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Abstract

We point out that particles accelerated in a nonrelativistic shock of compression ratio r do not necessarily attain the
standard, p=(r+2)/(r− 1) spectral index. Previous derivations of the spectrum, based on the approximations of
spatial diffusion or negligible anisotropy, are shown to rely on unjustified implicit assumptions. We prove
analytically that the standard result is nevertheless valid in the limit of an isotropic medium. For an anisotropic
medium, the problem generally requires a numerical treatment; the standard result remains valid as long as the
anisotropy is not too strong, but p can substantially deviate from the standard result for sufficiently anisotropic
scattering, even in the small-angle scattering limit. Additional spectral modifications, for example, by motions of
scattering modes at intermediate optical depths from the shock, are discussed.

Unified Astronomy Thesaurus concepts: Shocks (2086); Cosmic rays (329); Magnetic fields (994)

1. Introduction

Diffusive shock acceleration (DSA) is a first-order Fermi
process, believed to be responsible for the production of
nonthermal, high-energy distributions of charged particles in
collisionless shocks found in diverse astronomical systems. For
reviews, see Blandford & Eichler (1987), Malkov & Drury
(2001), and Treumann (2009). DSA is thought to operate in
both nonrelativistic and relativistic shocks, the latter being
complicated by substantial anisotropy and sensitivity to
microphysical processes (e.g., Bykov et al. 2012; Sironi et al.
2015). We focus here on DSA in the nonrelativistic shock limit,
in which the shock-frame fluid velocity v normalized by the
speed c of light, b º v c 1, is a small parameter.

Collisionless shocks, in general, and their particle accelera-
tion, in particular, are mediated by electromagnetic modes and
are still not generally understood from first principles. No
present analysis self-consistently calculates the long-term
generation of these modes and their cross-interactions with
the multi-phase plasma. One way to make progress in the study
of this nonlinear, many-body, and multi-scale problem is to
evolve the particle distribution function (PDF) f by adopting
some ansatz for the scattering mechanism and neglecting wave
generation and shock modification by the accelerated particles,
in the so-called test-particle approximation.

This approach proved successful in accounting for observa-
tions of nonthermal shock signatures. For nonrelativistic
shocks, DSA is thought to yield a power-law energy spectrum,
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that is a function of the shock compression ratio r (Axford et al.
1977; Krymskii 1977; Bell 1978; Blandford & Ostriker 1978).
For a strong shock in an ideal gas of adiabatic index Γ=5/3,
the compression ratio r 4 implies p 2, in agreement with
observations. Equation (1) is often used to deduce r—and
therefore, also the shock Mach number—from the particle
spectrum inferred from observations.

Analytic estimates of p leading to Equation (1) are typically
based on applying the spatial diffusion approximation on both
sides of the shock, or on approximating the PDF in the

downstream frame as isotropic. Indeed, spatial diffusion is a
good approximation far from the shock, where gradients
become small. Similarly, a low, O(β) level of anisotropy is
expected due to the small probability of particles to escape
downstream of a nonrelativistic shock. Moreover, Equation (1)
was confirmed by a wide range of numerical (e.g., Ellison et al.
1990; Bednarz & Ostrowski 1998; Kirk et al. 2000) and semi-
analytic (Keshet 2006) methods.
The standard lore is that the spectrum (1) is guaranteed in the

test-particle approximation for an arbitrary small-angle (e.g.,
Malkov & Drury 2001) or even large-angle (e.g., Blasi &
Vietri 2005) scattering function, independent of any first-order
anisotropy pattern that may emerge (e.g., Vietri 2008).
However, the result was not rigorously proven, to our
knowledge, without invoking spatial diffusion or downstream
isotropy, explicitly or implicitly. It is therefore necessary to
critically examine the spectrum in the presence of subtle effects
that deviate from spatial diffusion and to take into account
small anisotropies. Such an examination is needed in order to
determine the circumstances under which Equation (1) breaks
down and to rigorously establish it where it holds.
The spatial diffusion approximation is analyzed in Section 2.

We argue (in Section 2.1) that deviations from spatial diffusion
in the vicinity of the shock front, where particle streaming and
rapid changes in the scattering-mode properties may become
substantial, must be carefully dealt with. Computing p by
applying the spatial diffusion approximation near the shock
front is self-consistent only under a certain condition (derived
in Section 2.2), satisfied under special circumstances such as an
isotropic medium.
The general problem of arbitrarily large-angle scattering

is studied in Section 3. First, we analytically solve (in
Section 3.1) the simple case of DSA with isotropic scattering,
which was not previously addressed to our knowledge. The
general case is then analyzed (in Section 3.2); a modified
diffusion equation is derived, and deviations from the spectrum
(1) are quantified and shown to be negligible in the typical
case, but substantial for sufficiently anisotropic scattering.
Focusing on the limit of small-angle scattering (in

Section 4), we show (in Section 4.1) that the shock-front
PDF has an angular derivative that is first order in β even in the
downstream frame, and (in Section 4.2) that a general O(β1)
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anisotropy is sufficiently strong to substantially distort the
spectrum (1). The conditions necessary for the spectrum to
deviate from Equation (1) are quantified (in Section 4.3), and
shown (in Section 4.4) to be realized for sufficiently anisotropic
angular diffusion. Our results are summarized and discussed in
Section 5.

2. The Assumption of Spatial Diffusion

Most derivations of Equation (1) assume, directly or
implicitly, that the evolution of relativistic particles around
the shock can be approximated as a combination of advection
and spatial diffusion. Here, we discuss this approach, its
underlying assumptions, and its breakdown. An alternative
approach, deriving the spectrum by neglecting the small
anisotropy of particles downstream, is deferred to the study
of small-angle scattering in Section 4.

2.1. Breakdown of Spatial Diffusion

In the spatial diffusion approximation, one typically works in
the shock frame, where a steady state is assumed to emerge.
Positing that the particle distribution is nearly isotropic, it is
common to invoke the advection-diffusion equation
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separately on each side of the shock, and match the solutions
at the shock front, Nu(z= 0)=Nd(z= 0). Here, z is the
displacement from the shock, upstream (z< 0; subscript u) or
downstream (z> 0; subscript d), N(z) is the particle number
density, ( ) = - ¶j z Nz is the diffusive particle flux, ( ) z is
the spatial diffusion function, and shock-frame parameters are
designated by a tilde (omitted when unnecessary).

Solving Equation (2) under the constraint that no particles
escape upstream, ( ) -¥ =N z 0, then implies that the
particle density is uniform downstream, ( ) =N z constd . Under
such circumstances, Equation (1) follows directly, as shown in
several methods (Axford et al. 1977; Krymskii 1977; Bell 1978;
Blandford & Ostriker 1978) and reproduced below. However,
this approach is valid only if deviations from the spatial
diffusion approximation, which may become substantial near
the shock front, remain both weak and confined to the close
vicinity of the shock, at distances much smaller than the  v
diffusive scale.

Spatial diffusion is typically a good approximation only at
large optical depths from an anisotropic source. Defining τ=
τ(z) as the optical depth from the shock front (with τ< 0
upstream), one can safely invoke spatial diffusion at ∣ ∣ t 1. In
general, however, the approximation breaks down in the close
vicinity of the shock front, ∣ ∣t  1, where particles streaming
across the shock can induce anisotropy patterns and spatial
gradients that are inconsistent with spatial diffusion. The
problem is exacerbated in circumstances under which one
cannot even sharply define τ(z), as we discuss in Section 3.2.

In Section 2.2, we derive a consistency requirement on the
angular distribution of the accelerated particles near the shock
front, which must be satisfied if the spatial diffusion approximation
is to be used to derive the spectrum. Furthermore, we show that
this requirement is violated for a general particle scattering
function, necessitating a more careful approach, although the
inferred spectrum remains unchanged when scattering is not too

anisotropic. Before proceeding with the formal analysis, we make
some general comments to argue that deviations from spatial
diffusion are to be expected and may well modify the particle
spectrum.
First, notice that some particle streaming must be present

near the shock front. Invoking spatial diffusion both upstream
and downstream yields a discontinuous diffusive flux j across
the shock front. In particular, particles crossing from the
upstream induce a nonvanishing flux in the downstream frame,
whereas µ ¶ =j N 0d z d . A discontinuous diffusive flux does
not directly pose any contradiction; in fact, the compensating
flux term due to shock compression has been used (Krymskii
1977) to derive the spectrum. However, a discontinuous j does
indicate that the angular distribution may not be consistent with
spatial diffusion on both sides of the shock, as we quantify in
Section 2.2.
We also show (therein) that, in the spatial diffusion

approximation, the particle anisotropy downstream must satisfy
a constraint, which is automatically fulfilled only if this
anisotropy is O(β2). However, particle streaming across the
shock can induce an uncontrolled first-order downstream
anisotropy. Such an anisotropy is sufficiently strong to
invalidate the standard spectrum (1) under certain conditions,
as we prove in Section 4.2. To see how such a situation could
arise, note that a first-order anisotropy would imply a
downstream streaming velocity of order β near the shock. If
such streaming persists over distances ~ v, it can induce
order-unity variations in Nd(z), which would necessarily
invalidate Equation (1).
In order to further illustrate the importance of streaming-like

effects, consider a simplified form of particle streaming added
to the diffusion equation,
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where the form of the last term is justified in Section 3.2. The
spectrum inferred from this equation would, in general, depend
on the streaming velocity ( )v zst , and could significantly deviate
from the standard Equation (1).
As a concrete, analytically tractable example, consider

downstream streaming of the form ( ) [ ( )]= +v z v z z1st 0 0 ,
where v0 and z0 are constants, and define a dimensionless
streaming length parameter ( )h bº z c0 . Equation (3) yields
˜ ( ) ˜ ( ) ( )h h ¥ = h

h
- -N z N e E0 d d

1 d
0

, where Ea(b) is the expo-
nential integral function. Unless ∣ ∣ h 10 , this ratio substan-
tially differs from unity, so the resulting spectral index
(computed, for example, in the method of Bell 1978, as
outlined in Section 4.2), ( ) ( )h h= + -h

h
- -p e E r1 3 1d d

1 d
0

,
similarly deviates from p0. In this picture, the standard
spectrum would require the streaming term to be both
small and confined to the close vicinity of the shock,

( )h b=  z v c0 0 0 .
Additional, independent caveats in the standard spectral

derivations stem from the rather strong underlying assump-
tions, such as neglecting variations in v=vz and in that may
take place over length scales shorter than the spatial diffusion
length. For instance, consider a precursor to the shock
upstream, or an offshoot downstream, in which the velocity
has not yet reached its saturation value implied by the
Rankine–Hugoniot adiabat, or an effective cutoff on  at
some finite distance from the shock. Such effects would modify
the spectrum, for example, by effectively altering the value of r

2
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used in Equation (1). An interesting example is the back-
reaction of the accelerated particles on, which could severely
modify the spectrum, as suggested by nonlinear DSA studies
(Drury 1983; Blandford & Eichler 1987; Jones & Ellison 1991;
Malkov & Drury 2001).

In this paper, we adhere to the standard assumptions of a
uniform fluid velocity on each side of the shock, and a simple
scattering function that is not inherently high-dimensional (for
example, has a separable angular dependence). After establish-
ing in Section 2.2 that even in this case, the spatial diffusion
approximation is, in general, insufficient for a self-consistent
derivations of the spectrum, we invoke the transport equation,
and consistently solve for the full PDF in space and in
momentum. In general, this can only be done numerically, as
we demonstrate in Sections 3.2 and 4.4. Some analytical results
can, however, be obtained; in particular, we show (in
Section 3.2) that the diffusion equation must be replaced by a
modified, diffusion-like equation, supplemented by both a
streaming term and an anisotropy-dependent diffusive term.

2.2. Spatial Diffusion: Consistency Requirement

Consider an infinite, planar shock front, located at shock-
frame coordinate z=0, with flow in the positive z direction
both upstream (z< 0) and downstream (z> 0). We analyze the
PDF ( )r qf t, , of energetic particles, crossing the shock back
and forth due to repeated elastic scattering events that modify
the direction q̂ of the fluid-frame momentum q of a particle.
Particle scattering can be parametrized in terms of an effective
scattering function ( ˆ ˆ )k ¢q q, , describing the fluid-frame rate at
which particles moving in direction ˆ¢q are scattered to
direction q̂.

Assuming that the PDF is stationary in the shock frame, f is
then governed by the transport equation, which can be
conveniently written in the form (e.g., Vietri 2003)

( ) ( ˆ )
[ ( ˆ ˆ ) ( ˆ ) ( ˆ ˆ ) ( ˆ )] ( )ò

m b g

k k g

+ ¶

= ¢ ¢ - ¢ W¢

q

q q q q q q

c f z q

f z q f z q d

, ,

, , , , , , , 4
i i i z i i

i i i i i i i i

in the mixed phase space of fluid-frame q and shock-frame z.
Here, ( )g bº - -1 2 1 2 is the fluid Lorentz factor, ˆ · ˆm º q z is
the cosine of the polar angle with respect to the shock normal,
dΩ is the solid angle differential, and integrals are taken over
the full domain unless otherwise specified. Such an equation
holds independently upstream and downstream of the shock,
with the { }upstream, downstream indices { }Îi u d, written
henceforth only when necessary. Focusing on nonrelativistic
shocks, we henceforth approximate g  1.

Note that it is tacitly assumed here that by averaging
( )r qf t, , over constant z planes, one arrives at a well-defined,

lower-dimensional PDF, that, in a steady state, may be written
as ( ˆ)qf z q, , . It is also assumed that the functions ki are
spatially uniform on each side of the shock, although this
assumption is relaxed in Section 3. These, and other under-
lying, standard assumptions, are discussed in Section 5.

It follows from the unitarity of the scattering matrix (e.q.,
Lifshitz & Pitaevskii 1981 Section 2), that

( ˆ ˆ ) ( ˆ ˆ) ( )ò òk k¢ W¢ = ¢ W¢q q q qd d, , . 5

Therefore, one can generally rewrite Equation (4) as

( ) ( ˆ ˆ )[ ( ˆ ) ( ˆ)] ( )òm b k+ ¶ = ¢ ¢ - W¢q q q qc f f z q f z q d, , , , , . 6z

We avoid the stronger condition of detailed balance,
( ˆ ˆ ) ( ˆ ˆ)k k¢ = ¢q q q q, , , which is sometimes invoked here (e.g.,

Blasi & Vietri 2005), because it would require time
reversibility and parity symmetry of the scattering process,
which could be violated in a magnetized medium.
As ultra-relativistic particles of energy E much higher than

any characteristic scale in the problem are expected to form a
power-law energy spectrum, we separate variables by defining

( ˆ) ( ˆ) ( )( )fº - +q qf z q z q, , , . 7p2

Then the transport equation is reduced to

( ) ( ˆ ˆ )[ ( ˆ ) ( ˆ)] ( )òm b f k f f+ ¶ = ¢ ¢ - W¢q q q qc z z d, , , . 8z

To determine the spectral index p, we next incorporate the
boundary conditions.
Continuity across the shock front implies that

( ˆ ) ( ˆ ) ( )( ) ( )f f= = =- + - +q qz q z q0, 0, , 9u u u
p

d d d
p2 2

where upstream and downstream quantities are related by a
Lorentz boost of velocity ( ) ( )b b b b b= - -1r u d u d , so

( )b m g= +q q1d r u r u and ( ) ( )m m b b m= + +1d u r r u . In the
nonrelativistic limit, b 1, Equation (9) reduces to

( ˆ ) [( ) ] ( ˆ )
[ ( )( ) ] ( ˆ )
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u u
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2

The escape of particles downstream and their absence far
upstream imply that

( )f f f= =
-¥ +¥

¥lim 0 and lim , 11
z

u
z

d

where f¥ is an arbitrary constant, which we choose to be of
order unity.
Averaging the transport Equation (8) over angles q̂, and

introducing the notation ( ) òpá¼ñ º ¼ W- d4 1 , one arrives at
the first integral of the transport equation,

( ) ( )b f mfá ñ + á ñ =
d

dz
0. 12

Applying the boundary conditions (11) now yields

( )
⎧⎨⎩b f mf b f

á ñ + á ñ =
>
<

¥ for z 0;

0 for z 0.
13d

Upstream, the anisotropy measure mf fá ñ á ñ is therefore small,
of order β. Assuming that f fá ñ¥ does not greatly exceed
unity, mf fá ñ á ñ is small also downstream, of order O(β). It is
thus useful to represent the distribution function as

( ˆ) ( ) ( ˆ) ( )f f f= +q qz z z, , , 140 1

where f > 00 , with the normalization

( )fá ñ = 0. 151
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Substituting Equation (14) into the transport Equation (8)
now yields

( ) ( ˆ ˆ )[ ( ˆ ) ( ˆ)] ( )òm b f k f f+ ¶ = ¢ ¢ - W¢q q q qc z z d, , , , 16z 1 1

to be solved for f0 and f1 on each side of the shock under the
boundary conditions (11). These solutions must then be
matched using the continuity Equation (10). One may usually
assume that ∣ ∣ f f1 0, although this assumption can locally
break down for extreme scattering functions, as we show in
Section 4.4. Under this assumption, Equation (10) reduces to
lowest order to

( )( ) ( )f f b b mf f f+ + + - = +p2 , 17u u u d u d d0 1 0 0 1

evaluated at z=0. Averaging over angles yields

( )f f f= = , 18u d0 0 0

and so

( )( ) ( )f b b mf f+ + - =p2 . 19u u d u d1 0 1

The small anisotropy parameter, mf fá ñ á ñ 1, found
upstream and usually also downstream, motivates the afore-
mentioned spatial-diffusion approximation. A sufficient condi-
tion for this approximation is a highly homogeneous or small
level of anisotropy, in the sense that ∣ ∣ ∣ ∣f f¶ ¶z z1 0 . If, in
addition, the gradient of the density is small, then the particle
distribution is guaranteed to be nearly isotropic, ∣ ∣ f f1 0, as
we show below. Later, in Section 4, we show that both of these
assumptions can be broken in a sufficiently anisotropic
medium. Nevertheless, for the remainder of Section 2.2, we
adopt these assumptions, and examine their consequences.

Under the assumption ∣ ∣ ∣ ∣f f¶ ¶z z1 0 , retaining the lowest-
order (in β) terms in Equation (16) yields

( ˆ ˆ )[ ( ˆ ) ( ˆ)] ( )òm f k f f¶ = ¢ ¢ - W¢q q q qc z z d, , , . 20z 0 1 1

One can separate the angular and spatial variables by defining a
single-variable function ( ˆ)y q through

( ˆ) ( ˆ) ( )f y f= ¶q qz c, , 21z1 0

thus, reducing the problem to solving the integral equation

( ˆ ˆ )[ ( ˆ ) ( ˆ)] ( )ò k y y m¢ ¢ - W¢ =q q q q d, 22

for y. Once this equation is solved, the particle flux may be
written in the form

( )mf mf fá ñ = á ñ = - ¶

c

, 23z1 0

where the spatial diffusion coefficient is defined as

( )myº - á ñ c , 242

and in the present framework is a constant on each side of
the shock. A small density gradient, in the sense that
∣ ∣ f f¶ cz 0 0 , would now imply a nearly isotropic distribu-
tion, ∣ ∣ f f1 0. In order to derive the spectrum—and even the
function fd(z)—it is not necessary to determine ψ or ; rather,
it suffices to assume that a consistent solution to Equation (22)
exists.

Indeed, substituting the spatial-diffusion law (23) into
Equation (13) yields a closed equation for the particle density,

( )
⎧⎨⎩bf f
b f

- ¶ =
>
<

¥
c

z

z

for 0;

0 for 0.
25z

d
0 0

Combining the solution to Equation (25) with Equation (21)
yields the full solution for the distribution function in the
spatial-diffusion approximation,

( ˆ)
( ˆ)

( )

⎧
⎨⎪

⎩⎪
⎡
⎣⎢

⎤
⎦⎥

f
f

b
y

=

>

+ <b

¥


q

q
z

z

Ce
c

z
,

for 0;

1 fo 0,
26cz u

u

2
u u

where C is a constant. These expressions are valid far from the
shock discontinuity, ∣ ∣  z c, where all parameters vary
smoothly. In order to check whether the approximation remains
valid close to the shock, one must test if the continuity
condition (19) can be satisfied identically (i.e., for any particle
direction, q̂) at z=0.
Equation (26) implies that a consistent solution in the spatial-

diffusion approximation requires that fd1=0, indicating that
the anisotropy must be second-order downstream. For such
near isotropy, Equation (20) is trivially satisfied, so there is no
need to find a self-consistent solution to Equation (22)
downstream. In the present framework, the result fd1=0
holds, in particular, at the shock front, where Equation (19)
reduces to

( )( ) ( )f b b f m= - + -p2 . 27u u d u1 0

This relation, therefore, requires that y mµu at the shock front.
If this relation holds, then Equations (24) and (26) yield
f b f m= -3u u u1 0 . Using this result and the solution (26),
Equation (17) then becomes

[( )( ) ] ( )b b b m f+ + - - = ¥C C p2 3 . 28u d u

This equation can be satisfied for any μ only if both f= ¥C
and ( ) ( )b b b b= + -p 2u d u d , which finally yields the
standard spectrum (1).
However, applying the approximation of spatial diffusion

near the shock is self-consistent to the first order in β, as
necessary for the derivation of the spectrum, only if the
upstream scattering function satisfies the necessary requirement
y mµu , or equivalently

( ) ( ˆ ˆ ) ( )ò m m k m¢ - ¢ W¢ µq q d, . 29u

In such a case, it follows that ( )f m= µz 0u1 , fd1(z)=0,
f= ¥C , and so p;p0.

In the simple limit of an isotropic medium, Equation (29) is
satisfied, and the relation f mµu1 can indeed be seen to hold.
To wit, in such a medium, the scattering probability depends
only on the angle between the initial and final particle
directions, so we may write ( ˆ ˆ ) ( ˆ · ˆ )k k¢ = ¢q q q q, . Then
Equation (22) has an exact solution with the necessary form
(e.g., Lifshitz & Pitaevskii 1981, section 11),

( )y
m

= -
w

, 30
t

where ( ˆ · ˆ ) ( ˆ · ˆ )p kº á - ¢ ¢ ñq q q qw 4 1t is the transport scatter-
ing coefficient. Here, the averaging is over ˆ¢q , wt is independent
of q̂, the diffusion coefficient is given by ( )= c w3 t

2 , and
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the aforementioned implications, including p=p0+O(β),
directly follow.

It is important to note, however, that the dependence f mµ1
upstream is not universal. In order to demonstrate that in an
anisotropic medium, the angular distribution inferred in the
spatial-diffusion approximation may be inconsistent with
Equation (22), consider the simple case of a separable
scattering probability, ( ˆ ˆ ) ( ˆ) ( ˆ )k ¢ = ¢q q q qU U, . Here, the solu-
tion to Equation (22) along with the normalization (15) is

( )
( ) ( )

( )
⎡
⎣⎢

⎤
⎦⎥y m

p
m
m

m
m

=
á ñ

-
U U U

1

4
, 31

which generally does not satisfy the continuity condition (19) and
is, thus, inconsistent with a global spatial-diffusion approximation.
Equivalently, one can confirm that Equation (29) is generally
violated for a separable k.

The distribution function remains generally inconsistent with
the requirement (29) also in the small-angle scattering limit.
For instance, consider an upstream scattering function of the
form ( ˆ ˆ ) ( ) ( ∣ ˆ · ˆ ∣)k m m¢ = + ¢ - ¢q q q qh a, expu , where a is a
constant and h is an arbitrary function. This form is consistent
with unitarity (5) and even with detailed balance, would be
considered small-angle scattering for sufficiently large ∣ ∣a , and
becomes anisotropic for nontrivial h. Testing Equation (29),
or equivalently evaluating the integral in Equation (22) by
assuming ψ∝μ, is straightforward, especially for a strongly
peaked k; for example, for h(x)=x the integral is ( )mµ -3 12 .
Indeed, for a general choice of h, the integral is not mµ , so
deriving the spectrum by a global approximation of spatial
diffusion is not self-consistent.

We see that in the general case, the consistency requirement
(29) is violated, even for small-angle scattering. Here, non-
diffusive effects at distances ∣ ∣ z c from the shock front
preclude a self-consistent derivation of the spectrum (1) based
on a global spatial-diffusion approximation. Instead, one must
solve the full transport Equation (8), which, in general, can be
done only numerically, as we discuss in Sections 3.2 and 4.4.
Moreover, above we have assumed a sufficiently homogeneous
or small anisotropy, ∣ ∣ ∣ ∣f f¶ ¶z z1 0 , to derive Equation (20)
and near isotropy (21) in diffusive regions, and assumed that
the anisotropy remains small even at the shock front, to derive
Equation (17). These assumptions cannot be justified a priori,
and indeed, they are not satisfied for all scattering functions.
We conclude that deriving the spectrum by globally invoking
spatial diffusion is unwarranted for a general anisotropic
medium, for which p can in fact substantially deviate from p0,
as we later show.

Importantly, the spectrum (1) is nevertheless recovered in a
medium that is not too anisotropic; although, this was not yet
proven and should not be inferred from an inconsistent
application of the spatial-diffusion approximation. When, and
how, does the spectrum deviate from Equation (1)? We address
this question for an arbitrary scattering function in Section 3,
deferring the important limit of small-angle scattering to
Section 4.

3. Large-angle Scattering

In order to identify the circumstances under which the
spectrum (1) is valid, and quantify the deviations from this
result, we consider here an arbitrary, large-angle scattering
function. To frame the discussion, we begin with the simple

case of isotropic, large-angle scattering, which, to our knowl-
edge, was not rigorously solved until now.

3.1. Isotropic Scattering

Consider the simple case in which the large-angle scattering
is isotropic in the fluid frame. We already know from
Section 2.2 that in this case, the global approximation of
spatial diffusion consistently yields the spectrum (1). It is
nevertheless instructive to solve this specific problem without
invoking spatial diffusion in the vicinity of the shock but rather
by matching asymptotic solutions at large optical depths from
the shock. The failure of this method for an arbitrary scattering
function, as indicated in Section 3.2, demonstrates how spatial
diffusion, and under some circumstances, also Equation (1),
can break down for anisotropic scattering.
For isotropic scattering, the scattering rate is angle-

independent, ( ˆ ˆ ) ( )k k¢ =q qz q z q, ; , ,0 , where we allowed for
some inconsequential dependence on the distance from the
shock and on momentum. Here, the transport Equation (8)
becomes

( ) ( ) ( )òm b f t m f f m+ ¶ = - + ¢ ¢t
-

d,
1

2
, 32

1

1

where we defined the optical depth

( ) ( )òt
p

kº ¢ ¢
c

z q dz
4

, , 33
z

0
0

and, for brevity, ( )f f t m¢ º ¢, . It is useful to write the equation
in the shock frame,

˜ ˜ ( ˜ ) ( ˜ ) ˜
( ) ˜

( ˜ )
( )

ò
m f t m g bm f

bm f m

bm
¶ = - - +

- ¢ ¢ ¢

-
t

-

+

+

d
, 1

1

2 1
.

34

p

p
2 1

1

1

As we focus here exclusively on the shock frame, the tilde that
designates a shock-frame variable is omitted throughout the
rest of Section 3.1.
Working in the nonrelativistic shock limit, an expansion in

powers of β=1 yields

( ) ( )( )

( ) [ ( ) ]
( ) ( ) ( )

⎡
⎣⎢

⎤
⎦⎥m f mb m b

mb b f mb b

b m f b

¶ = + + +
+ +

- - + - + +

+
-

á ñ +

t p
p p

N

p p j
p p

O N

1 1
2 1

2
1 1 1

1

2
, 35

2 2

2

2 2 3

where we defined

( )f mfº á ñ º á ñN jand , 36

in the shock frame, in accord with Section 2.1. Averaging this
equation over μ then gives the moment equation

( )( ) ( )

( ) ( ) ( )

t
b b

b m f b

=
+ -

- -

+
-

á ñ +

dj

d

p p
N p j

p p
O N

4 1

6
1

1

2
. 37

2

2 2 3

While the spatial diffusion approximation in general breaks
down, as discussed in Section 2, near the shock front ∣ ∣t  1, it
does hold in the so-called diffusive regions, ∣ ∣ t 1, where the
PDF is nearly isotropic. Indeed, in the present problem,
isotropy is guaranteed within a small number of scattering
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events, i.e., within τ of order a few. Hence, here it is
unnecessary to invoke auxiliary assumptions regarding the
confinement of streaming-like effects to the vicinity of the
shock, as discussed in Section 2.1.

In these diffusive regions, the anisotropic component
f fD º - N is small and slowly varying, ∣ ∣ ( )f bD = O N

and ( ) ( )f t bD =d d O N , so we may replace m fá ñ2 by N/3. To
the first order in β, Equation (35) then becomes

( ) ( ) ( ) ( )m t f mb b¢ = -D + + +N p N O N2 , 382

such that Equation (37) yields

( ) ( ) ( ) ( )t b t b = ¢ +N N O N3 . 393

Taking into account the boundary conditions, we conclude that

( ) ( ) ( ) t t- = =b tN C e N C1 and 1 , 40u d
3 u

where Cu and Cd are constants, and at least Cd must be of order
unity. Plugging these results into Equation (38) and averaging
over μ indicates that

( ) ( )t b- =
- b tj

p
C e1

1

3
41u u

3 u

and

( ) ( )t b=
+

j
p

C1
2

3
. 42d d

The far upstream and far downstream solutions can now be
matched, as follows. In the diffusive regions, Equations (40)–(42)
indicate that j∼β N. Equation (37) then implies that j varies over
an optical depth scale t b~ -1. Similarly, in the diffusive regions,
Equation (35) indicates that N too varies over a scale t b~ -1. It
is therefore possible to match both N and j across the shock,
bridging the upstream and downstream diffusive regions. More
precisely, note that uniform N and j, up to corrections of fractional
order β, solve Equation (35) in the non-diffusive, ∣ ∣t  a few,
region, with Equations (40)–(42) now used as boundary
conditions.

Therefore, there exists a region  b t b- - -
u d

1 1 in which
N in the two diffusive region solutions of Equation (40) can be
matched to the leading order, so

( ) ( )b= +C C O , 43u d

as Cd is of order unity. Similarly, within this matching,
 b t b- - -

u d
1 1 region, j in the solutions (41) and (42) can

be matched to the leading order, yielding

( ) ( ) ( ) ( )b b b- = + +p C p C O1 2 . 44u u d d
2

Combining Equations (43) and (44) now implies the spectrum
in Equation (1).

3.2. Large-angle Scattering: Modified Spectra

Consider the generalization of Section 3.1 for an arbitrary,
large-angle scattering function, ( ˆ ˆ )k ¢q qz q, ; , . It is clear from
Section 2.2 that for such general k, applying the spatial
diffusion approximation near the shock front can lead to an
inconsistency, suggesting that substantial deviations from the
spectrum (1) may be possible. Here, we quantify the conditions
and implication of such a spectral deviation and demonstrate
that it can indeed manifest.

As long as angular variations in k are sufficiently small, the
problem can be solved in methods similar to those indicated

above, in particular, the asymptotic matching method used in
Section 3.1. This method works as long as there exists a well-
defined matching region around the shock front, which
simultaneously shows a well-isotropized PDF and unmodified
N and j. The problem becomes difficult when k spans a wide,
typically b- 1 range of values as a function of angles, at a
given z and q. For simplicity, the dependence of k upon z and q
is assumed separable and is henceforth omitted.
One difficulty is that in such cases, there is no obvious way

to define an optical depth τ independent of angle q̂, in analogy
with Equation (33). Other difficulties arise if the PDF does not
isotropize sufficiently quickly in the putative matching region,
allowing for leading-order variations in N or j; such effects may
be considered in part as manifestations of the streaming
problem outlined in Section 2.1. Due to these difficulties,
highly anisotropic scattering can diminish the matching region,
causing it to disappear entirely, or to become misaligned for
different angles q̂, rendering matching impossible.
Let us relate the spectrum to the global properties of the

PDF, without invoking the spatial diffusion approximation near
the shock. Using the parametrization (14)–(15), Equation (13)
becomes

( )
⎧⎨⎩bf mf
b f t

t
+ á ñ =

>
<

¥ for 0;

0 for 0,
45d

0 1

where f is measured again in the fluid frame (henceforth). The
continuity relations (18) and (19), with their underlying
assumption ∣ ∣ f f1 0, now relate the spectrum to the PDF
behavior downstream,

( )
( )

mf
b

mf
b

-
-

+
á ñ

= +
á = ñp

p

z1

1
1 1

0
46d s

d

d

d0

1

and

( )
( )

( )
f
f

f
f

-
-

=
á  ¥ ñ
á = ñ

¥p

p

z

z

1

1 0
, 47

s0 0

where subscript s designates the shock front. Thus, the
spectrum is directly related both to the anisotropy f1 at the
shock front and to the overall evolution of fá ñ downstream. In
particular, the spectrum (1) requires the anisotropy measure
mfá ñds to be ( )bO 2 , and the evolution parameter f f- + ¥1 s0

to be ( )bO 1 .
Next, let us rewrite the transport equation as a diffusion-like

equation. We define some characteristic scattering rate k0, and
a corresponding optical depth τ as in Equation (33), chosen
for example such that the normalized scattering function

( ˆ ˆ ) k k¢ ºq qw , 0 averaged over Ω and W¢ is unity. The
transport Equation (16) can now be written in the form

( ) ( ) ( ˆ ˆ ) ( ˆ ) ( )òm b f f f f+ ¶ + = ¢ ¢ W¢ -t q q qw d W, , 480 1 1 1

where we defined ( ˆ) ( ˆ ˆ )òº ¢ W¢q q qW w d, . Multiplying Equation
(48) by m W , averaging over Ω, and rearranging, we arrive at

⟨ ⟩ ⟨ ⟩
⟨ ⟩ ⟨ ⟩

( )
mf f

f f
= -¶ + P
= - ¶ + P - ¶

t

t t


  ,

49
st

0 st 1
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where we defined a spatial diffusion function

( ˆ) ( ) ( )m b m
º

+
 q

W
, 50

and a streaming term

( ˆ ˆ ) ( ˆ ) ( )ò
m

fP º ¢ ¢ W¢q q q
W

w d, . 51st 1

The transport equation thus reduces to a spatial diffusion
equation, with two important modifications to the flux: a
streaming term Pst, as anticipated in Section 2.1, and an
anisotropy-dependent diffusive term f¶ á ñt  1 . Both of these
terms can be neglected in the limit of isotropic scattering, in
which case the integral in Pst vanishes, and the only term
surviving in f¶ á ñt  1 is small, of order bf1. When scattering is
anisotropic but sufficiently close to being isotropic, these two
terms can still be approximately neglected, so the spectrum (1)
is recovered, even though its derivation in Section 2.2 becomes
inconsistent once the condition (29) is violated. In the more
general case, however, it is unclear if either term can be
neglected, and the spectrum can become modified.

Figure 1 demonstrates substantial deviations from the
spectrum (1), obtained with highly anisotropic, large-angle
scattering, for arbitrarily small β. In order to establish such a
behavior, we choose scattering functions that yield a simple
behavior ( )b= ¹p p p0 of the spectral index. One such choice
is [ ( )]k a m m= + ¢exp1 , with the same constant α used
upstream and downstream, shown in the figure as filled
symbols (with a solid line to guide the eye). As the figure
shows, p in this case is approximately a function of b ax , where
x 0.75. Assuming that such a scaling persists for arbitrarily

small β, one can always find a sufficiently negative α that
yields a noticeable deviation from p0.

The figure pertains to a compression ratio r=4, corresp-
onding to a strong shock in a gas of adiabatic index 5/3, such
that =p 20 . The results are obtained in the method of angular
moments (Keshet 2006), generalized (O. Arad et al. 2020, in
preparation) for large-angle scattering. Numerical convergence
is demonstrated by error bars (which, in some cases, are too
small to see in the figure). Typically, less than 20 shock-frame
Legendre moments are sufficient in order to achieve four-digit
convergence.
A second, simple choice of scattering function is k =2
[ ( )]a m m+ ¢exp 2 2 , shown in the figure as empty symbols (with

a dashed line). Here, p is approximately a function of b ax with
x 0.43, and substantially deviates from p0 for both positive and

negative α. This scattering function satisfies the symmetries
( ) ( )k m m k m m¢ = - ¢, ,2 2 and ( ) ( )k m m k m m¢ = - ¢ -, ,2 2 . The

former symmetry guarantees that the streaming term Pst vanishes
in this case, so the spectral deviation here may be attributed to the

f¶ á ñt  1 term.
These simple examples, while useful for demonstrative

purposes, involve substantial variations in κ over its domain.
These variations are exponential in b-1 and, therefore, become
non-physically large in the small β limit. However, one can
identify scattering functions that are only modestly anisotropic
and yet produce substantial deviations in the spectrum. It is
more convenient to analyze such scattering functions in the
small-angle scattering limit, which we now turn to.

4. Small-angle Scattering

Next, consider the small-angle scattering limit, also known
as the limit of angular diffusion or pitch angle diffusion,
typically assumed to provide a good approximation for
astronomical shocks. This is a special case of the arbitrary
scattering discussed in Section 3.2, so constraints on the
spectrum such as Equations (46) and (47) apply. In particular,
as established in Section 2.2, the standard spectrum =p p0 is
guaranteed for an isotropic medium in this limit, too. It is not
clear a priori, however, if substantial deviations from p0, as
demonstrated in Section 3.2, are possible for anisotropic small-
angle scattering. Let us start by analyzing the anisotropy
pattern at the shock front and showing that previous claims that
first-order anisotropies cannot affect the spectrum are incorrect.

4.1. Shock-front Anisotropy

Our analysis is carried out in the fluid frame. For diffusion in
the direction q̂ of fluid-frame momentum q, one typically
invokes detailed balance and axial symmetry, so the stationary
transport equation becomes (Kirk & Schneider 1987)

( ) ( ) ¯ ( )
⎡
⎣⎢

⎤
⎦⎥b m g

m
m

m
+

¶
¶

=
¶
¶

-
¶
¶

c
f

z
D

f
1 . 52i i i

i

i
i i

i

i

2

The angular diffusion function, ¯ ¯ ( )m=D D z q, , , introduces a
length scale ¯c D, which can be absorbed by rescaling z. In
particular, one often assumes that D̄ is separable, for example,
in the form ¯ ( ) ( )m=D D D z q,2 , where ( )mD is dimensionless
and of order unity. While this assumption is not essential for
our main result, we adopt it here for convenience. With the
parametrization (7), the transport Equation (52) then becomes

( )( ) ( ) ( )⎡⎣ ⎤⎦b m f m m f+ ¶ = ¶ - ¶t m mD1 , 532

Figure 1. Substantial spectral deviation from the standard spectrum, =p 20
(dotted horizontal line), due to highly anisotropic scattering in a nonrelativistic
shock of compression ratio r=4. For simplicity, the same scattering function
is used upstream and downstream. Results are shown (symbols with numerical
error bars and lines to guide the eye) for large-angle scattering functions

( ˆ ˆ ) [ ( )]k a m m¢ = + ¢q q, exp1 (filled blue-to-green symbols, solid line, scaled
with x = 0.75) and [ ( )]k a m m= + ¢exp2

2 2 (empty red-to-orange symbols,
dashed line, x = 0.43), and for an angular diffusion function ( ) ( )m am=D exp
(black bar-triangles, dotted–dashed; x = 0.8). For such scattering, p is
approximately a function of b ax (abscissa), so different shocks (right triangles
for b = 0.04u , up triangles for 0.02, and left triangles for =0.004) yield
overlapping curves. For sufficiently small β, p is insensitive to the frame in
which μ and m¢ are measured (large symbols for fluid frame, small for shock
frame).
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where ( ) ( )òt gº ¢ ¢-c D z q dz,
z1

0 2 is the optical depth, and the
frame index i is again omitted when possible.

The solution of Equation (53) under the boundary conditions
(11) fixes the spectral index p. Such derivations of the spectrum
were carried out for an arbitrarily relativistic shock, numeri-
cally, for example, by expanding f in eigenfunctions in the
downstream (Kirk & Schneider 1987; Heavens & Drury 1988)
or in the upstream (Kirk et al. 2000), or by a relaxation code
(Y. Nagar & U. Keshet 2020, in preparation); semi-analytically,
by evolving the moments of f (Keshet 2006); and analytically
(Keshet & Waxman 2005), by approximating the downstream
anisotropy at the shock-grazing angle, m b= - , as fixed by its
nonrelativistic shock limit.

For the present study, it is useful to reproduce some results
from the Keshet & Waxman (2005) shock-grazing analysis. We
assume an analytic behavior at the grazing angle, m b= - .
Expanding f and D in the fluid frame around this angle,

( ) ( ) ( )( ) ( )( )
( )

f m t t t m b t m b= + + + + +a a a, ,
54

0 1 2
2

and

( ) ( ) ( ) ( )m m b m b= + + + + +D d d1 , 551 2
2

the transport Equation (53) implies that for any τ,

( ) ( )( ) ( )t g t b= - +a a d 2 . 562
2

1

Here, gº -d d2
1 is a measure of the deviation from isotropic

diffusion, and for simplicity, we chose the τ scaling such that
( )m b= - =D 1. Continuity then yields an exact relation

between the spectrum and the low-order expansion coefficients
in Equations (54)–(55), which can be used to constrain the
spectrum, test numerical simulations, and give an accurate
expression for the spectral index for arbitrary bu and bd (Keshet
& Waxman 2005). This exact connection does not rely on the
convergence properties of the expansion (54).

In the nonrelativistic shock limit, b 1, this spectrum–

anisotropy relation gives (Keshet & Waxman 2005)

( ) ( )( ) ( )
( ) ( ) ( )

( )
( )

( )

g
b b b b

b b

b
b b
b

b

= +
+ - - + +

+ - - -

=
- -
+ -

+

a

a
p

p d

p d d

d

d d
O

2
2

2 2
2 2

6
57

d d
u d u d u

u d u d

u
u d u

u d u

1

0

2

2

in the downstream frame; an analogous relation is obtained
upstream. Here, and henceforth, a subscript d (subscript u) on
the equality sign indicates that the calculation is carried out at
the shock front in the downstream (upstream) frame, and
variables without a fluid-frame index i should be treated as
such. In the second equality in Equation (57), we have assumed
that the classical spectrum (1) is valid and that the diffusion is
nearly isotropic on both sides of the shock, = =d d 0u d .

Equation (57) shows that the shock-front anisotropy has
derivatives that are of the first order in β in the downstream
frame; a similar conclusion is reached in the upstream and
shock frames. Indeed, for isotropic angular diffusion, d=0,

the downstream relation (57) reduces to

( )

( )

g b g b b
b

b=
+

-
+

= - +
a

a

p p
O

1

2

3

2 2
,

58

d d u d d u
d1

0

2 2 3

where we again assumed that =p p0 in the last equality.
Note that while the normalized derivative at m b= - ,

namely ( )f f¢ =m b=- a a1 0, is of the first order in β, the
variations in ( )f m over the domain m-  1 1 can, in
principle, be smaller, only of the second order. Such a small,

( )bO 2 anisotropy can be reconciled with order β angular
derivatives only if the latter are confined to a narrow, ( )bO
range of μ. This peculiar behavior can indeed emerge in the
downstream frame—indeed, the first-order anisotropy must
vanish here if the standard spectrum holds—albeit generally
not in the upstream or shock frames, as we verify in the case of
isotropic angular diffusion. Regardless, the following discus-
sion holds quite generally for any ( )bO anisotropies.
Next, we address the problem of deriving the spectrum in the

small-angle scattering, nonrelativistic shock, limit. Analytically
solving the transport Equation (53) has proved to be difficult
even in this limit, so we resort to an alternative method for
computing p.

4.2. Spectral Sensitivity to ( )bO d Anisotropies

A useful approach (Fermi 1949; Bell 1978) for computing
the spectrum is to relate the spectral index to the fractional
energy gain g in a Fermi cycle, and the probability Pesc that a
particle crossing the shock downstream escapes and never
returns upstream,

( )
⟪ ⟫

( ) -
-
+

p
P

g
1

ln 1

ln 1
. 59esc

Here,⟪ ⟫¼ designates flux-averaging, defined explicitly below.
Both Pesc and g can be computed, at least approximately, if the
angular PDF at the shock front, ( ) ( )f m f t mº = 0,s , is
known.
Working in the downstream frame, consider a particle

undergoing a Fermi cycle in which it crosses the shock from
the downstream to the upstream at some angle m- satisfying

m b- < < --1 , and returns to the downstream at an angle
b m- < <+ 1. The energy gain during such a cycle is

( ) ( ) ( )b m b m+ = - -- +g1 1 1 . 60
d

r r

The mean energy gain may be computed by averaging
Equation (60) over the shock-frame flux across the shock front,

( ) ( ) ( )m b f m mº +dj d , 61

in all m- and m+ directions,

⟨⟨ ⟩⟩ ⟨⟨ ⟩⟩ ( )
ò

ò
b m
b m

+ =
-
-

º

b m
b m-

+

-
-

- +

- +

-

+g
dj dj

dj dj
1

1

1
. 62

d

r

r d

1

1
r

r

Here, an integral over dj is taken over the full range in which
m is defined. An analogous expression is obtained in the
upstream frame,

⟨⟨ ⟩⟩ ⟨⟨ ⟩⟩ ( )
ò

ò

b m
b m

+ =
+

+
º

b m

b m+

-

+

+
- +

- +

+

-g
dj dj

dj dj
1

1

1
. 63
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r
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1

1
r

r
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Note that the shock-frame flux ò=j dj is consistent with its
usage in Sections 2 and 3, and with definition (36), in which f
is measured in the shock frame.

If the correlations between m- and m+ can be neglected, and
the shock front PDF ( )f ms is known, the integrals in
Equations (62) or (63) can be carried out. These correlations
are indeed negligible in the nonrelativistic shock regime, where
the PDF becomes nearly isotropic, as we confirm numerically.
Moreover, correlations are found (O. Arad et al., in
preparation) to be negligible even for relativistic shocks,
provided that ⟪ ⟫g is computed in the upstream frame, i.e.,
using Equation (63) rather than (62). These conclusions apply
even for the highly anisotropic scattering functions, shown in
Section 4.4 to yield substantial deviations from the spec-
trum (1).

Motivated by Equations (56)–(58), we henceforth take into
account small shock-front anisotropies, in the form

( ) ( ) ( ) ( )f m f f m b df m= + = +1 , 64s d d0 1

where the normalization of the leading term is arbitrarily
chosen as unity. We have parametrized f b df=1 in
anticipation of the typical case, where anisotropy is of the first
order and so ( )df b= O 0 , although anisotropies of both the
second order (for isotropic scattering, see Section 2.2) or zeroth
order (see Section 4.4) are possible.

The mean energy gain is then found from Equation (62) to
be (Bell 1978)

⟪ ⟫ ( ) ( ) ( )b b b= - +g O
4

3
, 65u d

2

independent of df. One sees that ( )bO anisotropies have no
leading-order effects on the mean gain, as long as correlations
can be neglected. Moreover, we have not identified any
departure from Equation (65) in a nonrelativistic shock, even
for highly anisotropic diffusion functions that yield an order
unity PDF anisotropy and a substantial deviation from the
spectrum (1).

This is not the case, however, for the escape probability.
Considering the particle flux crossing toward the downstream,

ò= >+ +j dj 0, and the fraction of this flux returning

upstream, ò= <- -j dj 0, the escape probability can be
written as

( )= + =
-

+ +
P

j

j

j

j
1 . 66

d d
esc

Here, the total flux º ++ -j j j is constant on each side of the
shock, as seen by integrating Equation (53); in particular, in
the downstream ( )t b f> = ¥j 0 2 d . Unlike the energy gain, the
escape probability is independent of Fermi-cycle correlations and
so can be computed exactly if fs is precisely known, without
additional assumptions.

In particular, the escape probability can be computed from
the first equality in Equation (66) if the PDF were to be
assumed isotropic,

( ) ( )b b= +P O4 . 67desc,iso
2

In this isotropic limit, Pesc,iso can be computed also in
alternative methods, by invoking random-walk or spatial
diffusion arguments, as discussed above. If the isotropy

assumption could be justified, Equations (59), (65), and (67)
would directly lead (Bell 1978) to the well-known spectrum of
Equation (1).
It is important to note, however, that even the leading-order

term in Pesc is sensitive to ( )bO 1 anisotropies in the shock-front
PDF of Equation (64), measured in the downstream frame.
Indeed, the first equality in Equation (66) indicates that

( ) ( ) ( )b b= + +P I O4 1 2 , 68
d

esc
2

where

( )ò ò
mf
b

b m f m m df mº
á ñ

º =-

- -
I d d

2
69

d d
s d

1

1

1

1

1

is the shock-front flux in the downstream frame. Thus, the
escape probability (67), computed for an isotropic PDF, can
only be used if the first-order anisotropy integral I vanishes.
Otherwise, combining Equations (59), (65), and (68) yields a
spectral index ( ) ( ) ( )b= + + - +p r I r O2 3 2 1 , which
deviates to the leading order from Equation (1). This result is
equivalent to Equation (46) and can be directly obtained by
adopting Equation (64) and requiring that ju=0.
As a concrete example, consider using only one or two of the

lowest-order terms in the expansion (54), inferred from
Equation (1) for the simple case of isotropic diffusion; namely,
using a1 from Equation (58), with or without a2 from
Equation (56), and neglecting higher-order terms. The escape
probability derived in this case from Equation (66) is =Pesc
( ) ( )b b b+ + O4 10 3u d

2 , which leads in the nonrelativistic
shock limit to the spectral index ( )b b= +p 2 3 2u d
( ) ( ) ( )b b- = + -r r2 3 2 1u d , inconsistent with Equation
(1). In particular, this expression yields =p 19 6 3.17
(instead of the classical =p 20 ) in the limit of a strong shock
in a medium with G = 5 3.

4.3. Conditions for Spectral Modification

One can also relate the spectrum to the spatial evolution of
the PDF downstream. To the leading order, the second equality
in Equation (66) and the parametrization (64) yield =Pesc
b f¥4 1d . This links the escape probability—and, thus, also the
spectrum and the shock-front flux I—to the evolution in f0
between the shock and the far downstream. In particular,

[ ] ( ) ( )f f b= - = +t=
¥

¥ I O1
1

2
. 70

d0 0

Similarly, Equation (66) relates the escape probability to the
evolution in the forward flux, ( )t+j , between the shock front
and far downstream, b= ¥

+ +P j j4
d sesc .

We see that in the downstream frame, the deviation of the
spectrum from Equation (1) is directly related to the first-order
anisotropy of the shock-front PDF and to the zeroth-order
spatial variations in the PDF and in the forward flux. To the
leading order in β, these relations become

( )  f
-
-

+ ¥
¥
+

+
p

p

I j

j

1

1
1

2
. 71

d d d
s0

These results conform with, and supplement, relations (46)
and (47).
Figure 2 demonstrates the downstream PDF and its relation

to the spectrum for the case of mildly anisotropic diffusion,
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m= +D 1 0.4u and m= -D 1 0.4d , for which the spectrum
( )b= +p p O0 remains consistent with Equation (1). For

simplicity, we choose a shock with a modest compression ratio,
=r 5 4, to clearly distinguish between different powers of β.

The PDF is computed in three different methods: an expansion
in downstream eigenfunctions (Kirk & Schneider 1987), an
expansion in upstream eigenfunctions (Kirk et al. 2000), and a
moment expansion (Keshet 2006). The three methods are seen
to give consistent results; the latter converges faster and avoids
spurious oscillations near the m = 1 poles, allowing one to
reach smaller values of β.

By examining ( ) ( ) ( )f m f f m b- = -¥ j 2s d s , one can infer
from the figure both the angular and the spatial properties of the
downstream PDF, and confirm that they are all consistent with
the spectrum (1). First, we note that while the anisotropy of

( )f ms is of the first order in β, its μ-weighted integral (69) gives
only a second-order result (full shaded region), such that

( )b=I O . Next, note that ( )f m f- ¥s too is of the first order
in β, indicating no zeroth-order evolution in f0 between the
shock and far downstream, such that ( )f b- =¥ O1 . We
deduce that the ( )m b+ weighted integral (dark shaded region)
of ( )f m f- ¥s is also of order β, and so ( )b- =¥

+ +j j Os .
These conclusions provide three different perspectives on the
result ( )b= +p p O0 , as summarized by Equation (71).
Conversely, a substantial modification to the spectrum (1)
would necessitate an order b0 contribution in all three
parameters: I, ( )f m f- ¥s , and -¥

+ +j js .
As the anisotropy is typically small, the isotropic component

f0 of the PDF evolves slowly. Formally, the first term in the
expansion of the transport Equation (53) in powers of β gives
f¶ =t 00 , seemingly implying a uniform isotropic component

(e.g., Blandford & Eichler 1987). However, f0 evolves over a
scale t b- 1 and so is approximately uniform only if the PDF
isotropizes within an optical depth of order b0 from the shock.
(Indeed, the same formal argument for isotropy could be

invoked to argue for a constant f0 upstream, and would
necessarily fail, for the same reason.) Such nearby isotropiza-
tion would indeed render ( )f f b- =¥ Os , guaranteeing the
spectrum (1). To see this, we integrate Equation (53) over

t< < ¥0 , giving

( ) ( )

( )

⎡⎣ ⎤⎦



ò

f

b df
b

m b
m m df t

-
-

-

= +
+

¶ - ¶m m

¥

¥

p p

p

D d

1
1

1 .

72

d s

0

0

2
0

As long as the angular diffusion is not far from being isotropic,
df decays, roughly exponentially, within t~ a few. This can be
inferred, for example, from the smallest downstream eigenva-
lue of the transport equation being of order unity. For
approximately isotropic diffusion, the RHS of Equation (72)
is therefore of order β, so Equation (71) guarantees that p;p0.
Conversely, a substantial modification to the spectrum (1)

would necessitate a b~ -1 contribution to the integral in
Equation (72), corresponding to an anisotropy persisting at
distances t b- 1 downstream of the shock. Furthermore, such
a substantial anisotropy must also be present at the grazing
angle, m b- , because integrating Equation (53) over
b m- < < 1 yields g¶ = -t

+j a1
2. Assuming an analytic

grazing-angle behavior, either Equation (57) or Equation (58)
imply that ( )b=a O1 . Hence, a substantial contribution to

-+
¥
+j js and, therefore, to -p p0 would require the grazing

anisotropy a1 to remain of order β even at distances t b~ -1.

4.4. Spectrum-modifying Diffusion Functions

In summary, a noticeable, order unity (i.e., order b0)
deviation from the classical spectrum (1) would require the
PDF anisotropy f b df=1 to have a first moment bI of order β
or larger, to persist at distances t b- 1 from the shock even
near the grazing angle, and to induce downstream spatial
variation of order b0 in the isotropic PDF component f0, of
order b0 in the positive and negative fluxes +j and -j , and thus
of order b1 in ( )tPesc . It may be unclear a priori if there are
diffusion functions ( )mD that can in fact lead to such a
behavior. However, our numerical results, illustrated in
Figure 1, indicate that, indeed, anisotropic diffusion functions
can satisfy all of these criteria and yield substantial deviations
from =p p0, for an arbitrarily small β.
The figure demonstrates (bar-triangles, with a dotted–dashed

line to guide the eye) that for the simple choice = =D Du d
( ˜ )amexp , the spectrum becomes exceedingly hard—and increas-

ingly different from p0—as the constant α become negatively
large. We choose this simple exponential form of D because it
leads to a simple scaling of the spectrum, approaching a function
of b a0.8 for small β. Assuming that this behavior persists for
arbitrarily small β, one can always find a sufficiently negative α
that yields an order unity deviation from p0. Note that this
specific example, while useful for demonstrative purposes,
requires variations in ( )m- < <D 1 1 that are exponential in
b-1, and so become non-physically large in the small β limit.
However, one can identify other angular diffusion functions,
with more modest variations in D, that nevertheless produce
order unity deviations in the spectrum.
One such example is an angular diffusion function

suppressed by a factor b~ only in a narrow beam around the

Figure 2. Downstream-frame analysis of the angular PDF at an =r 5 4 shock
front with anisotropic angular diffusion, m= +D 1 0.4u and m= -D 1 0.4d .
The nonuniform component of the PDF, f f- ¥, is shown (left axis)
normalized by bf¥, computed in the moment method for b = 0.001u (using 10
Legendre moments; solid blue curve) and in the eigenfunction method for
b = 0.01u , using n=32 upstream (dotted black) or downstream (dotted–
dashed green) functions. The spectrum is given by Equation (1), as one can
infer from the ( )bO 2 flux and ( )bO 1 evolution downstream. Namely,
Equation (71) guarantees that ( )b= +p p O0 in several ways: (i) ¥

+I j (total
shaded region inside short-dashed magenta; right axis) is only of order ( )bO 1 ,
(ii) ( ) b- + +

¥
+j j1 s (dark shaded region inside long-dashed red) is only of the

order of ( )bO 0 , and (iii) ( )f f f- ¥ ¥s is only of the order of ( )bO 1 .
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forward, m +1 direction, sufficient for a substantial hard-
ening of the spectrum. For concreteness, consider = +D 1

{ [ ( )]}b b m b c- - +c c- -1 tanh 1 2d d d
1 2 , which varies by a

factor ( ) ( )  bcD Dmin max d over the m- < <1 1 domain.
For a strong, r=4 shock with b = 0.01d , we find p 1.81
for c = 1, considerably harder than the standard, =p 20
spectrum, although D is suppressed only by a factor b~ d and
only for m b- 1 2 d

1 2. For stronger, c  2 suppression, the
spectrum p 1.05 is almost maximally hard.

Curiously, for this family of diffusion functions, the PDF
shows an order-unity suppression inside the forward beam,

( ) b df m + -1 1. This demonstrates that locally, an order
unity anisotropy is possible. Moreover, if scattering is
associated with modes driven by the accelerated particles
themselves, it may be possible to find a self-consistent solution
for the shock structure, with energetic particles missing in the
forward beam responsible for their own suppressed diffusion
and hard spectrum. For a discussion of correlations between the
PDF and the diffusion function, and the resulting spectral
changes, see Y. Nagar & U. Keshet (2020, in preparation). We
note that in spite of the strong anisotropy, the mean energy gain
here is still given by Equation (65).

5. Summary and Discussion

We have shown that for a general scattering function of
particles accelerated in a nonrelativistic shock, one cannot self-
consistently arrive at the standard spectral index p0 of
Equation (1) using previous methods; namely, by invoking
the approximation of spatial diffusion on both sides of the
shock, or by a priori neglecting corrections due to the PDF
anisotropy. Requiring spatial diffusion near the shock and
continuity across it imposes the nontrivial consistency require-
ment (29), so the spatial diffusion term must be supplemented
by streaming and anisotropy-driven diffusion terms; see
Equation (49). Downstream anisotropies that are of the first
order in β will modify the spectrum unless ( )mf bá ñ = O 2 .

Indeed, we demonstrate in Figure 1 that, in contrast to
previous claims, sufficiently anisotropic scattering functions
can substantially modify the spectrum, even for small-angle
scattering and an arbitrarily small β. It is unclear if the
spectrum can noticeably deviate from Equation (1) in any
astronomical nonrelativistic shock, under the standard DSA
assumptions outlined below. Solving self-consistently for the
scattering function is beyond our present capabilities, but we
point out that a hard spectrum can develop if cosmic-ray
feedback causes D to strongly correlate with f (see
Section 4.4).

We recover the standard spectrum (1) when a suitable,
 b t b- - -

u d
1 1 matching layer exists or when the non-

diffusive terms added in Equation (49) are negligible; the result
( )b= +p p O0 is rigorously proved for an isotropic medium.

The spectrum is directly related to the shock-front anisotropy,
the downstream homogeneity, and the lingering of anisotropy
downstream, through Equations (46), (47), (71), and (72), as
illustrated in Figure 2. The spectral index noticeably deviates
from p0 if and only if downstream, the PDF anisotropy has a
first moment, mf bá ñ = I 2, of order β or larger, persists at
distances t b- 1 from the shock even near the grazing angle,
and induces downstream spatial variations of order b0 in the

isotropic PDF component f0, of order b0 in the fluxes +j and
-j , and thus also of order b1 in ( )tPesc .
The typical assumptions underlying such DSA studies are

quite strong and include: (i) a nonrelativistic, planar shock with
a well-defined, energy-independent jump in β over a scale
much shorter than the Larmor radius of the accelerated
particles; (ii) a steady-state PDF that can be averaged over
constant z planes to yield an effective, low-dimensional PDF

( ˆ)qf z q, , ; and (iii) scattering modes stationary in the fluid
frame, with slowly varying properties that may be described
using a similarly averaged scattering function ( ˆ ˆ )k ¢q qz q, , , ,
with a separable angular behavior. Note that, as the scattering
function here is considered to be prescribed, the test-particle
approximation is not strictly speaking invoked.
One should bear in mind that the above assumptions could

break down in many ways, with significant consequences for
the spectrum. For example, the scattering modes could be
moving with respect to the fluid; a t b- 1 1 region with
different mode velocities would suffice to distort the spectrum.
An energy-independent discontinuity in the mode velocity may
change the results simply by modifying the effective value of r.
However, a more complex shock structure, which may be
generated by the backreaction of the accelerated particles,
could severely modify the spectrum, as suggested by nonlinear
DSA studies (e.g., Drury 1983; Blandford & Eichler 1987;
Jones & Ellison 1991; Malkov & Drury 2001).
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