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Abstract.  We study the continuum limit of the entanglement Hamiltonians 
of a block of consecutive sites in massless harmonic chains. This block is either 
in the chain on the infinite line or at the beginning of a chain on the semi-
infinite line with Dirichlet boundary conditions imposed at its origin. The 
entanglement Hamiltonians of the interval predicted by conformal field theory 
(CFT) for the massless scalar field are obtained in the continuum limit. We 
also study the corresponding entanglement spectra, and the numerical results 
for the ratios of the gaps are compatible with the operator content of the 
boundary CFT of a massless scalar field with Neumann boundary conditions 
imposed along the boundaries introduced around the entangling points by the 
regularisation procedure.
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1.  Introduction

Entanglement has attracted intense research activity during the last two decades, 
mostly focused on theoretical approaches [1–4], but in the last few years experimental 
setups have also been realised to detect its characteristic features [5].

Given a quantum system in a state described by the density matrix ρ, assuming 
that its Hilbert space can be factorised as H = HA ⊗HB, the reduced density matrix 
ρA is defined by tracing out the degrees of freedom of HB, namely by ρA = TrHB

ρ, with 
the normalisation condition TrHA

ρA = 1. The reduced density matrix can be written 
as ρA = e−KA/ZA, where the Hermitian operator KA is the entanglement Hamiltonian 
(also known as the modular Hamiltonian) and ZA = TrHA

e−KA. The entanglement 
entropy is easily obtained from the eigenvalues of ρA [6–8]. Important results have been 
obtained for factorisations of the Hilbert space corresponding to bipartitions A ∪ B of 
the space, namely when A is a spatial region and B its complement. In these cases the 
hypersurface ∂A = ∂B separating A and B is called the entangling hypersurface.

A fundamental theorem proved by Bisognano and Wichmann [9] in the context of 
algebraic quantum field theory (QFT) claims that, given a relativistic QFT in d  +  1 
dimensions in its vacuum state (we denote by x the d-dimensional position vector) and 
the spatial bipartition where A corresponds to a half space and the entangling hyper-
surface is the flat hyperplane, the entanglement Hamiltonian of A can be written as an 
integral over the half space A of the energy density T00(x) of the QFT as follows

https://doi.org/10.1088/1742-5468/ab7129
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KA = 2π

∫

A

x1 T00(x) dx.� (1)

When the QFT is a conformal field theory (CFT), the conformal symmetry allows 
us to write analytic expressions for the entanglement Hamiltonians for simple spatial 
bipartitions, mainly at equilibrium [10–14] but also in a few cases out of equilibrium 
[13]. More complicated bipartitions require a detailed knowledge of the underlying 
CFT [15, 16].

In a 1  +  1-dimensional CFT at equilibrium in its vacuum state, we consider biparti-
tions where A is an interval such that its entanglement Hamiltonian can be written as

KA = �

∫

A

β(x)T00(x) dx� (2)

where � is the length of A and β(x) depends on the bipartition. In this manuscript we 
focus on the bipartitions shown in figure 1. For an interval in the infinite line (left panel 
in figure 1), the weight function in (2) is the following parabola [10, 11]

β(x) = 2π
x

�

(
1− x

�

)
.� (3)

When A is an interval at the beginning of a semi-infinite line (right panel in figure 1), 
the weight function in (2) is the half parabola given by [13]

β(x) = π
( x

�
+ 1

)(
1− x

�

)
� (4)

independently of the boundary conditions imposed at the beginning of the semi-infinite 
line. The continuum limit of a one-dimensional lattice model at its critical point is 
described by a 1+1 dimensional CFT. It is interesting to explore the procedure that 
leads to these entanglement Hamiltonians in a given CFT as the continuum limit of the 
corresponding entanglement Hamiltonians in the underlying lattice model.

Entanglement Hamiltonians in free lattice models at equilibrium in their ground 
state have been studied in [1, 2, 17–22]. A detailed analysis of the continuum limit has 
been recently carried out for an interval in an infinite chain of free fermions [22], by 
employing the analytical results obtained by Eisler and Peschel in [20]. In this manu-
script we study the continuum limit of the entanglement Hamiltonians of a block of 
consecutive sites in massless harmonic chains by following the approach of [22], which 
is based on the observation that, in this limit, the proper combinations of all the diago-
nals of the matrices determining the entanglement Hamiltonian on the lattice must be 
considered [19].

The eigenvalues λj of the entanglement Hamiltonian provide the entanglement 
spectrum, which contains relevant physical information [23]. It is worth introducing 
the gaps gr ≡ log λmax − log λr with respect to the largest eigenvalue and also their 

Figure 1.  The spatial bipartitions considered in this manuscript: an interval A in 
the infinite line (left) and an interval A at the beginning of the semi-infinite line 
(right).
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ratios gr/g1 with respect to the smallest gap g1. We remark that these ratios are not 
influenced by a global shift and a rescaling of the entire spectrum.

In a two-dimensional QFT in imaginary time, a useful way to regularise the ultra-
violet (UV) divergences consists of removing infinitesimal disks whose radius is the UV 
cuto around the entangling points of the bipartition [7, 13, 18, 24]. In two-dimensional 
CFT, this regularisation procedure leads to a boundary conformal field theory (BCFT) 
[25] if proper conformal boundary conditions are imposed along the boundaries in the 
Euclidean spacetime (both the boundaries given by the physical boundaries of the sys-
tem and the ones due to this regularisation procedure must be considered). For a class 
of entanglement Hamiltonians which includes the ones we are interested in, it has been 
found that [13]

gr
g1

=
∆r

∆1
� (5)

where r � 1 and ∆r > 0 are the non-vanishing elements of the conformal spectrum 
(made by conformal dimensions of the primary fields and of their descendants) of the 
underlying BCFT. Numerical evidence that the conformal spectrum of a BCFT pro-
vides the entanglement spectrum were first obtained at equilibrium by Läuchli in [26] 
and more recently also out of equilibrium [27, 28].

In this manuscript we focus on massless harmonic chains and perform a numerical 
analysis of the continuum limit of two entanglement Hamiltonians of an interval A and 
of the corresponding entanglement spectra. We consider a massless harmonic chain 
both on the infinite line and on the semi-infinite line with Dirichlet boundary condi-
tions imposed at its origin. The continuum limit of these lattice models is the CFT 
given by the massless scalar field Φ, whose central charge is c  =  1. By introducing the 
canonical momentum field Π = −∂tΦ, the energy density on the infinite line reads

T00(x) =
1

2

[
Π(x)2 +

(
∂xΦ(x)

)2 ]
� (6)

and on the semi-infinite line is given by [29]

T00(x) =
1

2

[
Π(x)2 − Φ(x) ∂2

xΦ(x)
]
.� (7)

We study the spatial bipartitions shown in figure 1, whose entanglement Hamiltonians 
predicted by CFT are given by (2), (3) and (6) for the interval in the infinite line and by 
(2), (4) and (7) for the interval at the beginning of the semi-infinite line. Our numerical 
analysis is based on the procedure described in [20, 22] to study the continuum limit of 
the entanglement Hamiltonian of an interval in an infinite chain of free fermions. We 
also study the entanglement spectra of these entanglement Hamiltonians, finding that 
the CFT prediction (5) holds, once Neumann boundary conditions are imposed along 
the boundaries introduced by the regularisation procedure.

This manuscript is organised as follows. In section 2 we report the entanglement 
Hamiltonian of an interval in harmonic chains in terms of the two-point correlators. In 
section 3 we study the continuum limit of the entanglement Hamiltonian of an inter-
val in the infinite line and in section 4 this analysis is performed for an interval at the 
beginning of the semi-infinite line with Dirichlet boundary conditions. In section 5 we 
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draw some conclusions. The appendix contains further results supporting some obser-
vations made in the main text.

2. Entanglement Hamiltonians in the harmonic chain

In this section we report the expression of the entanglement Hamiltonian of a subsys-
tem in harmonic chains in terms of the two-point correlators [2], also discussing some 
decompositions that will be employed throughout the manuscript.

The Hamiltonian of the harmonic chain with nearest-neighbour spring-like interac-
tion reads

Ĥ =
∑
i

(
1

2m
p̂2i +

mω2

2
q̂2i +

κ

2
(q̂i+1 − q̂i)

2

)

� (8)
where the position and the momentum operators q̂i and p̂i are Hermitean operators sat-
isfying the canonical commutation relations [q̂i, q̂j] = [p̂i, p̂j] = 0 and [q̂i, q̂j] = iδi,j (� = 1 
throughout this manuscript). In our numerical analysis we set κ = m = 1.

The Hamiltonian (8) is the discretisation of the Hamiltonian of a massive scalar 
field in the continuum, whose massless regime given by ω = 0 is a CFT with central 
charge c  =  1. The range of the index i in (8) depends on the spatial domain supporting 
the harmonic chain: in this manuscript we consider either the infinite line (i ∈ Z) or 
the semi-infinite line (integer i � 0). When (8) is defined on the semi-infinite line, it is 
crucial to also specify the boundary condition imposed at the beginning of the semi-
infinite line (i.e. at i  =  0) and in our analysis we consider the case of Dirichlet boundary 
conditions. The two-point correlators Qij = 〈q̂i q̂j〉 and Pij = 〈p̂i p̂j〉 provide the generic 
elements of the correlation matrices Q and P, respectively.

Let us consider harmonic chains (8) in their ground state |0〉 and introduce the 
bipartition of the chain into a spatial domain A made by L sites and its complement 
B, assuming that the Hilbert space can be bipartite accordingly as H = HA ⊗HB. 
Since for these quantum systems the reduced density matrix ρA ≡ TrHB

(|0〉〈0|) remains 
Gaussian, independently of the choice of the bipartition, the corresponding entangle-

ment Hamiltonian K̂A is a quadratic Hermitian operator, which can be written as fol-
lows [2, 17]

K̂A =
1

2
r̂tHA r̂ r̂ =

(
q̂

p̂

)
� (9)

where the 2L-dimensional vector r̂ collects the position and the momentum operators 
q̂i and p̂i with i ∈ A. The matrix HA is real, symmetric and positive-definite; hence 

K̂A is Hermitian. In terms of the reduced correlation matrices QA and PA, obtained by 
restricting Q and P to the subsystem A, the matrix HA can be evaluated as follows [2]

HA = M ⊕N ≡
(
h
(√

PAQA

)
⊕ h

(√
QAPA

))(
PA ⊕QA

)

=
(
PA ⊕QA

)(
h
(√

QAPA

)
⊕ h

(√
PAQA

))� (10)

https://doi.org/10.1088/1742-5468/ab7129
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where

h(y) ≡ 1

y
log

(
y + 1/2

y − 1/2

)
.� (11)

The equivalence of the two expressions in (10) can be verified by transposing one of 
them and employing that M and N are symmetric (we also need (

√
QAPA )t =

√
PAQA, 

which is easily obtained from the fact that Q and P are symmetric).
In this manuscript we study entanglement Hamiltonians K̂A when the entire chain 

is at equilibrium in its ground state and when the subsystem A is a block of L consecu-
tive sites either in the infinite line or at the beginning of the semi-infinite line where 
Dirichlet boundary conditions are imposed (see figure 1). In these two cases, the matrix 
HA is block diagonal. The o-diagonal blocks of HA can be non-vanishing e.g. for the 
time-dependent entanglement Hamiltonians after a global quantum quench [27].

The matrix HA can be constructed numerically through (10) and (11). In order to 
employ these formulas, the eigenvalues of the matrix 

√
QAPA must be strictly larger 

than 1/2. In our numerical analysis many eigenvalues very close to 1/2 occur and the 
software automatically approximates them to 1/2 whenever a low numerical preci-
sion is set throughout the numerical analysis. This forces us to work with very high 
numerical precisions. In particular we have employed precisions up to 6500 digits, 
depending on the specific calculation. We observe that higher precision is required as L 
and ω increase. The fact that the numerical analysis of the entanglement Hamiltonian 
requires high numerical precisions has been already highlighted in [19, 20].

The expressions (9) and (10) naturally lead us to write the entanglement Hamiltonian 
in terms of the symmetric matrices M and N as follows

K̂A =
ĤM + ĤN

2
� (12)

where

ĤM ≡
L∑

i,j=1

Mi,j q̂i q̂j ĤN ≡
L∑

i,j=1

Ni,j p̂i p̂j.� (13)

These sums can be organised in dierent ways. For instance, by writing the sym-
metric matrices M and N as sums of a diagonal matrix, an upper triangular matrix and 
a lower triangular matrix, it is straightforward to obtain

ĤM = L
L∑
i=1

(
Mi,i

L
q̂2i + 2

L−i∑
k=1

Mi,i+k

L
q̂i q̂i+k

)
� (14)

ĤN = L
L∑
i=1

(
Ni,i

L
p̂2i + 2

L−i∑
k=1

Ni,i+k

L
p̂i p̂i+k

)
.� (15)

In [19] the sums (13) have been rewritten by decomposing the contribution coming 
from the ith row of the matrices M and N, and this leads to

https://doi.org/10.1088/1742-5468/ab7129
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ĤM = L
L∑
i=1

(
Mi,i

L
q̂2i +

L−i∑
k=1

Mi,i+k

L
q̂i q̂i+k +

i−1∑
k=1

Mi,i−k

L
q̂i q̂i−k

)
� (16)

ĤN = L
L∑
i=1

(
Ni,i

L
p̂2i +

L−i∑
k=1

Ni,i+k

L
p̂i p̂i+k +

i−1∑
k=1

Ni,i−k

L
p̂i p̂i−k

)
.� (17)

We find it convenient to also introduce the following decomposition

ĤM = L

[
L/2∑
i=1

(
Mi,i

L
q̂2i +

L−2i+1∑
k=1

Mi,i+k

L
q̂i q̂i+k

)
+

L∑
i=L/2+1

(
Mi,i

L
q̂2i +

2i−L−2∑
k=1

Mi−k,i

L
q̂i q̂i−k

)]
� (18)

ĤN = L

[
L/2∑
i=1

(
Ni,i

L
p̂2i +

L−2i+1∑
k=1

Ni,i+k

L
p̂i p̂i+k

)
+

L∑
i=L/2+1

(
Ni,i

L
p̂2i +

2i−L−2∑
k=1

Ni−k,i

L
p̂i p̂i−k

)]
� (19)

where the contribution of the counter-diagonal has been included into the summation 
over 1 � i � L/2. This choice leads to an inconsistency in the range of k of the last 
double sum when i  =  L/2  +  1, which can be easily fixed by imposing the vanishing of 
this term.

An alternative decomposition, inspired by the numerical analysis performed in [22], 
is discussed in the appendix. In our numerical analysis we have tested all the decompo-
sitions introduced above and in the appendix for both the spatial bipartitions shown in 
figure 1. In the main text we show the numerical results obtained from (18) and (19), 
while the results found through the other decompositions have been reported in the 
appendix.

The analytic results for the entanglement Hamiltonian of an interval in the infinite 
chain of free fermions found in [20, 22] and the decompositions introduced above for 

the operators ĤM and ĤN  suggest introducing the following limits

lim
L→∞

Mi,i+k

L
≡ µk(xk) lim

L→∞

Ni,i+k

L
≡ νk(xk) xk ≡

1

L

(
i+

k

2

)

�

(20)

where i  +  k/2 is the midpoint between the ith and the (i+ k)th site. The existence of 
the functions µk and νk is a crucial assumption in the subsequent derivations of the 
CFT predictions for the entanglement Hamiltonians.

3.  Interval in the infinite line

In this section  we consider the harmonic chain on the infinite line and perform a 
numerical analysis to study the continuum limit of the entanglement Hamiltonian of 
an interval. We follow the procedure discussed in [20, 22] for the continuum limit of 
the entanglement Hamiltonian of an interval in the infinite chain of free fermions. In 
section 3.1 we introduce the two-point correlators to construct QA and PA and in sec-
tion 3.2 we report the main analysis, which leads to the CFT prediction (2), with the 

https://doi.org/10.1088/1742-5468/ab7129
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weight function (3) and the energy density (6). The entanglement spectrum is explored 
in section 3.3.

3.1. Correlators

The two-point correlators 〈q̂iq̂j〉 and 〈p̂ip̂j〉 in the ground state of a finite harmonic chain 
made by L sites (1 � i � L in (8)) with periodic boundary conditions (q̂1 = q̂L+1 and 
p̂1 = p̂L+1) are respectively

〈q̂iq̂j〉 =
1

2L

L∑
k=1

1

mω̃k

cos[2πk (i− j)/L] 〈p̂ip̂j〉 =
1

2L

L∑
k=1

mω̃k cos[2πk (i− j)/L]� (21)

where the dispersion relation reads

ω̃k ≡
√
ω2 +

4κ

m

[
sin(πk/L)

]2
� ω 1 � k � L.� (22)

The translation invariance induces the occurrence of the zero mode, that corre-
sponds to k = L. Since ω̃L = ω, it is straightforward to observe that 〈q̂iq̂j〉 diverges as 
ω → 0; hence the mass cannot be set to zero in the numerical analysis of this system.

In the thermodynamic limit L → +∞, the correlators in (21) can be written as the 
integrals

〈q̂iq̂j〉 =
1

4πm

∫ 2π

0

cos[θ (i− j)]√
ω2 + (4κ/m)

[
sin(θ/2)

]2 dθ
� (23)

〈p̂ip̂j〉 =
m

4π

∫ 2π

0

√
ω2 +

4κ

m

[
sin(θ/2)

]2
cos[θ (i− j)] dθ� (24)

which can be evaluated analytically, finding the following expressions in terms of the 
hypergeometric function [30]

〈q̂iq̂j〉 =
ζ i−j+1/2

2
√
κm

(
i− j − 1/2

i− j

)
2F1

(
1/2 , i− j + 1/2 , i− j + 1, ζ2

)
� (25)

〈p̂ip̂j〉 =
√
κm ζ i−j−1/2

2

(
i− j − 3/2

i− j

)
2F1

(
− 1/2 , i− j − 1/2 , i− j + 1, ζ2

)

� (26)
where the parameter ζ is defined as

ζ ≡
(
ω −

√
ω2 + 4κ/m

)2
4κ/m

.� (27)

The reduced correlation matrices QA and PA are obtained by restricting the indices i 
and j  of the correlators (25) and (26) to the interval A, i.e. to the integer values in [1,L]. 
By employing these reduced correlation matrices into (10), one finds the entanglement 
Hamiltonian matrix HA. The entanglement Hamiltonian of the interval in the infinite 
line is obtained by plugging the matrix HA into (9).

https://doi.org/10.1088/1742-5468/ab7129
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3.2. Entanglement Hamiltonian

The entanglement Hamiltonian of a block made by L consecutive sites in the infinite 
line, when the entire harmonic chain is in its ground state, is the operator constructed 
as explained in section 3.1. Considering the massless regime, we study the procedure to 
obtain the CFT prediction (2), with β(x) and T00(x) given by (3) and (6) respectively, 
through a numerical analysis of the continuum limit.

The translation invariance of the entire system prevents us from setting ω = 0 in 
our numerical analysis, as already remarked in section 3.1. The data reported in all the 
figures discussed in this subsection have been obtained for ωL = 10−500. The choice of 
this value is discussed in the appendix.

In figures 2 and 3 we show the data for the diagonals Mi,i+k/L and Ni,i+k/L with 
0 � k � 7 for some values of L. These numerical results lead us to conclude that the 
limits in (20) provide well-defined functions. Furthermore, these functions have a well-
defined sign given by the parity of k, are symmetric under reflection with respect to 
the centre of the interval (we checked numerically that this symmetry holds also for 
the data points, i.e. that Mi,i+p = ML−i−p+1,L−i+1 and Ni,i+p = NL−i−p+1,L−i+1), and the 
absolute value of their maximum significantly decreases as k increases. It would be 
interesting to find analytic expressions for the functions defined through the limits (20), 
as done in [20] for the interval in the infinite chain of free fermions. In all the figures of 
this manuscript where some quantity has been plotted in terms of the spatial index, for 
the sake of simplicity we have written i on the horizontal axis instead of i  −  1/2, which 
is the correct label corresponding to the data.

Assuming that the functions µk and νk introduced in (20) are well defined, let us 
study the continuum limit of the entanglement Hamiltonian (12), where the quadratic 

operators ĤM and ĤN  have been introduced in (13). In the following we adapt the pro-
cedure discussed in [22] for the entanglement Hamiltonian of an interval in the infinite 

chain of free fermions. The quadratic operators ĤM and ĤN  can be decomposed in 
dierent ways, as discussed in section 2 and in the appendix. For the sake of simplicity, 
in the following we describe the continuum limit for the decomposition given by (14) 
and (15), but the procedure can be easily adapted to the ones given by (16) and (17) 
or by (18) and (19). In the appendix we discuss another decomposition, inspired by the 
numerical analysis performed in [22].

The continuum limit is defined through the infinitesimal UV cuto a: it corresponds 
to take a → 0 and L → ∞ while La = � is kept constant. The position within the inter-
val is labelled by x  =  ia with 0 < x < �. This leads us to write the independent variable 
in (20) as follows

xk =
x

La
+

ka/2

La
� (28)

which tells us that µk = µk(x+ ka/2) and νk = νk(x+ ka/2).
In the continuum limit, the fields Φ(x) and Π(x) are introduced through the position 

and momentum operators as follows [31]
q̂i −→ Φ(x) p̂i −→ aΠ(x)� (29)

https://doi.org/10.1088/1742-5468/ab7129
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where the UV cuto guarantees that these fields satisfy the canonical commutation 
relations in the continuum limit, where the delta function occurs. The operators q̂i+k 
and p̂i+k in (14) and (15) lead to fields whose argument is properly shifted. By employ-
ing (29) and the Taylor expansion as a → 0, in the continuum limit it is straightforward 
to obtain that

q̂i+k −→ Φ(x+ ka) =
∑
p�0

(ka) p

p!
∂ p
xΦ(x)� (30)

Figure 2.  Diagonals of the matrix M (see (20)) when the subsystem is an interval 
made by L sites in the infinite line and ωL = 10−500. The red solid curve is the 
parabola (3).
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and

p̂i+k −→ aΠ(x+ ka) = a
∑
p�0

(ka) p

p!
∂ p
xΠ(x).� (31)

In (14) and (15) we find it convenient to insert the UV cuto into the sums by writ-

ing them as L
∑L

i=1(. . . ) =
(La)
a2

∑L
i=1(. . . )a because 

∑L
i=1(. . . )a −→

∫ �

0
(. . . )dx in the 

continuum limit and the divergent factor L provides the factor �. From (29)–(31), for 

Figure 3.  Diagonals of the matrix N (see (20)) when the subsystem is an interval 
made by L sites in the infinite line and ωL = 10−500. The red solid curve is the 
parabola (3).
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the operators (14) and (15) it is straightforward to obtain ĤM −→ HM and ĤN −→ HN 
respectively in the continuum limit, where

HM =
�

a2

∫ �

0

(
µ0(x) Φ(x)

2 + 2
kmax∑
k=1

µk(x+ ka/2)Φ(x) Φ(x+ ka)

)
dx� (32)

HN = �

∫ �

0

(
ν0(x) Π(x)

2 + 2
kmax∑
k=1

νk(x+ ka/2)Π(x) Π(x+ ka)

)
dx� (33)

where kmax is the number of diagonals to include in the sums occurring in these 
expressions.

In our numerical analysis the parameter kmax plays a crucial role which is discussed 
below in this subsection and also in the appendix. Since kmax → ∞ in the continuum 
limit (see (30) and (31)), increasing values of kmax are considered. We find it worth 
remarking that the limit L → ∞ in (20) is taken before the limit kmax → ∞. This 
implies that we have to consider the regime given by kmax � L in our numerical stud-
ies, where both L and kmax are finite.

Since a → 0 in the continuum limit, we expand the integrands in (32) and (33) by 
keeping only the terms that could provide a non-vanishing contribution after the limit. 
For (32) we obtain

HM =
�

a2

∫ �

0

{
M(0)

kmax
(x) Φ(x)2 + a

kmax∑
k=1

k
[
µ′
k(x) Φ(x) + 2µk(x) Φ(x)

′
]
Φ(x)

+ a2
kmax∑
k=1

k2

[
1

4
µ′′
k(x) Φ(x) + ∂x

(
µk(x) Φ

′(x)
)]

Φ(x)

}
dx+O(a)

�

(34)

where we have introduced the function

M(0)
kmax

(x) ≡ lim
L→∞

M
(0)
kmax

(i)

L
= µ0(x) + 2

kmax∑
k=1

µk(x)� (35)

defined by combining the diagonals of the symmetric matrix M as follows

M
(0)
kmax

(i) ≡ Mi,i + 2
kmax∑
k=1

Mi,i+k.� (36)

While the expansion (34) contains terms that are divergent if the corresponding 
weight functions are non-vanishing, it is straightforward to notice that (33) is finite as 
a → 0. Indeed, its Taylor expansion reads

HN = �

∫ �

0

N (0)
kmax

(x) Π(x)2 dx+O(a)� (37)

where the function N (0)
kmax

(x) is the combination of the functions νk(x) in (20) given by

N (0)
kmax

(x) ≡ lim
L→∞

N
(0)
kmax

(i)

L
= ν0(x) + 2

kmax∑
k=1

νk(x)� (38)
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where N(0)
kmax

(i) is the same combination of the corresponding diagonals of the symmetric 

matrix N, namely

N
(0)
kmax

(i) ≡ Ni,i + 2
kmax∑
k=1

Ni,i+k.� (39)

Assuming that the integral and the discrete sums can be exchanged in the expression 
(34) for HM, one notices that the integrand of the O(1/a) term is the total derivative 
∂x[µk(x) Φ(x)

2]; hence its integration provides the boundary terms [µk(x) Φ(x)
2]|x=�

x=0 . 
These boundary terms vanish because µk(0) = µk(�) = 0 for the interval in the infinite 
line (see figure 2). As for the O(1) term in (34), an integration by parts can be per-
formed for the term whose integrand is Φ(x) ∂x[µk(x) Φ(x)

′], and the resulting boundary 
terms vanish, again because µk(0) = µk(�) = 0. By employing these observations and 
discarding the O(a) terms, the expression (34) can be written as follows

HM =
�

a2

∫ �

0

{
M(0)

kmax
(x) Φ(x)2 + a2

kmax∑
k=1

k2

[
1

4
µ′′
k(x) Φ(x)

2 − µk(x)
(
Φ′(x)

)2 ]
}
dx.� (40)

Considering the integral whose integrand is µk(x)[Φ
′(x)]2 from the O(1) term of this 

expression, we find it worth defining

M(2)
kmax

(x) ≡ lim
L→∞

M
(2)
kmax

(i)

L
≡

kmax∑
k=1

k2µk(xk)� (41)

where, by using (20), we have introduced the following combination of diagonals of the 
symmetric matrix M

M
(2)
kmax

(i) ≡
kmax∑
k=1

k2Mi,i+k.� (42)

As for the integral whose integrand is µ′′
k(x) Φ(x)

2 in (40), we approximate the func-
tions µ′′

k(x) through finite dierences because the analytic expressions of the functions 
µk(x) are not available. Thus, we have

a2µ′′
k(x) = µk(x+ a)− 2µk(x) + µk(x− a).� (43)

This expression and (20) naturally lead us to introduce

M(2)
2,kmax

(x) ≡ lim
L→∞

M
(2)
2,kmax

(i)

L
≡

kmax∑
k=1

k2µ2,k(xk)� (44)

where the subindex 2 indicates that these quantities are related to the second deriva-
tive of µk(x). In (44) we have defined the functions µ2,k(xk) as follows

lim
L→∞

Mi+1,i+1+k − 2Mi,i+k +Mi−1,i−1+k

L
≡ µ2,k(xk)� (45)

and the combinations of matrix elements of M given by
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M
(2)
2,kmax

(i) ≡
kmax∑
k=1

k2
(
Mi+1,i+1+k − 2Mi,i+k +Mi−1,i−1+k

)
.� (46)

In the continuum limit kmax → ∞; hence we introduce the weight functions obtained 
by taking this limit in (35), (38), (41) and (44), namely

M(0)
kmax

(x) −→ M(0)
∞ (x) N (0)

kmax
(x) −→ N (0)

∞ (x)� (47)

and

M(2)
kmax

(x) −→ M(2)
∞ (x) M(2)

2,kmax
(x) −→ M(2)

2,∞(x).� (48)

Summarising, the continuum limit of the entanglement Hamiltonian (12) obtained 
from (14) and (15) is found by taking the limit kmax → ∞ of half of the sum of (37) and 
(40). By employing the functions introduced in (47) and (48), for the continuum limit 
of the entanglement Hamiltonian (12) we find

HM +HN

2
=

�

a2

∫ �

0

1

2

[
M(0)

∞ (x) +
1

4
M(2)

2,∞(x)

]
Φ(x)2 dx

+ �

∫ �

0

1

2

[
N (0)

∞ (x) Π(x)2 −M(2)
∞ (x)

(
Φ′(x)

)2 ]
dx+O(a).

� (49)

Since analytical results for the functions µk and νk are not available, we study 

the weight functions M(0)
∞ (x), M(2)

2,∞(x), N (0)
∞ (x) and M(2)

∞ (x) in (49) by performing a 
numerical analysis of the combinations of the matrix elements of M and N defining 
them, which are given respectively by (36), (46), (39) and (42). These combinations 
depend on the number of sites L in the interval and on the parameter kmax labelling 
the number of diagonals to include in the sums. As already remarked above, we study 
the continuum limit by taking L → ∞ first, in order to guarantee that the functions 
µk and νk in (20) are well defined, and then kmax → ∞. This means that we must keep 
kmax � L in our numerical analysis. If we had analytic expressions for the functions µk 
and νk, we could check whether they vanish fast enough as k → ∞ to find convergence 
in the infinite sums defining the weight functions in (47) and (48), which occur in (49).

It is important to observe that, since (36), (39), (46) and (42) can be evaluated only 
in the spatial range given by 1 � i � L− kmax, these combinations are not defined on 
the whole interval for finite values of L and kmax. The numerical results for these com-
binations are shown in the appendix (see the top panels in figures A2 and A3): they do 
not provide symmetric curves with respect to the centre of the interval, as expected 
from the symmetry of the configuration, and they do not capture the CFT curve close 
to the right endpoint of the interval. This motivates us to employ decompositions of 

the operators ĤM and ĤN  that are more suitable than (14) and (15) to obtain the CFT 
predictions on the entire interval. The decompositions (16) and (17) provide curves that 
are symmetric with respect to the centre of the interval, but they do not allow us to 
recover the CFT curve close to both the endpoints of the interval (see the middle panels 
in figures A2 and A3). In the following we consider the decompositions (18) and (19).

The procedure explained above to study the continuum limit of the entanglement 
Hamiltonian can be adapted straightforwardly to the case where the decompositions 
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(18) and (19) are employed. The result is again (49), with the weight functions given 
by (47) and (48). The crucial dierence with respect to the previous analysis is that, as 

L → ∞, in (47) we have M
(0)
kmax

(i)/L → M(0)
kmax

(x) with

M
(0)
kmax

(i) =

{
Mi,i + 2

∑kmax

k=1 Mi,i+k 1 � i � L/2

Mi,i + 2
∑kmax

k=1 Mi−k,i L/2 + 1 � i � L
� (50)

and N
(0)
kmax

(i)/L → N (0)
kmax

(x) with

N
(0)
kmax

(i) =

{
Ni,i + 2

∑kmax

k=1 Ni,i+k 1 � i � L/2

Ni,i + 2
∑kmax

k=1 Ni−k,i L/2 + 1 � i � L
� (51)

while in (48) we have M
(2)
kmax

(i)/L → M(2)
kmax

(x) with

M
(2)
kmax

(i) =

{∑kmax

k=1 k2Mi,i+k 1 � i � L/2∑kmax

k=1 k2Mi−k,i L/2 + 1 � i � L
� (52)

and M
(2)
2,kmax

(i)/L → M(2)
2,kmax

(x) with

M
(2)
2,kmax

(i) =

{∑kmax

k=1 k2
(
Mi+1,i+1+k − 2Mi,i+k +Mi−1,i−1+k

)
1 � i � L/2∑kmax

k=1 k2
(
Mi−k+1,i+1 − 2Mi−k,i +Mi−k−1,i−1

)
L/2 + 1 � i � L.

� (53)
The occurrence of two branches in these functions of the spatial index i (which origi-
nates from the splitting of the range 1 � i � L in (18) and (19)) guarantees that they 
are well defined on the entire interval for finite values of kmax � L. The combinations 
of diagonals in (50)–(53) display the symmetry under reflection with respect to the 
centre of the interval, which has been observed also for the diagonals of M and N (see 
figures 2 and 3).

In figure 4 we show some numerical results for the combinations in (50) and (53). 
From the left panel we observe that, when kmax is large enough, M

(0)
kmax

 converges to 

a well-defined function of x/� ∈ (0, 1). This observation allows us to conclude that 

M
(0)
kmax

/L → 0 as L → ∞ at any given value of x/� ∈ (0, 1). Similarly, the data reported 

in the right panel of figure  4 show that, when kmax is large enough, the product 

LM
(2)
2,kmax

 for increasing values of L collapses on the horizontal line corresponding to 4π 

except for four isolated and finite picks in each curve, whose positions depend on L and 
whose heights are independent of L. The positions of these picks are symmetric with 
respect to the centre of the interval and they move towards the centre of the interval 

as L increases. These observations allow us to conclude that M
(2)
2,kmax

/L → 0 as L → ∞. 

Thus, the collapses of the data points observed in figure 4 for increasing values of L 
lead us to conclude that for the weight functions occurring in the O(1/a2) term of (49) 
we should have

M(0)
∞ (x) = 0 M(2)

2,∞(x) = 0.� (54)

https://doi.org/10.1088/1742-5468/ab7129


On entanglement Hamiltonians of an interval in massless harmonic chains

16https://doi.org/10.1088/1742-5468/ab7129

J. S
tat. M

ech. (2020) 033102

The curves in figure 4 are obtained through the decompositions (18) and (19). Considering 
the other decompositions reported in section 2 and in the appendix, one finds dierent 
curves, but all of them lead to the CFT prediction (54).

In figures  5 and 6 we report numerical results for the combinations in (51) and 
(52). Comparing these two figures, it is straightforward to conclude that the agreement 
between the numerical data and the CFT prediction β(x) given by the parabola (3) 
(red solid curve) improves as kmax � L increases, i.e. by including more diagonals in the 
sums occurring in (51) and (52). The data reported in figures 4 and 5 correspond to the 
optimal values of kmax, when the behaviours of the data become stable. These optimal 
values are dierent for the combinations involving M and N. From figure 6 we also 
observe a parity eect in kmax: the asymptotic curve for a given kmax is either above or 
below the CFT curve, depending on the parity of kmax, and the distances between these 
curves decrease as kmax increases until the optimal value is reached. This parity eect 
in kmax is due to the fact that the kth diagonals of M and N (i.e. Mi,i+k and Ni,i+k for a 
given k) have a definite sign determined by the parity of k (see figures 2 and 3) and that 

M
(2)
kmax

 and N
(0)
kmax

 are linear combinations of these diagonals through positive coecients.
We remark that the data points reported in figures 4–6 probe the entire interval 

A, including the neighbourhoods of the endpoints. Furthermore, the resulting curves 
are symmetric under reflection with respect to the centre of the interval, as expected 
for this bipartition. These features support our choice to employ the combinations 
(50)–(53).

The collapses of the data points in figure 5 for increasing values of L lead to the 
conjecture that the weight functions occurring in the finite term of (49) are

M(2)
∞ (x) = −β(x) N (0)

∞ (x) = β(x).� (55)

Thus, by employing the numerical results (54) and (55) in the expression (49) for the 
entanglement Hamiltonian of an interval in the infinite line, we find the CFT predic-
tion (2) with β(x) given by (3) and the energy density by (6).

We find it worth remarking that the height of the cyan horizontal line in the right 
panel of figure 4 corresponds to 4π = −�2β(x)′′, with β(x) being the weight function (3) 
predicted by CFT. A naive explanation of this observation comes from the fact that 

Figure 4.  The combinations (50) (left) and (53) (right) when the subsystem is an 
interval made by L sites in the infinite line and ωL = 10−500. The cyan horizontal 
line in the right panel corresponds to 4π. The collapses of the data points for 
increasing values of L support (54).
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M
(2)
2,kmax

 is a combination obtained through a finite dierences approximation of µ′′
k(x) 

(see (46)) and that the combination M
(2)
kmax

 of µk(x) provides −β(x) in the continuum 

limit (see (55)). Nonetheless, an exchange of the second derivate of µk(x) with the dis-
crete sum over k in (34) would provide an unexpected term containing Φ2 multiplied by 
a constant weight function in the entanglement Hamiltonian. This leads us to conclude 
that exchanges between derivatives with respect to x and discrete sums over k are not 
allowed.

3.3. Entanglement spectrum

In a two-dimensional CFT, the entanglement spectra of an interval for the bipartitions 
shown in figure 1 have been studied in [13] through methods of BCFT [25, 32, 33]. The 
occurrence of boundaries is due to the regularisation procedure, as briefly mentioned in 
section 1. In the imaginary time description of the two-dimensional spacetime underly-
ing the bipartitions shown in figure 1, the UV cuto ε can be introduced by removing 
an infinitesimal disk of radius ε around each entangling point [7, 13, 18, 24]. For the 
interval in the infinite line (left panel of figure 1), the remaining spacetime has two 
boundaries which encircle the two endpoints of the interval A; hence it can be mapped 
into an annulus through a conformal transformation. Given the symmetry of this bipar-
tition with respect to the centre of the interval, the same conformal boundary condition 
must be imposed on the two boundaries.

For harmonic chains in Gaussian states, standard techniques allow us to evaluate 
the entanglement spectrum in terms of the single-particle entanglement energies εr, 
which are obtained from the symplectic spectrum of the reduced covariance matrix of 
the subsystem [1, 2, 17, 27, 34]. Once the single-particle entanglement energies have 
been ordered as ε1 � ε2 � · · · � εL, the gaps gr introduced in section 1 can be written 

as linear combinations 
∑L

k=1 nk εk with non-negative integer coecients nk.
In the top left panel of figure 7, we report some numerical results for ε1. For a given 

finite value of L, we observe that ε1 → 0 as ωL → 0, while this does not happen for εr 
with r  >  1. This leads us to assume that ε1 vanishes in the comparison of the numerical 

Figure 5.  The combinations (52) (left) and (51) (right) when the subsystem is an 
interval made by L sites in the infinite line and ωL = 10−500. The collapses of the 
data points corresponding to increasing values of L support (55), with β(x) given 
by the parabola (3) (red solid curve).
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data with the CFT predictions in the bottom panel of figure 7. In the top right panel 
of figure 7 we show the single-particle entanglement energies εk/L in terms of k/L for 
some values of L and, if L is large enough, we find that the data having dierent L col-
lapse on a well-defined curve, that would be interesting to obtain analytically. Given 
the above assumption about ε1, in the bottom panel of figure 7 we show the numerical 
data for the ratios gr/g1 of the gaps with respect to the first gap as functions of logL. 
It is remarkable to observe that, as L increases, the values of gr/g1 with 1 � r � 29 
collapse on all the integers n with 1 � n � 6 (we checked that gr/g1 > 6.5 when r � 30 
for the largest value of L at our disposal). This originates from the fact that the single-
particle entanglement energies in the low-lying part of the spectrum are equally sepa-
rated by a multiple integer of ε2. Furthermore, the degeneracy of the nth level is given 
by the number of possible ways to partition the integer n. This happens because in this 
model the low-lying part of the single-particle entanglement spectrum contains the first 
positive integer numbers once the normalisation through ε2 is introduced.

These numerical results for gr/g1 are compatible with the conformal spectrum of 
the BCFT given by a free massless scalar field on the segment with either Dirichlet 
or Neumann boundary conditions imposed on both the endpoints of the segment [33, 
35], but they cannot discriminate between these two possibilities. As discussed e.g. 
in [33], when the same boundary conditions are imposed on both the boundaries, 

Figure 6.  Role of the parameter kmax in the combinations (52) (top panels) and 
(51) (bottom panels) when the subsystem is an interval made by L sites in the 
infinite line and ωL = 10−500. The insets, which zoom in on the central part of the 
interval, show that the agreement with the CFT prediction given by the parabola 
(3) (red solid curve) improves as kmax increases.
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the Laurent expansion of the holomorphic part of the primary field ∂zΦ(z) reads 
∂zΦ(z) =

∑
n∈Z jn Jn(z), being z the complex variable in Euclidean signature and where 

it is worth remarking that the index of the sum runs over the integer numbers. The 
functions Jn(z) form an orthonormal basis and their explicit expressions depend on 
whether Neumann or Dirichlet boundary conditions are imposed. Since the Laurent 
modes satisfy the algebra [ jm, jn] = mδm+n,0 in the proper normalisation, the ground 
state |0〉 can be introduced in such a way that jn|0〉 = 0 for n � 0 and the Hilbert space 
can be constructed by acting with j n, with n  <  0 on the ground state. The conformal 

dimension of the field associated with the state j−n1 . . . j−nk
|0〉 is 

∑k
l=1 nl and this 

implies that the conformal spectrum contains the non-negative integer numbers, and 
the degeneracy of the level with dimension n is given by the number of ways to write 
n as a sum of integers.

The ambiguity between Neumann and Dirichlet boundary conditions can be resolved 
by considering the entanglement spectrum of an interval at the beginning of a semi-
infinite line with Dirichlet boundary conditions, which will be discussed in section 4.3. 

Figure 7.  Entanglement spectrum for an interval in the infinite line. Top left: 
the smallest single-particle entanglement energy ε1 as a function of the number of 
sites L of the interval, for increasing values of ωL. Top right: the single-particle 
entanglement energies εk for dierent values of L (the insets zoom in on the lowest 
and highest values of k). Bottom: the ratios of the gaps gr in the entanglement 
spectrum as functions of logL in the massless regime, i.e. when ωL = 10−500.
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In terms of the primary fields and of their descendants, we observe the towers of the 
identity and of ∂Φ.

The agreement found above with the spectrum of the BCFT of the free massless 
scalar field is expected only for the low-lying part of the entanglement spectrum.

4.  Interval at the beginning of the semi-infinite line with Dirichlet boundary 
conditions

In this section we study the continuum limit of the entanglement Hamiltonian of L 
consecutive sites at the beginning of the massless harmonic chain on the semi-infinite 
line with Dirichlet boundary conditions at its endpoint. In section 4.1 we find analytic 
expressions for the two-point correlators at a generic value of the mass parameter. 
Focussing on the massless regime, in section 4.2 we adapt the procedure explained in 
section 3 to this case, finding the CFT prediction (2), with the weight function (4) and 
the energy density (7). The continuum limit of the entanglement spectrum is discussed 
in section 4.3.

4.1. Correlators

A finite harmonic chain in a segment with Dirichlet boundary conditions imposed at 
the endpoints is defined by (8) and by q̂0 = q̂L = p̂0 = p̂L = 0. The two-point correlators 
〈q̂iq̂j〉 and 〈p̂ip̂j〉 in the ground state read respectively [36]

〈q̂iq̂j〉 =
1

L

L−1∑
k=1

1

mω̃k

sin(πk i/L) sin(πk j/L)� (56)

〈p̂ip̂j〉 =
1

L

L−1∑
k=1

mω̃k sin(πk i/L) sin(πk j/L)� (57)

where the dispersion relation is

ω̃k ≡
√
ω2 +

4κ

m

[
sin(πk/(2L))

]2
> ω 1 � k � L − 1.� (58)

In contrast with the harmonic chain in the infinite line (see section 3.1), this har-
monic chain is not translation-invariant; hence the zero mode does not occur and the 
massless limit ω → 0 is well defined because the correlators (56) and (57) are finite.

In the thermodynamic limit, the correlators (56) and (57) can be written respec-
tively as follows

〈q̂iq̂j〉 =
1

πm

∫ π

0

sin(θ i) sin(θ j)√
ω2 + (4κ/m)

[
sin(θ/2)

]2 dθ
� (59)
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〈p̂ip̂j〉 =
m

π

∫ π

0

√
ω2 +

4κ

m

[
sin(θ/2)

]2
sin(θ i) sin(θ j) dθ� (60)

where i, j � 0 and the Dirichlet boundary conditions are satisfied at the beginning 
of the semi-infinite line. We can evaluate the integrals (59) and (60) analytically by 
employing a prosthaphaeresis formula and an integral representation of the hypergeo-
metric function1. The final result reads

〈q̂iq̂j〉 =
1

mω
√
1 + κω

{
F+(|i− j|)− F+(i+ j)

}
� (61)

〈p̂ip̂j〉 = mω
√
1 + κω

{
F−(|i− j|)− F−(i+ j)

}
� (62)

where the functions F±(n) are defined as follows

F±(n) ≡
(
2(1 + κω)

κω

)±1/2
Γ(n± 1/2) ζn±1/2

n! 2 Γ(±1/2)
2F1

(
± 1/2 ,n± 1/2 ,n+ 1, ζ2

)

�

(63)

with κω ≡ 2κ/(mω2) and ζ given by (27).
In the massless regime, which corresponds to ω = 0, the expressions (61) and (62) 

significantly simplify and become the correlators found in [37], which are written in 
terms of the digamma function ψ(z) respectively as

〈q̂iq̂j〉 =
1

2π
√
κm

(
ψ(1/2 + i+ j)− ψ(1/2 + i− j)

)
� (64)

〈p̂ip̂j〉 =
2
√
κm

π

(
1

4(i+ j)2 − 1
− 1

4(i− j)2 − 1

)
.� (65)

By restricting the indices i and j  of the correlators (64) and (65) to the interval A at 
the beginning of the semi-infinite line (see the right panel of figure 1), i.e. to the integer 
values in [1,L], we get the reduced correlation matrices QA and PA to employ in the 
expression (10) for the entanglement Hamiltonian matrix HA. Plugging this matrix into 
(9), we can obtain the entanglement Hamiltonian of the interval A at the beginning of 
the semi-infinite line with Dirichlet boundary conditions imposed at its origin.

4.2. Entanglement Hamiltonian

We are interested in the bipartition of the semi-infinite line whose origin coincides with 
the left endpoint of the interval A made by L sites (see the right panel of figure 1), when 
the entire system is in its ground state. The entanglement entropy of this bipartition 
has been studied for various systems e.g. in [8, 38]. In the massless harmonic chain with 

1 The following integral representation for the hypergeometric function has been employed

∫ π

0

cos(nθ)

2π(1− a cos θ)b
dθ =

2b−1 Γ(n+ b)

n! ab Γ(b)

(
1−

√
1− a2

a

)n+b

2F1

(
b ,n+ b ;n+ 1;

(
1−

√
1− a2

a

)2
)

in the special case given by a = 2ζ/(1 + ζ2) and b = ±1/2.
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Dirichlet boundary conditions, the entanglement Hamiltonian K̂A = (ĤM + ĤN)/2 of 
this interval is given by (9) and (10), where the L× L matrices QA and PA are the 
reduced correlation matrices introduced in section 4.1 through the correlators (64) and 
(65). The result for the continuum limit predicted by CFT is (2), with the weight func-
tion β(x) given by (4) and the energy density (7) [29]. In the following we discuss a 
numerical procedure to obtain this CFT result.

The decompositions of the operators ĤM and ĤN  introduced in section 2 and in the 
appendix naturally lead us to consider the kth diagonals of the symmetric matrices M 
and N, like in the case of the interval in the infinite line discussed in section 3.2. In the 
massless regime, we find numerical evidence that the limiting procedures defined in (20) 
provide well-defined functions for any given value of k. This is shown in figures 8 and 9  
for the kth diagonal of the matrices M and N, respectively, with 0 � k � 7. Notice that, 
while the functions µk and νk vanish at the entangling point that separates A and B, 
they are non-vanishing at the beginning of the semi-infinite line, where the Dirichlet 
boundary condition is imposed. It would be interesting to find analytic expressions 
for these functions. Like for the interval in the infinite line, these functions have a 
well-defined sign given by the parity of k and the absolute value of their maximum 
significantly decreases as k increases.

Assuming the existence of the functions µk and νk defined in (20), the continuum 
limit of the entanglement Hamiltonian (12) can be studied by adapting to the biparti-
tion that we are considering the procedure described in section 3. Special care must be 
devoted to the boundary terms due to the integrations of a total derivative or to the 
integrations by parts. In particular, in (34) the integrand of the O(1/a) term is the total 
derivative ∂x[µk(x) Φ(x)

2], whose integral over the interval gives the boundary terms 
[µk(x) Φ(x)

2]|x=�
x=0 . These boundary terms vanish because µk(�) = 0 at the entangling 

point and the Dirichlet boundary condition Φ(0) = 0 is imposed at the beginning of the 
semi-infinite line, where µk(0) �= 0. The remaining expression reads

HM =
�

a2

∫ �

0

M(0)
kmax

(x) Φ(x)2 dx

+ �

∫ �

0

kmax∑
k=1

k2

[
1

4
µ′′
k(x) Φ(x) + µ′

k(x) Φ
′(x) + µk(x) Φ

′′(x)

]
Φ(x) dx

�
(66)

where O(a) terms have been discarded and M(0)
kmax

(x) has been introduced in (35).
The O(1) term in (66) is similar to the O(1) term in (34) and the terms containing 

µ′′
k(x) and µk(x) can be treated as discussed in section 3.2. As for the term whose inte-

grand is µ′
k(x) Φ

′(x) Φ(x), we approximate µ′
k(x) through finite dierences by writing 

µ′
k(x) = [µk(x+ a)− µk(x)]/a because analytic expressions for µk(x) are not known. 

Combining this approximation with (20) and (66), we are naturally led to introduce

M
(2)
1,kmax

(i) ≡
kmax∑
k=1

k2
(
Mi+1,i+1+k −Mi,i+k

)
� (67)

and
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M(2)
1,kmax

(x) ≡ lim
L→∞

M
(2)
1,kmax

(i)

L
≡

kmax∑
k=1

k2µ1,k(xk)� (68)

being

Figure 8.  Diagonals of the matrix M (see (20)) when A is an interval with L sites 
at the beginning of the semi-infinite line and ω = 0. The red solid curve is the half 
parabola (4).
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lim
L→∞

Mi+1,i+1+k −Mi,i+k

L
≡ µ1,k(xk)� (69)

where the subindex 1 means that these quantities are related to the first derivative of 
the functions µk(x). Taking kmax → ∞ in (68), we find

M(2)
1,kmax

(x) −→ M(2)
1,∞(x).� (70)

Figure 9.  Diagonals of the matrix N (see (20)) when A is an interval with L sites 
at the beginning of the semi-infinite line and ω = 0. The red solid curve is the half 
parabola (4).
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Notice that we can also follow the steps performed in section 3.2 combining the last 
two terms within the square brackets in (66) into ∂x[µk(x) Φ(x)

′] and integrating by parts 
the corresponding integral, which provides the boundary terms [µk(x) Φ

′(x) Φ(x)]|x=�
x=0 . 

These terms do not contribute because µk(�) = 0 at the entangling point and the 
Dirichlet boundary condition Φ(0) = 0 holds at the beginning of the semi-infinite line.

Taking the limit kmax → ∞ in (66) and employing the weight functions introduced 
in (47), (48) and (70), for the non-vanishing contributions to the continuum limit of the 
entanglement Hamiltonian we find

HM +HN

2
=

�

a2

∫ �

0

1

2

[
M(0)

∞ (x) +
1

4
M(2)

2,∞(x)

]
Φ(x)2 dx

+ �

∫ �

0

1

2

[
N (0)

∞ (x) Π(x)2 +M(2)
1,∞(x) Φ′(x) Φ(x) +M(2)

∞ (x) Φ′′(x) Φ(x)
]
dx.

�

(71)

We remark that, although some formal expressions also occur in the case of the interval 
in the infinite line in section 3.2, their values depend on the system that we are explor-
ing through the correlators (64) and (65).

Also in the numerical analysis of this bipartition we have employed all the decom-
positions introduced in section 2 and in the appendix as a starting point. We find that 
the most eective approach is based on (50)–(53). For the interval at the beginning of 
the semi-infinite line, we also need the combination of the matrix elements of M for 

M
(2)
1,kmax

 and it is not dicult to find that it reads

M
(2)
1,kmax

=

{∑kmax

k=1 k2
(
Mi+1,i+1+k −Mi,i+k

)
1 � i � L/2∑kmax

k=1 k2
(
Mi−k+1,i+1 −Mi−k,i

)
L/2 + 1 � i � L.

� (72)

Like for the interval in the infinite line, the occurrence of two branches in (50)–(53) and 
(72) allows us to probe the entire interval. This cannot be done when the decomposi-
tions (14) and (15) are employed (see top panels of figures A4 and A5). Notice that, in 
contrast with section 3.2, in this case the reflection symmetry with respect to the centre 
of the interval is not expected.

In figure 10 we observe that the numerical data for M
(0)
kmax

(i), M
(2)
1,kmax

(i) and LM
(2)
2,kmax

(i) 

with i �= 1 collapse on well-defined curves when L increases. As for some of the weight 
functions occurring in (71), these collapses support the following conjecture

M(0)
∞ (x) = 0 M(2)

1,∞(x) = 0 M(2)
2,∞(x) = 0� (73)

for any fixed value of x ∈ A such that x �= 0. The insets on the right in all the panels 

of figure 10 highlight that the values of M
(0)
kmax

(i)/L, M
(2)
1,kmax

(i)/L and M
(2)
2,kmax

(i)/L for 

i  =  1 seem to converge to finite non-vanishing constants. Since M(0)
∞ (0), M(2)

1,∞(0) and 

M(2)
2,∞(0) are multiplied by Φ(0) in (71), the Dirichlet boundary condition Φ(0) = 0 

implies that this feature does not provide a non-vanishing term in the continuum limit 
of the entanglement Hamiltonian. In the top panel of figure 10, the discontinuity in 

the centre of the interval is due to the fact that M
(0)
kmax

 in (50) is defined through two 

branches. This discontinuity is not observed if dierent decompositions for the opera-

tors ĤM and ĤN  in (13) are adopted.
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In figure 11 we show −M
(2)
kmax

/L (left panel) and N
(0)
kmax

/L (right panel) for increas-

ing values of L and an optimal value of kmax which guarantee certain stability of the 
numerical results. The collapses of the data points naturally lead to the conjecture that

M(2)
∞ (x) = −β(x) N (0)

∞ (x) = β(x)� (74)

where β(x) is the half parabola (4) predicted by the CFT. 
It is instructive to compare the results in figure 11 for the interval at the beginning 

of the semi-infinite line with the ones shown in figure 5 for the interval in the infinite 
line.  From the insets of these figures  we observe that in the former case larger values 
of L are needed to reach the CFT curve close to the origin of the semi-infinite line. This 
could be related to the fact that we are obtaining a CFT curve that is independent of 
the boundary conditions imposed at the origin of the semi-infinite line from numerical 
data that depend on them.

In the bottom panels of figure 10, the data points for M
(2)
1,kmax

 and LM
(2)
2,kmax

(i) with i �= 1 

collapse on the cyan straight lines, which correspond respectively to 2π x/� = −�β′(x) 
and to 2π = −�2β′′(x) when L is large enough. Similarly to the case of the interval 
in the infinite line (see the final remarks of section 3.2), we can roughly justify this 

behaviour by noticing that M
(2)
1,kmax

 and M
(2)
2,kmax

 are obtained through finite dierences 

Figure 10.  The combinations (50) (top), (72) (bottom left) and (53) (bottom right) 
when the subsystem is an interval made by L sites at the beginning of the semi-
infinite line and ω = 0. The cyan line in the bottom left panel corresponds to 
2π(i/L), while the cyan horizontal line in the bottom right panel corresponds to 2π. 
The collapses of the data points for increasing values of L support (73).
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approximations of µ′
k(x) and µ′′

k(x), respectively; hence, from (74), one expects to find 

respectively −β(x)′ and −β(x)′′. Also, in this case, exchanging the derivatives with 
respect to x with the discrete sums over k leads to wrong results, as already discussed 
in the final part of section 3.2 for the interval in the infinite line.

In figure 12 we show again −M
(2)
kmax

/L and N
(0)
kmax

/L, but for lower values of kmax in 

order to highlight the fact that the collapse of the numerical data onto the CFT curve 
improves as kmax increases. This behaviour is stabilised around optimal values for kmax 
that correspond to the data reported in figure 11. Furthermore, we encounter the same 
parity eect observed in figure 6 and mentioned in section 3.2, which is due also in this 
case to the fact that the kth diagonals of M and N have a definite sign related to the 
parity of k (see figures 8 and 9).

4.3. Entanglement spectrum

The BCFT analysis of the entanglement spectrum presented in [13], where (5) has 
been derived, includes the case that we are considering, given by the entire system in 
its ground state and the interval A at the beginning of the semi-infinite line. In this 
bipartition only one entangling point occurs; hence the UV cuto ε is introduced by 
removing only a disk of radius ε around the entangling point. The resulting Euclidean 
spacetime has the topology of the annulus and in this case dierent conformal bound-
ary conditions are allowed at the two boundaries. In our analysis we impose Dirichlet 
boundary conditions along the boundary corresponding to the beginning of the semi-
infinite line.

The numerical analysis of the entanglement spectrum is performed as in section 3.3 
and the crucial dierence with respect to the interval in the infinite line is that the 
massless regime given by ω = 0 is well defined. In this regime we observe that the low-
est single-particle entanglement energy ε1 is non-vanishing, in contrast with the case of 
the interval in the infinite line.

In the top left panel of figure 13 we show the numerical results for the single-par-
ticle entanglement energies εk/L in terms of k/L corresponding to some values of L, 
finding that they nicely collapse on a well-defined curve when L is large enough, like 

Figure 11.  The combinations (52) (left) and (51) (right) when the subsystem is 
an interval made by L sites at the beginning of the semi-infinite line and ω = 0. 
The collapses of the data points shown support (74), with β(x) given by the half 
parabola (4) (red solid curve).
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in the case of the interval in the infinite line (see the top right panel of figure 7). The 
curves obtained for these two spatial bipartitions are compared in the top right panel 
of figure 13, finding that they basically overlap, once the curve for the interval in the 
infinite line is multiplied by a factor of 2 (the insets highlight that this agreement is 
very good in the highest part of the spectrum and gets worse in the lowest part of the 
spectrum).

In the bottom panel of figure  13 we show the ratios gr/g1 between the generic 
gap gr and the smallest gap g1 in the entanglement spectrum as functions of logL, 
for 1 � r � 13. These ratios take all the integer values between 1 and 6 included (we 
checked that gr/g1 > 6.5 for r  >  13 for the largest value of L at our disposal). This fea-
ture originates from the fact that in the low-lying part of the single-particle entangle-
ment spectrum the eigenvalues are equally separated by an integer multiple of ε1 (see 
also section 3.3). Comparing figures 13 and 7, it is straightforward to notice that gr/g1 
take all the integer values for both the bipartitions, but the corresponding degeneracies 
are very dierent in the two cases. In particular, for the low-lying part of the single-par-
ticle entanglement spectrum the ratios εr/ε1 take the integer odd numbers 1, 3, 5, 7 . . . 
(see e.g. the top inset in the top right panel of figure 13). Plugging these values into 
the relation between εr and gr, we find that gr/g1 take strictly positive integer values 

Figure 12.  Role of the parameter kmax in the combinations (52) (top panels) and 
(51) (bottom panels) when the subsystem is an interval made by L sites at the 
beginning of the semi-infinite line and ω = 0. The insets, which zoom in on the left 
endpoint and on the central part of the interval, show that the agreement with the 
CFT prediction given by the half parabola (4) (red solid curve) improves as kmax 
increases.
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n whose the degeneracy is given by the number of ways to write n as a sum of positive 
integers that are not repeated (see the bottom panel of figure 13).

The degeneracy observed in figure 13 is compatible with the conformal spectrum 
of the BCFT given by the free massless scalar on a segment with mixed boundary 
conditions, namely with Dirichlet boundary conditions imposed at one endpoint and 
Neumann boundary conditions at the other endpoint [33, 35]. As discussed e.g. in [33], 
in this case the Laurent expansion that we need is given by ∂zΦ(z) =

∑
n∈Z+ 1

2
jn J̃n(z), 

where the functions J̃n form an orthonormal basis dierent from the one mentioned in 
section 3.3 and it is worth remarking that the index of the sum runs over half-integers. 
By constructing the Hilbert space as discussed in section 3.3, now we have that the 
conformal dimensions associated with the dierent states can take both integer or half-
integer values. Thus, by writing strictly positive integer or half-integer numbers as 
sums of half-integers, one finds that gr/g1 take strictly positive integer values n whose 

Figure 13.  Entanglement spectrum for an interval at the beginning of the semi-
infinite line with Dirichlet boundary conditions. Top left: the single-particle 
entanglement energies εk for dierent values of L (the insets zoom in on the 
lowest and highest values of k). Top right: comparison between the single-particle 
entanglement energies εk for an interval with L  =  400 sites at the beginning of the 
semi-infinite line with Dirichlet boundary conditions (see the top left panel) and 
the ones for an interval with L  =  400 sites in the infinite line (see the top right 
panel of figure 7). Bottom: the ratios of the gaps in the entanglement spectrum as 
functions of logL when ω = 0.
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degeneracy is the number of ways to decompose n as a sum of non-repeated strictly 
positive integers.

Since in our analysis Dirichlet boundary conditions are imposed at the beginning 
of the semi-infinite line, we can conclude that Neumann boundary conditions must be 
imposed at the boundary introduced by the regularisation procedure around the entan-
gling point. This allows us to fix the ambiguity found in section 3.3, concluding that 
the numerical results for the entanglement spectrum of the interval in the infinite line 
in the continuum limit agree with the conformal spectrum of the BCFT given by the 
free massless scalar on a segment with Neumann boundary conditions imposed on both 
the boundaries encircling the endpoints of the interval in the Euclidean spacetime. Also 
for this bipartition we expect that the agreement with the conformal spectrum of the 
BCFT holds only for the low-lying part of the entanglement spectrum.

5. Conclusions

In this manuscript we have performed a numerical analysis of the continuum limit of 
the entanglement Hamiltonians of a block made by L consecutive sites in massless har-
monic chains, in the two cases where the subsystem is an interval in the infinite line or 
an interval at the beginning of the semi-infinite line with Dirichlet boundary conditions 
imposed at its endpoint. The procedure is based on the method introduced in [20, 22] 
for chains of free fermions, which has been adapted here to harmonic chains.

We have obtained the analytic expression (2) predicted by CFT, with the weight 
function β(x) and the energy density T00(x) respectively given by (3) and (6) for the 
interval in the infinite line and by (4) and (7) for the interval at the beginning of a semi-
infinite line. A remarkable agreement between the data points and the weight func-
tions β(x) predicted by CFT is observed (see figures 5 and 11). It would be instructive 
to support our numerical results with analytic computations, by first finding analytic 
expressions for the functions µk(x) and νk(x) (see figures 2 and 3 for the interval in the 
infinite line and figures 8 and 9 for the interval at the beginning of the semi-infinite 
line) and then by analytically calculating the sums involving these functions and their 
derivatives which provide the continuum limit of the entanglement Hamiltonians, as 
done in [20, 22] for the interval in the infinite chain of free fermions.

We have also explored the continuum limit of the entanglement spectra of these 
entanglement Hamiltonians, finding that the ratios of the low-lying gaps provide the 
ratios of the conformal dimensions of the BCFT given by the massless scalar on the 
annulus with the proper conformal boundary conditions, as predicted in [13] (see 
figures 7 and 13). The numerical results indicate that Neumann boundary conditions 
must be imposed along the boundaries introduced by the regularisation procedure. This 
is in agreement with a similar numerical analysis performed in lattice spin models [26], 
where it has been found that the numerical results for the entanglement spectra are 
compatible with the conformal spectra of BCFT with free boundary conditions imposed 
along the boundaries around the entangling points. This has also been confirmed by 
numerical studies out of equilibrium [28].
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The results reported in this manuscript can be extended in various directions. In 
massless harmonic chains, the entanglement Hamiltonians of an interval in a circle 
when the system is in its ground state or in the infinite line when the system is at finite 
temperature should be studied because in these cases (2) still holds and the weight 
functions β(x) are known from CFT [12, 13, 21, 22]. It is also natural to explore the 
entanglement Hamiltonians for bipartitions involving disjoint intervals [15, 16, 39], 
spatially inhomogeneous chains [14, 40] and higher dimensional quantum systems [11]. 
It is important to find explicit expressions for the entanglement Hamiltonians in inter-
acting lattice models, both through analytic and numerical methods [41–45]. In addi-
tion, the analysis of the entanglement spectra [26, 34, 46–49] and of the contour for the 
entanglement entropies [30, 50, 51], which is a quantity strictly related to the entangle-
ment Hamiltonian, deserve further analysis. It is also useful to study operators on the 
lattice that provide ecient approximations of the entanglement Hamiltonians [14, 52]. 
We also mention that, in order to understand the unitary time evolution of a system 
after a quantum quench, i.e. after a sudden change that drives the system out of equi-
librium [53], relevant insights could come from the analysis of the time evolutions of 
the entanglement Hamiltonians and of their entanglement spectra [13, 27, 28, 54–56].
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Appendix. Alternative summations and role of kmax

In this appendix we report further results supporting the numerical analysis discussed 
in the main text. First we briefly discuss the choice of the numerical value of ωL 
adopted to study the entanglement Hamiltonian of the interval in the infinite line. 
In the remaining part of this appendix, we discuss some numerical results obtained 

through decompositions of the operators ĤM and ĤN  in (13) that are dierent from 
(18) and (19).

The harmonic chain on the infinite line displays translation invariance and this 
symmetry leads to the occurrence of the zero mode, that prevents us from setting 
ω = 0 in our numerical analysis, as already remarked in section 3.1. In order to study 
the entanglement Hamiltonians in the massless regime of this harmonic chain, we have 
to choose very small but non-vanishing values of ω > 0. The high numerical precision 
required for our numerical analysis allows us to take ω > 0 significantly close to zero. 
The numerical data reported in the figures discussed in sections 3.2 and 3.3 correspond 

to ωL = 10−500 and in figure A1 we justify this choice by showing M
(2)
kmax

/L and N
(0)
kmax

/L 

for decreasing values of ωL and for three increasing values of kmax at fixed L  =  400. In 
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Figure A2.  The combinations given by (42) (top panels), by the first expression 
in (A.1) (middle panels), and by (A.10) (bottom panels) for dierent values of L 
and two values of kmax for each combination (left and right panels), when the 
subsystem is an interval in the infinite line. The red solid curve is the parabola (3) 
predicted by CFT.

Figure A1.  The combination (52) (left) and the combination (51) (right) for 
decreasing values of ωL � 1 and increasing values of kmax when the subsystem 
is an interval made by L  =  400 sites in the infinite chain. The dashed black line 
corresponds to the parabola (3) predicted by CFT.
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less regime, we require that the numerical data are stabilised on the CFT prediction (3) 
for dierent values of kmax. While this condition is fulfilled already for ωL = 10−20 in 
the left panel of figure A1, it is not satisfied in the right panel. Instead, for ωL = 10−500 
very good collapses on the CFT curve are observed for the data corresponding to 
dierent kmax.

In the main text we have discussed the results for the continuum limit reported in 
figures 4 and 5 for the interval in the infinite line (see section 3.2) and in figures 10 and 

11 for the interval at the beginning of the semi-infinite line (see section 4.2). They have 

been obtained by starting from the decompositions (18) and (19) for ĤM and ĤN , which 
lead to the combinations (50)–(53) for the interval in the infinite line, and to the same 
combinations together with (72) for the interval at the beginning of the semi-infinite 
line.

Figure A3.  The combinations given by (39) (top panels), by the second expression 
in (A.1) (middle panels), and by (A.12) (bottom panels) for dierent values of L 
and two values of kmax for each combination (left and right panels), when the 
subsystem is an interval in the infinite line. The red solid curve is the parabola (3) 
predicted by CFT.
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and (15) for ĤM and ĤN , which provides the combinations (36), (39), (42) and (46) for 
the interval in the infinite line (see section 3.2) and the same combinations together 
with (67) for the interval at the beginning of the semi-infinite line (see section 4.2), has 
been explained in the main text. The numerical results of the combinations (42) and 
(39) for various sizes L of the intervals and for two values of kmax are shown in the top 
panels of figures A2 and A3 for the interval in the infinite line and of figures A4 and A5 
for the interval at the beginning of the semi-infinite line. As kmax increases, the agree-
ment between the data and the CFT predictions given by (3) and (4) improves. The 
numerical data stabilise around a value that has been adopted in the right panels. As 
for the combinations (36) and (46), we find that they lead to the function that vanishes 
identically in the interval, as expected from CFT. The range of the index i in these 
combinations does not allow us to capture the curve predicted by CFT on the entire 

Figure A4.  The combinations given by (42) (top panels), by the first expression 
in (A.1) (middle panels), and by (A.10) (bottom panels) for dierent values of L 
and two values of kmax for each combination (left and right panels), when the 
subsystem is an interval at the beginning of the semi-infinite line. The red solid 
curve is the half parabola (4) predicted by CFT.
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of (14) and (15).

In the remaining part of this appendix, we discuss the continuum limit of the 

entanglement Hamiltonians based on two other decompositions for ĤM and ĤN  in (13).
Considering the decompositions (16) and (17), by adapting the procedure described 

in section 3.2, we find the combinations given by

M
(2)
kmax

(i) =
kmax∑

k=−kmax

k2

2
Mi,i+k N

(0)
kmax

(i) =
kmax∑

k=−kmax

Ni,i+k� (A.1)

and

M
(0)
kmax

(i) =
kmax∑

k=−kmax

Mi,i+k M
(2)
2, kmax

(i) =
kmax∑

k=−kmax

k2

2

(
Mi+1,i+1+k − 2Mi,i+k +Mi−1,i−1+k

)
� (A.2)

Figure A5.  The combinations given by (39) (top panels), by the second expression 
in (A.1) (middle panels), and by (A.12) (bottom panels) for dierent values of L 
and two values of kmax for each combination (left and right panels), when the 
subsystem is an interval at the beginning of the semi-infinite line. The red solid 
curve is the half parabola (4) predicted by CFT.
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where 1 + kmax � i � L− kmax. We emphasise that the combinations (A.1) have also 
been found in [19] by employing a dierent approach. The data obtained through the 
combinations (A.1) are shown in the middle panels of figures A2 and A3 for the inter-
val in the infinite line and of figures A4 and A5 for the interval at the beginning of the 
semi-infinite line. Also in this case the agreement with the CFT predictions (3) and 
(4) improves as kmax increases until it reaches an optimal value corresponding to the 
one adopted in the right panels. Comparing the middle panels with the top panels and 
with figures 5, 6, 11 and 12, it is straightforward to notice that (A.1) does not allow 
us to describe the CFT curves close to both the endpoints of the interval. The data 
corresponding to (A.2), that are not reported in this manuscript, provide the function 
that vanishes identically in the interval as L increases and for optimal values of kmax, 
as expected from the CFT analysis.

Another way to obtain the results predicted by CFT in the continuum limit can 
be introduced by adapting the method employed in the numerical analysis of [22] 
for the entanglement Hamiltonian of an interval in an infinite chain of free fermions. 
Considering only blocks containing an even number L of sites, let us decompose the 

operators ĤM and ĤN  in (13) respectively as

ĤM = L
L∑
i=1

Mi,i

L
q̂2i

+ 2L

(
L/2−1∑
k=1

L−k∑
i=1+k

Mi−k,i+k

L
q̂i−k q̂i+k +

L/2−1∑
k=0

L−k−1∑
i=1+k

Mi−k,i+k+1

L
q̂i−k q̂i+k+1

)

�

(A.3)

and

ĤN = L
L∑
i=1

Ni,i

L
p̂2i

+ 2L

(
L/2−1∑
k=1

L−k∑
i=1+k

Ni−k,i+k

L
p̂i−k p̂i+k +

L/2−1∑
k=0

L−k−1∑
i=1+k

Ni−k,i+k+1

L
p̂i−k p̂i+k+1

)

�

(A.4)

where we have separated the contributions of the even diagonals of M and N from the 
contributions of the odd diagonals.

In (A.3) and (A.4) the index i labels the elements along the diagonals of M and 
N, while in the decompositions introduced in section 2 it corresponds to a row index. 
Treating separately the contributions of the odd diagonals and of the even diagonals in 
(A.3) and (A.4) and using (29), (30) and (31), we can adapt the procedure described in 

section 3.2 to these decompositions of the operators ĤM and ĤN . In this case we find 
that the combinations of diagonals occurring at the leading order as a → 0 are

Me (0)
rmax

(i) ≡ Mi,i + 2
rmax∑
r=1

Mi−r,i+r Mo (0)
rmax

(i) ≡ Mi,i + 2
rmax∑
r=1

Mi−r,i+r+1� (A.5)

which come from the even and odd diagonals, respectively.
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The next subleading order in the expansion of the entanglement Hamiltonian as 

a → 0 gets contributions both from ĤM and ĤN . In particular, the continuum limit of 
ĤM to this order gives

Me (2)
rmax

(i) ≡
rmax∑
r=1

(2r)2 Mi−r,i+r Mo (2)
rmax

(i) ≡
rmax∑
r=1

(2r + 1)2 Mi−r,i+r+1� (A.6)

and the term originating from the finite dierence approximation of µ′′
k(x), namely

M
e (2)
2,rmax

(i) ≡
rmax∑
r=1

(2r)2
(
Mi−r+1,i+r+1 − 2Mi−r,i+r +Mi−r−1,i+r−1

)

M
o (2)
2,rmax

(i) ≡
rmax∑
r=1

(2r + 1)2
(
Mi−r+1,i+r+2 − 2Mi−r,i+r+1 +Mi−r−1,i+r

)� (A.7)

while from ĤN  we find only

Ne (0)
rmax

(i) ≡ Ni,i + 2
rmax∑
r=1

Ni−r,i+r No (0)
rmax

(i) ≡ Ni,i + 2
rmax∑
r=1

Ni−r,i+r+1.� (A.8)

Notice that the range of the index i in the above expression is 1 + rmax � i � L− (1 + rmax) 
for the combinations coming from the odd diagonals and rmax + 1 � i � L− rmax for 
the combinations coming from the even diagonals.

The final expressions providing the continuum limit of the entanglement Hamiltonian 
are proper combinations of the terms coming from the even and odd diagonals, but in 
constructing these combinations we encounter the problem that the former ones are 
defined on L− 2rmax sites, while in the latter ones the index i assumes L− 2rmax − 1 
values. In this case the index i labels the elements along the diagonals; hence, focussing 

e.g. on (A.6), we encounter an ambiguity in the way to combine M
o (2)
rmax(i) with M

e (2)
rmax(i). 

In the following, first we split M
o (2)
rmax(i) as αM

o (2)
rmax(i) + βM

o (2)
rmax(i), with α + β = 1. Then, 

in the sum between the even and the odd part, we choose to associate αM
o (2)
rmax(i) to 

M
e (2)
rmax(i) and βM

o (2)
rmax(i) to M

e (2)
rmax(i+ 1). The values of α and β are not fixed uniquely 

and we choose α = β = 1/2 in our numerical analysis. For the interval in the infinite 
line, this choice guarantees the expected symmetry with respect to the centre of the 
interval at finite L.

By applying this procedure to all the expressions in (A.5)–(A.8), we obtain respectively

M
(0)
kmax

(i) = Me (0)
rmax

(i) +
1

2

(
Mo (0)

rmax
(i− 1) +Mo (0)

rmax
(i)

)
� (A.9)

M
(2)
kmax

(i) = Me (2)
rmax

(i) +
1

2

(
Mo (2)

rmax
(i− 1) +Mo (2)

rmax
(i)

)
� (A.10)

M
(2)
2,kmax

(i) = M
e (2)
2,rmax

(i) +
1

2

(
M

o (2)
2,rmax

(i− 1) +M
o (2)
2,rmax

(i)
)

� (A.11)

N
(0)
kmax

(i) = Ne (0)
rmax

(i) +
1

2

(
No (0)

rmax
(i− 1) + No (0)

rmax
(i)

)
� (A.12)
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where rmax + 1 � i � L− (rmax + 1) and we have employed the parameter kmax = 2rmax + 1 
adopted throughout this manuscript to label the last diagonal occurring in a particular 
combination of diagonals. Since we always choose odd kmax in our numerical analysis, 
the same number of even and odd diagonals occurs in the above combinations.

The numerical results for (A.10) and (A.12) are reported respectively in the left and 
right bottom panels of figures A2 and A3 for the interval in the infinite line and of 
figures A4 and A5 for the interval at the beginning of the semi-infinite line. As L and kmax 
increase, with kmax � L, we observe again that the agreement of the numerical data with 
the CFT curves (3) and (4) improves. Nonetheless, since rmax + 1 � i � L− (rmax + 1), 
the data points cannot capture the CFT curves close to the endpoints of the interval. 
We have also checked that, by performing this numerical analysis for (A.9) and (A.11), 
the vanishing curve is obtained everywhere within the interval except in the left end-
point in the case of the semi-infinite line, where the Dirichlet boundary conditions are 
imposed. These results also confirm the CFT predictions.
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