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Jose Maŕıa Ezquiaga,a Juan Garćıa-Bellidob and Vincent Venninc

aNASA Einstein Fellow, Kavli Institute for Cosmological Physics and Enrico Fermi Institute,
The University of Chicago, Chicago, IL 60637, U.S.A.
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Abstract. The curvature perturbations produced during an early era of inflation are known
to have quasi-Gaussian distribution functions close to their maximum, where they are well
constrained by measurements of the cosmic microwave background anisotropies and of the
large-scale structures. In contrast, the tails of these distributions are poorly known, although
this part is the relevant one for rare, extreme objects such as primordial black holes. We show
that these tails are highly non-Gaussian, and cannot be described with standard non-Gaussian
expansions, that are designed to approximate the distributions close to their maximum only.
Using the stochastic-δN formalism, we develop a generic framework to compute the tails,
which are found to have an exponential, rather than Gaussian, decay. These exponential
tails are inevitable, and do not require any non-minimal feature as they simply result from
the quantum diffusion of the inflaton field along its potential. We apply our formalism to a
few relevant single-field, slow-roll inflationary potentials, where our analytical treatment is
confirmed by comparison with numerical results. We discuss the implications for the expected
abundance of primordial black holes in these models, and highlight that it can differ from
standard results by several orders of magnitude. In particular, we find that potentials with
an inflection point overproduce primordial black holes, unless slow roll is violated.
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1 Introduction

The primordial inhomogeneities produced out of vacuum quantum fluctuations during an
early phase of inflation seed all cosmological structures in our universe [1–12]. They can be
measured in the temperature and polarisation anisotropies of the cosmic microwave back-
ground (CMB) [13] at gigaparsec scales, and in probes of the large-scale structure of our
universe at megaparsec scales [14, 15]. They are constrained to be quasi-scale invariant, quasi
adiabatic and quasi-Gaussian [16]. Current constraints on the amount of non-Gaussianities
come from upper bounds on the amplitude of the bispectrum and the trispectrum [17], and
therefore capture deviations from Gaussian statistics close to the maximum of the distribution
functions, the width of which is given by measurements of the power spectrum.

At smaller scales, large quantum fluctuations could also give rise to rare and more
extreme objects such as ultra compact mini-halos, or primordial black-holes (PBH) [18, 19].
Even if sparsely distributed, PBHs are of particular cosmological relevance as they could
provide seeds for supermassive black-holes in galactic nuclei [20–22], and comprise a large
fraction of the dark matter [23, 24]. There has been renewed interest in PBHs since the
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LIGO/VIRGO collaboration reported the first detection of gravitational waves associated to
black-hole mergers in 2015 [25], as they may indeed explain the existence of progenitors for
these events [26–28]. PBHs may also play a role in the generation of large-scale structures [22,
29] and solve a number of problems currently encountered in astrophysics and cosmology (see
e.g. ref. [23] for hints in favour of the existence of PBHs).

Constraints on the abundance of PBHs have been placed in various mass ranges (see
e.g. refs. [30, 31] for reviews), since PBHs leave several imprints throughout the history of
the universe: by injecting energy into their surrounding environment, by providing a source
of gravitational lensing, by sourcing various dynamical effects, and by emitting gravitational
waves [32–34]. This leaves two mass windows open for PBHs to constitute an appreciable
fraction, and possibly all, of dark matter, around M ∼ 10−12M� and M ∼ 10 − 100M�,
where M� denotes the mass of the sun.

PBHs thus constitute a new observational window. Indeed, the CMB only gives access
to a limited range of scales, and the time frame over which these scales are generated during
inflation is therefore limited as well, and cannot encompass more than ∼ 7 e-folds (over the
∼ 60 e-folds elapsed between the generation of these scales and the end of inflation). This
means that the constraints on the inflationary potential that the CMB can place are restricted
to a small field range. By giving access to much smaller scales, PBHs could thus allow us to
probe parts of the inflationary potential that would remain hidden to us otherwise.

A PBH is expected to form when a large density perturbation re-enters the Hubble radius
after inflation, and collapses into a black hole if it exceeds a certain threshold. More precisely,
denoting by ζcg the curvature perturbation coarse-grained above a certain scale k̄ and the end

of inflation kend = aendHend, ζcg(x) = (2π)−3/2 ∫
kend>k>k̄ dkζke

ik·x (see appendix A), and by
P (ζcg) the probability density function (PDF) of ζcg, the fraction of the universe made of
PBHs with mass M(k̄), at their formation time, is given by [35]

βf(M) =

∫ ∞

ζc

P (ζcg)dζcg . (1.1)

Here, one can relate the mass M(k̄) with the mass contained within the Hubble radius
H−1 = a/ȧ at the time of formation, i.e. when k̄ = aH, where a is the scale factor and a
dot denotes derivation with respect to cosmic time. In this expression, ζc is the threshold
value for forming a black hole and is typically of order one. Since the typical values of ζcg

are much smaller than one (perturbations remaining in the linear regime on super-Hubble
scales), eq. (1.1) involves an integral over the high-curvature tail of the PDF. This has two
important implications. First, the observational constraints mentioned above, limiting the
deviations from Gaussian statistics close to the maximum of the PDFs at large scales, are not
directly relevant for describing the tails of distributions at much smaller scales. Second, all
techniques developed in the literature to compute the PDF of ζc from inflation are designed
to provide approximations modelling the neighbourhood of the maximum of the PDF, not its
tail. This is for instance the case for the expansion in terms of the non-linearity parameters
fNL and gNL [36].

Non-Gaussianities may therefore play a crucial role in determining the abundance of
PBHs [37–50] and, in this work, we provide a generic, non-perturbative framework to derive
the tails of the PDFs of curvature perturbations. This makes use of the stochastic-δN
formalism [51–58], in which the curvature perturbations are identified with fluctuations in
the local duration of inflation, that varies under the effects of quantum diffusion of the
inflaton field, described as stochastic noise in the stochastic inflation formalism [9, 59–61].
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We find that this stochastic noise gives rise to exponentially decaying tails, that are highly
enhanced compared to Gaussian tails. This property is universal, and arises as soon as
quantum fluctuations of the background inflaton are incorporated into the analysis; it does
not involve any non-minimal feature and occurs in all scenarios. The reason why quantum
diffusion plays a crucial role in determining the abundance of PBHs is because PBHs form
in regimes where large curvature perturbations, exceeding the threshold, can be produced.
This requires a very flat inflationary potential, where the dynamics of the inflaton is no
longer dominated by the classical drift (induced by the potential gradient), but rather by the
stochastic noise.

The paper is organised as follows. In section 2, we first review the stochastic-δN for-
malism. For single-field slow-roll potentials, an exact analytical solution for the PDF of
curvature perturbations can be found only in the case of an exactly flat potential [62]. This
is why we develop a tail expansion that can be used in arbitrary potentials, and that relies
on computing the poles of the characteristic function of the PDF. In section 3, we apply our
computational program to a few potentials: exactly flat potentials (for which the full solution
of ref. [62] is recovered, although derived in a different way) in section 3.1, potentials with
a constant slope in section 3.2, potentials with a cubic flat inflection point in section 3.3,
and potentials with a linearly-tilted cubic inflection point in section 3.4. The implications
for the expected amount of PBHs are discussed in section 4, where it is shown that quantum
diffusion, and non-Gaussian tails, can change the abundance of PBHs by several orders of
magnitude compared to standard results, and can be such that substantial abundances can
be reached even in the absence of slow-roll violations. Finally, in section 5, we present some
concluding remarks.

2 The tail of the curvature perturbations distribution

In this section, we explain how the tail of the PDF of curvature perturbations can be com-
puted in the stochastic-δN formalism. We consider the case where inflation is driven by one
or several scalar fields φi, with i = 1 · · ·n, and the action of the system if given by

S =

∫
d4x
√−g

[
M2

Pl

2
R− 1

2
δijgµν∂µφi∂νφj − V (φi)

]
, (2.1)

where MPl is the reduced Planck mass. If time is labeled by the number of e-folds N ≡ ln a,
for each field φi, one can define a conjugate momentum πi = dφi/dN , and phase space is
parametrised with the field vector Φ = (φ1, π1, · · · , φn, πn).

2.1 The stochastic-δN formalism

In the δN formalism [9, 63–67], the curvature perturbations on large scales are nothing but
the fluctuations in the number of e-folds of expansion during inflation for a family of homo-
geneous universes. Indeed, in a gauge where fixed time slices have uniform energy density
and fixed spatial worldlines are comoving (in the super-Hubble limit, this gauge reduces to
the synchronous gauge supplemented by some additional conditions that fix it uniquely),
the perturbed flat Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric reads [9, 68, 69]
ds2 = −dt2 + a2(t)e2ζ(t,x)δijdx

idxj , where only scalar fluctuations have been included. A
local scale factor can then be introduced, ã(t,x) = a(t)eζ(t,x), which allows us to relate the
amount of expansion from an initial flat space-time slice at time tin to a final space-time slice
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of uniform energy density as N(t,x) = ln [ã(t,x)/a(tin)]. This gives rise to

ζ(t,x) = N(t,x)− N̄(t) ≡ δN , (2.2)

where N̄(t) ≡ ln [a(t)/a(tin)] is the unperturbed expansion. Moreover, on super-Hubble
scales, gradients can be neglected, and each spatial point evolves independently and follows
the evolution of an unperturbed universe. This is known as the “quasi-isotropic” [70–73]
or “separate universe” approach [66, 74, 75], the validity of which has recently been shown
to extend beyond slow roll [76]. As a consequence, N(t,x) is the amount of expansion in
unperturbed, homogeneous universes, and ζ can be calculated from the knowledge of the
evolution of a family of such universes.

The calculation of the PDF of curvature perturbations therefore boils down to the
calculation of the PDF of local durations of inflation. These durations vary under quantum
fluctuations in the fields that drive inflation, which can be described in the framework of
stochastic inflation [9, 59–61]. This formalism is an effective theory for the long wavelength
part of the fields, which are coarse-grained below a fixed physical scale kσ = σaH,

Φ̂cg(x) =
1

(2π)3/2

∫

k<kσ

d3kΦ̂ke
−ikx, (2.3)

where σ � 1 is a fixed parameter setting the scale at which quantum fluctuations backreact
onto the local FLRW geometry. The dynamics of the quantum operators Φ̂cg can be tracked
by means of stochastic Langevin equations,

dΦcg

dN
= Fcl (Φcg) + ξ, (2.4)

where Fcl (Φ) encodes the classical equations of motion [and is given by the commutator
between Φ and the Hamiltonian associated to eq. (2.1)], and ξ is a white Gaussian noise
with vanishing mean, and variance given by

〈ξi (xi, Ni) ξj (xj , Nj)〉 =
d ln kσ

dN
PΦi,Φj [kσ(Ni), Ni] δ(Ni −Nj). (2.5)

In this expression, PΦi,Φj [kσ(Ni), Ni]δ(Ni−Nj) is the cross power spectrum between the field
variables Φi and Φj , evaluated at the scale kσ(Ni), and at time Ni. Note that since the time
coordinate (here N) has not been perturbed in the Langevin equation (2.4), we are implicitly
working in the gauge where time is unperturbed, i.e. the uniform N -gauge in the present
case. The power spectra need therefore to be computed in that gauge [76].

The Langevin equation (2.4) thus describes a family of background histories, each of
them realising a different number of inflationary e-folds. The stochastic-δN formalism [51–
58] then consists in computing the PDF of this number of e-folds, from a certain initial
configuration in field space until inflation terminates, i.e. until the surface Cend = {Φ|ε1(Φ) =
1} is crossed out, where ε1 = −Ḣ/H2. This is done by deriving the Fokker-Planck equation
associated to the Langevin equation (2.4), that drives the probability to find the system Φcg

at position Φ in field space at time N , knowing that it was at position Φin at a previous
time Nin,

d

dN
P (Φ, N |Φin, Nin) = LFP (Φ) · P (Φ, N |Φin, Nin) . (2.6)

Here, LFP (Φ) is the Fokker-Planck operator, which is a differential operator of second order
in phase space (i.e. it contains first and second-order derivatives with respect to the field
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coordinates Φi). The PDF of the number of e-folds realised from Φ until the end of inflation,
N , can then be shown to obey the adjoint Fokker-Planck equation [54, 62]

d

dN PΦ (N ) = L†FP (Φ) · PΦ (N ) , (2.7)

where L†FP(Φ) is the adjoint Fokker-Planck operator, related to the Fokker-Planck operators

via
∫

dΦF1(Φ)LFP(Φ) ·F2(Φ) =
∫

dΦF2(Φ)L†FP(Φ) ·F1(Φ). For instance, in the case where
the dynamics of all fields proceed in the slow-roll regime, phase space can be parametrised
by the field values φi only and the momenta πi can be dropped from the vector Φ, and one
has [54, 56]

1

M2
Pl

L†FP = −
∑

i

vφi
v

∂

∂φi
+ v

∑

i

∂2

∂φ2
i

, (2.8)

where

v =
V

24π2M4
Pl

(2.9)

denotes the reduced potential. In this section, we remain generic and do not assume slow roll,
while in section 3, the case of single-field slow-roll models will be considered, hence eq. (2.8)
will be used. Let us also note that eq. (2.7) needs to be solved with some boundary conditions.
As already mentioned, inflation terminates on the surface Cend, so a first condition is that
PΦ (N ) = δ(N ) when Φ ∈ Cend. For completeness, we also introduce reflective boundary
conditions high in the potential [56, 57] (the interpretation of which will be made clearer
below), across some surface Cuv, such that [u(Φ) ·∇]PΦ (N ) = 0 when Φ ∈ Cuv, where u is
the field-space vector orthogonal to Cuv. From the knowledge of the PDF of N , the PDF of
the coarse-grained curvature perturbation,

ζcg (x) = δNcg (x) = N (x)− 〈N〉 , (2.10)

can finally be obtained.
Let us stress that although P (Φ, N |Φin, Nin) and PΦ(N ) obey very similar equations,

they are conceptually very different objects. In what follows, we will show that for large
values of N , the latter admits an expansion of the form

PΦ(N ) =
∑

n

an(Φ)e−ΛnN , (2.11)

where the functions an(Φ) determine the amplitude of the tail, and the coefficients Λn, which
we will show do not depend on Φ, set the exponential decay rates. Notice that in the classical,
Gaussian picture, the PDF is given by

PΦ(N )|cl ∝N�1
exp

[
−1

2

N 2

∫ kend

k̄
Pζ,cl(k)d ln k

]
, (2.12)

where Pζ,cl is the classical value of the power spectrum [in single-field slow-roll inflation, it is
given by Pζ,cl = 2v3/(M2

Plv
2
φ)], and k̄ and kend are the scales that cross out the Hubble radius

when the system is at location Φ, and at the end of inflation, respectively. If non-Gaussianities
are perturbatively introduced by the means of the usual non-linearity parameters fNL, gNL

etc., eq. (2.12) is modified with polynomial corrections in N [54, 57], which cannot capture
the exponential decay of eq. (2.11).

We now present two complementary techniques to compute an(Φ) and Λn, before ap-
plying them to concrete examples in section 3.
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−iΛ0

−iΛ1

−iΛn

γ0

γ−

Re(t)
Im(t)

Figure 1. Schematic representation of the pole structure of the characteristic function. In order
to compute the PDF, PΦ(N ), from the characteristic function, making use of the residue theorem,
the real axis integral of eq. (2.14) can be obtained from the integral over the contour γ0 ∪ γ− in the
complex plane.

2.2 Poles of the characteristic function

In order to analyse the solution of eq. (2.7) in the large-N limit, it is convenient [62] to
introduce the characteristic function

χN (t,Φ) ≡
〈
eitN (Φ)

〉
=

∫ ∞

−∞
eitNPΦ (N ) dN , (2.13)

where t is a dummy parameter. From the second equality, one can see that the characteristic
function is nothing but the Fourier transform of the PDF, hence the PDF can be obtained
by inverse Fourier transforming the characteristic function,

PΦ (N ) =
1

2π

∫ ∞

−∞
e−itNχN (t,Φ) dt . (2.14)

By plugging eq. (2.14) into eq. (2.7), one obtains

[
L†FP (Φ) + it

]
χN (t,Φ) = 0 (2.15)

with boundary conditions χN (t,Φ) = 1 when Φ ∈ Cend, and [u(Φ) ·∇]χN (t,Φ) = 0 when
Φ ∈ Cuv.

The idea is to perform the integral of eq. (2.14) by means of the residue theorem.1 This
is done by expanding the characteristic function according to

χN (t,Φ) =
∑

n

an(Φ)

Λn − it
+ g(t,Φ) , (2.16)

where g(t,Φ) is a regular function of t, and the Λn are positive numbers that do not depend
on Φ. The form of this expansion can be justified as follows. First, t is only involved

1If f(z) is a regular function in the complex plane, and γ a close contour that circles in a certain point zp
(the winding number of γ around zp is one), one has∮

γ

f(z) dz

(z − zp)n+1
=

2πi

n!

[
dn

dzn
f(z)

]
z=zp

.

– 6 –
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through the combination it in eq. (2.15), which is the only place where a complex number
appears (the rest of eq. (2.15), and the boundary conditions, only involve real quantities).
The characteristic function is therefore a real function of it, which explains why its poles
are necessarily located on the imaginary axis. Second, eq. (2.15) is a second-order linear
differential equation, which is further linear in t, so there exist independent solutions that
are regular in t, and the poles in t only appear when enforcing the boundary conditions. This
explains why the Λn do not depend on Φ, but only on the location of the surfaces Cend and
Cuv. Third, the fact that eq. (2.15) is linear in t explains why there are only simple poles.
Fourth, since the Fokker-Planck operator and its adjoint are positive operators, the Λn are
all positive. In what follows, the Λn are ordered such that 0 < Λ0 < Λ1 < Λ2 < · · · < Λn.

Following figure 1, the integration over the real axis γ0 can be complemented by an
integral over γ−, which, thanks to the term e−itN in eq. (2.14), asymptotically vanishes
(assuming that g, which appears in eq. (2.16), does not increase exponentially or faster at
large |t|). This leads to

PΦ(N ) =
∑

n

an(Φ) e−ΛnN . (2.17)

This form is always valid, but at large N , only the first terms in the sum dominate, and it
provides a tail expansion in terms of decaying exponentials. The dominant term is given by
the lowest pole of the characteristic function Λ0 and its residue a0(Φ). In practice, the decay
rates Λn can be found by solving the characteristic function from eq. (2.15) and finding the
zeros of its inverse. The residues an(Φ) can then be obtained from evaluating the derivative
of the inverse characteristic function at t = −iΛ0, i.e.

an(φ) = −i
[
∂

∂t
χ−1
N (t = −iΛn, φ)

]−1

. (2.18)

Let us stress again that, while the amplitude of the tail, controlled by a0, depends on the
initial field value, the decay rates Λn are universal for a given potential.

2.3 An equivalent eigenvalue problem

Let us now present an alternative method that leads to the same tail expansion, but that
can be of complementary practical convenience. This relies on viewing eq. (2.7) as a heat
equation, and employing well-known late-time limit techniques designed for heat or diffusion
equations to solve it. Formally, eq. (2.7) can be solved as

PΦ (N ) = exp
[
NL†FP (Φ)

]
PΦ (N = 0) . (2.19)

One then introduces an orthonormal set of eigenfunctions Ψn of the operator L†FP,

L†FP ·Ψn (Φ) = −ΛnΨn (Φ) (2.20)

(here a minus sign is introduced for notational convenience), with boundary conditions
Ψn(Φ) = 0 when Φ ∈ Cend, and [u(Φ) · ∇]Ψn(Φ) = 0 when Φ ∈ Cuv. Decomposing
PΦ (N = 0) on the basis formed by these functions,

PΦ (N = 0) =
∑

n

αnΨn (Φ) , (2.21)

– 7 –
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eq. (2.19) gives rise to

PΦ (N ) =
∑

n

αnΨn (Φ) e−ΛnN . (2.22)

This expression is nothing but the tail expansion (2.11), if one identifies an(Φ) = αnΨn(Φ).
Let us note that the first boundary condition given below eq. (2.20) comes from the re-

quirement that PΦ(N ) = δ(N ) when Φ ∈ Cend, so all eigen-components should be identically
zero for Φ ∈ Cend except when Λn =∞. The second boundary condition simply comes from
the reflective surface located at Cuv.

One can also notice that eq. (2.20) for the eigenfunctions Ψn is the same as eq. (2.15) for
the characteristic function, if one identifies t with −iΛn. However, the boundary conditions
are different, which makes the two problems technically different (and one can be more
convenient to solve than the other), although perfectly equivalent. In particular, solving one
problem automatically gives the solution for the other. Indeed, if eq. (2.15) has been solved
and the functions an(Φ) derived, the coefficients αn can be obtained as follows. Making use
of the fact that the eigenfunctions Ψn form an orthonormal set, i.e.

〈Ψn,Ψm〉 =

∫

C
Ψn(Φ)Ψm(Φ)dΦ = δn,m, (2.23)

where C is the field-space domain located between Cend and Cuv, eq. (2.11) leads to

〈Ψn, PΦ (N )〉 =

[∫

C
Ψn (Φ) an(Φ)dΦ

]
e−ΛnN , (2.24)

while eq. (2.22) gives rise to

〈Ψn, PΦ (N )〉 = αne
−ΛnN . (2.25)

By identifying the two expressions, one obtains

αn =

∫

C
Ψn (Φ) an(Φ)dΦ . (2.26)

Conversely, if the decomposition (2.21) has been performed and the coefficients αn are
known, the functions an(Φ) can be obtained from the relation an(Φ) = αnΨn(Φ) given
below eq. (2.22).

3 Applications

We now apply the techniques developed in the previous section to concrete examples. We
investigate four single-field, slow-roll inflationary potentials: an exactly flat potential in sec-
tion 3.1, a potential with a constant slope in section 3.2, a potential with a cubic flat inflection
point in section 3.3, and a potential with a linearly-tilted cubic inflection point in section 3.4.
The adjoint Fokker-Planck operator is given by eq. (2.8), and the boundary conditions simply
consist in an absorbing wall located at φend and a reflective wall located at φuv.

3.1 Flat potentials

Let us begin by considering a potential that is exactly flat, v = v0, between φend = 0 and
φuv = ∆φwell, as in the left panel of figure 2. In principle, if the potential is exactly flat, slow
roll is violated since there is no potential gradient. However, in ref. [62], it was shown that

– 8 –
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φend φuv

φ

v
(φ
)

φend φuv

φ

v
(φ
)

Figure 2. Schematic representation of the flat (left) and linear (right) potentials studied in sec-
tions 3.1 and 3.2 respectively. We only consider the region between φend and φuv.

for a potential of the form v = v0[1 + (φ/φ0)p], where φ0 �MPl such that slow roll is never

violated, in the region of the potential located between φ = 0 and φ = ∆φwell = φ0v
1/p
0 ,

the potential gradient term in eq. (2.8) (i.e. the first term on the right-hand side) can be
neglected, and the classical part of the potential above ∆φwell acts as a reflective wall (see also
the discussion around eq. (3.37) below). The full results were thus shown to be very accurately
reproduced if one places a reflective boundary condition at φ = ∆φwell and considers a pure
diffusion process between φ = 0 and φ = ∆φwell.

This is the situation we consider here, where “flat” potential has to be taken in the sense
of that specific limit, in which slow roll is not violated. The problem was entirely solved in
ref. [62], and we want to check the consistency of our approach with their results.

3.1.1 Poles of the characteristic function

In this simple example, the equation for the characteristic function (2.15) reads

χ′′N (t, φ) +
i t

v0M2
Pl

χN (t, φ) = 0 , (3.1)

where a prime denotes derivation with respect to the field value φ, with boundary conditions
χN (t, 0) = 1 and χ′N (t, φuv) = 0. It can be solved as

χN (t, φ) =
cos
[
(it)1/2µ(x− 1)

]

cos
[
(it)1/2µ

] , (3.2)

where we have defined x = φ/∆φwell and introduced the quantity

µ2 =
∆φ2

well

v0M2
Pl

(3.3)

as in in ref. [62]. The poles of eq. (3.2) correspond to when the argument of the cos function
in the denominator equals (n+1/2)π, where n is an integer number, and calling Λn the value
of it at these poles, one has

Λn =
π2

µ2

(
n+

1

2

)2

. (3.4)
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Figure 3. Zeros of the inverse characteristic function for a flat potential. We have chosen µ2 = π2/4
so that zeros are located at Λn = (2n + 1)2. We have evaluated χ−1

N (t, φ) at different field values
φ. Although the characteristic functions for each φ are different, the location of the poles Λn (which
determine the decay rates of the PDF) is universal for a given potential.

One can check that, in agreement with the discussion of section 2.2, the Λn’s are all real,
positive and independent of φ. The exponential decay rate of the tail of the PDF therefore
depends both on the width of the quantum well, ∆φwell, and its scale v0, through the combi-
nation µ. We have plotted the inverse characteristic function for a flat potential in figure 3,
for a few field values, where the zeros of χ−1

N (t, φ) correspond to −iΛn. This illustrates again
that, although the details of the characteristic functions depend on φ, the location of their
poles Λn is universal for a given potential.

Finally, making use of eq. (2.18), the coefficients an are given by

an(φ) = (−1)n
π

µ2
(2n+ 1) cos

[
π

2
(2n+ 1) (x− 1)

]
. (3.5)

3.1.2 Eigenvalue problem

In the case of a flat potential, the eigenvalue problem (2.20) reads

Ψ′′n (φ) +
Λn

v0M2
Pl

Ψn (φ) = 0, (3.6)

with boundary conditions Ψn(0) = Ψ′n(∆φwell) = 0. The generic solution of eq. (3.6) is

Φn (φ) = An exp

(
i

√
Λn

v0M2
Pl

φ

)
+Bn exp

(
−i
√

Λn
v0M2

Pl

φ

)
, (3.7)

where the first boundary condition imposes that Bn = −An, hence

Ψn(φ) ∝ sin
[√

Λn/(v0M2
Pl)φ

]
.

The second boundary condition then implies that cos[
√

Λn/(v0M2
Pl)∆φwell] = 0, which pre-

cisely gives rise to eq. (3.4). Normalising the functions Ψn as in eq. (2.23), one then has

Ψn (φ) =

√
2

∆φwell
sin

[
π

(
n+

1

2

)
φ

∆φwell

]
. (3.8)

– 10 –
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Figure 4. Probability distribution function of the number of e-folds N in a flat potential, starting
from different initial field values φ. We compare the full PDF, eq. (3.10) (solid lines), with the leading
term in the tail expansion (2.17) (dashed lines). We rescale the axes by µ2 = ∆φ2

well/(v0M
2
Pl), such

that, using the self-similarity of eq. (3.10), the result does not depend on µ.

The coefficients αn can be computed from eq. (2.26), and eqs. (3.5) and (3.8) give rise to

αn =
2π

µ2

(
n+

1

2

)√
∆φwell

2
. (3.9)

Altogether, the PDF for the constant potential can be written as

Pφ(N ) =
2π

µ2

∞∑

n=0

(
n+

1

2

)
sin

[
π

(
n+

1

2

)
φ

φuv

]
e
−(n+ 1

2)
2 π2

µ2 N , (3.10)

which exactly matches eq. (4.10) of ref. [62], and which, as noted there, can be expressed in
terms of the derivative of an elliptic theta function

Pφ(N ) = − π

2µ2
ϑ′2

(
πφ

2φuv
, e
−π2

µ2N
)
. (3.11)

In figure 4, we plot both the full PDF (3.10) and the leading term in the tail expan-
sion (2.17), a0(φ)e−Λ0N . As it can be observed, at large-N values, the tail expansion provides
an excellent approximation to the full result. Note also that eq. (3.10) is such that the PDF
of the quantity N/µ2 is independent of µ, which is why this quantity is displayed in figure 4.
This shows that increasing v0, or decreasing ∆φwell, decreases the typical values of N .

3.2 Potentials with constant slope

Let us now consider a potential of the type

v (φ) = v0

(
1 + α

φ

MPl

)
, (3.12)

with a constant slope α, which we will assume is positive without loss of generality. The
model (3.12) is bounded between φ = 0 where the potential is supposed to become steeper
and/or inflation ends; and φ = φuv where the potential is supposed to become steeper and
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the dynamics of φ dominated by classical drift, which acts as a reflective wall as discussed
at the beginning of section 3.1. Since ε1 ' α2/2, one should have α � 1 in order for slow
roll to be valid. Moreover, we will consider only scenarios where φuv � MPl/α, such that
the potential is almost constant, v ' v0, between φ = 0 and φ = φuv (see the right panel of
figure 2).

3.2.1 Poles of the characteristic function

The equation for the characteristic function (2.15) is given by

χ′′N (t, φ)− v0α

MPlv(φ)2
χ′N (t, φ) +

i t

M2
Plv(φ)

χN (t, φ) = 0 , (3.13)

which, compared to eq. (3.1) for a flat potential, contains an additional friction term. The
other difference is that now, the coefficients of the differential equation depend on φ, so
there is no generic analytic solution. There is, however, an analytic solution in the “almost-
constant” regime, φuv � MPl/α, where v(φ) can be replaced with v0 in eq. (3.13). This
solution reads

χN (t, φ) = e
αµx
2
√
v0

2γ
√
itv0 cos

[
µγ
√
it(x− 1)

]
− α sin

[
µγ
√
it(x− 1)

]

2γ
√
itv0 cos

(
µγ
√
it
)

+ α sin
(
µγ
√
it
) , (3.14)

with

γ =

√
1− α2

4itv0
, (3.15)

x = φ/φuv, and µ is given by eq. (3.3) where ∆φwell is replaced by φuv. When α = 0, this
boils down to the flat potential solution (3.2).

The poles of the characteristic function at t = −iΛn are determined by the equation

tan



√

Λn −
α2

4v0
µ


 = −2

v0

α

MPl

φuv

√
Λn −

α2

4v0
µ . (3.16)

This equation is of the form tan(z) = −2az, with z =
√

Λn − α2/(4v0)µ and a =
v0MPl/(αφuv). It has one obvious solution, namely z = 0, which would lead to Λ = α2/(4v0).
However, the numerator of eq. (3.14) also vanishes at t = −iα2/(4v0), and by carefully ex-
panding the characteristic function around that value, one can see that it is in fact regular,
and does not possess a pole. The case z = 0 can therefore be safely discarded, and for z > 0,
one has to solve a transcendental equation, which cannot be done analytically. However,
approximate solutions can be found in the two limits a � 1 and a � 1, which we dub the
“wide-well” and the “narrow-well” regimes respectively, since they imply a lower bound and
an upper bound on φuv respectively.

Wide-well limit φuv/MPl � v0/α. In this case a � 1, hence | tan(z)/z| � 1, which
implies that z is close to (n+1)π, with n an integer number. One can write z = (n+1)π+δz,
and expand tan(z) ' δz+δz3/3+· · · . Plugging this formula into the transcendental equation,
and expanding in a, one obtains δz ' −2a(n+ 1)π[1− 2a(n+ 1)π + · · · ], which gives rise to

Λwide
n =

α2

4v0
+

(n+ 1)2 π2

µ2

(
1− 4

v0MPl

αφuv
+ · · ·

)
(3.17)
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Figure 5. Inverse characteristic function for a linear potential. We compare the numerical solution
of eq. (3.13) (solid blue line) and its poles Λn (labeled with blue stars) with the “almost-constant” ap-
proximation (3.14) (orange dashed line) and its approximate poles Λwide

n in the “wide-well approxima-
tion” (3.17) (labeled with orange triangles). These two approximations are valid when φuv/MPl � 1/α,
and φuv/MPl � v0/α, respectively. The characteristic function is evaluated at φ = φuv/10, with
α = 0.1, and v0 and φuv have been set such that φuv/MPl = 0.01/α and φuv/MPl = 20v0/α. Increas-
ing 1/α and decreasing v0/α improves the agreement between the three results, but quickly makes the
separation between the Λn impossible to resolve by eye, which is why somewhat intermediate values
have been used here, for illustrative purpose.

where “· · · ” denotes higher powers of v0MPl/(αφuv), so this approximation is indeed valid in
the regime

φuv

MPl

� v0

α
. (3.18)

If one takes φuv to its maximal allowed value, φuv ∼MPl/α, this condition is satisfied as soon
as v0 � 1, which is always the case.

In figure 5 we show the inverse characteristic function obtained by solving numerically
eq. (3.13) (solid blue line) and the analytical solution (3.14) in the almost-constant approxi-
mation (orange dashed line). We also include the approximate values of Λwide

n in the wide-well
limit given in eq. (3.17). In order to remain in the regime of validity of this approximation
but to make visible the differences between these different estimates, we set the parameters
such that φuv/MPl = 0.01/α and φuv/MPl = 20v0/α. By increasing 1/α and decreasing v0/α,
the agreement between the three results largely improves, but quickly makes the separation
between the Λn impossible to resolve by eye, which is why intermediate values have been
used here, for illustrative purpose. To test further the consistency of these results, the for-
mula (3.17) is compared with a numerical solution of the transcendental equation (3.16) in
figure 6, where one can check that, as long as eq. (3.18) is valid, it provides indeed a good
approximation.

By comparing eqs. (3.4) and (3.17), one can check that, as in the flat case, Λn receives
a n-dependent contribution proportional to π2/µ2, but it is also shifted by a fixed quan-
tity, namely α2/(4v0), which dominates over the n-dependent contribution, because of the
condition (3.18). One concludes that, in the wide-well regime, adding a small slope to the
potential is enough to highly suppress the tails.

Finally, the an functions can be approximated as follows. One needs to expand eq. (3.14)
around the poles t = −iΛn in order to extract the residues. Since the decay rates Λn
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Figure 6. Decay rates Λn for the constant-slope potential (3.12), as a function of αφuv/(v0MPl).
The coloured lines correspond to numerical solutions of the transcendental equation (3.16), the black
dashed lines display the wide-well approximation (3.17), and the black dotted lines stand for the
narrow-well approximation (3.20).

are not known exactly, this expansion cannot be done directly. However, writing Λn =

Λ
(0)
n + δΛn, where Λ

(0)
n corresponds to the approximation (3.17), one can parametrise t in

the neighbourhood of the poles as t = −iΛ(0)
n − iδΛn + δt, and expand the characteristic

function in δt. Obviously, the function cannot be probed on scales smaller than δΛn, so one

assumes in fact δΛn � δt � Λ
(0)
n , and performs a double expansion in δΛn and δt under

these conditions. By identification with eq. (2.16), the residues can then be extracted, and
one obtains

awide
n (φ) = −(−1)n

π

µ2
2 (n+ 1) e

αφuv
2v0MPl

x
sin [π (n+ 1) (x− 1)] . (3.19)

One notices that the structure is similar to, though different from, the one for a flat po-
tential (3.5). In particular, the exponential term gives a strong enhancement, because of
eq. (3.18).

Narrow-well limit φuv/MPl � v0/α. In the opposite limit where a� 1, | tan(z)/z| �
1, which implies that z must be close to π/2 + nπ, where n is an integer number. One
can write z = π/2 + nπ + δz, and expand tan(z) ' −1/δz + δz/3 + · · · . Plugging this
formula into the transcendental equation, and expanding in powers of 1/a, one obtains δz '
1/[2πa(n+ 1/2)] + · · · , which gives rise to

Λnarrow
n =

π2

µ2

[(
n+

1

2

)2

+
αφuv

π2v0MPl

+ · · ·
]
, (3.20)

where “· · · ” denotes higher powers in αφuv/(v0MPl), so this approximation indeed holds in
the regime

φuv

MPl

� v0

α
. (3.21)

The formula (3.20) is compared with a numerical solution of eq. (3.16) in figure 6, where one
can check that, as long as eq. (3.21) is valid, it indeed provides a good approximation.
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By comparing eqs. (3.4) and (3.20), one can see that the difference with the flat-potential
case is negligible: adding a slope in the narrow-well regime only shifts the spectrum by a
correction, αφuv/(v0MPl), which is, by definition, tiny in that regime. The same procedure as
the one outlined above eq. (3.32) can also be performed in order to extract the an functions.
At leading order in αφuv/(v0MPl), one exactly recovers eq. (3.9), which finishes to prove that
the narrow-well regime in fact corresponds to the flat-potential limit. Since eq. (3.21) can
also be interpreted as an upper bound on α, this result makes sense.

Comparison with the classical result. The classical value of the power spectrum,
Pζ,cl = 2v3/(M2

Plv
′2), in this model, is given by Pζ,cl ' 2v0/α

2. Since Λ0 = α2/(4v0) in
the wide-well regime, the dominant behaviour on the tail can thus be written as

Pwide
φ (N ) ∝

N�1
exp

(
−1

2

N
Pζ,cl

)
. (3.22)

By comparison, in the classical picture, eq. (2.12) gives rise to

Pφ(N )|cl ∝N�1
exp

(
−1

2

N 2

Pζ,clNcl

)
, (3.23)

where Ncl is the classical number of e-folds that arises from the integration over k in eq. (2.12),
which can trivially be performed since Pζ,cl is independent of φ in the almost-constant ap-
proximation. Two remarks are in order. First, as mentioned above, as soon as N � Ncl, the
amount of power on the tail is greatly enhanced in the full stochastic theory compared to
the classical, Gaussian approximation. Second, the similarity between eqs. (3.22) and (3.23),
which coincide for N = Ncl, is an illustration of the resemblance between the classical and the
full stochastic theory for a linear potential. Indeed, as shown in ref. [62], the classical limit
can be obtained from the full stochastic PDF by a saddle-point expansion, where higher-order
corrections involve either v, which is always small, or derivatives of the potential of order 2
or higher, which vanish in the present case. For instance, the classical number of e-folds is
given by Ncl =

∫ φ
φend

v/v′dφ̃/M2
Pl, which, in the almost-constant approximation, reduces to

Ncl =
φ− φend

αMPl

. (3.24)

In the full stochastic theory, by Taylor expanding the exponential function in the first equality
of eq. (2.13), one can see that the mean number of e-folds can be obtained from differentiating
the characteristic function with respect to t, and evaluating the result at t = 0. Making use
of eq. (3.14), one obtains

〈N〉 = −i ∂χN (t, φ)

∂t

∣∣∣∣
t=0

(3.25)

= Ncl +
v0

α2

[
e
− α
v0MPl

(φuv−φend) − e−
α

v0MPl
(φuv−φ)

]
. (3.26)

In the wide-well regime, i.e. when the condition (3.18) is satisfied, the second term in the
above expression is exponentially suppressed (unless one starts at a value of φ very close to
φuv), and

〈N〉wide ' Ncl. (3.27)
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In the narrow-well regime however, the effect of the boundary located at φuv is not negligible
anymore, and expanding eq. (3.26) in the limit (3.21), one finds

〈N〉narrow '
(φ− φend) (2φuv − φ− φend)

2M2
Plv0

, (3.28)

which is very different from, and in fact much smaller than, its classical counterpart (3.24).

3.2.2 Eigenvalue problem

The eigenvalue problem is analogous to solving the equation for χN (t, φ), eq. (3.13); there is
no general solution. In the almost-constant approximation,

Ψ′′n (φ)− α

MPlv0
Ψ′n (φ) +

Λn
v0M2

Pl

Ψn (φ) = 0 , (3.29)

the solution reads

Ψn (φ) = e
αφ

2MPlv0

(
An exp

i

√
v0Λn−α2

4
φ

v0MPl +Bne
−i
√
v0Λn−α2

4
φ

v0MPl

)
. (3.30)

The first boundary condition imposesBn = −An, and the second one implies the transcenden-
tal equation (3.16), which has solution (3.17) in the wide-well limit (3.18), and solution (3.20)
in the narrow-well limit (3.21). The eigenfunctions are thus given by

Ψn (φ) =

√
2

φuv
exp

(
αφ

2MPlv0

)
sin

(√
v0Λn −

α2

4

φ

v0MPl

)
, (3.31)

which boils down to eq. (3.8) if α = 0, and where the eigenfunctions have been normalised

in the (extended) sense that 〈Φ(−α)
n ,Φ

(α)
m 〉 = δn,m.

The coefficients in the expansion (2.11), αn, can be determined by following the proce-
dure outlined at the end of section 2.3, where in eq. (2.26), our extended scalar product has

to be used, i.e. αn = 〈Ψ(−α)
n (φ), a

(α)
n (φ)〉. In the wide-well regime, this leads to

αwide
n =

2π

µ2
(n+ 1)

√
φuv

2
. (3.32)

Notice that it is similar to eq. (3.9) for a flat potential, the only difference being that n+ 1/2
is replaced by n+ 1. Combining the above results, the PDF can be approximated as

Pwide
φ (N ) = 2

π

µ2
e

αφuv
2v0MPl

φ
φuv

∞∑

n=0

n sin

(
πn

φ

φuv

)
e
−
(
α2

4v0
+n2 π2

µ2

)
N
. (3.33)

One notices that the structure of the result is very similar to the one for a flat potential,
eq. (3.10), if one replaces n+ 1/2 by n in the sum, with the crucial difference that, now, the
tails are suppressed by an additional e−α

2N/(4v0) factor. As for eq. (3.10), the result can be
expressed in terms of the derivative of an elliptic theta function

Pwide
φ (N ) = − π

2µ2
e

αφuv
2v0MPl

φ
φuv e

− α2

4v0
N
ϑ′3

(
πφ

2φuv
, e
−π2

µ2N
)
. (3.34)
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Figure 7. Schematic representation of the inflection (left) and tilted inflection (right) point potentials
studied in sections 3.3 and 3.4 respectively. We solve the stochastic evolution between φend and
φuv. The region where quantum diffusion dominates, of width ∆φwell, can be approximated by a
flat potential or a constant-slope potential respectively, and is determined by the non-classicality
criterion (3.37).

In the narrow-well limit, as explained above, the flat-potential formulas are recovered, hence
one obtains eq. (3.9), and the flat-potential PDF (3.10) is obtained, up to small corrections
suppressed by φuvα/(MPlv0).

Let us finally recall that the above results have been derived in the almost-constant
approximation, which holds when φuv � MPl/α. To go beyond, one can employ the WKB
approach outlined in appendix B, in which a slightly different transcendental equation has
to be solved.

In summary, for a potential with a constant slope α over a certain field range φuv, either
the range is narrow in the sense that φuv/MPl � v0/α, and the potential can be approximated
as constant, such that the results of section 3.1 can be used; or the range is wide in the sense
that φuv/MPl � v0/α, and the PDF receives a strong suppression e−α

2N/(4v0) on its tail
compared to the flat potential case.

3.3 Inflection point potentials

The toy models analysed in the two previous sections, the flat potential in section 3.1 and the
constant-slope potential in section 3.2, can serve as building blocks to study more realistic
scenarios, that we now investigate in the two following sections. The first one is a potential
with a flat inflection point located at φ0, as schematically displayed in the left panel of
figure 7. In practice, we consider for simplicity a cubic potential

v (φ) = v0

[
1 + β

(
φ− φ0

MPl

)3
]
, (3.35)

although our conclusions can be easily generalised to other odd powers. Without loss of
generality, we assume β > 0, so the potential is positive when x > −β−1/3, where we
have defined

x ≡ φ− φ0

MPl

. (3.36)
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The inflaton is assumed to evolve in the field range comprised between φend, where inflation
ends, and an upper bound value φuv.

The potential being exactly flat around φ0, stochastic effects dominate in the neigh-
bourhood of the inflection point. More precisely, in refs. [54, 62], it is shown that, in general,
when the condition

v′′ v2

v′2
� 1 (3.37)

holds, the potential can be assumed to be exactly flat (hence dominated by quantum diffu-
sion), while when the opposite condition applies, the dynamics of the inflaton is essentially
classical. The condition (3.37) is saturated at a value of x such that |x| = [2v0/(3β)]1/3 ≡
∆φwell/(2MPl), which defines the width

∆φwell

MPl

= 2

(
2

3

v0

β

)1/3

(3.38)

of the field range dominated by stochastic diffusion. In other words, the inflection point
potential can be approximated as being exactly flat over a field interval (that we call the
“quantum well”) centred at the inflection point and of width given by ∆φwell, and outside
this range, as giving rise to purely classical dynamics. The situation is depicted in figure 7.

As a consequence, if φuv is set far outside the quantum well, which is what we do in
practice, it does not affect the PDF of the number of e-folds and it becomes an irrelevant
parameter. If φend lies outside the quantum well, a constant, deterministic number of e-
folds is realised between the exit of the quantum well and φend, so it only shifts the PDF of
the number of e-folds by a constant value.

Slow-roll conditions. A few words are in order regarding the slow-roll conditions. Since
βx3 ∝ v0 at the boundaries of the quantum well, and given that v0, which measures the
potential energy in Planckian units, must be much smaller than 1, the potential is almost
constant over the quantum well, and the potential slow roll parameters in that region are
controlled by vx/v ' 3βx2, and vxx/v ' 6βx. Computing these two quantities at the edges

of the quantum well, one finds β1/3v
2/3
0 and β2/3v

1/3
0 respectively, so the quantum well is

within the slow-roll regime as long as

β � 1√
v0
. (3.39)

This does not guarantee that the full field range comprised between φend and φuv is within
the slow roll regime, but given that, as soon as φend and φuv are outside the quantum well,
they do not (or only trivially) affect the PDF we are aiming to compute, the condition (3.39)
is sufficient in practice.

Let us also mention that, if β � 1, then the potential slow-roll conditions are always
satisfied above the inflection point, i.e. for all x ≥ 0. If this is not the case however, i.e. if
1 � β � 1/

√
v0, slow roll is strongly violated around x ∼ β−1/3, so starting from an initial

large-field value, one could enter the quantum well away from the slow-roll attractor, even
though a slow-roll solution exists there [77]. This is why, here, we view eq. (3.35) only as
an expansion of the potential around the flat inflection point, and assume that, at large-field
values, the potential is modified such that one always approaches the quantum well with
initial conditions located on the slow-roll attractor. In any case, as explained in section 2,
stochastic inflation can be formulated in full phase space, which could allow one to study
setups where slow roll is explicitly violated.

– 18 –



J
C
A
P
0
3
(
2
0
2
0
)
0
2
9

Flat quantum-well approximation. The PDF of the number of e-folds realised in the
potential (3.35) can be computed numerically, by solving eq. (2.15) for the characteristic
function and Fourier transforming the result along eq. (2.14). Below, we will compare this
result with the approximation outlined above, where the dynamics is classical outside the
quantum well, and undergoes pure quantum diffusion inside the well. In this approximation,
starting from a certain initial field value φ inside the quantum well, one can write the realised
number of e-folds as

N = Nwell (φ) +Ncl (φ0 −∆φwell/2→ φend) , (3.40)

where the PDF ofNwell(φ) has been computed in section 3.1, and Ncl (φ0 −∆φwell/2→ φend),
which we will simply denote Ncl in what follows, stands for the classical, deterministic number
of e-folds realised between the exit of the quantum well, at φ = φ0 −∆φwell/2, and the end
of inflation. Therefore, the PDF of N is given by

Pφ (N ) = P flat
φ (N −Ncl) , (3.41)

where P flat
φ is given by eq. (3.10) with ∆φwell given by eq. (3.38). If one starts from an initial

value of φ located beyond the quantum well, i.e. φ > φ0 + ∆φwell/2, then one simply has to
add another classical contribution to the total number of e-folds, i.e.

N = Ncl (φ→ φ0 + ∆φwell/2) +Nwell (φ0 + ∆φwell/2) +Ncl (φ0 −∆φwell/2→ φend) ,
(3.42)

which we simply write as N = Ncl +Nwell(φ0 + ∆φwell/2), and this gives rise to

Pφ (N ) = P flat
φ0+∆φwell/2

[N −Ncl (φ)] . (3.43)

Shifting the PDF by a constant number of e-folds does not change its decay rates, so
the eigenvalues Λn are given by eq. (3.4), and making use of eqs. (3.3) and (3.38), one obtains

Λn =

(
9v0β

2

4

)1/3
π2

4

(
n+

1

2

)2

. (3.44)

Let us stress that, because of the slow-roll condition (3.39), v0β
2 � 1, the first eigenvalues

are necessarily small, which means that the tails are very much unsuppressed in this model.
This will have strong consequences for PBH formation, that we will discuss in section 4. The
way that the coefficients an in the expansion (2.17) change under a constant shift in the
number of e-folds is also trivial to establish, and this leads to

an (φ) = aflat
n (φ) eΛnNcl

= (−1)n
π

4

(
9

4
v0β

2

)1/3

(2n+ 1) cos

[
π

2
(2n+ 1)

(
φ− φ0

∆φwell
− 1

2

)]
eΛnNcl ,

(3.45)

where we have made use of eq. (3.5) to evaluate aflat
n . This gives rise to

Pφ (N ) =
π

4

(
9

4
v0β

2

)1/3∑

n

(−1)n (2n+ 1)

× cos

[
π

2
(2n+ 1)

(
φ− φ0

∆φwell
− 1

2

)]
e
−
(

9v0β
2

4

)1/3
π2

4 (n+ 1
2)

2
(N−Ncl)

,

(3.46)
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Figure 8. Tail of the PDF of the number of e-folds, Pφ(N ) ' a0(φ)e−Λ0N , for the flat inflection-
point potential (3.35). The left panel displays the decay rate Λ0 as a function of v0 and for a few
values of β. The symbols stand for the full numerical results, while the solid lines stand for the flat
quantum-well approximation, eq. (3.44). The right panel shows the amplitude a0(φ) for different
v0 and β. There, the solid lines stand for the full numerical result, and the dashed lines for the
flat quantum-well approximation, eq. (3.45). In order to satisfy the slow-roll conditions we choose
(φuv − φ0)/MPl = 1/β1/3, φend = 0 and φ0/MPl = ∆φwell/2 + 0.3/

√
β.

which can be rewritten in terms of the first elliptic theta function,

Pφ (N ) =
π

8

(
9

4
v0β

2

)1/3

ϑ′1


π

2

(
φ− φ0

∆φwell
− 1

2

)
, e
−
(

9v0β
2

4

)1/3
π2

4
(N−Ncl)


 . (3.47)

The above expressions are derived assuming that one starts from inside the well, otherwise,
φ has to be replaced with φ0 + ∆φwell/2 if φ > φ0 + ∆φwell/2.

These expressions are compared with a full numerical result in figure 8. One can see
that the leading decay rate, Λ0, and the behaviour of a0(φ) close to the flat inflection point
at φ ∼ φ0, are accurately reproduced by our approximations (3.44) and (3.45). At the edges
of the quantum well, i.e. when φ − φ0 = ±∆φwell/2, the approximation for a0 starts to
deviate from the numerical result, as expected. This otherwise confirms the validity of the
approach presented here. Notice that since the expression for ∆φwell comes from saturating
the condition (3.37), ∆φwell in eq. (3.38) is only defined up to an overall constant of order
one, hence so is the case of Λn in eq. (3.44) and of an in eq. (3.45).

In figure 9, we also display the full PDF, computed numerically from solving eq. (2.15)
for the characteristic function and Fourier transforming the result along eq. (2.14). The
result is compared with the leading-tail expansion Pφ(N ) ' a0(φ)e−Λ0N , where Λ0 and a0

are obtained numerically from searching for the first pole of the solution to eq. (2.15). Let
us note that, when doing so, the fact that eq. (3.44) provides a good approximation to the
pole location Λ0 turns out to be very convenient, since it sets an initial value around which
to look for the pole, which greatly simplifies the computational problem. One can check that
the leading-tail expansion provides an excellent approximation to the full PDF on its tail,
as expected. On the other hand, the dotted lines, representing the flat approximation given
by a0(φ) and Λ0 in eqs. (3.45) and (3.44) respectively, show that these simple, analytical
formulas provide the right order of magnitude for the amplitude and decay rate of the tail.
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Figure 9. Probability distribution function of the number of e-folds N realised in the flat inflection-
point potential (3.35), starting from different initial field values φ labeled in the colour bar. The
solid lines stand for the full PDF, while the dashed lines correspond to the leading term in the tail
expansion, Pφ(N ) ' a0(φ)e−Λ0N . Both are obtained from numerically solving eq. (2.15). On the
contrary, the dotted lines represent the leading term in the flat approximation using the analytical
expression for a0(φ) and Λ0 given in eqs. (3.45) and (3.44) respectively. To make the comparison with
figure 4 easy, the number of e-folds is rescaled by µ2 = ∆φ2

well/(v0M
2
Pl), where ∆φwell is the width

of the region where quantum diffusion dominates, and is given by eq. (3.38). In order to satisfy the
slow-roll condition (3.39), we have chosen v0 = 0.01, β = 0.01, (φuv−φ0)/MPl = 1/β1/3, φend = 0 and
φ0/MPl = ∆φwell/2 + 0.3/

√
β. One can see that the analytic, flat approximation accurately predicts

the amplitude of the tail with a small deviation in the slope.

3.4 Tilted inflection-point potentials

We now consider the possibility that the inflection point is not exactly flat, i.e. v′′ = 0 at
φ = φ0 but v′ 6= 0. Tilted-inflection point potentials of this class [78, 79] can be constructed
by adding a linear slope to our previous cubic potential (3.35), i.e.

v (φ) = v0

[
1 + α

(
φ− φ0

MPl

)
+ β

(
φ− φ0

MPl

)3
]
, (3.48)

where we assume α ≥ 0 and β ≥ 0. The region of the potential where quantum diffusion
dominates still has to be determined from the criterion (3.37). The quantity v′′v2/(v′)2

vanishes at the inflection point x = 0. Around this point, if α and β are small, there is always
a slow-roll region where v ' v0. In this regime, v′′v2/(v′)2 is maximal at x = ±

√
α/β/3,

where its value is 9v0
√
β/(8α3/2). Two cases need therefore to be distinguished, depending

on whether this quantity is smaller or larger than one.

3.4.1 A single constant-slope well

In the case where

α� (v2
0β)1/3, (3.49)

there is no region where the potential can be approximated as quasi constant, since v′′v2/(v′)2

is never larger than one. So there is no almost-constant quantum well of the kind studied
in section 3.1. When |x| �

√
α/(3β) however, the potential slope is almost constant, so the
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Figure 10. Tail of the PDF of the number of e-folds, Pφ(N ) ' a0(φ)e−Λ0N , for the tilted inflection-
point potential (3.48). The left panel displays the decay rate Λ0 as a function of v0 for a few values
of α and β. The symbols stand for the full numerical results, while the solid lines stand for the
linear wide-well approximation, eq. (3.52). The right panel shows the amplitude a0(φ) for different
v0, α and β. There, the solid lines stand for the full numerical result, and the dashed lines for the
linear wide-well approximation, eq. (3.53). In order to satisfy the slow-roll conditions we choose
(φuv − φ0)/MPl = φ0/MPl = 0.1/α and φend = 0.

results derived in section 3.2 can be applied, over a field range of width

∆φwell ' 2MPl

√
α

3β
. (3.50)

Let us note that this well falls far within the almost constant regime, where both αx and
βx3 are much less than one, if α� β1/3, and the potential slow-roll conditions, MPlv

′/v � 1
and M2

Plv
′′/v � 1, reduce to

α� 1 , αβ � 1 , (3.51)

inside the wells.
The relation (3.50) gives rise to ∆φwellα/(MPlv0) = 2α3/2/(3βv0)1/2, which is much

larger than one because of eq. (3.49). This means that the condition (3.18) is satisfied, hence
we are in the wide-well regime. This implies that eq. (3.17) applies, namely

Λn '
α2

4v0
+
π2v0M

2
Pl

∆φ2
well

(n+ 1)2 , (3.52)

together with eq. (3.19), namely

an(φ) ' −(−1)n
πv0M

2
Pl

∆φ2
well

2 (n+ 1) e
α∆φwell
2v0MPl

(
φ−φ0

∆φwell
+ 1

2

)
sin

[
π (n+ 1)

(
φ− φ0

∆φwell
− 1

2

)]
, (3.53)

with a possible additional correction eΛnNcl if a classical number of e-folds is realised before
of after the well, as in eq. (3.45). Combined together, eqs. (3.52) and (3.53) lead to the PDF

Pφ(N ) = − πv0M
2
Pl

2∆φ2
well

e
α∆φwell
2v0MPl

(
φ−φ0

∆φwell
+ 1

2

)
e
− α2

4v0
(N−Ncl)

× ϑ4
′
[
π

2

(
φ− φ0

∆φwell
− 1

2

)
, e
−π

2v0M
2
Pl

∆φ2
well

(N−Ncl)
]
.

(3.54)
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The above approximated formulas for Λ0 and a0 are compared with a full numerical
solution in figure 10. On the left panel, one can see that Λ0 is accurately reproduced, while on
the right panel, only the generic trend and order of magnitude of a0 are accounted for. This
is because, as already mentioned, the effective values of ∆φwell, derived from the saturation
of the non-classicality criterion (3.37), provide estimates up to factors of order one only. The
way they enter the PDF for a flat inflection point, i.e. the way ∆φwell appears in eq. (3.46),
is such that this uncertainty produces order-of-one errors in the amplitude of the PDF.
However, for a tilted inflection-point in the regime of eq. (3.49), ∆φwell enters exponentially
in the amplitude of the PDF, see eq. (3.53). This implies that these order-one corrections
are exponentiated, potentially leading to more substantial corrections in the amplitude of
the tail. Let us however stress that our determination of Λn does not suffer from this issue,
and that, as mentioned above, since it provides a first guess for the location of the pole, it
plays a crucial role in the numerical determination of the poles and of their residues.

3.4.2 From two quantum wells separated by a constant slope, to a single quan-
tum well

If the condition

α� (v2
0β)1/3 (3.55)

is realised, there exist two regions where v′′v2/(v′)2 is larger than one, namely for x ∈
[−x+,−x−] and x ∈ [x−, x+], where

x− '
α2

6βv0

(
1 +

α3

6βv2
0

+ · · ·
)
,

x+ '
∆φwell

2

[
1−

(
2α3

34βv2
0

)1/3

+ · · ·
]
,

(3.56)

with ∆φwell given in eq. (3.38) and where “· · · ” denotes higher powers of α3/(βv2
0). In the

limit of eq. (3.55), one has x− � x+, so the two wells are almost adjacent. By computing
the relative importance of the terms βx3 and αx at the point ±x−, one notices that it is
proportional to α3/(βv2

0), hence it is very small because of eq. (3.55). Therefore, in the
interval [x−, x+], the potential is of the quasi constant-slope type. One has therefore three
wells in series: a first quasi-constant well between x+ and x−, a quasi constant-slope well
between x− and −x−, and a second quasi-constant well between −x− and −x+.

Let us note that, if eq. (3.55) is satisfied, these wells are far within the almost constant
regime where both αx and βx3 are much less than one, and the potential slow-roll conditions,
MPlv

′/v � 1 and M2
Plv
′′/v � 1, reduce to

α� 1 (3.57)

and to eq. (3.39) inside the wells.
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Figure 11. Probability distribution function of the number of e-folds N realised in the tilted
inflection-point potential (3.48), starting from the inflection point φ = φ0, as a function of the lin-
ear slope α. We compare the full PDF (solid lines) with the leading tail expansion (dashed lines),
Pφ(N ) ' a0(φ)e−Λ0N , and the linear wide-well approximation given by eq. (3.52) and eq. (3.53). The
α-term suppresses the tail of the PDF at large N . We choose v0 = 5 · 10−3 and β = 10−3, such that
the condition (3.49) applies, and (φuv − φ0)/MPl = φ0/MPl = 0.1/α and φend = 0.

The width of the constant-slope well is given by ∆φwell/MPl = 2x− = α2/(3βv0). One
therefore has ∆φwellα/(MPlv0) = α4/(3βv2

0), which is much smaller than one because of
eqs. (3.55) and (3.57). As a consequence, the constant-slope well is in the narrow-well regime,
in the sense of eq. (3.21). According to the considerations of section 3.2, this means that we
are in fact in the presence of a quasi-constant potential, so the three wells in series are in effect
a single, almost-constant well, with a width given by ∆φwell = 2MPlx+, i.e. by eq. (3.38).
One concludes that, in that case, the same results as those derived in section 3.3 apply.

In summary, when a tilt is introduced into a flat inflection-point model, as long as the
slope α is smaller than the bound (3.55), it has no effect. When it is larger, it changes the
almost constant well into an almost constant-slope well, and adds a contribution α2/(4v0)
to the eigenvalues, hence suppresses the tails. This can be clearly seen in figure 11, where
the PDF of the number of e-folds is shown for various values of the slope α [notice that,
as in figure 10, in the linear wide-well approximation, only the order of magnitude of the
amplitude of the tail is correctly reproduced, while its decay rate is accurately accounted for,
see the discussion below eq. (3.53)].

4 Implications for primordial black hole formation

We have seen that quantum diffusion makes the tail of the PDF of the duration of infla-
tion decay exponentially with the number of e-folds. We have exemplified this phenomenon
with several toy models including flat, linear, flat inflection-point and tilted inflection-point
potentials. The non-Gaussian nature of the tail of the PDF introduces important differ-
ences with the standard classical picture of quasi-Gaussian distributions, which translates
into important differences for the predicted amount of PBHs, that we now discuss.

In order to relate the coarse-grained curvature perturbation with the number of e-folds,
one can use the relation (2.10), where the mean number of e-folds can be computed directly
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from the characteristic function by making use of eq. (3.25).2 By integrating the PDF (2.17)
above the threshold Nc = 〈N〉+ ζc, one obtains from eq. (1.1) the mass fraction of PBHs,

βf(φ) =
∑

n

1

Λn
an(φ) e−Λn[ζc+〈N〉(φ)] . (4.1)

This should be contrasted with the standard classical result, where eq. (2.12) gives rise to

βcl
f (φ) =

∫ kend

k̄(φ)
Pζ,cld ln k
√

2πζc

exp


− ζ2

c

2
∫ kend

k̄(φ)
Pζ,cld ln k


 , (4.2)

which depends exponentially on the square of ζc, rather than on ζc directly as in eq. (4.1),
and which leads to estimates of the mass fraction that can be orders of magnitude away from
the actual result (4.1) (see figure 14 below for a particular example). Let us now review the
potentials discussed in section 3.

Flat potential. In a flat potential, in the notations of section 3.1, the mean number of e-
folds is given by 〈N〉 = µ2x(1−x/2), which also corresponds to the α→ 0 limit of eq. (3.26).
Using the formulas derived in section 3.1, eq. (4.1) gives rise to

βf(φ) =
∑

n

4

(2n+ 1)π
sin

[
π

2
(2n+ 1)x

]
e
−π2(n+ 1

2)
2
[
ζc
µ2 +x(1−x

2
)
]
. (4.3)

This expression is always well approximated by its first term, and one can see that for PBHs
not to be over produced, one needs to impose

µ�
√
ζc , (4.4)

in agreement with the conclusions of ref. [62]. This places an upper bound on the width, or
a lower bound on the height, of flat sections in the potential.

Constant-slope potential. In a constant-slope potential, two regimes have to be distin-
guished. In the narrow-well regime, defined by eq. (3.21), the same results as for the flat
potential apply, and one recovers eq. (4.4). In the wide-well regime, defined by eq. (3.18), the
mean number of e-folds is given by eq. (3.24), and using the results of section 3.2, eq. (4.1)
gives rise to

βwide
f (φ) =

8v0π

α2µ2

e
α

4v0

(
φuv
MPl

x−αζc
)

1 + 4π2 v
2
0M

2
Pl

α2φ2
uv

(n+ 1)2

×
∑

n

(−1)n+1(n+ 1) sin [π(n+ 1)(x− 1)] e
−π2(n+1)2

(
ζc
µ2 +x

v0MPl
αφuv

)
.

(4.5)

2Alternatively, the mean number of e-folds can be obtained by solving the differential equation [54]

〈N〉′′ − vφ
v2
〈N〉′ + 1

vM2
Pl

= 0 ,

with boundary conditions 〈N〉(φend) = 〈N〉′(φuv) = 0. This equation follows directly form the definition
of the characteristic function (2.13) and the differential equation (2.15) it satisfies. Combining eqs. (2.16)
and (3.25), one also has

〈N (φ)〉 =
∑
n

an(φ)

Λ2
n

.
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Figure 12. PBH abundance βf(φ) in a flat inflection-point potential. Left panel: βf(φ) is displayed as
a function of the initial field value φ for ζc = 1 and different choices of the combination of parameters
v0β

2, which controls the tail of the PDF, see eq. (4.7). The solid lines stand for a full numerical result,
the dashed lines for the numerical result if only the dominant term is kept in the tail expansion (4.1),
and the dotted lines to the constant-well approximation, i.e. to eq. (4.3) with µ given by eq. (4.7).
For the plot we fix v0 = 10−2 and vary β. Right panel: contour plot of βf(φ) as a function of
the parameters v0 and β for ζc = 1. The grey shaded region corresponds to where the slow-roll
approximation does not hold across the entire range φ0 − ∆φwell/2 to φ0 + ∆φwell/2, i.e. to where
eq. (3.39) is not satisfied. One can see that, when slow roll is satisfied, PBHs are overproduced.

In the limit of eq. (3.18), the argument of the overall exponential always dominates over
the one of the exponential in the sum (at least for the first few terms), so in order to avoid
overproduction of PBHs in this model, one must have

α� max

(√
v0,

φuv

MPl

)
. (4.6)

Flat inflection-point potential. As explained in section 3.3, a flat inflection-point po-
tential is equivalent to a flat potential with ∆φwell given by eq. (3.38), i.e. µ given by

µ2 = 4

(
2

3β
√
v0

)2/3

. (4.7)

This parameter is necessarily large because of the slow-roll condition (3.39), so according
to the above considerations, see eq. (4.4), βf is large in this model, which is confirmed by
the numerical results displayed in figure 12. We therefore reach the interesting conclusion
that PBHs are always overproduced in a flat inflection point potential, if one approaches the
inflection point along the slow-roll attractor.

This is also consistent with the results of ref. [62], see section 5.4 of that reference,
where the same conclusion was reached for potentials of the type v = v0(1 + αφp), although
these potentials were restricted to positive field values. This suggests that our findings are
independent of the order of the polynomial (here cubic) that realises the flat inflection point.

Tilted inflection-point potential. If the inflection-point potential is tilted with a slope
α smaller than the upper bound (3.55), the effect of the slope is negligible and one recov-
ers a quasi flat inflection-point potential, which we just saw overproduces PBHs. If α is
larger however, such that the condition (3.49) is satisfied, one recovers an almost constant-
slope potential in the wide-well regime, with ∆φwell given by eq. (3.50). This implies that
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Figure 13. PBH abundance βf(φ) for a tilted-inflection point potential as a function of the slope α
for ζc = 1. The combination v0β/α

3 is shown in the colour bar, and is such that the condition (3.49)
applies (otherwise, the model would be equivalent to a flat inflection-point potential). We set β =
50α3, such that the slow-roll validity condition, eq. (3.51), reads α � 0.3, and the region violating
slow roll is shaded in grey. The bounds φend and φuv are set according to φuv − φ0 = φ0 = 0.1MPl/α
and φend = 0. We also evaluate βf(φ) at different initial field values φ indicated by the solid/dashed
lines. When φ > φ0 one either overproduces PBHs or violates the slow-roll condition.

αMPl/∆φwell ∝
√
αβ, which is much smaller than one because of eq. (3.51). Therefore, the

second of the conditions (4.6) is not satisfied, and PBHs are overproduced too. This is con-
firmed by the numerical results of figure 13 where one can check that, when φ 6= φ0, βf > 1 as
soon as the slow-roll conditions are satisfied (this explains why all the solid curves intersect
at around the same point, where βf ∼ 1, and at the boundary of the slow-roll condition).
As a consequence, the previous conclusion extends to tilted inflection-point models: PBHs
are always overproduced if one approaches the inflection point without violating slow roll.
In addition, we compare in figure 14 the PBH abundance obtained by solving the full PDF,
with the Gaussian approximation. Because the latter does not capture the exponential tail,
it underestimates βf by many orders of magnitude.

5 Discussion

Primordial curvature perturbations set the initial conditions for the standard model of cos-
mology. At large scales they determine the seeds of the cosmic structures we observe in the
anisotropies of the CMB. This gives us precise measurements of the amplitude and tilt of the
primordial power spectrum, as well as constraints on the leading-order non-Gaussian correc-
tions, in the ∼ 7 e-folds range of inflation where the scales observed in the CMB cross out
the Hubble radius. At small scales, however, non-linear structures in the universe prevent us
from probing the nature of the primordial fluctuations. This leaves most of the inflationary
potential after the CMB scales are generated unconstrained.

One possible tracer of the late-time inflationary evolution is PBHs. If the curvature
perturbations are sufficiently large, they collapse upon horizon reentry during the radiation-
dominated era. Their mass is associated with the horizon size at the time of reentry, which
can be linked to the time when the curvature perturbations are generated during inflation.
Therefore, by measuring the abundance of PBHs and their mass spectrum one could recon-
struct the behavior of the primordial curvature perturbations at scales much smaller than
those probed by the CMB.
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Figure 14. Comparison of the full calculation of the probability density function (PDF) of the
curvature perturbations with the Gaussian approximation. On the left panel we present the PDF as
a function of the number of e-folds N for different initial field values φ. The Gaussian approximation
does not capture the exponential decay of the tail. As shown in the right panel, this leads to a
very significant difference in the abundance of PBHs βf(φ). For this example we have chosen a tilted
inflection-point potential with v0 = 10−3, α = 0.24, β = 9, φuv − φ0 = φ0 = 0.7MPl/α and φend = 0,
consistent with the slow-roll approximation.

Since PBHs form from rare, large curvature perturbations, in this work we have ex-
plored how to properly compute the tail of their distributions. We have developed a novel
approach to compute these tails, from the poles and residues of the characteristic function
that is derived in the stochastic-δN formalism. Contrary to the standard, classical calcu-
lation, in which the tails decay in a Gaussian way (with possible polynomial modulations,
if fNL or gNL-type corrections are included), we have found that these tails have in fact an
exponential decay.

Let us mention that some inflationary models are already known to display a χ-square
statistics for the curvature perturbation, such as models of axion inflation in which the
gauge field sources the curvature perturbations [40], and that the implications of a χ-square
distribution for the gravitational wave signature have been studied in detail in ref. [41].
However, here, the presence of exponential tails has been found even in single-field, slow-roll
inflationary scenarios. For such models, we have found simple analytical approximations
that capture the behaviour of the tails of the PDF, as well as developed efficient numerical
techniques to compute them precisely. This allowed us to properly estimate the abundance
of PBHs associated with each model. Note that because of the exponential decay of the tail,
the difference with the Gaussian approximation can be of many orders of magnitude as we
exemplify in figure 14.

We have found that potentials featuring regions where quantum diffusion dominates
over the classical roll of the field can be either approximated by locally constant potentials,
or by locally constant-slope potentials. In the first case, the requirement that PBHs are not
overproduced places an upper bound on the squared width of the flat region, divided by its
height, see eq. (4.4). In the second case, both the width and the height are bounded from
above, see eq. (4.6). When applied to inflection-point potentials, regardless of whether the
inflection point is flat or tilted, these conditions cannot be satisfied unless slow roll is violated
when approaching the inflection point. This is therefore one of the main results of our work:
inflection-point models that do not feature slow-roll violations overproduce PBHs.

Natural extensions of this work would therefore be to consider potentials in which the
field trajectories leave the inflationary slow-roll attractor. As explained in section 2, the
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stochastic-δN formalism can be formulated in full phase space [76, 80], in which the pole
and residue approach presented here still applies. Similarly, multiple-field scenarios could be
analysed with the same techniques.

Finally, it is important to emphasise the universality of our results. The tail of the
distribution function of the coarse-grained curvature perturbation ζcg induces non-Gaussian
deviations, in the form of exponential tails, on all scales, with amplitude an(φ) and exponen-
tial decay Λn. This is because, in a given inflationary model, Λn is fixed (it does not depend
on φ) while an(φ) depends on the scale at which ζcg exits the Hubble radius. Therefore,
there is an exponential tail across the whole spectrum of modes, with the same decay rate,
although its amplitude depends on the specific inflationary dynamics associated with each
scale. For plateau-like potentials for instance, these non-Gaussian effects may be significantly
relevant, as in the case of quasi-inflection point models for PBH production.

Even if on large scales (probed in the CMB and in the large-scale structures), the
effect of exponential tails may be negligible in most models (although this remains to be
checked explicitly), on intermediate scales, corresponding to small halos, e.g. Lyman-alpha
scales, or even smaller, like ultra-compact mini halos, the exponential tail effects may become
very relevant. In particular, they could induce an enhancement of the non-linear collapse of
structures on small scales that could have important consequences for large-scale structure
formation, and thus for interpreting data from future surveys like DESI, Euclid and LSST.
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A Coarse-grained curvature perturbation

If a large fluctuation of the curvature perturbation appears across a Hubble patch, this patch
may collapse and form a black hole. For causality reasons, it is often argued that whether or
not this occurs can only depend on the value of the curvature perturbation inside the patch.
This is why the coarse-grained curvature perturbation, defined as the mean value of the
curvature perturbation over a Hubble patch, of comoving volume (aH)3, is usually considered,

ζcg(x) = (aH)3

∫
dyζ(y)W (aH |y − x|) , (A.1)

where W is a window function such that W (x) ' 1 if x � 1 and W (x) ' 0 if x � 1, and
normalised in the sense that 4π

∫∞
0 x2W (x)dx = 1, such that after coarse graining, a constant

field remains a constant field of the same value. A usual criterion for PBH formation is that
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when ζcg(x) exceeds a certain threshold ζc, the Hubble patch centred on x collapses and
forms a black hole.

The Fourier transform of this coarse-grained curvature perturbation is given by

ζcg(k) = ζ(k) 4π

(
aH

k

)3 ∫ ∞

0
W

(
aH

k
u

)
sin(u)udu

︸ ︷︷ ︸
W̃( k

aH )

,
(A.2)

which defines W̃ , that shares similar properties with W . Indeed, when aH/k � 1, the values
of u such that W

(
aH
k u
)

is not close to zero are very small, so one can replace sin(u) ' u
in the integral over u, and using the normalisation condition stated above, one obtains
W̃ [k/(aH)] ' 1 in that limit. In the opposite limit, when aH/k � 1, since W is roughly 1

until u ∼ k/(aH), the integral over u in eq. (A.2) is of order k/(aH), hence W̃ [k/(aH)] ∝
(aH/k)2 � 1.

The details of W̃ between these two limits depend on those of W . For instance, if W is
a Heaviside step function,

W (x) =
3

4π
θ(1− x), (A.3)

where θ(x) = 1 if x > 0 and 0 otherwise, and where the pre-factor is set in such a way that
the above normalisation condition is satisfied, eq. (A.2) gives rise to

W̃

(
k

aH

)
= 3

(
aH

k

)3 [
sin

(
k

aH

)
− k

aH
cos

(
k

aH

)]
, (A.4)

which verifies the two limits given above.
There is some freedom in the choice of the window function, and different window func-

tions can lead to rather different results for the PBH abundance [81]. In fact, comparing
the locally coarse-grained curvature perturbation with a certain threshold is only an approx-
imated procedure. More realistic approaches incorporate the full real-space profile of the
density contrast across the inhomogeneity, either numerically or by studying the compaction
function [82–85]. Although such analyses reveal the existence of a variety of different situa-
tions, depending on the details of the density profile, in most cases the scales that contribute
most to forming a PBH of mass M are those around the Hubble radius when it contains that
mass: much smaller scales average out inside the inhomogoneity, as the calculation above in-
dicates, and much larger scales simply rescale the local amplitude of the background density.
For this reason, we consider a coarse-grained field made up of scales “around” the Hubble
radius only,

ζcg(x) = (2π)−3/2
∫

k∼aH
dkζke

ik·x . (A.5)

In this expression, “k ∼ aH” implies the existence of a window function. For simplicity, we
consider

ζcg(x) = (2π)−3/2
∫

aH<k<aendHend

dkζke
ik·x , (A.6)

i.e. a top hat window function in Fourier space, that selects out modes comprised between the
Hubble scale at the time of formation and the one at the end of inflation. Since we consider
scales that are generated a few e-folds before the end of inflation, we are integrating over a
few e-folds of scales as we should. Obviously, the details of the window function (its shape
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and the precise range of scales) are arbitrary, but what makes this choice convenient is that
eq. (A.6) coincides with the coarse-grained fluctuation in the number of e-folds computed in
the stochastic-δN formalism, see section 2.1. Needless to say, one could use another choice
of window function and define the coarse-grained curvature perturbation differently. This
would imply to coarse grain the fields differently in the stochastic inflation formalism. For
instance, if a smooth W̃ function is employed, the stochastic noise contains contributions from
different modes, so the same mode contributes to the realisation of the noise at different
times, and the noise becomes coloured. While coloured noises can be dealt with in the
stochastic inflation formalism (see e.g. refs. [86–89]), they are technically more challenging,
which explains our choice.

Let us finally note that, in practice, the statistics of the number of e-folds starting
from a fixed field configuration is computed in this work. However, since different regions
of the universe realise different amounts of expansion between that field configuration and
the end of inflation, a certain fixed physical scale emerges at different field configurations
in different patches of the universe. Therefore, the statistics we compute is not exactly the
one of the curvature perturbation coarse-grained at a fixed physical scale. However, given
the uncertainties in the coarse-graining procedure mentioned above, this fine effect is clearly
beyond the precision of the present treatment for determining the abundance of PBHs.

B Solving the equivalent eigenvalue problem

The tail of the PDF is determined by the poles and residues of the characteristic function.
As we have discussed in section 2.3, computing the tail of the PDF can be achieved similarly
by solving an eigenvalue problem for the eigenfunctions Ψn and eigenvalues Λn, that satisfy
the equation

Ψ′′n −
vφ
v2

Ψ′n +
Λn
v

Ψn = 0 (B.1)

with boundary conditions

Ψn(φend) = 0 , (B.2)

Ψ′n(φuv) = 0 . (B.3)

For generic potentials, this equation does not have an analytic solution. However, one can
solve it using an adiabatic (or WKB) approximation. First, the friction term, proportional
to vφ, can be absorbed through the field redefinition

Ψn = e
1
2

∫ vφ

v2 dφΨ̃n . (B.4)

In this way, eq. (B.1) becomes

Ψ̃′′n +

[
Λn
v
− 1

4

(
vφ
v2

)2

+
1

2

(
vφ
v2

)′]
Ψ̃n = 0 , (B.5)

which can be solved in plane waves whenever the frequency is slowly varying. In that regime,
the solution reads

Ψn = e
1
2

∫ vφ

v2 dφ
(
αne

i
∫
θndφ + βne

−i
∫
θndφ

)
, (B.6)

where the phase θn reads

θ2
n =

Λn
v
− 1

4

(
vφ
v2

)2

+
1

2

(
vφ
v2

)′
. (B.7)
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The first boundary condition imposes

αn = −βn , (B.8)

so that the eigenfunctions are given by

Ψn = 2iαn e
1
2

∫ vφ

v2 dφ sin

(∫
θndφ

)
. (B.9)

The second boundary condition determines a transcendental equation for the eigenvalues Λn,

tan

[∫ φuv

φend

θn(φ)dφ

]
= −2

v2(φuv)

vφ(φuv)
θn(φuv) . (B.10)

This expression provides a better approximation than the almost constant approximation
applied to a vacuum-dominated potential with a constant slope in section 3.2, see eq. (3.16).
However, one does not avoid having to solve a transcendental equation to obtain the eigen-
values.
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