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Abstract
We study the dynamics of multi-component Bose gas described by the vector 
nonlinear Schrödinger equation  (VNLS), aka the Vector Gross–Pitaevskii 
equation. Through a Madelung transformation, the VNLS can be reduced to 
coupled hydrodynamic equations  in terms of multiple density and velocity 
fields. Using a multi-scaling and a perturbation method along with the Fredholm 
alternative, we reduce the problem to a Korteweg–de-Vries (KdV) system. 
This is of great importance to study more transparently, the obscure features 
hidden in VNLS. This ensures that hydrodynamic effects such as dispersion 
and nonlinearity are captured at an equal footing. Importantly, before studying 
the KdV connection, we provide a rigorous analysis of the linear problem. 
We write down a set of theorems along with proofs and associated corollaries 
that shine light on the conditions of existence and nature of eigenvalues and 
eigenvectors of the linear problem. This rigorous analysis is paramount for 
understanding the nonlinear problem and the KdV connection. We provide 
strong evidence of agreement between VNLS systems and KdV equations by 
using soliton solutions as a platform for comparison. Our results are expected 
to be relevant not only for cold atomic gases, but also for nonlinear optics and 
other branches where VNLS equations play a defining role.

Keywords: nonlinear Schrödinger equation, Gross–Pitaevskii equation, 
mixtures of atomic gases, nonlinear optics, nonlinear waveguides,  
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1.  Introduction

Multi-component coupled systems are ubiquitous in physics ranging from cold atomic systems 
[1–10] to nonlinear optics [11–17]. Such systems are typically nonlinear, i.e. with consider-
able interactions and often have an intricate interplay between the various species. Given these 
rich interactions, both intra-species and inter-species, the cutting-edge technologies [18–21] 
to image their collective behaviour and the ability to engineer these systems makes them a rich 
platform to study far-from-equilibrium physics in multi-component systems.

Often arriving at a Hamiltonian or a set of differential equations to describe the collective 
behaviour of particles is in itself a difficult task. However, a substantial work is done in this 
direction and there is a reasonable understanding of an effective Hamiltonian or differential 
equations that could describe multi-species systems in certain parameter regimes and condi-
tions [22, 23]. However, the complex nature of these systems results in dealing with equa-
tions which are often cryptic and the consequences of which are difficult to understand. For 
example, if the collective behaviour of multi-species systems have nonlinearities and higher 
derivatives, one would expect to see nonlinear and dispersive effects. Such fingerprints of 
hydrodynamics are often completely elusive. Even in the linearized version of the problem, 
existence of stable modes are unclear. Hence, it is of great importance to develop a systematic 
theory that will lead to a universal framework [24–34], that captures the various hallmarks of 
collective field theory or hydrodynamics.

We will describe here several systems where multi-component physics comes into play. 
Nonetheless, we will keep our main motivation as non-equilibrium dynamics in Bose mixtures 
[2]. In the context of cold atoms, vector nonlinear Schrödinger equation (VNLS) (aka multi-comp
onent Gross–Pitaevskii equation) appears in multiple coupled species of bosons [35–46] or bos-
ons with hyperfine degrees of freedom (spinor BECs [47–55]). The nonlinearities or interactions 
one sees are of inter-species and intra-species type. Such systems can be placed out of equilibrium 
and their collective density dynamics can be imaged in situ using cutting-edge technologies in 
absorption imaging techniques. On the other hand, non-linear optical setups also provide a great 
platform for studying multi-component NLS systems [56, 57]. Here, typically, the role of time is 
played by an additional spatial axis [22]. The intensity of light can be directly measured [58, 59] 
which is captured by a set of NLS equations. Apart from these two main avenues, NLS-type equa-
tions also appear in a variety of other contexts like quantum mechanics [60], accelerator dynamics 
[61], biomolecular dynamics [62–64], plasma and water waves [65, 66].

Keeping in mind the above motivation, we start with the description of N-component cou-
pled NLS equations. Whenever appropriate, we will discuss the physical relevance mainly 
keeping collective description of cold atomic systems in mind. The N-component nonlinear 
Schrödinger equation (NLS) in 1D is given by

i�
∂ψk

∂t
= − �2

2m
∂2ψk

∂x2 +

N∑
j=1

αkj|ψj|2ψk� (1)

where ψk is the macroscopic wavefunction and α is the matrix of coupling constants. It is to 
be noted that the diagonal elements of the α matrix correspond to intra-species interaction 
and the off-diagonal elements correspond to inter-species interaction. We assume a symmetric 
coupling and hence α is a symmetric matrix. It turns out that in cold atomic systems, both 
intra-species and inter-species coupling are tunable via sweeping across a Feshbach reso-
nance [3, 4, 6, 67]. The quantity |ψk|2 gives the density of particles of species type k and the 
angle associated with the complex number ψ gives the phase both of which are measurable in 
experiments. The equations have a Hamiltonian structure given by the Hamiltonian
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H =

∫
dx

N∑
k=1

(
�2|∂xψk|2

2m
+

N∑
j=1

αkj

2
|ψk|2|ψj|2

)
� (2)

equipped with Poisson brackets {ψ∗
j (x),ψk(y)} = i

�δjkδ(x − y). The NLS equations [68] of 
motion can be obtained from

∂ψk

∂t
= {ψk,H} ∀ k.� (3)

It is to be pointed out that single component version has been studied intensively in lit-
erature both from a point of mathematical interest [33, 69–73] and experimentally in physi-
cal systems [18–20, 74] and finds applications in a variety of fields [60–62, 75–79]. Typical 
aspects studied both theoretically and experimentally include non-equilibrium evolution of 
density profiles, solitons [80–82], quenches [83], problems in presence of defects and disorder 
[84–87]. In addition to systems which have a Hamiltonian structure, there has been a lot of 
work on Driven-dissipative (gain-loss [88–95]) and PT-symmetric systems [96–98]. These are 
interesting open system or non-Hermitian generalizations of the NLS family of equations and 
are not a subject of our current work.

From (1) it is difficult to understand non-equilibrium phenomena. More precisely, given 
the initial condition ψi(x, 0), one is interested in the time evolution ψi(x, t) from which various 
experimentally relevant quantities can be extracted. Experimentally, one can prepare an initial 
density profile |ψi(x, 0)|2 and associated phase (or its derivative which is akin to the velocity 
field). Then the system can be made to evolve and the time evolution of these quantities can 
be obtained. The central goal of our work is to provide a universal framework to understand 
the linear and non-linear properties of these evolving density and velocity fields of all species. 
A natural well-known conservative partial differential equation  that is expected to capture 
fingerprints of hydrodynamics (namely, dispersion and nonlinearity) is the KdV equation. 
However, a systematic understanding of the linear problem and then the non-linear problem is 
far from obvious. Before going into the contents and details of our paper, below we provide a 
summary of our main findings.

The main contribution of the present manuscript is the systematic derivation of the qualita-
tive long time dynamics of equation (1). In particular, we show that the evolution of small per-
turbations to the trivial state are governed by the KdV equation. For the single component case 
(N  =  1), the derivation of KdV from NLS is well known [99–103]. The present work provides 
the systematic and explicit derivation of KdV for the multi-component case. The coefficients 
for the KdV and the speeds of sound (i.e. in the frame of reference for the evolution) are given 
in terms of the background trivial state, mass and the coupling coefficients αjk. We achieve 
this by a systematic and complete analysis of the spectral problem for the equation linearised 
about the trivial state. We derive necessary and sufficient conditions for real sound speeds 
dependent solely on the coupling matrix. For a specific case of the coupling matrix, we obtain 
necessary and sufficient conditions for sound speeds to be distinct. The coefficients of the 
KdV dynamics are given in terms of the eigenvectors of the linearised problem. For the case 
of repeated eigenvalues, we provide the eigenvectors explicitly. For the simple eigenvalue 
case, we construct the eigenvectors of the linearised problem in terms of the eigenvectors of 
the coupling matrix. We also provide an accurate efficient and stable numerical algorithm to 
compute the eigenvectors of the coupling matrix individually that also provides us with infor-
mation on how eigenvalues (sound speeds) and eigenvectors (KdV coefficients) change as the 
cross-component coupling coefficient varies.
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Though the bulk of the present work analyses the multi-component system (1) under 
assumption 1, our analysis is general enough to be readily extended to other coupling matri-
ces. We have attempted to provide the reader with sufficient details of the proofs to make this 
generalisation obvious. We will consider alternative couplings in future works. We have also 
attempted to highlight the role of a key mathematical idea, namely the Fredholm alternative, 
in reductive perturbative theory. To this end, we present perhaps more detail than is typical so 
that the interested reader can appreciate the systematic nature of the derivation.

The contents of the paper are organized as follows. In section 2.1 the coupled NLS sys-
tem (1) is transformed into hydrodynamic form where the relevant physical quantities are 
the density and velocity fields. The linear regime of the thus obtained hydrodynamic equa-
tions is studied in section 2.2. Rescaling the independent variables, x and t, so that we focus 
our attention on the dynamics on long space and time scales, we are lead to, at linear order, 
an equation  that governs the linear stability of perturbations to a trivial background state. 
In section  2.3 we determine necessary and sufficient conditions for these perturbations to 
propagate stably in terms of the coupling matrix of the original system (1). Mathematically, 
this involves a complete analysis of the eigen-system for a particular matrix A. This analysis 
includes an explicit formula for the characteristic polynomial; necessary and sufficient condi-
tions for repeated roots; and expressions for the associated eigenvectors. The eigenvalues and 
eigenvectors of A play an important role in the qualitative dynamics of perturbations to the 
trivial state: (i) the eigenvalues determine the sound speed and (ii) eigenvectors determine 
coefficients of the effective KdV equation governing these perturbations. After introducing 
the relevant mathematical ideas in section 2.4, we proceed with the reductive perturbation 
method applied on the density and velocity fields to derive the effective KdV equation for 
N-components in section 3. We present explicit results for case of few components (N = 2, 3) 
in section 4. In section 5, we discuss the results of numerical comparison between the coupled 
(N  =  2) NLS and corresponding KdV by simulating a solitary wave profile which further 
explicates nontrivial features of the NLS in the reduced KdV. We finally conclude in section 6 
along with an outlook.

2.  Hydrodynamic model and linearization

2.1.  Modeling

As mentioned in the introduction, one of the primary contributions of the present manuscript 
is a characterization of a multicomponent system, particularly in the small-amplitude long-
wavelength regime. This regime naturally leads to a coupled multi-species KdV-like model. 
In order to derive the associated KdV model, we first perform the usual Madelung transform 
[104] to obtain a set of hydrodynamic equations for the density and velocity,

ψk(x, t) =
√
ρk(x, t)ei(m/�)

∫ x
0 vk(x′,t)dx′� (4)

where ψk is the macroscopic wavefunction of the kth condensate, ρk(x, t) is the corresponding 
density field and vk(x, t), the velocity field where k = 1, . . .N . The resultant equations  of 
motion are an equation of continuity (for the density)

∂ρk

∂t
+

∂

∂x

(
ρkvk

)
= 0,� (5)
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and the Euler equation (for the velocity)

∂vk

∂t
= − ∂

∂x

[
v2

k

2
+

1
m

N∑
j=1

αkjρj −
(

�2

2m2

)
∂2

x
√
ρk√
ρk

]
.� (6)

We remark that the density equation of k-th component is uncoupled; the coupling matrix 
only appearing in the velocity equations. It is worth emphasizing that the there is no approx
imation in obtaining the above equations. They are fully equivalent to the original multicomp
onent system.

2.2.  Linearized dynamics

A trivial solution to the hydrodynamic equations is given by setting the densities to non-neg-
ative constants ρ0k and the velocities to zero. A natural question is how small perturbations to 
this background state evolve. The standard approach to this question is given by linearising the 
equations about the background state, namely setting ρk = ρ0k + δρk and vk = δvk , to obtain 
the following linear evolution equations for the perturbations δρk, δvk

∂

∂t
δρk = −ρ0k

∂

∂x
δvk,� (7a)

∂

∂t
δvk = − 1

m
∂

∂x

N∑
j=1

αkjδρj +
�2

4m2ρ0k

∂3

∂x3 δρk.� (7b)

These constant coefficient equations are readily solved using Fourier methods. Furthermore, 
for the simpler case of α equal to a diagonal matrix (the uncoupled case), the above equa-
tions have solutions of the form exp(ipx + iωt) with ω ≈ c1p + c2p3 for some real constants 
c1, c2. This indicates waves travel at speed c1 but also disperse due to the presence of the cubic 
term. This suggests that if we consider long-wavelength perturbations such that the dispersive 
term balances with the nonlinear corrections, we may arrive at a KdV-like model. This same 
argument applies also to the coupled case, i.e. for a generic matrix α.

To obtain a balance between nonlinearity and dispersion, we assume the following form for 
the original full density and velocity:

ρk = ρ0k + ε2δρk(εx, εt),� (8)

vk = ε2δvk(εx, εt),� (9)

where ε is a small formal parameter. From here on, we limit ourselves to the case where m is 
a scalar and common to all species. All of our analysis on the linear system (and the resultant 
perturbation scheme) extends to the case when each species has a corresponding distinct value 
for m, without any change in our conclusions. However, for the sake of simplicity of presenta-
tion we limit ourselves to a single common value for m. Moreover, we set that value to m  =  1 
without loss of generality.

Substituting the form of the perturbation (8) and (9) into the hydrodynamic equations and 
dropping terms of O(ε2) we obtain

∂t

(
δρ

δv

)
= −∂xA

(
δρ

δv

)
,� (10)
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where

A =

(
0N×N ρ

α 0N×N

)
,� (11)

with ρ  an N × N  diagonal matrix with elements ρ0k > 0 and δρ, δv are the N × 1 vectors 
for the perturbations in density and velocity. Real eigenvalues of the matrix A correspond 
to traveling wave solutions, either to right or left, depending on the sign of the eigenvalue. 
Complex eigenvalues, on the other hand, correspond to unstable exponentially growing 
modes. Evidently, for a stable background state we must choose the coupling matrix α such 
that all eigenvalues of A are real.

If all eigenvalues are indeed real, the solution consists of pulses propagating at speeds 
given by each of the eigenvalues. These speeds, referred to as sound speeds for the system, 
depend on the values of the coupling constants, background densities and mass of the con-
densate atoms. These may be readily measured in an experiment and compared to the theor
etically predicted values. As we show in the subsequent section, for a specific model of the 
coupling matrix, the sound speeds are easily computed.

2.3.  Spectral analysis of A

As emphasized in the previous section, the eigenvalues of A play a crucial role in designing 
the multicomponent system. As we will see in the following section, both eigenvalues and 
eigenvectors play a key role in deriving equations governing the nonlinear dynamics of small 
amplitude pulses. The purpose of the present section  is to obtain a full characterisation of 
the spectrum of A. Indeed, we present arguments to compute eigenvalues, assure their real-
ity, determine their multiplicity and calculate eigenvectors. As a consequence, we are able to 
determine the spectral decomposition of the 2N × 2N  matrix A as a function of the coupling 
coefficients α. Our main assumption is that the coupling matrix is a real symmetric positive 
definite matrix. Under this assumption alone, theorems 1 and 5 characterize the spectrum 
(eigenvalues and eigenvectors) of A in terms of the spectrum of α and the background densi-
ties. It is this information that is needed to perform the reductive perturbation theory of the 
following section.

To obtain more information on the eigenvalues/eigenvectors of A (mulitiplicity of eigen-
values, the characteristic polynomial, assure reality and positivity of eigenvalues of α, etc) we 
make the following assumption for α
Assumption 1. 

αij =

{
gi, i = j,
h, i �= j,

where gi, h are all positive constants.

Theorems 2–4 and 6 invoke the above assumption. On the other hand, the arguments pre-
sented in the proof of these theorems can be adapted to alternate forms of the coupling matrix. 
We present more detail than typical for the interested reader to adapt these arguments for 
alternate coupling matrices.

We begin with a sufficient condition to ensure real eigenvalues for A. Note, that since A is 
not symmetric, we are not readily guaranteed real eigenvalues.

Theorem 1.  If α is symmetric positive definite, then the eigenvalues of A are non-zero, real 
and come in pairs with opposite sign.

S Swarup et alJ. Phys. A: Math. Theor. 53 (2020) 135206
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Proof.  Any eigenvalue λ of A satisfies the characteristic polynomial 
det(A− λ) = det(λ2 − αρ) where the equality follows from the block nature of A. Hence, all 
λ are real if and only if αρ has positive eigenvalues. Since ρ  is a diagonal matrix with positive 
elements, we have αρ = ρ−1/2(ρ1/2αρ1/2)ρ1/2. Hence αρ is similar to ρ1/2αρ1/2 and there-
fore these matrices have the same eigenvalues. On the other hand, ρ1/2αρ1/2 is congruent to α 
and so these matrices have the same number of positive eigenvalues. Since α by assumption 
is positive definite, ρ1/2αρ1/2 has n positive eigenvalues and consequently, αρ has N positive 
eigenvalues. Thus A has N positive eigenvalues and N negative eigenvalues.� ■ 

We now present a necessary condition for the coupling matrix to be positive definite. Thus 
if the condition is violated, α cannot be positive definite and we expect perturbations to the 
background to be unstable. To be specific, we have the following theorem.

Theorem 2.  Let α satisfy assumption 1. Let the components of the system be ordered such 
that gi � gi+1, i = 1, 2, . . .. Then α is a positive definite matrix implies h <

√
g1g2 .

Proof.  See appendix A.� ■ 

It is to be noted that the above is a necessary condition but not sufficient. A simple suf-
ficient condition is that h  <  g1. To see this, let x be any vector in RN . A straightforward com-
putation shows xTαx =

∑
i x2

i (gi − h) + h
(∑

i xi
)

2. If h < g1 ⇒ h < min gi , then xTαx  is 
automatically positive for any vector x and so α is in fact positive definite.

Corollary 1.  The theorem above assumed a particular ordering. However, the eigenvalues 
of the system do not depend on the ordering; different orderings being obtained as mere per-
mutations of the same system of equations. Hence the conclusion of the theorem holds when 
g1, g2 are interpreted as the two smallest diagonal elements of α.

Assumption 1 allows us to compute the characteristic polynomial of A in closed form. We 
first, however, introduce some notation.

Definition 1.  Let {γi}N
i=1 be a list of real numbers and CNk be the set of all possible ways to 

choose any k of these N real numbers. We denote by Sk ({γi}) the symmetric product

Sk ({γi}) =
∑
σ∈CNk

∏
γj∈σ

γj� (12)

The definition above gives symmetric products of γi . For example, Sn ({γi}) =
∏

j γj 
and S1 ({γi}) =

∑
j γj. In the case of only three elements γi, i = 1, 2, 3, then 

S2 ({γi}) = γ1γ2 + γ2γ3 + γ3γ1.

Definition 2.  We define

S0 ({γi}) = 1, Sm ({γi}) = 0, m > N� (13)

Using the above notation, we state the following theorem.

Theorem 3.  The characteristic polynomial of A is

SN
({

ρ0igi − λ2

ρ0ih

})

+

N∑
k=2

(−1)k−1(k − 1)SN−k
({

ρ0igi − λ2

ρ0ih

})
= 0,

�
(14)
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when α satisfies assumption 1.

The above theorem may be proved using the principle of induction; the base case N  =  2 
is easily checked by hand. Though straightforward, the proof by induction is involved and 
employs some particular properties of the symmetric products we have defined. The details 
are presented in appendix B.

The characteristic polynomial of A is evidently a polynomial in λ2 (as expected from 
theorem 1). However, it is also a polynomial in h as seen by multiplying the entire expression 
(14) by hN. Indeed, the characteristic polynomial is a polynomial in λ2 with coefficients that 
are polynomials in h. Such an expression is called an algebraic curve. These objects are well 
studied amongst mathematicians, though we only require some very basic properties of such 
polynomials.

Note for each h, there are 2N values of λ that are roots of the characteristic polynomial 
(choosing h suitably so that the values of λ are all real). Since the eigenvalues of A represent 
the physical speeds of the small amplitude pulse-like initial perturbations to the base state, 
we are especially interested in knowing whether all sound speeds of the system are distinct. 
Distinct speeds correspond to pulses propagating such that eventually they do not interact. 
Consequently, determining whether the sound speeds are distinct is equivalent to determining 
whether the eigenvalues of A are distinct.

An important property of algebraic curves is that either (a) for most values of h (in par
ticular, except for a finite number of isolated values of h), the roots λ2 of (14) are distinct, or 
(b) the number of distinct roots of (14) is less than 2N for all values of h.

A polynomial under case (b) is said to be permanently degenerate. We will state necessary and 
sufficient conditions on the coupling matrix α such that case (b) holds. Moreover, we will also 
determine an analytic expression for the repeated eigenvalues. A multicomponent system prepared 
such that case (a) is true, namely, when (b) does not hold will almost surely have distinct sound 
speeds since to have repeated eigenvalues, very precise values of h must be chosen. Any perturba-
tion of these particular values for h will immediately lead to distinct sound speeds. If the conditions 
for case (b) are not satisfied, then we will assume the eigenvalues are simple for a given h. In other 
words, the sound speeds are distinct. The following theorem states conditions for case (b).

Theorem 4.  Suppose α satisfies assumption 1. The characteristic polynomial of A is per-
manently degenerate with a root of multiplicity m  −  1 if and only if m pairs of (ρ0igi, ρ0i) are 
equal. Furthermore, if the common value of the (ρ0igi, gi) pairs is denoted by (ρ∗0 g∗, ρ∗0), then 
±
√
ρ∗0(g∗ − h) are the associated repeated eigenvalue of A.

Proof.  See appendix C.� ■ 

Corollary 2.  Some implications of the above theorem are,

	 •	� if two (ρ0igi, ρ0i) pairs are equal (to say ρ∗0 g∗, ρ∗0), then ±
√
ρ∗0(g∗ − h) must be ei-

genvalues of A.
	 •	�the above theorem is true for any repeated pair (ρ0igi, ρ0i) and thus holds for each re-

peated pair.
	 •	�suppose another m′ pairs of (ρ0igi, ρ0i) were equal (and distinct from the first m pairs). 

Then the characteristic polynomial takes the following form

(
ρ∗0 g∗ − λ2

ρ∗0 h
− 1

)m−1 (
ρ′0g′ − λ2

ρ′0h
− 1

)m′−1

ψ(λ2) = 0� (15)

S Swarup et alJ. Phys. A: Math. Theor. 53 (2020) 135206
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		 with

ψ(λ2) =

N−m−m′∑
p=0

[
Sp

({
ρ0igi − λ2

ρ0ih

})

× (−1)N−m−m′−pf (γ, γ′, p)
]�

(16)

		 where

f (γ, γ′, p)) = m(γ′ − 1) + m′(γ − 1)
+ (γ − 1)(γ′ − 1)(1 + N − m − m′ − p)

� (17)

		 and

γ =

(
ρ∗0 g∗ − λ2

ρ∗0 h

)
, γ′ =

(
ρ′0g′ − λ2

ρ′0h

)
.� (18)

Having fully characterized the eigenvalues of A, we now proceed to investigate the eigen-
vectors. Our first result states that A is diagonalisable. Note this result does not require 
assumption 1.

Theorem 5.  Assuming the matrix α is positive definite, the matrix A has 2N independent 
eigenvectors. In particular, the algebraic and geometric multiplicities of any eigenvalue of A 
are equal for all permissible values of h. In other words, the matrix A is diagonalisable.

Proof.  The N × N  matrix ρ1/2αρ1/2 is real, symmetric and positive definite whenever α 
is real, symmetric and positive definite. Hence there exist N mutually orthogonal eigenvec-
tors ui, i = 1, 2, . . .N  that span RN . Denote the eigenvalue associated with ui by λ2

i  and let 
qi = ρ−1/2ui. Then we have

αρ qi = ρ−1/2ρ1/2αρ1/2 ui = λ2
i ρ

−1/2ui = λ2
i qi,� (19)

and hence qi is an eigenvector of αρ with eigenvalue λ2
i . This is true for each i and hence we 

have determined N eigenvectors for αρ. Consequently, the matrix αρ is diagonalisable: the al-
gebraic and geometric multiplicities are equal. We claim each qi induces two 2N-dimensional 
eigenvectors vi

± for the matrix A corresponding to eigenvalues ±λi. Indeed, define

vi
± =

[±1
λi
ρ qi

qi

]
.� (20)

It then follows that Avi
± = ±λivi

± where λi is the positive root of λ2
i , the associated eigen-

value for αρ. Let Q represent the matrix with columns qi and Λ be the diagonal matrix with 
diagonal elements λi. Then the matrix whose columns are eigenvectors of A is given by

V =

[
ρQΛ−1 −ρQΛ−1

Q Q

]
,� (21)

S Swarup et alJ. Phys. A: Math. Theor. 53 (2020) 135206
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with determinant

det(V) = det
(
ρQΛ−1Q − (−ρQΛ−1)Q

)
,� (22)

= det (2ρQΛ−1Q) �= 0,� (23)

since ρ, Q,Λ−1 are all invertible matrices. Thus the columns of V  are linearly independent and 
hence there are 2N independent eigenvectors for A.� ■ 

Corollary 3.  If qi is an eigenvector of αρ with eigenvalue λ2
i , then

vi
± =

[
± 1

λi
ρqi

qi

]
,� (24)

is an eigenvector of A with eigenvalue ±λi. Hence computing eigenvectors of A is equivalent 
to computing those of αρ.

When α satisfies assumption 1 and the characteristic polynomial is permanently degener-
ate (has repeated eigenvalues for all values of h), theorem 4 states the exact expression of these 
repeated eigenvalues and their multiplicity. The following theorem provides an exact form for 
the associated eigenvector in this case.

Theorem 6.  Suppose α satisfies assumption 1 and the matrix A is permanently degener-
ate, i.e. there is an eigenvalue of multiplicity m  >  1 for all suitable values of h. Let (ρ∗0 g∗, ρ∗0) 
represent the repeated pair resulting in the degenerate eigenvalue. A set of m independent 
eigenvectors for these permanently degenerate eigenvalues λ = ±

√
ρ∗0(g

∗
0 − h)  of multiplic-

ity m are given by

v(k) =




±1√
ρ∗

0 (g∗0 −h)
ρq(k)

q(k)


 ,� (25)

where the ith component of the kth eigenvector is given by

(q(k))i =




1, i = i1,
−1, i = ik+1,
0, else,

� (26)

for k = 1, 2, . . .m. The indices ik, k = 1, 2, . . . , m + 1 are such that the diagonal elements of 
αρ at these locations (αρ)ikik = ρ∗0 g∗.

Proof.  See appendix D.� ■

2.3.1.  Numerical method to compute eigenvalues and eigenvectors of A.  The previous theo-
rems establish the reality of the eigenvalues of A. Moreover, we have explicit formulae for 
the permanently repeated eigenvalues (if any) and their associated eigenvectors. It remains to 
investigate the eigenvalues and eigenvectors which are typically simple, i.e. simple for most 
values of h. Although one could simply use a standard numerical solver to compute roots of 
the characteristic polynomial for various h, we present some further analytic results and a 
simple iterative procedure that determines both eigenvalues and eigenvectors.
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From theorem 4, non-degenerate eigenvalues correspond to those (ρ0igi, ρ0i) pairs which do 
not repeat. Notice that when h  =  0, the characteristic polynomial (3) has roots λ = ±√

giρ0i . 
We conclude that at h  =  0, the non-repeating ρ0igi are simple eigenvalues. It is known that this 
behaviour, namely the simple nature of the eigenvalue, must persist at least for small h [105]. 
The claim essentially follows from the implicit function theorem. We now present a scheme 
to compute both eigenvalues and eigenvectors as a function of h that limit to a non-repeated 
ρ0i, gi  when h  =  0. This presentation employs the particular structure of the coupling matrix 
dictated by assumption 1.

We work directly with the matrix αρ instead of A. Theorems 1 and 5 readily allow us to 
translate spectra between the two matrices. An eigenvalue-eigenvector pair for αρ satisfies the 
following equation

αρq = λ2q� (27)

where q is the eigenvector. When h  =  0, eigenvalues and eigenvectors are readily available: 
ρ0igi are eigenvalues with the canonical basis in RN  as the associated eigenvectors. We pro-
ceed to compute eigenvalues and eigenvectors for non-zero h as follows.

Let q(k) = ek + hq(k)
h  be the eigenvector for αρ associated with eigenvalue λ2 = ρ0kgk + hµ(k)

h  
for h �= 0. Here we consider only those cases when ρ0k, gk is not repeated and ek represents the 
kth canonical unit vector in RN . Under assumption 1 the matrix αρ may be written as

αρ = α0ρ+ hα1ρ� (28)

where

(α0ρ)ij =

{
ρ0igi, i = j,
0, i �= j,

, (α1)ij =

{
0, i = j,
1, i �= j.� (29)

Substituting for λ2, q and αρ, we have after some rearrangement

(α0ρ− ρ0kgk)q
(k)
h = (µ

(k)
h − α1ρ)(ek + hq(k)

h ).� (30)

Note that α0ρ− ρ0kgk  is diagonal and has a null-space: ek. Thus we stipulate q(k)
h  be orthog-

onal to ek and further require that the right-hand side of the above equation also be orthogonal 
to ek. In more mathematical parlance, we are invoking the Fredholm alternative. The orthogo-
nality condition for the right-hand side leads to

µ
(k)
h = 〈ek,α1ρek + hα1ρq(k)

h 〉 = h(α1ρ q(k)
h )k.� (31)

In other words, the correction to the eigenvalue is given by h times the kth component of 

α1ρ q(k)
h . Substituting this expression into the equation for q(k)

h  we obtain

(α0ρ− ρ0kgk)q
(k)
h = (h(α1ρ q(k)

h )k − α1ρ)(ek + hq(k)
h ).� (32)

This equation is iteratively solved for q(k)
h  since the left-hand side matrix is invertible (when 

q(k)
h  is orthogonal to ek). Notice that α0ρ− ρ0kgk  is diagonal and hence readily inverted. Once 

we converge to a q(k)
h  that satisfies the above equation for some h  >  0, we evaluate the eigen-

value as

λ2 = ρ0kgk + h2(α1ρq(k)
h )k.� (33)

We notice that the correction to the eigenvalue for h  >  0 is quadratic in h. If one expands q(k)
h  

in a power series of h, we find

S Swarup et alJ. Phys. A: Math. Theor. 53 (2020) 135206



12

λ2 = ρ0kgk − h2
N∑

j=1

′ ρ0jρ0k

ρ0jgj − ρ0kgk
+ . . .� (34)

where the prime indicates the kth term is skipped.
The iteration procedure described above may be justified by appealing to the implicit func-

tion theorem. Here we consider the correction to the eigenvector q(k)
h  as a function of h. The 

requirements of the implicit function theorem hold at the point h = 0, q(k)
h = 0, i.e. the lineari-

sation of expression (32) at h = 0, q(k)
h = 0 leads to an invertible matrix.

At the outset, we do not know how large the radius of convergence (in h) of the resultant series is. 

However, given an eigenvalue-eigenvector pair for αρ for h �= 0, say (ek + hq(k)
h , gkρk + hµ(k)

h ), 
we may repeat the perturbation argument and restart the series around a non-zero value of h. 

Hence setting q(k) = ek + hq(k)
k + δhp(k)

δh  and λ2 = gkρ0k + hµ(k)
h + δhν(k)

δh  we obtain the fol-
lowing equation for p(k)

δh
(
(α0 + hα1)ρ−gkρ0k − hµ(h)

h

)
p(k)

h =

(ν
(k)
δh − α1ρ)(ek + hq(k)

h + δhq(k)
δh ),

� (35)

where

ν
(k)
δh =

〈ρq(k)
h ,α1ρq(k)

h 〉+ δh〈ρq(k)
h ,α1ρ p(k)

δh 〉
〈ρq(k)

h , q(k)
h 〉+ δh〈ρq(k)

h , p(k)
δh 〉

.� (36)

Once again by appealing to the implicit function theorem, one can establish that equation (35) 

can be solved for p(k)
δh  for sufficiently small δh. By repeatedly using the above argument, we 

may obtain the eigenvector-eigenvalue for αρ for all suitable h.

2.4.  Inhomogeneous linear dynamics

With an eye towards the calculations in the next section, we now discuss the solution proce-
dure for inhomogeneous equations of the form

(∂T +A∂X) s = f , A =

(
0 ρ

α 0

)
� (37)

where we assume f  is a known N × 1 vector valued function and we wish to determine the 
N × 1 vector s. The main tool we employ is the Fredholm alternative.

The Fredholm alternative is a statement on the solvability of linear equations. Consider a 
matrix equation Lx  =  b, where L is a square matrix and b is known. If L is invertible, the solu-
tion is readily available: x  =  L−1b. If however L is not invertible, a necessary condition for a 
solution is that b must be orthogonal to all y  such that LTy   =  0. This is the alternative. Note if 
〈y, b〉 = 0 for all such y , we may have an infinite number of solutions. A unique solution can be 
obtained from an infinite possible set, if we also suppose x is orthogonal to the null space of L.

The above considerations for a matrix apply also to differential operators. Consider the 
equation ∂Xψ(X) = ζ(X, T), where ζ is known. Clearly any constant is in the null space of 
the operator ∂X. The adjoint of ∂X is −∂X which also has constants as its null space. Hence 
we require the function ζ to be orthogonal to constants. To make these statements rigorous we 
need to state appropriate Hilbert spaces and inner products. We will avoid such technicalities 
presently.
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Coming back to equation (37), we recall that A has a spectral decomposition

A = VΛ̃V−1, V =

(
ρQΛ−1 −ρQΛ−1

Q Q

)
,

Λ̃ =

(
Λ 0
0 −Λ

)
,

�

(38)

where Λ is a diagonal matrix with positive elements such that αρQ = QΛ2. Substituting this 
into the inhomogeneous equation (37) we obtain

(
∂T + Λ̃∂X

)
V−1s = V−1f .� (39)

The null space of the differential operator on the left-hand side above consists of vectors of 
the form ψ(x − λ̃jt)ej, where ej  is the j th canonical unit vector in R2N, λ̃j is the j th element 
along the diagonal of Λ̃ and ψ is any function. The null space of the adjoint is the same. Thus 
the condition to solve the above equation for V−1s is that 〈ej, V−1f 〉 should not be a function 
of (X − λ̃jT). In other words 〈ej, V−1f 〉 should not be proportional to φ(X − λ̃jT), for any 
function φ. In the next section we will see how this analysis of the linear inhomogeneous 
equation serves us in deriving equations governing the slow evolution of perturbations to the 
multi-component system (1).

3.  Reductive perturbation method for N-component NLS

In the previous section  we analysed the linearised equations  for the perturbations δρk, δvk 
about the trivial state (7). The fully nonlinear equations  for the perturbations (in hydrody-
namic form) without any additional scaling are

(∂t +A∂x)

(
δρ

δv

)
= −∂x

(
N1(δρ, δv)
N2(δρ, δv)

)
,� (40)

where

(N1)k = δρk δvk,� (41)

(N2)k =
δv2

k

2
−

(
�2

2

)
2(ρ0k + δρk)δρ

′′
k − δρ′2k

4(ρ0k + δρk)2 .� (42)

Let us rescale the variables so that ∂t → ε∂t, ∂x → ε∂x and δρ, δv → ε2δρ, ε2δv. This scaling 
is equivalent to assuming the following for the original physical variables

ρk = ρ
(0)
k + ε2δρk(εx, εt),� (43)

vk = ε2δvk(εx, εt).� (44)

This leads to

(∂T +A∂X)

(
δρ

δv

)
= −ε2∂X

(
N1(δρ, δv)
N2(δρ, δv, ε)

)
,� (45)

where X = εx, T = εt  and

N2(δρ, δv, ε2) =
δv2

k

2
−

(
�2

2

)
2(ρ0k + ε2δρk)δρ

′′
k − ε2δρ′2k

4(ρ0k + ε2δρk)2 ,� (46)
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and δρ′′k = ∂2
Xδρk.

We now solve the above equation  perturbatively. Assuming an expansion in ε2 for the 
unknowns

(
δρ

δv

)
=

(
δρ(0)

δv(0)

)
+ ε2

(
δρ(1)

δv(1)

)
,� (47)

and substituting into the above equation we obtain to lowest order

(∂T +A∂X)

(
δρ(0)

δv(0)

)
=

(
0
0

)
.� (48)

Since A = VΛ̃V−1 is diagonalisable, this equation is equivalent to

(
∂T + Λ̃∂X

)
V−1

(
δρ(0)

δv(0)

)
=

(
0
0

)
,� (49)

which has a solution

V−1
(
δρ(0)

δv(0)

)
= f (0)

j (X − λ̃jT)ej,� (50)

or
(
δρ(0)

δv(0)

)
= f (0)

j (X − λ̃jT)Vej,� (51)

where f (0)
j (ξ) is any function, ej  is the unit vector in R2N and λ̃j is any of the eigenvalues of 

A. As common in the method of multiple scales, we will assume f (0)
j  depends on X − λ̃T  as 

well as a new slow time scale τ = ε2T = ε3t . Hence
(
δρ(0)

δv(0)

)
= f (0)

j (X − λ̃jT , τ)Vej.� (52)

The equations at order ε2 are then given by

(∂T +A∂X)

(
δρ(1)

δv(1)

)
=− ∂τ

(
δρ(0)

δv(0)

)

− ∂X

(
N1(δρ

(0), δv(0))

N2(δρ
(0), δv(0), 0)

)
,

�

(53)

which is equivalent to

(
∂T + Λ̃∂X

)
V−1

(
δρ(1)

δv(1)

)
=− ∂τV−1

(
δρ(0)

δv(0)

)

− ∂XV−1
(

N1(δρ
(0), δv(0))

N2(δρ
(0), δv(0), 0)

)
.

�

(54)

Notice this is a linear inhomogeneous equation for the order ε2 correction to δρ, δv. The right-
hand side is essentially a known function since every term on the right hand side can be writ-

ten in terms of f (0)
j (X − λ̃jT , τ). Moreover, the adjoint of the linear operator on the left-hand 

side has a null space: precisely those functions of the form ψ(X − λ̃jT)ej . From the Fredholm 
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alternative, the right-hand side should be orthogonal to this null space. Notice all terms on the 
right are of the form ψ(X − λ̃jT). Hence we have the solvability condition

〈
ej,−∂τV−1

(
δρ(0)

δv(0)

)
− ∂XV−1

(
N1(δρ

(0), δv(0))

N2(δρ
(0), δv(0), 0)

)〉
= 0,

where ej  being the j th unit vector of the 2N × 2N  identity matrix. The above equation can be 
simplified using the expression for the zeroth order solution to

〈
ej,−∂τ f (0)

j ej − ∂XV−1
(

N1(δρ
(0), δv(0))

N2(δρ
(0), δv(0), 0)

)〉
= 0,� (55)

or in other words

∂τ f (0)
j +

〈
ej, ∂XV−1

(
N1(δρ

(0), δv(0))

N2(δρ
(0), δv(0), 0)

)〉
= 0.� (56)

Rewriting N1,N2 entirely in terms of f (0)
j  we have the required KdV equation. This is true for 

each j  and hence we have 2N KdV equations, N of which correspond to perturbations traveling 
to the right and N of which correspond to perturbations traveling to the left. If all sound speeds 
(i.e. eigenvalues λj of A) are distinct, these equations are uncoupled since the terms N1,N2 

are given entirely in terms of the profile f (0)
j . Physically this corresponds to moving into dif-

ferent traveling frames centered around each pulse.
To summarize, if V  is the eigenvector matrix of A, namely A = VΛ̃V−1 then the density 

and velocity vectors are given by
(
�ρ

�v

)
=

(
�ρ0

0

)
+ ε2f (0)

j (εx − λjεt, ε3t)Vej +O(ε4),� (57)

where λj is eigenvalue associated with the eigenvector Vej (ej  being the j th unit vector of the 
2N × 2N  identity matrix).

The upshot of the above analysis is a reduction of the dynamics of the coupled GPE (1) in 
terms of 2N KdV equations. Physically speaking, a generic perturbation to the background 
densities, on the shortest timescale evolves according to (1) in such a way so as to give rise to 
2N small-amplitude waves traveling at the sound speeds (given by the eigenvalues of A). On 
a longer timescale, the waves evolve according to the corresponding KdV equation given in 
(56). Hence a generic perturbation to the background state resolves into 2N waves evolving 
according to KdV (N going to the right; N going to the left).

3.1.  Coupled KdV equations (non-distinct speeds)

In the derivation presented in the previous section we assumed a solution to the homogeneous 

problem that depended only on one profile f (0)
j . This is however not the most general solution. 

Indeed one may have well assumed

V−1
(
δρ(0)

δv(0)

)
=

∑
j

f (0)
j (X − λjT , ε2T)ej.� (58)
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Evidently now

∂XV−1
(

N1(δρ
(0), δv(0))

N2(δρ
(0), δv(0), 0)

)
,� (59)

contains functions of all X − λjT  leading to what one may consider to be a coupled system of 
KdV. However, it must be noted, that when we project onto ej  to obtain the equation of evo

lution for f (0)
j (X − λjT) we only retain those terms for the right-hand side which are functions 

of X − λjT  alone (and not products of functions of multiple X − λjT). Hence once again we 
end up with uncoupled equations.

Note the above argument fails when A has repeated eigenvalues. This is precisely why we 
determined necessary and sufficient conditions for simple non-repeating eigenvalues. In the 
case of repeated eigenvalues however, the zeroth order solution is given as

V−1
(
δρ(0)

δv(0)

)
=

∑
k

f (0)
k (X − λT , ε2T)ek,� (60)

where now the sum only extends over those vectors Vek which correspond to the same eigen-

value λ. All the functions f (0)
j  depend on the same spatial variable ξ = X − λT  and slow time 

scale τ = ε2T . In the case of repeated eigenvalues, we necessarily obtain a coupled system 
of KdV equations; the number of equations is equal to the multiplicity of the eigenvalue. The 
dynamics of the coupled KdV equations arising out of repeated eigenvalues for A will be 
discussed in a future paper.

A final scenario that may also lead to coupled equations is when the eigenvalues are close 
together, indeed when |λj+1 − λj| < ε2. In such a case, although the asymptotic behaviour 
of such a system is described by two uncoupled KdV equations  (since they correspond to 
two different traveling frames of reference), due to the small difference in sound speeds, the 
dynamics may appear to be coupled even on the longer time scale for KdV-type equations. 
Note however, the resultant coupled system will typically have different coefficients than the 
one corresponding to repeated eigenvalues (when the sound speeds are exactly the same) since 
the associated eigenvectors are different in either case.

3.2.  Some useful relations

Suppose Q is the matrix of eigenvectors of αρ with eigenvalues given by the diagonal matrix 
Λ2. In other words αρQ = QΛ2. All diagonal entries of Λ2 are positive (see proof of theorem 5).  
Then the matrix of eigenvectors for A is given by

V =

(
ρQΛ−1 −ρQΛ−1

Q Q

)
,� (61)

with inverse

V−1 =
1
2

(
ΛQ−1ρ−1 Q−1

−ΛQ−1ρ−1 Q−1

)
.

� (62)
For the purposes of deriving KdV, the relevant matrix is V  and (V−1)T . It turns out, one may 
express (V−1)T  explicitly in terms of ρ, Q,Λ. Indeed one has

(V−1)T =
1
2

(
QL−1Λ −QL−1Λ

ρQL−1 ρQL−1

)
,� (63)
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where L = QTρQ. Moreover L is a diagonal matrix with positive elements and hence L−1 is 
readily computed. Note that L = QTρQ implies I = L−1QTρQ and hence Q−1 = L−1QTρ.

The above statements expressing Q−1 in terms of Q and ρ  are explained as follows. The 
matrix ρ1/2αρ1/2 is real symmetric and positive definite (assuming α is symmetric positive 
definite). As a result there exists a orthonormal matrix U which is the eigenvector matrix of 
ρ1/2αρ1/2. Then

ρ1/2αρ1/2U = Uµ2 ⇒ αρρ−1/2U = ρ−1/2Uµ2.� (64)

But then we have ρ−1/2U  is also an eigenvector matrix of αρ and Λ2 = µ2. This means 
ρ−1/2UM = Q where M is a real diagonal matrix. In other words, the columns of Q are paral-
lel to columns of ρ−1/2U . Expressing U in terms of Q, M, ρ1/2 and substituting in UUT  =  I, I 
being the N × N  identity matrix, leads to M2 = QTρQ. We then define L  =  M2, which is the 
matrix that appears in (63).

We also note that if D1, D2 are diagonal matrices, then elements of D1αD2 are given by 
(D1αD2)ij = (D1)iαij(D2)j  where (D1)i, (D2)j denote the ith and j th diagonal entry of D1, D2 
respectively. Hence any column of V  and (V−1)T  is readily computed once the relevant col-
umn of Q is determined. We recall theorem 6 and the procedure detailed in subsection sec-
tion 2.3.3 allow us to compute a column of Q independently of other columns. Of course, 
standard libraries provide all eigenvalues and eigenvectors simultaneously.

With these definitions the coefficients of the respective KdV equations are obtained in a 
straightforward manner by considering the relevant column of (V−1)T  for

∂τ f (0)
j +

〈
ej, ∂XV−1

(
N1(δρ

(0), δv(0))

N2(δρ
(0), δv(0), 0)

)〉
= 0,� (65)

is equivalent to

∂τ f (0)
j +

〈
(V−1)Tej, ∂X

(
N1(δρ

(0), δv(0))

N2(δρ
(0), δv(0), 0)

)〉
= 0,� (66)

where
(
δρ(0)

δv(0)

)
= f (0)

j (X − λjT , τ)Vej, j = 1, 2, . . . 2N.� (67)

We re-emphasize there are in total 2N KdV equations in (66).

3.3.  A special case: KdV with zero nonlinearity

The matrix α represents the coupling between the different species and the matrix ρ  rep-
resents the trivial background states for the different species. Let us consider a case when 
two self-couplings (diagonal elements of α) and their corresponding background states (the 
respective diagonal elements of ρ) are equal. In other words we assume gi1 = gi2 = g∗ and 
ρ0i1 = ρ0i2 = ρ∗0 for some indices i1, i2 . From theorem 4 we are guaranteed that ±

√
ρ∗0(g∗ − h) 

are eigenvalues of A. If more than two self-coupling–density pairs are equal, then the eigen-
values will have a multiplicity greater than one. Higher order multiplicities will be the focus 
of a future work and here we consider only the case of simple eigenvalues ±

√
ρ∗0(g∗ − h). 

We also limit the present discussion to the eigenvalue corresponding to waves traveling to the 
right. The analysis in this section extends similarly to the one traveling to the left.
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Using theorem 6 we also know the exact form of the eigenvector associated with the eigen-
value 

√
ρ∗0(g∗ − h) . Indeed it is

v =




ρ√
ρ∗

0 (g∗−h)
q

q


 ,� (68)

where ρ  is the matrix with diagonal elements ρ0i and the ith component of q is given by

qi =





1, i = i1,
−1, i = i2,
0, else,

� (69)

To obtain the relevant coefficients of KdV for this case, we need the relevant column of 
(V−1)T  which is

ṽ =
1
2



√

ρ∗
0 (g∗−h)

l q

ρ∗
0
l q


 ,� (70)

where l is the element of L = QTρQ corresponding to the vector q. Since L is diagonal and 
L = (ρ1/2Q)Tρ1/2Q then l =

∑
i ρ0iq2

i = 2ρ∗0. Thus

ṽ =



√

ρ∗
0 (g∗−h)
4ρ∗

0
q

1
4 q


 .� (71)

Then the KdV equation is given by

fτ +

〈
ṽ, ∂X




N1

(
ρ√

ρ∗
0 (g∗−h)

q, q
)

N2

(
ρ√

ρ∗
0 (g∗−h)

q, q, 0
)



〉

= 0,� (72)

which upon simplifying is

fτ − �2

8
√
ρ∗0(g∗ − h)

f ′′′ = 0,� (73)

where f ′′′ denotes the third-derivative with respect to the profile variable X −
√

(ρ∗0(g∗ − h) T . 
Remarkably this equation is linear and thus readily solved using Fourier transform techniques.

4.  Few component GPE/NLS and associated KdV and other findings

In this section we present explicit results for two specific cases, that of two and three comp
onent coupled systems. The reality of the eigenvalues (positivity of elements of Λ2) ensures 
that all coefficients in the final KdV equation are well-defined real numbers.

4.1.  N  =  2 case

The coupled NLS are as follows

i�
∂ψ1

∂t
= − �2

2m
∂2ψ1

∂x2 + g1|ψ1|2ψ1 + h|ψ2|2ψ1� (74a)
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i�
∂ψ2

∂t
= − �2

2m
∂2ψ2

∂x2 + h|ψ1|2ψ2 + g2|ψ2|2ψ2.� (74b)

In other words, the α matrix (under the assumption m  =  1; see text below assumption 1) 
is given by

α =

(
g1 h
h g2

)
.� (75)

The above equations, (74) can be written in a hydrodynamic form for a perturbation of a trivial 
state as given in equations (40) to (42) where k = 1, 2. We perform the perturbation series 
(equations (43) and (44)) to arrive at equation (48) which is the equation for the lowest order 
where the A is given by,

A2 =




0 0 ρ01 0
0 0 0 ρ02

g1 h 0 0
h g2 0 0


� (76)

where the subscript in A2 means that we are dealing with the two component case. The eigen-
values of the matrix αρ are the diagonal elements of

Λ2 =

(A+B
2 0
0 A−B

2

)
� (77)

and eigenvectors are respectively, the columns of,

Q =

(
C+B
2hρ01

C−B
2hρ01

1 1

)
� (78)

where, A, B, C  are given by,

A = g1ρ01 + g2ρ02� (79a)

C = g1ρ01 − g2ρ02� (79b)

B =
√

g2
1ρ

2
01 − 2g1g2ρ01ρ02 + 4h2ρ01ρ02 + g2

2ρ
2
02.� (79c)

Note that the eigenvalues (diagonal elements of Λ2) are both positive under the assumption 
h <

√
g1g2 . This condition on h is indeed not only necessary (theorem 2) but also sufficient 

for the two component case. Next we employ the relations of section 3.2, using the defini-
tions of Q and Λ given above, to determine the coefficients of the respective KdV equations. 
Specifically, we determine the eigenvector matrix of A2 using (61). Similarly, we may com-
pute (V−1)T  using (63). In the following, we only present the results for the right chiral sector 
i.e. two positive eigenvalues (sound speeds). Equation  (66) for the two component species 

case (i.e. N  =  2) explicitly reads as follows for the two eigenvalues λ =
√

A±B
2  respectively,

∂τ fj + Bjfjf ′j + Ajf ′′′j = 0, j = 1, 2� (80)

where,

A1 = − �2

4
√

2
1√

A + B
� (81)
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B1 =
3

8hBρ01

[
(C + B)2 + 2h(B − C)ρ01

]
� (82)

A2 = − �2

4
√

2
1√

A − B
� (83)

B2 = − 3
8hBρ01

[
(C − B)2 − 2h(C + B)ρ01

]
.� (84)

Here, A1, B1 are the KdV coefficients for the largest positive eigenvalue, λ1 =
√

A+B
2  and 

A2, B2 are the KdV coefficients for the second largest positive eigenvalue, λ2 =
√

A−B
2 . Here 

f ′′′j  denotes the third-derivative with respect to the profile variable X − λjT .
Equations (80) give the dynamics of perturbations to the background state in reference 

frames moving to the right with with speeds 
√

(A ± B)/2 . Needless to say, there are two 
KdV equations for the other chiral sector namely for perturbations moving to the left with 
speeds −

√
(A ± B)/2. The KdV equations for perturbations traveling to the left are obtained 

by setting Aj → −Aj in (80). Hence there are in total four KdV equations. Section 5 contains 
the brute force numerical comparison between above KdV equation and the N  =  2 NLS case.

4.2.  N  =  3 case

The N  =  3 case poses an interesting scenario. In general, for arbitrary g1, g2, g3 and ρ01, ρ02, ρ03 
(all different) the eigenvalues are very cumbersome but with our prescription outlined in the 
previous sections one can explicitly write it down. Below, we describe the situation when 
g1 = g2 and ρ01 = ρ02. Here the eigenvalues and eigenvectors are still different. However, one 
of the eigenvalues and its corresponding eigenvector takes a particularly simple form.

The three-coupled NLS are as follows

i�
∂ψ1

∂t
= − �2

2m
∂2ψ1

∂x2 + g1|ψ1|2ψ1 + h|ψ2|2ψ1 + h|ψ3|2ψ1� (85a)

i�
∂ψ2

∂t
= − �2

2m
∂2ψ2

∂x2 + h|ψ1|2ψ2 + g1|ψ2|2ψ2 + h|ψ3|2ψ2� (85b)

i�
∂ψ3

∂t
= − �2

2m
∂2ψ2

∂x2 + h|ψ1|2ψ3 + h|ψ2|2ψ3 + g3|ψ3|2ψ3.� (85c)

In other words, the α matrix (with m  =  1) is given by

α =




g1 h h
h g1 h
h h g3


 .� (86)

Correspondingly, we get

A3 =




0 0 0 ρ01 0 0
0 0 0 0 ρ01 0
0 0 0 0 0 ρ03

g1 h h 0 0 0
h g1 h 0 0 0
h h g3 0 0 0




.� (87)
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The eigenvalues of the matrix αρ are the diagonal elements of

Λ2 =



(g1 − h)ρ01 0 0

0 X+Y
2 0

0 0 X−Y
2


� (88)

where we define,

X = g1ρ01 + hρ01 + g3ρ03� (89)

Y =
[
(g1 + h)2ρ2

01 − 2
[
g1g3 + h(g3 − 4h)

]
ρ01ρ03 + g2

3ρ
2
03

] 1
2
.

�
(90)

Corresponding to each of the three positive eigenvalues λj of A (diagonal elements of Λ in 
(88)), we obtain a KdV equation of the form

∂τ fj + Bjfjf ′j + Ajf ′′′j = 0, j = 1, 2, 3.� (91)

Remarkably the corresponding KdV equation for the first eigenvalue λ1 =
√

(g1 − h)ρ01  is 
linear. Indeed

A1 = − �2

8
√
(g1 − h)ρ01

� (92)

B1 = 0.� (93)

For the other two eigenvalues, i.e. λ2 =
√

X−Y
2  and λ3 =

√
X+Y

2 , we get A2, B2, A3, B3 as 

follows,

A2 = − �2

4
√

2
1√

X − Y
� (94)

B2 =
3
[
2(Y − Z)3ρ01 + (W + Y)3ρ03

]
4(W + Y)(Y − Z)2ρ01 + 2(W + Y)3ρ03

� (95)

A3 = − �2

4
√

2
1√

X + Y
� (96)

B3 =
3
[
− 2(Y + Z)3ρ01 + (W − Y)3ρ03

]
4(W − Y)(Y + Z)2ρ01 + 2(W − Y)3ρ03

� (97)

where Z, W  are given by,

Z = (g1 + h)ρ01 − g3ρ03 + 2hρ03� (98)

W = g1ρ01 − 3hρ01 − g3ρ03.� (99)

In other words, the two eigenvalues other than λ1 =
√
(g1 − h)ρ01  have corresponding KdV 

equations for the nonlinear problem.
We emphasize once more that equation (91) give the dynamics of perturbations that travel 

in the positive direction with speeds λj. There are three KdV equations for the other chiral 
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sector namely, perturbations traveling to the left with speeds −λj. These KdV equations are 
obtained by setting Aj → −Aj in (91). Hence there are in total six KdV equations.

5.  Numerical results for two component case

Following the results obtained in section  6 for N  =  2, in this section, we explore through 
numerical simulations the comparison between the obtained KdV and the coupled NLS. From 
our asymptotic analysis in that section, recall that a generic perturbation to the constant back-
ground density resolves into 2N weakly-nonlinear waves that each evolve according to KdV 
dynamics. To facilitate the comparison between NLS and KdV dynamics we choose specific 
initial conditions that generate perturbations which evolve according to only one of the KdV 
equations.

Because of the integrability of the KdV (80), a soliton (or solitary wave profile) solution is 
chosen as a platform for comparison. Due to the special nature of these profiles, i.e. their abil-
ity to propagate and retain their structure without breaking by carefully balancing the effects 
of nonlinearity and dispersion, they also serve as a check on the numerics.

Additionally, the validity of the simulations is also ensured by checking the conservation of 
wavefunction density and the Hamiltonian. The solitary wave solution is obtained for the KdV 
(80) which is moving to the right with a velocity of V

fj(ξ, τ) =
3VAj

Bj
sech2

[√
V

2
(ξ − AjVτ)

]
� (100)

where the index j  labels the four eigenvalues corresponding to two left and right movers each. 
The subscript j  on f  which is the eigenvalue index should not be confused with the subscript k 
on quantities like ρ, v, ψ which is the species index. We choose j = 1, 2 denoting both right 

movers with speed +
√

A±B
2 . In order to compare with the coupled NLS, δρ and δv need to be 

calculated from (67). For the fastest mover, j   =  1 eigenvalue λ1 is chosen.




δρ1

δρ2

δv1

δv2




= f1(ξ, τ)




C+B
2hλ1

ρ02
λ1

C+B
2hρ01

1




.� (101)

We can now obtain ρ(x, t) and v(x, t) from (57), given, ξ = ε(x − λjt) and τ = ε3t.

ρ1(x, t) = ρ01 + ε2 C + B
2hλ1

f1(ξ, τ)� (102a)

ρ2(x, t) = ρ02 + ε2 ρ02

λ1
f1(ξ, τ)� (102b)

v1(x, t) = ε2 C + B
2hρ01

f1(ξ, τ)� (102c)

v2(x, t) = ε2f1(ξ, τ).� (102d)
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Subsequently, ψ(x, t) can be obtained by using the transformation (4). This requires the 

calculating the integral 
∫ x

0 sech2(ax′, t)dx′ = 1
a tanh(ax, t). By repeating this exercise for the 

next larger eigenvalue λj=2, we thus obtain the initial profiles for both the components as in 
(103) and (104).

We simulate the dynamics of both the right chiral sectors having speeds λ1 and λ2. The 
initial conditions in the NLS language corresponding to the two eigenvalues λ1,λ2 are

ψλ1
1 (x, 0) =

√
ρ01 + ε2 (C + B)

4hλ1
f1(εx, 0) exp

[
iε
�

6A1(C + B)
√
V

2hB1ρ01
tanh(

√
V

2
εx)

]

� (103a)

ψλ1
2 (x, 0) =

√
ρ02 + ε2 ρ02

λ1
f1(εx, 0) exp

[
iε
�

6A1
√
V

B1
tanh(

√
V

2
εx)

]
� (103b)

ψλ2
1 (x, 0) =

√
ρ01 + ε2 (C − B)

2hλ2
f2(εx, 0) exp

[
iε
�

6A2(C − B)
√
V

2hB2ρ01
tanh(

√
V

2
εx)

]

� (104a)

ψλ2
2 (x, 0) =

√
ρ02 + ε2 ρ02

λ2
f2(εx, 0) exp

[
iε
�

6A2
√
V

B2
tanh(

√
V

2
εx)

]
.� (104b)

For simulating the coupled NLS, we use the classical explicit method as the time stepping method 
as outlined in [106]. Keeping in mind the conditions on coupling constants, we choose the 
following values for the parameters: g1 = 1, g2 = 1, h = 0.5, ε = 0.2, ρ01 = 1, ρ02 = 0.1. 
Thus, A  =  1.1, B  =  0.954 and C  =  0.9. The system size is L  =  300 and spatial axis runs from 
x = −150 to 150 which has been discretized into n = 12 000 steps. Thus, dx = 0.025 and 
dt = 7.8125 × 10−5. The speed of the solitary wave is chosen as V = 2.5.

Now that we have the correct initial conditions for both NLS (103) and KdV (100), we 
let them evolve in time. We study the time evolution of |ψk(x, t)|2. At this stage, the coupled 
NLS and KdV profiles cannot be compared because they are not the same physical quantities. 

Since, the KdV problem only involves f j ’s, while the NLS profile ψλj
k  is a combination of f j ’s 

multiplied by appropriate coefficients and added to a background, for a meaningful com-
parison, the KdV variables need to be rescaled via a suitable transformation. The appropriate 
physical quantities are the density fields and can be obtained by using the transformation (43). 
We also take care that the two profiles are in the same frame of reference. We choose the lab 
frame (x, t) for both the profiles. Since, fj(ξ, τ) is a function of (ξ − AjVτ), using the inverse 
scaling relations we obtain the speeds in the lab frame.

ξ − AjVτ = εx − εt(λj + AjVε2) = ε(x − Λjt).� (105)

Thus, the speed of sound in the lab frame is Λj = λj + AjVε2. For the chosen cou-
pling constants, the parameters are A1  =  −0.123, B1  =  1.372, A2  =  −0.462, B2  =  0.728, 
λ1 = 1.013, λ2 = 0.270, Λ1 = 1.001, and Λ2 = 0.224. Note that opposite signs of Aj  and Bj  
for both j = 1, 2 ensure an overall negative sign on f j (x,t) (100). Additionally, since the coef-
ficient C  −  B  =  −0.054  <  0, |ψλ2

1 |2 profile is expected to be a bump as opposed to the other 
profiles being a dip. For completeness, we explicitly write out the density fields for both eigen-
values j = 1, 2 for both components k = 1, 2, given, ξ = ε(x − λjt) and τ = ε3t,

ρλ1
1 (x, t) = ρ01 + ε2 (C + B)

4hλ1
f1(ξ, τ)� (106a)
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Figure 1.  Evolution of the densities |ψλ1
k (x)|2 with time for k = 1, 2 species starting 

from the initial profile (103). The blue (species 1) and the red (species 2) plots are 
evolved under the binary coupled NLS equation (74). The left y -axis (blue) is the scale 
for species 1 while the right y -axis (red) for species 2 (since the background densities 
differ significantly). The speed of sound (eigenvalue) is λ1 = +

√
(A + B)/2 and in the 

lab frame has a value Λ1 = 1.001. Independently, the analytical density plot ρk(x, t) 
of the KdV soliton (106a) and (106b) is also shown for comparison. Evidently the 
four well separated time snapshots indicate both species exhibit a remarkable match to 
the analytical density plots (dashed and dot-dashed for species 1,2 respectively) with 
emission of some small amount of radiation in both directions.
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Figure 2.  Evolution of the density fields |ψλ2
k (x)|2 in time for k = 1, 2 species starting 

from the initial profile (104) under the dynamics of the coupled NLS equation (74). 
The largest speed of sound (eigenvalue) λ1 is shown in figure 1. Here the second and 
largest speed λ2 = +

√
(A − B)/2 is considered with a lab-frame speed of Λ2 = 0.224. 

In addition, the analytical density ρk(x, t) of the KdV soliton (106c) and (106d) is shown 
for comparision. Here too we find that both species exhibit a remarkable match with the 
analytical expressions (dashed and dot-dashed respectively) and emission of some small 
amount of radiation in both directions. A very interesting aspect about this eigenvalue 
(λ2) is that it results in species 1 having a bump and species 2 having a dip.
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ρλ1
2 (x, t) = ρ02 + ε2 ρ02

λ1
f1(ξ, τ)� (106b)

ρλ2
1 x, t) = ρ01 + ε2 (C − B)

2hλ2
f2(ξ, τ)� (106c)

ρλ2
2 (x, t) = ρ02 + ε2 ρ02

λ2
f2(ξ, τ).� (106d)

We plot four different time snapshots of the evolution of |ψk(x)|2 through the coupled NLS 
equation (74) along with the evolution of ρk(x) through the KdV equation (80) in figure 1 for 
the largest eigenvalue (λ1) and in figure 2 for the second-largest eigenvalue (λ2) . It is surpris-
ing to note that they have quantitative agreement for significant times. Thus, it turns out that if 
we just evolve the NLS problem with the initial conditions (103) and (104) without the knowl-
edge of any scaling or transformations applied, the evolution has a significant match with the 
independent KdV evolution of (106). Consequently, we see a strong correspondence between 
the two equations, namely, coupled NLS and the KdV equation.

6.  Conclusions

In this paper, we have analyzed the linear and nonlinear problem for the multi-component 
NLS which is a physically relevant system spanning a broad range of fields. We have system-
atically studied the qualitative long time dynamics of non-equilibrium profiles. We started 
with writing a hydrodynamic form. In the linearized regime, we stated and proved a set of the-
orems. We obtained necessary and sufficient conditions for real speeds of sound that depend 
solely on the coupling matrix. For the nonlinear problem, using the key mathematical concept 
of the Fredholm alternative, we show that the coefficients of the KdV dynamics are given in 
terms of the eigenvectors of the linearised problem. We also discuss numerical protocols to 
compute the eigenvectors of the coupling matrix individually that also provides us with infor-
mation on how eigenvalues (sound speeds) and eigenvectors (KdV coefficients) change as the 
cross-component coupling coefficient varies. This is of high experimental relevance given the 
tunability of coupling constants. We show compelling evidence of agreement between KdV 
and multi-component NLS in the nonlinear dynamics using soliton profiles as a platform 
for comparison This kind of effective mapping shines light on the complex non-equilibrium 
dynamics of interacting multi-component coupled systems.

The present manuscript investigated the qualitative dynamics of small amplitude perturba-
tions of a trivial state when the speeds of sound (namely the eigenvalues A) are distinct. The 
case of repeated eigenvalues leading to coupled KdV will be investigated in future works. The 
future outlook also includes generalizations of the coupling matrix α. This is important given 
various physical systems where coupling can vary spatially. Understanding the role of external 
potential from a rigorous perspective remains unexplored. Although this work is restricted to 
Hamiltonian systems, it can be extended to open systems which are connected to reservoirs 
[107] and much remains unexplored in that avenue of driven-dissipative systems.
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Appendix A.  Proof of theorem 2

Suppose α is positive definite. From Sylvester’s criterion, determinants of all leading prin-
cipal minors of a positive definite matrix are positive. Then under the supposed ordering, the 
determinant of the 2 × 2 leading principal minor, i.e. the 2 × 2 matrix in the top left corner, 
g1g2 − h2 is positive. Hence h <

√
g1g2 .

Appendix B.  Proof of theorem 3

We first introduce a definition for the symmetric products of γi .

Definition B.1.  We denote the set of {γi}, obtained by eliminating γk for some k, by 
{γi} − γk . Similarly, the set obtained adding an element γk is denoted by {γi}+ γk . Sup-
pose γj = γk  for some j, k for a list of {γi}. Let βi be the distinct γi . Then {γi} = {βi}+ γk, 
where βi are all distinct. Consequently we describe the replacement of γk with γj  in a list by 
{γi} − γj + γk. Keeping in mind that

S0 ({γi}) = 1, Sk ({γi}) = 0, k > N,� (B.1)

we have the following consequence of these definitions.

Theorem B.1. 

Sm ({γi}+ γk) = γkSm−1 ({γi}) + Sm ({γi}) .� (B.2)

In particular, suppose one of γi  equals 1. Then setting {γi} = {βi}+ 1 we have

Sm ({βi}+ 1) = Sm ({βi}) + Sm−1 ({βi}) .� (B.3)

Theorem 3 is proved using the principle of induction. Consider the case when α, ρ are 
2 × 2 matrices. Then

det(µ− ρα) = det
(
µ− ρ1g1 −ρ1h,
−ρ2h µ− ρ2g2

)

= ρ1ρ2h2
(
µ− ρ1g1

ρ1h
µ− ρ2g2

ρ2h
− 1

)

= ρ1ρ2h2 P(µ),

�

(B.4)

and so the theorem is true for N  =  2. Furthermore, note that since αρ = ρ−1ραρ, then αρ and 
ρα have the same eigenvalues. Let us now suppose the theorem holds for matrices of some 
size n. We denote the relevant matrices by ρ(n), α(n) so that ρ(n)α(n) − µ is given by

(ρ(n)α(n) − µ)ij =

{
ρ0n−ign−1 − µ, i = j,
ρ0n−ih, i �= j� (B.5)
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where µ is an eigenvalue of ρ(n)α(n). The characteristic polynomial is

det(ρ(n)α(n) − µ) = 0 ⇒
n∏

i=1

ρ0i hn det(Xn) = 0� (B.6)

where

(Xn)ij =

{
γn+1−i, i = j,
1, i �= j,

and γi =
ρ0igi − µ

ρ0ih
.

Since the theorem holds for the nth order matrix, we have

det(Xn) = Sn ({γi})

+

n∑
k=2

(−1)k−1(k − 1)Sn−k ({γi}) = 0.
� (B.7)

The matrix Xn+1 is obtained from Xn by the following relation

Xn+1 =



γn+1 �1 T

n

�1n Xn


� (B.8)

where �1n is a column vector of length n consisting of only ones. The characteristic polynomial 
then is obtained by computing det(Xn+1). This determinant is obtained by a linear combina-
tion of the determinants of its co-factor matrices. The co-factor matrices of Xn+1 are either Xn 
or the matrix obtained by replacing the relevant column of Xn by �1 . The determinants of those 
co-factor matrices, obtained by replacing a column of Xn by �1 , are equal to (up to sign) the 
determinants of matrices X( j)

n  where

(X( j)
n )ik =

{
1, i = k = j,
(Xn)ik, otherwise.� (B.9)

Taking into account the signs, we have

det(Xn+1) = γn+1 det(Xn)−
n∑

j=1

det(X( j)
n ).� (B.10)

We consider each term on the right-hand side of the above equation individually. By definition 
det(X( j)

n )

= Sn ({γi} − γj + 1)

+

n∑
k=2

(−1)k−1(k − 1)Sn−k ({γi} − γj + 1) ,

= Sn ({γi} − γj) + Sn−1 ({γi} − γj)

+
n−1∑
k=2

(−1)k−1(k − 1)Sn−k ({γi} − γj)

+
n−1∑
k=2

(−1)k−1(k − 1)Sn−k−1 ({γi} − γj)

+ (−1)n−1(n − 1),

�

(B.11)

S Swarup et alJ. Phys. A: Math. Theor. 53 (2020) 135206



29

where we have used theorem B.1. It is straightforward to show that if a set {βi} contains n 
elements, then for m  <  n

n∑
j=1

Sm ({βi} − βj) =
∑

j

[
Sm ({βi})− βjSm−1 ({βi} − βj)

]
,

= (n − m)Sm ({βi}) .

�

(B.12)

Using this relation we have
n∑

j=1

det(X( j)
n ) = Sn−1 ({γi})

+
n−1∑
k=2

(−1)k−1k(k − 1)Sn−k ({γi})

+
n−2∑
k=2

(−1)k−1(k − 1)(k + 1)Sn−k−1 ({γi})

+ (−1)n(n − 2)n − (−1)n(n − 1)n

= −
n∑

k=1

(−1)kk Sn−k ({γi}) .

�

(B.13)

On the other hand,γn+1 det (Xn)

= γn+1Sn ({γi}) +
n∑

k=2

(−1)k−1(k − 1)γn+1Sn−k ({γi}) ,

= Sn+1 ({γi}+ γn+1)

+
n∑

k=2

(−1)k−1(k − 1)Sn+1−k ({γi}+ γn+1)

−
n∑

k=2

(−1)k−1(k − 1)Sn+1−k ({γi})

= Sn+1 ({γi}+ γn+1)

+
n+1∑
k=2

(−1)k−1(k − 1)Sn+1−k ({γi}+ γn+1)

−
n∑

k=1

(−1)kk Sn−k ({γi}) .

�

(B.14)

Combining the expressions for either of the right-hand side terms of (B.10) we have

det (Xn+1) = Sn+1 ({γi}+ γn+1)

+
n+1∑
k=2

(−1)k−1(k − 1)Sn+1−k ({γi}+ γn+1) ,
�

(B.15)

which proves the theorem for n  +  1 and the statement of the theorem 3 follows.
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Appendix C.  Proof of theorem 4

Let P(λ2) denote the characteristic polynomial of αρ. We first claim that repeated eigenvalues 
can only occur when N  >  2. This is easy to see since the characteristic polynomial for N  =  2 
is readily computed as

P(λ2) =

(
ρ01g1 − λ2

ρ01h

)(
ρ02g2 − λ2

ρ02h

)
− 1,� (C.1)

which has roots

λ2 =
(ρ01g1 + ρ02g2)±

√
(ρ01g1 − ρ02g2)2 + 4ρ02ρ01h2

2ρ01ρ02h2 .
� (C.2)

Since the discriminant is positive for all real values of ρ0i, gi, h, there are no repeated roots 
when N  =  2.

C.1.  Proof of sufficiency

We now proceed to the general case. We consider first m repeated pairs of (ρ0igi, ρ0i) and 
prove this is a sufficient condition to guarantee a repeated eigenvalue. Let (ρ∗0 , g∗) denote the 
common value of m repeated pairs of (ρ0i, gi). Since the total number of eigenvalue pairs is N, 
there are N  −  m not-necessarily-repeated pairs. Define

γ =
ρ∗0 g∗ − λ2

ρ∗0 h
, γi =

ρ0igi − λ2

ρ0ih
,� (C.3)

where the γi  are shorthand for the not necessarily repeated pairs. The characteristic polyno-
mial is

SN ({γi}+ mγ)+

N∑
k=2

(−1)k−1(k − 1)SN−k ({γi}+ mγ) = 0.
� (C.4)

Here {γi}+ mγ  in the argument to the symmetric polynomial indicates m repetitions of γ  in 
addition to the list of γi . We note that

S l ({γi}+ mγ) =

l∑
p=0

Sp ({γi})S l−p ({mγ}) .� (C.5)

Also notice that SN ({γi}+ mγ) = γmSN−m ({γi}) which also follows from the identity 
above when l  =  N and recalling S l ({βi}) = 0 when l is larger than the number of elements 
in the list {βi}. Substituting this identity into the expression for the characteristic polyno-
mial we have
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0 =SN ({γi}+ mγ)

+

N∑
k=2

(−1)k−1(k − 1)SN−k ({γi}+ mγ) ,

=γmSN−m ({γi})

+
N∑

k=2

(−1)k−1(k − 1)
N−k∑
p=0

Sp ({γi}) SN−k−p ({mγ}) ,

= γmSN−m ({γi})

+
N−2∑
p=0

N−p∑
k=2

(−1)k−1(k − 1) Sp ({γi}) SN−k−p ({mγ}) ,

=γmSN−m ({γi})

+
N−m∑
p=0

N−p∑
k=2

(−1)k−1(k − 1) Sp ({γi}) SN−k−p ({mγ}) ,

=SN−m ({γi}) [γm +

m∑
k=2

(−1)k−1(k − 1)Sm−k ({mγ})]

+

N−m−1∑
p=0

Sp ({γi})
N−p∑
k=2

(−1)k−1(k − 1) SN−k−p ({mγ}) .

�

(C.6)

Note that Sm−k ({mγ}) represents products of m  −  k γ’s. Of course there are mCm−k ways 
to choose these products and thus we have

γm+

m∑
k=2

(−1)k−1(k − 1)Sm−k ({mγ})

= γm +

m∑
k=2

(−1)k−1(k − 1)
γm−km!

(m − k)!k!

=

m∑
k=0

(−1)k−1(k − 1)
γm−km!

(m − k)!k!

= m(γ − 1)m−1 + (γ − 1)m.

�

(C.7)

Substituting the above in to the expression for the characteristic polynomial we have

SN−m ({γi})
[
m(γ − 1)m−1 + (γ − 1)m]

+

N−m−1∑
p=0

Sp ({γi})
N−p∑
k=2

(−1)k−1(k − 1)SN−k−p ({mγ}) = 0.
�

(C.8)

Evidently, the above expression is true for m  <  N. Indeed if m  =  N we have

P(λ2) = SN−m ({γi})
[
m(γ − 1)m−1 + (γ − 1)m]

= (γ − 1)N−1(N − 1 + γ),
� (C.9)
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or in other words

P(λ2) =

(
ρ∗0 g∗ − λ2

ρ∗0 h
− 1

)N−1 (
N − 1 +

ρ∗0 g∗ − λ2

ρ∗0 h

)
.� (C.10)

Moving ahead with the case m  <  N, we have

SN−m ({γi}) (γ − 1)m−1(m − 1 + γ)

+
N−m−1∑

p=0

Sp ({γi})
N−p∑
k=2

(−1)k−1(k − 1)SN−k−p ({mγ}) = 0.
�

(C.11)

The second term on the left-hand side may be simplified as follows

N−p∑
k=2

(−1)k−1(k − 1)SN−k−p ({mγ})

=

N−p∑
k=N−p−m

(−1)k−1(k − 1)SN−k−p ({mγ}) ,

=

m∑
l=0

(−1)N−p−m+l−1(N − p − m + l − 1)Sm−l ({mγ}) ,

= (−1)N−p−m
m∑

l=0

(−1)l−1(N − p − m − 1 + l)
γm−l m!

(m − l)! l!
,

= (−1)N−p−m [
m(γ − 1)m−1 − (N − p − m − 1)(γ − 1)m] ,

= (−1)N−p−m(γ − 1)m−1(m + (1 − N + p + m)(γ − 1)).

�

(C.12)

The first equality is true since SN−k−p ({mγ}) = 0 unless N − k − p � m. To replace the lower 
limit of the k-sum we also need to assure N − p − m � 2 which implies p � N − m − 2. Thus 
the only possible exception is when p   =  N  −  m  −  1, i.e. the upper limit of the p -sum. However, 
it is easy to see that this term has no contribution for k = 0, 1 since Sm+1−k ({mγ}) = 0 and 
k  −  1  =  0 when k = 0, 1 respectively. Finally we obtain the following expression for the char-
acteristic polynomial

P(λ2) =

(
ρ∗0 g∗ − λ2

ρ∗0 h
− 1

)m−1

×




N−m∑
p=0

Sp
({

ρ0igi − λ2

ρ0ih

})

× (−1)N−p−m
(

m + (1 − N + p + m)

(
ρ∗0 g − λ2

ρ∗0 h
− 1

))]
.

�

(C.13)

C.2.  Proof of necessity

It is also necessary that at least three pairs of (ρ0igi, ρ0i) be equal for the characteristic poly-
nomial to be permanently degenerate. To show this we prove the contrapositive, i.e. we show 
that if only m = 1, 2 of the (ρ0igi, ρ0i) pairs are equal, then the polynomial is not permanently 
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degenerate. Consider first the case m  =  1 i.e. when none of the (ρ0igi, ρ0i) are equal. Then a 
standard implicit function theorem argument applied to

Q(µ) :=P(µ)hn = SN
({

ρ0igi − µ

ρ0i

})

+

N∑
k=2

(−1)k−1(k − 1) hkSN−k
({

ρ0igi − µ

ρ0i

})
,

�

(C.14)

using the fact that (i) Q(µ) has distinct zeros ρ0igi when h  =  0 and, (ii) ∂Q/∂µ evaluated at 
h  =  0 is non-zero (due to the distinct values of ρ0i, gi), we have an open neighborhood of 
h  =  0 where there are N distinct roots to the polynomial Q and so the polynomial cannot be 
permanently degenerate. We now consider the case m  =  2. Suppose only two of the (ρ0igi, ρ0i) 
are equal. Let the common value be (ρ∗0 g∗, ρ∗0). By assumption this common value is distinct 
from all remaining N  −  2 (ρ0igi, ρ0i) pairs. Factoring as we did previously, but for the case 
m  =  2, we have

Q(µ) =

(
ρ∗0 g∗ − µ

ρ∗0 h
− 1

)

×




N−2∑
p=0

Sp
({

ρ0igi − µ

ρ0ih

})
(−1)N−p−2

×
(

2 + (1 − N + p + 2)
(
ρ∗0 g∗ − µ

ρ∗0 h
− 1

))]
.

�

(C.15)

This polynomial has a root µ = ρ∗0(g
∗ − h) and the roots of

N−2∑
p=0

Sp
({

ρ0igi − µ

ρ0ih

})

× (−1)N−p−2
(

2 + (1 − N + p + 2)
(
ρ∗0 g − µ

ρ∗0 h
− 1

))
= 0.

�

(C.16)

Applying the implicit function theorem to the above polynomial we have that in an open 
neighborhood of h  =  0, the above polynomial has distinct roots. The only remaining possibil-
ity is that ρ∗0(g

∗ − h) itself is a root of this polynomial. But this leads to the following expres-
sion valid for all suitable h.

N−2∑
p=0

Sp
({

ρ0igi − ρ∗0(g
∗ − h)

ρ0ih

})
(−1)N−p−2 = 0,� (C.17)

which for h  =  0 is

∏
i

ρ0igi − ρ∗0 g
ρ0i

= 0,� (C.18)

which is not possible since ρ∗0 g∗ �= ρ0igi. Consequently when m = 1, 2 the characteristic poly-
nomial cannot be permanently degenerate.
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Appendix D.  Proof of theorem 6

From theorem 5, it suffices to find eigenvectors for the matrix αρ with eigenvalues 
λ2 = ρ∗0(g

∗
0 − h). A straightforward computation gives the components of αρ− λ2

(αρ− λ2)ij =

{
ρ0igi − ρ∗0 g∗ + ρ∗0 h, i = j,
ρ0ih, i �= j.� (D.1)

Since the matrix A is permanently degenerate, m  +  1 pairs of (ρ0igi, ρ0i) are equal to (ρ∗0 g∗, ρ∗0). 
From this, it follows that m  +  1 columns of the matrix (αρ− λ2) are parallel. Indeed all ele-
ments of such columns are ρ∗0 h. We identify these columns by ik, k = 1, 2, . . .m + 1. Define 
the ith element of the vector q(k) by

(q(k))i =





1, i = i1,
−1, i = ik+1,
0, else

for k = 1, 2, . . .m.� (D.2)

Then αρq(k) = ρ∗0(g
∗ − h)q(k). Using the construction of the previous theorem, we obtain the 

associated eigenvector for A.
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