
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

iCAST-ES 2019

Journal of Physics: Conference Series 1450 (2020) 012071

IOP Publishing

doi:10.1088/1742-6596/1450/1/012071

1

Model design for grammatical error identification in software

requirements specification using statistics and rule-based

techniques

F P Putra1, D Enda1

1 Department of Informatic Engineering, Politeknik Negeri Bengkalis, Jalan Bathin

Alam, Riau, Indonesia

E-mail: fajri@polbeng.ac.id

Abstract. The statement of functional requirements statement that refers to software

requirements specifications (SRS) is a reference for stakeholders in making software. The SRS

document uses a different English grammar due to limited knowledge by the software

development team, making it difficult for the development team to read and understand the

specification documents for software requirements properly. To overcome this grammatical

error, a method is needed to resolve grammatical errors. The method used to identify

grammatical errors is based on a trigram language model. In the last research, trigram language

models showed quite good performance in identifying grammatical errors based on probabilistic

n-gram language models. To improve the performance of the n-gram language model this study

also utilizes a corpus namely Penn Tree Bank Corpus. Provide recommendations, this study uses

rules-based techniques. A number of rules are made to provide recommendations for

inappropriate grammar. So that the software requirements specification compiler can check for

grammatical errors and improve the quality of the software requirements specification document.

1. Introduction

Software requirements are specific attributes that are specifications of functional requirements and non-

functional requirements of a software system. Software requirement specification (SRS) documents are

generally compiled using natural language, which is the language we use in daily conversation [1].

Although natural language is more easily understood by stakeholders and is very flexible to

accommodate various changing user needs. SRS describes all the requirements that must be owned by

the system in order to conform to its function. These requirements are typically illustrating features of

underdevelopment systems. These features not only describe its functional requirements FR but also its

non-functional requirements NFR. Functional requirements and non-functional requirements have the

same important role for system development. Both FR and NFR have an impact on the overall success

of the system [2]. However, the use of natural language has the disadvantage that the authors of the

SKPL document usually do not take great care of the grammatical errors used. The grammar in each

language used has different characteristics, for example in Indonesian it has a specificity in the article

clothing, prepositions, suffixes and conjunctions. English also has specificities to verbs, regular verbs,

irregular verbs, nouns, adjectives and many others. The use of each word category has several rules that

must be followed to produce proper and good grammar.

iCAST-ES 2019

Journal of Physics: Conference Series 1450 (2020) 012071

IOP Publishing

doi:10.1088/1742-6596/1450/1/012071

2

The preparation and writing of software requirements document generally follow the standard

standards that have been established as layouts or official frameworks in the English version, for

example, the IEEE 830-1998 standard. Most of the drafting teams of software requirements specification

documents use English as the language for writing SRS documents. So that in this study using grammar

in English as an object being discussed. Improper grammar can reduce the quality of software

requirements specification documents, this makes it difficult for the development team to read and

understand the software requirements specification documents properly. So that topics and methods

regarding writing correct grammatical errors according to the rules and rules of grammar are very open

to be developed and further researched.

This research proposes a method design to identify and provide recommendations for grammatical

errors in the software requirements specification document. The method used to identify grammatical

errors is based on trigram language models, as discussed in the Enda and Putra (2019) research [3], the

trigram language model shows good performance in identifying grammatical errors based on

probabilistic n-language models gram. To provide recommendations, this study uses rules-based

techniques. A number of rules are made to provide recommendations for inappropriate grammar. So that

the software requirements specification compiler can check for grammatical errors and improve the

quality of the software requirements specification document. To improve the performance of the n-gram

language model this study also utilizes a corpus namely Penn Tree Bank Corpus.

2. Theoretical basis

2.1. Software requirement

Previous research that has discussed grammar in preparing software requirements specification

documents, like research by Enda and Putra (2019) [3] proposed a method for identifying grammatical

errors in software requirements statements using the probabilistic n-gram language model. The proposed

method is a statistical-based technique using the probability of the n-gram language model, where the

language model used is the bigram and trigram language models. The performance of the proposed

method is evaluated using the precession, recall and f-measure values. Based on the tests that have been

done, it can be seen that the acquisition of precession, recall and f-measure values in the trigram language

model with a threshold = 0.1 has the highest values of 83%, 85%, and 86%, respectively. This shows

that the trigram language model can identify grammatical errors well. when compared to the bigram

testing scenario. Based on this research, to improve accuracy in identifying grammatical errors, this

study uses a combination of n-gram language statistical models with rule based.

2.2. Spelling checker

Spelling checker is the initial process for identifying grammatical errors. Spelling checker is used to

detect and handle word errors, word errors usually occur because during the process of typing text so

that it can change the meaning of a word and even the meaning of a sentence. In addition, it is also due

to mechanical failures such as hand or finger slip, and also arises due to the writer's ignorance in spelling

words. Detecting and correcting errors of words has certain complexity. Predefined confusion sets,

restricted numbers of corrections, and other assumptions are used as system constraints to simplify the

problem [4].

Detecting word errors can be done using the help of a computer application, the application is able

to examine documents and look for writing errors in them and if necessary, warn the writer and offer

some suggestions for correcting errors. Spelling checkers are divided into two types namely non-word

error spell checkers and real-word spell checkers. Non-word error spell checkers handle misspelled

words that are formed due to typos, while real-word error spell checkers prioritize handling words that

replace error words in sentences [5].

In this study spell checking can automatically be done using the Hunspell Checker library. Hunspell

is a spell checker and morphological analyser designed for languages with rich morphology and complex

word compounding or character encoding. Hunspell has been used by LibreOffice, OpenOffice, and

iCAST-ES 2019

Journal of Physics: Conference Series 1450 (2020) 012071

IOP Publishing

doi:10.1088/1742-6596/1450/1/012071

3

many others. This library provides a system for tokenizing, stemming and spelling in almost all

languages or the alphabet. The R package presents a high-level spell checker and also a low-level

stemmer and tokenizer that analyses or extracts individual words from various formats (text, html, xml,

latex). The Hunspell library uses a special dictionary format that determines which characters, words

and conjugations are valid in certain languages. The spell checker process consists of the following steps

[6]:

• Tokenizing is process decompose documents by extracting the words we want to check.

• Stemming is process analyse each word by breaking it and conjunction affixes.

• Search dictionary combination of words and affixes, if valid for the selected language, no spelling

errors are found.

• For wrong words, suggest corrections by finding similar (true) words in the dictionary.

2.3. N-Gram based statistical techniques

N-gram-based statistical techniques are techniques for mapping a sentence into n-letter sub-words or

strings where n usually consists of one word (unigram), two words (bigram) or three words (trigrams)

[7]. The n-gram model is a statistical technique that models word sequences into probability values. If

a sentence is stated as {w1, w2, ..., wn-1, wn} and n is the number of words in a sentence, then to

calculate the probability value of a sentence using a unigram statistical model it can be calculated using

the resulting equation:

 P(W1
n) ≈ ∏ P(wi)i (1)

Meanwhile, to calculate the probability value of each pair of two words in a sentence can be calculated

using the maximum likelihood estimate equation following:

 P(wi|wi-1) =
N(wi-1, wi)

N(wi-1)
 (2)

N (wi-1, wi) dan N(wi-1) indicate the number of occurrences of a word or frequency N (wi-1, wi) and N(wi-

1) in the corpus. The probability value of a sentence using the bigram statistical model can be calculated

by the Chain rule written with the following equation:

 P(W1
n) ≈ ∏ P(wi|wi-1) n

i=1 (3)

The probability value of each pair of three words in a sentence can be calculated using the following

maximum likelihood equation:

 P(wi|wi-2,wi-1) =
N(wi-2, wi-1, wi)

N(wi-2,wi-1)
 (4)

Where N (wi-2, wi-1, wi) dan N (wi-2, wi-1) indicates the number of occurrences of a word or frequency N

(wi-2, wi-1, wi) dan N(wi-2, wi-1) in the corpus. The probability value of a sentence using the trigram

statistical model can be calculated using the following rules:

 P(W1
n) ≈ ∏ P(wi|wi-2, wi-1) n

i=3 (5)

The rule-based approach was discussed by Naber in 2003 [9], which developed a method and tool

that can check layout and grammatical errors in English sentences using rule-based techniques. To

increase the accuracy of the proposed method, a large corpus, the British National Corpus, is used to

ensure that the system built does not report too many errors in the correct sentence, so that the accuracy

of the system can be increased. The rule-based technique proposed by Naber can be used to express

rules that describe errors at the phrase level and not just at the word level. So that this method becomes

one of the reliable methods in checking for grammatical errors.

A statistical based approach was discussed by Henrich and Reuter in 2009 [8] who proposed a method

and tool to examine and correct grammatical errors that are independent of language types based on a

iCAST-ES 2019

Journal of Physics: Conference Series 1450 (2020) 012071

IOP Publishing

doi:10.1088/1742-6596/1450/1/012071

4

statistical approach. The languages used as the language of research trials are English and German.

Evaluation results show that approaches to different languages, although the accuracy of grammar

checks varies, the reason is due to differences in the morphological richness of languages. The limitation

of this method is that the quantity and quality of training data largely determine the method's

performance. The proposed improvement method shows that there are still many problems in finding

all grammatical errors [8].

3. Research methods

So that the research process can be carried out directed, the research procedure can be seen in Figure 1.

Based on the picture 1. For data collection, this study uses data several statements of software

requirements contained in the research Tjong in 2008 [10]. The study collected several datasets of

requirements statements from several different problem domains to test the research in detecting

confusion in the software requirements specification document.

Figure 1. Research flow.

After the data collection of software requirements statement, then making a dictionary of bigram

frequency and trigram chunk is done to get the probability value of each bigram and trigram pair based

on the frequency found in the learning corpus. This frequency dictionary will later be used as a reference

dictionary for the proposed method. The next step is creating a chunk rule pattern. The resulting rule

pattern will be used as a rule to correct chunk pattern errors that have been detected in the sentence, at

this stage the rule-based technique works. The next stage is the development of the proposed

identification method, then continues to draw conclusions about the development of the method.

4. Results

4.1. Research dataset

The following dataset will be used for each data set that has several software requirements statements.

The total dataset used in this study is 12 datasets which can be seen in the following Table 1.

iCAST-ES 2019

Journal of Physics: Conference Series 1450 (2020) 012071

IOP Publishing

doi:10.1088/1742-6596/1450/1/012071

5

Table 1. Research dataset.

No Dataset Source

1 ACM’s OOPSLA DesignFest® (Hussain, 2007)

2 Lift Controller System (Tjong, 2008)

3 Yacht Race Results (YRR) (Tjong, 2008)

4 Batch Poster System (BPS) (Tjong, 2008)

5 Cask Loader Software (CLS) (Tjong, 2008)

6 Data Cycle System (DCS) (Tjong, 2008)

7 EVLA Array Operations (EVLA) (Tjong, 2008)

8 Large Area Telescope (LAT) Science Analysis

Software (SAS) Level III Specification

(Tjong, 2008)

9 PESA High-Level Trigger Selection (Tjong, 2008)

10 Sort Algorithm Demonstration Program (SAD) (Tjong, 2008)

11 New Adelaide Airport System (Tjong, 2008)

12 MCSS System (Tjong, 2008)

4.2. Building frequency dictionary for bigram and trigram chunk

The dictionary of the frequency of the bigram and trigram chunk pair patterns is used to determine the

probability of each bigram and trigram chunk pair pattern. The stages of making a dictionary of bigram

frequency and trigram chunk can be seen in Figure 2.

Figure 2. Stages building frequency

dictionary for bigram and trigram chunk.

The dictionary of bigram and trigram chunk frequencies is based on the number of occurrences of

the bigram and trigram chunk pair patterns in the corpus. The corpus used in this study is Penn TreeBank

Corpus, where in this corpus there are around 3914 various sentences that have been given pos_tag and

chunk_tag.

iCAST-ES 2019

Journal of Physics: Conference Series 1450 (2020) 012071

IOP Publishing

doi:10.1088/1742-6596/1450/1/012071

6

The standard used to mark each part of a word in a sentence or Part of Speech Tag (POS-Tag) is the

Penn TreeBank Tagset. Penn TreeBank Tagset consists of 46 different tagset where the number of each

occurrence or frequency of each tagset in Penn TreeBank Corpus can be seen in Table 2:

Table 2. Frequency of Penn TreeBank tagset in corpus.

No POS-Tag Frequency No POS-Tag Frequency No POS-Tag Frequency

1 PRP$ 766 17 NN 13166 33 RBS 35

2 VBG 1460 18 FW 4 34 RBR 136

3 VBD 3043 19 , 4886 35 CD 3546

4 `` 712 20 . 3874 36 -NONE- 6592

5 VBN 2134 21 TO 2179 37 EX 88

6 POS 824 22 PRP 1716 38 IN 9857

7 '' 694 23 RB 2822 39 WP$ 14

8 VBP 1321 24 -LRB- 120 40 MD 927

9 WDT 445 25 : 563 41 NNPS 244

10 JJ 5834 26 NNS 6047 42 -RRB- 126

11 WP 241 27 NNP 9410 43 JJS 182

12 VBZ 2125 28 VB 2554 44 JJR 381

13 DT 8165 29 WRB 178 45 SYM 1

14 # 16 30 CC 2265 46 UH 3

15 RP 216 31 LS 13

16 $ 724 32 PDT 27

Each frequency in the Penn TreeBank tagset will determine the probability value of a pair of bigram

and trigram tags. The higher the tag frequency on the corpus, the greater the probability value.

4.3. Building frequency dictionary for bigram and trigram chunk

The next stage is the creation of chunk rule patterns, this rule pattern is used as a rule pattern dictionary

in determining rule patterns that are suitable for correcting identified chunk pattern errors. The following

are the steps to create a chunk dictionary pattern which can be seen in Figure 3.

Figure 3. Chunk rules pattern dictionary.

The list of sentences in the form of chunk in the Penn Tree Bank corpus will be used as input data to

create a chunk rule pattern, where the resulting rule pattern is a sequence of tag patterns in the sentences

that make up the chunk. The resulting rule pattern will be saved into a chunk rule pattern dictionary

which will later be used as a pattern matching reference dictionary to provide improvements to the chunk

patterns found wrong in the sentence.

4.4. Building frequency dictionary for bigram and trigram chunk

The grammatical error identification method proposed in this study uses a probabilistic N-Gram

language model, where the identification of grammatical errors will be analysed at the phrase level

iCAST-ES 2019

Journal of Physics: Conference Series 1450 (2020) 012071

IOP Publishing

doi:10.1088/1742-6596/1450/1/012071

7

(chunking) in a statement of software requirements. The proposed method for identifying grammatical

errors in this study can be seen in Figure 4. Based on Figure 4 explained as follows:

• Data used as input from the system is a statement of software requirements.

• The sentence or statement of need will first be done preliminary processing that is checking spelling

errors where the module used in this study is the Hunspell Checker. This module works using n-gram

similarity techniques, rule-based and pronunciation dictionaries. The result of this module is a list of

words containing spelling errors and recommendations for improvement.

• The next step is to tokenize sentences and change each word resulting from the process of tokenize

sentences into basic words. Phrase filtering and language style checking are performed to increase

system performance in detecting grammatical errors. Marking each part of the word is done using

the Tagger Base library based on the Penn Tree Bank Tagset.

• The results of the POS-Tagging statement of needs will then be used as input to create a pattern of

grouping words based on phrases (chunking process). The process of grouping words (chunking) in

this study uses the Classifier Chunk Parser library.

• Based on the chunk pattern this statement of need will be made a bigram and trigram chunk pattern.

Probability values are obtained from queries of bigram and trigram chunk pairs in the bigram

frequency dictionary and trigram chunk that have been created.

• After getting the value of each bigram chunk pair, the next step is to identify the grammatical error

based on the probability value of the bigram chunk.

• The discovery of grammatical errors is done by comparing the probability values of each bigram and

trigram chunk on the statement of needs with a predetermined threshold value.

• Determination of the appropriate threshold value will determine the performance of the identification

method. So that in this study the threshold value for the bigram chunk pattern was 0.1, 0.15, and 0.2.

This is done to find the best threshold value from several value variations. If the chunk probability

value is equal to or exceeds the threshold value specified then the grammatical error statement needs

not found and displays the results of the analysis, on the contrary if it does not meet the threshold

value then the grammatical error needs statement found.

• After getting the bigram pattern pair and the trigram chunk identified as the wrong pattern pair the

next step is to do the chunk rule pattern matching in the chunk rules dictionary that has been created.

• The final stage will display recommendations for matching chunk pairs as a method output.

iCAST-ES 2019

Journal of Physics: Conference Series 1450 (2020) 012071

IOP Publishing

doi:10.1088/1742-6596/1450/1/012071

8

Figure 4. Proposed method.

5. Conclusion

From the research that has been done, researcher has succeeded in designing a design model to solve

the grammatical problems in SRS related documents asking for software requirements. The approval

method uses a combination of two methods, namely the statistical-based method (N-gram) and the rule-

based method. In the process of verifying spelling errors of the language at the start using the Hunspell

Checker module, further spelling is done by spelling to be a basic word using the Penn TreeBank Set

iCAST-ES 2019

Journal of Physics: Conference Series 1450 (2020) 012071

IOP Publishing

doi:10.1088/1742-6596/1450/1/012071

9

dictionary. The results of the tag set are used as input for the chunking process (Classifier Chunk Parser)

and obtain the probability value of the bigram and trigram chunk. After getting the bigram pattern pair

and the trigram chunk identified as the wrong pattern pair, the next step is to do the chunk rule pattern

matching in the chunk rules dictionary that has been created and set the suitable chunk pair pattern as a

method.

The results of this design are ready to be further developed because the model is quite easy to

understand. For prototype design can be evaluated by calculating the value of precision, recall and f-

measure. The range of measured values is between 0 and 1 and sometimes measured in percentage

values. The results of this design are ready to be implemented in an RPL documentation management

software tool.

6. References

[1] Enda D and Siahaan D 2018 Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK) 05 207-216

[2] Asif M, Ali I, Malik M S A, Chaudary M H, Tayyaba S and Mahmood M T J 2019 IEEE Access

7 26164-26176

[3] Enda D and Putra F P 2019 Journal of Computer Engineering, System and Science 4 130-137

[4] Lu J Chris, Aronson A R, Shooshan S E and Demner-Fushman D 2019 Journal of The American

Medical Informatics Association 26 211-218

[5] Soleh M Y and Purwarianti A 2011 International Conference on Electrical Engineering and

Informatics 1-6

[6] Hornik K and Murdoch D 2011 The R Journal 3 22-28

[7] Wu J, Chang J and Chang S J 2013 International Journal of Computational Linguistics &

Chinese Language Processing 18 31–44

[8] Henrich V and Reuter T 2009 LIS Grammar Checker: Language Independent Statistical

Grammar Checking (Iceland: Hochschule Darmstadt & Reykjavík University)

[9] Naber D 2003 A Rule-Based Style and Grammar Checker (Germany: Bielefeld University)

[10] Tjong S F 2008 Avoiding Ambiguitiy In Requirements Specifications (England: University

Nottingham)

Acknowledgments

We would like to thank Bengkalis State Polytechnic which has provided research support in the form of

PNBP grants so that this research can be carried out well. Acknowledgments were also given to UPT

P3M Bengkalis State Polytechnic for supporting the research to run smoothly.

