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Abstract
Most studies for postselected weak measurement focus on using the pure Gaussian state as a
pointer, which can only give an amplification limit reaching the level of the ground state
fluctuation. When the pointer is initialized in a thermal state, we find that the amplification limit
after the postselection can reach the level of thermal fluctuation, indicating that the amplification
effect achieving the level of thermal fluctuation is also increased with the temperature growth,
and also that the amplification mechanism is different from that with pure Gaussian-state pointer.
To illustrate these results, we propose two schemes to implement room temperature amplification
of the mechanical oscillator’s displacement caused by a single photon in the optomechanical
system. The two schemes both enhance the mechanical oscillator’s original displacement by
nearly seven orders of magnitude, attaining sensitivity to displacements of ∼0.26 nm. Such
amplification effect can be used to observe the impact of a single photon on a room temperature
mechanical oscillator, which is hard to detect in traditional measurement.
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1. Introduction

Weak measurement (WM) with postselection, first proposed by
Aharonov et al [1], is an enhanced detection scheme whereby
the system is weakly coupled to the pointer. The postselection
on the system leads to an unusual effect: the average displace-
ment of the postselection pointer is far beyond the the eigenvalue
spectrum of the system observable, in contrast to von Neumann
measurement. The mechanism behind this effect is the super-
position (interference) between different postselection pointer
states [2]. Much theoretical research based on weak value is
shown in [3–5]. WM has been realized [6], and proven applic-
able to amplify tiny physical effects [7–11]. More experimental
protocols have been proposed [12–20]. A Fock-state view for
WM is given in [21], based on which WM protocols combined
with an optomechanical system [22, 23] is proposed [24–27],
and more applications of the field are reviewed in [28, 29].

In most previous studies, the pointer is initialized in pure
Gaussian state. It was an inherit assumption that the pointer has
to be in the pure state at the inception of WM [1, 2]. A pointer
can be easily represented with light in pure state [6–8], but with
particles of efficient mass [30–33], it is difficult to initialize them
in pure state due to environmentally induced decoherence.
Recently, the use of squeezed pointer states combined with WM
was also shown to amplify small physical quantities [25].
Moreover, weak measurement based on thermal state pointers
can also enhance parameter estimation in quantum metrology, as
discussed in [34], which is very different from previous results
[35–38]. A discussion of mixed state pointers in WM is given in
[39–41]. However, these works only focus on weak-value
formalism (see [28, 29] for reviews) but not what extent the
amplification value can be, i.e., the amplification limit. Needless
to say, thermal state is easier to prepare, especially in opto-
mechanical systems [24, 27]. One may naturally ask whether
using a thermal state pointer in WM can give a valid result for
the amplification limit, and what kind of advantage it has over a
pure state pointer.
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In the paper, we study the limits of amplifying tiny physical
quantities or effects based on weak measurement. Our paper
begins with a general discussion about weak measurement with
a thermal state pointer, and shows that the maximal displace-
ment of the postselection pointer, proportional to the imaginary
weak value, can reach the level of thermal fluctuation, which is
much larger than the ground state fluctuation with a pure state
pointer [21, 24]. As the temperature grows, the amplification
effect achieving the level of thermal fluctuation is also increased,
thereby constantly improving the amplification limit and indi-
cating that the thermal noise effect of the pointer is beneficial for
weak measurement amplification. This amplification is attributed
to two probabilistic average results: one is the classical statistical
properties of the thermal state itself, and the other is the repre-
sentation of quantum statistical probability, namely, the super-
position of the number state ñn∣ and the state + ñc c n( )∣†

(unnormalized) of the postselection pointer. Such superposition
is a generalization of the mechanism behind the amplification in
[21, 24–26].

We apply the general idea to the field of optomechanical
systems. We find that the amplification of the mirror’s dis-
placement occurring at a time near zero is very important for bad
cavities with non-sideband resolved regime, and can overcome
the difficultly observing the amplification effect due to dissipa-
tion [24]. Finally, we show that the unique advantage of our
schemes is that the amplification at room temperature, with
current experimental technologies, can be used to observe the
impact of a single photon on a room temperature mechanical
oscillator which is hard to detect in traditional measurement5.

The structure of our paper is as follows. In section 2, we
give a general discussion about weak measurement with a
thermal state pointer. In section 3, we state the second main
result of this work, including weak measurement amplifica-
tion in optomechanical systems using phase shifter θ and a
displaced thermal state, respectively. In section 4, we give our
conclusions from the work.

2. Fock-state view of weak measurement with a
thermal state pointer

In the standard scenario of WM, the interaction Hamiltonian
between the system and the pointer is c=H t Aqˆ ( ) ˆ ˆ (setting
ÿ=1 ), where A is a system observable, q is the position
observable of the pointer, and χ (t) is a narrow pulse function
with interaction strength χ. As in [21], if we define

s s= +c q p2 iˆ ˆ ˆ, the interaction Hamiltonian can be rewrit-
ten as

c s= +H t A c c , 1ˆ ( ) ˆ ( ˆ ˆ ) ( )†

where s s= + = - -q c c p c c, i 2ˆ ( ˆ ˆ ) ˆ ( ) ( )† † , and σ is the
zero-point fluctuation. Suppose the initial system state is
y ñ = ñ + ña a 2s si 1 2∣ (∣ ∣ ) , where a1 and a2 are eigenvalues of
A. Then we consider the initial pointer state as

år = - ñ á
=

z z z n n1 , 2th
n

n
m m

0

( ) ( ) ∣ ∣ ( )

with = bw-z e m and b = k T1 B( ), where kB is the Boltzmann
constant and T is the temperature.

Next, we make a postselection of the state of the measured
system. Because of the linearity of r zth ( ), we need only look at
the component number states ñn m∣ that are weakly coupled with
y ñi∣ using equation (2). Then, we postselect the system into a final
state y p e p eñ = - ñ - - ñja e acos 4 sin 4p s s1

i
2∣ [ ( )∣ ( )∣ ] with

j 1 and e 1 , which is nonorthogonal to y ñi∣ , i.e.,
y y e já ñ » + i 2p i∣ ; then the reduced pointer state after the
postselection for each n component of the pointer state is given by

y y h y

p e h p

e h

ñ = á - + ñ ñ

= - - -

- - ñ

j-

n A c c n

D ia e

D ia n

exp i

cos 4 sin 4

2 , 3

m p m

m

i

1
i

2

∣ ( ) ∣ [ ˆ ( ˆ ˆ )]∣ ∣
([ ( ) ( ) (

) ( )]∣ ) ( )

†

where h cs= and a a a= -D c cexp *( ) [ ˆ ˆ]† is a displacement
operator.

When j e1, 1  and h +n2 1 11 2( )  , i.e.,
h 1 , the approximation of equation (3) is (normalized)

y e j hñ » + ñ +

- + ñ
hn B n a

a c c n

2 i i

2,
4

m n m

m

1 2

1 ^ ^

∣ ( ) [( )∣ (
)( )∣ ]

( )† /



where e j h= + + - + -B a a n2 4 2 1n
2 2 2

2 1
2 1 2[ ( ) ( )] is a

normalization coefficient for each state y ñhnm 1∣ ( )  , and the
final total pointer state after the postselection is (normalized)

år y y= - ñ áh h
=

z z n n B1 , 5pm
n

n
m m tot

0
1 1( ) ∣ ( ) ( )∣ ( ) 

where s j s e s h s= + + -B a a4 4tot q
2 2 2 2 2

2 1
2 2 2( ( ) ) ( ) is a

normalized coefficient for rpm, and s bw s= coth 2q m
1 2( )

represent thermal fluctuations of the position q space.

A special note is given here that we only discuss the
problem beyond the weak-value amplification6, which can
reach the maximum amplification value. The discussion of the
weak-value amplification with imaginary and real values can
be seen in appendix B. For equation (4), when M=q and
ε=0, the displacement of the pointer for each state
y ñhnm 1( )  is (see appendix A)

s

s

á ñ = ñ á

= +

q B CTr M q n n

B C n

,

2 1 6

n n m m

n

2

2

({ }∣ ∣ )
( ) ( )

with jh= -C a a 22 1( ) , where {·} denotes antic-
ommutation rules in quantum mechanics and rTr (· ) as á ñr·
with any state ρ, for short, throughout the paper. We note that

s+n2 1( ) is due to the anticommutation interaction between
the superposition of the number states ñn∣ and + ñc c n( ˆ ˆ )∣†

5 Quantum optomechanical system usually refers to a high-finesse cavity
with a movable mirror, where the light in the cavity can give a force on the
mirror [22, 23]. When there is only one photon in the cavity, the displacement
of the mirror caused by the photon is hard to detect in traditional
measurement since it is much smaller than the spread of the mirror wave
packet (quantum fluctuation). Of course, if the mirror is in thermal state
(thermal fluctuation), the mirror’s displacement caused by the photon is even
more hard to detect in traditional measurement.

6 If y yf i∣ are real and imaginary numbers, the amplification of weak
measurement with the thermal state pointer is given in appendix B.
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(unnormalized) and the measured observable M (M=q), i.e.,

y y
s

á ñ = á ñ
= +

h hn M q n n q n B C

n

,

2 1 . 7
m m n1 1∣{ }∣ ( )∣ ∣ ( )

( ) ( )
 

For equation (5), the average displacement of the pointer
in position q space will be

å

s s

=

=
=

q P q

C B 8
n

n n

q

0
2

tot

ˆ ⟨ ⟩

( ) ( )

and á ñ =p 0ˆ , where = - -P z z B B1n
n

n
2 tot( ) is the classical

statistical probability for each state y ñhnm 1∣ ( )  in the
ensemble of the pure state y ñhP n,n m 1{ ( ) } . Multiplying the
classical probability Pn and the corresponding displacement
á ñq n, we get

s= - +P q C z z n B1 2 1 . 9n n
n

tot( ) ( ) ( )

We note that - z z1 n( ) in equation (9) is due to the classical
statistical properties of the thermal state itself. As the temperature
T grows, there is an increased occupancy of the higher number
states ñ + ñn c c n,m m{∣ ( ˆ ˆ )∣ }† in the thermal pointer (5). These
higher number states have more energy and thus can cause a
higher displacement of the pointer than the lower number states.
Therefore, the average displacement of the pointer á ñq̂ in
equation (8) is increased with the increase of the temperature T.

From equation (8), we can see thatá ñq̂ is non-zero in position
q space, and we get the maximal positive and negative values
s q (thermal fluctuation) when j s h s=  -a aq 2 1( ) ,

respectively, which are much larger than that using the pure state
pointer [1, 21, 24], i.e., the ground state fluctuation σ. We find
that as the temperature increases, the maximum value s q is
futher increased. Therefore, the y ñnm∣ ( ) components corresp-
onding to the maximal positive and negative amplifications
are, respectively, y s sñ =  + ñhn c c n 2m qmax, 1∣ ( ) [ ( ˆ ˆ )]∣ ]†

 .
Obviously, the key to understanding the amplification is attributed
to two probabilistic average results: one is the superposition of the
number states ñn∣ and + ñc c n( ˆ ˆ )∣† in a thermal postselection
pointer, which originate from the representation of quantum sta-
tistical probability. This result reveals the more generalized law of
causing amplification effect since it is regarded as a generalization
of the mechanism behind the amplification in standard WM
[1, 21], which is the superposition of the ground state ñ0∣ and
the one-phonon state ñ1∣ of the postselection pointer (see
appendix C); the other is the ensemble of the pure state

y ñhP n,n m 1{ ( ) } , which originated from the representation of the
classical statistical properties of thermal state itself. In a word, the
thermal noise effect of the pointer is beneficial for the amplifi-
cation of the displacement corresponding to the imaginary part of
weak value. It is surprising to note that in [34], this approach can
also enhance parameter estimation in quantum metrology.

3. Weak measurement amplification of one photon in
optomechanical system

3.1. Optomechanical model

To show how the preceding results can be applied, we con-
sider a March–Zehnder interferometer combined with

optomechanical system where the optomechanical cavity
(OC) A and the stationary Fabry–Perot cavity B is embedded
in its one and another arm, respectively (see figure 1). The
Hamiltonian is given by

w w= + + - +  H a a b b c c ga a c c , 10c mˆ ( ) ( ) ( )† † † † †

where wc is the frequency of the optic cavity (A, B) of length
L with corresponding annihilation operators â and wb, m

ˆ
being the angular frequency of mechanical system with
corresponding annihilation operator ĉ. The optomechanical
coupling strength w s s w= = g L m, 2 m0

1 2( ) , which is
the zero-point fluctuation, and m is the mass of the mechan-
ical system. Here, it is a weak measurement model, where the
mirror is used as the pointer to measure the number of photon
in cavity A, with a a† of equation (10) corresponding to Â in
equation (1) in the standard scenario of weak measurement
(see appendix C).

3.2. Weak measurement amplification using a phase shifter θ

As shown in figure 1, suppose one photon enters the inter-
ferometer after the first beam splitter and a phase shifter θ in
the arm A of the interferometer. The initial state of the photon
becomes y q ñ = ñ ñ + ñ ñqe1 2 1 0 0 1A B A Bi

i∣ ( ) ( )( ∣ ∣ ∣ ∣ ) with
q 1 . The mirror is initialized in thermal state r zth ( ). After a
weak interaction using equation (10), according to the results
of the Hamiltonian in [42, 43], the state of the total system
will be

år x

x

= -

+
+

f q

f q
=

+

- +

z z z e D

n n e

D

1 1 0

0 1 1 0

0 1 2,

11
n

n
A B

t

A B m m A B
t

A B

0

i

i

( ) ( ) [∣ ⟩ ∣ ⟩ ( )

∣ ⟩ ∣ ⟩ ]∣ ⟩ ⟨ ∣ [⟨ ∣ ⟨ ∣
( ) ⟨ ∣ ⟨ ∣ ]

( )

( ( ) )

( ( ) )

† /

where x = - w-t k e1 ti m( ) ( ) and f w w= -t k t tsinm m
2( ) ( )

with w=k g m. Then, the second beam splitter postselects for
the photon state y ñ = ñ ñ - ñ ñ1 0 0 1 2p A B A B∣ (∣ ∣ ∣ ∣ ) , which is
nonorthogonal to y qi∣ ( ) , i.e., y y q q» i 2p i∣ ( ) (imagin-
ary). In other words, when a photon is detected at the dark
port, the reduced state of the mirror after the postselection
becomes (see appendix D, unnormalized)

år y y= -
=

z z n n1 , 12m
n

npha

0
1 1( ) ∣ ( )⟩⟨ ( )∣ ( )

Figure 1. The photon enters the first beam splitter of the March–
Zehnder interferometer, before entering an optomechanical cavity A
and a conventional cavity B. The photon weakly excites the tiny
mirror. After the second beam splitter and dark port is detected,
postselection acts on the case where the mirror has been excited by a
photon, and fails otherwise.
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where y x= -f q+n e D n n 2t
m m1

i∣ ( ) [ ( )∣ ∣ ]( ( ) ) denotes the
n phonon component state of the mirror.

Substituting (12) into the displacement expression of the
pointer (A4) in appendix A, and applying the identity of the
associated Laguerre polynomial L xn

k ( ) [44],

å = - - -
=

¥
- -L x z z xz z1 exp 1 , 13

n
n
k n k

0

1( ) ( ) [ ( )] ( )

and the average displacement á ñq t( ) of the mirror overall n
phonon component states y ñn1∣ ( ) is (see appendix D for detail
derivation)

s x x x x
x x

á ñ = + - - F + F
- F + F - F - F

-q t z

z

1

2 , 14

1* * *

* * *

( ) [ ( ) (
[ ])] ( ) ( )

where s x s fF = - + + Wtexp 2 i iq
2( ∣ ∣ ( ) ( ) ) with Ω=θ .

Figure 2(a) shows that the average displacement sá ñq t( )
of the mirror versus time w tm . At time near w =t 0m , the
maximal amplification can reach sq (thermal fluctuation)
which is s19 when z=0.9. This result is beyond the strong
coupling limiting σ (the ground state fluctuation) [45].
Therefore, the thermal noise effect of the mirror is beneficial
for the amplification of the mirror’s displacement caused by
one photon, which means that the impact of one photon on a
mechanical oscillator with arbitrary temperature can be
observed.

In order to observe the amplification effects appearing at
time near T=0, for equation (12) ,we can then perform a
small quantity expansion about time T until the second order.
Suppose that w -t T 1m∣ ∣  , i.e., w t k1, 1m   and θ =
1; then the approximation of y ñn1∣ ( ) is given by (normalized)

y q w= + +
w

n B n k t c c ni i 2, 15
t m1 1 1

m
∣( ) ( )[ ( ))] ( )†



where q w= + + -B n k t n2 2 1m1
2 2 2 1 2( ) [ ( ) ( )] is a normal-

ization coefficient for each state y ñwn t1 1m
∣ ( )  . Note that in the

ensemble of pure state y ñwP n,n t1 1m
{ ( ) } , the classical sta-

tistical probability for each state y ñwn t1 1m
∣ ( )  is =Pn

- -z z B n B1n
1

2
1
tot( ) ( ) , where q s w s= +B k tm q1

tot 2 2 2 2 2( ( ) )
s4 2( ) is a normalized coefficient for rm

pha in equation (15).
For equation (15), the displacement sá ñq t n( ) for each n

phonon component state y ñwn t1 1m
∣ ( )  (see appendix D) is

sq wá ñ = +q t B n k t n2 1 2. 16n m1
2( ) ( ) ( ) ( )

In figure 2(b), we plot the displacement sá ñq t n( ) for
y ñwn t1 1m

∣ ( )  as a function of n when q s w s= k tq m . This

condition is to achieve the maximal value. It shows that the
amplification values grow with the increase of n. Obviously,
the superposition of ñn∣ and + ñc c n( )∣† is the key to obtaining
amplification at time near w =t 0m . Note that by supposing
the initial pointer state to be ñn m∣ for the the displacement

sá ñq t n( ) in equation (16), we can see that the maximal
amplification can reach s +n2 1 1 2( ) (thermal fluctuation)
if q w= +k t n2 1m

1 2( ) , and its amplification value tends to
¥ with the increase of n. This is different from the result in
figure 2(b). Summing the displacement sá ñq t n( ) for all n
phonon component states y ñwn t1 1m

∣ ( )  , the maximal values of
the average displacement are s s sá ñ = q t q( ) (thermal
fluctuation) when q s w s=  k tq m , respectively, and as the
temperature T grows, the maximal values s q are also
increased.

3.3. Weak measurement amplification using a displaced
thermal state

Besides the just-shown amplification scheme, as shown in
figure 1, we can also provide an alternative where the mirror
is initialized in the displaced thermal state [46] using classical
light pulse drive r a a r a=z D z D, thth ( ) ( ) ( ) ( )† . Without the
phase shifter θ, the initial state of the photon after the first
beam splitter is y = +1 0 0 1 2A B A Bi∣ (∣ ∣ ∣ ∣ ) . Similar to
the previous scheme in which weak measurement amplifica-
tion can be performed by using a phase shifter θ , when a
photon is detected at the dark port, the reduced state of the
mirror after the orthogonal postselection (i.e., y y = 0p i∣ ) is
given by (see appendix E, unnormalized)

år y y= -
=

z z n n1 , 17m
n

ndis

0
2 2( ) ∣ ( )⟩⟨ ( )∣ ( )

where y x= -f f a+n e D t n n 2t t
m m2

i ,∣ ( ) [ ( ( ))∣ ∣ ]( ( ) ( )) denotes
the n phonon component state of the mirror and f a =t,( )

ax a x- -i t t* *[ ( ) ( )] is caused by noncommutativity of quant-
um mechanics [26]. Similar to the previous section, when
substituting (17) into (A4) in appendix A, the expression for the
average displacement á ñq t( ) of the mirror for rm

dis is similar to
equation (14) (see appendix D for detail derivation), just with
f a t,( ) instead of θ.

Figure 3(a) shows the average displacement sá ñq t( ) of
the mirror versus time w tm . Obviously, at time near w =t 0m ,
the maximal amplification can reach sq (thermal fluctuation)
which is s19 when z=0.9. The meaning of this result is
the same as that using a phase shifter, and a significant impact
of a single photon on a high-temperature mechanical oscil-
lator can be observed.

Similar to equation (15), the approximation of y ñn2∣ ( ) is
(see appendix E, normalized)

y a z

w

=

+ +
wn B n i k n

k t c c n

2

i 2 18
t

m

2 1 2
m

∣ ( ) ( )[ ∣ ∣ ∣

( )∣ ] ( )†


when k 1 and a zk2 1∣ ∣  , where z w b= +t sin 2m
2[( ) ]

w bt cosm and a z w= + + -B n k k t n2 4 2 1m2
2 2 2 2 2 1 2( ) [ ∣ ∣ ( ) ( )]

is a normalization coefficient for each state y ñwn t2 1m
∣ ( )  . Note

that in the ensemble of pure state y ñwP n,n t2 1m
{ ( ) } , the

classical statistical probability for each state y ñwn t2 1m
∣ ( )  is

Figure 2. (a) Average displacement sá ñq t( ) versus time w tm with
q = =k0.000 5, 0.005, and z=0.9. (b) Average displacement

sá ñq t n( ) as function of n when q w= +
-

k tz

z m
1
1

1 2( ) with q =

=k0.000 5, 0.005, and z=0.9.
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= - -P z z B n B1n
n

2
2

2
tot( ) ( ) , where a z s= +B k42

tot 2 2 2 2( ∣ ∣ ∣
w s sk t 4m q

2 2 2 2( ) ) ( ) is a normalized coefficient for rm
dis in

equation (17). This indicates that the superposition of ñn∣ and
+ ñc c n( )∣† is the key to obtaining amplification at time near

w =t 0m . Figure 3(b) show that at time w =t 0.001m , the
average displacement sá ñq t( ) of the mirror as a function of
a a= bei∣ ∣ , i.e., different displaced thermal states r az,th ( ).

3.4. Dissipation

When the mirror is considered in a thermal bath characterized
by a damping constant gm, we have

r r g
g

=- + -
+ -

 


d t dt i H t c z

z c z

, 1

1 , 19
m

m

( ) [ ( )] [ ] ( )
[ ] ( ) ( )†

where r r r= - - o o t o o o t t o o2 2[ ] ( ) ( ) ( )† † † . In figures
4(a) and 5(a), we show at time t 1 , the average displace-
ments of the mirror (see appendix F) from the exact solution
of equation (19) for the first and the second proposed
schemes, respectively. They show that at room temperature
300 K, even if the damping coefficient γ (g g w= m m)
becomes very large, such as γ=50, the average displace-
ment of the mirror is the same as that without dissipation,
γ=0, but actually the damping coefficient of the OC we use
in [27] is 5×10−7, which has no effect on the amplification.

3.5. Experimental requirements

First, we discuss the photon arrival rate versus time. Suppose
a single photon in short-pulse limit enters to the cavity. The
probability density of a photon being released from OC after

time t is k k- texp( ), with κ being cavity decay rate. The
successful postselection probability being released after t
is s x s- - +f f+W - +Wt e e2 exp 2 4q

t t2 2 2 i i[ [ ∣ ( )∣ ( )]( )]( ( ) ) ( ( ) ) ,
where Ω=θ , f (α , t). For k 1 , this is approximately
s x s + Wt 4q

2 2 2 2( ∣ ( )∣ ) . Multiplying s x s + Wt 4q
2 2 2 2( ∣ ( )∣ )

and k k- texp( ) results in the photon arrival rate density
k k s x s= - + WD t t t Pexp 4q

2 2 2 2( ) ( )( ∣ ( )∣ ) ( ) in OC, where

ò k k s x s= - + W
¥

P t t dt1 4 exp 20q
0

2 2 2 2( ) ( )( ∣ ( )∣ ) ( )

is the overall probability of a single photon successfully
generating the superposition state of ñn∣ and + ñc c n( )∣† .
Figures 4(b) and 5(b) show the photon arrival rate density D
(t) for the first and the second proposed schemes, respectively.
They show that in the bad-cavity limit k w> m, i.e., non-
sideband resolved regime, as the decay rate κ of the cavity
increases, D(t) become increasingly concentrated at time
near t=0.

For a repeated experimental setup with identical condi-
tions, the ‘average’ displacement of the pointer is given by

òá ñ = á ñ
¥

q t D t q t dt, 21
0

( ) ( ) ( ) ( )

where á ñq t( ) is the same as á ñq t( ) in equation (14). At room
temperature T=300K, we use a mechanical resonator with
mechanical frequency fm=4.5 kHz and effective mass m=
100 ng [27], indicating that z=0.999 999 999 and σ=4.32 fm
(femtometer), so the maximal amplification value σ q=0.26 nm.
If s= =T 1500 K, 0.5 nmq

7 . For the first scheme, with κ =
w s´ á ñ =q t1.2 10 , 11577m

4 ( ) if k=0.005, θ= 0.005, and
for the second scheme, with κ w= ´ á ñ =q t2 10 ,m

4 ( )
s44704 if a s s b= = =k 0.005, 2 , 0q∣ ∣ ( ) . Now we com-

pare these amplification results with the maximal unamplified
value s =k4 86.4 am (attometer) caused by the radiation
pressure of a single photon in cavity A (amplification without
the postselection, see appendix G); therefore, the amplifica-
tion factor is s= á ñQ q t k4( ) ( ) which is 578,850 for the first
scheme and 2,235,200 for the second scheme.

We then give the experimental requirements for the
optomechanical device at room temperature T=300 K.
According to equation (20), the P that we need is common,

Figure 3. (a) Average displacement sá ñq t( ) versus time w tm for

a b= =+
-

2, 0z

z

1
1

1 2( )∣ ∣ (blue line) and a = +
-

10 ,z

z

1
1

1 2( )∣ ∣
b p= 2 (red line). (b) Average displacement sá ñq t( ) at time
w =t 0.001m as a function of a a= be ;i∣ ∣ other parameters are the
same as before, i.e., k=0.005 and =z 0.9.

Figure 4. (a) Average displacement sá ñq t( ) at time t 1 with
q= =k 0.005, 0.005, and w p= 9m kHz (room temperature 300 K)

for different g = 0 (yellow line), 0.005 (red line), 50 (blue line), and
´5 103 (black line). (b) Photon arrival probability density D(t) vs

arrival time for q (q = k) with k w= ´1.2 10 m
2 (blue line),

w´1.2 10 m
3 (red line), and w´1.2 10 m

4 (green line).

Figure 5. (a) Average displacement sá ñq t( ) at time t 1 with

a= = +
-

k 0.005, 2z

z

1
1

1 2( )∣ ∣ , b = 0, and w p= 9m kHz (room

temperature 300 K) for different g = 0 (yellow line), 0.005 (red
line), 0.5 (blue line), and 50 (black line). (b) Photon arrival

probability density D(t) vs arrival time for a b= =+
-

2, 0z

z

1
1

1 2( )∣ ∣
with k w= ´2 10 m

2 (blue line), w´2 10 m
3 (red line), and

w´2 10 m
4 (green line).

7 If optomechanical materials resistant to high temperature are created in the
future, the amplification of the displacement caused by one photon can
achieve the nanometer or even micron category.
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although the precise value depends on the dark count rate of
the detector and the stability of the setup. At room temper-
ature T=300 K, for the first scheme, P is approximately
6.94k2 (see appendix H) for a device with k w= ´1.2 10 m

4

when θ=0.005. The window that detectors need to open for
photons is approximately k1 , requiring the dark count rate to
be lower than kk6.94 2 . The dark count rate of the best silicon
avalanche photodiode is about ∼2 Hz, so we require k�0
for a 4.5 kHz device, i.e. proposed device no. 2 from [27] but
with optical finesse F reduced to 2800 and cavity length being
0.5 mm. For the second scheme, P is approximately 5k2 (see
appendix H) for a device with k w= ´2 10 m

4 when
a s s b= =2 , 0q∣ ∣ ( ) . Because the dark count rate 2 Hz of
the detector is lower than kk5 2 , we require k�0.000 026 for
the same 4.5 kHz device, but with optical finesse F reduced to
3000 and cavity length being 0.3 mm. Therefore, the imple-
mentation of the schemes provided here are feasible to
observe the impact of a single photon on a room temperature
mechanical oscillator in experiment.

4. Conclusion

In this paper, we considered using thermal state to enhance
the amplification limit of the mechanical oscillator’s dis-
placement after the postselection. We found that the maximal
amplification value can reach the level of thermal fluctuation,
indicating constant improvement of the amplification limit
with increasing temperature. In other words, the thermal noise
effect of the pointer is beneficial for weak measurement
amplification. The mechanism behind the amplification is
attributed to the superposition between the number state ñn∣
and the state + ñc c n( )∣† (unnormalized) of the postselection
pointer and the classical statistical properties of the thermal
state itself. To this end, we proposed two different schemes
for experimental implementations with the optomechanical
system, and show that the amplification that occurs at time
near w =t 0m is important for bad cavities with non-sideband
resolved regime, which means that our proposed two schemes
are feasible to observe the impact of a single photon on a
room temperature mechanical oscillator under current exper-
imental conditions. Moreover, we have provided enough of a
theoretical toolbox [34, 47] to amplify the weaker effect in
one-photon weak coupling optomechanics, which may be
employed to explore the faint gravitational effect.
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Appendix A. Amplification displacement of
postselected weak measurement with any state
pointer

The interaction Hamiltonian between the system and the
pointer is

c= ÄH t A q. A1int ( ) ( )

Suppose the initial state of the system is Fñ = ñ +ai 1∣ (∣
ña 22∣ ) , and the initial state of the pointer is ρ m. The system

is postselected in the state q qF ñ = ñ - ñja e acos sinp p
i

p1 2∣ ∣ ∣
after the interaction (A1), and the pointer collapses to the state
(unnormalized)

r c r c

q c q
c r q c

q c

=áF - F ñáF F ñ

= - -
´ -

-

j

j

-

i Aq i Aq

i a q e

i a q i a q

e i a q

exp exp

cos exp sin

exp cos exp

sin exp 2, A2

pm p i i m p

p
i

p

m p

i
p

1

2 1

2

∣ ( )∣ ∣ ( )∣

[ ( )
( )] [ ( )

( )] ( )

where s s= +q c c ,ˆ ( ˆ ˆ )† is the zero-point fluctuation. The
success postselection probability is r=P Trs pm( ). However, if
χ =1 and j = 1, and when q p e= -4p with e r1, pm ,
(A2) is approximately

r e j c r e

j c

» + + -

- - -

i i a a q

i i a a q

1 4 2 2

. A3
pm m2 1

2 1

( )[ ( ) ] [
( ) ] ( )

The average displacement of the pointer observable M
(M=p, q) is

r r rá ñ = -M Tr M Tr Tr M . A4pm pm m( ) ( ) ( ) ( )

Note that

r e j ec

jc

c

» + á ñ + -

á ñ + - á ñ

+ - á ñ

r

r r

r

Tr M M i a a

M q a a M q

a a qMq

4 2

, ,

4, A5

pm
2 2

2 1

2 1

2
2 1

2

m

m m

m

( ) [( ) ( )
[ ] ( ) { }

( ) ] ( )

and the normalized coefficient is

r e j

jc c

= » +

+ - á ñ + - á ñr r

A Tr

a a q a a q

4

2 4,

A6

pm0
2 2

2 1
2

2 1
2 2

m m

( ) [( )

( ) ( ) ]
( )

where rTr m(· ) as á ñrm
· for short throughout the paper.

By substituting (A5) and (A6) into (A4), we find that

e j ec

jc

c

á ñ = + á ñ + -

´ á ñ + - á ñ

+ - á ñ - á ñ

r

r r

r r

-M A M i a a

M q a a M q

a a qMq M

4 2

, ,

4 , A7

0
1 2 2

2 1

2 1

2
2 1

2

m

m m

m m

[( ) ( )
[ ] ( ) { }

( ) ] ( )

where [·] and {·} denote commutation and anticommutation
rules, respectively. (A7) is the average displacement of the any
pointer. If the initial state of the pointer rm satisfy the symmetry
condition, i.e, - =F x F x( ) ( ), the expression (A7) becomes

ec

jc

á ñ = - á ñ

+ - á ñ
r

r

-M A i a a M q

a a M q

2 ,

, 4, A8

1
2 1

2 1

m

m

( ( ) [ ]
( ) { } ) ( )

where e j c= + + - á ñrA a a q4 42 2 2
2 1

2 2
m

[ ( ) ] is a normal-
ized coefficient. It is obvious that the displacement is determined
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by ec - á ñri a a M q2 ,2 1 m
( ) [ ] and jc - á ñra a M q,2 1 m

( ) { } .
The former and latter are both caused by the interference term of
this state (A3). In other words, the key to understanding the
amplification is the coherence (superposition) between the dif-
ferent states in the pointer after the postselection.

There are two cases for equation (A8): one is that when
j=0 and e ¹ 0, (A8) becomes

ecá ñ = - á ñr-M A i a a M q2 , , A91
1

2 1 m
( ) [ ] ( )

where e c= + - á ñrA a a q4 41
2 2

2 1
2 2

m
[ ( ) ] is a normalized

coefficient. (A9) corresponds to the displacement space pro-
portional to real weak value; the result is holds up if and only
if M=p.The other case is that when j ¹ 0 and ε=0, (A8)
becomes

jcá ñ = - á ñr-M A a a M q, , A102
1

2 1 m
( ) { } ( )

where j c= + - á ñrA a a q 42
2 2

2 1
2 2

m
[ ( ) ] is a normalized

coefficient. (A10) corresponds to the displacement space
proportional to imaginary weak value; the result holds up if
and only if M=q.

A.1. Amplification displacement based on a thermal pointer

If we consider rm is a thermal state r zth ( ) (2) in the main text,
the final total pointer state after the postselection is (normal-
ized)

år y y= - ñ áh h
-

=

B z z n n1 , A11pm tot
n

n
m m

1

0
1 1( ) ∣ ( ) ( )∣ ( ) 

where s j s e s h s= + + -B a a4 4tot q
2 2 2 2 2

2 1
2 2 2( ( ) ) is a

normalized coefficient for rpm, and s bw s= coth 2q m
1 2( )

represents thermal fluctuations of the position q space.
Substituting y ñhnm 1∣ ( )  into equation (A4) and M=q,

when j ¹ 0 and ε=0, we obtain the displacement of the
pointer for y ñhnm 1( )  :

y y

s

s

á ñ = ñ á

= ñ á

= +

h hq Tr q n n

B CTr M q n n

B C n

,

2 1 , A12

n m m

n m m

n

1 1

2

2

( ∣ ( ) ( )∣ )
({ }∣ ∣ )

( ) ( )

 

where jh= -C a a 22 1( ) and j h= + -B a a2n
2 2

2 1
2[ ( )

+ -n2 1 1 2( )] is a normalization coefficient for y ñhnm 1∣ ( )  .
Therefore, this formula is the same as equation (6) in the
main text.

For equation (A11), the average displacement of the
pointer in position q space will be

s s

á ñ = å á ñ

=
=q P q

C B , A13
n n n

q tot

0
2 ( ) ( )

where = - -P z z B B1n
n

n
tot2( ) is the classical statistical

probability for each state y ñhnm 1∣ ( )  in the ensemble of the
pure state y ñhP n,n m 1{ ( ) } , and á ñ =p 0.

Special note is given here: supposing that r = ñá0 0m ∣ ∣
(ground state) or a añá∣ ∣ (coherent state), the maximal
amplification value of (A10) is the ground state fluctuation
σ, which values are exactly confirmed by equation (17)
in [24] and equation (25) in [26], respectively. When
r x a a x x x x= ñá = -S S S a a, exp 2 2m

2 2*( )∣ ∣ ( ) ( ) ( )† † with
x = qrei , the maximal amplification value of (A10) is the

squeezing ground state fluctuation ser , which is exactly
confirmed by equation (15) in [25].

Substituting equation (5) into equation (A4) and sup-
posing M=p, whenj = 0 and e ¹ 0, we obtain the average
displacement of the pointer in momentum p space:

eh sá ñ = -p a a B2 , A14tot2 1( ) ( ) ( )

which is the asymptotic solution and á ñ =q 0. From
equation (A14), we can still get the maximal positive value

s1 2 q( ) when e s h s= -a a 2q 2 1( ) ( ), and the maximal
negative value s-1 2 q( ) when e s h s= - -a a 2q 2 1( ) ( ).
Because bw <-coth 2 1m

1( ) , sá ñ <p 1 2∣ ∣ ( ) (zero-point
fluctuation), implying that the maximal amplification of the
pointer’s displacement in momentum space is less than zero-
point fluctuation, in sharp contrast to equation (C4) in the
following section II, which indicates that sá ñ = p 1 2( )
when e h=  -a a 22 1( ) . Therefore, thermal noise effect of
the pointer has a negative effect in the amplification of the
displacement proportional to real weak value.

Although the displacement proportional to real weak
value has been amplified using thermal state pointer, it is far
less than the larger uncertainty (thermal fluctuation) of the
pointer, indicating that mixed state pointer with larger fluc-
tuation is infeasible for the displacement proportional to real
weak value. In other words, if the mixed state pointer (e.g.,
thermal state) didn’t have any advantage over pure state
pointer, it would be pointless to study amplification with the
mixed state pointer.

Appendix B. Weak value based on a thermal state
pointer

According to the definition of weak value [1]

y y
y y

=
á ñ

á ñ
A

A
, B1w

p i

p i

∣ ∣
∣

( )

where y ñi∣ and y ñp∣ is the preselected and postselected state. In
this case of using thermal state as a pointer, the weak-value
regime satisfies the condition h j e+n2 1 , 11 2( )   .
When the postselection state of the system y ñ =p∣

p e p e- ñ - - ñja e acos 4 sin 4s
i

s1 2( ( )∣ ( )∣ ) is performed for
the total system (3):

r y h y y r h

y
y y h y y

y y h y y
y y y y h

h

=á - + ñá

+ ñ

» - å á ñ - á ñ

+ ñ á á ñ + á ñ +

» - å á ñá ñ -

+ ñ á +

=

=

i A c c i A c

c

z z i A c

c n n i A c c

z z i A c

c n n i A c c

exp exp

1

1 exp

exp

B2

pm p i i th

p

n
n

p i p i

m m i p i p

n
n

p i i p w

m m w

0

0

*

∣ [ ( ˆ ˆ )]∣ ∣ [ ( ˆ

ˆ )]∣
( ) [ ∣ ∣ ∣ ( ˆ
ˆ )]∣ ∣ [ ∣ ∣ ∣ ( ˆ ˆ )]

( ) ∣ ∣ [ ( ˆ

ˆ )]∣ ∣ [ ( ˆ ˆ )]
( )

†

†

† †

† †

with

» +A A i ARe Im , B3w w w ( )

where e e j= - +A a aRe 2 4w 1 2
2 2( ) ( ) and =AIm w

j e j- - +a a 41 2
2 2( ) ( ).
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Substituting equation (B2) into equation (A4) and ε=0,
the the average displacement of the pointer in position q space
is

s h

h

h

á ñ = - å á +

+ - + ñ -

å á - - + ñ

=

=

q z z n i A c c c

c i A c c n z

z n i A A c c n

1 exp

exp 1

exp .

B4

n
n

m w

w m

n
n

m w w m

0

0

*

*

( ) ∣ [ ( ˆ ˆ )](
) [ ( ˆ ˆ )]∣ [( )

∣ [ ( )( ˆ ˆ )]∣ ]
( )

†

† †

†

Changing to the q representation in rectangular coordinate,
this becomes

ò
ò

f h

s f

h s

á ñ = - å -

- - å

- -

-¥

¥

=

-¥

¥

=

q z z dq q q i A

A q z z dq q

i A A q

1 exp

1

exp , B5

n
n

n w

w n
n

n

w w

0
2

0
2*

*

( ) ( ( ) [ (

) ]) [( ) ( )

[ ( ) ]] ( )

and f qn ( ) is defined as

f s f= -q n H q q2 2 , B6n
n

n
1 2

0( ) ( !) ( ) ( ) ( )

where f ps s= --q q2 exp 40
2 1 4 2 2( ) ( ) [ ( )]) and Hn is a

Hermite Polynomial.
Using Mehler’s Hermite Polynomial Formula [44]

å = -

- + -
=

¥ - -H x H y w n w

xyw x y w w

2 1

exp 2 1 , B7
n n n

n n
0

1 2 1 2

2 2 2 2

( ) ( ) ( !) ( )
[( ( ) ) ( )] ( )

and

ò

ò

-

= -

-¥

¥

-¥

¥

dx x x mx

d

dm
dx x mx

exp exp

exp exp , B8

2

2

( [ ] [ ])

( [ ] [ ])] ( )

then equation (B5) becomes

c sá ñ =q A2 Im . B9w q
2 ( )

From equation (B9), it can be seen that á ñq is proportional to
the square of thermal fluctuation and is imaginary in position
q space, which is the generalization of the result of equation
(10) in [3]. Therefore, thermal noise effect of the pointer is
beneficial for weak measurement amplification. But á ñq for the
weak-value amplification is not the optimal displacement, i.e.,
not the maximal amplification value. The maximal amplifi-
cation value is s q (thermal fluctuation) in the main text.

Substituting equation (B2) into equation (A4) and j=0,
the average displacement of the pointer in momentum p space
is

s h

h
c

á ñ =- - å á

+ - - + ñ
=-

-
=p i z z n i A c

c c c i A c c n

A

2 1 exp

exp
Re , B10

n
n

m w

w m

w

1
0 *( ) ( ) ∣ [ ( ˆ

ˆ )]( ) [ ( ˆ ˆ )]∣
( )

† † †

which is exactly the same weak value as that in a pure
Gaussian pointer state [1].

Appendix C. Fock-state veiw of the standard weak
measurement with a ground state pointer

We consider the Hamiltonian (1) in the main text. If the initial
state of the system is y ñ = ñ + ña a 2i 1 2∣ (∣ ∣ ) , where ña1∣ and

ña2∣ are eigenstates of A, any Gaussian can be seen as the
ground state of a fictional harmonic oscillator Hamiltonian
[48]. Suppose the initial pointer state is the ground state ñ0 m∣ .
Then, weakly coupling them using the interaction Hamilto-
nian (A1), the time evolution of the total system is given by

y
h y

h h

ñ ñ

= - + ñ ñ

= ñ - + ñ - ñ

U t

i A c c

a D ia a D ia

0

exp 0

0 2 , C1

i m

i m

m1 1 2 2

( )∣ ∣
[ ( ˆ ˆ )]∣ ∣

[∣ ( ) ∣ ( ]∣ ) ( )

†

where = c-U t e i Aq( ) ˆ ˆ.
When the postselection y p eñ = - ñ -acos 4p 1∣ [ ( )∣

p e- ñje asin 4i
2( )∣ ] with e 1 is performed for the total

system (C1), i.e., y y e já ñ » + i 2p i∣ , then the final state of
the pointer is

p e h p e h- - - - - ñj-

C2
D ia e D ia1 2 cos 4 sin 4 0 .i

m1 2

( )
( )[ ( ) ( ) ( ) ( )]∣

For equation (C2), when j e1, 1  and h 1 , we
can then perform a small quantity expansion about η and ε

until the second order, and then obtain

e j h+ ñ + - ñi i a a2 0 1 2. C3m m2 1[( )∣ ( )∣ ] ( )

Substituting equation (C3) into equation (A4), in this
case of the near-orthogonal postselection, i.e., y y eá ñ »p i∣
(real), we can find that

eh e s h sá ñ = - + -p a a a a2 4 . C42 1
2

2 1
2 2ˆ ( ) ( ( ) ) ( )

and á ñ =q 0ˆ .
When e h=  -a a2 2 1( ) , we will have the largest dis-

placement s1 2( ) in momentum p space and when ε=0,
indicating that the postselected state of the system is ortho-
gonal to the initial state of the system, i.e., y yá ñ = 0p i∣ , and
the displacement of the pointer in momentum p space is 0.
This amplification result is due to the superposition of ñ0 m∣
and ñ1 m∣ . However, the displecement of the pointer in position
q space is always 0.

Substituting equation (C3) into equation (A4), in this
case of the near-orthogonal postselection, i.e., y y já ñ » i 2p i∣
(imaginary), we obtain

s jh j há ñ = - + -q a a a a2 C52 1
2

2 1
2 2( ) [ ( ) ] ( )

and á ñ =p 0.
When j h=  -a a2 1( ) , we will have the largest dis-

placement s in position q space and when j=0, indicating
that the postselected state of the system is orthogonal to the
initial state of the system, i.e., y yá ñ = 0p i∣ , and the dis-
placement of the pointer in position q space is 0. This
amplification result is due to the superposition of ñ0 m∣ and
ñ1 m∣ . However, the displecement of the pointer in momentum

p space is always 0.
Obviously, the mechanism behind the amplification with

Gaussian pointer [1] is also regarded as the superposition of
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ñ0∣ and ñ1∣ of the pointer in Fock space. Therefore, the stan-
dard scenario of weak measurement [1] can be also shown
and understood by the Fock-state view where the initial state
of the pointer is a ground state [21]. This gives a view of the
relationship between weak measurement and other measure-
ment techniques.

Appendix D. Amplification using a phase shifter θ in
optomechanics

According to the results of [42, 43], the time evolution
operator of the Hamiltonian (10) in the main text is given by

w f
x x w

= - +
- -

U t ir a a b b t i a a t

a a t c t c ic c t

exp exp

exp exp , D1
m

m

2

*

( ) [ ( ) ] [ ( ) ( )]
[ ( ( ) ( ) )] [ ] ( )

† † †

† † †

where f w w= -t k t tsinm m
2( ) ( ), x = - w-t k e1 i tm( ) ( ), and

w w w= =r k g,m m0 is the scaled coupling parameter.
Suppose that one photon is input into the interferometer, and

after the first beam splitter and a phase shifter θ,the initial state of
the photon is y q ñ = ñ ñ + ñ ñqe1 2 1 0 0 1i

i
A B A B∣ ( ) ( )( ∣ ∣ ∣ ∣ ). The

mirror is initialized in thermal state r zth ( ). After weakly coupled
interaction (D1) between one photon and the mirror, the time
evolution of the total system leads to a state given by

r x

x

= - å ñ ñ

+ ñ ñ ñ á á á

+ á á

f q

f q
=

+

- +

z z z e D

n n e

D

1 1 0

0 1 1 0

0 1 2. D2

n
n

A B
i t

A B m m A B
i t

A B

0( ) ( ) [∣ ∣ ( )
∣ ∣ ]∣ ∣ [ ∣ ∣

( ) ∣ ∣ ] ( )

( ( ) )

( ( ) )

†

When a photon is detected in the dark port, in the language of
weak measurement, the postselected state of one photon is
y ñ = ñ ñ - ñ ñ1 0 0 1 2p A B A B∣ (∣ ∣ ∣ ∣ ) , which is nonorthogonal to
y q ñi∣ ( ) , i.e., y y q qá ñ » i 2f i∣ ( ) . Then the reduced state of the
mirror after the postselection for each n component of the pointer
state is

y y x

x

ñ = á ñ ñ

+ ñ ñ ñ

= ñ - ñ

f q

f q

+

+

n e D

n

e D n n

1 0

0 1 2

2. D3

p A B
i t

A B m

i t
m m

1∣ ( ) ∣(∣ ∣ ( )
∣ ∣ )∣

[ ( )∣ ∣ ] ( )

( ( ) )

( ( ) )

This is equation (12) in the main text.
For equation (D3), over all n components, the final total

state of the pointer is r y y= - å ñá=z z n n1m
pha

n
n

0 1 1( ) ∣ ( ) ( )∣.
Substituting equation (D3) into equation (A4), we can follow a
two-step procedure to obtain the average displacement of the
mirror: first, calculate the numerator of equation (A4), then
calculate the denominator of equation (A4).

For the numerator of equation (A4), we obtain

x x s x x
s x x

á ñ = á + ñ

= +

n D qD n n D c c D n

t t , D4

∣ ( ) ( )∣ ∣ ( )( ) ( )∣
( ( ) ( )) ( )

† † †

†

using a a a a a a= + = ++D cD c D c D c, *( ) ( ) ( ) ( )† † † , and

sá ñ = á + ñ =n q n n c c n 0, D5∣ ∣ ∣( )∣ ( )†

x
s x

á ñ

= á + ñ

f q

f q

+

+

e n qD n

e n c c D n , D6

i t

i t

∣ ( )∣
∣( ) ( )∣ ( )

( ( ) )

( ( ) ) †

x
s x

á ñ

= á + ñ

f q

f q

- +

- +

e n D q n

e n D c c n , D7

i t

i t

∣ ( ) ∣
∣ ( )( )∣ ( )

( ( ) ) †

( ( ) ) † †

for equation (D6), and using

a a a

a

á ñ = -

´

-

- 

l D n n l

L l n

exp 2

, , D8

l n

n
l n

2

2

∣ ( )∣ ! ! ( ∣ ∣ )
(∣ ∣ ) ( ) ( )

( )

( )

and

a a a

a

á ñ = - - -

´ -

-

- 

l D n n l

L l n

exp 2

, , D9

l n

n
l n

2

2

∣ ( )∣ ! ! ( ) ( ∣ ∣ )
(∣ ∣ ) ( ) ( )

† ( )

( )

where L xn
k ( ) is an associated Laguerre polynomial [44] , we

find that

x s
x x

s s

á ñ = + á +

ñ + á - ñ

= +

f q f q

f q f q

+ +

+
+

+
-

e n qD n e n n

D n n n D n

e D e D

1 1

1

D10

i t i t

i t
n n

i t
n n

1 2

1 2

1, , 1*

∣ ( )∣ [( ) ∣
( )∣ ∣ ( )∣ ]

( )

( ( ) ) ( ( ) )

( ( ) ) ( ( ) ) †

with

x x x= -+ D L nexp 2 , 0 D11n n n1,
2 1 2( ∣ ∣ ) (∣ ∣ ) ( )

and

x x x= - - - --


D L

n

exp 2 ,

1. D12
n n n, 1

2 1 2( ∣ ∣ ) (∣ ∣ )
( )

†

Using identity

å = - - -
=

¥
- -L x z z xz z1 exp 1 , D13

n
n
k n k

0

1( ) ( ) ( ( )) ( )

we have the result

å x s x s- = - -
=

¥

+z z D z1 exp 2 1 .

D14
n

n
n n q

0
1,

2 2 2( ) [ ∣ ∣ ( )] ( )

( )

Seting = +¢n n 1 and using equation (D13),

å å

x s x s

- = -

=- - -
=

¥

-
=

¥
+

+¢

¢
z z D z z D

z z

1 1

exp 2 1 .

D15

n

n
n n

n

n
n n

q

0
, 1

0

1
1,

2 2 2

’ ’* *

*

( ) ( )

[ ∣ ∣ ( )] ( )
( )

† †

Then we have

å x s x

s x s f q

x s x s f q

- =

- + + - -

- + + -

f q+

=

¥

z e n qD n t

i t i z z

i t i z

1

exp 2 1

exp 2 1 . D16

i t

n

q

q

0

2 2 2

2 2 2*

( ) ∣ ( )∣ [ ( )

( ∣ ∣ ( ) ( ) ) ( )

( ∣ ∣ ( ) ( ) ) ( )] ( )

( ( ) )
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Next, for the denominator of equation (A4), and using
equation (D8) and equation (D9), we find that

x

x x

á ñ

= -

f q

f q

+

+ 
e n D n

e L nexp 2 , 0 D17

i t

i t
n

2 0 2

∣ ( )∣
( ∣ ∣ ) (∣ ∣ ) ( )

( ( ) )

( ( ) )

and

x

x x= -

f q

f q

- +

- + 
e n D n

e L nexp 2 , 0. D18

i t

i t
n

2 0 2

∣ ( )∣
( ∣ ∣ ) (∣ ∣ ) ( )

( ( ) ) †

( ( ) )

For equation (D17), using identity (D13), we have the
result

x

s x s

- å á ñ

= -

f q

f q

+
=

¥

+

z e n D n

e

1

exp 2 D19

i t
n

i t
q

0
2 2 2

( ) ∣ ( )∣
( ∣ ∣ ( )) ( )

( ( ) )

( ( ) )

so we can obtain the average displacement of the mirror

x x

x x

x

x

s x x x x

x x

á ñ= - å á ñ -

å á ñ - å á ñ

- - å á ñ - -

å á ñ

= + - - F + F

- F + F - F - F

f q

f q

f q

f q

=
¥ +

=
¥ - +

=
¥

+
=

¥

- +
=

¥ +

-

D20

q t z n D qD n e

n qD n e n D q n

z e n D n z

e n D n

z

z

1

2

1 1

1

2 ,

n
i t

n
i t

n
i t

n
i t

n

0

0 0

0

0
1* * *

* * *

( )

( ) ( )[ ∣ ( ) ( )∣
∣ ( )∣ ∣ ( ) ∣ ] [

( ) ∣ ( )∣ ( )
∣ ( )∣ ]

[ ( ) [

( )]] ( )

† ( ( ) )

( ( ) ) †

( ( ) )

( ( ) )

where s x s fF = - + + Wi t iexp 2q
2 2 2( ∣ ∣ ( ) ( ) ) with Ω=θ .

This is equation (14) in the main text. Note that the
denominator - F - F2 4*( ) is the successful postselection
probability being released from optomechanical cavity after
the time t.

D.1. Small quantity expansion about time for amplification

However, in order to observe the amplification effects appearing
at time near T=0, for equation (D3), we can then perform a
small quantity expansion about time T until the second order.
Suppose that w -t T 1m∣ ∣  , i.e., w t k1, 1m   and θ= 1;
then we can obtain

y q w

q w

ñ » + + + ñ - ñ

= ñ + + ñ

wn i ik t c c n n

B n i n ik t c c n

1 1 2

2,

D21

t m

m

1 1

1

m( ) [( )( ( ))∣ ∣ ]

( )[ ∣ ( ))∣ ]
( )

†

†



where q w= + + -B n k t n2 2 1m1
2 2 2 1 2( ) [ ( ) ( )] is a normal-

ization coefficient for each state y ñwn t1 1m
∣ ( )  . This is

equation (15) in the main text.
Substituting equation (D21) into equation (A4), then

s q wá ñ = +q t B n k t n2 1 2. D22n m1
2( ) ( ) ( ) ( )

This is the average displacement á ñq t n( ) for y ñwn t1 1m
( ) 

plotted in figure 2(b) in the main text.
For equation (D21), over all n components, the final total

state of the pointer is r y= - å ñw=z z n1m
pha

n
n

t0 1 1m
( ) ( ) 

yá wn Bt
tot

1 1 1m
( )∣  and, substituting it into equation (A4), then

q w s sá ñ =wq t k t B , D23t m q
tot

1
2

1m( ) ( ) ( )

where q s w s s= +B k t 4tot
m q1

2 2 2 2 2 2[ ( ) ] ( ) is a normalized

coefficient for rm
pha. Based on equation (D23), we then obtain

the maximal positive value sq (thermal fluctuation) or negative
value s- q when q w s= k tm q/σ, respectively. Therefore, the
y ñn∣ ( ) components corresponding to the maximal positive and
negative amplification, respectively, are y ñ =wn t1 max, 1m

∣ ( ) 

s s  + ñc c n 2q[ ( )]∣ ]† (unnormalized). Then the mirror
state achieving the maximal positive and negative amplification,
respectively, are r y y= - å ñ áw=z z n1m

pha
n

n
t0 1 max, 1 1m

( ) ∣ ( ) 

wn B4t
tot

max, 1 1m
( )∣ ( ) . It is obvious that the amplification with
thermal state pointer is much larger than that with pure state
pointer [1, 21, 24, 26] since its maximal value is the ground state
fluctuation σ. Therefore, thermal noise effect of the pointer
(mirror) is beneficial for the amplification of the mirror’s
displacement.

Appendix E. Amplification using a displaced thermal
state in optomechanics

Suppose that one photon is input into the interferometer, and
after the first beam splitter the initial state of the photon is
y ñ = ñ ñ + ñ ñ1 0 0 1 2i A B A B∣ (∣ ∣ ∣ ∣ ) . The mirror is initialized in
displaced thermal state r az,th ( ). When the photon interacts
weakly with the optomechanical system through (D1), the
evolution state of the total system is given by

r x

j j
x

= - å ñ ñ

+ ñ ñ ñ á

ñ ñ + á á

f

f
=

-

z z z e D

D n n D e

D

1 1 0

0 1

1 0 0 1 2, E1

n
n

A B
i t

A B m m
i t

A B A B

0( ) ( ) [∣ ∣ ( )
∣ ∣ ] ( )∣ ∣ ( )[
( )∣ ∣ ∣ ∣ ] ( )

( )

† ( )

†

where x = - w-t k e1 i tm( ) ( ) and f w w= -t k t tsinm m
2( ) ( )

with w=k g m.
When a photon is detected in the dark port, in the lan-

guage of weak measurement, the postselected state of the one
photon is y ñ = ñ ñ - ñ ñ1 0 0 1 2p A B A B∣ (∣ ∣ ∣ ∣ ) , which is ortho-
gonal to y ñi∣ , i.e., y yá ñ = 0p i∣ . Then the reduced state of the
mirror after the postselection for each n component of the
pointer state is given by

c y x j

j
x j j

ñ = á ñ ñ

+ ñ ñ ñ

= ñ - ñ

f

f

n e D D

D n

e D D n D n

1 0

0 1 2

2. E2

p A B
i t

A B m

i t
m m

2∣ ( ) [ ∣[∣ ∣ ( ) ( )
∣ ∣ ( )]∣ ]

[ ( ) ( )∣ ( )∣ ] ( )

( )

( )

In order to make the analysis simple, we can displace this
state to the origin point in phase space, defining y ñ =n2∣ ( )

j c ñD n2( )∣ ( )† and we can obtain

y j x j
j j

x

ñ =

- ñ

= ñ - ñ

f

f f a+

n e D D D

D D n

e D n n

2

2, E3

i t

m

i t t
m m

2

,

∣ ( ) [ ( ) ( ) ( )
( ) ( )]∣

[ ( )∣ ∣ ] ( )

( ) †

†

( ( ) ( ))

where f a ax a x= - -t i, * *( ) [ ] is obtained by using
the property of the displacement operators a b =D D( ) ( )

ab a b b a- D Dexp * *[ ] ( ) ( ), due to noncommutativity of
quantum mechanics [26].

For equation (E3), over all n components, the final total
state of the pointer is

år y y= - ñá
=

z z n n1 . E4m
dis

n

n

0
2 2( ) ∣ ( ) ( )∣ ( )

This is equation (17) in the main text.
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Substituting equation (E4) into equation (A4), then we
show the average displacement of the mirror’s position

s x x x

x x x

á ñ = + - - F

+ F - F + F - F - F

-q t z

z

1

2 ,

E5

1*

* * * * *

( ) [ ( ) [

( )]] ( )
( )

where s x s fF = - + + Wi t iexp 2q
2 2 2( ∣ ∣ ( ) ( ) ) with Ω=f

(α , t). In order to obtain the above result, here we use two
equations,

a a a

a

á ñ = -

´

-

- 

l D n n l

L l n

exp 2

, E6

l n

n
l n

2

2

∣ ( )∣ ! ! ( ∣ ∣ )
(∣ ∣ ) ( ) ( )( )

and

å = - - -
=

¥
- -L x z z xz z1 exp 1 , E7

n
n
k n k

0

1( ) ( ) ( ( )) ( )

where L xn
k ( ) is an associated Laguerre polynomial [44] . Note

that the denominator of equation (E5) - F - F2 4*( ) is the
successful postselection probability being released from
optomechanical cavity after the time t.

Therefore, equation (E5) is the average displacement
á ñq t( ) of the mirror for the state y ñn2∣ ( ) plotted in figure 3(a)
in the main text.

E.1. Small quantity expansion about time for amplification

However, in order to observe the amplification effects appearing
at time near T=0, for equation (E3) we can then perform a
small quantity expansion about time T until the second order.
Suppose that w -t T 1m∣ ∣  , i.e., w t k1, 1m   and

a zk2 1∣ ∣  , then we can obtain

y a z w

a z w

ñ » + + + ñ - ñ

= ñ + + ñ

w

E8

n i k ik t c c n n

B n i k n ik t c c n

1 2 1 2

2 2,

t m

m

2 1

2

m

( )

( ) [( ∣ ∣ )( ( ))∣ ∣ ]

( )[ ∣ ∣ ∣ ( )∣ ]

†

†



where a z w= + + -B n k k t n2 4 2 1m2
2 2 2 2 2 1 2( ) [ ∣ ∣ ( ) ( )] is a

normalization coefficient for each state y ñwn t2 1m
∣ ( ) 

and z w b w b= +t tsin 2 cosm m
2[( ) ] .

This is equation (18) in the main text.
For equation (E8), over all n components, the final total

state of the pointer is r y= - å ñw=z z n1m
dis

n
n

t0 2 1m
( ) ( ) 

yá wn Bt
tot

2 1 2m
( )∣  , and substituting it into equation (A4), then

a zw s sá ñ =wq t k t B E9t m q
tot

1
2 2

2m( ) ∣ ∣ ( ) ( )

where a z s w s s= +B k k t4 4tot
m q2

2 2 2 2 2 2 2 2( ∣ ∣ ∣ ( ) ) ( ) is a nor-

malized coefficient for rm
dis.

Based on equation (E9), we then obtain the maximal
positive value sq or negative value s- q when a z =2∣ ∣
w s s tm q . Therefore, the y ñn2∣ ( ) components corresp-

onding to the maximal positive and negative amplifications
are y s sñ =  + ñwn c c n 2t q2 max, 1m

∣ ( ) [ ( )]∣†
 (unnor-

malized). Then the mirror state achieving the maximal
positive and negative amplifications are r =m

dis

y y- å ñ áw w=z z n n1 4n
n

t t0 2 max, 1 2 max, 1m m
( ) ∣ ( ) ( )∣  . It is
obvious that the amplification with displacement thermal
state pointer is much larger than that with the pure state

pointer [1, 21, 24, 26] since its maximal value is the ground
state fluctuation σ. Therefore, thermal noise effect of the
pointer (mirror) is beneficial for the amplification of the
mirror’s displacement.

Appendix F. Dissipation effect in optomechanical
system

The master equation (19) in the main text is given by

r r g
g

=- + -
+ -

 


d t dt i H t c z

z c z

, 1

1 , F1
m

m

( ) [ ( )] [ ] ( )
[ ] ( ) ( )†

where r r r= - - o o t o o o t t o o2 2[ ] ( ) ( ) ( )† † † .
For the amplification scheme using a phase shifter θ, at

time t=1 , if we perform a Taylor expansion about t=0 until
the second order, the solution of the master equation is
approximately

r r r r= + +t td t dt t d t dt0 2 . F22 2 2( ) ( ) ( ) ( !) ( ) ( )

When the intial state of the total system is r =0( )
y q y q rñá Ä zi i th∣ ( ) ( )∣ ( ) and after the postselecting state y ñp∣ is
performed for the system in equation (F2) and substituting
it into equation (A4), by careful calculation, we can
obtain

s w q w q

gs w q q

s w q s

á ñ = + -

- -

+

wq t k t k t

k t

k t

2 sin 1 cos

1 2 sin 2 2 cos

cos ,

F3

t q m m

q m

q m

1
2 2

2 2

2 2

m( ) [ ( ) ( )

( ) ( ) ] [

( ) ]
( )



where g g w= .m m

This is the average displacement á ñwq t t 1m
( )  of the mirror

after postselection plotted in figure 4(a) in the main text.
For the amplification scheme using the displaced thermal

state, at time t 1 , if we perform a Taylor expansion about
t=0 until the third order, the solution of the master equation
is approximately

r r r r
r

= + +
+

t td t dt t d t dt

t d t dt

0 2

3 . F4

2 2 2

3 3 3

( ) ( ) ( ) ( !) ( )
( !) ( ) ( )

When the initial state of the total system is
r y y r a= ñá Ä z0 ,i i th( ) ∣ ∣ ( ) and after the postselecting state
y ñp∣ is performed for the system in equation (F4) and sub-
stituting it into equation (A4), by careful calculation, we can
obtain

s w a q s w

a q s g w a q s g w

a q s w s w a q

g w a q s g w s

a q

á ñ = +

- -

+

- -

-

wq t k t k t

k t k t

k t k t

k t k t

3 cos 4

cos 5 cos 3 3

cos 2 2 cos

cos 12

2 cos .

F5

t q m m

q m m

q m m

m q m

1
2 2 2 2 2 2

3 2 2 3 2 2 3

3 2 2 2 2 2 2 2

2 3 2 2 2 3 2

m( ) [ ( ) ∣ ∣ ( )

(∣ ∣ ) ( ) ∣ ∣ ( ) ( )

(∣ ∣ ) ] [ ( ) ( ) ( ) (∣ ∣ )

( ) (∣ ∣ ) ( ) ( )]

∣ ∣
( )


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This is the average displacement á ñwq t t 1m
( )  of the mirror

after postselection plotted in figure 5(a) in the main text.

Appendix G. Amplification without postselection in
optomechanics

The time evolution operator of the Hamiltonian (10) in the
main text is given by equation (D1). As shown figure 1 in the
main text, we use only single cavity A. When thermal state
r zth ( ) is considered as a pointer in cavity A, and if one photon
is weakly coupled with the mirror using (D1), it can be found
that the mirror will be changed from r zth ( ) to a displacement
thermal state,

r x x r x=z D t z D t, . G1th th( ) ( ( )) ( ) ( ( )) ( )†

According to the expression of the displacement

r x rá ñ = -q Tr z q Tr z q, G2th th( ( ) ˆ) ( ( ) ˆ) ( )

with s= +q c cˆ ( ), the average position displacement of the
pointer without the postselection is given by

w sá ñ = -q k t2 1 cos . G3m( ) ( )

However, when displacement thermal state r az,th ( ) is
considered as a pointer in cavity A, and if one photon is
weakly coupled with the mirror (D1), it can be found that the
mirror will be changed from r az,th ( ) to a displacement
thermal state,

r j x x r j x=z D t z D t, , , , G4th th( ) ( ( )) ( ) ( ( )) ( )†

where j a= w-t e i tm( ) . According to the expression of the
displacement

r j x r já ñ = -q Tr z q Tr z q, , , G5th th( ( ) ˆ) ( ( ) ˆ) ( )

with s= +q c cˆ ( ), the average position displacement of the
pointer without the postselection is the same as equation (G3).

Fom equation (G3), it can be seen that the position dis-
placement of the mirror caused by radiation pressure of one
photon cannot be more than sk4 for any time t. In the lit-
erature [45], we know that if the displacement of the mirror
can be detected experimentally, it should be not smaller than
σ, implying that the displacement of the mirror reach strong
coupling limit, so w=k g m cannot be bigger than 0.25 in the
weak coupling condition [45]. When w= k g 0.25m in the
weak coupling regime, the maximal displacement of the
mirror 4kσ cannot be more than σ q, i.e., thermal fluctuation
of the mirror, and therefore the displacement of the mirror
caused by one photon cannot be detected.

Appendix H. Probability P

The overall probability of a single photon (20) in the main
text, generating the superposition state of ñn∣ and + ñc c n( )∣† ,
is given by

ò k k s x s= - + W
¥

P t t dt1 4 exp . H1q
0

2 2 2 2( ) ( )( ∣ ( )∣ ) ( )

Here, Ω=θ , f (α , t).

For the first scheme, s w s k w= + +P k 2q m m
2 2 2 2 2 2[ ( )]

q 42 , and for the second scheme, let a s s= 2q∣ ∣ ( ) and
β=0; then s w k w s k k w= + + +P k 2 5 2 5q m m m

2 2 2 2 4 2 2( ) [ (
w4 m

4 )]. Therefore, for the first scheme, P is approximately
6.94k2 with k w q= ´ =1.2 10 , 0.005m

4 , and z=
0.999 999 999; and for the second scheme, P is approximately
5k2 with k w= ´ =z2 10 , 0.999 999 999m

4 .
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