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Abstract

We study the dynamics of multi-component Bose gas described by the vector
nonlinear Schrodinger equation (VNLS), aka the Vector Gross—Pitaevskii
equation. Through a Madelung transformation, the VNLS can be reduced to
coupled hydrodynamic equations in terms of multiple density and velocity
fields. Using a multi-scaling and a perturbation method along with the Fredholm
alternative, we reduce the problem to a Korteweg—de-Vries (KdV) system.
This is of great importance to study more transparently, the obscure features
hidden in VNLS. This ensures that hydrodynamic effects such as dispersion
and nonlinearity are captured at an equal footing. Importantly, before studying
the KdV connection, we provide a rigorous analysis of the linear problem.
We write down a set of theorems along with proofs and associated corollaries
that shine light on the conditions of existence and nature of eigenvalues and
eigenvectors of the linear problem. This rigorous analysis is paramount for
understanding the nonlinear problem and the KdV connection. We provide
strong evidence of agreement between VNLS systems and KdV equations by
using soliton solutions as a platform for comparison. Our results are expected
to be relevant not only for cold atomic gases, but also for nonlinear optics and
other branches where VNLS equations play a defining role.
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1. Introduction

Multi-component coupled systems are ubiquitous in physics ranging from cold atomic systems
[1-10] to nonlinear optics [11-17]. Such systems are typically nonlinear, i.e. with consider-
able interactions and often have an intricate interplay between the various species. Given these
rich interactions, both intra-species and inter-species, the cutting-edge technologies [18-21]
to image their collective behaviour and the ability to engineer these systems makes them a rich
platform to study far-from-equilibrium physics in multi-component systems.

Often arriving at a Hamiltonian or a set of differential equations to describe the collective
behaviour of particles is in itself a difficult task. However, a substantial work is done in this
direction and there is a reasonable understanding of an effective Hamiltonian or differential
equations that could describe multi-species systems in certain parameter regimes and condi-
tions [22, 23]. However, the complex nature of these systems results in dealing with equa-
tions which are often cryptic and the consequences of which are difficult to understand. For
example, if the collective behaviour of multi-species systems have nonlinearities and higher
derivatives, one would expect to see nonlinear and dispersive effects. Such fingerprints of
hydrodynamics are often completely elusive. Even in the linearized version of the problem,
existence of stable modes are unclear. Hence, it is of great importance to develop a systematic
theory that will lead to a universal framework [24-34], that captures the various hallmarks of
collective field theory or hydrodynamics.

We will describe here several systems where multi-component physics comes into play.
Nonetheless, we will keep our main motivation as non-equilibrium dynamics in Bose mixtures
[2]. In the context of cold atoms, vector nonlinear Schrodinger equation (VNLS) (aka multi-comp-
onent Gross—Pitaevskii equation) appears in multiple coupled species of bosons [35-46] or bos-
ons with hyperfine degrees of freedom (spinor BECs [47-55]). The nonlinearities or interactions
one sees are of inter-species and intra-species type. Such systems can be placed out of equilibrium
and their collective density dynamics can be imaged in sifu using cutting-edge technologies in
absorption imaging techniques. On the other hand, non-linear optical setups also provide a great
platform for studying multi-component NLS systems [56, 57]. Here, typically, the role of time is
played by an additional spatial axis [22]. The intensity of light can be directly measured [58, 59]
which is captured by a set of NLS equations. Apart from these two main avenues, NLS-type equa-
tions also appear in a variety of other contexts like quantum mechanics [60], accelerator dynamics
[61], biomolecular dynamics [62—-64], plasma and water waves [65, 66].

Keeping in mind the above motivation, we start with the description of N-component cou-
pled NLS equations. Whenever appropriate, we will discuss the physical relevance mainly
keeping collective description of cold atomic systems in mind. The N-component nonlinear
Schrodinger equation (NLS) in 1D is given by

L
e = " amae T ;akjwj\zw (1)

where 1) is the macroscopic wavefunction and « is the matrix of coupling constants. It is to
be noted that the diagonal elements of the « matrix correspond to intra-species interaction
and the off-diagonal elements correspond to inter-species interaction. We assume a symmetric
coupling and hence « is a symmetric matrix. It turns out that in cold atomic systems, both
intra-species and inter-species coupling are tunable via sweeping across a Feshbach reso-
nance [3, 4, 6, 67]. The quantity |¢%|?> gives the density of particles of species type k and the
angle associated with the complex number v gives the phase both of which are measurable in
experiments. The equations have a Hamiltonian structure given by the Hamiltonian
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equipped with Poisson brackets {7 (x), ¥x(y)} = #0x0(x — y). The NLS equations [68] of
motion can be obtained from
Ok

o {Yr. H} k. (3)

It is to be pointed out that single component version has been studied intensively in lit-
erature both from a point of mathematical interest [33, 69—73] and experimentally in physi-
cal systems [18-20, 74] and finds applications in a variety of fields [60-62, 75-79]. Typical
aspects studied both theoretically and experimentally include non-equilibrium evolution of
density profiles, solitons [80—82], quenches [83], problems in presence of defects and disorder
[84-87]. In addition to systems which have a Hamiltonian structure, there has been a lot of
work on Driven-dissipative (gain-loss [88-95]) and PT-symmetric systems [96-98]. These are
interesting open system or non-Hermitian generalizations of the NLS family of equations and
are not a subject of our current work.

From (1) it is difficult to understand non-equilibrium phenomena. More precisely, given
the initial condition ;(x, 0), one is interested in the time evolution ;(x, f) from which various
experimentally relevant quantities can be extracted. Experimentally, one can prepare an initial
density profile [+;(x,0)|?> and associated phase (or its derivative which is akin to the velocity
field). Then the system can be made to evolve and the time evolution of these quantities can
be obtained. The central goal of our work is to provide a universal framework to understand
the linear and non-linear properties of these evolving density and velocity fields of all species.
A natural well-known conservative partial differential equation that is expected to capture
fingerprints of hydrodynamics (namely, dispersion and nonlinearity) is the KdV equation.
However, a systematic understanding of the linear problem and then the non-linear problem is
far from obvious. Before going into the contents and details of our paper, below we provide a
summary of our main findings.

The main contribution of the present manuscript is the systematic derivation of the qualita-
tive long time dynamics of equation (1). In particular, we show that the evolution of small per-
turbations to the trivial state are governed by the KdV equation. For the single component case
(N = 1), the derivation of KdV from NLS is well known [99-103]. The present work provides
the systematic and explicit derivation of KdV for the multi-component case. The coefficients
for the KdV and the speeds of sound (i.e. in the frame of reference for the evolution) are given
in terms of the background trivial state, mass and the coupling coefficients cj;. We achieve
this by a systematic and complete analysis of the spectral problem for the equation linearised
about the trivial state. We derive necessary and sufficient conditions for real sound speeds
dependent solely on the coupling matrix. For a specific case of the coupling matrix, we obtain
necessary and sufficient conditions for sound speeds to be distinct. The coefficients of the
KdV dynamics are given in terms of the eigenvectors of the linearised problem. For the case
of repeated eigenvalues, we provide the eigenvectors explicitly. For the simple eigenvalue
case, we construct the eigenvectors of the linearised problem in terms of the eigenvectors of
the coupling matrix. We also provide an accurate efficient and stable numerical algorithm to
compute the eigenvectors of the coupling matrix individually that also provides us with infor-
mation on how eigenvalues (sound speeds) and eigenvectors (KdV coefficients) change as the
cross-component coupling coefficient varies.
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Though the bulk of the present work analyses the multi-component system (1) under
assumption 1, our analysis is general enough to be readily extended to other coupling matri-
ces. We have attempted to provide the reader with sufficient details of the proofs to make this
generalisation obvious. We will consider alternative couplings in future works. We have also
attempted to highlight the role of a key mathematical idea, namely the Fredholm alternative,
in reductive perturbative theory. To this end, we present perhaps more detail than is typical so
that the interested reader can appreciate the systematic nature of the derivation.

The contents of the paper are organized as follows. In section 2.1 the coupled NLS sys-
tem (1) is transformed into hydrodynamic form where the relevant physical quantities are
the density and velocity fields. The linear regime of the thus obtained hydrodynamic equa-
tions is studied in section 2.2. Rescaling the independent variables, x and ¢, so that we focus
our attention on the dynamics on long space and time scales, we are lead to, at linear order,
an equation that governs the linear stability of perturbations to a trivial background state.
In section 2.3 we determine necessary and sufficient conditions for these perturbations to
propagate stably in terms of the coupling matrix of the original system (1). Mathematically,
this involves a complete analysis of the eigen-system for a particular matrix A. This analysis
includes an explicit formula for the characteristic polynomial; necessary and sufficient condi-
tions for repeated roots; and expressions for the associated eigenvectors. The eigenvalues and
eigenvectors of A play an important role in the qualitative dynamics of perturbations to the
trivial state: (i) the eigenvalues determine the sound speed and (ii) eigenvectors determine
coefficients of the effective KdV equation governing these perturbations. After introducing
the relevant mathematical ideas in section 2.4, we proceed with the reductive perturbation
method applied on the density and velocity fields to derive the effective KdV equation for
N-components in section 3. We present explicit results for case of few components (N = 2, 3)
in section 4. In section 5, we discuss the results of numerical comparison between the coupled
(N =2) NLS and corresponding KdV by simulating a solitary wave profile which further
explicates nontrivial features of the NLS in the reduced KdV. We finally conclude in section 6
along with an outlook.

2. Hydrodynamic model and linearization

2.1. Modeling

As mentioned in the introduction, one of the primary contributions of the present manuscript
is a characterization of a multicomponent system, particularly in the small-amplitude long-
wavelength regime. This regime naturally leads to a coupled multi-species KdV-like model.
In order to derive the associated KdV model, we first perform the usual Madelung transform
[104] to obtain a set of hydrodynamic equations for the density and velocity,

'@bk(xs l) _ /pk(X, t)ei(m/h) Iy o (1) dy’ (4)
where vy, is the macroscopic wavefunction of the k" condensate, pi(x, ) is the corresponding
density field and vi(x, 1), the velocity field where k = 1,...N. The resultant equations of
motion are an equation of continuity (for the density)

8pk 0

5 T o (pcve) =0, )
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and the Euler equation (for the velocity)

do, D [v% | ( 2 )33\/;)7]
ot ox|2 m ; I 2m? ) \/pk (6)

We remark that the density equation of k-th component is uncoupled; the coupling matrix
only appearing in the velocity equations. It is worth emphasizing that the there is no approx-
imation in obtaining the above equations. They are fully equivalent to the original multicomp-
onent system.

2.2. Linearized dynamics

A trivial solution to the hydrodynamic equations is given by setting the densities to non-neg-
ative constants pg and the velocities to zero. A natural question is how small perturbations to
this background state evolve. The standard approach to this question is given by linearising the
equations about the background state, namely setting pr = por + dp and v, = Jvy, to obtain
the following linear evolution equations for the perturbations d py, dvy

0 0

§5Pk = _POkaévks (Ta)
0 10 oo

&(5'0/( = —%a j:EI Oék]épj + 4m2p0k 53 6pk (7b)

These constant coefficient equations are readily solved using Fourier methods. Furthermore,
for the simpler case of a equal to a diagonal matrix (the uncoupled case), the above equa-
tions have solutions of the form exp(ipx + iwt) with w = ¢;p + cop*® for some real constants
c1, ¢2. This indicates waves travel at speed c; but also disperse due to the presence of the cubic
term. This suggests that if we consider long-wavelength perturbations such that the dispersive
term balances with the nonlinear corrections, we may arrive at a KdV-like model. This same
argument applies also to the coupled case, i.e. for a generic matrix c.

To obtain a balance between nonlinearity and dispersion, we assume the following form for
the original full density and velocity:

pr = po + € 0pi(ex, et), (®)

Uk = 625vk(ex, et), ©)]

where € is a small formal parameter. From here on, we limit ourselves to the case where m is
a scalar and common to all species. All of our analysis on the linear system (and the resultant
perturbation scheme) extends to the case when each species has a corresponding distinct value
for m, without any change in our conclusions. However, for the sake of simplicity of presenta-
tion we limit ourselves to a single common value for m. Moreover, we set that value to m = 1
without loss of generality.

Substituting the form of the perturbation (8) and (9) into the hydrodynamic equations and
dropping terms of O(€?) we obtain

op\ dp
o (60) = —0:A <6v> ’ (10)
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where

A= <0N><N P >’ (11

« Oy xn

with p an N x N diagonal matrix with elements py, > 0 and §p, Jv are the N x 1 vectors
for the perturbations in density and velocity. Real eigenvalues of the matrix A correspond
to traveling wave solutions, either to right or left, depending on the sign of the eigenvalue.
Complex eigenvalues, on the other hand, correspond to unstable exponentially growing
modes. Evidently, for a stable background state we must choose the coupling matrix o such
that all eigenvalues of A are real.

If all eigenvalues are indeed real, the solution consists of pulses propagating at speeds
given by each of the eigenvalues. These speeds, referred to as sound speeds for the system,
depend on the values of the coupling constants, background densities and mass of the con-
densate atoms. These may be readily measured in an experiment and compared to the theor-
etically predicted values. As we show in the subsequent section, for a specific model of the
coupling matrix, the sound speeds are easily computed.

2.3. Spectral analysis of A

As emphasized in the previous section, the eigenvalues of A play a crucial role in designing
the multicomponent system. As we will see in the following section, both eigenvalues and
eigenvectors play a key role in deriving equations governing the nonlinear dynamics of small
amplitude pulses. The purpose of the present section is to obtain a full characterisation of
the spectrum of A. Indeed, we present arguments to compute eigenvalues, assure their real-
ity, determine their multiplicity and calculate eigenvectors. As a consequence, we are able to
determine the spectral decomposition of the 2N x 2N matrix A as a function of the coupling
coefficients «. Our main assumption is that the coupling matrix is a real symmetric positive
definite matrix. Under this assumption alone, theorems 1 and 5 characterize the spectrum
(eigenvalues and eigenvectors) of A in terms of the spectrum of « and the background densi-
ties. It is this information that is needed to perform the reductive perturbation theory of the
following section.

To obtain more information on the eigenvalues/eigenvectors of A (mulitiplicity of eigen-
values, the characteristic polynomial, assure reality and positivity of eigenvalues of «, etc) we
make the following assumption for a
Assumption 1.

o L8 1=
R VA 2
where g;, h are all positive constants.

Theorems 2—4 and 6 invoke the above assumption. On the other hand, the arguments pre-
sented in the proof of these theorems can be adapted to alternate forms of the coupling matrix.
We present more detail than typical for the interested reader to adapt these arguments for
alternate coupling matrices.

We begin with a sufficient condition to ensure real eigenvalues for A. Note, that since A is
not symmetric, we are not readily guaranteed real eigenvalues.

Theorem 1. If « is symmetric positive definite, then the eigenvalues of A are non-zero, real
and come in pairs with opposite sign.
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Proof. Any eigenvalue XA of A satisfies the characteristic —polynomial
det(A — \) = det(\? — ap) where the equality follows from the block nature of .A. Hence, all
A are real if and only if ap has positive eigenvalues. Since p is a diagonal matrix with positive
elements, we have ap = p~/2(p'2ap'/?)p!/2. Hence ayp is similar to p'/?ap'/? and there-
fore these matrices have the same eigenvalues. On the other hand, p'/2ap!/? is congruent to «
and so these matrices have the same number of positive eigenvalues. Since o by assumption
is positive definite, p'/2ap'/? has n positive eigenvalues and consequently, ap has N positive
eigenvalues. Thus A has N positive eigenvalues and N negative eigenvalues. [ |

We now present a necessary condition for the coupling matrix to be positive definite. Thus
if the condition is violated, o cannot be positive definite and we expect perturbations to the
background to be unstable. To be specific, we have the following theorem.

Theorem 2. Let « satisfy assumption 1. Let the components of the system be ordered such
that & < gi+1, i = 1,2,.... Then « is a positive definite matrix implies h < \/g18>.

Proof. See appendix A. [ |

It is to be noted that the above is a necessary condition but not sufficient. A simple suf-
ficient condition is that & < gi. To see this, let x be any vector in RY. A straightforward com-

putation shows x"ax = >, x7(gi —h) + h (3 ;x:) 2. If h < gy = h < ming;, then x"ax is
automatically positive for any vector x and so « is in fact positive definite.

Corollary 1. The theorem above assumed a particular ordering. However; the eigenvalues
of the system do not depend on the ordering; different orderings being obtained as mere per-
mutations of the same system of equations. Hence the conclusion of the theorem holds when
g1, &> are interpreted as the two smallest diagonal elements of «.

Assumption 1 allows us to compute the characteristic polynomial of A in closed form. We
first, however, introduce some notation.

Definition 1. Let {~; ?’:1 be a list of real numbers and Cy be the set of all possible ways to
choose any k of these N real numbers. We denote by S* ({;}) the symmetric product

S => 1l (12)

o€l V€0

The definition above gives symmetric products of ;. For example, S" ({v:}) = [[;
and S'({v}) = 2% In the case of only three elements =, i=1,2,3, then
S ({n}) = nm +mm+ .

Definition 2. We define
S{vh=1 8"{n)=0m>N (13)

Using the above notation, we state the following theorem.

Theorem 3. The characteristic polynomial of A is

SV ({ poigi — N })
poih

FS G ({f’o"gf N }) —0, (14)

= poih
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when o satisfies assumption 1.

The above theorem may be proved using the principle of induction; the base case N = 2
is easily checked by hand. Though straightforward, the proof by induction is involved and
employs some particular properties of the symmetric products we have defined. The details
are presented in appendix B.

The characteristic polynomial of A is evidently a polynomial in A\? (as expected from
theorem 1). However, it is also a polynomial in % as seen by multiplying the entire expression
(14) by A". Indeed, the characteristic polynomial is a polynomial in A*> with coefficients that
are polynomials in 4. Such an expression is called an algebraic curve. These objects are well
studied amongst mathematicians, though we only require some very basic properties of such
polynomials.

Note for each /£, there are 2N values of A that are roots of the characteristic polynomial
(choosing & suitably so that the values of A are all real). Since the eigenvalues of A represent
the physical speeds of the small amplitude pulse-like initial perturbations to the base state,
we are especially interested in knowing whether all sound speeds of the system are distinct.
Distinct speeds correspond to pulses propagating such that eventually they do not interact.
Consequently, determining whether the sound speeds are distinct is equivalent to determining
whether the eigenvalues of A are distinct.

An important property of algebraic curves is that either (a) for most values of 4 (in par-
ticular, except for a finite number of isolated values of %), the roots A\? of (14) are distinct, or
(b) the number of distinct roots of (14) is less than 2N for all values of .

A polynomial under case (b) is said to be permanently degenerate. We will state necessary and
sufficient conditions on the coupling matrix a such that case (b) holds. Moreover, we will also
determine an analytic expression for the repeated eigenvalues. A multicomponent system prepared
such that case (a) is true, namely, when (b) does not hold will almost surely have distinct sound
speeds since to have repeated eigenvalues, very precise values of # must be chosen. Any perturba-
tion of these particular values for # will immediately lead to distinct sound speeds. If the conditions
for case (b) are not satisfied, then we will assume the eigenvalues are simple for a given /. In other
words, the sound speeds are distinct. The following theorem states conditions for case (b).

Theorem 4. Suppose « satisfies assumption 1. The characteristic polynomial of A is per-
manently degenerate with a root of multiplicity m — 1 if and only if m pairs of (po:gi, poi) are
equal. Furthermore, if the common value of the (po;g;, &) pairs is denoted by (p§g*, pg), then
++/p;(g* — h) are the associated repeated eigenvalue of A.

Proof. See appendix C. [ |

Corollary 2. Some implications of the above theorem are,

o if two (poigi, poi) pairs are equal (to say psg*, pg), then £/ pj(g* — h) must be ei-
genvalues of A.
e the above theorem is true for any repeated pair (poigi, poi;) and thus holds for each re-
peated pair.
e suppose another m' pairs of (poigi, poi) were equal (and distinct from the first m pairs).
Then the characteristic polynomial takes the following form

ko¥ _ )2 m—1 fol — )2 m'—1
(25 (B o "
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with
N—m—m' 2
D=3 [ ({55 ))
Y(X) pZ:jO P
X (= 1)V Pf(y, %p)} (16)
where
Fnsp)) =m(y = 1) +m'(y = 1) an
+(y =D =) +N-m—m'—p)
and

(P58 — N . (o8 — N
7( pyh ) 7( poh )" (18)

Having fully characterized the eigenvalues of A, we now proceed to investigate the eigen-
vectors. Our first result states that A is diagonalisable. Note this result does not require
assumption 1.

Theorem 5. Assuming the matrix « is positive definite, the matrix A has 2N independent
eigenvectors. In particular, the algebraic and geometric multiplicities of any eigenvalue of A
are equal for all permissible values of h. In other words, the matrix A is diagonalisable.

Proof. The N x N matrix p'/2ap'/? is real, symmetric and positive definite whenever a
is real, symmetric and positive definite. Hence there exist N mutually orthogonal eigenvec-
tors u!, i =1,2,...N that span RV . Denote the eigenvalue associated with u' by /\i2 and let
¢' = p~"/2u’. Then we have

apd = p P2 Pap P i = X p V2 = N2, (19)

and hence ¢' is an eigenvector of ap with eigenvalue \?. This is true for each i and hence we
have determined N eigenvectors for ap. Consequently, the matrix ap is diagonalisable: the al-
gebraic and geometric multiplicities are equal. We claim each ¢' induces two 2N-dimensional
eigenvectors v/, for the matrix A corresponding to eigenvalues +);. Indeed, define

+1,
; l,\i/’ q

v, = . (20)

g
It then follows that Avl, = +)\;v/, where ); is the positive root of A}, the associated eigen-
value for ap. Let Q represent the matrix with columns ¢' and A be the diagonal matrix with
diagonal elements \;. Then the matrix whose columns are eigenvectors of A is given by

Vv [pQA1 —pQAI]

0 0 21
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with determinant

det(V) = det (pQA_lQ - (—pQA_')Q), (22)

= det (2pQA~'Q) # 0, (23)

since p, @, A~ ! are all invertible matrices. Thus the columns of V are linearly independent and
hence there are 2N independent eigenvectors for A. [ |

Corollary 3. If ¢’ is an eigenvector of ap with eigenvalue \?, then

+3-pq
'U:t == . N (24)

q

is an eigenvector of A with eigenvalue +)\;. Hence computing eigenvectors of A is equivalent
to computing those of ap.

When « satisfies assumption 1 and the characteristic polynomial is permanently degener-
ate (has repeated eigenvalues for all values of /), theorem 4 states the exact expression of these
repeated eigenvalues and their multiplicity. The following theorem provides an exact form for
the associated eigenvector in this case.

Theorem 6. Suppose « satisfies assumption 1 and the matrix A is permanently degener-
ate, i.e. there is an eigenvalue of multiplicity m > 1 for all suitable values of h. Let (p§g™*, p§)
represent the repeated pair resulting in the degenerate eigenvalue. A set of m independent
eigenvectors for these permanently degenerate eigenvalues A = 1/ pl (g — h) of multiplic-
ity m are given by

(k)

o® = | VA h , 25)

g®

where the ith component of the kth eigenvector is given by

I, i=ij,
(@W)Y =< —1, i=ip, (26)
0, else,

fork=1,2,...m. The indices iy, k = 1,2,...,m + 1 are such that the diagonal elements of
ap at these locations (ap) i, = pg™

Proof. See appendix D. [ |

2.3.1. Numerical method to compute eigenvalues and eigenvectors of A. The previous theo-
rems establish the reality of the eigenvalues of A. Moreover, we have explicit formulae for
the permanently repeated eigenvalues (if any) and their associated eigenvectors. It remains to
investigate the eigenvalues and eigenvectors which are typically simple, i.e. simple for most
values of 4. Although one could simply use a standard numerical solver to compute roots of
the characteristic polynomial for various s, we present some further analytic results and a
simple iterative procedure that determines both eigenvalues and eigenvectors.

10
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From theorem 4, non-degenerate eigenvalues correspond to those (pg;g;, po;) pairs which do
not repeat. Notice that when / = 0, the characteristic polynomial (3) has roots A = =, /g;po;.
We conclude that at 4 = 0, the non-repeating p;g; are simple eigenvalues. It is known that this
behaviour, namely the simple nature of the eigenvalue, must persist at least for small / [105].
The claim essentially follows from the implicit function theorem. We now present a scheme
to compute both eigenvalues and eigenvectors as a function of % that limit to a non-repeated
poi» & when h = 0. This presentation employs the particular structure of the coupling matrix
dictated by assumption 1.

We work directly with the matrix ayp instead of A. Theorems 1 and 5 readily allow us to
translate spectra between the two matrices. An eigenvalue-eigenvector pair for ap satisfies the
following equation

apg = Nq 27

where ¢ is the eigenvector. When h = 0, eigenvalues and eigenvectors are readily available:
poigi are eigenvalues with the canonical basis in RV as the associated eigenvectors. We pro-
ceed to compute eigenvalues and eigenvectors for non-zero 4 as follows.

Letg®) = ¢, + hq,(ik) be theeigenvector for ap associated witheigenvalue \> = porgr + hu,(f)
for h # 0. Here we consider only those cases when pog, g is not repeated and ey represents the

kth canonical unit vector in RY. Under assumption 1 the matrix ap may be written as

ap = aop + hayp (28)
where
[ poigis i=], _J0. =
(0p)ij = {0’ i () = {1’ P4 (29)

Substituting for A2, g and ap, we have after some rearrangement

(aop — porgi)as” = (1 — crp)(ex + hay)). (30)

Note that cgp — pox&x is diagonal and has a null-space: e;. Thus we stipulate q,(Lk) be orthog-

onal to ¢; and further require that the right-hand side of the above equation also be orthogonal
to e. In more mathematical parlance, we are invoking the Fredholm alternative. The orthogo-
nality condition for the right-hand side leads to

u;(lk) = {ey, aypey + hou/)q/(,k)> = h(aup Q;(lk))lv GD

In other words, the correction to the eigenvalue is given by & times the kth component of

arp q,sk). Substituting this expression into the equation for qflk) we obtain

(cop — porgr)d) = (h(arp gk — arp) (e + hg). (32)

This equation is iteratively solved for qflk) since the left-hand side matrix is invertible (when

q,(,") is orthogonal to e;). Notice that cvop — porgk is diagonal and hence readily inverted. Once

(k)

we converge to a g, that satisfies the above equation for some 2 > 0, we evaluate the eigen-

value as

N = porgr + hz(alpq,(zk))k. (33)

We notice that the correction to the eigenvalue for 4 > 0 is quadratic in 4. If one expands q;(,k)

in a power series of 4, we find

1
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N
P0j POk
/\2:p0kgk_h2 /74'... 34

Zl: P08 — Pok8k (34)

where the prime indicates the kth term is skipped.

The iteration procedure described above may be justified by appealing to the implicit func-

(k)

tion theorem. Here we consider the correction to the eigenvector ¢, as a function of 4. The

requirements of the implicit function theorem hold at the point 2 = 0, q(k) = 0, i.e. the lineari-

sation of expression (32) at h = 0, q}(, ) — 0 leads to an invertible matrix.

Attheoutset, we donotknow how large the radius of convergence (in ) of the resultant seriess.
However, given an eigenvalue-eigenvector pair for ap for i # 0, say (e; + hq( ) , 8kPk + hu,(lk) ),
we may repeat the perturbation argument and restart the series around a non-zero value of 4.
Hence setting g = ¢ + hq(k) —+ 5hp((5];l) and \? = grpor + hu(k) + 5h1/(k) we obtain the fol-
lowing equation for p 5];)

( (a0 + hov) p—gepor — huéh)) P;(f) = 35)
¥ — aip)(ex + hg + shgld)),
where
w _ (pa, aipgy + onlpgl, cip p) 36)

Vs =
(paya,") + ohipa, pS))
Once again by appealing to the implicit function theorem, one can establish that equation (35)

can be solved for p( ) for sufficiently small dh. By repeatedly using the above argument, we
may obtain the eigenvector-eigenvalue for ap for all suitable #.

2.4. Inhomogeneous linear dynamics

With an eye towards the calculations in the next section, we now discuss the solution proce-
dure for inhomogeneous equations of the form

(O + Ady) s =f, A= (0 ”) (37)
a 0

where we assume f is a known N X 1 vector valued function and we wish to determine the

N x 1 vector s. The main tool we employ is the Fredholm alternative.

The Fredholm alternative is a statement on the solvability of linear equations. Consider a
matrix equation Lx = b, where L is a square matrix and b is known. If L is invertible, the solu-
tion is readily available: x = L~'b. If however L is not invertible, a necessary condition for a
solution is that » must be orthogonal to all y such that LTy = 0. This is the alternative. Note if
(y,b) = 0 for all such y, we may have an infinite number of solutions. A unique solution can be
obtained from an infinite possible set, if we also suppose x is orthogonal to the null space of L.

The above considerations for a matrix apply also to differential operators. Consider the
equation dx1(X) = ¢(X,T), where ¢ is known. Clearly any constant is in the null space of
the operator Ox. The adjoint of Jx is —Jx which also has constants as its null space. Hence
we require the function ¢ to be orthogonal to constants. To make these statements rigorous we
need to state appropriate Hilbert spaces and inner products. We will avoid such technicalities
presently.

12
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Coming back to equation (37), we recall that .4 has a spectral decomposition

pOA~! pQA1>
o ) '

~ A O
A:(O _A), (38)

where A is a diagonal matrix with positive elements such that apQ = QA?. Substituting this
into the inhomogeneous equation (37) we obtain

A=VAV~!, v= (

(aT + ]\ax) vls=vlf (39)

The null space of the differential operator on the left-hand side above consists of vectors of
the form v (x — S\jt)ej, where ¢; is the jth canonical unit vector in R, S\J- is the jth element
along the diagonal of A and ¢ is any function. The null space of the adjoint is the same. Thus
the condition to solve the above equation for V~'s is that (e;, V~'f) should not be a function
of (X — N;T). In other words (e;, V~'f) should not be proportional to ¢(X — A;T), for any
function ¢. In the next section we will see how this analysis of the linear inhomogeneous
equation serves us in deriving equations governing the slow evolution of perturbations to the
multi-component system (1).

3. Reductive perturbation method for N-component NLS

In the previous section we analysed the linearised equations for the perturbations 6 py, dvy
about the trivial state (7). The fully nonlinear equations for the perturbations (in hydrody-
namic form) without any additional scaling are

op \ _ 1(0p, 6v)
(8[ + Aax) <(S'U ) - _6x <./\[2((5p, 50) ) ) (40)
where
M)k = dpx 0oy, 41
§v (1 2(pox + dp)dpy — Sp?
-8 (€] i
(N2)k 2 > Hpoc + Opi)? 42)

Let us rescale the variables so that 9, — €0,, 0, — €0, and dp, v — €26p, €2dv. This scaling
is equivalent to assuming the following for the original physical variables

Pk = p,EO) + 25 pi(ex, et), (43)
Uk = 625vk(ex, €t). (44)
This leads to
00\ 2y ( Nilopd0)
(Or + Ady) <6v> = <N2(6p, §v,€) )’ 45)

where X = ex, T = et and

) (46)

g (hz) 2(pok + €*0p)dp — €*0p
2

2
-/\/'2(6107 0v,€) = —= 2 4(por + 625Pk)2

13
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and 6p) = 030y
We now solve the above equation perturbatively. Assuming an expansion in €> for the

unknowns
Sp 5p®) ) sptH
<5~U) = <6U(0) + € 50(1) ) (47)

and substituting into the above equation we obtain to lowest order

5p© 0
(87+n43x)(5van> _ (0). (48)

Since A = VAV~ is diagonalisable, this equation is equivalent to

- 50 0
(6T + Aax) v ( 55 (0)) - (0) , (49)

which has a solution

(6 -
v (55(0)) =1 (X = AT)e;, (50)
or
50 -
(55(0)) =1 (X = \T)Ve, (5D

where ]3»(0) (&) is any function, ¢; is the unit vector in R?V and S\j is any of the eigenvalues of
A. As common in the method of multiple scales, we will assume ]3-(0) depends on X — AT as
well as a new slow time scale 7 = €>T = €’t. Hence

§0® ~
(55 o ) =X — NT,7)Ve,. (52)

The equations at order € are then given by
sp 5p®)
(9r + Adx) <5v(1)) — o, <5U(0)>
Ni1(6p©, 50)
-0 , 53
X(%@ﬂ»&@ﬁﬂ oY

which is equivalent to
- _, (6p) _, (6p©
1 _ 1
(aT + Aax) 4 (50(1) =-0V 50
1 Mi(6p©,60)
—oxV! ’ : 54
¥ Qm@@ﬁwun 6

Notice this is a linear inhomogeneous equation for the order €2 correction to §p, §v. The right-
hand side is essentially a known function since every term on the right hand side can be writ-
ten in terms of J?(o) (X - S\jT, 7). Moreover, the adjoint of the linear operator on the left-hand
side has a null space: precisely those functions of the form (X — S\jT)ej. From the Fredholm

14
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alternative, the right-hand side should be orthogonal to this null space. Notice all terms on the
right are of the form ¢(X — \;T). Hence we have the solvability condition

50 N1 (609, 50
e 0.V (P ) —axv! 100 5,00 %)
§v No(6p@, 50, 0)
where ¢; being the jth unit vector of the 2N x 2N identity matrix. The above equation can be
simplified using the expression for the zeroth order solution to

(0) i Mi(6p®, 50@) _
<ej, 787]3 ej — OxV (Nz((;p(o),dv(o)’o) =0, (55)

or in other words

) . o N1(6p), 50) _
O-f; 7 + <e],6xV (M(&p(o),év@),o) =0. (56)

Rewriting N, N entirely in terms of f}(o) we have the required KdV equation. This is true for
each j and hence we have 2N KdV equations, N of which correspond to perturbations traveling
to the right and N of which correspond to perturbations traveling to the left. If all sound speeds
(i.e. eigenvalues \; of A) are distinct, these equations are uncoupled since the terms N7, N>
are given entirely in terms of the profile ]3(0). Physically this corresponds to moving into dif-
ferent traveling frames centered around each pulse. _

To summarize, if V is the eigenvector matrix of A, namely A = VAV~ then the density
and velocity vectors are given by

—

<§> = ([())0) + ezfj(o)(ex — Net, €1) Ve + O(e*), (57)
where ); is eigenvalue associated with the eigenvector Ve; (¢; being the jth unit vector of the
2N x 2N identity matrix).

The upshot of the above analysis is a reduction of the dynamics of the coupled GPE (1) in
terms of 2N KdV equations. Physically speaking, a generic perturbation to the background
densities, on the shortest timescale evolves according to (1) in such a way so as to give rise to
2N small-amplitude waves traveling at the sound speeds (given by the eigenvalues of .A). On
a longer timescale, the waves evolve according to the corresponding KdV equation given in
(56). Hence a generic perturbation to the background state resolves into 2N waves evolving
according to KdV (N going to the right; N going to the left).

3.1. Coupled KdV equations (non-distinct speeds)

In the derivation presented in the previous section we assumed a solution to the homogeneous
problem that depended only on one profile ];-(O). This is however not the most general solution.
Indeed one may have well assumed

_ 5p(0) 0
v (50(0)> = [ = AT.ET)e; (58)
J

15
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Evidently now

1 Ni(5p©, 50)
1
v (/\/2(5,0(0), 6v,0) )’ (59)

contains functions of all X — A\;T leading to what one may consider to be a coupled system of
KdV. However, it must be noted, that when we project onto e; to obtain the equation of evo-
lution for ]3‘(0) (X — A T) we only retain those terms for the right-hand side which are functions
of X — \;T alone (and not products of functions of multiple X — ;7). Hence once again we
end up with uncoupled equations.

Note the above argument fails when A has repeated eigenvalues. This is precisely why we
determined necessary and sufficient conditions for simple non-repeating eigenvalues. In the
case of repeated eigenvalues however, the zeroth order solution is given as

_, (6p©
v (50@ =Y X = AT.T)er, (60)
k

where now the sum only extends over those vectors Ve, which correspond to the same eigen-
value A. All the functions ]j-(o) depend on the same spatial variable ¢ = X — AT and slow time

scale 7 = €2T. In the case of repeated eigenvalues, we necessarily obtain a coupled system
of KdV equations; the number of equations is equal to the multiplicity of the eigenvalue. The
dynamics of the coupled KdV equations arising out of repeated eigenvalues for A will be
discussed in a future paper.

A final scenario that may also lead to coupled equations is when the eigenvalues are close
together, indeed when |\;;1 — \j| < €. In such a case, although the asymptotic behaviour
of such a system is described by two uncoupled KdV equations (since they correspond to
two different traveling frames of reference), due to the small difference in sound speeds, the
dynamics may appear to be coupled even on the longer time scale for KdV-type equations.
Note however, the resultant coupled system will typically have different coefficients than the
one corresponding to repeated eigenvalues (when the sound speeds are exactly the same) since
the associated eigenvectors are different in either case.

3.2. Some useful relations

Suppose Q is the matrix of eigenvectors of ap with eigenvalues given by the diagonal matrix
A?.In other words apQ = QA?. All diagonal entries of A2 are positive (see proof of theorem 5).
Then the matrix of eigenvectors for A is given by

Afl _ Afl
V:(pQQ pQQ ) 61)

with inverse
pal(he ey

For the purposes of deriving KdV, the relevant matrix is V and (V—")7_ It turns out, one may
express (V1T explicitly in terms of p, Q, A. Indeed one has

- (O e,

“2\poLt por! ©2
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where L = Q7 pQ. Moreover L is a diagonal matrix with positive elements and hence L™ is
readily computed. Note that L = Q7 pQ implies I = L~'Q” pQ and hence Q~' = L~'Q7p.

The above statements expressing Q! in terms of Q and p are explained as follows. The
matrix p'/2ap'/? is real symmetric and positive definite (assuming « is symmetric positive
definite). As a result there exists a orthonormal matrix U which is the eigenvector matrix of
p'?ap'/?. Then

But then we have p~'/?U is also an eigenvector matrix of ap and A? = y2. This means
p~'2UM = Q where M is a real diagonal matrix. In other words, the columns of Q are paral-
lel to columns of p~!/2U. Expressing U in terms of Q, M, p'/? and substituting in UU” = I, I
being the N x N identity matrix, leads to M? = Q7 pQ. We then define L = M?, which is the
matrix that appears in (63).

We also note that if Dy, D, are diagonal matrices, then elements of D;aD, are given by
(D1aDs)j = (Dh)icyj(D2); where (Dy);, (D,); denote the ith and jth diagonal entry of Dy, D,
respectively. Hence any column of V and (V~1)7 is readily computed once the relevant col-
umn of Q is determined. We recall theorem 6 and the procedure detailed in subsection sec-
tion 2.3.3 allow us to compute a column of Q independently of other columns. Of course,
standard libraries provide all eigenvalues and eigenvectors simultaneously.

With these definitions the coefficients of the respective KdV equations are obtained in a
straightforward manner by considering the relevant column of (V=17 for

© _i (M@, 50) N\
87']3‘ + <ej’ aXV (M(5p(0), 5'0(0),0) =0, (65)

is equivalent to

) T Ni(6p©,60@) N\
0.1 + <(V Ve, Ox <N2(5p<°>,5v<0>,0) —0, (66)

where

50 .

We re-emphasize there are in total 2N KdV equations in (66).

3.3. A special case: KdV with zero nonlinearity

The matrix a represents the coupling between the different species and the matrix p rep-
resents the trivial background states for the different species. Let us consider a case when
two self-couplings (diagonal elements of «) and their corresponding background states (the
respective diagonal elements of p) are equal. In other words we assume g;, = g, = g* and
Poi, = poi, = pg for some indices iy, i>. From theorem 4 we are guaranteed that 4=/ pf (g*—h)
are eigenvalues of A. If more than two self-coupling—density pairs are equal, then the eigen-
values will have a multiplicity greater than one. Higher order multiplicities will be the focus
of a future work and here we consider only the case of simple eigenvalues ++/p%(g* — h).
We also limit the present discussion to the eigenvalue corresponding to waves traveling to the
right. The analysis in this section extends similarly to the one traveling to the left.
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Using theorem 6 we also know the exact form of the eigenvector associated with the eigen-

value y/pj(g* — h). Indeed it is

P
T4
* (g% _fp
- v/ P (8" —h) , (68)
q
where p is the matrix with diagonal elements py; and the ith component of ¢g is given by
1, i=i,
g=4—-1 i=1i, (69)
0, else,

To obtain the relevant coefficients of KdV for this case, we need the relevant column of
(V=T which is

oy (g*—h)
I

(<}
Il
N =

. (70)
ra
where [ is the element of L = Q7 pQ corresponding to the vector g. Since L is diagonal and
L= (p'2Q)"p'?Q then I = 3=, poig} = 2p;. Thus
V/ps (g*—h)

14
Then the KdV equation is given by

ST
Il

M ("q, q)
~ VP (" —h)

£+ <v, Oy me > =0, (72)

P 540

N> ( N )
which upon simplifying is
h2
fi— " _ 0, (73)
8v/p5(g* —h)

where f”” denotes the third-derivative with respect to the profile variable X — /(pg(g* — h) T.

Remarkably this equation is linear and thus readily solved using Fourier transform techniques.

4. Few component GPE/NLS and associated KdV and other findings

In this section we present explicit results for two specific cases, that of two and three comp-
onent coupled systems. The reality of the eigenvalues (positivity of elements of A?) ensures
that all coefficients in the final KdV equation are well-defined real numbers.

4.1. N =2 case

The coupled NLS are as follows

ih% — _ﬁazwl
ot 2m Ox?

+ g1 121 + A (74a)
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., OYn R 0%, 2 2
s = h . 74b
ih—, o a2 T e+ gafta e (74b)
In other words, the o matrix (under the assumption m = 1; see text below assumption 1)

is given by
g1 h

a = . 75
(&) as)

The above equations, (74) can be written in a hydrodynamic form for a perturbation of a trivial
state as given in equations (40) to (42) where k = 1,2. We perform the perturbation series
(equations (43) and (44)) to arrive at equation (48) which is the equation for the lowest order
where the A is given by,

0 0 pon O
o 0 0

Ay = @ h 0 0 (76)
h g O 0

where the subscript in A, means that we are dealing with the two component case. The eigen-
values of the matrix ap are the diagonal elements of

A+B 0
A% = ( ; AB> (77)
0 5
and eigenvectors are respectively, the columns of,
C+B C-B
0= 2hpo1 2hpor (78)
1 1
where, A, B, C are given by,
A = gi1po1 + g2p0 (79a)
C = gipo1 — 82002 (79b)
B= ) 4h? 2 0%
= \/&1P51 — 28182P01P02 + 41~ po1 po2 + 830, (719¢)

Note that the eigenvalues (diagonal elements of A?) are both positive under the assumption
h < ,/g1&2. This condition on # is indeed not only necessary (theorem 2) but also sufficient
for the two component case. Next we employ the relations of section 3.2, using the defini-
tions of Q and A given above, to determine the coefficients of the respective KdV equations.
Specifically, we determine the eigenvector matrix of A, using (61). Similarly, we may com-
pute (V=1)T using (63). In the following, we only present the results for the right chiral sector
i.e. two positive eigenvalues (sound speeds). Equation (66) for the two component species

case (i.e. N = 2) explicitly reads as follows for the two eigenvalues A = # respectively,
O-fi + Bififf + A" =0, j=12 (80)
where,
A= —Lz ! (81)
4V2VA+B
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3
B, = C+B)? +2n(B-C
"= %hBpo, [(C+B)* +2h( )poi | (82)
A, = LZL (83)
T T 42VA_B
By, = — 3 [(C — B)* — 2h(C + B)po1] (84)
8hBpo1 o
Here, Ay, B; are the KdV coefficients for the largest positive eigenvalue, A} = A+B and
Aj, B; are the KdV coefficients for the second largest positive eigenvalue, A\, = %. Here

Jf{"" denotes the third-derivative with respect to the profile variable X — AT

Equations (80) give the dynamics of perturbations to the background state in reference
frames moving to the right with with speeds /(A & B)/2. Needless to say, there are two
KdV equations for the other chiral sector namely for perturbations moving to the left with
speeds —+/(A £ B)/2. The KdV equations for perturbations traveling to the left are obtained
by setting A; — —A; in (80). Hence there are in total four KdV equations. Section 5 contains
the brute force numerical comparison between above KdV equation and the N = 2 NLS case.

4.2. N =3 case

The N = 3 case poses an interesting scenario. In general, for arbitrary g;, g2, g3 and po1, poz2, Po3
(all different) the eigenvalues are very cumbersome but with our prescription outlined in the
previous sections one can explicitly write it down. Below, we describe the situation when
g1 = g»and pg; = pgy. Here the eigenvalues and eigenvectors are still different. However, one
of the eigenvalues and its corresponding eigenvector takes a particularly simple form.

The three-coupled NLS are as follows

. 8'@[]1 hz 821/}1 2 2 2
A L h h 85
ih— o O + g1l "1 + hla by + |3 | (85a)
0 n* o°
lh% =5 a;pzz + Rl [Ps + gilthaPa + Blys Py (85D)
0 h? 0?
O = T OVE g s P + sl P (850
In other words, the o matrix (with m = 1) is given by
81 h h
a=|h g h |. (86)
h h 83
Correspondingly, we get
0O 0 0 puu O 0
0 0 0 0 pu O
- 0 0 0 0 0 P03
As = ¢ h h 0 0 0 &7)
h g h 0 0 O
h h g 0 0 0
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The eigenvalues of the matrix «p are the diagonal elements of
(gt —=h)por 0 0
AT = 0 a0 (88)
0 0 =
where we define,
X = gipor + hpot + g3p03 (89)
1

2
Y = [(81 +h)’p51 — 2[8183 + h(gs — 4h)] porpos + 3053 | - (90)

Corresponding to each of the three positive eigenvalues \; of A (diagonal elements of A in
(88)), we obtain a KdV equation of the form

O + ij]fj’ _|_Aj]§.’” =0, j=1,2,3. On

Remarkably the corresponding KdV equation for the first eigenvalue A\; = /(g1 — h)po1 is
linear. Indeed

h2

Al = ———— 2
: 8/ (g1 — h)por ©2)

B =0. 93)
For the other two eigenvalues, i.e. A» = 1/%5F and A3 = /%X, we get Ay, By, A3, B; as

follows,

I A (94)
SN gu ¢

B, — 3[2(Y = Z2)*po1 + (W + Y)? po3] (95)
P AW Y)Y = Z22p01 +2(W + Y)pos

Az = R : (96)
T A2 VX+Y

B — 3[=2(Y +Z)%por + (W — Y)*pos] o7)
P AW =) (Y +22p01 +2(W = Yo

where Z, W are given by,
Z = (g1 + h)por — g3po3 + 2hpo3 (98)
W = gi1po1 — 3hpo1 — g3p03- 99)

In other words, the two eigenvalues other than A} = /(g — &)po1 have corresponding KdV
equations for the nonlinear problem.

We emphasize once more that equation (91) give the dynamics of perturbations that travel
in the positive direction with speeds A;. There are three KdV equations for the other chiral
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sector namely, perturbations traveling to the left with speeds —);. These KdV equations are
obtained by setting A; — —A; in (91). Hence there are in total six KdV equations.

5. Numerical results for two component case

Following the results obtained in section 6 for N = 2, in this section, we explore through
numerical simulations the comparison between the obtained KdV and the coupled NLS. From
our asymptotic analysis in that section, recall that a generic perturbation to the constant back-
ground density resolves into 2N weakly-nonlinear waves that each evolve according to KdV
dynamics. To facilitate the comparison between NLS and KdV dynamics we choose specific
initial conditions that generate perturbations which evolve according to only one of the KdV
equations.

Because of the integrability of the KAV (80), a soliton (or solitary wave profile) solution is
chosen as a platform for comparison. Due to the special nature of these profiles, i.e. their abil-
ity to propagate and retain their structure without breaking by carefully balancing the effects
of nonlinearity and dispersion, they also serve as a check on the numerics.

Additionally, the validity of the simulations is also ensured by checking the conservation of
wavefunction density and the Hamiltonian. The solitary wave solution is obtained for the KdV
(80) which is moving to the right with a velocity of V

fie ) = 3;?”sech2{”gv(§-—/y»hq] (100)

J

where the index j labels the four eigenvalues corresponding to two left and right movers each.
The subscript j on f which is the eigenvalue index should not be confused with the subscript k
on quantities like p, v, v which is the species index. We choose j = 1,2 denoting both right
/#

movers with speed + . In order to compare with the coupled NLS, §p and Jv need to be

calculated from (67). For the fastest mover, j = 1 eigenvalue A is chosen.

C+B
dp1 27X
dp2 ’f\*of
=fi(&, 1) e | (101)
001 2hpor
00, 1

We can now obtain p(x, f) and v(x, ) from (57), given, £ = €(x — \;t) and T = €t.
,C+B

p1(x,t) = por + ¢ N, fi(&,7) (102a)

pa(x,1) = p02+62% 1(&,7) (102b)
C+B

m@ﬂzﬁﬁ%ﬁ@ﬂ (102¢)

0y(x, 1) = € (€,7). (102d)
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Subsequently, 1(x,¢) can be obtained by using the transformation (4). This requires the
calculating the integral f(;c sech? (ax’, )dx’ = L tanh(ax, t). By repeating this exercise for the
next larger eigenvalue \j—», we thus obtain the initial profiles for both the components as in
(103) and (104).

We simulate the dynamics of both the right chiral sectors having speeds A\; and \,. The
initial conditions in the NLS language corresponding to the two eigenvalues A;, \, are

?'(x,m—\/pmez(im i (ex0) e [hw anh (e 9]

(103a)

) [ie 6A1\thanh(ﬁex)} (103b)

A P02
5 (x,0) = \/poz + 62/\—]]‘1(6)6,0) ex 7B 7

2 ,(C—B) ie 6A,(C B)\F vy
?(X’O)_\/pol+€ 2, 10 0) [hm e )]

(104a)

1€ 6A2f f
[h B, tan (ex)} (104b)

22 (x,0) = \/poz + 62%f2(6x, 0) exp
For simulating the coupled NLS, we use the classical explicit method as the time stepping method
as outlined in [106]. Keeping in mind the conditions on coupling constants, we choose the
following values for the parameters: gy =1, g2 =1, h=0.5, e =0.2, pg; = 1, pp = 0.1.
Thus, A = 1.1, B =0.954 and C = 0.9. The system size is L = 300 and spatial axis runs from
x = —150 to 150 which has been discretized into n = 12000 steps. Thus, dx = 0.025 and
dt = 7.8125 x 107°. The speed of the solitary wave is chosen as V = 2.5.

Now that we have the correct initial conditions for both NLS (103) and KdV (100), we
let them evolve in time. We study the time evolution of |4/ (x, f)|?. At this stage, the coupled
NLS and KdV profiles cannot be compared because they are not the same physical quantities.
Since, the KdV problem only involves f;’s, while the NLS profile 1/),:\" is a combination of f;’s
multiplied by appropriate coefficients and added to a background, for a meaningful com-
parison, the KdV variables need to be rescaled via a suitable transformation. The appropriate
physical quantities are the density fields and can be obtained by using the transformation (43).
We also take care that the two profiles are in the same frame of reference. We choose the lab
frame (x, r) for both the profiles. Since, f;(&,7) is a function of (§£ — A;V'7), using the inverse
scaling relations we obtain the speeds in the lab frame.

£ —AYVT = ex — et(\; + AVE) = e(x — Ajt). (105)

Thus, the speed of sound in the lab frame is A; = ); +AjV62. For the chosen cou-
pling constants, the parameters are A; = —0.123, B; = 1.372, A, = —0.462, B, = 0.728,
A1 = 1.013, A\, = 0.270, A; = 1.001, and A, = 0.224. Note that opposite signs of A; and B;
for both j = 1,2 ensure an overall negative sign on f(x,?) (100). Additionally, since the coef-

ficient C — B = —0.054 <0, |1/J{\2 |? profile is expected to be a bump as opposed to the other
profiles being a dip. For completeness, we explicitly write out the density fields for both eigen-
values j = 1,2 for both components k = 1,2, given, { = e(x — A\jt) and 7 = e,

,(C+B)
4h\;

Py (x.1) = por + € fi(&.7) (106a)
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Figure 1. Evolution of the densities \1/),?“ (x)|> with time for k = 1,2 species starting
from the initial profile (103). The blue (species 1) and the red (species 2) plots are
evolved under the binary coupled NLS equation (74). The left y-axis (blue) is the scale
for species 1 while the right y-axis (red) for species 2 (since the background densities
differ significantly). The speed of sound (eigenvalue) is \; = ++/(A + B)/2 and in the
lab frame has a value A; = 1.001. Independently, the analytical density plot px(x,?)
of the KdV soliton (106a) and (106b) is also shown for comparison. Evidently the
four well separated time snapshots indicate both species exhibit a remarkable match to
the analytical density plots (dashed and dot-dashed for species 1,2 respectively) with
emission of some small amount of radiation in both directions.
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Figure 2. Evolution of the density fields [¢;? (x)|? in time for k = 1,2 species starting
from the initial profile (104) under the dynamics of the coupled NLS equation (74).
The largest speed of sound (eigenvalue) A; is shown in figure 1. Here the second and
largest speed A\, = ++/(A — B)/2 is considered with a lab-frame speed of A, = 0.224.
In addition, the analytical density px(x, ¢) of the KdV soliton (106¢) and (106d) is shown
for comparision. Here too we find that both species exhibit a remarkable match with the
analytical expressions (dashed and dot-dashed respectively) and emission of some small
amount of radiation in both directions. A very interesting aspect about this eigenvalue
(Ap) is that it results in species 1 having a bump and species 2 having a dip.
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Py (1) = poo + ez%ﬁ (& 7) (106b)
C—-B

oo = o+ S D) (1060)

7 (1) = poo + @2 R(E 7). (106d)

We plot four different time snapshots of the evolution of |44 (x)|* through the coupled NLS
equation (74) along with the evolution of pi(x) through the KdV equation (80) in figure 1 for
the largest eigenvalue (\}) and in figure 2 for the second-largest eigenvalue () . It is surpris-
ing to note that they have quantitative agreement for significant times. Thus, it turns out that if
we just evolve the NLS problem with the initial conditions (103) and (104) without the knowl-
edge of any scaling or transformations applied, the evolution has a significant match with the
independent KdV evolution of (106). Consequently, we see a strong correspondence between
the two equations, namely, coupled NLS and the KdV equation.

6. Conclusions

In this paper, we have analyzed the linear and nonlinear problem for the multi-component
NLS which is a physically relevant system spanning a broad range of fields. We have system-
atically studied the qualitative long time dynamics of non-equilibrium profiles. We started
with writing a hydrodynamic form. In the linearized regime, we stated and proved a set of the-
orems. We obtained necessary and sufficient conditions for real speeds of sound that depend
solely on the coupling matrix. For the nonlinear problem, using the key mathematical concept
of the Fredholm alternative, we show that the coefficients of the KdV dynamics are given in
terms of the eigenvectors of the linearised problem. We also discuss numerical protocols to
compute the eigenvectors of the coupling matrix individually that also provides us with infor-
mation on how eigenvalues (sound speeds) and eigenvectors (KdV coefficients) change as the
cross-component coupling coefficient varies. This is of high experimental relevance given the
tunability of coupling constants. We show compelling evidence of agreement between KdV
and multi-component NLS in the nonlinear dynamics using soliton profiles as a platform
for comparison This kind of effective mapping shines light on the complex non-equilibrium
dynamics of interacting multi-component coupled systems.

The present manuscript investigated the qualitative dynamics of small amplitude perturba-
tions of a trivial state when the speeds of sound (namely the eigenvalues .A) are distinct. The
case of repeated eigenvalues leading to coupled KdV will be investigated in future works. The
future outlook also includes generalizations of the coupling matrix «. This is important given
various physical systems where coupling can vary spatially. Understanding the role of external
potential from a rigorous perspective remains unexplored. Although this work is restricted to
Hamiltonian systems, it can be extended to open systems which are connected to reservoirs
[107] and much remains unexplored in that avenue of driven-dissipative systems.
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Appendix A. Proof of theorem 2

Suppose « is positive definite. From Sylvester’s criterion, determinants of all leading prin-
cipal minors of a positive definite matrix are positive. Then under the supposed ordering, the
determinant of the 2 x 2 leading principal minor, i.e. the 2 X 2 matrix in the top left corner,

g18> — h? is positive. Hence h < /g18.

Appendix B. Proof of theorem 3

We first introduce a definition for the symmetric products of ;.

Definition B.1. We denote the set of {~;}, obtained by eliminating ~y; for some k, by
{7i} — Y. Similarly, the set obtained adding an element ~; is denoted by {v;} + V. Sup-
pose ; = Y for some j, k for a list of {v;}. Let §; be the distinct ;. Then {v;} = {8;} + .
where (; are all distinct. Consequently we describe the replacement of -y, with ; in a list by
{7} —7j + . Keeping in mind that

S"{vh) =1 S{n}) =0 k>N, (B.1)

we have the following consequence of these definitions.

Theorem B.1.
S" ({7} +m) = wS" ™ ({nh) + 8" ({nh).- (B.2)
In particular, suppose one of y; equals 1. Then setting {v;} = {5;} + 1 we have

S"({B}+1) =8"({B}) + 8" ({B:}). (B.3)

Theorem 3 is proved using the principle of induction. Consider the case when «, p are
2 x 2 matrices. Then

- —pih
det(p — pa) = det (H pig prits )

—ph =g
— ool (u — P8 =gy 1)
prh p2h
= piph® P(p),
and so the theorem is true for N = 2. Furthermore, note that since ap = p~! pap, then ap and

pa have the same eigenvalues. Let us now suppose the theorem holds for matrices of some
size n. We denote the relevant matrices by p(), o™ 5o that pMa — 1 is given by

(n) () _ = {Ponig,,l —p, i=], .
(p Wi = i, oy ©5)

(B.4)
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where 1 is an eigenvalue of p(") (™). The characteristic polynomial is

det(p™a™ — ) = 0 = [ poi h" det(X,) =0 (B.6)

i=1
where
Yntl—is L=], P0igi — I
X,)i = and = ———.
( Vl)l] {1, i #‘]’ ,YI polh
Since the theorem holds for the nth order matrix, we have

det(X,) = 8" ({7:})

D k- D)8 () = 0. ®D
k=2
The matrix X, is obtained from X,, by the following relation
Yn+1 I'nT
Xoi1 = (B.8)
L X,

where f,, is a column vector of length 7 consisting of only ones. The characteristic polynomial
then is obtained by computing det(X,,+). This determinant is obtained by a linear combina-
tion of the determinants of its co-factor matrices. The co-factor matrices of X, are either X,
or the matrix obtained by replacing the relevant column of X, by 1. The determinants of those

co-factor matrices, obtained by replacing a column of X,, by 1, are equal to (up to sign) the
)

determinants of matrices X,Sj where
; 1 i=k=j
xy, — 2 ’
()i {(Xn)ik, otherwise. (B.9)
Taking into account the signs, we have
det (X, 1) = ap1 det(X,) — Y det(X\7). (B.10)
j=1

We consider each term on the right-hand side of the above equation individually. By definition
det(x$7)

=8 () =+ 1)

3D k= DS (i =+ 1),
k=2

= 8" ({3} =) + 8 () — )

n—1

+ 3 (D = DS ({3} =)

k=2
n—1
+ (D= DS () = )
k=2
+ (=) n—-1), (B.11)
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where we have used theorem B.1. It is straightforward to show that if a set {/3;} contains n
elements, then for m < n

_Z S" (1B} = B) = Z [s" ({B}) = BS" ({8} = B)] -

= (n—m)S" ({5:}) . (B.12)

Using this relation we have

Zdet (X) = 8" ({7})

n—1

+ Y (D k(= DS ({)

T "i(_nk*l(k - D(k+ 1S " ({n})
+(=1)"(n=2)n—(=1)"(n—1)n
= (=D %S ({)). B19

On the other hand,~, 11 det (X,,)

n

= Yn1S" ({7i}) + (=D k= D S (i)

=2

= Sn+l ({’71} + ’YnJrl)

JFZ DS ({7} + i)

- Z DS ({31})
= 5n+1 ({7} + vnt1)

n+1
+ Z DS ({4 )
_ Z kk S k {’71}) . (B14)

Combining the expressions for either of the right-hand side terms of (B.10) we have

det (Xu41) = 8" ({7} + Yt1)
n+1

+Z Sn+1 k({ryl} +7"+1) (B.15)

which proves the theorem for n + 1 and the statement of the theorem 3 follows.
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Appendix C. Proof of theorem 4

Let P(\?) denote the characteristic polynomial of cp. We first claim that repeated eigenvalues
can only occur when N > 2. This is easy to see since the characteristic polynomial for N =2
is readily computed as

— X\ [ poaga— N
P2 = (00181 ) < ) _q, C1
(A%) porh porh (C.1)

which has roots

A2 — (po1&1 + po2g2) £ \/(Po1g1 — p0282)* + 4poapor B
2P01P02h2 (CZ)

Since the discriminant is positive for all real values of py;, g, 1, there are no repeated roots
when N = 2.

C.1. Proof of sufficiency

We now proceed to the general case. We consider first m repeated pairs of (pg;gi, poi) and
prove this is a sufficient condition to guarantee a repeated eigenvalue. Let (p;, g*) denote the
common value of m repeated pairs of (po;, g;). Since the total number of eigenvalue pairs is N,
there are N — m not-necessarily-repeated pairs. Define

_ g =X poigi— N
pSh 9 1 polh bl

where the 7; are shorthand for the not necessarily repeated pairs. The characteristic polyno-
mial is

(C.3)

SV ({vi} +my) +

S k= DSV ([} + my) = 0.

k=2

(C4)

Here {~;} + m in the argument to the symmetric polynomial indicates m repetitions of  in
addition to the list of ;. We note that

1
S (it +my) => 8 {8 ({m}). (C.5)
=0

Also notice that S¥ ({v;} + my) = v"S¥=" ({~:}) which also follows from the identity
above when [ = N and recalling S ({3;}) = 0 when [ is larger than the number of elements
in the list {§;}. Substituting this identity into the expression for the characteristic polyno-
mial we have
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0=s" ({%} +my)

+Z DSY K ({7} +mr),
ZVmSN " ({ni})

N N—k
A (DT =1 Y S () SV (),
p=0

5 EZ 1) S ({7}) 8Y4 (fm))

p=0 k=2
=S¥ ({7i})

+ Z Z 1) 8 ({n}) S¥7 ({mr}),
=0 k=2
=S () I+ D (-1 DS ({m})]
k=2

N—m—1

+ 30 S () YD k- 1) SV (fmy)). (C.6)

p=0 k=2

<

Note that S"~* ({m~}) represents products of m — k y’s. Of course there are "

m—k Ways
to choose these products and thus we have
m
Y'Y (D k= DS ({my))
k=2
m m—k,.|
— AN DYk =1 o
(1) 1)
=D (D"~ )(m—k)!k!
k=0
=miy = 1"+ (= 1) €7

Substituting the above in to the expression for the characteristic polynomial we have

SV () [mly = )"+ (v = 1))

N—m—1 N—p
+ > S {nhd (-1 DSYP ({my}) = 0. (C.8)
p=0 k=2

Evidently, the above expression is true for m < N. Indeed if m = N we have

PO = 8V ({3) Iy — 17" + (= 1)7] o
=(y-DV'(N=1+7), '
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or in other words
ok AZ N—-1 * ok )\2
Py = (28 — 24 N—1+28 — ) (C.10)
poh poh

Moving ahead with the case m < N, we have

SV} (v = )" m— 1+ )

N—m—1 N—p
+ 3 & () Y (=) ke = 1)SYEP ({m)) = 0. (C.11)
p=0 k=2

The second term on the left-hand side may be simplified as follows

N—p

DD k= DS ()
2

k= v

= (D) (k= DSV ({mr}),
k=N—p—m

=D (VPN —p—m o 1= 1) (),

=0
m m—I1 m!
= (=1 NP ;H)H(N —p—m—1+ z)(;_l)!'”,
=)V Iy =) = (N—p—m—1)(y—1)"],
= (=) = 1) m+ (1 =N +p+m)(y—1)). (C.12)

The first equality is true since SN =%=7 ({m~}) = Ounless N — k — p < m. Toreplace the lower
limit of the k-sum we also need to assure N — p — m > 2 which implies p < N — m — 2. Thus
the only possible exception is whenp = N — m — 1, i.e. the upper limit of the p-sum. However,
it is easy to see that this term has no contribution for k = 0, 1 since S"*!'=* ({m~}) = 0 and

k — 1 = 0 when k = 0, 1respectively. Finally we obtain the following expression for the char-
acteristic polynomial

* ok )2 m—1
P(A2) = <'00g*h)‘_1)

Bt

* _AZ
X (—1)N-p=m (m—|— (1=N+p+m) <p°g* - 1))] - (C.13)
Poh
C.2. Proof of necessity

It is also necessary that at least three pairs of (pg;g;, poi) be equal for the characteristic poly-
nomial to be permanently degenerate. To show this we prove the contrapositive, i.e. we show
that if only m = 1,2 of the (po;gi, poi) pairs are equal, then the polynomial is not permanently
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degenerate. Consider first the case m = 1 i.e. when none of the (pg;g;, po;) are equal. Then a
standard implicit function theorem argument applied to

Qp) =P (u)h" = S" ({p()é,’oo_u})

N
_ _ Poigi — M
IS (=t (C.14)

using the fact that (i) Q(u) has distinct zeros po;g; when & = 0 and, (ii) 0Q/0u evaluated at
h = 0 is non-zero (due to the distinct values of py;, g;), we have an open neighborhood of
h = 0 where there are N distinct roots to the polynomial Q and so the polynomial cannot be
permanently degenerate. We now consider the case m = 2. Suppose only two of the (po:gi» Poi)
are equal. Let the common value be (p§g*, o). By assumption this common value is distinct
from all remaining N — 2 (po;gi, poi) pairs. Factoring as we did previously, but for the case
m = 2, we have

o = (1)

[Er (eash o

x (2+(1—N+p+2) (W—l))]. (C.15)
poh

This polynomial has a root u = p§(g* — h) and the roots of

S ({megt))

x (=1)N-r=2 (2+(1—N+p+2) (W—])) =0. (C.16)
0
Applying the implicit function theorem to the above polynomial we have that in an open
neighborhood of & = 0, the above polynomial has distinct roots. The only remaining possibil-
ity is that p§(g* — h) itself is a root of this polynomial. But this leads to the following expres-
sion valid for all suitable A.

- poigi — Py (8" — h)
s ({ e Lo }) (~)¥ 2 =0, (C.17)
o poih
which for 4 =0 is
P0igi — Po8
2ot Foe —,
H . (C.18)

which is not possible since p5g* # poigi- Consequently when m = 1, 2 the characteristic poly-
nomial cannot be permanently degenerate.
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Appendix D. Proof of theorem 6

From theorem 5, it suffices to find eigenvectors for the matrix ap with eigenvalues
A2 = pi(gs — h). A straightforward computation gives the components of ap — A\?

i8 — Po&" + poh, i=],
(ap — )\2)ij _ {pog Po8 T Po J (D.1)

poih, i #].
Since the matrix A is permanently degenerate, m + 1 pairs of (po;g;, po;) are equal to (pjg*, pg)-
From this, it follows that m + 1 columns of the matrix (ap — A\?) are parallel. Indeed all ele-
ments of such columns are pgh. We identify these columns by i, k = 1,2,...m + 1. Define
the ith element of the vector ¢* by

1, i=1i,
(q(k))i =<1, i=ixy, fork=1,2,...m. (D.2)
0, else

Then apg® = po(g* — h)q(k). Using the construction of the previous theorem, we obtain the
associated eigenvector for A.
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