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Abstract – We present an analytical scheme to achieve optimal synchronization in multiplex
networks of frustrated and non-frustrated phase oscillators. We derive a multiplex synchrony
alignment function (MSAF) for that purpose, the expression of which consists of structural as
well as dynamical information of the layers of the multiplex network. Analyzing the MSAF, a
set of frequencies (optimal frequencies) is determined to achieve optimal synchronization in the
network. Further, using the scheme, we show that perfect synchronization can be achieved in
a layer of the multiplex network for given coupling strength and phase frustration parameters.
The analytical scheme presented here has been tested for heterogeneous multiplex networks of
frustrated and non-frustrated Kuramoto dynamics.
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Diverse collective phenomena can emerge in complex sys-
tems consisting of interacting dynamical units on complex
network topology. One such emergent collective phe-
nomenon is synchronization [1,2], observed and tested in
different real world systems including groups of fireflies,
power grid networks, brain, cellular and chemical oscilla-
tors [1–6]. On the other hand, significant advancement
has been made in characterizing the statistical scaling of
diverse complex network topologies and its profound ap-
plications to real situations [6–8]. Therefore, it has be-
come imperative to understand how the interplay between
network topology and nodal states influences the emer-
gent dynamics in complex networks [9,10]. Researchers
have been trying to interlink the collective macroscopic
property such as synchronization with network struc-
ture [2,11–15] for long, yet it is not fully understood how
structural or degree heterogeneity affects the collective
emergent behavior (say synchronization) of coupled oscil-
lators or vice versa.

Currently, multiplex network [16–20] has became an in-
teresting topic to the researchers for its diverse applica-
tion in real world ranging from transportation to ecology.
For instance, the multipexity can create a faster diffusion
process [17], promotes synchronization in phase frustrated
dynamics [21,22] and leads to abrupt transition in con-
sensus dynamics [23]. However the literature lacks a de-
tailed investigation regarding proper frequency selection in

multiplex network to generate a favourable synchroniza-
tion dynamics. This type of study was motivated from
the emergence of explosive and perfect synchronization
for degree-frequency correlated network of phase oscilla-
tors [24–26]. Skardal et al. [15] showed that the synchro-
nization process is easily achievable (or faster) in network
of phase oscillators if the frequencies are drawn from the
leading eigenvector of the Laplacian matrix. We aim here
to extract a global frequency set in a multiplex network of
frustrated and non-frustrated phase oscillators such that
the entire network synchronizes early in comparison with
other frequency distributions.

To start, we consider a duplex network in which inter-
acting oscillatory units of the individual layers are mod-
eled by the phase oscillators [27–29]
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Here, N is the total number of oscillators in each layer, ω
(l)
i

is the inherent frequency of the i-th node of the l-th layer,
matrix Al (N ×N) represents the connectivity among the
units in the l-th layer of the multiplex network (l = 1, 2)
and λ is the coupling strength.

To quantify the coherent behavior of all phase oscil-
lators in layer l, we use the Kuramoto order parameter
Rle

iψl = 1
N

∑N
j=1 eiθ

(l)
j , and the global order parameter

of the entire network (including all layers) is defined as

Reiψ = 1
2N

∑
l

∑N
j=1 eiθ

(l)
j . Normally phase-lag parame-

ters (α and β) are found to inhibit the transition to syn-
chronization in coupled systems. Physically, the presence
of phase lag [30] is very important when the synchroniza-
tion is investigated in many real systems, namely, in the
array of Josephson junctions [31], power network [32] or
in mechanical rotors [33].

The role of phase-lag has been investigated in [34] us-
ing the theoretical Sakaguchi-Kuramoto (S-K) model [35]
on complete graph. They found that the system may re-
veal a non-universal synchrony for general frequency dis-
tribution. On the other hand, abrupt synchronization
transition (explosive synchronization) can be captured in
the S-K model for a fully or partially degree-frequency
correlated network topology [36,37] and a perfect syn-
chronization (where R is exactly 1) in a broad range of
frustration parameter was established for a predefined cou-
pling strength [25,26]. However, enhancement of syn-
chronization in a multiplex network of phase-frustrated
dynamics has not been explored so far.

In this paper, we present a general analytical scheme
to achieve optimal or perfect synchronization in multi-
plex networks of phase (with or without phase frustra-
tion) oscillators. The main objective of this paper is to
derive a set of frequencies for which i) R ∼ 1 for finite
coupling strength in absence or presence of phase lag or
ii) R = 1, a scenario of perfect synchronization [25] in
the presence of phase frustration for arbitrary coupling
strength. For this purpose, we derive a multiplex syn-
chrony alignment function (MSAF) for multiplex networks
following the approach proposed by Skardal et al. [15].
Analyzing the MSAF we derive a set of preferable fre-
quencies and settle the optimality of synchronization in
multiplex networks. Here, we examine two important is-
sues: i) how MSAF determines the optimality in multiplex
network of phase oscillators and ii) how it helps to re-
move the erosion effect (by generating a desired set of fre-
quencies) for frustrated oscillators. Our analytical scheme
describes how functional heterogeneity and structural het-
erogeneity or degree heterogeneity influence each other for
getting the global synchronization in phase frustrated cou-
pled Kuramoto oscillators.

Derivation: MSAF and optimal frequency set. –
In this section, first we analytically derive a multiplex syn-
chrony alignment function (MSAF) for mutiplex networks
following the approach reported in [15]. Then we use it to

derive a frequency set for achieving optimal synchroniza-
tion in the network.

For coherent state (|θ(l)
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the l-th layer. If the oscillators of the l-th layer follow the
synchronization manifold as θ

(l)
1 ∼ θ

(l)
2 ∼ · · · ∼ θ

(l)
N ∼ ψ

we expect that the order parameters will behave as Rl ∼
1(l = 1, 2). On the other hand, Rl will be zero if the
oscillators are randomly distributed to the circumference
of the unit circle. Now in vector form the equations can
be written as

θ̇(1) = ω̃(1) − λ cos αL(1)θ(1) + λ(θ(2) − θ(1)), (3)
θ̇(2) = ω̃(2) − λ cos βL(2)θ(2) + λ(θ(1) − θ(2)), (4)

where L(l) = (L(l)
ij )N×N (l = 1, 2).

Now in steady state, with a proper choice of reference
frame we have θ̇(1) = θ̇(2) = 0. Therefore,
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m = cos αL(1) + cos βL(2) + cos α cos βL(2)L(1), (7)

L(2)
m = cos αL(1) + cos βL(2) + cos α cos βL(1)L(2), (8)
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m = ω̃(1) + ω̃(2) + cos αL(1)ω̃(2). (10)

The order parameter of the l-th layer can then be rewrit-
ten as

Rl = 1 − 1
2N

‖θ(l)∗‖
2
,

= 1 − 1
2λ2

J(L(l)
m , ω̃(l)

m ), (11)

where the function J(L(l)
m , ω̃

(l)
m ) is named as multiplex syn-

chrony alignment function (MSAF) for the l-th layer. Note
that MSAF is a function of L

(l)
m and ω̃

(l)
m which depend on

the Laplacians as well as dynamics of both the layers (see
eqs. (7)–(10)). Therefore, this MSAF is significantly dif-
ferent from its monolayer version in absence of frustration
as reported in [15]. Now, it is evident from eq. (11) that
MSAF plays an important role for synchronization. As
the value of MSAF increases, the system shows erosion
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Fig. 1: Optimal synchronization in multiplex network of non-frustrated phase oscillators. (a) Global order parameter (R) as a
function of coupling strength (λ) for a multiplex network with two layers in which layer-I is a scale-free network of size N = 1000
with mean degree 〈k1〉 = 8 and layer-II is a scale-free network of the same size and mean degree 〈k1〉 = 12. The blue, red
and sky-blue line respectively represent the global order parameter computed for the network using the proposed distribution,
Lorentzian and uniform distribution of ω. Optimal frequency distributions for layer-I (b) and layer-II (c).

of synchronization, while as J(L(l)
m , ω̃

(l)
m ) → 0 the order

parameter Rl → 1, an enhancement in synchronization
occurs. The global order parameter of the system takes
the form

R = 1 − 1
4N
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2
− 1
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2
,
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m ). (12)

It is now clear that the minimization of MSAF for each
layer will maximize the value of order parameters of indi-
vidual layers as well as the global order parameter. Now,
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If ω(l) = {0, 0, . . . 0}′ then R(l) will trivially be 1. For non-
trivial solution we chose a standard deviation (σ) of the

chosen frequency set such that σ2 =
P
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N , where σ is
an arbitrary constant. Then we express ω(l) as the linear
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optimal frequency (after some calculation) can finally be
obtained as
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As per the analytical scheme presented in this section, for
the above choice of frequencies, the synchronization is ex-
pected to enhance substantially in the multiplex networks.
In the next section we numerically verify the scheme and
exploit it to achieve optimal as well as perfect synchro-
nization in multiplex networks.

Numerical verification. – For numerical verifica-
tion of the scheme presented in the previous section to
achieve optimal synchronization, we consider a heteroge-
neous multiplex network consisting of two layers each of
which is a scale-free network of size N = 1000 and expo-
nent γ = 2.8, while mean degrees of layer-I and layer-II
are 〈k1〉 = 8 and 〈k2〉 = 12, respectively. We then numer-
ically simulate the system (1), (2) using the fourth-order
Runge-Kutta (RK4) scheme and compute the order pa-
rameters of each layer as well as the order parameter for
the whole network as a function of coupling strength λ.

Optimal synchronization in non-frustrated multiplex
networks. First we use the scheme presented in the pre-
vious section to achieve optimal synchronization in non-
frustrated multiplex networks (α = β = 0). In fig. 1(a)
we present the numerically computed order parameters of
both the layers (R1,R2) as well as the global order param-
eter (R) obtained from the simulation of the network using
the frequency distribution obtained from eqs. (15), (16) as
a function of the coupling strength λ by taking σ2 = 1000.
Note that we have checked the numerical results for differ-
ent values of σ and always found that the chosen frequency
helps to achieve optimal synchronization in the multiplex
network. However, larger values of σ helps in increasing
the range of the optimal frequency set. Figure 1 also shows
the variation of the global order parameter for Lorentzian
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Fig. 2: Optimal synchronization for nonzero α and β. The multiplex network used here is the same as the one used in fig. 1.
(a) Order parameters as a function of coupling strength λ for optimal, uniform and normal frequency distributions. (b) and (c)
Optimal frequency distributions of the layer-I and layer-II, respectively.

distribution and uniform frequency distributions with λ.
From the figure it is clear that the proposed frequency dis-
tribution helps the whole system to synchronize at lower
coupling strength whereas the other frequency distribu-
tions need much higher coupling strength to reach the
synchronized state. The optimal frequency distributions
of the layers I and II are shown in fig. 1(b) and fig. 1(c)
respectively. The bimodal nature of the distributions is
apparent from the figures.

Optimal synchronization in frustrated multiplex net-
works. Next we consider that both the layers of the
multiplex network are phase frustrated (α, β �= 0). Here
we note that in the presence of frustration, the last terms
of eqs. (15) and (16) contain the coupling strength explic-
itly. Therefore, we calculate optimal frequencies around
a desired coupling strength λopt = 0.5 for α = 0.2 and
β = 0.3 and numerically simulate the multiplex network.
We also perform a numerical simulation of the network
using normal and uniform frequency distributions. The
order parameters computed from the simulation data in
each case are shown in fig. 2(a). From the figure it is ap-
parent that the system reaches the synchronized state at
λ = 0.5 for the choice of optimal frequencies, while the
system is far away from the synchronized state for other
choices of frequencies.

The optimal frequency distribution of the layers I and
II is shown in fig. 2(b) and (c), respectively. In presence
of frustration, the optimal frequencies show unimodal dis-
tribution as opposed to bimodal distribution obtained for
non-frustrated dynamics (fig. 1(b) and (c)). It appears
from the expressions (15) and (16) of optimal frequency
that the last terms of the expressions play a crucial role in
determining the nature of the distributions. This term is
absent in the non-frustrated case. We would like to men-
tion here that we have performed similar exercise with
scale-free (SF) network in layer-I and Erdös-Rényi (ER)
in layer-II, and also with ER networks in both the lay-
ers. In all the cases the presented scheme provided the
optimal synchronization in the multiplex. Note that, if we

Fig. 3: Optimal and perfect synchronization in different lay-
ers. Same multiplex network used here as the previous figures
with α = 0 and β = 0.5 (a) Order parameters as a function of
coupling strength λ. (b) Time evolution of the phase values of
layer-I (blue curve) and layer-II (red curves). (c) Optimal fre-
quency distribution of layer-I. (d) Frequency (ω) as a function
of the degree (k) of the nodes in layer-II.

select the optimal frequency for higher coupling strength
then (λopt > 0.5) the coupling strength will take a higher
value to synchronize globally. However, these frequencies
cannot produce perfect synchronization (R = 1).

In the next section we consider a multiplex network with
both frustrated and non-frustrated dynamics in the layers.
Then using our analytical scheme we investigate the pos-
sibility of achieving perfect synchronization (R = 1) in the
multiplex network.

Perfect and optimal synchronization. – It has
been reported earlier [25] that by appropriate choice of
nodal frequencies, perfect synchronization (R = 1) can
be achieved in a frustrated network (monolayer) of phase
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Fig. 4: Perfect synchronization in different layers. Variation of the order parameters for individual layers (R1) and (R2) as well
as the global order parameter R (red, green and blue curves, respectively) as a function of the coupling strength (λ) for α = 0.2
and β = 0.3. Different networks of size N = 1000 are considered in different layers. (a) Both layers are scale-free (SF) with
exponent γ = 2.8 (For layer-I and layer-II average degrees are 〈k〉 = 12 and 〈k〉 = 8, respectively). (b) Layer-I is scale-free with
γ = 2.8 and 〈k〉 = 12 and layer-II is Erdös-Rényi with 〈k〉 = 10. (c) Both the layers are ER networks (For layer-I, 〈k〉 = 12 and
for layer-II, 〈k〉 = 10). In all three cases the perfect synchronization is achieved at λp = 0.5 (magenta dot). Zoomed views near
the targeted points clearly show the achievement of perfect synchronization.

oscillators for given coupling strength and phase frustra-
tion. Here, in the case of multiplex networks, if the
nonzero phase frustration exists in the system, we find that
it may exhibit perfect synchronization state where individ-
ual layer will attain perfect synchronization at a particular
coupling strength with given values of α and β. To achieve
a perfect synchronization state in each layer, the order pa-
rameter in the layers must reach Rl = 1 and consequently
from eq. (11) we have J(L(l)

m , ω̃
(l)
m ) = 0 (l = 1, 2). The

simplest choice which satisfies this condition is ω̃
(l)
m = 0

(l = 1, 2). To maintain this condition we may set ω̃(1) and
ω̃(2) to zero simultaneously (see eqs. (9), (10)). Therefore,
the frequency set of each layer ωp

(l) is given by

ωp
(1) = λp sin αd(1), (17)

ωp
(2) = λp sin βd(2), (18)

where λp is the coupling strength at which we predict per-
fect synchronization in the multiplex network for given α
and β. From eqs. (17) and (18) we find that the set of
frequencies to achieve perfect synchronization in a layer
of the multiplex network entirely depends on its own de-
gree distribution (linearly related to its own degree) and
frustration. In the following we consider multiplexes with
frustrated and non-frustrated dynamics in the layers and
use the analytical scheme derived above to achieve perfect
and optimal synchronizations in different layers.

Multiplex with mixed dynamics. For numerical ver-
ification, first we consider mixed dynamics in the mul-
tiplex. Layer-I is governed by non-frustrated dynamics,
while the layer-II is governed by frustrated dynamics and
we set α = 0 and β = 0.5. We assign frequencies in layer-I
(non-frustrated) and layer-II (frustrated) as obtained from
eqs. (15) and (18), respectively, in order to achieve optimal

synchronization in layer-I and perfect synchronization in
layer-II at a targeted coupling strength λp = 0.5. We then
simulate the entire network for different coupling strengths
using RK4. Figure 3(a) shows the variation of the order
parameters of the individual layers (R1,R2, blue and red
curve) as well as the global order parameter (R, green
curve) as a function of coupling strength as obtained from
the numerical simulations. The figure shows that the fre-
quencies derived from eqs. (15) and (18) fulfill the expec-
tation of achieving optimal and perfect synchronization in
individual layers. The perfect synchronization cannot be
established in non-frustrated layer-I but order parameter
(R2) of layer-II touches 1 at λp = 0.5 (cyan dot, blue and
red curves shown in the inset of fig. 3(a)).

It is interesting to note that the global order parame-
ter (R) does not reach the high level of synchronization.
The reason is that the layers are separately synchronized
to different phases and their synchronized phase values
maintain a growing distance between them (fig. 3(b)). As
expected the frequencies of the second layer are linearly
related with degree (fig. 3(d)), and the frequencies of the
first layer do not have any specific relation with the degree
of the considered network (fig. 3(c)).

Multiplex with frustrated dynamics. Finally we con-
sider frustrated dynamics in both the layers of the multi-
plex network. We choose α = 0.2 and β = 0.3 and derive
the frequency distributions from eqs. (17) and (18) which
we assign to the layers I and II, respectively, to achieve
perfect synchronization in both the layers at the targeted
coupling strength λp = 0.5. Figure 4 shows the order pa-
rameters as a function of the coupling strength as obtained
from the numerical simulations. The figure clearly demon-
strates the achievement of perfect synchronization in the
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network at a preassigned coupling strength λp for given
frustration parameters. Therefore, the analytically de-
rived frequency distributions for both the layers are found
to work well for the achievement of optimal as well as
perfect synchronization in the layers at a desired coupling
strength.

Conclusion. – A general mathematical framework is
developed in this paper to derive the natural frequen-
cies of the nodes of multiplex networks which can ensure
high level of synchronization at considerably lower cou-
pling strength. The framework is based on the derivation
of a multiplex syncrony alignment function (MSAF). The
analysis of the MSAF using the theory of linear algebra
provides a way to analytically determine a set of natu-
ral frequencies for the network which ensure optimal syn-
chronization in the layers of the network. It is found that
the analytically derived natural frequencies involve both
structural and dynamical information of the phase frus-
trated multiplex network. We have shown that optimal
frequency of a layer depends on the leading eigenvector of
the underlying network Laplacian and the pseudo inverse
operator of both the layers. Further, we have identified
the condition for perfect and optimal synchronization in
multiplex networks in which one layer is frustrated and
the other layer is non-frustrated.
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