
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

iCAST-ES 2019

Journal of Physics: Conference Series 1450 (2020) 012068

IOP Publishing

doi:10.1088/1742-6596/1450/1/012068

1

 
 
 
 
 
 

Cluster implementation on mini Raspberry Pi computers 

using Round Robin Algorithm 

E Rohadi1, A Amalia2, A Prasetyo1, M F Rahmat1, A Setiawan2, I Siradjuddin2 

1 Department of Information Technology, State Polytechnic of Malang, Jalan Soekarno 

Hatta 9, Malang, Indonesia 
2 Department of Electrical Engineering, State Polytechnic of Malang, Jalan Soekarno 

Hatta 9, Malang, Indonesia 

 

Email: amalia@polinema.ac.id 

Abstract. The incredible growth of the internet over the past five years makes the data traffic 

increase significantly. When a single server gets requests from many clients, the overload will 

likely occur, so requests from many clients cannot be handled optimally. This results in 

decreased server performance. In this work, cluster implementation on mini raspberry pi 

computers using the load balancing method is proposed. This system used the Round Robin 

Algorithm in the scheduling process in each CPU queue. The implementation of server cluster 

consisting of Raspberry Pi with the addition of load balancing is done to overcome the limited 

resources on the server. When clients in the amount of 100, 200, and 500 generated by sending 

1000 requests simultaneously on each test, the response times obtained are 67.3 ms, 95.3 ms, 

and 182.3 ms, while throughputs are 62.50 Kbps, 76.42 Kbps, and 79.62 Kbps, respectively.  The 

results show that the responses time and throughputs are stable with Round Robin algorithm 

contribution. That means the Round Robin Algorithm has availability in server clustering 

purposes. The system promises to be an alternative server solution that is cheaper and overcomes 

resource limitations on the server. 

1. Introduction 

The incredible growth of the internet over the past five years makes the data traffic increase significantly. 

When a single server gets requests from many clients, the overload will likely occur, so requests from 

many clients cannot be handled optimally. This results in decreased server performance and end users 

often experience poor response time.  A famous example is Amazon.com website when they suffered 

from a forty-minute downtime due to an overload of the website on November 2000 [1]. There are many 

options for dealing with these problems, one of them is clustering. Clustering offers a solution for 

handling even distribution of access loads from one server to another by using a load balancing method 

[1-3]. In load balancing, there are two methods used, specifically static methods and dynamic methods. 

There are several algorithms for load balancing on static methods such as Round-Robin, Ratio, etc. 

While in the dynamic method there are also several algorithms such as Least Connection, Predictive, 

etc. [4]. 

In this work, cluster implementation on mini raspberry pi computers using the load balancing method 

is proposed. This system used the Round Robin Algorithm in the scheduling process in each CPU queue. 

The Round Robin (RR) algorithm is one of the simplest load balancing algorithms and effective for CPU 

utilization [5, 6]. These algorithms decide when and for how long each system runs, they make 
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alternatives about perceptibility, turnaround time, ready time, response time and other system 

characteristics [7]. There is a waiting time (quantum time) in sequence when the transfer process 

between servers occurs. The moment of the quantum time runs out or the process is finished, the CPU 

will be allocated to the next process [8]. In this scheduling algorithm process, there are no CPU processes 

that prioritized, all processes on each CPU get the same time allotment. This study aims to determine 

that prototype clustering on raspberry pi can be an alternative server solution that is relatively cheaper 

and for resource limitations on the server. 

2. The descriptions of system 

2.1. System architecture 

 

 

Figure 1. System architecture.  

Figure 1 shows the topology used to implement the system. The system consists of several devices, 

which is: 

• Client, user / client that accessing the web server. 

• Switch / Hub, device that serves to forward packets on the network a device that acts as a network 

policy against the network. 

• Web Server, a device that provides web services or applications.  

 

The HAProxy system configuration for the server cluster used Raspberry Pi in its implementation. 

Haproxy itself is one of the most popular open-source loads balancing software, which also offers high 

availability and proxy functionality. HAProxy aims to optimise resource usage, maximise throughput, 

minimise response time, and avoid overloading any single resource [2][9]. There are 3 Raspberry Pi as 

tools for server cluster with details of 1 Raspberry Pi as Frontend Server and 2 Raspberry Pi as Backend 

server or worker. Frontend server used to configure the HAProxy configuration such as how the Round 

Robin load balancing algorithm runs and manages the work of the server workers such as IP and port 

settings for the backend server worker. Backend server used as a server worker which can be added as 

needed. The more server workers registered at the frontend server make the frontend server stronger 

when handling the traffic loads.  
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Each server uses Nginx a powerful web server that can do important things such as load balancing, 

HTTP caching, or be used as a reverse proxy. The IP addresses configuration on the backend server uses 

a static IP where server 1 uses IP 192.168.5.10 and on server 2 uses IP 192.168.5.11. In this work, load 

balancing that was designed using Raspberry pi has only one network interfaces to forward requests 

from members of the server cluster with IP 192.168.5.1. To overcome the problem of connection 

between the client and the HAProxy server, the authors added an additional interface in the form of a 

Wi-Fi adapter with a DHCP IP configuration. 

2.2. Block diagram 

Figure 2 shows a block diagram that explains when a client computer requests a static page to the 

frontend server that has the HAProxy application installed. The HAProxy application determines which 

server will respond to client requests so that no server is down due to heavy load. In the server cluster 

process, the Round Robin Algorithm works as a server load balancing so that the connection traffic 

between servers runs smoothly. The Round Robin algorithm runs to determine the turn of processes in 

each CPU queue. 

 

Figure 2. Block diagram.  

2.3. System flowchart 

Figure 3 shows the system flowchart used to implement the system. Explanation of the load balancing 

system flowchart is as follows: 

• The client computer sends HTTP request to the server cluster load balancing. 

• The HAProxy load balancing server receives HTTP request from clients by distributing requests to 

workers using the Round Robin Algorithm. 

• If overload occurs, the load balancing server will send an error message and make requests to other 

workers that are not overloaded. 

• The worker will send a request from the client to the load balancing server. 

• The load balancing server will send responses to client computers in the form of HTML pages. 

• The client receives the request in the form of an HTML page from the load balancing server. 
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Figure 3. System flowchart. 

3. Results and discussions 

This section discusses the results of the proposed Round Robin algorithm and compares it with the Least 

Connection algorithm. The comparison with Least Connection algorithm is done in order to examine 

the Round Robin performances [4]. The testing performed on a local network with the same scheme as 

in Figure 3. To view web content, the client must access the IP server load balancing 192.168.5.1 which 

then forwarded to the worker. Figures 4 and 5 show a simple web display when testing is done to prove 

that the server worker is running properly. 
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Figure 4. The web displays of server cluster worker 1. 

 

Figure 5. The web displays of server cluster worker 2. 
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Figure 6. Stress webserver tools. 

Stress webserver tool used for testing as shown in Figure 6 to test QoS (Quality of Service) 

performance on the client-side. The test examines parameters such as throughput, response time, and 

request loss as a reference in three times testing to see whether the system running well or not. The test 

results then calculated so that the average value obtained. 

3.1. Single web server testing scenario (without load balancing) 

Testing is done by generating several requests sent from clients to a single web server and received 

directly by the web server as shown in Figure 7. After that, a single web server will immediately respond 

to the client computer without intermediaries from the load balancing server. In this test, the author 

generates clients in the amount of 100, 200, and 500 by sending 1000 requests simultaneously on each 

test. Repeated testing is required up to 3 times to get accurate results. 

 

Figure 7. Single web server testing scenario. 

Table 1 shows the results of single web server QoS testing. The results show that the response time 

corresponds to the number of clients. On the other hand, experimentally throughput shows that the 

number of clients affects significantly. That means the system needs a load balancing procedure [10]. 
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Table 1. Single web server QoS test results. 

The number 

of clients 

The number of 

Request 

Response Time 

(ms) 

Request Loss 

(%) 

Throughput 

(Kbps) 

100 1000 78 0 16.33 

200 1000 144 0 12.71 

500 1000 202 0 8.47 

3.2. Web server cluster using round robin algorithm testing scenario (with load balancing) 

The test scenario performed on two web servers or workers with a load balancing server as shown in 

Figure 8. The client sends a request to the load balancing server IP address with IP 192.168.5.10, then 

the load balancing server will accept the request sent by the clients. The requests sent by the client will 

be distributed to workers using the Round Robin scheduling algorithm [11, 12]. All requests from clients 

to workers will pass through the load balancing server as intermediaries to avoid overloaded traffic. QoS 

performance testing on the client-side is done by generating several clients using the webserver stress 

tool. To find out the performance significantly, the number of clients will be increased gradually. In this 

test, the author generates clients in the amount of 100, 200, and 500 by sending 1000 requests 

simultaneously on each test. Repeated testing is required up to 3 times to get accurate results. The results 

are shown in Table 2 below. The load balancing procedure of Round Robin algorithm achieves the 

stability of the throughputs. Furthermore, the number of clients doesn’t affect the throughput 

performance due to all accesses through the load balancing server. 

 

Figure 8. Web server cluster testing scenario. 

Table 2. Web server cluster QoS using round robin algorithm test results. 

The number 

of clients 

The number of 

Request 

Response Time 

(ms) 

Request Loss 

(%) 

Throughput 

(Kbps) 

100 1000 67.3 0 62.50 

200 1000 95.3 0 76.42 

500 1000 182.3 0 79.62 

3.3. Web server cluster using least connection algorithm testing scenario (with load balancing) 

The implementation of the least connection algorithm has a similar test scenario as shown in Figure 8. 

The results show that the Least Connection algorithm gives the same performance as the Round Robin 

Algorithm as shown in Table 3. Therefore, the throughputs a bit lower than Round Robin Algorithm 

due to random server load balancing access. Figures 9 and 10 show the throughput and response time 

with a different number of clients, respectively. 
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Table 3. Web server cluster QoS using least connection algorithm test results. 

The number 

of clients 

The number of 

Request 

Response Time 

(ms) 

Request Loss 

(%) 

Throughput 

(Kbps) 

100 1000 400 0 32.50 

200 1000 385 0 46.42 

500 1000 350 0 55.40 

 

 

Figure 9. The graph of throughput. 

 

Figure 10. The graph of response time. 

4. Conclusions 

Study on cluster implementation by using Round Robin Algorithm has been presented. The Least 

Connection has been applied in order to examine the Round Robin performances. When clients in the 

amount of 100, 200, and 500 generated by sending 1000 requests simultaneously on each test, the 
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response times obtained are 67.3 ms, 95.3 ms, and 182.3 ms, while throughputs are 62.50 Kbps, 76.42 

Kbps, and 79.62 Kbps, respectively. The analysis results show that the responses time and throughputs 

are stable with Round Robin algorithm contribution. As a result, the priority over server sequences on 

Round Robin Algorithm contributes in managing the optimum throughputs of the server cluster. That 

means the Round Robin Algorithm has availability in server clustering purposes. The system promises 

to be an alternative server solution that is cheaper and overcomes resource limitations on the server. 
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