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Abstract – We study the quantum coherence and monogamy relationship of a tripartite W-state
entangled system for Dirac fields in the background of a Schwarzschild black hole. We find that
quantum coherence first decreases and then shows the phenomenon of freezing with the growth of
the Hawking temperature. We also find that the l1 norm of coherence is always equal to the sum
of coherence of all bipartite systems for any Hawking temperature, while a similar monogamy
relationship for the relative entropy of coherence is absent. Moreover, we extend the related
investigations to the N -partite W-state systems. It is shown that a similar monogamy relationship
for the l1 norm of coherence is still satisfied, and the phenomenon of coherence freezing also exists.
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Introduction. – It is well known that relativity theory
and quantum mechanics are two fundamentals of modern
physics. In order to solve the contradiction between them,
quantum field theory (QFT) is born. In QFT, a very im-
portant prediction is the effect of Hawking radiation (Un-
ruh effect) which tells us that a vacuum state observed by
an observer who stays in flat Minkowski spacetime would
be detected as a thermal state from another observer who
hovers near the event horizon of the black hole with uni-
form acceleration [1,2]. Recently, quantum steering, en-
tanglement and discord in curved spacetime have been
studied extensively, and the results showed that they are
reduced due to the loss of information caused by Hawking
radiation [3–15]. It is obvious that these results not only
help us understand the key of quantum information, but
also play an important role in the study of the information
paradox and entanglement entropy of black holes [16,17].

On the other hand, quantum coherence that derives
from the quantum superposition principle is a funda-
mental aspect of quantum physics [18]. Quantum co-
herence is a common necessary condition for quantum
correlations of multiple systems, but can exist in a
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single quantum system. Analogous to quantum steer-
ing, entanglement and discord, quantum coherence is also
an important quantum resource in life sciences, quantum
information, condensed matter physics and computation
processing [19–25]. Nevertheless, the quantification of
quantum coherence was missing until recently Baumgratz,
Cramer and Plenio introduced two comprehensive mea-
sures, i.e., the l1 norm of coherence and the relative en-
tropy of coherence (REC) [26]. Mathematically, for any
quantum state ρ, the l1 norm of coherence and the REC
are defined as

Cl1(ρ) =
∑
i�=j

|ρij |, (1)

and
CRE(ρ) = S(ρdiag) − S(ρ), (2)

respectively. In eq. (2), S(ρ) denotes the von Neumann
entropy of quantum state ρ, and ρdiag denotes the state
obtained from ρ by deleting all off-diagonal elements.

Recently, tripartite quantum entanglement of scalar
field in non-inertial frame [8] and tripartite quantum
entanglement of Dirac field in curved spacetime [9–12]
have been investigated extensively. However, few work
involves the multipartite coherence in the relativistic
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framework. Also, most attention is focused on the mul-
tipartite Greenberger-Horne-Zeilinger (GHZ) state under
the Hawking radiation or Unruh effect [9–11,27], and mul-
tipartite W-state is rarely studied because of the complex-
ity of the calculations. Motivated by these facts, we here
study the quantum coherence of multipartite W-state for
Dirac fields in the background of a Schwarzschild black
hole. We firstly focus our attention on the tripartite
W-state systems of Dirac fields, and then extend the is-
sues to N -partite systems. As the l1 norm of coherence
and the REC are the two typical measures for quantum
coherence in the framework of resource theory, and the two
measures are not exactly compatible [28], we thus combine
them together for a comparative research.

The paper is organized as follows. In the next section,
we study quantum coherence and the monogamy for a tri-
partite W-state when one observer hovers near the event
horizon of the black hole. In the third section, we do the
same research when two observers hover near the event
horizon of the black hole. In the fourth section, we extend
related issues to N -partite systems. The last section is
devoted to a brief conclusion. For simplicity, we use the
natural system of units h̄ = G = c = kB = 1 throughout
the paper.

Coherence for one observer near black hole. –
The line element of the Schwarzschild black hole is

given by

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2

+r2(dθ2 + sin2 θdϕ2), (3)

where M denotes the mass of the black hole. Solving the
Dirac equation near the event horizon, we can obtain a set
of positive frequency outgoing solutions for the inside and
outside regions of the event horizon [11,29]

ψ+
k,in ∼ Heiωu, (4)

ψ+
k,out ∼ He−iωu, (5)

where H is a four-component Dirac spinor, ω is a
monochromatic frequency, u = t − r∗ with r∗ = r +
2M ln r−2M

2M being the tortoise coordinate. Making an
analytic continuation for eqs. (4) and (5) according to
Damour and Ruffini’s suggestion, we get a complete ba-
sis of positive energy modes, i.e., the Kruskal modes [30].
Expanding the Dirac field in terms of Schwarzschild and
Kruskal modes, respectively, the Bogoliubov transforma-
tions for the creation and annihilation operators between
the two modes [31] are established. After properly normal-
izing the state vector, in the single-mode approximation,
the vacuum state and the excited state of the Kruskal par-
ticle can be expressed as

|0〉K = (e−
ω
T + 1)−

1
2 |0〉I |0〉II + (e

ω
T + 1)−

1
2 |1〉I |1〉II ,

|1〉K = |1〉I |0〉II , (6)

where T = 1
8M is the Hawking temperature [32,33], {|n〉I}

and {|n〉II} are the orthogonal bases for the outside region
and inside region of the event horizon, respectively.

Quantum coherence. We assume that Alice, Bob and
Charlie share initially a tripartite W-state entangled sys-
tem defined in flat Minkowski spacetime,

|W 〉ABC =
1√
3
[|0A0B1C〉 + |0A1B0C〉 + |1A0B0C〉]. (7)

Letting Alice and Bob stay in flat Minkowski space-
time, while Charlie hovers near the event horizon of the
black hole with uniform acceleration, then eq. (7) can be
rewritten as

|Φ〉ABCICII
=

1√
3
[S|0A1B1CI

1CII
〉 + S|1A0B1CI

1CII
〉

+C|0A1B0CI
0CII

〉 + C|1A0B0CI
0CII

〉
+|0A0B1CI

0CII
〉], (8)

with C = (e−
ω
T + 1)−

1
2 and S = (e

ω
T + 1)−

1
2 . Note that

C2 + S2 = 1, which is used later in the simplification of
some expressions. Because the exterior region is causally
disconnected from the interior region of the black hole, we
obtain the reduced density matrix

ρABCI
=

1
3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 1 C 0 C 0 0 0
0 C C2 0 C2 0 0 0
0 0 0 S2 0 S2 0 0
0 C C2 0 C2 0 0 0
0 0 0 S2 0 S2 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(9)

by taking the trace over the state of the interior region.
According to eqs. (1) and (2), we can obtain the l1 norm
of coherence and the REC as

Cl1(ρABCI
) =

1
3
(4C + 2), (10)

and

CRE(ρABCI
) =

2
3
S2 +

1
3
(1 + 2C2) log2

1
3
(1 + 2C2)

−2
3
C2 log2

1
3
C2 − 1

3
log2

1
3
, (11)

respectively. These measures of coherence obviously de-
pend on the Hawking temperature T .

In fig. 1, we plot the l1 norm of coherence Cl1(ρABCI
)

and REC CRE(ρABCI
) as functions of the Hawking tem-

perature T . It is shown that quantum coherence de-
creases with the growth of the Hawking temperature,
meaning that the thermal noise introduced by Hawking
radiation reduces the quantum coherence. Interestingly,
when T → ∞, the coherence has nonzero asymptotical
values Cl1(ρABCI

) = 1
3 (2

√
2 + 2) and CRE(ρABCI

) = 4
3 .

We call this phenomenon freezing of quantum coherence.
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Fig. 1: The l1 norm of coherence (blue dashed line) and REC
(red solid line) for ρABCI as a function of the Hawking tem-
perature T for fixed value ω = 1. We normalize the maximum
quantum coherence to 1.

Monogamy relation. Next, we study the distribution
of quantum coherence of the tripartite W-state in curved
spacetime. The relation between the total quantum co-
herence of a compound system and the coherence of all
its subsystems is usually called monogamy. After tracing
over the modes A, B or CI from ρABCI

respectively, we
can obtain the bipartite reduced density matrices as

ρAB =
1
3

⎛
⎜⎜⎝

1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

⎞
⎟⎟⎠, (12)

ρACI
= ρBCI

=
1
3

⎛
⎜⎜⎝
C2 0 0 0
0 1 + S2 C 0
0 C C2 0
0 0 0 S2

⎞
⎟⎟⎠. (13)

The corresponding quantum coherences are given by

Cl1(ρAB) = CRE(ρAB) =
2
3
, (14)

Cl1(ρACI
) = Cl1(ρBCI

) =
2
3
C, (15)

CRE(ρACI
) = CRE(ρBCI

)

=
4∑

i=1

λi(ρACI
) log2 λi(ρACI

)

−
∑

j

βj(ρACI
) log2 βj(ρACI

), (16)

where λi(ρACI
) are the eigenvalues of density matrix ρACI

λ1(ρACI
) =

1
3
C2,

λ2(ρACI
) =

1
3
S2,

Fig. 2: The monogamy γ1 as a function of the Hawking tem-
perature T for fixed value ω = 1.

λ3(ρACI
) =

1
3
(1 −

√
1 − C2S2),

λ4(ρACI
) =

1
3
(1 +

√
1 − C2S2), (17)

and βj(ρACI
) is the diagonal elements of ρACI

.
For the l1 norm of coherence, an interesting monogamy

relation,

Cl1(ρABCI
) = Cl1(ρAB) + Cl1(ρACI

) + Cl1(ρBCI
), (18)

is found, which says that the total l1 norm of coherence is
always equal to the sum of l1 norm of coherence of all the
bipartite systems for any Hawking temperature T . This
monogamy relation describes in some sense the distribu-
tion of quantum coherence for the W-state in the curved
spacetime.

For the relative entropy coherence, however, it is not
so simple. For convenience of study, we define REC
monogamy

γ1 = CRE(ρABCI
)−CRE(ρAB)−CRE(ρACI

)−CRE(ρBCI
).

(19)
Figure 2 shows how the Hawking temperature T influences
the monogamy γ1. We find that γ1 changes from negative
to positive with the growth of the Hawking temperature
T . For T smaller than a certain value, the negative γ1

means that the total REC is smaller than the sum of REC
of all bipartite systems; For T bigger than the certain
value, the total REC is bigger than the sum of REC of all
bipartite systems. This result suggests that the Hawking
radiation can change the distribution of REC —from
negative monogamy in the flat Minkowski spacetime to
the positive monogamy in the curved spacetime. Note
that the different monogamy relations for l1 norm of
coherence and REC reveal the difference between the two
measures of coherence, and the different evolutions of
monogamy vs. temperature reveal the different affections
that the Hawking radiation imposes on the two measures.
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Coherence for two observers near black hole. –
Now, we continue to study the effect of Hawking radia-
tion on quantum coherence and monogamy relation of the
tripartite W-state system in another case where two ob-
servers hover near the event horizon of the black hole. The
method is similar, but the calculation is more complicated.

Quantum coherence. We assume that both Bob and
Charlie hover near the event horizon of the black hole with
uniform acceleration and Alice stays in flat Minkowski
spacetime. Using eq. (6), we obtain

|Φ〉ABIBIICICII
=

1√
3
[C|0A0BI

0BII
1CI

0CII
〉

+S|0A1BI
1BII

1CI
0CII

〉 + C|0A1BI
0BII

0CI
0CII

〉
+S|0A1BI

0BII
1CI

1CII
〉 + C2|1A0BI

0BII
0CI

0CII
〉

+CS|1A0BI
0BII

1CI
1CII

〉 + CS|1A1BI
1BII

0CI
0CII

〉
+S2|1A1BI

1BII
1CI

1CII
〉]. (20)

After tracing over the inaccessible modes BII and CII , the
reduced density matrix reads

ρABICI
=

1
3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 C2 C2 0 C3 0 0 0
0 C2 C2 0 C3 0 0 0
0 0 0 2S2 0 CS2 CS2 0
0 C3 C3 0 C4 0 0 0
0 0 0 CS2 0 C2S2 0 0
0 0 0 CS2 0 0 C2S2 0
0 0 0 0 0 0 0 S4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

According to the measures of coherence, we obtain the l1
norm of coherence and the REC of this state,

Cl1(ρABICI
) =

2
3
(2C + C2), (21)

CRE(ρABICI
) =

4∑
i=1

λi(ρABICI
) log2 λi(ρABICI

)

−
∑

j

βj(ρABICI
) log2 βj(ρABICI

), (22)

where λi(ρABICI
) are the nonzero eigenvalues

λ1(ρABICI
) =

1
3
S4,

λ2(ρABICI
) =

1
3
C2S2,

λ3(ρABICI
) =

1
3
S2(2 + C2),

λ4(ρABICI
) =

1
3
C2(3 − S2),

(23)

and βj(ρABICI
) is the diagonal elements of ρABICI

.
In fig. 3, we plot the l1 norm of coherence Cl1(ρABICI

)
and REC CRE(ρABICI

) as functions of Hawking tempera-
ture T . We find that fig. 3 and fig. 1 are very similar, but
they have two visible difference: One is that the coher-
ence in fig. 3 reduces faster than fig. 1, because now there
are more observers (both Bob and Charlie) suffering from

C I

Cl ( )

( )

I

Fig. 3: The l1 norm of coherence (blue dashed line) and REC
(red solid line) for ρABICI as functions of Hawking temperature
T for fixed value ω = 1. We normalize the maximum quantum
coherence to 1.

Hawking radiation. The other difference is that the decay-
ing speeds of Cl1(ρABICI

) and REC CRE(ρABCI
) in fig. 3

are reversed. When T → ∞, we obtain Cl1(ρABICI
) =

1
3 (2

√
2 + 1) and CRE(ρABICI

) = log2 3125
6 − 1, meaning

that quantum coherence in this case also has the freezing
phenomenon.

Monogamy relation. In order to study monogamy re-
lation, we need to obtain the reduced states ρABI

, ρACI
,

ρBICI
and calculate their coherence. Note that now the

reduced states ρABI
and ρACI

should have the same ma-
trix form according to the symmetry of the system. After
tracing over the mode A, we obtain ρBICI

as

ρBICI
=

1
3

⎛
⎜⎜⎝
C4 0 0 0
0 C2 + C2S2 C2 0
0 C2 C2 + C2S2 0
0 0 0 2S2 + S4

⎞
⎟⎟⎠,

(24)

and the corresponding quantum coherence reads

Cl1(ρBICI
) =

2
3
C2, (25)

CRE(ρBICI
) =

1
3
C2S2 log2

(
1
3
C2S2

)

+
1
3
C2(2 + S2) log2

[
1
3
C2(2 + S2)

]
.

For the l1 norm of coherence, we still find a compact
monogamy relation

Cl1(ρABICI
)=Cl1(ρABI

)+Cl1(ρACI
)+Cl1(ρBICI

), (26)

i.e., the total l1 norm of coherence is equal to the sum
of coherence of all bipartite system for any Hawking
temperature T .

For the REC, we define the monogamy

γ2 = CRE(ρABICI
) − CRE(ρABI

) − CRE(ρACI
)

−CRE(ρBICI
). (27)
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Fig. 4: The monogamy γ2 as a function of the Hawking tem-
perature T for fixed value ω = 1.

Figure 4 shows how the Hawking radiation affects the
monogamy γ2. Comparing it with fig. 2, we find that
γ2 = γ1 for T = 0, i.e., the monogamy of the initial state
equation (7) in the flat Minkowski spacetime is the same.
However, with the increase of Hawking temperature, the
curve goes up faster and the asymptotic value is bigger
than fig. 2. The reason can be explained by the Hawk-
ing radiation: Hawking radiation leads to γ increasing as
Hawking temperature increases. The case where two ob-
servers hover near the event horizon has stronger Hawking
radiation than where one observer hovers near the event
horizon.

Extended to N-partite systems. – In this section,
we extend the results of the tripartite system to the
N -partite systems. The N -partite W-state can be writ-
ten as follows:

W123...N =
1√
N

(|10...00〉+|01...00〉 + ... + |00...01〉), (28)

where the mode i (i = 1, 2, ..., N) is observed by observer
Oi. We assume that one observer hovers near the event
horizon of the black hole with uniform acceleration and
the others stay in flat Minkowski spacetime. According to
eqs. (1), we can obtain the l1 norm of coherence

C1
l1 =

(N − 1)(2C + N − 2)
N

. (29)

Contrarily, if N − 1 observers hover near the event hori-
zon of the black hole with uniform acceleration and one
observer stays in flat Minkowski spacetime, then the l1
norm of coherence can be obtained,

CN−1
l1

=
(N − 1)[2C + (N − 2)C2]

N
. (30)

We are very interested in the effect of the particle num-
ber N on quantum coherence in the process of Hawking
radiation. Figure 5 shows the l1 norm of coherence C1

l1

and CN−1
l1

as functions of the Hawking temperature T for

Fig. 5: The l1 norm of coherence C1
l1 (a) and CN−1

l1
(b) as a

function of the Hawking temperature T for fixed value ω = 1.
N = 5 (solid black line); N = 10 (dashed blue line); N =
15 (dotted red line). We normalize the maximum quantum
coherence to 1.

different numbers of particles. We find that as the num-
ber of particles increases, the coherence C1

l1
increases and

CN−1
l1

decreases. This result is still in agreement with the
fact that the Hawking radiation destroys the quantum co-
herence, since with the increase of N , the number of parti-
cles that are influenced by Hawking radiation increases for
CN−1

l1
and remains unchange for C1

l1
. Note that this result

is very different from the case of GHZ-state of Dirac fields
where the coherence is independent of the particle number
N [34]. In addition, we also find that both C1

l1
and CN−1

l1
are decreasing functions of Hawking temperature T , and
have nonzero asymptotical values when T → ∞ (freezing
phenomenon).

Next, we study the monogamy relation of the N -partite
W-state. For the case where one observer hovers near the
event horizon of the black hole, we obtain

N−1∑
n,m=1;n<m

Cl1(ρnm) +
N−1∑
n=1

Cl1(ρnmI
) = C1

l1 , (31)

and for the case where N − 1 observers hover near the
event horizon of the black hole, we have

N−1∑
mI=1

Cl1(ρnmI
) +

N−1∑
nI ,mI=1;nI<mI

Cl1(ρnImI
) = CN−1

l1
.

(32)
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Here ρnm, ρnmI
and ρnImI

represent, respectively, the re-
duced bipartite states for the inertial observers n and m,
the inertial observer n and non-inertial observer mI , and
the non-inertial observers nI and mI , and the total num-
ber of particles fits N ≥ 3. Equation (31) is the general-
ization of eq. (18), which says that the total coherence is
equal to the sum of all the bipartite coherence between two
inertial observers, and between inertial and non-inertial
observers. Equation (32) can be seen as the generaliza-
tion of eq. (26), which says that the total coherence is
equal to the sum of all the bipartite coherence between
two non-inertial observers, and between non-inertial and
inertial observers.

Conclusions. – In the background of a Schwarzschild
black hole, we have studied the effect of Hawking radi-
ation on quantum coherence and monogamy relationship
of a tripartite W-state entangled system for Dirac fields.
We have considered two cases: One observer and two ob-
servers hover near the event horizon of the black hole, and
the remaining observers stay in flat Minkowski spacetime.
The results shown that both the l1 norm of coherence
and REC are destroyed by the Hawking radiation, and
asymptotically approach nonzero values for infinite Hawk-
ing temperature (freezing of coherence). In the case that
one observer hovers near the horizon, the decaying rate of
the l1 norm of coherence is greater than that of REC; while
for the case that two observers hover near the horizon, the
result is reversed. Moreover, we have found that the l1
norm of coherence of the tripartite W-state is always equal
to the sum of coherence of all bipartite systems for any
Hawking temperature, while a similar result is absent for
REC.

We have generalized the relevant investigations to the
N -partite W-state systems, and found that the monogamy
relation for the l1 of norm coherence still holds. In the case
that only one observer hovers near the event horizon and
all other observers stay in flat Minkowski spacetime, the l1
norm of coherence increases when the number of total par-
ticles N increases; while in the case that N − 1 observers
hover near the horizon, the l1 norm of coherence is a de-
creasing function of N . In both cases, the asymptotical
coherence for T → ∞ is nonzero (freezing of coherence).
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