 1972; Pandya & Adams 2009; Hammer et al. 2019;
Park et al. 2019). In our method, the radiation is discretized into
samples with different positions and directions, with each
sample carrying an array of specific intensities discretized in
frequency. These samples move along characteristics, and the
radiative transfer equation is solved in a deterministic way. The
samples in each zone are used to reconstruct momentum space
in that zone (we use the Delaunay triangulation of the unit
sphere in the comoving frame). The reconstructed intensity is
used to evaluate the pressure tensor and frequency- and angle-
average source terms in order to close the moment equations in
a VET fashion.
Our approach has several advantages. Specific intensities are

integrated directly along geodesics; the transport process itself
is essentially free of spatial discretization errors. The
deterministic approach to source terms puts a limit on the
computational cost of the scheme (unlike, e.g., probabilistic
interaction-by-interaction scattering of Monte Carlo particles in
optically thick media). Our finite volume interpretation frees us
from issues with positivity and oscillations encountered in
spectral methods (although see McClarren & Hauck 2010;
Radice et al. 2013). No representation of a conserved four-
momentum is evaluated from the samples; characteristics
crossing zones do not lead to intrinsic noise, and this fact
allows for significant freedom in dynamically refining or
derefining characteristic resolution. This also frees us from
having to reconcile different four-momentum representations in
the radiation moments and the samples. Absent plasma
dispersion effects, photons of all frequencies share geodesics,
so we can efficiently advect multiple frequency bins with a
single push along a characteristic i.e., each resolution element
carries an array of specific intensities at different frequencies.
Relaxing to the asymptotic diffusion limit is straightforward in
the moment sector. Finally, our scheme employs relativistic
invariants in the samples, leading to conceptual simplicity.
We begin with a description of the governing equations of

radiation magnetohydrodynamics (RMHD) in Section 2. We
then describe our numerical implementation in Section 3. We
present a suite of tests in Section 4, in which we also compare
our scheme directly to gray moment methods in several cases.
We conclude in Section 5.

2. Equations of RMHD

Throughout this work, we use parentheses to denote indices
in an orthonormal tetrad frame. Indices without parentheses
indicate the coordinate frame. Greek letters index spacetime

2
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(0, 1, 2, 3), while Latin letters index space (1, 2, 3). We adopt
units such that c=1.

We consider the equations of RMHD, including the full
transport equation, written in covariant form. Unlike in mixed-
frame approaches (Mihalas & Klein 1982; Mihalas &
Mihalas 1984; Krumholz et al. 2007; Jiang et al. 2014a;
Skinner et al. 2019), here it is not necessary to expand the
equations in powers of v/c in order to relate the radiation and
fluid. The equations are valid in any frame.

The divergence of the total stress–energy tensor is zero:

+ =m
n m

m
n mT R 0, 1; ; ( )

where m
nT is the stress–energy of the MHD fluid and m

nR is the
stress–energy of the radiation. Rewriting this expression,
evidently the fluid and radiation interact via exchange of
four-momentum:

= -m
n m

m
n mT R . 2; ; ( )

We first separately consider the evolution of fluid and
radiation, and then describe the radiation source terms
(emission, absorption, and scattering) that lead to four-
momentum exchange between these two components.

2.1. MHDs

The governing equations of covariant MHDs, written in
conservative form in a coordinate basis, are (Anile 1989;
Komissarov 1999; Gammie et al. 2003) conservation of particle
number

r r- = - -g u g u , 3t
t

i
i, ,( ) ( ) ( )

conservation of four-momentum (note that we are deferring
discussion of radiation-matter source terms to Section 2.2.1)

- = - - + - Gn n
k
l

l
nkg T g T g T , 4t

t
i

i, ,( ) ( ) ( )

conservation of magnetic flux

- = - - -g B g b u b u , 5i
t

j i i j
j, ,( ) ( [ ]) ( )

and the no-monopoles constraint

- =g B 0. 6i
i,( ) ( )

The MHD stress–energy tensor is

r= + + +m
n

m
nT u P b u u 7g g

2( ) ( )

d+ + -m
n

m
nP

b
b b

2
. 8g

2⎛
⎝⎜

⎞
⎠⎟ ( )

In the above, ρ is the fluid rest-mass density, uμ is the fluid
four-velocity, B i is the magnetic field three-vector, bμ is the
magnetic field four-vector, and -g is the determinant of the
metric. These equations require an equation of state; throughout
this work, we adopt g= -P u1g g( ) , with ug the gas internal
energy density, although introducing more sophisticated
equations of state in this framework is conceptually straightfor-
ward (e.g., Miller et al. 2019a).

2.2. Radiation

The equation of radiation transport, written in invariant form
(each quantity in parentheses is invariant), is (Mihalas &

Mihalas 1984)

n n n
na

n
na

n
= + - -n n n

n
n

n
nD

ds

I j j I I
, 9

3

a

2

s

2
a

3
s

3
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠( ) ( ) ( )

where D/ds is the convective derivative in phase space, s is the
path length, nj

a is the specific thermal emissivity, an
a is the

specific absorption coefficient, nj
s is the effective specific

emission coefficient due to scattering (Mihalas & Miha-
las 1984), and an

s is the specific absorption coefficient due to
scattering. The specific intensity Iν is related to the distribution
function f as n=nI h f c4 3 2. We will return to source terms in
Section 2.2.1; for now, it is sufficient to note that, absent
interaction terms, Equation (9) preserves the invariant intensity
Iν/ν

3 along characteristics.
Each characteristic is described by a position xμ and a

momentum pμ defined such that −pμuμ=hν, where ν is the
frequency measured by an observer with four-velocity uμ.
These quantities evolve according to the geodesic equation
(note that the coordinate time t=x0):

=
dx

dx

p

p
, 10

i i

0 0
( )

= -
¶
¶

m nl

m n l

dp

dx p

g

x
p p

1

2
11

0 0
( )

where in the first equation we have implicitly divided out the
affine parameter, defined by dxμ/dλ=pμ.
For Monte Carlo particles, like superphotons in bhlight

(Ryan et al. 2015), one would typically evolve the momentum
pμ directly. However, we will discretize Iν/ν

3 in frequency
along each characteristic, so in practice we evolve a direction
vector whose normalization has no special meaning. For a
particular momentum, the direction vector is nμ=pμ/(hν).
Effectively, we normalize nμ such that n0=−1; the frequency
ν of each bin i according to an observer moving with four-
velocity uμ is then

n = -
m

mu n p

h
, 12

i
0 ( )

where p0
i is an array of timelike components of covariant four-

momenta—or for our purposes, frequencies at asymptotic
spatial infinity common to all samples.3 This array defines the
range of the frequency discretization. We discretize these
frequencies logarithmically; note that nD log is unaffected by
frame transformations. In terms of xμ and nμ, the geodesic
equation is then

=
dx

dx

n

n
, 13

i i

0 0
( )

= -
¶
¶

m nl

m n l
dn

dx n

g

x
n n

1

2
. 14

0 0
( )

The moments of the radiation field evolve due to advection
(i.e., ignoring radiation-matter source terms) in a similar
manner to the MHD stress–energy tensor,

- = - - + - Gn n
k
l

l
nkg R g R g R , 15t

t
i

i, ,( ) ( ) ( )

3 Such p0
i would not be available in time-dependent spacetimes, such as near

merging compact objects.

3
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where m
nR is related to the specific intensity Iν as

ò n
=

-
m
n

m
n

nR
h

d p

g p
p p

I1
. 16

t4

3

3
⎜ ⎟⎛
⎝

⎞
⎠ ( )

However, unlike in the MHD case where we assumed a
thermal, isotropic distribution of particles in the fluid frame,
there is no general analytic expression for R j

i . In the fluid
frame, this uncertainty can be parameterized as (recall that
parentheses indicate an orthonormal tetrad, and here the
comoving frame of the fluid) p= -R Ri

j
i

j
0

0
( )

( )
( )

( )
( )

( ), where
p i

j
( )

( ) is the Eddington tensor, which is calculated from the
specific intensity:

ò
ò

p
n

n
=

W

W

n

n

d d I n n

d d I
, 17i

j

i
j

( )( )
( )

( )
( )

where dΩ is the differential solid angle in an orthonormal
tetrad. Given p i

j
( )

( ) and nR0 , we can construct the entire
radiation stress–energy tensor in any frame.

For the special case of very optically thick flows, the specific
intensity goes to the Planck function nB , and the Eddington
tensor becomes

p
d

=
3

. 18i
j

i
j ( )( )

( )

( )
( )

When optical depths are not very large, p i
j

( )
( ) is in general

subject to few a priori constraints, and one must be able to
evaluate Equation (17); that is, one must have knowledge of nI .

2.2.1. Fluid–Radiation Interactions

Microphysical processes (emission, absorption, and scatter-
ing) lead to an exchange of four-momentum between the fluid
and the radiation, along with a change in specific intensity
along characteristics.

The fluid and radiation stress energy tensors communicate
through exchange of four-momentum. We can rewrite the
divergence of the radiation stress–energy tensor as a four-force
density,

º -n
m
n mG R . 19; ( )

From Equation (2), we then have the interaction source terms
on our fluid and radiation four-momenta:

- = -n ng T g G 20t
t,( ) ( )

- = - -n ng R g G . 21t
t,( ) ( )

In the fluid frame, the four-force density is (Mihalas &
Mihalas 1984)

ò n a a= W + - -m n n n n n n mG d d I I j j n . 22a s a s( ) ( )( ) ( )

We now rewrite this equation to produce something more
amenable to stable integration. In particular, we want to use the
Iν to average source terms, rather than compute four-forces
along individual characteristics as in a Monte Carlo approach,
to reduce noise in the fluid. We will also introduce an angle-
averaged approach to scattering.

The term involving nj
a in the integrand does not depend on

the intensity; we may integrate this emissivity directly (Ja). In
addition, we can without approximation rewrite the absorption

terms as frequency- and angle-averaged opacities multiplying
the comoving radiation four-momentum:

òa a n= - - - - W nG R R J d d j , 230
a 0

0
s 0

0
a s ( )( )

( )
( )

( )
( )

òa a n= + - W nG R R d d j n , 24i i i i
a 0 s 0 s ( )( )

( )
( )

( )
( ) ( )

where

òa n aº W n n
I

d d I
1

, 25a a ( )

òa n aº W n n
I

d d I
1

, 26s s ( )

ò nº W nI d d I . 27( )

We now consider the term involving nj
s in Equation (23). For

any (dΩ, dν), nj
s can in principle depend on every other (dΩ,

dν); all characteristics can scatter into each other. This is
numerically very expensive unless treated in a probabilistic
manner (e.g., Dolence et al. 2009; Ryan et al. 2015). Here,
we wish to preserve our continuum approach. Therefore, we
instead derive a specific scattering emissivity from the
evolution of an angle-averaged intensity given by the
Kompaneets equation.
We approximate scattering by considering the angle-

integrated transfer equation in the comoving frame with only
source terms due to scattering:

= -n
n n n


  

d

ds
, 28s s ( )

where script letters ( ,  , ) indicate a solid angle integral
average. By evaluating nd ds, we can solve for n

s , and then
approximate the comoving frame radiation four-force as

a a p= - - - - G R R J 4 , 290
a 0

0
s 0

0
a s ( )( )

( )
( )

( )
( )

a a= +G R R . 30i i i
a 0 s 0 ( )( )

( )
( )

( )
( )

One obvious consequence of our angle-integrated procedure
is that the integral over nj

s does not contribute to G(i), because nj
s

is isotropic in the fluid frame. The error associated with this
procedure depends on the differential cross section; for an
isotropic scattering process, this is exact. The approximation
we make to scattering is separate from any treatment of
emission and absorption; those terms are solved exactly. Our
approximate approach to scattering is not a fundamental
requirement of MOCMC. We only invoke this approximation
here for computational expediency and because this treatment
is likely sufficient for some applications of immediate interest.
Here, nd ds is zero for elastic scattering; in general,

however, it depends on the scattering process under considera-
tion. In order to proceed, we now specialize to electron
scattering and introduce the Kompaneets equation (e.g.,
Rybicki & Lightman 1979):

t
s

¶
¶

=
¶
¶

+ +
n

n c
k T

m c x x
x

dn

dx
n n

1
, 31e T

B e

e
2 2

4 2⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥ ( )

where ne is the electron number density, σT is the Thomson
cross section, Te is the electron temperature, me is the electron
rest mass, n=x h k TB e( ), n= nn c h22 3( ) is the photon
occupation number, and τ is here the proper time in the fluid
frame. The Kompaneets equation is an angle-integrated (i.e.,

4
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consistent with our scattering approximation) expansion of the
Compton scattering kernel in the dimensionless energy
transferred to photons per scattering event, nDh k TB e( ). This
value is small for nonrelativistic electrons, Te108 K, and
when small, Compton scattering becomes a diffusive flux in
momentum space. At higher temperatures, one must take an
integrodifferential approach to Compton scattering (e.g.,
Jones 1968; Aharonian & Atoyan 1981; Coppi & Bland-
ford 1990; Dolence et al. 2009; Suleimanov et al. 2012; Ryan
et al. 2015; Narayan et al. 2017; Kinch et al. 2019).

Up to a multiplicative constant  , ¶ ¶ ~ nn t d ds. We can
therefore use the Kompaneets equation to evaluate the change
in intensity, and solve Equation (28) for the angle-averaged
scattering emissivity:

=
¶
¶

+n n n   
n

t
. 32s s ( )

Equations (29) and (30) describe the exchange of four-
momentum between fluid and radiation, but they do not update
specific intensities. These are calculated by solving the transfer
equation along each characteristic in invariant form. For each
Iν, we solve Equation (9), with nj

s approximated by n
s .

3. Numerical Method

We now describe our numerical implementation of the
equations of radiation MHD.

MOCMC is essentially a VET method. The radiation energy-
momentum is evolved in flux-conservative form. This is also
the representation used to interact with the fluid, a natural
choice given that the fluid is represented solely by a four-
momentum.

Standard numerical methods for evaluating advective fluxes
in a time-explicit way are straightforward to implement.
However, for the zeroth and first moments of the radiation,
the pressure tensor in the right-hand side of Equation (15),
corresponding to advection, as well as the radiative source
terms (Equation (19)) are unknown. To evaluate these
quantities, one requires knowledge of the radiation distribution
function (equivalently, the specific intensity). In VET methods
generally, the specific intensity is provided by a solution of the
equation of radiative transfer. In MOCMC specifically, the
specific intensity is evaluated by a Method of Characteristics
solution of the equation of radiative transfer written in invariant
form. The radiation energy and momentum in the advective
terms are derived from the conserved moments; while one
could evaluate these quantities from the transport solution, they
will disagree at the level of truncation error (consistency
between energy representations does become an issue in
inelastic scattering, which we account for in Section 3.8). We
have not seen this disagreement lead to errors in any test
problems we have performed with MOCMC.

Our Method of Characteristics approach to radiation
transport uses particles (here, “samples”) to transport a
multigroup representation of the specific intensity along a
common direction vector nμ. To evaluate the terms on the
right-hand side of the radiation moment equations, we need to
perform integrals over these samples, essentially to evaluate the
Eddington tensor in the comoving frame of the fluid and to
angle- and frequency-average the radiation source terms. For
all the samples in a spatial zone, we construct a mesh in

momentum space using a convex hull algorithm, and we then
adopt a quadrature rule on this mesh.
Even with properly averaged source terms, the interactions

between the fluid and the radiation moments can be unstable in
explicit methods when optical depths are very large or energy-
momentum exchange timescales are short. To enforce stability
in MOCMC, we apply source terms in a locally implicit way.
We separate energy and momentum exchange in the comoving
frame of the fluid in order to avoid anything more numerically
complex than a 1D rootfind.
We now discuss individual elements of the MOCMC method

in more detail. Again, we divide our discussion into fluid,
radiation, and interaction subsections.

3.1. GRMHD Evolution

Our method for integrating the GRMHD equations is harm
(Gammie et al. 2003), a flux-conservative shock capturing
scheme. All gas and magnetic field variables are zone-centered.
Second-order accuracy in time is achieved with a midpoint
method. The primitive variables are

r u u u u B B B, , , , , , , , 33g
1 2 3 1 2 3( ˜ ˜ ˜ ) ( )

where B i is the magnetic field three-vector and ui˜ is related to
the spatial components of the four-velocity, but more amenable
to variable inversion (McKinney & Gammie 2004). The
conserved variables U are

r r- -g u T u T T T B B B, , , , , , , 340 0
0

0 0
1

0
2

0
3

1 2 3( ) ( )

and the fluxes F i are

r r- -

- - -

g u T u T T T

b u b u b u b u b u b u

, , , , ,

, , . 35

i i i i i i

i i i i i i

0 1 2 3

1 1 2 2 3 3

(
) ( )

Note that we have subtracted the rest mass from the time
component of the stress–energy; this allows for greater
accuracy in the internal energy of the fluid in certain cases.
We use monotonized central (second-order) or WENO5

(fifth-order; Liu et al. 1994; Tchekhovskoy et al. 2007)
methods to reconstruct primitive variables at zone faces. These
in turn are used to calculate left and right fluxes FL and FR and
conserved variables UL and UR. The local Lax–Friedrichs
approximate Riemann solver is then used to compute intercell
fluxes of conserved variables,

=
+ - -


F F c U U

2
, 36i

i i

g
L R top, g R L( )

( )

where ctop, g is the maximum fluid wavespeed in the coordinate
frame.
The no-monopoles condition is enforced via flux-CT

(Tóth 2000). This method is robust and preserves a numerical
discretization of Equation (6) to machine precision, although
approaches using upwinded electromotive forces can deliver
superior performance on at least certain problems (Gardiner &
Stone 2008; White et al. 2016) and can be extended to grids
that are not logically Cartesian (Duffell 2016).

3.2. Radiation Moment Evolution

The conserved radiation four-momentum - ng R0 is
discretized spatially at zone centers. The samples in each zone
will subsequently close the evolution equations for - ng R0 by
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providing Ri
j. In this section, we assume that the complete

stress tensor is known.
Similarly to the fluid evolution, we reconstruct from zone

centers to faces using monotonized central or WENO5, and
then calculate fluxes using the local Lax–Friedrichs solver.
However, our radiation moment procedure differs from our
treatment of advection for MHD in two important ways.

First, we reconstruct conserved variables and fluxes directly,
rather than primitive variables. While reconstructing primitive
variables is sometimes advantageous for hydrodynamic
methods (preventing, for example, negative pressures), we
have not found our alternative, more convenient approach to
behave pathologically in the problems we have considered. In
addition, transforming vector/tensor quantities like radiation
fluxes or the Eddington tensor to locally orthonormal frames
and then reconstructing them is not a unique process. While
some choices of frames are obviously better than others from
the standpoint of truncation error, free rotations in neighboring
frames reconstructed to faces could introduce errors. Second,
for the purposes of numerical diffusion, we assume that the
wavespeed is always c. This is accurate for free streaming
along one direction, but for nearly isotropic radiation, this will
overestimate wavespeeds by a factor 3 , leading to some
additional numerical diffusion.

Our fluxes are then given by (again, using local Lax–
Friedrichs):

= -
- + -n n n n g

R R c R R

2
. 37i

i i

r
,L ,R

0
,R

0
,L( ) ( )

This approach can produce unacceptably large numerical
diffusion when the optical depth per zone is very large: the
diffusion applied by local Lax–Friedrichs overestimates that
required for stability in what is essentially a parabolic problem,
and Equation (37) fails to recover the asymptotic diffusion
limit. Previous authors (Jin & Levermore 1996; Saḑowski et al.
2013; Foucart et al. 2015; Skinner et al. 2019) have treated this
issue by calculating a separate flux valid in the optically thick
limit,  i

r, diff , and interpolating between these two based on the
local optical depth. Here, we follow the procedure described in
Foucart et al. (2015). Essentially, we split the energy and
momentum fluxes into terms due to radiation advection and
radiation diffusion, upwind the advection term, and average the
diffusion term to construct  i

r, diff , which we then smoothly
interpolate toward from  i

r, based on the intensity-weighted
frequency-averaged optical depth in the zone Δτzone.

The lab-frame energy and momentum fluxes in the
Eddington closure, = m Ri i

r, diff , with ºu Rr 0
0

( )
( ), is (Farris

et al. 2008):

= + +m m m mR u u u F u u F
4

3
, 38i i i i

r ( )

where Fμ is the radiation flux vector, defined such that
Fμuμ=0. We treat the first term as the advection of radiation
energy by the fluid, and the subsequent terms as the diffusion
of radiation. We adopt the relativistic expression for the flux
(but drop time derivatives and the four-acceleration term),

cr
d= - +F u u u

1

3
, 39i i

j
i

j
jr,( ) ( )

and evaluate F0 from the condition =m
mF u 0. We then

construct a final, stable, asymptotic-preserving flux  i
r,asym

by interpolating based on the optical depth in the zone,

= + -   1 , 40i i i
r,asym r r, diff( ) ( )

where

t
=

D
 tanh

1
. 41

zone

⎛
⎝⎜

⎞
⎠⎟ ( )

For the advective term in  i
r, diff , we reconstruct the fluid

primitive variables and ur to each face. We use the
reconstructed fluid primitive variables to evaluate fluid
coordinate velocities. The average of the left and right
coordinate velocities is used to define both the upwind
direction and the advective velocity. The advection term is
then evaluated using this average velocity and the reconstructed
ur on the upwind side of the face.
For the diffusive terms +m mF u u Fi i in a flux  j

r, diff , we first
approximate u ir, along direction j as

»
-
D

-

u
u u

x
. 42i

j j

ir,
r r

1

( )

We then evaluate the rest of the diffusive terms using left- and
right-state fluid quantities, and take their average.

3.3. Samples and Geodesic Integration

We discretize the invariant specific intensity Iν/ν
3 with a

swarm of samples. Each sample has a unique position xμ and
direction vector nμ, and carries an array of Iν/ν

3 discretized
logarithmically in p0. In practice, we initialize the positions and
direction vectors by sampling uniformly in space and on the
unit sphere in momentum space, respectively, but this is not a
requirement.
For stationary spacetimes (such as Minkowski space and

rotating black holes) p0 is invariant (and is equivalent to the
frequency at infinity for asymptotically flat spacetimes). This
would not hold in dynamical spacetimes, such as compact
object mergers. In a tetrad frame with coordinate four-velocity
uμ, the comoving frequency is ∝uμnμ. Due to our logarithmic
discretization in k0, when considering frequency bins, we
evaluate Δν as n nD log , where nD log is a constant.
We evolve xμ and nμ by directly integrating Equation (14), a

set of ordinary differential equations, similarly to Dolence et al.
(2009). We use the second-order-accurate Heun’s method. We
adaptively refine our integration to ensure some tolerance is
met in Δnμnμ at each step; for the null geodesics we consider,
nμnμ=0, but this will not generally be conserved by our
numerical geodesic integration. For spacetimes symmetric in
xμ, the source terms on nμ are zero; these quantities are
conserved.
Source terms are applied to characteristics in an operator-

split fashion after the geodesic update to xμ and nμ just
described; see Section 3.8.

3.4. Frame Transformations

We employ two frames in this work: the coordinate frame,
and a set of orthonormal tetrad frames comoving with the fluid.
Essentially, the transport operators are evaluated in the
coordinate frame, and source terms and the Eddington tensor
are evaluated in comoving frames. These tetrads are con-
structed with Gram–Schmidt orthogonalization (e.g., Dolence
et al. 2009), producing transformation matrices between tetrad
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and coordinate frames:

m
me , 43( )( )

m
me , 44( )( )

accurate to roundoff error.
Fluid tetrads are constructed at the center of each zone.

However, when boosting the samples inside a zone into that
fluid frame, we construct a separate tetrad transformation at the
spatial coordinate of that sample, and then simply interpret the
axes of that tetrad as being “close enough” to the zone-centered
fluid frame. This ensures that samples remain normalized in the
zone-centered fluid frame; transforming a vector with a tetrad
transformation evaluated at a different spatial coordinate will in
general affect the normalization of that vector. However, this
process is a source of error in sample positions on the unit
sphere in the comoving frame. Note that, in curved space, there
is no unique way to assign angles between vectors that do not
share spatial coordinates.

3.5. Angular Reconstruction

In the comoving frame, we wish to compute integrals of the
specific intensity over solid angle. We treat the samples as
support points and then define a quadrature rule. A simple
approach would be the traditional Monte Carlo method, in
which every particle has equal angular “weight” and the sample
intensities are simply summed over. Here, we adopt a more
accurate approach, although MOCMC is largely agnostic in
this respect.

To reconstruct momentum space, we construct a Delaunay
triangulation, with the samples in each zone acting as vertices. To
do this, we actually construct the convex hull, the smallest-volume
region that contains the samples (or the closed surface one gets
from “shrinkwrapping” the samples) in~ N Nlogsamp samp( ) time
using the CGAL4 library’s implementation (Hert & Schirra
2018) of the quickhull algorithm (Barber et al. 1996). Here,
Nsamp is the number of samples in a zone. The facets of
this hull, projected onto the unit sphere, are equivalent to the
spherical Delaunay triangulation. Figure 1 shows the convex
hull of 64 points sampled uniformly on the unit sphere.

For each spherical triangle, we calculate the spherical excess
e, or solid angle DW subtended by the spherical triangle, with
l’Huilier’s theorem,

a b g

DW=

´
- - -

-

s s s s

4 tan

tan
2

tan
2

tan
2

tan
2

,

45

1

⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎡
⎣
⎢⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦
⎥⎥

( )

where a b g= + +s 2( ) and α, β, γ are the angles between
each pair of vertices measured from the origin. We will use
these ΔΩ both to calculate the Eddington tensor and to angle-
average intensities and opacities when evaluating fluid-
radiation interactions.

For computational efficiency when evaluating angular
quadratures over this triangulation, we interpolate the comov-
ing-frame specific intensities for each sample onto a common
frequency grid.

In the event that a zone contains fewer than four samples, the
convex hull is not defined; instead, we set p d= 3i

j
i

j
( )

( )
( )

( )
and pDW = N4 samp. In practice, this is rare; our adaptive
approach to sampling (Section 3.7) generally prevents this for
even a modest (∼16) average number of samples per zone.

3.6. Eddington Tensor

The evaluation of Ri
j is divided into two parts. First, we

calculate the comoving frame p i
j

( )
( ) by integrating the

frequency-integrated intensities at the vertices of the triangula-
tion over the unit sphere. Second, we calculate the comoving
frame four-momentum such that, when we transform the
comoving frame radiation stress–energy tensor back to the
coordinate frame, we recover the coordinate frame four-
momentum we started with. Note that the evaluation of

mR 0( )
( ) from mR0 depends on p i

j
( )

( ), hence the complexity of
this second part.
For integrating the Eddington tensor, we adopt a simple

quadrature rule. For a spherical triangle with solid angle ΔΩ
and vertices with weights (here, frequency-integrated intensi-
ties) w1, w2, and w3, the contribution to a component of the
Eddington tensor is

pD = DW
å

å

n n
, 46i

j
m

w i
j

m
w

3
3

3
3

m

m
( )( )

( )

( )
( )

where the n( i), n( j) are evaluated at each vertex in the sum.
To increase accuracy at modest additional cost, we adopt the

method of Boal & Sayas (2004), albeit with a different
quadrature rule for individual triangles. For each initial
triangular face, one may subdivide this triangle into four
subfaces and integrate these subfaces individually. The
resulting integral of a quantity over the sphere at a refinement
level N is then denoted IN. Boal & Sayas (2004) conjecture that

Figure 1. Convex hull of 64 random points lying on the unit sphere. Vertices of
triangles correspond to MOCMC samples. Projection of each triangle onto the
unit sphere is the Delaunay triangulation of that sphere.

4 CGAL, Computational Geometry Algorithms Library, https://www.
cgal.org.
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these refinement levels may then be combined in a Richardson
extrapolation-like manner to produce higher-order results, at
least for weights known exactly (we simply average our
weights to midpoints, although the n( i), n( j) we use are exact).
We use one refinement level, i.e., the coarsest realization of this
approach, which is conjectured to behave as:

ò = - + áDWñ
W

+ I I
4

3

1

3
, 47N N1

4( ) ( )

which is consistent with our limited numerical experiments. On
nearly isotropic multizone problems in MOCMC, we have
observed reductions in error in gas temperature of up to
30×compared to results based on the single level integration
scheme.

Given a set of triangles, the Eddington tensor is then

p =
å DW å

å DW å

n n
, 48i

j
l l m

I i
j

l l m
I

3
3

3
3

m

m
( )( )

( )

( )
( )

where l indexes the triangulation faces, m indexes the vertices
of each triangle, Im is the frequency-integrated intensity at the
mth vertex, and n( i) is the unit vector for each vertex.

We now have nR0 in the coordinate frame and p i
j

( )
( ) in the

comoving frame; we want to recover a complete radiation
stress tensor in the coordinate frame. The coordinate-frame
four-momentum is related to the comoving frame stress–energy
tensor by transformation matrices

=n m
n

n
m

nR e e R . 490 0 ( )( )
( ) ( )

( )

Here, p= -R Ri
j

i
j

0
0

( )
( )

( )
( )

( )
( ) and = -n

nR Ri
i( )

( )
( )

( ), so we can
expand the right-hand side to recover a system of four linear
equations for the unknowns nR 0( )

( ). By inverting a 4×4
matrix, we recover nR 0( )

( ), which in turn yields m
nR( )

( ) through
p i

j
( )

( ), which can then be transformed back to m
nR .

3.7. Dynamic Sample Resolution

An initial set of samples will stream out of outflow boundary
conditions on the light-crossing time of the simulation volume.
Evidently, samples must be replenished in such situations. In
addition, the number of samples per zone will fluctuate in
multizone problems, especially when grids are irregular or
gradients in Lorentz factor are appreciable, and we wish to
ensure that the number of samples per zone never becomes too
high or too low. Such a procedure also allows for dynamically
controlling sample resolution: sensitive regions of integrations
may require more samples than average.

Our approach to sample refinement and derefinement is
simple and not unique. We first impose a desired number of
samples per zone, which can in general depend on the local
MHD or radiation properties. We then use this number of
samples to define maximum and minimum solid angles for
triangles on the unit sphere.

If our triangulation results in a triangle with a solid angle
above the maximum, we create a sample nearly at the center of
this face and randomly positioned inside the zone with a
specific intensity that is the average of the triangle’s vertices.
Samples are not created exactly at the face center, to avoid
providing the convex hull routine with two colocated vertices.

If our triangulation results in a triangle with a solid angle
below the minimum, we identify the shortest edge of that

triangle and randomly mark one of the two samples that form
that edge for deletion.

3.8. Emission, Absorption, and Scattering

Radiation interacts with plasma via emission, absorption,
and scattering. For samples, these interactions are processed
deterministically along characteristics. For the moment sector,
we use sample intensities to frequency-average the opacities.
Scattering is evaluated by using samples to construct an angle-
averaged comoving spectrum, and evolving this spectrum with
a scattering kernel. The change in four-momentum in the
radiation moments determines the change in four-momentum
of the fluid.
At large optical depths and/or small ratios of gas-to-

radiation pressure, the characteristic timescale for four-
momentum exchange between fluid and radiation can become
much shorter than the global simulation time step, and the
problem becomes stiff. Strong coupling can be stabilized with
implicit methods. For time-dependent radiation transport,
implicit methods can be applied on a per-zone or semi-implicit
(i.e., the scheme remains explicit in spatial fluxes) basis, a
major computational efficiency over global implicit solves.
However, for intensities discretized in frequency and solid
angle, such a semi-implicit solve could still require inverting a
large matrix.
Instead, we adopt the “inner” and “outer” loop approach of

Skinner et al. (2019), in which one rootfinds over only one or a
few nonlinear equations in an outer loop (indexed by k), and in
each step of that rootfind updates intensities in a semi-implicit
fashion using the most recent (kth) value for the gas
temperature to evaluate emissivities and absorptivities. We
initialize this procedure by angle-averaging our sample
intensities at time step n, where we have used linear
interpolation to shift the comoving sample intensities nI

n onto
a common frequency grid in the comoving frame:

=
å DW

å DWn
n

I
. 50n l l

n

l l

( )
( )

( )

3.8.1. Inner Loop

Our inner loop is composed of two steps. First, we use the
Kompaneets equation to evaluate n

ks, (Equation (32)) and
Du k

r
s, , the change in the comoving radiation energy density

due to inelastic scattering, calculated as

åp
n nD = - D+u

c
n n

4
log . 51k

i
i
n

i
n

ir
s, 1( ) ( )

In general, the integral of the n evaluated from the samples
will not correspond to the moment sector’s ur. Rather than
normalizing n

n to recover u n
r , we normalizeDur

s by the ratio of
the energy density evaluated in the sample sector to that of the
moment sector, avoiding issues with maintaining thermal
spectra in the samples.
We adopt the numerical method of Chang & Cooper (1970)

for solving the Kompaneets equation. Here, we briefly review
this method. We discretize the equation for the evolution of
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photon occupation number n over n=x h k TB e as:

t
s

-
D

= Q
D

´ -

+

+ + - -

n n
n c

x x

x F x F

1 1

log

, 52

i
n

i
n

i i

i j i j

1

e T e 3

1 2
4

1 2 1 2
4

1 2* *( ) ( )

where Δτ is the elapsed proper time of the fluid from n to
n+1 and

=
-
-

+ ++
+
+ +

+
+ +

+F
n n

x x
n n1 , 53i

i
n

i
n

i i
i
n

i
n

1 2
1
1 1

1
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1* ( ) ( )

d d= - ++ +n n n1 , 54i
n

i i
n

i i
n

1 2 1( ) ( )

d d= - ++
+

+
+ +n n n1 , 55i

n
i i

n
i i

n
1 2
1

1
1 1( ) ( )

where the d 0 0.5i are chosen to ensure stability using a
quasi-equilibrium distribution neq,

= + + -+ +w n n x x1 2 2 , 56i j j i ieq, eq, 1 1( )( ) ( )

d = -
-w w

1 1

exp 1
. 57i

i i( )
( )

Note that +Fi 1 2* contains both +ni
n 1 and n ;i

n this discretization
is not fully implicit, a potential source of instability—especially
where n is much greater than unity (for example, scattering of
lines with brightness temperatures much greater than the fluid
temperature). We enforce =F 0* at the boundaries, thereby
conserving photon number to machine precision. After each
update, we enforce a floor such that + -n 10i

n 1 100.
We solve this tridiagonal system of equations in  Nbin( )

time, where Nbin is the number of frequency bins. This semi-
implicit method can occasionally fail. We identify such
situations by measuring the change in photon number density;
if this quantity varies fractionally over a step by more than
10−8, we repeat the calculation without the nonlinear terms,
yielding a fully implicit solution. One could also use an
iterative method to solve the original equation in a fully
implicit way; evidently, the nonlinear terms are important when
the semi-implicit method fails. However, we adopt our simpler
approach to ensure stability and avoid nonlinear multidimen-
sional rootfinding, at the potential cost of approaching Wien
rather than Bose–Einstein photon distributions in scattering-
dominated media. Other methods for discretizing the Kompa-
neets equation (e.g., Larsen et al. 1985) may be less susceptible
to this issue.

Another numerical difficulty is that calculation of the δi
requires evaluation of a quasi-equilibrium solution. Here, we
follow Chang & Cooper (1970) and choose a Bose–Einstein
distribution:

=
-

n
Ce

1

1
, 58

xeq ( )

where C, related to the photon chemical potential, is evaluated
such that neq and n yield the same photon number density.
Here, neq is singular at a point x>0 for C<1, which occurs
when the photon number is greater than that of a blackbody at
temperature Te. We avoid this difficulty by enforcing C�2
(i.e., neq�1 everywhere) when calculating the δi. We have not
found this trick to damage stability or accuracy.

In the second step, we compute angle- and frequency-
averaged opacities and integrated emissivities. In the kth iteration
of the outer loop, we approximate the updated angle-averaged

spectrum via a backward Euler discretization:

n n a a
=

+

+ +
n n

n

n n

+
D

D

n n n


  

, 59
k

s
k k

s
3 a, s, 1

k k na, s,

2

3

⎜ ⎟⎛
⎝

⎞
⎠ ( )

( )
( )

 

where an is the intensity-weighted, angle-averaged opacity at
frequency ν. With these updated intensities in hand, we
compute the frequency- and angle-averaged opacities:

ò
ò

a
n n a

n n
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Wå D

Wå D
n n

n

d I

d I

log

log
, 60k

k k

k
a,

a,

( )

ò
ò

a
n n a

n n
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Wå D

Wå D
n n

n

d I

d I

log

log
, 61k

k k

k
s,

s,

( )

where the summation is over frequency bins. We also integrate
the emissivity in a similar fashion, rather than analytically, so
that truncation error in only absorption coefficient integration
does not prevent the fluid from thermalizing effectively for
finite numbers of frequency bins:

ò ån n= W D nJ d jlog . 62k ka, a, ( )

For clarity, we left these expressions in terms of integrals over
solid angle. In practice, we employ the same quadrature rule we
described previously.

3.8.2. Outer Loop

In GRRMHD, the four-force update is four coupled
equations. Previous authors have evaluated this in a fully
nonlinear way with a 4D rootfind (Roedig et al. 2012;
Saḑowski et al. 2013; McKinney et al. 2014) or a linearized
4D solve (Foucart et al. 2015). Here, we adopt a more efficient
approach, performing a 1D nonlinear solve for the gas energy
density (e.g., Skinner et al. 2019) in the comoving frame. We
then construct an entire four-force G(μ).
For our 1D rootfind, we write the gas energy update

implicitly, and solve iteratively for +u n
g

1 with a secant method:

n
- = - +n+ +

+
+

u u u u u, , 63n n n
n

n n
g

1
g r

1
3

1

g
1

r⎜ ⎟
⎛
⎝⎜
⎛
⎝

⎞
⎠

⎞
⎠⎟ ( )

where =u Rr
0

0
( )

( ). In the k th iteration, we compute +u k
r

1, our
newest estimate of +u n

r
1, from Equation (29) as

t
ta

=
+ D
+ D

+ D+u
u J

u
1

. 64k
n k

k
k

r
1 r

a,

a, r
s, ( )

Next, we use Equation (63) to evaluate a residual as

= - + -+r u u u u , 65k n k n
g g r

1
r( ) ( ) ( )

and use the secant formula to compute our next guess for the
gas energy, +u k

g
1. Convergence is reached when a sufficiently

small residual is computed, at which point we set =+ +u un k
g

1
g

1.
This implicit approach maintains stability when energy
exchange is significant over a time step tD . The secant
method occasionally fails. In such cases, we repeat the rootfind
using bisection.

9

The Astrophysical Journal, 891:118 (21pp), 2020 March 10 Ryan & Dolence



Once +u n
g

1 is found, the radiation four-force is then
calculated as

t
= -

-

D
+

+

G
u u

, 66n
n n

0
1 g

1
g ( )( )

t
=

-
D

+
+

G
R R

, 67i
n i

n
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n
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0 1 0(( ) ( ) )
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( )
( )

( )
( )

where R i
0( )

( ) is updated via backward Euler as

t a a
º

+ D +
+

+ +
R

R

1
. 68i

n i
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n n
0 1

0

a, 1 s, 1
( )

( )
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( )( )
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( )
( )

The four-force is then transformed to the lab frame and
applied to nT 0 and nR0 using Equations (20) and (21). We also
update the individual sample intensities in a backward Euler
manner:

n

n n n

na na
=

+ + D

+ + D
n n n n

n n

+ + +

+ +

I j I s

s1
. 69

n n n n

n n3

1 a, 1 2 s, 1 2 3

a, 1 s, 1
⎜ ⎟⎛
⎝

⎞
⎠

( )
( )

From our experiments, this approach shows excellent
stability. Essentially, we exploit the different forms of G(0) and
G(i) in the comoving frame using an operator split; while G(0) is
the difference of an emission coefficient and an absorption
coefficient, both of which can be large, three-momentum
exchange has only one term: a= -G Ri i

0
( )

( )
( ). Thus, while we

rely on a numerical rootfind to evaluate the energy exchange,
we can analytically evaluate the implicit momentum update.
Since these interaction terms are typically treated with back-
ward Euler for stability, this simple operator split does not
degrade the temporal order of accuracy of the scheme.

3.9. Time Integration

Our method for time integration largely parallels the
second-order midpoint scheme in harm (Gammie et al.
2003). While we could process the radiation subsystem
separately in a first-order fashion (e.g., Jiang et al. 2014a;
Ryan et al. 2015; Foucart 2018), i.e., one source term
evaluation per time step, we have found improved perfor-
mance on transport tests when using a second-order-in-time
update to the advective fluxes of the radiation stress–energy
tensor. The midpoint method also allows larger CFL numbers
than an Euler step, so it is unclear whether we actually
increase the cost of our scheme by going to second-order
accuracy in time for advective fluxes. However, source term
updates are still first-order in time. We typically use
CFL=0.8−0.9, independent of optical depth. Regardless
of order of temporal accuracy, it is crucial, as we do here, to
process in advance radiation interactions for any radiation
moments used to source advective fluxes, in order to correctly
recover diffusion speeds in optically thick media.

Here, we enumerate a complete time step from n to n+1.
Tildes denote which quantities have been updated by radiation
interactions at their current n.

1. Advect MHD conserved variables, 
~ +U U

n n
g g

1 2 sourced

by
~
U

n
g (Section 3.1), and apply boundary conditions.

2. Advect radiation moments, n n
+R Rn n0 0 1 2( ) ( ) sourced

by m
nR n( ) (Section 3.2), and apply boundary conditions.

3. Calculate angle-averaged comoving intensity n
n

(Equation (50)), to be used for scattering in both Steps
7 and 14.

4. Push samples along geodesics, m m
+x n x n, ,i n i n 1 2( ) ( )

and n nn n
+I In n3 3 1 2( ) ( ) (Section 3.3), and apply

boundary conditions.
5. Boost samples to the fluid frame (Section 3.4) and

construct triangulations in each zone (Section 3.5).
6. Integrate sample intensities over frequency and solid

angle using triangles to evaluate p +i
j

n 1 2( )( )
( ) and then

+Ri
j

n 1 2( ) (Section 3.6).
7. Calculate radiation four-force at n+1/2, apply to con-

served MHD and radiation quantities, 
~+ +

U Un n
g

1 2
g

1 2

and m m
+ +R Rn n0 1 2 0 1 2( ) ( ) , and sample intensities

n nn n
+ +I In n3 1 2 3 1 2( ) ( ) (Section 3.8).

8. Recalculate p +i
j

n 1 2( )( )
( ) with the n

+
I

n 1 2 using the same
triangulation, and use to evaluate +R i

j
n 1 2( )

9. Advect MHD conserved variables, 
~ +U U

n n
g g

1 sourced

by
~ +
U

n
g

1 2
(Section 3.1), and apply sources to sample

boundary conditions.
10. Advect radiation moments, n n

+R Rn n0 0 1( ) ( ) sourced by
m
n

+R n 1 2( ) (Section 3.2), and apply boundary conditions.
11. Push samples along geodesics, m

+x n,i n 1 2( )
m

+x n,i n 1( ) and n nn n
+I In n3 1 2 3( ) ( ) (Section 3.3),

and apply boundary conditions.
12. Boost samples to the fluid frame (Section 3.4) and

construct triangulations in each zone (Section 3.5).
13. Integrate sample intensities over frequency and solid

angle using triangles to evaluate Eddington tensor
p +i

j
n 1( )( )

( ) and +Ri
j

n 1( ) (Section 3.6).
14. Calculate radiation four-force at n+1, apply to con-

served MHD and radiation quantities, 
~+ +

U Un n
g

1
g

1
and

m m
+ +R Rn n0 1 0 1( ) ( ) , and apply sources to sample

intensities n nn n
+ +I In n3 1 3 1( ) ( ) (Section 3.8).

15. Recalculate p +i
j

n 1( )( )
( ) with the n

+
I

n 1 using the same
triangulation, and use to evaluate +R i

j
n 1( )

4. Tests

We now consider a suite of tests including large and small
optical depths, large and small ratios of radiation to gas
pressures, relativistic motion, and curved spacetime. Apart
from testing convergence, we focus on resolutions (∼64
samples per zone) that are realistic for global simulations.
For tests without periodic boundaries, we adopt the

resampling procedure described in Section 3.7 such that we
add or remove samples in order to preserve approximately the
same number of samples per zone for the duration of each
simulation.
In several places, we will compare MOCMC’s performance

on these tests to Eddington and M1 closures, as well as
frequency-integrated (“gray”) source terms. In doing so, we
focus on aspects in which discrepancies arise between angle- or
frequency-averaged methods and transport solutions like
MOCMC. Because MOCMC evolves the radiation four-
momentum in order to conserve total four-momentum, and
the MOCMC samples act largely as a closure on the moment
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evolution equations, implementation of Eddington and M1
closures—along with gray opacities—into our method is
straightforward. However, we restrict our moment implementa-
tion to emission, absorption, and isotropic elastic scattering;
inelastic scattering (e.g., Saḑowski & Narayan 2015) is
neglected. We use the Planck mean opacity for the source terms
G(μ), either with a gray opacity or the expression for
bremsstrahlung emissivity given in Rybicki & Lightman
(1979).5

Briefly, we review here Eddington and M1 closures. These
closures specify the spatial part R j

i
( )
( ) of the radiation stress

tensor. The Eddington closure assumes that the radiation is
isotropic in the frame of the fluid; this is well-motivated at large
optical depths because n nI B as t  ¥, and Bν has no
angular structure. This leads to

d= -R R 3. 70i
j

i
j

0
0 ( )( )

( )
( )

( )
( )

( )

The M1 closure, as often adopted, assumes that the radiation is
isotropic in a frame not necessarily comoving with the fluid;
see Levermore (1984) for an example, but cf. Minerbo (1978)
for an alternative. The specific flux ºf R Ri i0 00 is used to
calculate the frame of isotropy. In flat space, this yields

x
d

x
= -

-
+

-
R

f f

f f
R

1

2

3 1

2
, 71i

j
i

j

i
j

k
k

0
0

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )( )

( )
( )

( )

( )
( )

( )
( )

( )
( )

where

x =
+

+ -

f f

f f

3 4

5 2 4 3
. 72

k
k

k
k

( )
( )

( )

( )
( )

For f (i)=0, this expression for R i
j

( )
( ) recovers the Eddington

closure. For pure streaming along a coordinate axis, e.g.,
f (x)=1, d d= -R Ri

j
i

x
x

j
0

0
( )

( )
( )

( )
( )

( )
( )

( ). The closure transitions
smoothly between these limits. Note that this closure uses all
the information available locally from the first moment (the
conserved four-momentum, expressed here as R 0

0
( )

( ) and f (i)).
Our method for evaluating Ri

j given mR0 and p i
j

( )
( )

(Section 3.6) does not generalize to the M1 closure, which
depends on mR 0( )

( ). Instead, we use the approach of Saḑowski
et al. (2013) to first recover ur and the radiation four-velocity
mur from mR0 . We then use their covariant expression for the

radiation stress–energy tensor using the M1 closure,

d= +m
n

m
n

m
nR u u u u

4

3

1

3
, 73r r r, r ( )

to evaluate m
nR in the coordinate frame. We then transform this

quantity to the fluid frame with the tetrad transformations
employed elsewhere in the code, where we recover p =i

j
( )

( )

R Ri
j

0
0

( )
( )

( )
( ).

When considering convergence, we disable adaptive sample
refinement in order to more finely control the sample
resolution.

4.1. Hohlraum Streaming

Consider a hohlraum boundary condition at x=0 and
temperature T such that Iν=Bν(T), and a vacuum for x>0.
The radiation energy density at the boundary is =u a Tr, 0 r

4.
Radiation will propagate in the positive x direction.
The time-dependent analytic solution is evaluated by sending

characteristics backward in time over all θ from position x
(q = 0 corresponds to the +x direction) and determining
whether they reach the hohlraum boundary by t=0. The
specific intensity is then

q q= <
n

nI B
0 else

, 74max{ ( )

where q = - x ctcosmax
1 ( ), the radiation energy density is

ò òp q q n=
q

n
¥

u B d d2 sin , 75r
0 0

max

( )

and the Eddington factor is

= + +f
x

ct

x

ct
1 3 1 . 76x

x

2
⎜ ⎟

⎡
⎣⎢
⎛
⎝

⎞
⎠

⎤
⎦⎥ ( )( )

( )

At late time, q p 2;max while the intensity is far from
thermal, the Eddington factor =f 1 3x

x
( )

( ) , exactly the value
for Iν=Bν. Although simple, this problem is analogous to
physical situations encountered in radiation transport, in which
a thermal object radiates into a tenuous atmosphere or ambient
medium in nearly plane-parallel symmetry.
The hohlraum boundary condition in our simulation is

enforced by setting the radiation moments to the value for a
blackbody at temperature T. For MOCMC, we randomly
distribute samples in the boundary zone at each time step, with
Iν=Bν for these samples. However, because we are studying
convergence on this problem, we want to avoid the
discontinuity in radiation energy density at x=0. Instead,
we consider the boundary condition slightly away from x=0,
where only characteristics moving in the +x direction are
thermal. Hence, our boundary condition is

q p=n
n I B 2

0 else
77

⎧⎨⎩ ( )

=

-
-m

nR

u u

u u

u

u

2 4 0 0

4 6 0 0

0 0 6 0

0 0 0 6

78

r, 0 r, 0

r, 0 r, 0

r, 0

r, 0

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
( )

at x=0. Note that Eddington and M1 produce similar results
for this and an isotropic thermal boundary with Iν=Bν and the
corresponding m

nR . The right boundary condition is placed at
large enough x to be causally disconnected from the simulation
region shown.
Figure 2 compares Eddington, M1, and MOCMC closures

on this test at t=0.75 and t=5. The assumption in M1, that
there is a frame in which the radiation is isotropic, is not
satisfied here. Additionally, =f 1 3x

x
( )

( ) at late time while
f (x)>0, which is inconsistent with Equations (71) and (72).

5 As an example of an approach intermediate to a gray method—like the one
we adopt here—and a frequency-dependent treatment, Saḑowski & Narayan
(2015) and Foucart et al. (2016) also evolve a radiation particle number density,
which can provide a characteristic radiation temperature.
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Even in a time-independent sense, M1 leads to an order unity
error in the radiation energy density, unlike the Eddington
closure.6 MOCMC accurately matches the analytic solution for
both ur and f x

x
( )

( ).
Convergence is shown in Figure 3. Evidently, we recover

approximately first-order convergence in Nsamp, unlike the
-Nsamp

1 2 for a Monte Carlo method. This is a result of using
the Delaunay triangulation to calculate p ;i

j
( )

( ) essentially, the
triangulation provides a more accurate estimate of the solid
angle owned by each sample. We do not expect convergence
better than first order on this test, which contains a discontinuity
in momentum space.

4.2. Two-dimensional Hohlraum

Now consider a 2D box with hohlraum boundary conditions
on both the x=0 and y=0 boundaries.

We construct a solution for comparison via a simple Monte
Carlo method. On a grid of positions (x, y) and time t, we
sample characteristics uniformly on the sphere, propagate them
back to t=0, and ask whether they intersect a hohlraum
boundary. Summing intensities over a solid angle in each zone
gives ur.

Unlike in the 1D hohlraum test, the modified boundaries
with nonzero fluxes are no longer valid, so we set the boundary
conditions to simply be thermal at x=0 and y=0. The results
for Eddington, M1, and MOCMC compared to the semianalytic
solution are shown in Figure 4.

This test shows that multidimensional effects are important
to monitor when discriminating between transport algorithms.

In particular, both moment methods exhibit significant
interactions between the wavefronts from the two boundary
conditions. These interactions lead to much larger radiation
energy densities in the moment methods than are encountered
in either MOCMC or the semianalytic solution. The MOCMC
solution at 64 samples per zone also exhibits some radiation
self-interaction due to truncation error in the Eddington tensor
evaluation, but this self-interaction decreases with the number

Figure 2. Comparison for the hohlraum streaming test showing radiation
energy density ur and Eddington factor f x

x
( )

( ) for Eddington, M1, and
MOCMC methods at t=0.75 for 128 zones between x=0 and x=1.
Analytic solutions at times t=0.75 and t=5 are shown as black dashed and
dotted lines; simulation results are shown as red and blue lines. The Eddington
closure propagates as a pure wavefront moving at ~v c 3 . M1 significantly
overestimates f x

x
( )

( ), because there is no frame in which the radiation is
isotropic in this problem. MOCMC (here with 60–80 samples per zone) agrees
with the solution in both ur and f x

x
( )

( ), although it introduces noise. The bias in
f x

x
( )

( ) in the MOCMC solution is introduced by the interpolation of weights
used when calculating p i

j
( )

( ). For the MOCMC solution, at t=0.75, no
radiation from the hohlraum boundary has propagated beyond x=0.75;
samples at x>0.75 have vanishingly small, uniform intensities, and the
Eddington tensor integration produces nearly (1/3).

Figure 3. Convergence of the hohlraum streaming test for MOCMC at
t=0.75 with mean number of samples per zone Nsamp. Convergence is nearly

-Nsamp
1 , rather than the Monte Carlo -Nsamp

1 2. Note that there is stochastic
sampling error in this test; samples are initially distributed randomly on the unit
sphere, and are randomly distributed at the thermal boundary.

Figure 4. Comparison for the 2D hohlraum streaming test with 64×64 zones
showing radiation energy density at t=0.75. Contours are spaced 0.1 apart.
Moment closures differ qualitatively from the true solution. The Eddington
closure generates a hot spot of radiation along the diagonal. M1 creates an even
more dramatic jet of radiation along the diagonal. MOCMC recovers the
semianalytic transport solution, although it introduces noise. The MOCMC
solution used ∼64 samples per zone. At finite time, Eddington and M1 closures
produce much stronger gradients in radiation energy density. Note that, unlike
a Newtonian diffusion equation, the Eddington closure to the radiation
moments produces self-interaction like M1. At this resolution in samples, the
MOCMC solution shows some radiation self-interaction as well, due to
truncation error; however, this decreases with increasing sample resolution.

6 In fact, at = ¥t , Eddington outperforms both M1 and MOCMC (by virtue
of the lack of noise) on this problem.
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of samples and is already much lower than that seen in the
moment methods.

Figure 5 shows the change in the MOCMC solution with
increasing sample resolution from 16 to 128 samples per zone.
While the boundary prescription we adopt in this multidimen-
sional test makes formal convergence testing difficult, the
MOCMC solution appears to approach the semianalytic solution
in most of the domain as the sample resolution is increased.

4.3. Thermalization

Thermalization provides a useful test of the code’s ability to
recover a basic feature of radiation hydrodynamics—equilibra-
tion between material and radiation temperatures. We repeat
the bremsstrahlung thermalization test from Ryan et al. (2015)
on a 3×3 grid of spatial zones, with a much larger initial gas
temperature =T 10 Kg, 0

9 and electron number density
= ´ -n 6 10 cme

16 3. There is no radiation initially. The gas
and radiation are allowed to proceed toward equilibrium. We
compare to a frequency-dependent semianalytic solution in
Figure 6.

We also compare to frequency-integrated source terms i.e., we
use a Planck mean opacity rather than an opacity averaged over
the samples. Because the exponential cutoff in the emissivity
shifts dramatically downward in frequency, the timescale to
thermalize radiation that is emitted initially is very long,
resulting in an undershoot of the gas temperature. This is not
captured by a gray method, which cannot know the frequency
distribution of radiation. Figure 7 shows the frequency
distribution of radiation at different times during this test.

4.4. Spiegel Linear Mode

The time evolution of a temperature perturbation in an
otherwise uniform medium in radiative equilibrium with gray
absorption coefficient α permits an exact solution under the
assumption that the time-dependent terms in the radiative
transfer equation are small (Spiegel 1957; Mihalas &
Mihalas 1984). Note that this test assumes that light is

transported much faster than the mode decay time; attempting
to recreate this test in a slow-light code like ours will generally
introduce some numerical diffusion through the Riemann
solver in the radiation sector.
Unlike Ryan et al. (2015), here we hold α0, T0, and ct LRR

constant. This problem requires that the relaxation rate be slow
compared to the light-crossing time for the perturbation
wavelength. We use 32 grid zones to simulate one wavelength.
We measure the relaxation rate by fitting the form of the

linear solution to the numerical result after one e-folding time.
We compare to the gas temperature only, because the perturbed
radiation energy density is not trivial when the optical depth is

Figure 5. Change in the MOCMC solution for the 2D hohlraum test for
numbers of samples per zone 16, 32, 64, and 128. With increasing sample
resolution, the MOCMC solution transitions from something resembling the
Eddington tensor solution in Figure 4 to the semianalytic transport solution in
the same figure. Shot noise also decreases with increasing sample resolution.

Figure 6. Thermalization via bremsstrahlung, comparing a gray approach and
the multigroup MOCMC method to the frequency-dependent semianalytic
solution. The shifting n-h k Texp B( ) factor in the emissivity causes an
undershoot in the gas temperature at intermediate times, as the initially emitted
radiation is not easily reabsorbed by the gas, which is now much colder. Gray
methods that evolve only the radiation four-momentum, and so do not know
about the frequency distribution, do not capture this effect, leading in this case
to an order unity error in the gas temperature. Note that there is no error related
to angular discretization in this isotropic problem.

Figure 7. Evolution of specific intensity for bremsstrahlung thermalization test,
for the MOCMC and semianalytic solutions, which show good agreement. At
all times, the specific intensity is highly nonthermal.
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finite. We show the performance across optical depth by
comparing measured dispersion rates for Eddington, M1, and
MOCMC to the analytic solutions, both for transport and for
the Eddington closure, in Figure 8.

We also show the analytic solution for the Eddington
approximation. For the moderately optically thick limit, these
closures produce similar errors, 20%. M1 does not distin-
guish between isotropic and anisotropic components, and the
isotropic component dominates the four-momentum used to
compute f x

x
( )

( ).
The Eddington factor for the perturbation is

t
t
p

=
- t

p
p
t

p
t

-

-
f

2

1 tan

tan
; 79x

x
2

1 2

1 2

( )
( )( ) ( )( )

( )

for t  ¥, f 1 3;x
x

( )
( ) as expected, the Eddington

approximation is appropriate. For t  0, however,
f 0x

x
( )

( ) , whereas Eddington and M1 closure both assume
f 1 3;x

x
( )

( ) the perturbation in the radiation field becomes
oblate along the x axis. Eddington factors less than 1/3 also
appear in radiative shocks (Jiang et al. 2014a). Clearly,
standard moment closure models are invalid here, and yet
such closures recover the correct dispersion relation at small τ.
Mihalas & Mihalas (1984) point out that this is because, for
t  0, relaxation is determined entirely by emission.

4.5. Comptonization

We repeat the setup from Ryan et al. (2015) of thermaliza-
tion of soft photons due to Compton upscattering in a one-zone
box. For this test, we use 32 samples per zone, although there is
no angular structure, so there is no truncation error due to solid
angle discretization (note the absence of noise in the solution).
We use 100 frequency bins, logarithmically spaced from 108 to
10 Hz20 . We initialize the gas with electron and proton number

densities = ´ -n 2.5 10 cme
17 3 and temperature = ´T 5g,0

10 K7 . The radiation is initially monochromatic at frequency
n = ´3 10 Hz0

16 and photon number density = ´gn 2.38
-10 cm18 3.

The characteristic timescales in this problem are the mean
time between scattering events, s= » ´t n c1 2s e T( )

-10 s4 , and the Comptonization time, i.e., the time between
scatterings divided by the fractional energy transfer per
scattering event, = » ´ -t t m c k T 2.4 10 sC s e

2
B e

2( ) .
We calculate the equilibrium temperature with conservation

of energy and photon number. Unlike Ryan et al. (2015), here
we assume that the final photon distribution is Bose–Einstein
rather than Wien; the final temperature Tf is found by solving

g
n

g

p m

-
+ =

-

+
-

g
n k T

h n
n k T

k T

c h k T

2

1

2

1

48
Li exp , 80

e B g,0
0

e B f

B
4

f
4

3 3 4
B f

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟ ( )

where μ is the chemical potential of the photons and zLis( ) is
the polylogarithm. For this test, the photon occupation number
remains much less than one, and Tf closely agrees with the
value calculated assuming a final Wien distribution for the
photons.
We perform this test both with an initially isotropic

distribution of radiation, and with an anisotropic distribution
in photon number, = +g gn n n1 ,x

, aniso ( )( ) with 64 samples.
The gas and radiation temperature (the radiation temperature is
evaluated assuming a Boltzmann distribution) evolutions for
both cases are shown in Figure 9. The gas and radiation
approach thermal equilibrium on a timescale »tC, as expected.
A similar result was obtained for the same parameters
with the bhlight code (Ryan et al. 2015). The evolution of
the intensity in angle is shown in Figure 10. Because the
fractional energy change of each scattering event is small, the

Figure 8. Dispersion relation, and fractional error, as a function of optical
depth per wavelength τ for the Spiegel linear mode test. Analytic solutions are
shown, both for full transport and using the Eddington approximation. M1 and
Eddington are essentially identical in this test; the anisotropy in the intensity is
only perturbative, so f 1x( )  always, and for the full transport solution, the
Eddington factor f x

x
( )

( ) of the perturbation varies between 0 and 1/3, whereas
for M1, Îf 1 3, 1x

x [ ]( )
( ) . MOCMC shows good agreement with the full

transport solution.

Figure 9. Comptonization of soft monochromatic photons for both isotropic
and anisotropic initial radiation distributions. The equilibrium temperature is
shown as the black dashed line. The angular structure of the seed photons has
little effect on the temperature evolution in this problem. MOCMC equilibrates
to the correct temperature on approximately the Comptonization time tC.
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radiation isotropizes rapidly compared to the timescale for
thermalization.

4.6. Static Diffusion

To test the performance of our scattering treatment, as well
as the behavior of MOCMC in the diffusion regime, we
consider diffusion of a Gaussian pulse in a static medium
optically thick to Thomson scattering in 1D on a domain
Î -x L L2, 2[ ]. Starting at t0, the analytic solution for the

radiation energy density (with a 0.01% background) in the
diffusion regime is

= +
--u u

t

t

x

Dct
10 exp

4
, 81r r, 0

4 0
2⎛

⎝⎜
⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟ ( )

where the diffusion coefficient s=D n1 3 T e( ) and ur, 0 is the
maximum radiation energy density at the initial time t=t0. We
set ne such that the optical depth over the domain is τ=104.
We evolve this system to t=50L/c; the MOCMC solution is
shown in Figure 11. The solution shows good agreement; in
particular, the pulse diffuses much more slowly than the rate at
which samples traverse zones.

4.7. Dynamic Diffusion

To study dynamic diffusion, we add a lab-frame velocity to
the fluid such that the radiation is advected with the flow more
rapidly than it diffuses. This is a powerful test of accuracy for a
radiation hydrodynamics method. In particular, this test can be
a challenge for  v c( ) methods when care is not taken in
truncating the equations in a way appropriate for all regimes
(Krumholz et al. 2007). This is captured naturally by covariant
methods like MOCMC.

We adopt the domain and initial conditions from the
previous test, except that the pulse is now initially centered
at x/L=−0.25. We set the fluid speed to β ≡ v/c=0.1, and
we evolve the system to t f=5L/c. As in the previous test, we
set τ=104; at tf, there is some diffusion of the pulse. Figure 12
shows the MOCMC solution, along with initial and final
analytic solutions.

4.8. Noisy Equilibrium

We consider a 1D box of length L with gas and radiation
initially in thermal equilibrium at temperature T0=107 K. The
gas and radiation interact through a gray absorption opacity. As
this system evolves, noise in the Eddington tensor will lead to
noise in the radiation four-momentum, which in turn will
couple to the gas energy density. We use this test to measure
the noise in the fluid when varying the optical depth across the
box τ and the gas-to-radiation pressure ratio βr. Note that noise-
free methods like analytic moment closures satisfy this test
trivially.

Figure 10. Frequency-integrated intensity I in momentum space as a function
of angle from an initially anisotropic distribution in the Comptonization test.
For each facet, color is evaluated as the average of I at each constituent vertex.
Because the intensity evolves through many scatterings, each of which leads to
only a small change in photon frequency, the radiation isotropizes rapidly,
compared to the timescale for thermalization with the fluid, and is barely visible
at three scattering times »t t0.025s C.

Figure 11. Static diffusion of a Gaussian pulse in a uniform medium optically
thick to Thomson scattering (t = 104) in MOCMC with 256 zones and 64
samples per zone. Top panel shows the initial and final analytic solutions
relative to the maximum initial radiation energy density ur, 0, along with the
MOCMC solution, and the bottom panel shows the residuals, at the few %
level where u ur r, 0 is significant, in the radiation energy density at the
final time.

Figure 12. Diffusing pulse due to Thomson scattering with MOCMC. The
fluid is moving with speed 0.1c. Top panel shows radiation energy density in
red at the final time, along with the initial conditions (black dotted line) and
analytic solution at the final time (black dashed line). Bottom panel shows the
fractional error in the Eddington and MOCMC solutions. The optical depth
across the domain is 104. Two hundred and fifty-six zones were used, with 64
samples per zone. The particle noise in constructing the Eddington tensor is
negligible, compared to other errors in this problem; the Eddington and
MOCMC solutions are nearly indistinguishable in this plot.
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We parameterize the stability by á - ñT T Tg 0 0∣ ∣ , where Tg is
the gas temperature and á ñ· is the average over the domain. We
set βr and τ by setting the gas density and the gray opacity κ.
We run each realization for t=10L/c, which appears to lead
to saturated gas temperature errors. We consider a range of
optical depths and gas-to-radiation pressures, t Î -10 , 102 2[ ],
and b Î -10 , 10r

5 2[ ]. The mean error at final time for each of
these realizations is shown in Figure 13. Evidently, our method
is stable for every combination of parameters we consider, and
mean gas temperature errors remain good 0.5%( ) even in the
most extreme cases.

Nonetheless, noise in the gas temperature does increase with
optical depth and radiation to gas pressure. This test already
considers large optical depths and very large radiation to gas
pressure ratios, but even more extreme parameter regimes may
obtain in problems of astrophysical relevance. One option
would be to interpolate toward the (noise-free) Eddington
closure in very optically thick regions, although this could
cause issues if there also exists some radiation at frequencies
that are optically thin.

4.9. RMHD Linear Modes

We revisit relativistic radiation MHD linear modes (Jiang
et al. 2012; Saḑowski et al. 2014; Ryan et al. 2015). These are
derived assuming the Eddington closure, and so we focus on
the optically thick regime here. Solutions are generated with a
symbolic linear modes package (Chandra et al. 2017). We
specialize to optically thick radiation-modified fast magneto-
sonic modes at different gas-to-radiation pressures βr. We do
not refine or derefine samples for this test. We construct
eigenmodes of the form d w~ +t ikxexp ( ) for variation in

r dr= +P 0( , d+u ug,0 g, du1, δu2, B0
1, d+B B0

2 2, d+u ur,0 r,

dF1, dF2). Optical depth per wavelength t = 20, divided
evenly between gray absorption opacity ka and gray scattering
opacity ks, for wavenumber p=k 2 . Modes are simulated with
an amplitude d = -10 4. The background equilibrium is r = 10 ,

= = = =u u F F 00
1

0
2

0
1

0
2 , r=E a P0 r 0 0

4( ) , and ug,0 and
=B B0

1
0
2 are determined by plasma b = 1m and gas-to-

radiation pressure b = 10, 1, 0.1r ( ). The adiabatic index
g = 5 3. Units are such that = = =k c a 1B r . The three
modes we consider are given in Table 1.
Each mode is simulated for one wave crossing time,

p w2 Imag∣ ( )∣. We study convergence. However, we have
two resolution parameters: number of zones N1, and number of
samples per zone Nsamp, which introduce similar errors. We
therefore approach convergence in two steps. First, we study
convergence of the MOCMC code with the Eddington closure
relative to the analytic solution with increasing N1 (this
subsystem has no Nsamp dependence). Figure 14 shows the
expected -N1 1( ) convergence in all variables at large N1 (these
modes are optically thick, and our source term evaluations are
first-order accurate in time. Next, we fix =N 2561 , and
reintroduce samples for computing the pressure tensor. We then
study convergence of the full MOCMC solution with
increasing Nsamp relative to the analytic solution. When the
truncation error is dominated by the integration of the
Eddington tensor, MOCMC converges as ~ -Nsamp

2 .

4.10. Relativistic Nonlinear Waves

Farris et al. (2008) introduced a method for calculating 1D
relativistic radiation hydrodynamic waves in flat spacetime
with an assumed Eddington closure and a gray absorption
opacity, along with four example solutions that have frequently
been reproduced with relativistic radiation hydrodynamics
codes (Fragile et al. 2012; Roedig et al. 2012; Saḑowski et al.
2013; McKinney et al. 2014; Ryan et al. 2015). These four
example solutions are: (Case 1) a gas pressure–dominated
nonrelativistic strong shock, (Case 2) a gas pressure–dominated
mildly relativistic strong shock, (Case 3) a gas pressure–
dominated highly relativistic wave, and (Case 4) a radiation
pressure–dominated, mildly relativistic wave. We adopt the
parameters from Farris et al. (2008). Ryan et al. (2015)
simulated Cases 1–3 with full transport. See also Ohsuga &
Takahashi (2016) for another full transport method applied to
this problem.
We initialize these problems as shocktubes and allow them

to evolve to equilibrium inside the code. We perform these
simulations with both the Eddington closure and the full
MOCMC machinery. The Eddington closure provides the
reference solution and tests part of our numerical framework
against the analytic solution (Farris et al. 2008); the MOCMC
solution, being full-transport, will not agree with the analytic
solution on scales of an optical depth, which in all cases is
approximately the scale of the interface structure.
For all cases, we use 800 spatial zones, and for the MOCMC

solution, approximately 64 samples per zone after refinement.
Each sample carries 50 frequency bins. The left and right initial
interface states are enforced at the boundary in the fluid and
radiation moment variables, while the pressure tensor is taken
to be Eddington and the samples are thermal and uniformly
distributed in solid angle in the comoving frame. The four
waves are shown, respectively, in Figures 15–18. The particle
noise in the MOCMC representation of the Eddington tensor is
mostly small and does not prevent the code from being stable

Figure 13. Average relative error in gas temperature for an initially uniform
medium with gas and radiation in thermal equilibrium as a function of optical
depth τ and gas-to-radiation pressure ratio βr. We used 64 zones in 1D and 64
samples per zone. Noise is generated from our method for calculating the
radiation pressure tensor. Noise in the gas temperature grows only slowly once
βr  1, rather than rapidly going unbounded as in a traditional explicit Monte
Carlo method. This is due to our semi-implicit update that drives the gas and
radiation toward thermal equilibrium. Additionally, in thermal equilibrium

~u Tr r
4, and noise in p i

j
( )

( ) directly affects ur rather than Tr. Note that even
with only 64 samples, maximum noise in the gas temperature is on the order of
0.5% (noise in the radiation temperature is generally ~ -10 4.
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or accurate in any case, even when radiation pressure is
dominant. The most significant pathology is when the Lorentz
factor changes dramatically across the wave (Case 3); the

resulting beaming of samples leads to poor sampling of solid
angle in the comoving frame. The code then relies on the
resampling procedure for resolving the pressure tensor.

Table 1
Radiation-modified Fast Magnetosonic Modes

βr=10 βr=1 βr=0.1

ω −0.0244360+0.896566i −0.0932061−0.983571i −0.163372−1.79706i

δρ/δ 0.981029 0.980516 0.926746
δug/δ 0.0146350+0.00156849i 0.0127094−0.00173903i 0.0122892−0.000860716i
δu1/δ −0.139986−0.00381533i 0.153490−0.0145452i 0.265060−0.0240967i
δu2/δ 0.0640717−0.00344325i −0.0508806−0.00831436i −0.0162519−0.00161307i
δB2/δ 0.116682−0.00296728i 0.105954+0.00679059i 0.0802285+0.000875043i
δur/δ 0.00372334+0.00109715i 0.0230965−0.0135388i 0.241633−0.0682760i
δF1/δ 9.71549×10−5−0.000378002i −0.00127282−0.00229245i −0.00427347−0.0195488i
δF2/δ −5.46703×10−7−7.65533×10−6i 7.94614×10−6−6.76842×10−5i 3.88462×10−5−0.000392639i

Note. Eigenmodes of the form d w~ +t ikxexp ( ) for the equations of covariant radiation hydrodynamics in Minkowski space with the Eddington closure. Optical
depth per wavelength τ=20 and plasma βm=1. Our simulations use an amplitude δ=10−4.

Figure 14. Convergence of radiation-modified fast magnetosonic modes for, from top to bottom, b =r 10, 1, 0.1( ). Due to the two independent resolution parameters
in MOCMC, we first study convergence in number of grid zones N1 of the numerical solution using the Eddington closure with respect to the analytic solution, and
then convergence in number of samples per zone Nsamp of the numerical MOCMC solution at fixed N1=256 with respect to the same analytic solution. Different gas-
to-radiation pressure ratios βr are shown; the plasma βm=1. All modes shown are optically thick, τ=20. Here, the L1 norm corresponds to the fractional error
relative to mode amplitude in each zone. For the Eddington closure, when advection errors dominate, we expect second-order convergence in N1; when coupling
dominates, we expect first-order convergence in N1. The MOCMC solution converges as -Nsamp

2 , indicating a second-order-accurate integration of the Eddington tensor,
and negligible truncation error in the sample updates themselves.
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4.11. Novikov–Thorne Hohlraum

We now consider radiation transport in curved spacetime.
We essentially repeat the 2D flat space hohlraum test in the
Kerr geometry for a M1  black hole with spin a=0.9375,
now with the radiating boundary condition a thin disk at the
midplane from GM c6 2 to GM c10 2. The disk has the
temperature profile of a thin disk (Novikov & Thorne 1973)
with anomalous viscosity a = 0.05. The disk and atmosphere
are static in the normal observer frame. This disk radiates into
vacuum; at finite time, we measure the radiation energy density
in the normal observer frame.

To construct a time-dependent solution to the equation of
radiative transfer, we extend the procedure from 4.2 to a
geometrically thin, optically thick disk in the Kerr geometry.

The procedure is essentially unchanged—except now, instead
of propagating rays backward in time along straight lines in flat
space, we sample geodesics uniformly in the normal observer
frame (e.g., Bardeen et al. 1972) and propagate them along
geodesics until they either exit the outer radial boundary, cross
the event horizon, or intersect with the thin disk. For geodesics
that intersect the disk, we set their invariant intensity to the
Planck function at the disk temperature, and integrate this over
frequency in the originating normal observer frame to get the
contribution to radiation energy density ur, normal in that frame.

Figure 15. Nonrelativistic, gas pressured–dominated, weak shock initialized as
a shock tube and evolved for t=40. The radiation has little effect on the fluid;
this is largely a test of radiation transport over finite optical depth in a
nonuniform medium.

Figure 16. Mildly relativistic, gas pressure–dominated, strong shock at
t=400. The transport solution is qualitatively dissimilar from the Eddington
approximation, which produces large discontinuities in the comoving radiation
energy density and flux. Note the good agreement between MOCMC and the
solution given by the explicit Monte Carlo method bhlight in Ryan
et al. (2015).

Figure 17. Highly relativistic relativistic gas pressure–dominated wave at
t=80. This test exposes a significant pathology in MOCMC due to our
sampling method. Initially, samples are distributed uniformly in the comoving
frame of the fluid in each zone. However, in this test, these samples quickly
pass from a γ∼10 region to a γ∼1 region. As a result, most of the samples
downstream of the interface will be almost colinear in the fluid frame, leading
to a challenging reconstruction operation, and requiring in situ resampling.

Figure 18. Radiation pressure–dominated, mildly relativistic wave at t=150.
Despite b ~ 0.03 1R  , our semi-implicit MOCMC method is stable despite
solving the transport equation using particles. The sharp features in the
comoving radiation energy density and radiation flux in the Eddington
approximation are not present in the transport solution. The explicit Monte
Carlo method bhlight (Ryan et al. 2015) was not able to stably evolve this
configuration.
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Figure 19 shows the results of this test, both for the full
MOCMC code as well as Eddington and M1 closures,
alongside the semianalytic solution. For the simulations, we
adopt axisymmetry in modified Kerr–Schild (Gammie et al.
2003) coordinates with refinement parameter h=0.3 and use
128×129 zones in X1 and X2, the odd number of zones in X2

for symmetry about the midplane. The lower hemisphere is not
shown. We set the outer radius at GM c20 2. The thermal
radiating disk boundary (we adopt a hemispheric approach
similar to the 2D hohlraum test in Section 4.2) is enforced at
the midplane every substep, both in the radiation moments and
in the samples (i.e., the radiating disk is infinitely optically
thick in our implementation).

4.12. Isothermal Schwarzschild Atmosphere

We repeat the isothermal pressure-supported atmosphere test
in the Schwarzschild geometry close to the event horizon from
Ryan et al. (2015). Reflecting spherical shells are placed at
inner and outer radii =r GM c3.5in

2 and =r GM c20out
2,

and gas between these shells is allowed to reach radiative
equilibrium through a gray opacity κ. The radiation acts like a
heat conduction, leading to a temperature profile that is
isothermal modulo a redshift factor,

= -¥T r T g 8200( ) ( )

where T∞ is the temperature at large radius. The solution is
determined by this temperature profile and mechanical
equilibrium, =m

mT 0r
; . For a γ-law equation of state, the

solution is evaluated by solving

r
= -

+

-

g
g-dP

dR

P

r 1
. 83

r

1 g

2 2

( )
( ) ( )

Because all rays propagate back to = -¥t , n n=n nI B3 3

everywhere in the domain, and this is an exact solution of the
equations of radiation hydrodynamics with full transport in
curved spacetime. This problem can be cast in terms of three
dimensionless parameters: (1) the ratio of the inner atmospheric
scale height H to rin, m=H r k T r m GMin B in in p( ) where μ is

the mean molecular weight; (2) the ratio of gas-to-radiation
pressure at the inner boundary, b m r= m a T k3r p r in

3
in B( ); and

(3) the optical depth across the domain t kr= -r rin out in( ).
We set the black hole mass M=Me, =H r 1.60in ,
b = 43.5r , and τ=5. We set up the simulation in 1D, with
128 grid zones. The exact solution is enforced at the
boundaries. We run for =t GM c500 3. The result is shown in
Figure 20.

5. Conclusions

We have presented a numerical method for covariant RMHD
with frequency-dependent transport that is stable, accurate, and
efficient for a wide range of optical depths and radiation
pressures relevant to the black hole accretion problem. The
essential novelty is the discretization of the radiation field.
Specific intensities are transported along characteristics, and the
radiation distribution function in fluid zones is reconstructed by
the set of samples in each zone at each time step. Source terms
are evaluated in a deterministic, fully nonlinear, and implicit
fashion, avoiding difficulties encountered by Monte Carlo
methods for large optical depths and/or short interaction
timescales. This solution to the transport equation is used to
close a set of moment equations, providing a numerical
solution to the full transport equation. The continuous nature of
our method also means that the radiation field—and radiation
interactions—are generally less noisy than in Monte Carlo; in
particular, errors decrease with number of samples at least as

-Nsamp
1 , rather than the canonical Monte Carlo -Nsamp

1 2. By
transporting an array of intensities at different frequencies
along a common geodesic, we significantly reduce the
algorithmic complexity of the transport operator in multigroup
problems. Our treatment, in which specific intensity samples
can be readily resampled locally, is also advantageous for large
dynamic spatial ranges (such as logarithmic grids in simula-
tions of thick disks). This should lead to improved load
balancing, and could also be a benefit in future numerical
methods with adaptive mesh refinement.

Figure 19. Time-dependent transport test in the Kerr spacetime for a radiating
disk at t=5M. Radiation energy density in the normal observer frame is
shown. The radiating disk is at the midplane from r=6GM/c2 to r=10GM/
c2, and the black circles denotes the event horizon of the black hole. Eddington,
M1, and MOCMC (with 64 samples per zone) closures are shown against the
semianalytic solution. The Eddington and M1 closures produce similar results,
with large radiation energy densities far from the disk at finite time, and
particularly in the case of M1, a sharp boundary to a vacuum region in the
midplane inside the innermost stable circular orbit. As in flat spacetime, at
finite time the MOCMC solution corresponds much more closely to the
semianalytic solution than either of the analytic moment closures.

Figure 20. Redshifted isothermal Schwarzschild atmosphere at
=t GM c500 3. The temperature profiles of both the radiation and the gas

are shown, as well as the residuals relative to the semianalytic solution.
n n= =n nI B const3 3 everywhere in the domain. The solution is enforced in

the ghost zones at both radial boundaries. At least some of the structure in the
residuals may be due to our treatment of the boundary conditions.

19

The Astrophysical Journal, 891:118 (21pp), 2020 March 10 Ryan & Dolence



The method we have presented is a particular realization of a
class of methods, in which integrations in solid angle over long
characteristics are used to evaluate unknowns in the continuum
evolution of the radiation four-momentum. In particular, one
could adopt different integration methods, like a simple sum
(which would lead to Monte Carlo-like -Nsamp

1 2 errors) or fitting
spherical harmonics to the set of samples, which could lead to
higher angular and spatial accuracy.
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