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1. Introduction

Metallic systems can be reduced down to quasi-one-dimen-
sional (1D) wires, which then exhibit a wide spectrum of 
new phenomena such as quantization of conductance, 
strong electronic correlation manifested by spin-charge 
separation, charge and spin density waves [1, 2], triplet 
superconductivity, and Luttinger liquid behavior [3–5]. Due
to their inherent instability, however, structural embedding 
and understanding of the coupling to other dimensions is of 
high relevance, since it may strongly modify the properties 
just mentioned. Fortunately, some of the 1D properties can 
still be observed in these quasi-1D systems [6–10], but the
investigations are not suffiently systematic yet to make clear 
predictions. This was one of the motivations for the present 
study.

The Ge(0 0 1)-Au system is one of the prototype systems for 
self-organized atomic chains on insulating or semiconducting 
surfaces [11–15] that may be able to exhibit such quasi-one-
dimensional properties while being embedded in a two- or 
three-dimensional environment. On the other hand, it is also 
exemplary for the difficulties of analyzing such systems. E.g. 
the many structural investigations of the Au covered Ge(0 0 1) 
surface, mainly with diffraction [16] and tunneling microscopy 
[13, 17–25] did not allow to uniquely model the structure of
this system. While the so-called giant missing row model was 
able to reproduce some of the experimental properties [26], 
there are quite different suggestions for the optimal Au con-
centration leading to the observed c(8 × 2) structure ranging
from fractions of a monolayer (ML) [19–21, 24] to about one
ML or even higher coverages [16, 27, 28]. Considerations 
of the Gibbs free energy in recent modelling [29] show that 
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up that could describe all available data. On the contrary, a quasi-one-dimensional model of 
a confined 2D electron gas gave a satisfactorily consistent description of the data. From these 
results for the collective low-energy excitations we conclude that the Ge(0 0 1)-Au system is 
reasonably well described by a strongly anisotropic 2D Fermi liquid, but is incompatible with 
a TLL.
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stabilization of structures is temperature dependent with the 
consequence that the highly corrugated structures of the giant 
missing-row models [20] with concentrations above one ML 
are significantly more stable at and above room temperature 
than the dimer-row [17, 26, 30] or bridged dimer-row models 
[20]. While this finding may explain some of the ambigui-
ties in the results obtained in the past, it also shows that this 
system is prone of formation of metastable structures that 
have not been explored in detail yet.

Also the electronic structure of this system was described 
and discussed in a very controversial manner. Photoemission 
and STM data were originally interpreted as being fully 
compatible with quasi-one-dimensional electronic proper-
ties [13, 19, 23, 31, 32] in form of a Tomonaga–Luttinger-
liquid (TLL) with strong electron–electron interaction  
[3, 33]. However, other studies carried out with similar 
methods indicate [20, 24, 27, 28, 34] that this system is 
indeed highly anisotropic, but the Fermi surface in particular 
is still two-dimensional.

Since the excitation spectrum of this highly correlated 
system and its dynamics are still largely unexplored, which 
is particularly true for collectively excited states, this work 
utilizes electron energy loss spectroscopy (EELS) [35] in 
combination with low energy electron diffraction (LEED) and 
reports on the plasmon dispersion of the Ge(1 0 0)-Au system. 
As it turns out from the analysis of the data, it is difficult to 
reconcile the measured dispersion with one-dimensional 
models. Possible reasons will be discussed.

2.  Experimental setup and sample preparation

The experiments were carried out in an ultra-high vacuum 
chamber at a base pressure below 1 × 10−10 mbar. The system 
hosts a high resolution spot profile analysis low energy elec-
tron diffractometer (SPA-LEED) for the investigation and 
control of the sample quality. The plasmon dispersion was 
accessed by an electron energy loss spectrometer combined 
with LEED to provide high resolution in both energy (10 
meV) and momentum (10−2 Å

−1
) [36].

The Czochralski grown Ge(1 0 0) samples were n-doped 
with Sb and had a specific resistance of 10 Ωcm. Since the ger-
manium oxide layer is not a good protection against contami-
nants, [37] the preparation of a high-quality surface is always 
a demanding task, involving the ablation of several surface 
layers both ex situ by etching as well as in situ by several 
cycles of Ar+ ion sputtering with subsequent rapid annealing 
at 850 °C, see e.g. [13, 38–41]. As shown in [16] in a quali-
tative energy-dependent analysis of the diffraction spot pro-
files, relating the number of sputtering/annealing cycles and 
the ion acceleration energy with the average terrace width and 
roughness, the best result was obtained for bare germanium 
after eight cycles with a mean terrace width of  >60 nm and an 
RMS roughness of  <1 Å . We followed the same procedures 
as described in [16] for the optimization of the coverage of the 
Au-induced reconstruction, yielding the best structural results 
for a coverage of 1 ML. According to theoretical modelling 
results [29], this structure is characterized by deep grooves, 

characteristic for models derived from the giant missing row 
model [20, 26].

Within the work presented here, we also tested the influ-
ence of the coverage on the plasmonic excitations. The appro-
priate amount was evaporated from a gold pearl attached to a 
tungsten filament by direct current heating of the filament at a 
deposition rate of approximately 0.15 ML min−1. The sample 
was kept at room temperature. The coverage was controlled 
and calibrated with quartz microbalances placed close to the 
evaporator and at the position of the samples, respectively, 
assuming a sticking coefficient of one. After the gold adsorp-
tion, the sample was annealed at 500 °C for 10 s. Before 
adsorption for a new measurement, the surface was sputtered 
in a sequence of several cycles of Ar+ sputtering with 800 V 
acceleration voltage followed by flash-annealing to 850 °C 
for ≈5 s. This cleaning ensured a germanium surface free of 
remaining gold.

3.  Results and discussion

3.1.  Atomic structure

The LEED pattern of the dual domain Ge(1 0 0)-Au surface 
right after preparation is shown in figure 1. This pattern agrees 
well with those of [23, 42] and is characteristic for Ge(1 0 0) 
with a local coverage of 1 ML of Au. Its reconstruction with a 
c(8 × 2) periodicity has been related to the Au-induced wires 
on the surface with a wire spacing of 4a (16 Å), aligned in an 
additional zig–zag p(4 × 1) superstructure, resulting in fur-
ther spots [16, 23, 42]. The appearance of these superstruc-
ture spots are attributed to the long-range interaction between 
adjacent wires. Consequently, the appearance of long-range 
order in combination with the very sharp structural spots gives 
an indication of an extremely well-ordered sample. A detailed 

Figure 1.  The LEED pattern of the Ge(1 0 0)-Au surface with a 
total coverage of 1.25 ML shows a c(8 × 2) reconstruction marked 
with a red diamond related to the Au-induced wires on the surface.
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investigation of the atomic structure by a energy-dependent 
spot profile analysis in electron diffraction showed a minimum 
terrace size of 200 ̊A  that went up to more than 350 ̊A  in pres-
ence of Au for the optimal Au coverage, confirming a high 
sample quality. This optimal coverage was determined to be 1 
ML. Any excess coverage exceeding 1 ML results in growth 
of small Au-clusters on the surface [25] that are not visible in 
LEED, and do not lead to low-energy plasmons (see below). 
The chains of the c(8 × 2) reconstruction are several atoms 
high, as indirectly concluded from an RMS roughness of ≈
3 Å  and an increase in double, triple and sextuple height cor-
relations [16, 43], supporting a structure with deep trenches.

3.2.  Plasmonic excitations in the loss spectra

On these well-ordered surfaces, angle resolved electron energy 
loss spectroscopy measurements were performed. Figure 2(a) 
shows an exemplary sequence of these spectra on a semi-log 
scale as a function of increasing k‖ for a sample with 1 ML 
Au coverage. Here, k‖ denotes a measurement in [0 1 1] direc-
tion. No difference was seen when measuring in [0 1 1] direc-
tion. This behavior is expected, since the surface exhibits two 
domains rotated by 90◦ that exist with equal probability on the 
surface. All data were normalized to the intensity of the elastic 
peaks of each spectrum and shifted upward in intensity with 
increasing k for better visibility. The accumulated integration 
time of the plotted curves was ≈10 s per data point with a step 
width of 5 meV. These time-consuming settings were neces-
sary due to the very low intensity of the plasmonic signal, as 
also directly visible from the spectra.

Figure 2(b) shows a magnified view of the loss spectrum 
for k‖ = 0.126 Å

−1
. On top of the data marked by circles, the 

obtained fit is plotted. This fit is the sum of the following para-
metrization: Gaussian-type functions describe the elastically 

scattered as well as the loss peak, exponential functions approx-
imate the Drude background. This so-called Drude-tail is an 
indicator for the metallic character and has its roots in the con-
tinuum of excitation of electron–hole pairs in a metal [44, 45].  
It is also seen in other low-dimensional systems [46, 47].

Compared to basically all low-dimensional plasmons inves-
tigated in the last decades [48–53], the loss peak associated 
with a plasmon excitation has extremely low intensity and 
shows a very broad full width at half maximum (FWHM). 
These properties also result in a high uncertainty of the exact 
position of the plasmon peak during the fitting process, as 
reflected by the high scatter of the extracted data in figure 3. 
Furthermore, the decay of the intensity next to the elastic peak 
is very flat, indicating a low probability of single particle exci-
tations. In spite of the low excitation probability, a dispersing 
feature that shifts to higher energies with increasing k is visible 
in the spectra of figure 2(a), highlighted by the dashed curve.

Measurements were also carried out for Au coverages from 
0.5 ML to 2 ML. The accuracy of the coverage was around 
10%. No differences to the curves shown in figure 2 as a func-
tion of the amount of Au were found. This insensitivity to the 
Au concentration is in agreement with the finding that upon 
adsorption the gold-covered superstructure grows in patches 
[18] with the subsequent formation of excess gold clusters 
above 1 ML that cannot contribute to the low-energy plasmon 
[25]. In conclusion, the plasmon occurs in locally recon-
structed parts that form Au for coverages  >0.5 ML.

3.3.  Dispersion of the plasmonic excitation

All obtained spectra were analyzed as described above and 
according to the procedure depicted in figure 2(b). The dis-
persion of these extracted data together with two possible 
descriptive models are plotted in figure 3.

Figure 2.  Electron energy loss spectra of Ge(1 0 0) with 1 ML Au coverage for various values of parallel momenta: (a) A dispersing feature 
can be seen for increasing momentum in the spectra given as black lines. Its shift is highlighted by the dashed line. (b) Example of the fit 
routine for k  =  0.126 Å

−1
. The data (green circles) was described by an empiric parametrization of the background, fitting the plasmon 

peak with a Gaussian function. The individual components are depicted by the gray dashed lines, the resulting fit by a solid black line. 
Please note that the scale is three orders of magnitude below the elastic intensity of the given spectrum.
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Unfortunately, due to their small intensities, the centers of 
the Gaussian part of the plasmon could only be determined for 

k values above 0.04 Å
−1

. For k  <  0.1 Å
−1

 the data level off at 
around 700 meV, whereas for shorter wavelengths (higher k) 
the plasmon loss energy increases steadily as a function of k.  
A first attempt to explain the almost constant loss energy at 
small k is to assume a finite wire length that leads to standing 
waves and, consequently, to no dispersion for low k. However, 
the structural investigations of [16] reveal minimum terrace 
sizes of 200 Å . If this terrace size also limits the length of 
wires, this origin does not seem to be very likely: if we assume 
that the quasi-linear dispersion seen at large k‖ extends to zero 
energy for the ideal system, but is cut off by finite size effects 
at the measured plateau at 700 meV, the intersection where 

free dispersion starts is approximately at k‖ = 0.1 Å. From 
this value an effective wire length of merely 30 Å  is derived. 
Therefore, only if the wires are highly defective, finite size 
effects would yield an acceptable explanation for our findings.

In view of recent results from photoemission and STM 
[34], where it was shown that this system is strongly aniso-
tropic, but not one-dimensional, we test in the following two 
extremes of one-dimensional electron models and basically 
demonstrate inconsistency with a 1D description also for 
the plasmon excitations. These approaches are a modified 
Tomonaga–Luttinger-liquid model and a quasi-free 1D elec-
tron gas with a finite lateral extent.

3.4.  Description by a modified Tomonaga–Luttinger-liquid 
model

In the strictly one-dimensional TLL model with the assump-
tion of a linear single-electron excitation spectrum close to 
the Fermi energy [4], the plasmon dispersion is also linear in 
k for k → 0,

ωp(k) = kuρ(k) = kvF

√
1 +

2vc(k)
�πvF︸ ︷︷ ︸

1/Kρ(k)

� (1)

but with a k-dependent velocity of propagation uρ(k) that can 
be described as the Fermi velocity, vF, renormalized by the 
Luttinger parameter Kρ(k) for charge excitations. This param
eter depends on the Fourier transform of the screened elec-
tron–electron interaction, vc(k).

An isotropically screened Coulomb potential is generally 
used as restoring potential for the plasmon [4, 54]. Contrary 
to the observation, however, such a potential leads to a disper-
sion relation that cannot reproduce the non-monotonic curva-
ture seen in our experimental data. Hence, this model had to 
be extended by an effective electron–electron potential in the 
wire that is assumed to be cut off beyond some wave number 
kcrit, as also already introduced in context with a TLL else-
where [55]. Its Fourier-transformed representation in the wire 
direction is expressed by

vc(k) = απ�vF exp
(
−k2/k2

crit

)
� (2)

which then defines the resulting dispersion to first order in the 
potential strength as

ωp(k) = vFk
(
1 + α exp

(
−k2/k2

crit

))
.� (3)

A reasonable fit of the data (see figure  3) was obtained 
setting vF = 1.08 × 106 m s−1, α = 2.0, and kcrit = 0.06 
Å

−1
. This means that electronic screening is of extremely 

long range (40 Å), corresponding to a screening length that 
is much larger than the interchain distance d. Thus coupling 
between wires seems to be inevitable so that this finding 
already casts doubt on the applicability of this model.

Figure 3.  Plasmon dispersion extracted from loss measurements and comparison with two models for the plasmon dispersion relation. No 
dependence on Au coverage was found, as indicated by the different symbols (©: 0.5 ML, �: 0.75 ML, �: 1.0 ML, �: 1.2 ML, �: 1.5 ML, 
�: 2.0 ML). (a) Comparison with the one-dimensional TLL model in combination with a screened electron- electron interaction described 
by a Gaussian distribution. The resulting fit is given by the purple line. kvF,fit from this fit (red dashed line) is not close to kvF derived from 
photoemission (green dash-dotted line). Grey dotted line: kvF/Kρ with Kρ = 0.26, as derived from [31]. kṽ obtained as limiting slope of 
the thick dark curve. Further details, see text. (b) Comparison with the plasmon dispersion derived from a confined quasi-free 2D electron 
gas model. Plasmon dispersion of a single wire (dashed red) and an array of wires (solid red), both with a width of w = 5 Å, as well as for 
an array of wires with w = 20 Å (dotted purple). The long dashes mark the 2D plasmon dispersion using the same parameters for electron 
density and effective mass. The shaded area shows the electron–hole excitation continuum (SPE).
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Although the resulting parameters perfectly describe the data, 
there are further problems with this model. First of all, for high k 
the dispersion aligns to a vF,fit that is twice as large as the Fermi 
velocity vF obtained from photoemission [56] and from tight-
binding calculations [34]. The fit result is indicated by the red 
dashed line, the resulting dispersion with vF from photoemission 
[34, 56] as green dash-dotted line in figure 3(a). Furthermore, 
if the evaluation of STS data [31] with the TLL theory is taken 
as correct, it yields Kρ = Kρ(k → 0) = 0.26. This value, how-
ever, should renormalize the velocity to u = vF/Kρ ≈ 4vF for 
k  =  0, shown by the grey dotted line. It is not consistent with the 
extrapolation to zero and its initial slope, as marked by the blue 
dotted line. Due to the lack of data points for low k, we can only 
derive a lower bound ṽ = (1 + α)vF,fit ≈ 6vF for the velocity 
u in that limit. This would imply Kρ � 0.17 which is signifi-
cantly smaller than the prediction from STS mentioned above. 
The region filled in bright blue is the corresponding region for 
these values.

It is quite difficult to determine the properties of coupled 
TLL wires [4, 57, 58]. However, the two-dimensional plasmon 
dispersion ωp(�k) can be calculated if we assume that the TLL 
chains are only coupled by an isotropically screened electron–
electron interaction [59]. Applying the results of [59] to a two-
dimensional array of TLL wires, we obtain a dispersion

ωp(�k) = kxuρ(|�k|)� (4)

where kx is the wave number in the wire direction and the renor
malized velocity uρ(|�k|) is given by an expression similar to 
equation (1) but with the two-dimensional Fourier transform 
of the screened electron–electron potential. Assuming a two-
dimensional version of the effective Gaussian potential (2) 
and the Luttinger parameter 1/Kρ =

√
1 + 2α obtained from 

STS, the experimental plasmon dispersions can now be repro-
duced with an isotropic screening length equal to twice the 
interchain distance d and a strong-coupling potential α ≈ 7. 
The resulting dispersion ωp(�k) depends significantly on the 
wave number ky  perpendicular to the wires, however, and thus 
characterizes more a strongly anisotropic and correlated two-
dimensional metallic state than weakly coupled TLL wires. 
Moreover, the fitted Fermi velocity vF,fit remains incompatible 
with the Fermi velocity vF obtained from photoemission.

In summary, these contradicting results are not compatible 
with the TLL theory of a correlated quasi-1D electron system 
and rule out the presence of a such a behavior, in agreement 
with [34, 60]. Both STM and the latest photoemission data 
[60, 61] suggest the electronic system to be highly anisotropic 
with the formation of wire-like structures, which in the limit 
of strong confinement is equivalent to a coupled array of 
wires. Therefore, we now tested, as described in the next sec-
tion, a quasi-one-dimensional quasi-free electron gas model 
with coupling between wires.

3.5.  Description by a quasi-free electron gas model  
with 1D confinement

This approach has been successfully applied to systems like 
Si(557)-Au [62]. The plasmon dispersion of a quasi-free 1D 
electron gas can generally be expressed by [63]

ωp(k) =

√
ω2
+eA(k) − ω2

−
eA(k) − 1

� (5)

with ω± as the upper and lower boundary of the single elec-
tron–hole pair continuum. A(k) is a function describing the 
electronic correlations of the system. Both are defined as:

ω± =
�(k2/2 ± kkF)

m∗ , A(k) =
�22πk

m∗gsvc(k)
× 1

1 − Gcorr(k)
.

� (6)
Here, kF is the Fermi wave vector, m* is the effective mass of 
the electrons, and gs is the spin degeneracy factor that can be 
either 2 or 1. The Coulomb interaction is again treated by its 
Fourier transformed representation vc(k). In contrast to the TLL 
model, all electrons contribute to vc(k), i.e. also those electrons 
of the conducting channel. Additionally, for the calculations of 
this work, the local field correction factor Gcorr(k) originates 
in a self consistent mean-field approximation developed by 
Singwi, Tosi, Land and Sjlander [64] to consider electronic 
correlations it is often abbreviated as STLS.

For a description for our plasmon, the electronic struc-
ture of the Ge(1 0 0)-Au system was fit with a parabola to 
m∗ = 0.13me and kF = 0.058 Å

−1
 in direction parallel to the 

wires [31, 34].
The Coulomb interaction vc(k) was calculated numerically. 

It is expressed, in analogy to [63, 65, 66], by

vc(k) =
e2

2εε0

∫
dy

∫
dỹ |φ(y)|2|φ(ỹ)|2 × K0 (k|y − ỹ|) .

� (7)
In this expression, e is the elementary charge, εε0 the average 
permittivity of the surrounding media, and K0 is the zeroth 
order modified Bessel function of second kind. In this work, 
the absolute square of the electron wave function perpend
icular to the channel |φ(ỹ)|2, i.e. the lateral extension of a wire, 
was approximated by a Gaussian. In other word the confining 
potential was assumed to be harmonic.

As the wires arrange themselves into arrays, there is an infi-
nite number of additional electronic channels in the vicinity of 
an isolated wire with interwire spacing d. In a simple approach, 
this will add a term to the Coulomb matrix element describing 
the influence of the additional electron density [67]:

veff
c (k) = vc(k)︸︷︷︸

intrawire

+ varray
c (k)︸ ︷︷ ︸
interwire

.
� (8)

This additional Coulomb interaction can be described by 
the following integral [65]:

vc(k)array =
e2

εε0

∫
dy

∫
dỹ |φ(y)|2|φarray(ỹ)|2 × K0 (k|y − ỹ|) .

� (9)
In the present case, the system was modeled with 

FWHM = 5 Å  of |φ(y)|2 and an interchain distance of d  =   
16 Å , see figure 4(a) for the lateral distribution. This choice 
of the wire width seems to be reasonable by comparison with 
STM data [19, 25]. The integral was calculated with five wires 
to both sides of the conduction channel. Wires further away 
have a negligible influence on the value of vc(k). The relative 
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dielectric constant was chosen as the mean value of germa-
nium and vacuum as ε = (16.2 + 1)/2 = 8.6.

The resulting plasmonic dispersion is plotted in figure 3(b) 
by the dashed red line for a single wire and by the solid red 
line for a wire placed within an array of wires. For large 
k  >  0.09 Å

−1
, there is a good agreement between the data and 

the calculation. This conformity is mainly attributed to the 
behavior of the upper boundary of the electron–hole single-
particle excitation spectrum (SPE). For lower k-values, how-
ever, the calculated plasmon dispersion is clearly below the 
experimental data both for the coupled array as well as for 
the single wire. Since an increasing overlap of the wave func-
tions also increases the plasmonic energy at long wavelengths, 
the same calculation was carried out for an effective width of 
the wave function of w  =  20 Å  of each wire, which results 
in a very large overlap of wave functions of adjacent wires. 
To include this overlap appropriately, the numerics were car-
ried out in an array of 51 such wires. In total, the system now 
corresponds to a wider channel in an effective 2D environ
ment. The resulting dispersion relation shows a trend towards 
the experimental data, which is depicted by the dotted purple 
curve in figure 3. However, it is still not possible to get the 
calculated curve close to the experimental data for k  <  0.1 Å .

A possible explanation is the elliptic two-dimensional 
Fermi surface [34]. The strongly anisotropic electronic 
band structure yields a much higher effective mass perpend
icular to the wires compared to the parallel direction. These 
strongly anisotropic 2D properties are obviously not correctly 
described by our 1D or quasi-1D models. While the difference 
in electronic structure also leads to anisotropic conduction 
properties, an additional perpendicular conduction channel 

leads to a substantial delocalization of electronic states. 
This crossover to two dimensions, although modeled by the 
stretch-out of the wave functions in the given case, might need 
a better description.

Since our samples were dual-domain samples, there is no 
information about the direction perpendicular to the actual 
direction of measurement. Therefore, there is a third possi-
bility, namely again the case of strong confinement. In that 
case, there is the possibility that we observe as dominant loss 
at low k the first subband excitation at ky   =  0 in the confining 
potential perpendicular to the wires when the dispersion 
measurement is along the x-direction. Indeed, if we assume a 
square well potential for a single wire with an effective mass 
of the electrons of 0.13 me [34], we obtain an effective wire 
width of about 15 Å  from the measured excitation energy of 
about 700 meV. This width is close to the actual wire width. 
Since the short wavelength (high k) data agree with model 
calculations, compatibility with the quasi-1D model may be 
concluded. However, this range of data is not very specific to 
a concrete model. Angle-dependent measurements on single-
domain samples should help to shed more light on this issue. 
Such an approach is possible on Ge(1 0 0) wafers with an 
intentional miscut in [0 1 1] direction. However, those sam-
ples did not show any plasmonic excitation. This effect is most 
likely caused by a very strong damping, typical for stepped 
samples [68].

4.  Conclusions

Our results of plasmon dispersion in Au wires on Ge(0 0 1) 
show that 1D plasmon models are not compatible with exper
imental data, if the effective masses and electron densities 
known from angular resolved photoemission are used. These 
results are in agreement with latest results from STM and 
ARPES [34, 60, 61] which suggest the Ge(1 0 0)-Au system 
to be a strongly anisotropic 2D metal, but with highest dis-
persion of bands close to EF not parallel, but perpendicular to 
the wire direction. While this finding is compatible with our 
data, there are, however, still many open questions, which 
are only partly due to a still incomplete set of data. Our 
work shows that a high quality of long range order does not 
guarantee the perfect formation of plasmonic waves. At this 
moment we can only speculate why in this system damping 
is much more efficient than in the comparable Si(hhk)-Au 
systems.
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