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Abstract.  The thermal properties of antiferromagnetic films—in particular, 
the square-lattice antiferromagnet—subjected to an external magnetic field 
pointing into the direction of the staggered magnetization are explored. The 
eective field theory analysis of the free energy density is carried out to two-
loop order. While the emphasis is on finite temperature, we also discuss the 
behavior of the magnetization and staggered magnetization at zero temperature. 
Our results imply that the staggered magnetization increases in presence of 
the magnetic field—reminiscent of magnetic catalysis. Most remarkably, if 
staggered and magnetic field strength are kept fixed, the magnetization initially 
grows when temperature increases.
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1.  Introduction

Antiferromagnetic films at finite temperature have been explored in many theoretical 
studies. Here we point to those articles that also discuss the eect of an external magn
etic field: [1–26]. While conventional condensed matter approaches rely on microscopic 
models, phenomenological considerations or Monte Carlo simulations—among others—
here we use magnon eective field theory that allows for a systematic analysis of the 
low-temperature behavior of antiferromagnetic films. Recently, the thermodynamics of 
antiferromagnetic films in magnetic and staggered fields has been analyzed up to two-
loop order within eective Lagrangians in [27, 28]. There, the external magnetic field 
was oriented perpendicular to the staggered magnetization vector.

On the other hand, in the present study we investigate the situation where the 
magnetic field is aligned with the staggered magnetization. It should be noted that 
all previous studies on antiferromagnetic films in magnetic fields—to the best of our 
knowledge—consider noninteracting magnons and hence neglect the role of the spin-
wave interaction in the thermodynamic properties1. A full-fledged systematic analysis 
of antiferromagnetic films subjected to an external magnetic field that is aligned with 
the order parameter, seems to be lacking. The present eective field theory invest
igation closes this apparent gap in the quantum magnetism literature, by taking the 
eective evaluation of the partition function up to the two-loop level.

We focus on the behavior of the staggered magnetization and the magnetization 
in presence of staggered and magnetic fields at finite, but also at zero temperature. 
While our eective investigation applies to any bipartite two-dimensional lattice, our 

1 With the exception of [27, 28].
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numerical analysis concentrates on the square-lattice antiferromagnet where all rele-
vant low-energy eective couplings have been determined by Monte Carlo simulations. 
As a consequence, the eective theory results are parameter-free and fully predictive. 
We observe that the staggered magnetization grows when the staggered or the magn
etic field become stronger—the latter is reminiscent of magnetic catalysis. The magne-
tization behaves in a similar way: it rises when magnetic and staggered field strength 
augment. But most remarkably, if magnetic and staggered fields are kept constant, the 
magnetization increases when temperature is raised. The magnetization however starts 
to decrease at more elevated temperatures—as one would expect.

As we comment below, the fact that the magnetization may increase with temper
ature—or, more generally, the phenomenon of entropic enhancement of magnetic order—
is not restricted to bipartite two-dimensional antiferromagnets; rather it appears to be 
a common feature of quantum antiferromagnets that occurs not only in two spatial 
dimensions, but also in antiferromagnetic spin chains and ladders.

The paper is organized as follows. In section 2 we provide a concise overview of the 
eective field theory description of antiferromagnetic films. In particular, we derive the 
dispersion relations and construct the corresponding thermal propagators for magnons 
in magnetic fields aligned with the staggered magnetization. Section 3 is devoted to 
the evaluation of the free energy density that we take up to the two-loop level. The 
behavior of the staggered magnetization and the magnetization in staggered and magn
etic fields is discussed in section 4, both for zero and finite temperature. In section 5 
we then conclude. A few technical details concerning the perturbative evaluation of the 
partition function within eective field theory are presented in an appendix.

2. Microscopic and eective description

On the microscopic level, the starting point to describe antiferromagnetic films is the 
quantum Heisenberg model extended by external magnetic ( �H) and staggered ( �Hs) 
fields,

H = −J
∑
n.n.

�Sm · �Sn −
∑
n

�Sn · �H −
∑
n

(−1)n�Sn · �Hs, J < 0, J = const.
� (2.1)

It is assumed that we are dealing with a bipartite lattice and that the sum in the first 
term is over nearest neighbor spins. If no external fields are present, we have two 
magnon (Goldstone) modes—or spin-wave branches—that are degenerate and satisfy 
the dispersion relation

ω(�k) = v|�k|+O(�k3), �k = (k1, k2),� (2.2)

where v is the spin-wave velocity. If external fields are included, then the spontaneously 
broken O(3) symmetry of the isotropic Heisenberg Hamiltonian is no longer exact, and 
the dispersion relations become gapped (see below).

https://doi.org/10.1088/1742-5468/ab7757
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On the eective field theory level2, the two antiferromagnetic magnon fields—U1 
and U2—are collected in the unit vector Ui,

U i = (U0,Ua), U0 =
√
1− UaUa, a = 1, 2, i = 0, 1, 2.� (2.3)

The antiferromagnetic ground state is given by �U0 = (1, 0, 0), while the magnons are 
interpreted as fluctuations of the vector �U  in the two directions orthogonal to �U0.

The eective field theory captures the physics of the system at low energies and relies 
on an expansion in powers of momenta (energy, temperature), which is reflected in the 
eective Lagrangian through a derivative expansion. The leading contribution—L2

eff

—exhibits two space-time derivatives (momentum order p 2),

L2
eff =

1

2
F 2DµU

iDµU i +MsH
i
sU

i.� (2.4)

The covariant time and space derivatives are

D0U
i = ∂0U

i + εijkH
jUk, DrU

i = ∂rU
i, (r = 1, 2).� (2.5)

The magnetic field Hi shows up in the time covariant derivative D0U
i, while the stag-

gered field H i
s comes with the low-energy eective constant Ms: this is the staggered 

magnetization at zero temperature and infinite volume. The square of the other low-
energy eective constant F is identified with the spin stiness ρs = F 2 (see [32]).

The next-to-leading order eective Lagrangian (momentum order p 4) takes the form

L4
eff = e1(DµU

iDµU i)2 + e2(DµU
iDνU i)2 + k1

Ms

ρs
(H i

sU
i)(DµU

kDµUk)

+ k2
M2

s

ρ2s
(H i

sU
i)2 + k3

M2
s

ρ2s
H i

sH
i
s.

�

(2.6)

It involves a total of five next-to-leading order low-energy eective constants. For the 
eective field theory to be predictive, the numerical values of e1, e2, k1, k2, k3 have to be 
known—or at least, their order of magnitude has to be estimated (see below).

In the present study we consider the case where the magnetic field is aligned with 
the staggered field,

�H|| = (H, 0, 0), �Hs = (Hs, 0, 0), H,Hs > 0.� (2.7)

Note that the direction of the staggered and magnetic field coincides with the direction 
of the staggered magnetization vector �U0. These external fields induce an energy gap in 
the magnon dispersion relations, as we now show.

The leading order eective Lagrangian L2
eff—equation (2.4)—gives rise to the fol-

lowing terms quadratic in the magnon fields Ua (a = 1, 2),

1

2
ρs∂µU

a∂µUa − 1

2
ρsM

2UaUa − ρsHεab∂0U
aU b +

1

2
ρsH

2UaUa,� (2.8)

2 More detailed presentations of the eective description of antiferromagnetic materials in magnetic and staggered 
fields have been given, e.g. in sections IX–XI of [29]. We also refer to the more conceptual articles [30, 31] that 
deal with the foundations of eective Lagrangian field theory in condensed matter physics. In the present article, 
we restrict ourselves to the most basic ingredients.

https://doi.org/10.1088/1742-5468/ab7757
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where the ‘magnon mass’ M is associated with the staggered field through

M2 =
MsHs

ρs
.� (2.9)

Defining two new independent magnon fields u(x) and u*(x) as

u = U1 + iU2, u∗ = U1 − iU2,� (2.10)
we obtain the equations of motion,

�u+M2u+ 2iHu̇−H2u = 0,

�u∗ +M2u∗ − 2iHu̇∗ −H2u∗ = 0.
� (2.11)

Accordingly, the two magnons, subjected to a magnetic field pointing into the same 
direction as the staggered field, obey the dispersion relations

ω+ =

√
�k

2
+

MsHs

ρs
+H,

ω− =

√
�k

2
+

MsHs

ρs
−H.

�

(2.12)

This is perfectly consistent with the condensed matter literature (see, e.g. [33, 34]). 
In the absence of external fields, the above dispersion relations reduce to the linear 
ungapped dispersion relation equation (2.2)3.

It should be noted that the lower spin-wave branch ω− becomes negative, unless 
the condition

Hs >
ρs
Ms

H2
� (2.13)

is satisfied. The present analysis is based on the assumption that the above stability 
criterion is indeed met. Otherwise, if the magnetic field becomes too strong compared 
to the staggered field, the staggered magnetization vector rotates into a direction 
perpendicular to the magnetic field. This situation of mutually perpendicular magnetic 
and staggered fields has been considered in [27, 28] within eective field theory. In 
particular, in that case only one of the magnons ‘senses’ the magnetic field [27, 33],

ωI =

√
�k2 +

MsHs

ρs
+H2,

ωII =

√
�k2 +

MsHs

ρs
,

�

(2.14)

and the dispersion relations maintain their relativistic structure for both magnons, the 
‘magnon masses’ amounting to

M2
I =

MsHs

ρs
+H2, M2

II =
MsHs

ρs
.� (2.15)

3 Notice that we have put the spin-wave velocity v to one.

https://doi.org/10.1088/1742-5468/ab7757
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On the other hand, if the magnetic field is aligned with the staggered magnetization, 
the dispersion relations are not relativistic according to equation (2.12).

We now turn to the thermal propagators and the kinematical functions related to 
them. For antiferromagnetic magnons that obey the dispersion relations equation (2.12), 
the propagators at zero temperature—and in Euclidean space—take the form4

∆±(x) =

∫
dp4
2π

∫
ddsp

(2π)ds
ei(�p �x−p4x4)

p24 + �p 2 +M2 ± 2iHp4 −H2

=

∫ ∞

0

dλ

∫
dp4
2π

∫
ddsp

(2π)ds
ei(�p �x−p4x4)e−λ( p24+�p 2+M2±2iHp4−H2).

�

(2.16)

In the present two-loop calculation, as will become clear in the next section, we only 
need the values of the propagators at the origin x  =  0. Integration over Euclidean 
energy and momentum then leads to

∆±(0) =
1

2
√
π

∫ ∞

0

dλλ− 1
2

∫
ddsp

(2π)ds
e−λ(�p 2+M2)

=
Mds−1

2ds+1π
ds
2
+ 1

2

Γ
(
− ds

2
+

1

2

)
.

�

(2.17)

Remarkably, upon integrating over p 4, the dependence on the magnetic field drops 
out: the propagator ∆+ that describes magnon u is identical with the propagator ∆− 
that describes magnon u*, and they furthermore coincide with the (pseudo-)Lorentz-
invariant and degenerate propagator ∆,

∆(0) =

∫
ddp

(2π)d
1

M2 + p2
=

∫ ∞

0

dλ (4πλ)−d/2e−λM2

.� (2.18)

The physical limit ds → 2 (d → 3) is unproblematic and yields

lim
ds→2

∆±(0) = −M

4π
.� (2.19)

The thermal propagators imply infinite sums and are constructed from the zero-
temperature propagators as5

G±(x) =
∞∑

n=−∞

∆±(�x, x4 + nβ), β =
1

T
.� (2.20)

Regularizing in the spatial dimensions only, they read

G±(x) =
∞∑

n=−∞

∫ ∞

0

dλ

∫
dp4
2π

∫
ddsp

(2π)ds
e−ip4(x4+nβ)+i�p �xe−λ( p24+�p 2+M2±2iHp4−H2).

� (2.21)

4 Note that we only regularize in the spatial dimension ds. The space-time dimension we denote as d where 
d  =  ds  +  1.
5 For a brief account on finite-temperature eective field theory, see section 3 of [27]. Details on finite-temperature 
field theory are provided in the textbook by Kapusta and Gale [35], (chapters 2 and 3).

https://doi.org/10.1088/1742-5468/ab7757
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Unlike at T  =  0, integration over Euclidean energy does not eliminate the magnetic 
field,

G±(x) =
1

2
√
π

∞∑
n=−∞

∫ ∞

0

dλ

∫
ddsp

(2π)ds
λ− 1

2 e−λ(�p 2+M2)ei�p �xe−
(x4+nβ)2

4λ e∓H(x4+nβ).

� (2.22)
At the origin x  =  0, and in terms of the dimensionless parameters h and m̃,

h =
1

2
√
π

H

T
, m̃ =

1

2
√
π

M

T
=

1

2
√
π

√
MsHs√
ρsT

,� (2.23)

the thermal propagators take the form

G±(0) =
T ds−1

4π

∞∑
n=−∞

∫ ∞

0

dλλ− ds
2
− 1

2 e−λm̃2

e−
πn2

λ e∓2
√
πhn.� (2.24)

The infinite sum can be performed analytically with the result

G±(0) =
T ds−1

4π

∫ ∞

0

dλλ− ds
2 e−λm̃2

θ3

(
±

√
πhλ, e−πλ

)
eλh

2

,� (2.25)

where θ3(u, q) is the Jacobi theta function defined by

θ3(u, q) = 1 + 2
∞∑
n=1

qn
2

cos(2nu).� (2.26)

It should be noted that the thermal propagators G+ (0) and G−(0) are in fact identical: 
the summation in equation (2.24) is symmetrical and the Jacobi theta function is even 
in the parameter u =

√
πhλ. We therefore adapt our notation by using

Ĝ(0) = G+(0) = G−(0).� (2.27)

In order to isolate the purely thermal piece in Ĝ(0), we subtract the n  =  0 (zero-temper
ature) contribution from the infinite sum,

ĝ1 ≡ Ĝ(0)−∆(0).� (2.28)

This then leads to the kinematical Bose function ĝ1,

ĝ1 =
T ds−1

4π

∫ ∞

0

dλλ− ds
2
− 1

2 e−λm̃2

{
√
λ θ3

(√
πhλ, e−πλ

)
eλh

2 − 1

}
.� (2.29)

The limit ds → 2 in the above representation is well-defined and the numerical evalu-
ation of

ĝ1 =
T

4π

∫ ∞

0

dλλ− 3
2 e−λm̃2

{
√
λ θ3

(√
πhλ, e−πλ

)
eλh

2 − 1

}
(ds = 2)

�

(2.30)

can be done straightforwardly. For later purposes, it is convenient to define the dimen-
sionless kinematical function ĥ1 as

https://doi.org/10.1088/1742-5468/ab7757
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ĥ1 =
ĝ1
T
.� (2.31)

3. Free energy density

We now evaluate the partition function—or, equivalently, free energy density—for 
antiferromagnetic films in presence of magnetic and staggered fields aligned with the 
order parameter according to equation (2.7). In figure 1 we depict the Feynman dia-
grams that are relevant up to two-loop order6. The one-loop diagram 3 describes the 
noninteracting magnon gas and is of momentum (temperature) order p 3 (T3). At next-
to-leading order in the low-temperature expansion we have the (T-independent) tree 
graph 4a with an insertion from L4

eff, as well as the two-loop (interaction) graph 4b that 
involves a vertex from the leading Lagrangian L2

eff. Both contributions are of order 
p4 ∝ T 4. Notice that the low-temperature expansion is systematic: each loop referring 
to antiferromagnetic magnons is suppressed by one power of temperature in two spatial 
dimensions (see [9, 36]).

The incorporation of a magnetic field aligned with the order parameter does not lead 
to additional vertices or Feynman diagrams: the set of diagrams shown in figure 1 is the 

same also in the absence of �H||. The parallel magnetic field only emerges indirectly in 
the thermal propagators G±(x). In contrast, magnetic fields oriented perpendicular to 
the staggered magnetization do generate new vertices with an odd number of magnon 
lines, yielding additional Feynman diagrams at two-loop order [27].

The tree graphs 2 and 4a that do not involve any magnon propagators, only give 
rise to zero-temperature contributions to the free energy density,

2 3 4b4a

4

Figure 1.  Partition function diagrams up to order T4 for antiferromagnets in two 
spatial dimensions. Filled circles stand for vertices from L2

eff. The number 4 in the 
box stands for the subleading piece L4

eff.

6 More detailed information on the derivation of the partition function is given, e.g. in section 2 of [36] or in  
appendix A of [37].

https://doi.org/10.1088/1742-5468/ab7757
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z2 = −MsHs,

z4a = −(k2 + k3)
M2

sH
2
s

ρ2s
.� (3.1)

Remarkably, the parallel magnetic field does not show up in these expressions. This is 
again dierent from a magnetic field orthogonal to the staggered magnetization, where 
both z2 and z4a receive additional terms due to the magnetic field (see [27]).

Next we consider the one-loop graph 3. Details on its evaluation can be found in 
appendix A.1. Here we just provide the result,

z3 = −M
3/2
s H

3/2
s

6πρ
3/2
s

− ĝ0.� (3.2)

The finite-temperature piece is encapsulated in the kinematical function ĝ0 that is 
related to the kinematical function ĝ1 of the preceding section via

ĝ1 = − dĝ0
dM2

.� (3.3)

Accordingly, in two spatial dimensions, it takes the form

ĝ0 = T 3

∫ ∞

0

dλλ− 5
2 e−λm̃2

{
√
λ θ3

(√
πhλ, e−πλ

)
eλh

2 − 1

}
(ds = 2).

�

(3.4)

Note that the magnetic field and the staggered field enter through the parameters h and 
m̃ that we have defined in equation (2.23). Again it is useful to introduce the dimen-
sionless kinematical function ĥ0 as

ĥ0 =
ĝ0
T 3

.� (3.5)

Finally, the evaluation of the two-loop graph 4b yields7

z4b =
H

ρs
ĝ1

∂ĝ0
∂H

−
√
MsHsH

4πρ
3/2
s

∂ĝ0
∂H

− H2

ρs
(ĝ1)

2 +

√
MsHsH

2

2πρ
3/2
s

ĝ1

− MsHsH
2

16π2ρ2s
.

�

(3.6)

If the magnetic field is not present, graph 4b does not contribute to the free energy 
density, as is known from earlier studies [36].

Collecting results, the two-loop representation for the free energy density reads

z = z0 − ĝ0 +
H

ρs
ĝ1

∂ĝ0
∂H

−
√
MsHsH

4πρ
3/2
s

∂ĝ0
∂H

− H2

ρs
(ĝ1)

2 +

√
MsHsH

2

2πρ
3/2
s

ĝ1,

� (3.7)

7 For details see appendix A.2.

https://doi.org/10.1088/1742-5468/ab7757
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where the zero-temperature contribution z0 is

z0 = −MsHs −
M

3/2
s H

3/2
s

6πρ
3/2
s

− (k2 + k3)
M2

sH
2
s

ρ2s
− MsHsH

2

16π2ρ2s
.

� (3.8)
Inspecting figure 1, one notices that next-to-leading order eective constants only mat-

ter in the tree graph 4a. In the present evaluation that extends up to two-loop order, these 
constants are thus only relevant at zero temperature. The finite temperature properties of 
the system are completely fixed by the leading piece L2

eff of the eective Lagrangian that is 
(pseudo-)Lorentz invariant pursuant to equation (2.4). Note that (pseudo-)Lorentz invari-
ance is an accidental symmetry, i.e. a symmetry that is not present in the microscopic 
Heisenberg model, but emerges on the eective field theory level at leading order. This 
implies that the specific geometry of the bipartite lattice (square, honeycomb) does not 
matter in the eective description at the order we are considering: the general structure of 
the low-temperature series is identical for any of these bipartite lattices.

What diers from lattice to lattice, however, are the concrete values of the eective 
low-energy constants ρs and Ms that appear in L2

eff. To be specific, we quote the numer
ical values that have been obtained with high-precision loop-cluster simulations (see 
[38, 39]) for the square lattice,

ρs = 0.1808(4)J , Ms = 0.307 43(1)/a2, v = 1.6585(10)Ja,� (3.9)

and the honeycomb lattice,

ρs = 0.102(2)J , M̃s = 0.2688(3), v = 1.297(16)Ja,� (3.10)

where

M̃s =
3
√
3

4
Ms a

2.� (3.11)

All results refer to spin one-half. The low-energy constants and the spin-wave velocity 
v are measured in units of the exchange integral J and the lattice constant a.

4. Antiferromagnetic films at low temperatures

For the discussion of the thermal properties of the system, it is convenient to introduce 
the three dimensionless parameters,

m ≡
√
MsHs

2πρ
3/2
s

, mH ≡ H

2πρs
, t ≡ T

2πρs
,� (4.1)

that describe the physics of the system at low energies. They measure the strength of 
the external fields Hs and H, as well as temperature, in units of the exchange integral 
J. This is because the denominator,

2πρs ≈ J ,� (4.2)
is of the order of J that defines the relevant microscopic scale. The low-energy eective 
field theory operates in the sector where the parameters m,mH,t are small. More 
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concretely, for illustrative purposes, in the plots below we will consider the parameter 
space defined by

T , H, M(∝
√
Hs) � 0.8 J .� (4.3)

We should keep in mind that the (weak) staggered and magnetic fields cannot take 
arbitrary values: rather, the stability criterion, equation (2.13), has to be satisfied. In 
order to stay away from this instability, in the subsequent plots for the free energy 
density, staggered magnetization and magnetization, we restrict the parameter space 
by choosing

m > mH + δ, δ = 0.2.� (4.4)
This guarantees that we are in the safe region where our eective analysis applies.

In terms of m,mH and t, the dimensionless kinematical functions ĥ0 and ĥ1 defined 
in equations (3.5) and (2.31) take the form

ĥ0 =

∫ ∞

0

dλλ−5/2e−λm2/4πt2

{
√
λ θ3

(mHλ

2t
, e−πλ

)
em

2
Hλ/4πt2 − 1

}
,

ĥ1 =
1

4π

∫ ∞

0

dλλ−3/2e−λm2/4πt2

{
√
λ θ3

(mHλ

2t
, e−πλ

)
em

2
Hλ/4πt2 − 1

}
.

�

(4.5)

Note that these representations refer to ds  =  2.
Let us first point out that the temperature-dependent two-loop corrections are small 

with respect to the temperature-dependent one-loop contribution. This we illustrate by 
considering the free energy density where the low-temperature expansion amounts to

z = z0 + ẑ1 T
3 + ẑ2 T

4 +O(T 5),

ẑ1 = −ĥ0,

ẑ2 =

(
2πmHt ĥ1

∂ĥ0

∂mH

− mmH

2

∂ĥ0

∂mH

− 2πm2
H

t
(ĥ1)

2
+

mm2
H

t2
ĥ1

)
1

2πρst
.

�

(4.6)

The leading contribution (one-loop diagram 3) is of order T3, the next-to-leading 
contribution (two-loop diagram 4b) is of order T4.

In figure 2, on the respective left-hand sides, we depict the dimensionless quantity

ẑ1T
3 + ẑ2T

4

T 3
,� (4.7)

i.e. the total temperature-dependent free energy density as a function of magnetic 
and staggered field strength for the two temperatures T/2πρs = 0.3 (upper panel) and 
T/2πρs = 0.5 (lower panel). On the right-hand-sides of figure 2, we then demonstrate 
that the one-loop contribution dominates the low-temperature expansion by plotting 
the dimensionless ratio

ẑ2T

ẑ1
� (4.8)
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for the same two temperatures. Indeed, the two-loop corrections are small in either 
case. This is a generic result that also applies to the magnetization and staggered mag-
netization we consider below. It shows that the eective low-temperature expansion is 
consistent: loops are suppressed.

4.1. Staggered magnetization

The staggered magnetization can be extracted from the free energy density by

Ms(T ,Hs,H) = −∂z(T ,Hs,H)

∂Hs

.� (4.9)

The low-temperature series takes the structure

Ms(T ,Hs,H) = Ms(0,Hs,H) + σ̃1T + σ̃2T
2 +O(T 3),� (4.10)

Figure 2.  Total temperature-dependent free energy density (LHS), equation (4.7), 
and two-loop versus one-loop contribution (RHS), equation (4.8), in magnetic and 
staggered fields at the temperatures T/2πρs = 0.3 (upper panel) and T/2πρs = 0.5 
(lower panel).
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where the coecients are given by

σ̃1(T ,Hs,H) = −Ms

ρs
ĥ1,

σ̃2(T ,Hs,H) =
Ms

ρs

{
mH

ρs
ĥ2

∂ĥ0

∂mH

+
mH

ρs
ĥ1

∂ĥ1

∂mH

+
mHt

8πρsm

∂ĥ0

∂mH

− mmH

4πρst

∂ĥ1

∂mH

− 2m2
H

ρst2
ĥ1ĥ2 −

m2
H

4πρsmt
ĥ1 +

mm2
H

2πρst3
ĥ2

}
.

� (4.11)

The spin-wave interaction comes into play at order T2. Again, in zero magnetic field, 
there is no interaction term at two-loop order: σ̃2(T ,Hs, 0) = 0. The dimensionless kine-
matical function ĥ2,

ĥ2 =
1

16π2

∫ ∞

0

dλλ−1/2e−λm2/4πt2

{
√
λ θ3

(mHλ

2t
, e−πλ

)
em

2
Hλ/4πt2 − 1

}
,� (4.12)

is defined as

ĥ2 = ĝ2T ,� (4.13)

where ĝ2 can be obtained from ĝ1 via

ĝ2 = − dĝ1
dM2

.� (4.14)

As we illustrate below, the behavior of the staggered magnetization in magnetic and 
staggered fields is dominated by the zero-temperature contribution Ms(0,Hs,H), i.e. 
the order parameter

Ms(0,Hs,H) = −∂z(0,Hs,H)

∂Hs

= − ∂z0
∂Hs

� (4.15)

that amounts to

Ms(0,Hs,H)

Ms

= 1 +

√
HsMs

4πρ
3/2
s

+
H2

16π2ρ2s
+

2(k2 + k3)HsMs

ρ2s
.� (4.16)

Here Ms = Ms(0, 0, 0) is the order parameter with no external fields present. Note that, 
due to the tree graph 4a, the combination k2 + k3 of next-to-leading order eective cou-
pling constants shows up in this temperature-independent piece. In the case of antifer-
romagnetic films defined on a square lattice, this combination has been determined by 
very precise loop-cluster algorithms in [38] with the result8

k2 + k3
v2

=
−0.0037

2ρs
=

−0.0102

J
.� (4.17)

If the magnetic field is switched o, the T  =  0 staggered magnetization is governed 
by powers of 

√
Hs ,

8 Notice that in [38] a dierent convention for the low-energy constants was used.
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Ms(0,Hs, 0) = Ms +
M

3/2
s

4πρ
3/2
s

√
Hs +

2M2
s

ρ2s
(k2 + k3)Hs +O(H3/2

s ).� (4.18)

Remember that the other limit Hs → 0 is not legitimate because it violates the stability 
condition (2.13).

In figure 3 we examine the behavior of the staggered magnetization Ms(T ,Hs,H), 
equation (4.10), in magnetic and staggered fields, specifically for the square-lattice anti-
ferromagnet where all relevant low-energy eective couplings are known. We first dis-
cuss the zero-temperature case, i.e. the order parameter Ms(0,Hs,H) that is depicted 
on the upper left. One notices that the order parameter increases when the staggered 
field grows as one would expect: in stronger staggered fields the anti-alignment of the 
spins is more pronounced. Remarkably, the order parameter also increases when the 
magnetic field gets stronger. This is reminiscent of magnetic catalysis as described, e.g. 

Figure 3.  Staggered magnetization Ms(T ,Hs,H) at zero and finite temperature as 
a function of magnetic (mH) and staggered (m) field strength for the square-lattice 
antiferromagnet. The upper left figure refers to T  =  0, the other figures refer to the 
temperatures t = T/2πρs = {0.1, 0.3, 0.5} (left to right, top to bottom).
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in [40–45], and has also been observed in antiferromagnetic films where the magnetic 
field is oriented perpendicular to the staggered magnetization (see [21, 27]). It should be 
noted that we are dealing with an universal result—not restricted to the square-lattice 
antiferromagnet—because the coecient involving the magnetic field in equation (4.16) 
is positive: irrespective of the actual value of the spin stiness that indeed depends on 
the specific bipartite lattice, the order parameter is enhanced when the magnetic field 
gets stronger.

The enhancement of the order parameter by magnetic and staggered fields can be 
explained by suppression of quantum fluctuations. The staggered field, by construction, 
acts symmetrically on the two sublattices: it suppresses fluctuations of up-spins and 
down-spins in the same manner, such that the staggered magnetization grows—but the 
magnetization remains zero—when only the staggered field is present. If we now switch 
on a magnetic field pointing into the same direction as �Hs on sublattice A, but pointing 
into the opposite direction as �Hs on sublattice B, the eect induced by the magnetic 
field is asymmetric: the net external field (Hs  +  H) pointing up on sublattice A, is stron-
ger than the net external field (Hs  −  H) pointing down on sublattice B. This leads to a 
positive magnetization in the direction of the magnetic field (see next subsection) and, 
at the same time, it causes the order parameter to rise.

Note that the suppression of quantum fluctuations is quite significant: in the absence 
of external fields, the staggered magnetization of the square-lattice antiferromagnet 
takes the value Ms = 0.307 43(1)/a2. According to figure 3, in the parameter region 
we display (m � 0.8,mH � 0.6), this value may increase up to Ms ≈ 0.42/a2 in pres-
ence of the external fields. Considering the fact that in the hypothetical configuration, 

where all spins would be perfectly antialigned, we would have Ms =
1
2
/a2, the eect we 

observe is quite large.
Let us now discuss the behavior of the staggered magnetization at finite temper

ature. Along with the T  =  0 contribution, in figure 3, we depict the staggered magneti-
zation Ms(T ,Hs,H), equation (4.10), for the three temperatures T/2πρs = {0.1, 0.3, 0.5} 
(left to right, top to bottom). At low temperatures, the T  =  0 result is hardly modified. 
At more elevated temperatures, the staggered magnetization may be reduced substanti
ally, above all in weak magnetic and staggered fields where thermal fluctuations win 
over the suppression of quantum fluctuations by the external fields. Overall, this is 
what one would expect intuitively.

4.2. Magnetization

The low-temperature expansion of the magnetization,

M(T ,Hs,H) = −∂z(T ,Hs,H)

∂H
,� (4.19)

takes the form

M(T ,Hs,H) = M(0,Hs,H) + σ̂1T + σ̂2T
2 +O(T 3),� (4.20)
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with coecients

σ̂1(T ,Hs,H) = 2πρst
2 ∂ĥ0

∂mH

,

σ̂2(T ,Hs,H) = −2πt2ĥ1
∂ĥ0

∂mH

− 2πmHt
2 ∂ĥ1

∂mH

∂ĥ0

∂mH

− 2πmHt
2ĥ1

∂2ĥ2
0

∂m2
H

+
mt

2

∂ĥ0

∂mH

+
mmHt

2

∂ĥ2
0

∂m2
H

+ 4πmH(ĥ1)
2
+ 4πm2

H ĥ1
∂ĥ1

∂mH

− 2mmH

t
ĥ1 −

mm2
H

t

∂ĥ1

∂mH

.

�

(4.21)

The free Bose gas contribution is of order T, while the spin-wave interaction is con-
tained in the T2-term. The magnetization at zero temperature is given by

M(0,Hs,H) =
HsMsH

8π2ρ2s
.� (4.22)

In contrast to the order parameter, in the magnetization next-to-leading order eective 
constants are irrelevant: they only show up beyond two loops. This means that our 
eective result for the total magnetization M(T,Hs,H), equation (4.20), is fully predic-
tive also for the honeycomb-lattice antiferromagnet if the numerical values for the lead-
ing low-energy eective constants provided in equation (3.10) are inserted. Note that 
the limit Hs → 0 in equation (4.22) is not legitimate as it would violate the stability 
criterion. On the other hand, if the magnetic field is switched o, the magnetization 
drops to zero

lim
H→0

M(0,Hs,H) = 0,� (4.23)

as it should.
A plot for the zero-temperature case is shown on the upper left of figure 4. We 

observe a positive magnetization M(0,Hs,H) in the direction of the magnetic field, that 
increases when magnetic and staggered fields become stronger. Again, these eects can 
be explained by suppression of quantum fluctuations. The staggered field alone cannot 
induce a magnetization because it suppresses fluctuations of up-spins and down-spins 
in the same manner. By incorporating a magnetic field, however, an asymmetric situa-
tion is generated: the net external field (Hs  +  H) pointing up on sublattice A, is stronger 
than the net external field (Hs  −  H) pointing down on sublattice B. As a consequence, 
the magnetization takes positive values in the direction of the magnetic field, because 
quantum fluctuations on the A-sublattice are more suppressed. In stronger magnetic 
and staggered fields the value of the magnetization, as the plot indicates, still is rather 
small, approximately M(0,Hs,H) ≈ 0.03/a2. This is because we are describing a two-
loop eect.

Let us finally investigate the eects caused by finite temperature. Along with the 
T  =  0 contribution, in figure 4, we depict the total magnetization M(T,Hs,H) for the 
three temperatures T/2πρs = {0.1, 0.3, 0.5} (left to right, top to bottom)9. At very low 

9 Notice that the units for the total magnetization M(T,Hs,H) in the figures are the same as the units for the stag-
gered magnetization, namely 1/a2.
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netization. However, one already notices the quite counterintuitive phenomenon that 
becomes apparent at more elevated temperatures: the total magnetization grows when 
temperature is raised while keeping magnetic and staggered field strength fixed.

This comes quite unexpectedly because one would rather assume the total mag-
netization to drop as a consequence of the thermal fluctuations that become stronger 
at higher temperatures. First of all we point out that the analogous phenomenon has 
also been observed in three-dimensional antiferromagnets, subjected to magnetic fields 
aligned with the order parameter: according to equation (7.4.126) of [34], the magne-
tization grows when temperature increases. Moreover, in [3] dealing with the thermal 
and magnetic properties of a quasi two-dimensional antiferromagnet, the phenomenon 
has also been observed experimentally.

Figure 4.  Magnetization M(T,Hs,H) at zero and finite temperature as a 
function of magnetic (mH) and staggered (m) field strength for the square-lattice 
antiferromagnet. The upper left figure refers to T  =  0, the other figures refer to the 
temperatures t = T/2πρs = {0.1, 0.3, 0.5} (left to right, top to bottom).
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It should be emphasized that the magnetization does not monotonously increase 
with temperature. At more elevated temperatures, the magnetization starts to drop. 
Indeed, this is the response one would intuitively expect. This is illustrated in figure 5 
where we provide contour plots for the two cases (a) magnetization going from zero 
temperature to t  =  0.3, and (b) going from t  =  0.5 to t  =  0.8. As witnessed by case (a), 
at low temperatures the magnetization increases (with respect to T  =  0) in the entire 
parameter region that we consider. However, at more elevated temperatures, going 
from t  =  0.5 to t  =  0.8 as in scenario (b), the magnetization starts to drop because ther-
mal fluctuations become stronger.

The fact that the magnetization initially increases with temperature can be inter-
preted as entropic enhancement of the spin order. In fact, this phenomenon has also 
been described in frustrated antiferromagnetic films and antiferromagnetic spin chains 
and ladders.

First, quantum antiferromagnets defined on triangular or other frustrated lat-
tices exhibit analogous counterintuitive properties. As discussed in [46], collinear spin 
configurations are selected out of non-collinear ones at small but finite temperature—
creation of ‘order-by-disorder’ induced by thermal fluctuations.

Second, in one-dimensional systems, the behavior of the magnetization is even more 

intriguing as outlined in [47]. In the critical S = 1
2
 antiferromagnetic chain, the mag-

netization initially increases with temperature10—analogous to what we find in our 
eective study of bipartite two-dimensional systems. However, regarding the S  =  1 
antiferromagnetic chain, the magnetization initially decreases with temperature, 
goes through a minimum, and then increases. The existence of a magnetization mini-

mum has also been detected in a numerical analysis of the S = 1
2
 two-leg spin ladder  

(see [49, 50]).

Figure 5.  Change of magnetization M(T,Hs,H) going from T  =  0 to t  =  0.3 (left) 
and going from t  =  0.5 to t  =  0.8 (right), as a function of magnetic (mH) and 
staggered (m) field strength for the square-lattice antiferromagnet.

10 For experimental confirmation see, e.g. [48].
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It should be stressed that the systems described above—frustrated two-dimensional 
antiferromagnetic lattices, antiferromagnetic spin chains and ladders—refer to nonzero 
magnetic, but zero staggered field. On the other hand, as we discussed in section 2, our 
eective analysis of antiferromagnetic films applies to the case of nonzero staggered 
fields that furthermore obey the stability criterion, equation (2.13), and are defined on 
bipartite lattices. In conclusion, the entropic enhancement of spin order appears to be 
a common feature of quantum antiferromagnets.

5. Conclusions

The low-energy behavior of antiferromagnetic films subjected to a magnetic field aligned 
with the order parameter has been analyzed systematically within the framework of 
magnon eective field theory. Low-temperature representations for the free energy 
density, the staggered magnetization, and the magnetization have been derived up to 
two-loop order. In our numerical analysis we focused on the square-lattice antiferro-
magnet where all relevant low-energy eective couplings are known from Monte Carlo 
simulations.

Considering the free energy density, we have illustrated that the two-loop correc-
tion is small with respect to the dominant one-loop free Bose gas contribution. At 
zero temperature, the order parameter increases when the magnetic and staggered 
fields become stronger. While the magnetization at T  =  0 follows a similar pattern, it 
should be noted that the staggered field alone cannot induce any magnetization. These 
observations can be understood in terms of suppression of quantum fluctuations by the 
external fields. The enhancement of the order parameter due to the magnetic field is 
reminiscent of magnetic catalysis.

At finite temperature, the staggered magnetization decreases due to thermal 
fluctuations—as one would intuitively expect. What comes quite as a surprise is that 
the total magnetization initially grows when temperature is raised while keeping magn
etic and staggered field strength fixed. At more elevated temperatures, however, total 
magnetization starts to decrease.

We emphasize that our eective field theory predictions for the square-lattice anti-
ferromagnet are parameter-free—both at zero and finite temperature. At T  =  0, the 
relevant combination of next-to-leading order eective constants k2 + k3 is known from 
loop-cluster Monte Carlo simulations. At finite temperature, such next-to-leading order 
eective constants only show up beyond two loops: the thermodynamic properties of 
antiferromagnetic films on a bipartite lattice in general—not restricted to the square 
lattice—are fully determined by the leading-order eective constants ρs (spin stiness) 
and Ms (order parameter). In this sense, the rather counterintuitive behavior of the 
magnetization exhibited by antiferromagnetic films in magnetic fields aligned with the 
order parameter, is universal.

In addition, it should be pointed out that the phenomenon of entropic enhancement 
of spin order is not restricted to bipartite two-dimensional lattices, but has also been 
reported theoretically—and observed experimentally—in (frustrated) triangular anti-
ferromagnets as well as in antiferromagnetic spin chains and ladders.
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Appendix. Explicit calculations

In this appendix we provide some additional material concerning the evaluation of the 
Feynman graphs for the free energy density.

A.1. One-loop contribution to the free energy density

Evaluating the one-loop graph in eective field theory (graph 3 of figure 1) boils down 
to evaluating the functional integral J

J =

∫
[dU ] exp

[
−

∫
ddxLkin

]
,

� (A.1)
which yields the one-loop free energy density z3 via

z3 = − 1

Vd

log J ,
� (A.2)

where Vd is the Euclidean volume.
To this end we consider the derivative of J with respect to the magnon mass 

squared,

∂

∂M2
J = −

∫
[dU ] exp

[
−

∫
ddxLkin

] ρs
2

∫
ddxUaUa,� (A.3)

where the kinetic term for the magnons in Euclidean space is

Lkin =
1

2
ρs∂µU

a∂µU
a +

1

2
ρsM

2UaUa + iρsHεab∂0U
aU b − 1

2
ρsH

2UaUa.� (A.4)

Using the physical magnon fields u(x) and u*(x) defined in equation (2.10), we obtain

∂

∂M2
J = −

∫
[du][du∗] exp

[
−

∫
ddxLkin

] ρs
2

∫
ddx uu∗

= −VdJ

2

{
G+(0) +G−(0)

}

= −VdJĜ(0),

�

(A.5)

with

Lkin =
1

2
ρs∂µu∂µu

∗ +
1

2
ρsM

2uu∗ − 1

2
ρsH(u∗∂0u− u∂0u

∗)− 1

2
ρsH

2uu∗.� (A.6)

In Euclidean space, the thermal propagator G+ (x)—referring to magnon u(x)—and the 
thermal propagator G−(x)—referring to magnon u*(x)—are defined as
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G±(x) =
∞∑

n=−∞

∆±(�x, x4 + nβ), β =
1

T
.� (A.7)

At the origin x  =  0, the thermal propagators coincide,

G+(0) = G−(0) ≡ Ĝ(0).� (A.8)

The explicit expression is provided in equation (2.25).
Collecting partial results, the one-loop free energy density amounts to

z3 = −ĝ0 −
M

3/2
s H

3/2
s

6πρ
3/2
s

.� (A.9)

Note that we have used equations (2.28) and (3.3).

A.2. Two-loop contribution to the free energy density

Let us evaluate the two-loop graph 4b of figure 1. The terms quartic in the magnons 
fields resulting from the leading-order eective Lagrangian L2

eff are

L4b =
1

4
ρs∂µu∂µu

∗uu∗ +
1

8
ρs∂µu

∗u∂µu
∗u+

1

8
ρs∂µuu

∗∂µuu
∗ +

1

8
ρsM

2uu∗uu∗.

� (A.10)
Evaluating the functional integral

J4b =

∫
[du][du∗] exp

[
−

∫
ddxLkin

] ∫
ddxL4b,� (A.11)

the respective contribution to the free energy density is

z4b =
H

2ρs

(
Ġ+(x)− Ġ−(x)

)
|x=0

(
G+(x) +G−(x)

)
|x=0

+
H2

4ρs

(
G+(x) +G−(x)

)2

|x=0

=
H

ρs
ĝ1

∂ĝ0
∂H

−
√
MsHsH

4πρ
3/2
s

∂ĝ0
∂H

− H2

ρs
(ĝ1)

2 +

√
MsHsH

2

2πρ
3/2
s

ĝ1 −
MsHsH

2

16π2ρ2s
.

� (A.12)

In the course of the calculation we have used the fact that the thermal propagators 
obey the equations11

{
� −M2 ± 2H∂x4 +H2

}
G±(x)|x=0 = 0.� (A.13)

Whereas single time derivatives of the thermal propagators at the origin x  =  0 vanish 
when no magnetic field is present,

Ġ±(x)|x=0 = 0, (H = 0),� (A.14)

this is dierent in nonzero magnetic fields. Starting with the representation for the 
thermal propagator, equation (2.22),

11 We are in Euclidean space with Euclidean time coordinate x4  =  it.
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G±(x) =
1

2
√
π

∞∑
n=−∞

∫ ∞

0

dλ

∫
ddsp

(2π)ds
λ− 1

2 e−λ(�p 2+M2)ei�p �xe−
(x4+nβ)2

4λ e∓H(x4+nβ),

� (A.15)
we obtain the Euclidean time derivatives, evaluated at the origin x  =  0, as

∂

∂x4

G±(x)|x=0 = − β

4
√
π

∞∑
n=−∞

∫ ∞

0

dλ

∫
ddsp

(2π)ds
λ− 3

2 e−λ(�p 2+M2) n e−
n2β2

4λ e∓nβH

∓ H

2
√
π

∞∑
n=−∞

∫ ∞

0

dλ

∫
ddsp

(2π)ds
λ− 1

2 e−λ(�p 2+M2)e−
n2β2

4λ e∓nβH .

� (A.16)
The first contribution, using the identity,

e−
n2β2

4λ n e∓nβH = ∓ 1

β

∂

∂H

{
e−

n2β2

4λ e∓nβH

}
,� (A.17)

can be expressed in terms of the Jacobi theta function, defined by equation (2.26). After 
a few trivial manipulations we end up with

∂

∂x4

G±(x)|x=0 = ±1

2

∂

∂H
g±0 ∓Hg±1 ± HM

4π
,� (A.18)

which finally leads to the result equation (A.12).
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