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1. Introduction

The transport properties in junctions of normal conductors 
and superconductors are described in terms of quasiparticle 
excitations around the Fermi level in the normal-conductor 
segment [1, 2]. The current in the bulk of the superconductor 
is carried by Cooper pairs. In order to satisfy the continuity 
across the normal-conductor–superconductor (NS) interface,
an electronlike excitation incident from the normal conductor 
with an energy ε above the Fermi energy µ is reflected from 
the interface as a holelike excitation with the energy below µ 
by ε, as known as Andreev reflection. Here, the quasiparticle 
excitation is completely reflected from the NS interface under 

the condition that 2ε is smaller than the superconducting gap 
∆.

When a magnetic field B is applied to the normal con-
ductor, the electronlike excitation undergoes cyclotron orbital 
motion. The holelike excitation that is Andreev-reflected 
from the NS interface acts as if a positively-charged particle 
were subjected to a magnetic field  −B. Consequently, instead 
of the holelike excitation tracing back the trajectory of the 
incident electronlike excitation, the quasiparticle excitations 
propagate along the NS interface in the manner of a skipping 
orbit, where the type of the quasiparticle excitation changes 
alternately between being electronlike and holelike after each 
Andreev reflection [3]. As the length L of the NS interface 
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is finite in real devices, the quasiparticle excitation incident, 
for instance, as being electronlike leaves the NS interface as 
a holelike or electronlike excitation depending on whether 
the number of Andreev reflections, which is given by L/(2rc) 
with rc being the cyclotron radius, is odd or even integers, 
respectively. A periodic magnetic-field dependence emerges 
for the differential conductance GNS of the NS junction [3] as 
it is related to the Andreev reflection as [4, 5]

GNS =
4e2

h
Tr[shes†he],� (1)

where she is the scattering matrix for an electronlike excitation 
leaving the system as a holelike excitation.

Recently, Delfanazari et  al [6] reported a conductance 
modification by magnetic field in an NS hybrid device that was 
in the form of a planar Josephson junction. A high-mobility 
two-dimensional electron gas (2DEG) created in an (In,Ga)As 
quantum well was attached there to Nb superconducting con-
tacts. Interestingly, the modulation appeared at low magnetic 
fields where the cyclotron radius of the 2DEG rc = �kF/(eB) 
was larger than the separation W between the superconduc-
tors. Here, kF = (2πns)

1/2 is the Fermi wavenumber with ns 
being the sheet concentration of the 2DEG. As quasiparticle 
excitations are reflected from both of the NS interfaces, the 
oscillation mechanism in [3] for a single NS interface is not 
applicable.

In this paper, the magnetotransport properties in a super-
conductor–normal-conductor–superconductor (SNS) struc-
ture are theoretically investigated. Attentions are focused 
on the circumstance where the quasiparticle excitations are 
Andreev-reflected from the two parallel NS interfaces. In 
addition to the conventional magnetotransport oscillation [3] 
that appears at high magnetic fields for rc < W , another oscil-
lation that is periodic in 1/B is found for rc > W . A guided 
drift motion of the Andreev-reflected quasiparticle excitations 
is shown to occur in the billiard of ballistic electrons within 
the superconductor confinement. Its origin is revealed to be 
the commensurability in a periodic configuration of unfolded 
NS interfaces. It is shown additionally that the observation 
of the commensurability oscillation requires nearly perfect 
Andreev reflection from the NS interfaces. The low-magnetic-
field behavior is dominated by quantum interference effects 
by producing additional oscillations when normal reflection 
coexists.

2.  Model

Figure 1 illustrates the device geometry investigated in the 
present work. The uniform strip of a 2DEG having a width of 
W is sandwiched by two superconductors, which are shown 
as gray areas. The distance between the superconductors is, 
therefore, W. The 2DEG is contacted by the superconductors 
over a length of L. Transport coefficients are considered below 
for the quasiparticle excitations in the normal segment. When 
an electronlike excitation is incident from the left-hand side 
of the 2DEG strip into the scattering region composed of the 
NS-interfaces, it is either transmitted or reflected. For each 

case, the quasiparticle excitation can leave the region as being 
electronlike or holelike. There are, therefore, four scattering 
coefficients Tee, The , Ree and Rhe, as shown in figure 1. Here, 
Rhe, for instance, is the probability that the incident electron-
like excitation is reflected as a holelike excitation.

In the experiment by Delfanazari et  al [6], the differ
ential conductance of the SNS structure was measured using 
the superconductors as the source and drain of the current. 
Because of the proximity between the two superconductors, 
the system ought to be treated ideally as a Josephson junc-
tion [7–9]. It is assumed here that the superconducting cou-
pling is negligible, and so the system is regarded as a series 
of two NS junctions. To be specific, the critical current asso-
ciated with the Josephson coupling is assumed to be below 
the current used to measure the conductance of the SNS 
structure due to, for instance, a large distance between the 
superconductors. The conductance GSNS of the system is thus 
approximately given as GSNS ≈ (1/2)GNS. The conductance 
GNS of one NS junction is determined by the Andreev reflec-
tion as GNS = (4e2/h)rhe. The Andreev reflection probability 
rhe for one NS interface is anticipated to behave roughly as 
rhe ∼ Rhe + The. That is, the incident electronlike excitation 
leaves the system as a holelike excitation either in the back-
ward or forward propagation.

Figure 1.  Superconductor–normal-conductor–superconductor 
structure. The horizontal channel with a width of W is made of 
a two-dimensional electron gas. The normal conductor ‘N’ is 
contacted by two superconductors ‘S’, which are shown as gray 
semi-infinite strips. The length of the interface between the normal 
conductor and the superconductors is L. The transport coefficients 
Ree, Rhe, Tee and The  are calculated when an electronlike excitation 
is injected to the scattering region. The blue and red colors 
correspond to the electronlike and holelike excitations, respectively. 
The number of the incident modes is N in the quantum-mechanical 
situation. The excitation energy ε is assumed to be zero, and so 
the quasiparticle excitations are completely reflected from the 
superconductors. A magnetic field B is applied perpendicular to the 
plane.
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The quantum transmission of the quasiparticle excitations 
is examined in the presence of a perpendicular magnetic field 
by solving the Bogoliubov–de Gennes equation [1]

[
H0 ∆(x, y)

∆∗(x, y) −H∗
0

](
u
v

)
= ε

(
u
v

)
,� (2)

where u(x, y) and v(x, y) are the wavefunctions of, respec-
tively, the electronlike and holelike excitations and H0 =
( p − eA)2/(2m) + U − µ is the single-particle Hamiltonian 
with U(x, y) and A(x, y) being the electrostatic and vector 
potentials, respectively. The transport coefficients were calcu-
lated using the modal expansion method [3, 10]. The number 
of the incident modes is N in the quantum-mechanical situ-
ation, and so Tee + The + Ree + Rhe = N. For simplicity, the 
magnetic field in the superconductor regions is assumed to be 
zero, see appendix.

3.  Commensurability oscillation

This section is devoted to a situation where the Andreev reflec-
tion at the NS interface is almost perfect and thus the normal 
reflection is negligible. To realize such a situation [3], µ is 
assumed to be identical in the 2DEG and the superconductors 
and ∆ is chosen to be much smaller than µ, i.e. ∆/µ = 0.01. 
In addition, the bias voltage V  applied between the supercon-
ductors to measure the conductance is assumed to be small, 
and so ε = eV/2 is set to be 0 throughout the paper.

The magnetic-field dependence of the transport coefficients 
is plotted in figure  2(a) for kFW/π = 13.6 and L/W  =  3.6. 
The abscissa W/rc is proportional to B. The oscillation in 
high magnetic fields is due to the mechanism in [3]. For the 
condition rc < W , the quasi-particle excitations are reflected 
from only one NS interface, as illustrated in the inset. The 
incident quasiparticle excitation is forward transmitted along 
the NS interface without backscattering in the manner of the 
edge state. The electronlike and holelike excitations switch 
with each other after each Andreev reflection, resulting in an 
out-of-phase oscillation in Tee and The . The top scale shows 
that the oscillation period is δ(L/rc) = 4, as expected for this 
oscillation.

An oscillation of another type emerges at low magnetic 
fields W/rc < 1. As evident in figure  2(c), this oscillation 
is periodic in 1/B with the period δ(rc/W) = 1. From the 
condition rc > W  for the appearance of the oscillation, it is 
obvious that simultaneous Andreev reflections from both of 
the NS interfaces play an important role. An example of the 
Andreev-reflected trajectory in this circumstance is shown in 
figure  3(a). Here, the trajectory starts from ‘S’ and ends at 
‘E’. The blue and red curves correspond to the electronlike 
and holelike excitations, respectively. In this case of rc/W = 
3.4, the trajectory propagates backward in comparison to the 
conventional propagation direction of the edge state. The 
anomalous propagation by the guiding along the NS interfaces 
is the origin of the magnetotransport oscillation [11]. The 
importance of the guided drift motion for the phenomenon is 
affirmed by the simulations in figure 4, where the ratio L/W 
was varied. As the NS interface becomes longer, the guiding 

of the trajectory is better established. The oscillation is conse-
quently enhanced in amplitude.

Let me now examine the guiding of the trajectory in detail. 
The incidence angle of the quasiparticles with respect to the 
NS interface is preserved in the Andreev reflection. The guided 
trajectory in the strip with the width W is hence equivalent to 
a semicircle cyclotron orbit with radius rc, which is shown in 
figure 3(b) as the green curve, through a procedure of unfolding 
the trajectory by mirror-reflections at the NS interfaces. It is 
crucial to recognize that the trajectory needs to be flipped addi-
tionally in the horizontal direction for the branches of the elec-
tronlike excitation in constructing the guided trajectory from the 
semicircle orbit. This flip in the horizontal direction enables the 
backward propagation. The number of reflections from the NS 

Figure 2.  Magnetic-field dependence of transport coefficients 
Ree, Rhe, Tee and The  in SNS structure. The abscissa W/rc for (a) 
and (b) is proportional to the magnetic field, where W is the width 
of the normal-conductor strip and rc is the cyclotron radius. The 
ratio L/W is 3.6. For the quantum-mechanical calculations in (a), 
kFW/π = 13.6, ∆/µ = 0.01 and ε = 0 were assumed. The curves 
in (b) were calculated using the classical billiard model assuming 
perfect Andreev reflection from the superconductors. The out-of-
phase high-magnetic-field oscillations in Tee and The  originate from 
the skipping orbit illustrated in the inset of (a), where the blue and 
red curves correspond to the electronlike and holelike excitations, 
respectively. The gray area represents the superconductor segment. 
These results are shown in terms of rc/W  in (c), i.e. the dependence 
on the inverse of the magnetic field. The quantum-mechanical 
results are shown by the colored solid curves. The dotted curves 
show the corresponding classical results for Ree and The .
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interfaces in the one cycle such as that displayed in figure 3(a) 
is 2rc/W . Among the branches of the semicircle orbit sliced by 
the width W, those in the upper segments stretch mainly in the 
vertical direction. Their contribution for the guiding motion is, 
therefore, insignificant and roughly cancels out. The direction 
of the guided drift motion of the Andreev-reflected trajectory is 
mainly determined by the bottom segment. The quasiparticle 
in the bottom segment changes between being electronlike and 
holelike when rc/W  is varied. As a consequence, the drifting 
direction along the NS interface changes periodically. The 
guiding in the forward (backward) direction becomes maximal 
when rc/W  is odd (even) integers.

In figure 5(a), the dependence on rc/W  of the guiding drift 
velocity vd normalized by the Fermi velocity vF is plotted. 
The velocity was calculated for the representative classical 
trajectory illustrated in figure 3, for which the quasiparticle 
excitation was initially injected perpendicular to the NS inter-
face. The drifting direction changes alternately with a period 
of δ(rc/W) = 2. The period of the oscillation in the transport 
coefficients is, however, δ(rc/W) = 1. The magnetotransport 
modulation is thus indicated to occur based on whether the 
quasiparticle excitations are localized or mobile, independent 
of the propagation direction. To summarize, the guided 

drift motion driven by a commensurability in the periodic 
system depicted in figure 3(b) is responsible for the oscilla-
tion. The phenomenon is thus similar to the Weiss oscillation 
that appears when a one-dimensional periodic potential is 
imposed on the 2DEG [12–14]. Following the formulation for 
the Weiss oscillation by Beenakker [15], the conductivity σ 
of the SNS system in the limit of L → ∞ is related by the 
Einstein relation to the diffusion coefficient D as σ ∝ D. As D 
depends on vd in the manner of D ∝ v2

d , σ is given as shown 
in figure 5(b).

Figure 3.  Classical Andreev-reflected trajectory in a SNS structure. 
Quasiparticle excitations are confined in the normal conductor 
sandwiched by superconductors as shown in (a). The width of the 
normal-conductor strip is W. The superconductors are shown as 
gray areas. The incident electronlike excitation is Andreev-reflected 
to a holelike excitation at the starting point ‘S’. The cycle ends at 
point ‘E’. The blue and red curves correspond to the electronlike 
and holelike excitations, respectively. The application of a magnetic 
field causes a guiding motion, whose propagation direction is 
opposite to that of the conventional edge state in this example. The 
Andreev-reflected trajectory is constructed by folding the semicircle 
orbit and having a radius of rc, which is shown by the green curve in 
(b), with respect to the normal-conductor–superconductor interfaces 
expressed as black horizontal lines. Here, the trajectory needs to 
be flipped horizontally in addition to the folding in the vertical 
direction for the segments of the electronlike excitation.

Figure 4.  Magnetotransport coefficients Ree, Rhe, Tee and The  in a 
SNS structure as a function of L/W. The geometry ratio L/W is 1 for 
(a) and (d), 2 for (b) and (e) and 3 for (c) and (f). The coefficients 
were calculated quantum-mechanically in (a)–(c) and classically in 
(d)–(f). The parameters for the quantum-mechanical calculations 
were kFW/π = 13.6, ∆/µ = 0.01 and ε = 0.

Figure 5.  Dependencies of (a) guiding drift velocity vd and (b) 
conductivity on inverse of magnetic field in a SNS structure. 
The velocity vd calculated using the classical model for the 
representative trajectory shown in figure 3 is normalized by the 
Fermi velocity vF. The conductivity of the system is assumed to be 
proportional to v2

d in (b).
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Given that the guiding of the classical trajectory is respon-
sible for the magnetotransport modulation, the behavior 
is expected to be produced even by a classical simulation 
instead of the quantum-mechanical one. The transport coef-
ficients were, therefore, calculated also using the classical bil-
liard model [16]. The results are plotted in figures 2(b), (c) 
and 4(d)–(f). The excellent agreement with the corresponding 
quantum-mechanical results confirms the classical origin of 
the oscillation.

For simplicity, ε = 0 was assumed in the simulations. 
The quasiparticle excitations remain to be completely 
reflected from the superconductors so long as ε < ∆/2. The 
magnetotransport oscillations survive even if ε is finite as 
0 < ε < ∆/2, see [3]. Modifications occur nonetheless as the 
cyclotron radius is no longer the same between the electron-
like and holelike excitations. They are, however, small due to 
the circumstance ∆ � µ assumed in the present paper.

The low-magnetic-field oscillation appears dominantly in 
Ree and The  in the circumstance of the present simulations 
and no modulation is exhibited in Rhe. Nevertheless, the con-
ductance of the system is roughly anticipated to be given by 
rhe ∼ Rhe + The. It is thus reasonable to attribute the magne-
totransport modulation reported by Delfanazari et  al [6] to 
the oscillation revealed in the present work. It may be note-
worthy in this respect that the modulation was superimposed 
in [6] on a background conductance that rapidly decayed as 
the magnetic field increased. In the aforementioned interpreta-
tion, the behavior of the background is ascribed to the mono-
tonic decrease of Rhe, which occurs as the reflection vanishes 
when the magnetic field is increased to realize the condition 
2rc < W .

In figures 2 and 4, one notices for the quantum-mechan-
ical results that irregular fluctuations are superimposed on 
the behavior having the classical origin. These fluctuations 
are attributed to the quantum interference associated with 
multiple reflections within the SNS segment caused by the 
quantum-mechanical scattering at the abrupt appearance and 
disappearance of the superconductors. The commensurability 
oscillation vanishes in experimental situations if the mean free 
path is not sufficiently long. The fluctuations will, on the other 
hand, remain provided that the phase coherence is maintained 
at a low temperature. The possibility of the magnetoconduct-
ance modification in [6] resulting from the fluctuations rather 
than the commensurability oscillation is ruled out, however, 
as the fluctuations are not restricted to the low-magnetic-field 
regime. Although the adiabatic transport of edge states is 
already established at high magnetic fields in the sense that 
the backscattering vanishes, i.e. Ree ≈ Rhe ≈ 0, the scattering 
can still take place as a transition between the electronlike and 
holelike states.

In comparing the numerical results with the experimental 
observation by Delfanazari et al [6], it is necessary to pay atten-
tion to the difference between the model geometry in figure 1 
and the experimental device. The length of the NS interface 
is exactly the length of the SNS segment in the simulations. 
The separation between the two NS interfaces was, in contrast, 
widened gradually in the experimental device outside of the 
SNS segment having the constant width W. A consequence of 

this difference is that the δ(L/rc) = 4 oscillation at high magn
etic fields cannot be expected for the experimental device as 
the oscillation period is determined not by L but by the total 
length of the NS interface, which was presumably longer than 
the mean free path of the 2DEG. This geometry difference 
is, however, not important for the low-magnetic-field oscil-
lation. A modification occurs, nonetheless, that the incident 
quasiparticle excitation can enter the narrow segment both as 
being electronlike and holelike depending on the number of 
the Andreev reflections that the quasiparticle excitation expe-
riences prior to entering the narrow segment. The oscillation 
appears in this situation in all of the four transport coefficients.

Concerning the issue why the oscillation appears only in 
Ree and The , it may be explained as follows. In the Andreev 
trajectories for the device geometry displayed in figure 1, the 
quasiparticle excitation enters the SNS section as an electron-
like excitation. The electronlike excitation becomes a holelike 
excitation after the first Andreev reflection and moves further 
in the forward direction. It is noticed that the propagation 
direction for the branches of the holelike excitation is always 
forward, whereas it is always backward for those of the 
electronlike excitation. If the quasiparticle excitation finally 
leaves the SNS segment as being reflected, it will likely leave 
the system as an electronlike excitation. When the quasipar-
ticle excitation leaves the SNS segment as being transmitted, 
on the other hand, it will likely leave the system as a holelike 
excitation.

4.  Effects of imperfection of Andreev reflection

In this section, consequences on the magnetotransport proper-
ties are examined when the Andreev reflection from the NS 
interface is not perfect and so the normal reflection coexists. 
Partial normal reflection was introduced in the theory in [1] by 
incorporating a δ-function-type repulsive potential at the NS 
interface. It should be emphasized that the coexistence of the 
normal reflection cannot be avoided in reality even if the NS 
interface is perfect and no potential barrier exists because of 
the fact that the Fermi energy in the superconductor is much 
larger than that in the 2DEG and also the carrier effective 
mass is different between the superconductor and the 2DEG. 
The simulations are, therefore, carried out here with a condi-
tion that the Fermi energy µS in the superconductors is larger 
than the Fermi energy µN  in the 2DEG.

Figure 6 compares the transport characteristics when the 
ratio µS/µN  was varied to be 1 in (a), 1.7 in (b) and 4 in 
(c) for L/W  =  3. As µS becomes larger than µN , the normal 
component in the reflection from the NS interface increases. 
The commensurability oscillation is consequently reduced 
in amplitude. More importantly, an oscillation emerges at 
the intermediate magnetic field range between the commen-
surability oscillation for W/rc < 1 and the high-field oscil-
lation due to the Andreev skipping orbit, i.e. at W/rc ∼ 1.5 
in figure  6(c). Instead of the commensurability oscillation, 
the new oscillation dominates the transport characteristics 
for µS/µN = 4. This oscillation originates from the quantum 
interference between the Andreev- and normal-reflected comp
onents, as illustrated in the inset of figure 6(c) [3, 17–19]. The 
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quantum interference oscillation is demonstrated in figure 7 
for a number of values of the geometry ratio L/W for a fixed 
value of kFL/π = 24.

An Aharonov–Bohm-type (AB-type) quantum interference 
between the Andreev- and normal-reflected components is 
responsible for the oscillation, where the phase shift is given 
by the magnetic flux enclosed by the cyclotron orbit, i.e. the 
yellow disk in the inset of figure 6(c)1. The primary oscilla-
tion period corresponds to adding a magnetic flux quantum 
φ0 = h/e to the yellow area. This condition for the oscilla-
tion period is identical with the Landau level filling factor ν  
[19]. Specifically, ν/2 = πr2

c B/φ0, where the factor 2 is the 
spin degeneracy. As a consequence, the oscillation minima 
(maxima) in Tee (The) coincide with the magnetic depopu-
lation of the Landau levels, as one finds in figures 7(c) and 
(d) when the quantum interference oscillation is most clearly 
developed at L/rc = 2–4.

Alterations of the oscillation period occur at high magnetic 
fields. In figure 7, additional minima are generated in Tee for 
L/rc > 4 at the middles between the magnetic depopula-
tion thresholds of the Landau levels. The oscillation period 
is consequently halved. The multiplication of the oscillation 
arises as the phase shift associated with a single cyclotron 
orbit is multiplied when the number of the orbits that fit in the 

length of L increases. It is remarkable that the first transition 
occurs rather abruptly at L/rc ∼ 4 in the form of the oscil-
lation doubling. The multiplication of the oscillation takes 
place further with increasing L/rc, similarly in the form of 
the doubling. In practice, the AB-type quantum interference 
is found to become insignificant at high magnetic fields, see 
figure  6. The doubling effect is consequently unimportant 
when rc � L.

Deviations in the oscillation period occur also at low 
magnetic fields. The cyclotron orbit is scattered from both 
of the NS interfaces for rc > W . The area that encloses 
the magnetic flux to determine the phase shift depends on 
rc/W  in a complicated manner. The oscillation thus exhibits 
irregular behavior, as evident in figure 7(a). In addition, the 
quasi-one-dimensional (quasi-1D) quantum confinement is 
stronger than the Landau quantization in this regime. The 
quantum interference oscillation in figure  7(b), as a conse-
quence, does not coincide with the magnetic depopulations 
of the Landau levels. Furthermore, even when the AB-type 
quantum interference becomes negligible as the magnetic 
field further approaches zero, the magnetic depopulation of 
the quasi-1D subbands causes an oscillation-like behavior 
in the transport coefficients, see figures 7(c) and (d). These 
behaviors have implications in the experimental attempt to 
observe the commensurability oscillation. Careful analysis 

Figure 6.  Magnetotransport coefficients Ree, Rhe, Tee and The  in a 
SNS structure when perfection of Andreev reflection is deteriorated 
by increasing µS/µN . The normal reflection at the NS interfaces 
increases as the Fermi energy µS in the superconductors is larger 
than the Fermi energy µN  in the 2DEG. The calculations were 
carried out with kFW/π = 8, L/W  =  3, ∆/µS = 0.01 and ε = 0.

Figure 7.  Variation of quantum interference effects with L/W when 
µS/µN = 4 and kFL/π = 24. The geometry ratio L/W is 3 in (a) 
and (e), 2 in (b) and (f), 1 in (c) and (g) and 0.5 in (d) and (h). The 
magnetic-field dependence is plotted in terms of L/rc in (a)–(d) and 
W/rc in (e)–(h). The dashed lines in (e)–(h) indicate an oscillation 
at very low magnetic fields.

1 The statement regarding the phase shift associated with figure 5 in [3] is 
incorrect. See [17, 18].
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of the magnetic-field dependence is required to unambigu-
ously identify the commensurability oscillation. Temperature 
dependence of the oscillation amplitude will provide useful 
information as, contrary to the classical commensurability 
oscillation, the quantum interference is suppressed with 
increasing the temperature due to dephasing.

I point out the existence of another oscillation at very low 
magnetic fields that is also associated with the imperfection 
of the Andreev reflection. This oscillation is marked by the 
dashed lines in figures  7(e)–(h). The oscillation amplitude 
decays with increasing the magnetic field, resembling the 
Altshuler–Aronov–Spivak (AAS) oscillation [20]. In figure 8, 
the position in B of the first and second peaks in Tee is plotted 
in terms of LWB/φ0, respectively, by circles and triangles 
when the parameters kFW/π and L/W were varied. It is indi-
cated that the first and second peaks occur when the number 
of the magnetic flux quanta enclosed in the 2DEG area sand-
wiched by the superconductors is about one half and one, 
respectively. That the oscillation period is determined by φ0/2 
is also similar to the AAS oscillation. In a real system, dis
order inevitably exits. The disorder is expected to suppress the 
commensurability and AB-type oscillations as they are associ-
ated with scatteringless cyclotron orbits. It will be interesting 
to examine the effect of disorder on the AAS-like oscillation 
as the AAS oscillation, in fact, originates from the disorder 
and is insensitive to it [20].

At the interface between a graphene and a superconductor, 
not only the Andreev retroreflection considered above but 
also specular Andreev reflection takes place [21–23]. In the 
specular Andreev reflection, the Andreev-reflected holelike 
excitation propagates in the direction of the specular boundary 
reflection of the incident electronlike excitation. The unu-
sual reflection occurs when an electronlike excitation in the 
conduction band is scattered into a holelike excitation in the 

valence band under the circumstance of the Fermi level in the 
graphene being located around the Dirac point. It will be inter-
esting to investigate how the guiding drift motion in the com-
mensurability oscillation is affected by the specular Andreev 
reflection.

5.  Conclusions

In conclusion, the ballistic magnetotransport properties of 
quasiparticle excitations have been calculated using quantum-
mechanical and classical methods for a planar supercon-
ductor–normal-conductor–superconductor structure. Provided 
that the Andreev reflection from the normal-conductor–super-
conductor (NS) interfaces is almost perfect, an oscillation that 
is periodic in the inverse of magnetic field emerges under the 
condition that the diameter of the cyclotron orbit is larger than 
the separation between the superconductors. A guided drift 
motion of classical trajectories that are Andreev-reflected from 
both of the NS interfaces has been identified to be responsible 
for the oscillation. When the Andreev reflection is consider-
ably less than perfect, the quantum interferences between the 
Andreev- and normal-reflected components give rise to two 
additional oscillations. Together with the effect of the magn
etic depopulation of quasi-1D subbands, these behaviors need 
to be carefully distinguished in the experimental confirmation 
of the oscillations.
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Appendix.  Gauge transformation

The magnetic field was assumed to be zero in the supercon-
ductors and present only in the normal conductor. Gauge 
transformations were used to obtain the wavefunctions in such 
a situation.

The normal-conductor strip in figure  1 was defined for 
0 � y � W . The two semi-infinite superconductor strips for 
0 � x � L were attached to the normal-conductor strip as 
y � 0 and y � W . A vector potential A = (−By, 0, 0) was 
chosen for the magnetic field B. This allowed to describe the 
zero magnetic field in the lower superconductor strip with 
y � 0 as A = 0. The pair potential in this strip was set to 
be ∆(x, y) = ∆0 . For the upper superconductor strip with 
y � W , ∆(x, y) was ∆0eiϕ. (The superconducting phase dif-
ference ϕ was assumed to be zero in the numerical simula-
tions.) The zero magnetic field in this strip was realized as 
A = (−BL, 0, 0) = (0, 0, 0) +∇(−BLx). For gauge transfor-
mation A → A′ = A +∇f , the wavefunctions are given by

(
u(x, y)
v(x, y)

)
→

(
u′(x, y)
v′(x, y)

)
=

(
e−i e

� f u(x, y)
e+i e

� f v(x, y)

)
� (A.1)

with

Figure 8.  Magnetic-field values B at peaks in Tee of oscillation 
at very low magnetic fields. The circles and triangles correspond, 
respectively, to the first and second peaks indicated by the dashed 
lines in figure 7. The values of L/W were as summarized at the 
bottom of the panel. The inset shows the length L and width W of 
the 2DEG sandwiched by the superconductors, which are illustrated 
as gray areas. The magnetic flux LWB in the sandwiched 2DEG area 
is divided by the magnetic flux quantum φ0 = h/e.
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∆ → ∆′ = e−2i e
� f∆.� (A.2)

The quantized modes in the superconductor strip are
(

un(x, y)
vn(x, y)

)
∝ eikny

√
2
L
sin

(nπ
L

x
)(

γ

1

)
,� (A.3)

where

kn =

[
2m
�2 µ−

(nπ
L

)2
+ i

2m
�2

√
∆2

0 − ε2

]1/2

� (A.4)

and

γ =
ε+ i

√
∆2

0 − ε2

∆0
eiϕ.� (A.5)
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