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Abstract – We investigate the trends of information backflow associated with the dynamics of
a sub-part of a disordered spin-1/2 transverse field Heisenberg chain for different regimes of the
Hamiltonian. Towards this aim, the decay profile of bipartite entanglement shared between a
probe-qubit and a system-qubit (sub-part) of the chain is monitored in time. A clear shift in the
trends of the decay profiles of the bipartite entanglement from monotonic in the low-disorder limit
to non-monotonic in the moderately large disorder limit occurs due to strong information backflow
from the environment (complementary part) to the system-qubit. A connection between environ-
mental interruption caused by the information backflow and the disorder strength is established
by examining the entanglement revival frequencies. The growth patterns of the revival frequencies
in the localized phase plays an instrumental role to effectively distinguish an interacting system
(many-body localized) from its non-interacting (Anderson localized) counterpart.

Copyright c© EPLA, 2020

Introduction. – Investigations of quantum properties
associated with disordered systems have gained much at-
tention in last few decades [1–10]. This is primarily due
to the fact that disorder is unavoidable in real materials
and nowadays can also be engineered in a well-controlled
setting in laboratories [11–14]. Moreover, presence of dis-
order gives rise to many interesting phenomena, which are
in sharp contrast to the behavior observed in their homo-
geneous counterparts. The list includes order from disor-
der [4–6], enhancement of quantum correlation length [4],
strong violation of area law [3], and disorder-induced local-
ization [1,7–10,15–22]. The study of entanglement entropy
dynamics in disordered quantum systems has offered new
understandings on many-body localization [15–19]. In this
regard, studying the dynamics of quantum properties in
the disordered quantum systems exploiting the tools of
open quantum systems provides a different albeit interest-
ing route to understand the microscopic properties of the
systems in more detail [23]. This forms a central theme of
investigation of the present work.

In the realm of the theory of open quantum systems,
the coupling between system and environment in Marko-
vian dynamics can be assumed such that the environment

is memoryless and uncorrelated with the system. This is
a manifestation of the fact that the environment-induced
changes to the system dynamics are slow relative to the
typical correlation time of the environment, or rather,
rephrasing, there is a sharp detachment between the
typical correlation timescale of the fluctuations and the
timescale of the evolution of the system [24]. As a result,
there is always loss of information from the system to the
environment, but not the other way around. However, in
reality, the actual dynamics of an open quantum system
often deviates significantly from this idealized scenario and
it is of practical interest (e.g., experimental implementa-
tions) to consider non-Markovian evolution, where there
are instances at which the memory effect causes revivals of
the quantum properties of the system, which is commonly
known as backflow of information from the environment
to the system [25]. The memory effects associated with
the non-Markovian dynamics can be attributed as a re-
minder to the system about its past. In other words, dur-
ing the course of evolution, the environment stores the
information about the initial conditions of the system for
a while and later information flows back from the environ-
ment, which reminds the system about its past. Despite
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Fig. 1: Schematic diagram of the system-environment (S:E) bi-
partition of an N -qubit chain. One of the sites of the spin chain
is considered as a system (S) while the rest of the chain serves
as an environment (E). Initially (t = 0), the system-qubit
remains in a maximally entangled state, |ψ〉AS , with probe-
qubit A.

the fact that the concept of non-Markovianity is well es-
tablished in the classical case [26], its quantum generaliza-
tion still remains subtle and ambiguous. In recent years,
significant attempts have been made for providing com-
putable measures of non-Markovianity in a precise man-
ner. The most customary one is the characterization of
non-Markovianity based on the non-monotonic time evo-
lution of some quantum information measures, viz., quan-
tum entanglement [27], quantum mutual information [28],
quantum Fisher information [29], quantum interferometric
power [30], quantum coherence [31], etc.

In this work, we propose a framework to study the
memory effects associated with the dynamics of the sub-
systems of a many-body quantum system. Towards this
aim, we divide the whole many-body quantum state into
two parts, system part and environment part, and study
the effects of environmental influences on the dynamics
of the system-qubits. As a prototypical model, we con-
sider the Heisenberg chain with the disordered transverse
field [8–10,32–38]. Dividing the total N -qubit system in
single-qubit “system”, S, and (N − 1)-qubit “environ-
ment”, E, we characterize the dynamical map acting on
the single-qubit system part from the decay profile of ini-
tial bipartite entanglement shared between the system-
qubit and a probe-qubit, A (see fig. 1). We note that the
decay profile of the initial bipartite entanglement between
A and S has a strong dependence on the disorder strength.
For instance, at small values of the disorder strength, when
SE remains in the ergodic phase [7–10], the initial entan-
glement decays to zero monotonously, implying an infor-
mation flow from S to E, which causes complete erasure of
its initial memory. Subsequently, at a higher value of the
disorder strength, corresponding to the localized phase of
SE, the strong non-Markovian nature of the dynamical
map becomes evident, which is characterized via the non-
monotonic decay of bipartite entanglement. In order to
obtain a quantitative understanding of the correspondence
between the environmental interruptions and the disorder
strength, we propose a measure by counting the frequency
of the near-perfect revivals of the bipartite entanglement.

Interestingly, this newly introduced measure provides a
clear distinction between two different types of localized
phases those appear in the absence (Anderson localiza-
tion) and in the presence (many-body localization) of in-
teraction, even for a very small value of the interaction
strength.

In this regard, we would like to mention here that there
has been considerable interest in studying open system dy-
namics in the presence of disordered environments [39–42].
In particular, in [39,40] it was shown that the dynamics
of a two-label system coupled to an array of cavities with
the static disorder, acting as the environment, exhibits
information backflow. In all these cases, the localization
property that has been addressed is Anderson localization
in nature. However, in our case, as the model we consider
is an interacting one, this additionally provides a scope
to find a more fine-grained characterization of localized
phases, in terms of information backflow.

In the following section, after briefly introducing the
model, we discuss the methodology undertaken and elab-
orate on our main findings.

Model and methodology. – In general, for a real dis-
sipative system, where the system usually interacts with
an infinitely large environment, the degrees of freedom
of the environment-part remain inaccessible. Hence, it
is not always an easy task to characterize its influences
on the dynamics of the system-qubits. However, in the
case of a system and an environment, both consisting of
a finite number of sites, the characterization of system
dynamics becomes straightforward, yet the perspective of
understanding the system exploiting the theory of open
quantum systems opens up. This brings the possibility of
providing new insightful properties related to the system
dynamics. In this work, we consider the spin 1/2 Heisen-
berg model in one dimension with a random field along
the z-direction. The Hamiltonian is given by

H =
N−1∑

i=1

[J(Sx
i Sx

i+1 + Sy
i Sy

i+1) + ΔSz
i Sz

i+1] +
N∑

i=1

hiS
z
i ,

(1)

where hi are independent random variables at each site i,
each with a probability distribution that is uniform in
[−h, h], J is the coupling constant along the x- and
y-directions and Δ is the same for the z-direction. More-
over, Si = σi/2, with i ∈ {x, y, z}.

The total Hamiltonian H can be decomposed as

H = HS + HE + HI , (2)

where HS = h1S
z
1 is the single-particle Hamiltonian cor-

responding to a single spin at one of the edges of the spin
chain, HI = J(Sx

1 Sx
2 +Sy

1Sy
2 )+ΔSz

1Sz
2 represents the inter-

action between the edge spin with the nearest-neighbour
spin. HE has the same mathematical form as the Hamil-
tonian expressed in eq. (1) but with N − 1 number of
particles.
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For an open quantum system, the evolutions are gener-
ally represented by dynamical map, Λt, given by [25]

ρS(t) = Λt(ρS(0)) = TrE(USEρSE(0)U†
SE), (3)

where USE is a unitary acting on the system-environment
state ρSE . In our case, to investigate the trends of
information backflow in different phases of the N -qubit
system, we conduct a two-steps analysis. Firstly, we
consider the initial system state, ρS(0), is evolving under
a dynamical map, Λt, obtained using eq. (3) for certain
choices of the initial environment state ρE(0) and the uni-
tary USE = e−iHt acting on system-environment state,
where H is expressed in eq. (1). We then characterize the
properties of the dynamical map Λt by studying its effects
on the dynamics of the quantum entanglement shared be-
tween the system and a probe-qubit, A. We describe the
procedure in details in the forthcoming section.

Characterization of the dynamical map Λt. – To
characterize the properties of the dynamical map, Λt, act-
ing on the system-qubits in detail, we consider the exter-
nal probe-qubit, A, is maximally entangled with S. The
system-probe state has following mathematical form in
the computational basis: |ψ〉AS = 1√

2
(|00〉 + |11〉). In

order to create this entanglement, one can consider that
the qubits were brought together in past and global op-
erations were performed on them [43]. In addition to
this, we consider initially, the environment is in the state
ρE(0) = |01 . . . 01〉〈01 . . . 01|N−1. It is known that the er-
godic properties of the model can be well captured when
the middle of the spectrum of the Hamiltonian is con-
sidered and therefore any initial state of sufficiently high
energy density should yield similar results. However, from
our observation we found that among all other choices of
the initial environment states, the Néel-like states are most
suitable for distinguishing the quantum revival patterns
at different parametric regime of the considered model.
Therefore, the initial system-environment joint state can
be expressed as, ρSE = IS

2 ⊗ |01 . . . 01〉〈01 . . . 01|E , where
IS is the identity matrix acting on the system’s Hilbert
space. The evolution of the initially maximally entangled
system-probe bipartite state, ρAS(0) = |ψ〉〈ψ|AS , can be
written as

ρAS(t) = (I ⊗ Λt)ρAS(0). (4)

Once the bipartite state corresponding to the system and
probe-qubit is evaluated, we can monitor the decay of ini-
tial system-probe entanglement with time.

Figure 2 depicts the variation of entanglement E with
time t, for the time-evolved state given in eq. (4), for var-
ious strength of the random field and for a single disorder
realization with N = 10. From the figure, one can clearly
observe that at low values of the disorder strength, the
system-probe entanglement decays monotonically from its
initial maximum value and eventually goes to zero rapidly.
This reveals the fact that the dynamical map acting on
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Fig. 2: Plot of decay of bipartite entanglement (E) between
the system and the probe-qubit with time (t), obtained for a
single disorder realization, for different values of the disorder
strength (h). The plots are obtained for J = Δ = 1 and
N = 10.

the system-qubit is Markovian in nature and we interpret
this monotonous decay of entanglement as loss of infor-
mation from the system to the environment, which causes
complete erasure of the initial memory of the system.
Therefore, one can argue that when the total N -qubit sys-
tem remains in the ergodic phase, the system-qubit (S)
becomes more entangled with the bulk part (E) which
eventually causes to diminish the quantum correlation be-
tween the system and the probe-qubit monotonically and
gives rise to a Markovian-like scenario.

Interestingly, the decay profiles of quantum entangle-
ment at moderately large values of the disorder strength
differ significantly from the behaviour obtained at low h
(see fig. 2). In particular, the decay of entanglement be-
tween the system and the probe-qubit exhibits highly non-
monotonous behavior, which asserts the fact that during
the course of evolution information backflow from the en-
vironment to the system occurs in several occasions. In
other words, the dynamical map acting on the system-
part is non-Markovian in nature. The information flow
from the environment to the system essentially keeps re-
minding the system about its past. This phenomenon can
be thought as a result of certain dynamical decoupling ef-
fect that occurs in the localized phase of the model, where
the system and the bulk qubit interacts weakly.

In the subsequent part of our analysis, we move one
step further and relate the frequency of environmental in-
terruption to the disorder strength. Towards this aim, we
count the number of instances during the total period of
evolution, at which the bipartite entanglement starts re-
viving. We argue that the number of revivals accounts
for the instances of reminder from the environment to the
system about its past. On the other hand, a monotonic
decay of bipartite entanglement asserts no interruption
caused by the environment. The “true revivals” can be

30005-p3



Sudipto Singha Roy et al.

considered to be the ones, which nearly return to the orig-
inal initial entanglement, ε, at certain instances. In this
work, a narrow window of ε − ε′ is considered, such that
ε′ is within 95% of ε. Once the number of such true re-
vivals, F , are computed over an sufficiently long enough
observation time, tmax, we divide F by tmax and obtain
the following measure as en effective quantification of en-
vironmental interruption:

N = F/tmax. (5)

We would like to mention here that unlike most of the mea-
sures of non-Markovianity discussed in literature, which
computes the “amount” (or “degree”) of environmental
perturbation by integrating the growth of entanglement
during the course of evolution (see [27]), here, by counting
the instances of near-perfect revivals, we are computing
the “frequency” (or “occasions”) of its occurrence. One of
the motivations for counting such instances is to observe
the effects of the distinct dynamical processes in different
regimes of the considered physical model on the revival
of quantum properties of the qubits [35]. In the case of
the ergodic phase, the evolution of the subsystems can be
interpreted as a resulting combined effect of both dissi-
pation and dephasing mechanism leading the subsystem
towards thermal equilibration and wiping out the initial
state memory in due process. Whereas, in the many-body
localized phase, though the interaction-induced dephas-
ing is present, the absence of any dissipation leads the
subsystems to relax in a non-thermal state which can re-
tain a memory of the initial conditions. However, the de-
phasing mechanism, which has been extensively studied
to understand the unusual logarithmic growth of entangle-
ment in the many-body localized phase, is expected to play
an adverse role towards attaining near-perfect revivals of
quantum properties. The absence of dissipation or dephas-
ing in the Anderson localized phase prevents the subsys-
tems from any kind of relaxation and it is expected that
there would be frequent occasions when quantum proper-
ties would not only revive but also attain values very close
to that of the initial state. In this way, the measure can
play an instrumental role to distinguish different revival
patterns in the localized phases.

We compute the value of N averaged over 102 number
of disorder realizations and for time interval t ∈ [0, 100]
and obtain the behavior of N with respect to the change
of disorder strength h in fig. 3. This provides us with
a scope to compare the frequency of environmental dis-
ruption to the strength of the disorder: The higher the
value of the disorder strength, the more frequent the in-
terruption caused by the environment. We noticed that
the measure N eventually saturates at very high value of
the disorder strength. In the inset of fig. 3, for a low value
of the disorder strength h = 1.0, we plot the scaling of
N with the total system size N = S + E. A clear de-
pendence of N on the system size asserts the fact that
at low values of disorder strength, the measure eventually
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Fig. 3: Plot of the quenched averaged value of the revival fre-
quency (N ) of the bipartite entanglement shared between the
system and the probe-qubit with the disorder strength (h), ob-
tained for 102 disorder realization, J = Δ = 1, and for total
time interval t = 100. The dashed line serves as a guide to
the eye. In the inset, we plot the scaling of N , for a low value
of disorder strength h = 1, and for different N = S + E sizes
(N = 6, 8, 10).

goes to zero when a sufficiently large environment is con-
sidered. In the ergodic phase of the total N -qubit system,
the entanglement of the bulk exhibits volume-law growth.
Hence, the system-qubit (S), as one may expect, gets more
and more entangled with the rest of the qubits, and as a
result its quantum correlation with the probe-qubit dimin-
ishes rapidly. On the other hand, the many-body localized
phase is characterized by a slow (logarithmic) spreading
of entanglement. Thus the system-qubit often gets loosely
entangled with the rest of the environment qubits and re-
vival of system-probe entanglement takes place.

Finally, we aim to understand the role of many-body
effects on revival frequency N . For this, we carry out
similar analysis for the case when the interaction term
in the Hamiltonian is absent, i.e., Δ = 0. It is known
from the literature that in this limit, the model reduces
to a non-interacting model, which exhibits Anderson lo-
calization (AL) phenomena. Moreover, previous works in
this direction report the emergence of quantum properties,
characteristically different from the Δ �= 0 case, which
typically appear at large time [35]. Motivated by these
facts, we compute and compare the large time behaviors
of the measure N in the interacting system and its non-
interacting counterpart, and observe their growth in time.
Figure 4 depicts the growth of N in time for different in-
teraction strength, viz., Δ = 0.00 (black), Δ = 0.02 (red),
Δ = 0.20 (green), and Δ = 0.50 (blue), for a moderately
large disorder strength h = 5. Interestingly, we note that
the growth of the quantity N at the initial time (upto
t ≈ 1) remain independent of the interaction strength.
The effects of interactions on revival frequency emerge at
some later time. We observe that even for small non-
zero interaction, N starts decaying beyond some critical
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Fig. 4: Plot of the growth of the revival frequency (N ) in
time (t) obtained for different Δ values, viz., Δ = 0.00 (black),
Δ = 0.02 (red), Δ = 0.20 (green), and Δ = 0.50 (blue), for the
disorder strength h = 5. The plots are obtained for N = 10
and for 102 disorder realizations.

time. The onset of such decay depends on the value of
the interaction strength (Δ) and can be approximated by
tc ≈ 1/Δ. We note that the onset value reported here (tc)
matches with the onset value obtained to mark the log-
arithmic growth of the entanglement entropy reported in
earlier works [35]. Therefore, the presence of interaction
has an effect intermediate to the ergodic and Anderson
localized phase: backflow of information occurs due to the
absence of dissipation but dephasing hinders to attain per-
fect revivals of quantum properties.

The behavior of revival frequency observed in these two
localized phases has a close correspondence with that of
the behavior of bulk (S + E) entanglement entropy ob-
tained in this limit [35]. In the Anderson localized phase,
entanglement entropy of the bulk saturates in time at a
value much lower than that ergodic and the many-body
localized phase. This results in weak entanglement of the
system-qubit with the rest of the (N − 1)-qubits of the
environment part and strong revival of system-probe en-
tanglement occurs with a rate that essentially saturates in
time. However, in the presence of interaction, many-body
effects come into the picture and at large times, the de-
phasing mechanism causes the logarithmic growth of the
entanglement entropy of the bulk. The logarithmic decay
of the system-probe entanglement revival conveys an anal-
ogous onset of dephasing effect: backflow of information
occurs due to the absence of dissipation but dephasing
hinders to attain perfect revivals of quantum properties.
Hence, the rate of near-perfect revival becomes much lower
than that of the Anderson localized phase.

Our analysis provides a fine-grained characterization
of the localized phases of the model in terms of drasti-
cally different trends of information backflow in ergodic,
Anderson and MBL phases. We would also like to men-
tion here that a similar analysis using well-known RHP
measure [27] of non-Markoniavity, a proposed measure for
quantifying the total amount information backflow, fails

to capture any such demarcations between these localized
phases. In particular, the evolution pattern of the amount
of backflow in Anderson and MBL phases remains practi-
cally indistinguishable even at large evolution times.

Discussions. – In this work, using the tools of the
theory of open quantum systems, we studied the trends
of information backflow trends in the disordered trans-
verse field Heisenberg model. From the perspective of the
single-qubit system part, the evolution is realized via the
action of a dynamical map acting on it. Subsequently, we
characterized the nature of the dynamical map by investi-
gating the decay profiles of bipartite entanglement shared
between the system and the probe-qubit. At very low val-
ues of the disorder strength, the monotonous decay profile
of the initial entanglement reveals the Markovian nature of
the dynamics, which essentially asserts the absence of en-
vironmental interruptions. Eventually, at higher values of
the disordered strength, we observe significant deviations
of the decay profiles of the bipartite entanglement from
that monotonic nature, which affirms frequent informa-
tion backflow from the environment to the system or the
non-Markovian nature of the dynamics. We then estab-
lish a relation between the environmental interruption to
that of the disorder strength: strong many-body localized
states of the environment interfere more in the entangle-
ment dynamics of system and probe-qubit as compared
to the extended states in weak disorder. Additionally,
from the large time dynamics, we show that environmental
interruption has a strong dependence on the interaction
strength. For the non-interacting case, after the initial
growth, the revival frequency ultimately saturates in time.
However, in the presence of even a small amount of inter-
action, after the initial growth, the revival frequency starts
decaying beyond a critical value of evolution time.
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