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Abstract
A non-Abelian group of 16 symmetry operations on (generally) non-
Hermitian discrete Hamiltonians represented by N x N matrices is studied.
The symmetry operations are described by unitary/antiunitary superoperators
that arise when combining three basic generating operations with simple
‘geometric’ interpretations. The corresponding Hamiltonian symmetries
occur when the Hamiltonian remains invariant under the superoperator action.
These symmetries include PT-symmetry and Hermiticity as particular cases.
The interplay between the group of symmetry operations and Hamiltonian
symmetries is analyzed systematically by introducing the concepts of
equivalent operations and associated symmetries. Spectral properties implied
by some of the symmetries are described.
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1. Introduction

Non-Hermitian Hamiltonians have been used for a long time in nuclear, atomic, and molecu-
lar physics as effective interactions, and have become common in optics, a field in which the
wave equations in waveguides mimic quantum Schrodinger equations [1-3]. Non-Hermitian
effective Hamiltonians may be constructed phenomenologically, in particular to describe gain
and loss, see e.g. [1], or be derived from a more fundamental Hermitian Hamiltonian by pro-
jecting on a subspace [4-6].

In recent times PT-symmetric Hamiltonians [7] have attracted much attention because of
interesting and useful spectral or scattering properties and many applications [2, 3], but recent
work points at alternative symmetries [8—13] and even to a natural systematization of sym-
metry operations with a group structure [11]. In [13] an Abelian E8 group was described
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for symmetry operations on ‘scattering Hamiltonians’ that drive a particle state scattered off
a potential center in one dimension (1D). It was shown there that devices for asymmetric
response forbidden by PT-symmetry, such as a Maxwell demon, are compatible with some
alternative symmetries. The present paper aims at extending the systematization of symmetry
operations to discrete and finite Hamiltonian matrices, for which a larger non-Abelian group
of 16 symmetry operations emerges naturally.

After reviewing briefly the results for scattering systems and pointing out the differences
with discrete finite matrices in the remaining part of the Introduction, we shall describe the
symmetry operations by means of superoperators in section 2; study the group of symmetry
operations in section 3; its relation to actual Hamiltonian symmetries in section 4; and spec-
tral properties in section 5. The paper ends with the conclusions and a discussion on open
questions.

1.1. Scattering Hamiltonians (review)

A strong motivation to study non-Hermitian, one-dimensional (1D) scattering Hamiltonians
H = Hy+ V!, is the need to design devices with asymmetrical response, ‘asymmetrical
devices’ for short [11], for particles or waves incident from both sides, such as diodes, valves,
or rectifiers. We may expect many applications of asymmetrical devices in optics or the micro-
scopic world, in quantum information processing and other quantum technologies.

Ruschhaupt et al [11] describe six types of asymmetrical devices according to their trans-
mission and reflection coefficients, and their relation, in the form of selection rules, to eight
different symmetries that H could fulfill with the forms

AH = HA, (1)

AH = H'A, 2

where A is a unitary or antiunitary operator in the Klein four-group K, = {1,11, 6,116} [11].
If (2) is fulfilled we say that H is A-pseudo-Hermitian [11, 14]. The operators II, § and 110
of the K4 group are parity, time reversal (for a spinless particle) and the consecutive (com-
muting) application of both. Their properties are well known but we review them quickly for
comparison with later, different usage of the symbols:

— II: in the continuous space the parity operator is a linear, unitary operator that inverts the
position vector across the origin, so that IIc|x) = ¢| — x) for a complex number c. Also,
% = 1.

— 0: in the continuous space it is the ‘temporal inversion’, an antilinear, antiunitary operator
that on a spinless-particle state acts in coordinate and momentum representations as fol-
lows,

6 / ) (alf) = / defx) (1), 3)

0/@mmw:/@vmwm, “)

so that 00 = 1.

! Hy = p?/(2m) is the kinetic energy for a non relativistic particle of mass nz, p being the momentum, and V is
the potential, which is assumed to decay fast enough on both sides to have a continuous spectrum and scattering
eigenfunctions.
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Table 1. (i) Roman number code that may represent the operation or the symmetry.
(i))Result of performing eight symmetry operations on H. (iii) Corresponding
symmetries of the types (1) or (2). When H is invariant under the operation, the matrix
elements of H obey these relations, and viceversa.

i ii iii

I H (x|Hly) = (x|Hly)
1 Ht (x|Hy) = (v[H|x)*
11 IHII (x|H|y) = (—x[H| —y)
v AT (x|H|y) = (—y[H| = x)*
\ OH® (x|Hy) = (x|Hly)*
VI OH'0 (x|H|y) = (y[H|x)
VI TIOHTIH (x|H|y) = (—x[H| = y)*
VIII HIOH IO (x|H|y) = (=y[H| = x).

— II0: it is also antilinear and antiunitary since the product of a linear operator and an
antilinear operator is antilinear. II and § commute. It is also often called ‘PT".

Combining the two possible relations (1) and (2), and the four A in Klein’s group, we get the
eight symmetries in [11] made explicit in table 1, column iii. They may be regarded as the
invariance of the Hamiltonian with respect to corresponding eight symmetry operations that
form the Abelian group E8 [13], see column ii.

As pointed out first for Hamiltonians with discrete spectrum by Mostafazadeh [15-17] and
later extended to scattering Hamiltonians in [13], A-pseudo-Hermiticity with A linear, or the
commutation of A and H for A antilinear imply that the eigenvalues of H come in conjugate
pairs necessarily, in particular they may be real. These conditions occur for symmetries II,
IV, V, and VII. No other symmetry in this set of eight or in the extension to 16 symmetries
considered below satisfies them.

Let us emphasize and insist on the important distinction between symmetry operations
on and symmetries of an operator or of the corresponding matrix. Symmetry operations are
changes imposed to an operator or matrix, e.g. transformations such as taking the complex
conjugate, or performing the transpose. An operator or matrix possesses a particular symmetry
if the corresponding symmetry operation keeps the operator or matrix invariant. The roman
number code in column i of table 1 will refer indistinctly to an operation or to a symmetry, the
context should clarify the possible ambiguity.

1.2. N x N Hamiltonian matrices

The above analysis has to be extended when dealing with discrete Hamiltonians represented
by N x N finite matrices in some orthonormal basis, such as the ones used to describe two-
level, three-level, or N-level systems in simplified models of atomic structure or of artifi-
cial atoms in solid state physics or in optics. In this work it is assumed that the discrete
Hamiltonians? are diagonalizable,

H= Z |60 Ex(il, )

2By default a ‘discrete’ basis or matrix is always finite here.
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where the right, |¢;), and left eigenvectors, (q/§,|, are biorthogonal partners, and E; may be
a complex number. These vectors form a biorthogonal basis such that 1 =", |¢,>($,\ and
(G115} = by

To study the possible symmetries and symmetry operations for discrete Hamiltonians we
shall first reset the meaning of the operators I1, 6, and 116 to adapt them to a discrete orthonor-
mal basis. They will stand now as ‘geometrical’ operators in a given basis as follows (more on
this geometrical aspect in section 3.2 below):

— II: for a finite orthonormal basis with basis states |1), |2), ..., |N), labeled by natural num-
bers, it transforms (linearly) the ith member of the basis to —i, Ic|i) = ¢| — i), where —i
implies the ‘opposite’ of i with respect to the middle value of the basis index, i.e.

|— i) = [N+1—i). (6)

Example: for a basis {|1),]2),[3)}, N=3so|—1)=|3),] —3) =|1), and | — 2) = |2).
(A basis could also have an even number of states and a half-integer middle value.) II is
a unitary operator. We may also regard it as a ‘reflection’ operator.

—0: in the discrete basis, it will be an antilinear, antiunitary operator defined by
Oclj) = c*0|j) = c*|j), where c is any complex constant.

— 110 = O1I: it is antilinear and antiunitary.

Note that in both discrete and continuous models, the operators 11, 8, and I16 are their own
inverses, and also Hermitian operators.

Since the structure of a discrete Hamiltonian does not have the limitations imposed by the
properties of the kinetic energy Hamiltonian Hj in the scattering form H = Hy + V, a larger
group of 16 symmetry operations that could leave the Hamiltonian invariant is found com-
pared to the symmetry operations on scattering Hamiltonians, see table 2. The new operations
with respect to those in table 2, from IX to XVI, imply to invert one of the kets but not the
other one, applying parity only on one side. The corresponding symmetries do not have the
forms (1) or (2).

This work is devoted to study the group of 16 symmetry operations and their relations with
actual Hamiltonian symmetries. Before discussing properties of the abstract group we shall
introduce its realization based on superoperators and their geometrical interpretation.

2. Superoperators

Different superoperator types are used in the group of 16 in table 2.
Let us define first superoperators L£4 g by left multiplying by A and right multiplying by B,

LipH = AHB. )

Note that L43H = H <= A~'H = HB. We consider only £, 3 where both A and B are
linear or both are antilinear, so as to preserve the linearity of a Hamiltonian. Otherwise L4 5
could not represent a symmetry. For example, the superoperator £ ¢ creates an antilinear
operator £, gH = H0, so it is not in the group of 16 transformations. The operators A, B to
construct the superoperator group will be chosen among Klein’s group operators 1, II, 8, and
011, defined for a finite basis.

A shorthand notation £, is used for L1 4,

LiH =A""HA, 8)
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Table 2. Group elements (transformations) in different notations. 1: roman number
code; 2: group theory notation of group elements in terms of generators x, y, a, see
(18) and (19); 3: superoperators S; 4: explicit action of the superoperators on H; 5:
geometrical interpretation of the symmetry operations, where—is the horizontal
axis, | the vertical axis, \ is the main diagonal, / is the secondary diagonal, and cc is
complex conjugation; 6: matrix element (i|(SH)|j). A Hamiltonian symmetry occurs if
(i|(SH)|j) = (i|H|j) for all i,j.

1 2 3 4 5 6
1 e L H Do nothing (i|Hlj)
I x D HT Flip along \ and cc  (j|H|i)*
11 a Lo IIHTI Rotate by ™ (—ilH| —j)
v xa® LnD AT Flip along /and cc  (—j|H| — i)*
v y Lo OHO cc (ilH)"
VI Xy LoD 0H'o Flip along \ {(j|H|i)
Vil a’y Lo iz Rotate by mand cc  (—i|H| — j)*
VI a*xy LoD 1I6H119  Flip along/ (=ilH| =)
IX ax = xa® L1 HII Flip along | (ilH| - j)
X xa = a’x L1 1IH Flip along— (—i|H[j)
XI axy LoLin 6HOII Flip along land cc  (i|H| — j)*
XII a*xy LoLi1 TI0HO Flip along—and cc  (—i|H|j)*
X111 a LinD HII Rotate by w/2 and  (—j|H|i)*
cc
XIV a L., D IHt Rotate by 37/2 (jH| —i)*
and cc
XV ay =ya LoLinD  6HTIIA Rotate by /2 (—j|H|i)
XVI ady LoLmiD  OIIH'H Rotate by 37/2 (jlH| — i)

where A~! is the inverse of A. It is easily seen that L4H = H <= [H,A] = 0.
To complete the 16 operations we also define a ‘dagger’ superoperator D that transforms
an operator into its adjoint [12],

DH = H'. ©)
Hermiticity is the symmetry that corresponds to invariance upon this superoperator.

It is possible to combine the former superoperators applying them sequentially to find new
ones [12], for example,

LADH = A~ 'H'A, (10)

DLAH = (A~'HA)T, (11)

L,DH = H <= AH = H'A. In general L4DH # DL4H, but L, and D commute when
A~! = A', as it happens for our basic operators 1, II, § and 611 in Klein’s group.

The group of superoperators that preserve linearity are given in columns 3 and 4 of table 2.
A sense of ‘completeness’ of the 16 operations is discussed below in section 3.2 from a geo-
metrical perspective. As before the roman numbers in column 1 are conventional indices for
operations and/or symmetries, and when the matrix element in the rightmost column 6 equals
(i|H|j), H is invariant under the transformation and posseses a symmetry. It proves conveni-
ent to denote an arbitrary superoperator in this group by a generic notation S. In formal
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manipulations we shall later on use distinguishing subscripts, e.g. S;, where j=1,2,...,16
mapping [ — 1, II — 2, etc...

Superoperators, just like ordinary operators, are linear if they leave complex constants
invariant and antilinear if they transform them to their complex conjugates. In particular [12],

La(cH) = cATHA, A unitary,

La(cH) = c*ATHA, A antiunitary,
Lap(cH) = cAHB, Aand B unitary,
Lap(cH) = ¢*AHB, A and B antiunitary,

D(cH) =c*HT,
LAD(cH) = DLA(cH) = c*ATHTA, A unitary,
L4D(cH) = DLa(cH) = cATH'A, A antiunitary. (12)

2.1 Valid symmetry operations

The transformations considered in quantum physics as possible symmetries, i.e. symmetry
transformations (operations), are not really arbitrary. Wigner set the rule that they should leave
the modulus of the scalar product of two states, equivalently their ‘transition probability’,
invariant, and this restricts the corresponding operators to be unitary or antiunitary [18]. As
seen below in detail, our superoperators imply a mild generalization of Wigner’s definition, as
they leave the scalar product of two density operators, which constitute the most general way
of expressing a state, invariant.

We will denote a scalar product of two given (linear) operators F and G as ((F, G)). The
general expression of the scalar product of two linear operators is ((F, G)) = Tr(F'G) [12].
Expectation values for an observable F and a density operator p, both Hermitian, take the form
(F) = Tt{Fp] = Tr[F'p] = ((F, p})

Now, we can define the adjoint of a given superoperator S as the superoperator ST which
fulfills [12]

((G,SF)) = ((F,S8TG))* for S linear, (13)
((G,SF)) = ((F,S'G)) for S antilinear. (14)
For unitary or antiunitary operators A, so A~' = A, we find [12]
LL() = Lar(-) = AC)AT,
D'(-) = D(), (15)

(LAD)(:) = L4 D(").

For a more general £, g, with A and B both unitary or aniunitary, ELB = L it This is easy
to check when A and B are both unitary,

((F. £} 5G)) = ((G.LasF))"
= Tr[(G'AFB)'] = Tr[B'FTATG]
= Tr[FTATGB'], using cyclic permutation. (16)
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For antiunitary A and B, L4 p is antiunitary and the calculation is more elaborate but the result
is the same.

For all 16 superoperators an explicit calculation gives ST = S~ so these superoperators are
unitary or antiunitary. This is clear in the set (15) and for £, g itis also true because we only con-
sider A and B to be simultaneously unitary or antiunitary. Thus £, gLyt 5:F = AATFB'B = F,
and similarly Lipt LapF = F.

Parallel to the fact that aunitary or antiunitary operator A keeps the scalar product of two states

represented by ketsinvariant (1), [12) = (¥1|v2); A[n), Aly2) = (1|ATA[) = (i]¢n)),
unitary and antiunitary superoperators keep invariant the scalar product of two density operators,

(o1, p2)) = ((Sp1,Spa))- (17)

This property defines, extending Wigner’s approach to symmetry [19], a symmetry
transformation.

3. Study of the group

The set of 16 superoperators (symmetry operations) has a group structure, it may be consid-
ered as the direct product of the dihedral group D8 and the cyclic group Z2 and has many sub-
groups that we shall briefly discuss. To the best of our knowledge the group is not known by
any particular name, so we shall call it G4 for short. The abstract group in our case is realized
by all transformations that can be performed on a discrete Hamiltonian matrix making use of
complex conjugation, transposition, and inversion of one or two states in the matrix element.
This is a group of symmetry operations on the Hamiltonian matrices, not necessarily the group
of symmetries of a given Hamiltonian.

3.1. Structure of the group

3.1.1. Group of 16 transformations. G¢ is not Abelian. Not all the elements of the group com-
mute with each other, even thought some of them do. We also notice that most of the elements
are their own inverses, except XIII, XIV, XV, and XVI. Their inverse is the application of
themselves three times, (£; D)~ = (£,nD)? and (L1, D) ™! = (L1 D)* We have thus
operations of order 2 or 4 in the group, the order here being the minimal number of times
needed to get the identity by successive application of the same superoperator.

The ‘presentation’ of the abstract group G4, which summarizes its properties and relations
among elements is given, in group theory notation (not to be confused with a quantum scalar
product) by

(a,y,x|a* =x* =y* = e,xax = a” ', ya = ay,xy = yx). (18)

This means that the group can be created by combining three generators, that we call x, y and
a. e is the identity. In other words, every element of the group can be expressed as the com-
bination under the group operation, which in our realization is implemented by applying the
transformations successively, of finitely many elements of the subset {x,y, a}. The shorthand
notation (a, y, x) represents the group Gg, and similarly different subgroups are represented
in this way by specifying only the generators in (...). The generators obey the relations on the
right hand side of the presentation (a, y, x]....). These relations combined produce many others
such as ax = xa’, xa = a’x, ax*> = x*a, and suffice to construct the multiplication table of the
group, see table 3. When e appears in the diagonal the corresponding superoperators are the
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inverse of each other. The ordering of operations to construct the matrix of the table is conven-
tionally that the element in the ith row and jth column is given by S;;) = S;§;.
Different superoperators may play the role of generators, in particular we choose

x— D,
y — Ly,

a — »CI,HD- (19)

The relation between the different notations used so far are given in table 2.

Remark on notation: the roman-number code has played a role to relate the present results
to previous work in [11-13] and it makes clear that the eight symmetry operations discussed
there may be generalized into a larger set of 16 transformations for finite matrices. However,
a group-theory type of code (column 2 in table 2) is almost as compact but it carries consider-
ably more information, so it is our notation of choice from now on.

3.1.2. Subgroups. According to Lagrange’s theorem?, the number of the elements in the sub-
groups are 1 (the identity), 2 (formed by the identity and members that are their own inverses),
4, and 8 [19]. There are no other possibilities.

A physically relevant subgroup is composed by the first eight superoperators,
{e,x,a, a’x,y, xy,a*y,a’xy}, this is the E8 group mentioned before [13]. A compact notation
for this subgroup is (x, y, a*), i.e. it is generated by x, y, and a>. By contrast, G4 is (a, y, x). G1¢
can be generated by other combinations as well, for example {(a*,y,x), (va,x,y), {ya,y, xy),
etc...

This is the list of subgroups of order 8*:

—E8, (x,y,a* | ¥* =y = (a®)* = e,xy = yx,a*x = xa*,a*y = ya®).

—E8, (ax,y,a® | (ax)? = y* = (a*)? = e,xy = yx,d*(ax) = (ax)a*, a*y = ya?)
— Direct product of Z4 and 72, {(a,y | a* = y* = e,ay = ya).

-D8, (a,x | a* =x* =e,xax" ' =a!).

- D8, (a,xy | a4=(xy)2 e, ()alxy) ™' =a").
— D8, {ay.x | (ay)* = x* = e.x(ay)x™" = (ay)~").
- D8, (ay,ax | (ay)* = (ax)* = e, (ax)(ay)(ax)~' = (ay)~!). This subgroup contains the

unitary transformations.

Among the subgroups of order 4, we highlight two cyclic groups Z4. One is formed by
{a,a?,a’,1}, i.e. {a) (or (a®) since repeated action of a® generates the same group), and the
other one by {ya,a?,ya’, 1}, i.e. (ya) or (ya*):

~Z4,{a|a*=e,a” ! =d%).

— 74, (ay | (ay)* = e, (ay)™" = (ay)?).
2

There are 13 other subgroups with four elements: (a2, x), (a ,ax), (a*, xy), (a®, axy), (x,y),
{y,ax), (y,a*x), {y, a*x), {a*y, x), (a®y, ax), (a®y, a*x), (a*y, a’x), and (a?,y), which is the ‘cen-
ter’ (its elements commute with all elements). The full group of 16 may be constructed by
direct product of different subgroups, for example we shall use later the product of (x, y) with
any of the cyclic groups Z4, {(a) or {ay).

3 For any finite group G, the ‘order’ (now number of elements) of every subgroup of G divides the order of G.
4 For other properties of the abstract group G4 see https://groupprops.subwiki.org/wiki/Direct_product_of_D8_
and_Z2
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Table 3. Multiplication table of Gy The element of the column is applied first, then the one in the row, SiowScolumn = Stable- The bold area

represents the table of the E8 group in [12].

e X a? a*x y Xy a’y a*xy ax xa axy axy a @ ya ady
e e a? a’x y Xy a%y a’xy ax xa axy a’xy a a ya a’y
X e a’x a? Xy y a’xy aZy a a ady ya xa ax a*xy  axy
a? a’ a’x e X a’y a’xy y Xy xa ax a’xy axy al a a’y ya
2 2 2 2 2 3 3 3
a*x a’x a X e a’xy a’y Xy y a a ya ay ax xa axy a’xy
y y Xy a’y a’xy e X a? a’x axy a’xy ax xa ya a’y a a’
Xy Xy y a’xy a’y X e a’x a’ ady ya a a a*xy  axy xa ax
a’y a%y a’xy y Xy a’ a’x e a*xy axy xa ax a’y ya a a
a*xy  a’xy a% Xy y a’x a? X e ya aly a a’ axy a*xy  ax xa
ax ax a xa @ axy ya a’xy a’y e a* y a’y x a*x Xy axy
xa xa a ax a a’xy aly axy ya a? e a’y y a*x X atxy  xy
axy axy ya a*xy ady ax a xa @ y a’y e a* Xy a’xy  x a*x
a’xy  axy a’y axy ya xa a ax a a’y y a? e a*xy  xy a’x X
a a ax @ xa ya axy ady a’xy a*x X a*xy Xy a? e a’y y
a @ xa a ax aly a*xy ya axy X a*x xy a’xy e a? y a’y
ya ya axy aly a’xy a ax @ xa a*xy Xy a*x X a’y y a? e
a’y aly a*xy ya axy @ xa a ax Xy a’xy X a*x y a’y e a*
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How large is the group generated by one or two group elements? If we choose a single
operation to create a group, other than the identity, the group will have four elements for oper-
ations that are not their own inverse (elements of order 4, namely a,a’,ay, and a’y). Otherwise,
the group will have only two elements, the operation and the identity.

Two distinct elements can generate groups with two, four, or eight elements:

— Two elements if one of them is e and the other one is its own inverse.

If neither of them is the identity,

— Four elements if they commute, excluding the combination of a member of order 4 and a
member not in the cycles Z4 (for example a and y generate a group of order 8).

— Eight elements for all other pairs, in particular the ones that do not commute, and the
combinations of an element of order 4 and elements that do not belong to the cycles Z4.

3.2. Geometrical interpretation

All 16 operations on the matrix elements may be viewed as geometrical operations on the
matrix elements, including complex conjugation. There are several generating operations we
can choose, but a simple choice for visualization purposes is the following, see also figure 1:

(i) ya: rotate the matrix by 7 /2.
(i) y: take the complex conjugate.
(iii) xy: invert (flip) the matrix with respect to the main diagonal.

They fulfill (xy,y, ya) = Gi¢, which means that with these three operations combined we can
find all operations, which include, in geometrical language, axial flips along perpendicular
horizontal or vertical bisectors, and axial flips along the perpendicular diagonals, as well as
rotations by 37 /2, all of them with or without complex conjugation. The explicit geometrical
interpretation of all symmetry operations is given in table 2, column 5.

Figure 1 shows the structure of 2 x 2 matrices that posses each of the 16 symmetries.
Different symbols indicate different complex numbers. The same symbol without a point and
with a point inside represent a complex number and its complex conjugate. Finally, filled
symbols represent real numbers.

The reader may notice that the symmetries XIII and XIV are special in that they imply the
same matrix structure, as it also happens to symmetries XV and XVI. Here the distinction
between symmetry operation and symmetry is quite crucial: whereas the symmetry operations
XIII and XTIV (or XV and XVI) are distinct, the corresponding symmetries imply each other
and hold under the same conditions for the matrix elements. This special relation is explained
in detail in the following section.

4. Implications of one or more symmetries of the Hamiltonian

4.1. Equivalence of symmetry operations and associated symmetries

The ‘symmetries of H’ necessarily form a subgroup Gsy with group structure, as the consecu-
tive application of two superoperators that leave H invariant will also leave H invariant. This
section explores the interplay between G and Ggy, specifically the consequences of some
existing symmetry. To that end we introduce two concepts: equivalent operations and associ-
ated symmetries.

10
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We will say that, conditioned to an existing symmetry or set of symmetries
{SiH = H,S;H = H, ...}, two symmetry operations represented by S; and S; are equivalent,
Sk ~ & (more explicitly, Sy ~ S|{S;H = H,S;H = H, ...}) if SsH = S|H.

Sy ~ &) is indeed an equivalence relation in mathematical sense since it is reflexive (a
given superoperator is equivalent to itself); symmetric (if S; ~ &, then S; ~ S); and transi-
tive (if Sy ~ Sy, and §; ~ S,,,, then S, ~ S,).

Equivalence relations provide partitions of the groups into equivalence classes. In the Gi¢
group, each class is given by the superoperators that are equivalent to each other. One of these
classes is the group Ggy: all symmetry operations that leave the Hamiltonian invariant are
equivalent among themselves and to the identity £;.

Equivalent pairs are easily found using the multiplication table of the group. If S;H = H,
then S; = §;S; (read from the table) and Sy are equivalent.

An example of equivalence that may be familiar to some is that, conditioned on xyH = H
(which is satisfied in particular by all local potentials if we consider scattering Hamiltonians
in coordinate representation; more generally this symmetry implies that the matrix is com-
plex-symmetric or, equivalently, self-transpose), then a*>yH = a’xH . In the alternative opera-
tor language this means that, conditioned on 6H'6 = H, we have that [IOHT1f = IIH'II. In
words, with the proper conditioning (f-pseudo-Hermiticity, i.e. the symmetry of complex-
symmetric matrices), the symmetry transformations related to PT-symmetry and to parity-
pseudo-Hermiticity give the same result when acting on the Hamiltonian. If it happens that
H is indeed PT-symmetrical (i.e. II0HIIH = H), then it will also be parity-pseudo-Hermitian
(IIH'TI = H) and viceversa [14, 20]. These symmetry pairs were explored systematically in
[11] within the E8 group (x,y,a?) studied there, conditioned on a given (primary) symmetry.
The novelty in the present work is twofold: we extend the analysis to G} and also define the
equivalence relation more precisely, as a relation among symmetry operations acting on H: as
here defined, the equivalent pair is not necessarily a pair of Hamiltonian symmetries, but a pair
of operations that, when acting on H, give the same result.

Two symmetry operations represented by S; and S; are associated symmetry operations
if §; € Gey <= & € Gsy. In our group the two elements of order 4 in a given subgroup
Z4 are associated symmetries: a and @’ are associated, as well as ay and a’y. The bidirection-
ality is important. For example @ € Gsy = a® € Gsy but the reverse does not hold, so a and
a® are not associated symmetries. Two associated symmetries imply the same structure on
the Hamiltonian, i.e. the relations that the matrix elements satisfy are equal in both cases, as
illustrated in figure 1.

Association is a stronger relation than equivalence since it implies equivalence, but equiva-
lence does not imply association.

4.1.1. Effects of one non-trivial symmetry of the Hamiltonian. For the following discussion
some additional terminology is needed: a ‘symmetry or order n’ represents the invariance
of the Hamiltonian with respect to a superoperator of order n (where n is the minimal power
n > 1 of the superoperator that gives the identity).

Symmetry of order 2. Suppose that H is invariant under x, xH = H. Since x> = e, the group
composed by x and e is in Ggy (It might even be the full Ggy if there are no other symmetries).
Acting with y on x we have that

yxH = y(xH) = yH, (20)

so yx ~ y conditioned on xH = H. In fact there is nothing special about y here. We can pre-
multiply x by the 16 members of the group, to get 16 superoperators Sx = S. If the index
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Figure 1. Representation of 2 x 2 matrices possesing the 16 symmetries compatible
with Gie. The different symbols represent different complex numbers. The dotted
symbols are complex conjugate of undotted ones. Filled symbols represent real
numbers. The roman number and group-theoretical codes are displayed below each
matrix. All symmetry operations can be constructed from three generators: among
different choices we may use xy (flip along main diagonal), y (complex conjugation),
and ya (rotation by 7/2).

j runs from 1 to 16, the index k must jump among the 16 members of the group according
to the multiplication table (j # k except for j = 1 assigned to the identity). Since x is a sym-
metry of H, S§tH = S;H, so that §; ~ S; conditioned on xH = H. It might seem that we have
16 of these equivalence pairs. However, multiplying Sjx = Si by x from the right we find that
S; = Six. This means that there are in fact only eight equivalence pairs; in other words, the
relations (pairs of equivalent operations) are always repeated once.

The only property of x we have used, apart from representing a symmetry, is x*> = 1, so
in general any symmetry of H of order 2, implies eight pairs of equivalent superoperators.
Conditioned on xH = H, in particular, we find the equivalences

12
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x~ l,ax ~a,a’x ~a*,a’x ~ a’,

21
ayx ~ ay,@>yx ~ a’y, yx* ~ xy,a’yx ~ a’y.

Symmetry of order 4. Suppose now that H is invariant under a (aH = H). By applying a
repeatedly we can create the subgroup of symmetries {(a) in Ggy. Premultiplying the members
of the group (a) by y, we get the set of superoperators ya, ya®, ya’,y. They are all equivalent,

yH = y(aH) = yaH = ayH, (22)
yH = y(azH) = yazH = azyH, (23)
yH = y(a3H) = ya3H = a3yH. (24)

The process may be repeated premultiplying the cyclic 4-group by 1, x and xy instead of y.
Let us recall that the full group of 16 elements may be constructed by multiplying the cyclic
group (a) by (x,y). Thus, this premultiplication of (a) by the elements of (x,y) = {1,x,y,xy}
gives all 16 elements of the group Gy without repetitions. Each member of (x, y) produces an
equivalent class of 4 elements, namely,

l,a,a*,a°, (25)
X, xa,xa’, xa’, (26)
y,ya,ya*,ya*, 27)
Xy, Xya, xya’, xya’. (28)

The first set of four elements is formed by symmetries of H while the others need not be
symmetries. Also, multiplication in reverse order, i.e. (a) X (x,y) produces exactly the same
equivalence classes because of the property xa = a’x.

If @ is the assumed symmetry of H the same structure follows, since a® generates the same
group of symmetries than a, namely (a) = {(a*).

When the other elements of order 4, ay and a’y, are symmetries of H, they will also imply
four sets of equivalent superoperators,

1,ay,a*, ya*, (29)
2 .3

X, xay,xa”, xya’, (30)

. ya,yat,a, 31)
2 3

Xy, Xa, xya-, xa’, (32)

where, as before, the first set corresponds to symmetries of H. The others may or may not be
symmetries of H.

4.12. Consequences of two symmetries. Now suppose that the distinct superoperators S;

and S; represent two symmetries of H. The consequences may be deduced by combining the
results from the previous subsection. Let us first recall that the two symmetries may generate
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groups of two, four, and eight elements corresponding to symmetries as discussed in the previ-
ous section.

— The case corresponding to groups of two elements is trivial as it requires that one of the
symmetries is the identity, and the other element should be of order 2. Therefore the
discussion of the consequences has already been done in the previous subsection.

In the following we assume that neither S; nor §; is the identity.

— A generated group of four elements (S;, Sj) corresponds to commuting operations except
the combination of an element of order 4 and an element not in the cyclic groups Z4. All
elements of the generated group (S;, S;) will be symmetries of H. From there, the group
table guarantees that it is always possible to find three other elements S, S;, S,, such that
the products S,(S;, S;), where n = k, I, m, define three classes of equivalent operations.
They are equivalent, respectively, to Sk, S;, and S,,..

Example: S; = x; §; = y. Then,

(S, S) = Lx,y,xy (33)
is a group of symmetries of H. Choosing Sy = a, S; = a?, S,, = a® we find the three sets
of equivalent operations

a, ax, ay, axy

a?,a*x, a*y, a’xy (34)

@, a’x, a3y, a3xy.

— Finally, when (S;, S;) has eight elements, for example (a, y), or (x, a), the eight elements
are symmetries of H, and all other eight operations are equivalent to each other. This
is easy to prove. Multiplication of any element S not in (S;, S;) by the eight elements
in (S;, ;) must produce eight distinct elements not in (S;, S;), because in the group
table each element appears only once in any column (or row). These eight elements are
all equivalent to .

4.1.3. Three or more symmetries. With three or more symmetries one may proceed similarly
applying and combining the results of the previous two subsections. It is advisable to construct
first the group generated by the three superoperators of the symmetries. Several combinations
generate directly the whole group of 16 elements, for example x, y, and any element of order
4. Other sets of three elements generate subgroups of eight (for example (x,y, a*)), or four
elements (for example any three elements in a cyclic Z4 subgroup).

5. Implications of the symmetries on the eigenvalues.

If the Hamiltonian obeys a specific symmetry the eigenvectors and eigenvalues will ful-
fill certain conditions. For example, Hermitian Hamiltonians imply real eigenvalues, and
Hamiltonians that commute with IT will have even or odd eigenvectors. A full and systematic
analysis of the effect of all symmetries on the eigenvectors is out of the scope of the present
work but we shall discuss here the effect of the symmetries on the energy spectra because of
its physical relevance.

Let us first recall that the symmetries for which eigenvalues come in conjugate pairs Ej, E;
are symmetries II, IV, V, and VII, equivalently x, a’x, y, and azy in group-theory notation. The
reason for having conjugate pairs has been well discussed, see [13, 15-17], so we shall not
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insist on it further, except for recalling that the complex-pair condition implies the possibility
to have real eigenvalues. While eigenvalues of Hermitian Hamiltonians (xH = H) are always
real, the reality of eigenvalues for symmetries a’x, y, and a?y is not guaranteed, and requires
specific parameter values, as discussed at length for PT-symmetry (a*>yH = H) since the semi-
nal work [7].

We shall next pay attention to implications on the eigenvalues of the symmetries of order 4
in the two cycles Z4. For the other symmetries we have found no implications on the possible
Hamiltonian eigenvalues, at least when they are the only symmetries.

5.1 a,a®

Let as assume that aH = H, or, explicitly, that H = H'II. Now we apply these operators on a
right eigenvector of H,

H|E) = E|E) = H'|IIE). (35)
Acting with (E| from the left in the last equality,
E(E|E) = E*(E|II|E). (36)

The matrix elements on both sides are real. Now we make use of the fact that a*H = H, or,
translated into operators, H = IIHII, i.e. H commutes with II. For right eigenvectors with
even or odd parity we find that

If II|E) = |E) = Eisreal, (37

If II|E) = —|E) = Eisimaginary. (38)

Of course the same splitting occurs when a’H = H since a and a® are associated symmetries.

5.1.1 aya’. We now assume that ayH = H, i.e. 9H'II0 = H . Note that, as before, a>’H = H
holds as well automatically so that H commutes with II. Making use of the ‘diagonal’ bior-

thogonal expression H' = 3" |E)E* (E| (we omit subindices) one finds, similarly to the previ-
ous calculation

E*(E|0|E) = E*(E[UI|0E), (39)
which is now solved (assuming (E||E) # 0) according to the two possibilities

If TI|E) = |E) = Eisnotrestricted, (40)

If II|E) = —|E) = E =0. 41)

The same result holds for the associated symmetry a*yH = H.

6. Discussion and conclusions

In this work we have explored the symmetry operations on, and symmetries possessed by,
discrete (generally) non-Hermitian Hamiltonians. We have first seen that symmetry opera-
tions for discrete Hamiltonians are richer that for scattering Hamiltonians because they are
not restricted by the properties of the kinetic energy. A non-Abelian group of 16 symmetry
operations arises naturally represented by linear and antilinear superoperators that have
geometrical interpretations in terms of the symmetry operations of the square and complex
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conjugation. A symmetry corresponds to the invariance of the Hamiltonian with respect to the
transformation implied by one of these superoperators. We have studied the properties and
structure of this group and also the implications of one or more existing symmetries in the rest
of operations of the group, introducing the concepts of equivalent operations and of associated
symmetries. The implications of some of these symmetries on the energy spectrum have also
been discussed. While some of these symmetries have been extensibly studied, in particular
PT-symmetry (a’yH = H) [20], complex symmetric matrices (xyH = H) [21], and of course
Hermitian matrices (xH = H), the broader frame introduced in this work provides a basis to
relate, understand and exploit multiple symmetries and their interconnections. Combining
discrete and continuous symmetry operations is also possible, as in [22, 23].

Some open questions and ideas for future work are: (i) to set the relation with optical
systems or quantum optical systems and develop applications such as finding selection rules
or device engineering. In particular physical realizations of non-Hermitian symmetries dif-
ferent from PT7, e.g. with respect to a2, Xy, a2xy, are doable in a quantum optical setting using
two-level atoms interacting with a laser beam [5]. Our emphasis has been on Hamiltonians
but general complex matrices of physical interest, such as a characteristic matrix of a strati-
fied medium [24], are of course amenable to be transformed by operations in G4 and may
posses some of the implied symmetries, e.g. with respect to a or a*; (ii) To complete a sys-
tematic study of the effect of the 16 symmetries on right/left eigenvectors; (iii) To work out a
‘representation theory’ for non-Hermitian symmetries; iv) To extend the symmetries further.
For example the symmetries described have their ‘negative’ versions in the form SH = —H,
or even more generally SH = e'?H, with ¢ being a real phase. In this regard it would be
very interesting to relate the present work to the Bernard-LeClair symmetry classes of non-
Hermitian random matrices and their variants [25, 26]. We just note at this point that some of
the symmetries implied by G are not of the forms considered in [25].
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