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Abstract. Collection Ratio (CR) is the ratio between the total payments of all customers to the 

total invoice in the current month. CR is also act as performance indicator of the payment 

collection division for internet service companies. One method that currently used to improve 

CR is dunning, namely providing customer with information about the bills with various 

communication methods including visiting the customer's address. Large number of customers 

and limited number of collectors are the major obstacle in the dunning process. We propose a 

classification method to predict potential delinquent customers, so that the expected accuracy of 

dunning increases, which in turn increases the company's collection ratio. We use the decision 

tree method with the C4.5 algorithm on the historical data from one internet service provider 

customers in the Riau Islands province, Indonesia. The classification process produces a decision 

tree with 5,885 leaves and 6,765 tree size. The decision tree then evaluated with 10-folds cross 

validation that resulting in 78.54 percent accuracy, 0.738 precision, and 0.785 recall. The 

decision tree has been applied to the dunning process of the company. 

1. Introduction 

Internet Service Provider is a company or entity that provides internet services or other related services. 

This company provides internet telephone and television subscription services for the public. Services 

provided to the public are paid periodically every month. 

Collection Ratio (CR) is a comparison between total customer payments to the number of arrears 

that exist. Collection ratio is one indicator of the performance of the Payment Collection and Finance 

division. Table 1 shows the percentage of collection of internet service provider companies in the region 

1 of Riau Islands in the January to March 2018 period. 

Table 1. Collection Ratio January – March 2018. 

Month Internet Phone 

January 93.09% 95.81% 

February 91.92% 95.09% 

March 92.05% 95.69% 

Table 1 shows that the percentage of CR is not stable, even in February it experienced a quite 

dramatic decline. The company's efforts to increase CR are dunning, which is sending billing 

information so that customers pay on time. Dunning is also act as media fir customers submit complaints. 
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Dunning is carried out by collection agents with several media such as SMS, e-mail, fax, WhatsApp, 

Telegram, and direct visits to the customer's address. 

The large and increasing number of customers and the limited number of collection agents make the 

dunning process not optimal. Customer identification process is needed to determine the potential of 

monthly bill arrears based on attributes or customer profiles; thus, the dunning process is more targeted 

and can increase the company's CR. 

Data mining has been widely used for maintaining relationship between customer and service 

provider especially in telco industry, such as targeted marketing, customer loyalty, churn rate, and 

calculating customer lifetime value [1-4]. Decision tree is the most widely used method for classify 

customer for telecom industry [5], it delivers accurate model for predicting customer churn using 

customer demographic data [2]. Other research that using classification to improve invoice to cash 

collection using supervised learning suggest that C4.5 and PART is the most accurate classification 

algorithm to use for their case [6]. Decision tree model also used to extract important parameters for 

identifying customer value, credit and loyalty [7]. We propose the application of a classification method 

with a decision tree using the C4.5 algorithm to predict potential customers in arrears. The case study 

for this research is internet service provider company in the Riau Islands region, Indonesia. 

Rest of this paper will present the theoretical foundation in research, continuing the process of 

selecting training data and pre-processing data, as well as calculations to generate the decision tree. The 

last part is discussing the results, conclusions and suggestions for further research. 

2. Theory 

Decision tree defined as structured model that can be used to convert data into tree structure that depict 

a decision rule [8]. There are several algorithms that can be used to make a decision tree, one of which 

is the C4.5 algorithm. This algorithm is the result of the development of the ID3 algorithm created by J. 

Ross Quinlan, a researcher in the field of artificial intelligence in the late 1970s until the early 1980s 

[9]. The C4.5 algorithm, ID3 adopts a greedy approach where the process starts from the root node to 

the leaf node which is done recursively. There are 4 main stages in C4.5 algorithm to build a decision 

tree [10]: attribute selection for the root node, generating tree branch, divide the cases into branches, 

iteration process for each branch until all the cases in the branch have the same class 

In selecting an attribute, it will be used as a node, both root and internal root are based on the highest 

gain value of the existing attributes. The formula for calculating gain is portrayed in Equation (1). 

Formula for calculating Entropy is described in Equation (2). 

 𝐺𝑎𝑖𝑛(𝑆, 𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) − ∑
|𝑆𝑖|

|𝑆|
𝑛
𝑖=1  ∗  𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑖) (1) 

Where:  

S  : Number of datasets 

A  : Attribute 

n  : Number of partitions in attribute A 

|Si|  : Number of cases in partition i 

|S|  : Number of cases in S 

 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) = ∑ −𝑛
𝑖=1 𝑝𝑖  ∗  𝑙𝑜𝑔2 𝑝𝑖 (2) 

Where:  

S  : Number of datasets 

n  : Number of partition S 

pi  : Proportion of Si to S 
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3. Implementation and results 

3.1. Dataset 

The data to be used in this study are C3MR data (cash collection current month ratio) from January to 

March 2018. Customer data is taken on the 21st of each month, where on the 20th the due date of the bills 

is settled. The data taken restricted to the Riau Islands Province. 

The data consist of several variables or attributes, such as item number service, account number, 

name, Segment, age, period, entry date, total payment, instalments, collecting agents, which will be 

refined and processed using the C4.5 algorithm. The numbers of data to be used are 5.513 tuple from 

payments in February 2018. 

3.2. Data understanding and preprocessing 

After collecting data, next step is data understanding and pre-processing, where the data that has been 

collected are prepared for processing. Data pre-processing is divided into 2 stages, first filtering / data 

cleaning so that it is easy to observe and the second stage is eliminating noisy. The first step we have to 

do is select the attributes / variables that will be used for the C4.5 algorithm. The attributes that are used 

in the calculations are as follows: 

• Payment: The label of the prediction whether the customer pay the bill on time or late. 

• Segment: The customer segment, such as personal use, business, education, or government. This 

attribute has 3 code, DCS for residential customer, DBS for business customer, DES for corporate 

customer. 

• Subscription period: The subscription period of each customer that counted in month, we then 

transform this attribute to two category namely new customer for customer that have less than 12 

months subscription and loyal customer for the customer that have more than 12 months subscription. 

• Period: Payment period. 

• Entry Date: The date that payment is made and the payment data entered into system. 

• Usage: Internet or quota usage of a user, categorized as used and not used. 

• Instalment: Whether the customer pay with instalment or not. 

• Collecting Agent: Payment point where customer made payment. 

 

The attributes that are eliminated are service number, account number, customers number. These 

three attributes are not used because it shows the customer's identity and the need for this research only 

determines the pattern of customer payments. Other attributes that are eliminated are total amount paid 

because the values in this attribute are too large. 

3.3. Entropy and gain calculation 

By using the total entropy formula in Equation (2) that has been mentioned earlier, we can calculate the 

entropy value by calculating the number of customer entry dates "TERTIB" (on time payment) and 

"TELAT" (late payment) from all existing cases. 

 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑇𝑜𝑡𝑎𝑙) = (−
1643

5513
∗ 𝑙𝑜𝑔 2 (

1643

5513
)) + (−

3870

5513
∗ 𝑙𝑜𝑔 2 (

3870

5513
))=0.559740 (3) 

In Equation (3), the entropy Total is the total value of customers who have “TERTIB” (1.643 data) 

“TELAT” (3.870 data) while 5.513 is the total dataset.  

After all the entropy and information gain are calculated, result of the calculation are compiled in 

Table 2. Based on the calculation result in Table 2, it can be seen that segment attribute have highest 

information gain at 0.217755, and usage have the lowest gain at 0.020547. We use the segment attribute 

that have highest gain as root for decision tree. We iterate the calculation until all attribute have same 

class. 
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Table 2. Entropy and gain calculation result. 

Variable Value Total Case 
Payment 

Entropy 
Information 

Gain On Time Late 

Total  5513 3870 1643 0.55974  
              

Segment Dcs 4409 3108 1307 0.365924 0.217755 

 Dbs 921 701 220 0.487021  

 Des 183 67 116 0.430552  
              

Subscription Period New Customer 579 341 238 0.666578 0.086171 

 Loyal Customer 4934 3529 1405 0.749595  
              

Period February 5513 5513 0 0 0.026066 

              

Usage Used 5407 3786 1621 0.482066 0.020547 

 Not Used 106 84 22 0.918296  
              

Installment Yes 2 0 2 0 0.025879 

 No 5511 3870 1641 0.863121  
              

Collecting Agent Provider 3612 2490 1122 0.50665 0.004903 

 Other 1901 1380 521 0.791858  

              

3.4. Entropy and gain calculation 

Result of the calculation and the iteration then processed into decision tree using data mining software. 

The preview of the result is portrayed in Figure 1. Size of tree is the number of nodes produced in a tree 

while the number of leaves is all nodes that does not have successor. Based on Figure 1, the size of tree 

is 6,765 and the number of leaves is 5,885. The result of calculation then validated using 10 folds cross 

validation to check the accuracy of classification. Validation process show that the classification model 

has 78.54% accuracy with 0.738 precision and recall 0.785. 

 

 

Figure 1. Decision Tree Preview. 
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4. Conclusions 

We have applied data mining Classification using the decision tree method and C4.5 algorithm to predict 

delinquent customers for internet service provider company in Riau Island Province. The advantage of 

the decision tree is a lower error rate. The classification employs historical customer payment data with 

selected attribute and pre-processing to normalize and anonymize the data. The output is a decision tree 

model with 5,885 leaves and size of the tree 6,765. Time required to build the model is 31.5 seconds 

using data mining software. The decision tree than evaluated using 10-folds cross validation, the 

accuracy from the validation process is generated at 78.5447% with precision of 0.738 and recall 0.785. 

With the accuracy of the result, the decision tree model can be implemented on the current customer 

data. The model can predict which customers will potentially be late in payments. The company can do 

more accurate dunning with various communication method, so that it is expected to increase collection 

ratio on internet service provider companies. 
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