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Abstract
Recently found spin-flip non-invariant (SFNI) conserved quantities play 
important roles in discussing nonequilibrium physics of the XXZ model. The 
representative examples are the generalized Gibbs ensemble (GGE) and the 
ballistic transport of the spin current. In spite of big progress in understanding 
nonequilibrium physics of integrable systems, the general framework to 
determine a minimal complete set of conserved quantities which describes 
the long-time steady state has not yet been found. This paper shows that 
the GGE of the gapless XXZ model consists of functionally independent 
conserved quantities rather than linearly independent. At the same time, the 
physical meaning of SFNI conserved quantities is provided. We also discuss 
that there exist ballistic channels of the spin current supported by non-
quasilocal conserved quantities. The saturation of the lower bound for the 
Drude weight by quasilocal conserved quantities reads the linear dependence 
of non-quasilocal conserved quantities on quasilocal ones. We show that their 
(generalized) linearly dependence relation is consistent with the statement that 
the GGE consists of functionally independent conserved quantities without 
containing all linearly independent conserved quantities.

Keywords: generalized Gibbs ensemble, XXZ model, spin-flip non-invariant 
charges, complex-spin representations

1.  Introduction

Recently, it has been found for the XXZ model that the spin-flip non-invariant (SFNI) con-
served quantities exist [28], although the model itself is spin-flip symmetric. Here we use 
the word ‘spin-flip’ as the operation to exchange the roles of an up spin and a down spin. 
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The conserved quantities of integrable systems are obtained from the parameter expansion of 
the transfer matrix that consists of the ordered product of the Lax operators. The Lax opera-
tor is defined on the tensor product of the auxiliary space and the local quantum space. The 
quantum space is the physical space to be chosen as the spin-1

2 representation for the XXZ 
model, whereas the auxiliary space does not appear in physical quantities and can be arbi-
trarily chosen. The spin-flip non-invariance of conserved quantities occurs when we choose 
the complex-spin representations for the auxiliary space of the Lax operators. Some of SFNI 
conserved quantities possess quasilocality [27] and, consequently, extensivity [13], which is 
the expected property as thermodynamic variables. Indeed, the SFNI conserved quantities 
play quite important roles in discussing nonequilibrium physics, as we will see below.

The existence of macroscopic number of conserved quantities brings interesting nonequi-
librium phenomena. The representative example is non-thermalization of integrable systems. 
Although ‘the eigenstate thermalization hypothesis’ (ETH) [30] succeeded to explain the 
mechanism why isolated systems thermalize, ETH is no more true for integrable systems. 
Instead, ‘the generalized Gibbs ensemble’ (GGE) [31] has been proposed to describe the 
steady state which an integrable system approaches in the long-time limit. The GGE is the 
generalization of the Gibbs ensemble that consists of a macroscopic number of conserved 
quantities Qr:

ρGGE = Z−1e−
∑

r βrQr , Z = tr e−
∑

r βrQr .� (1)

This means that the existence of as many conserved quantities as the order of the system-size 
strongly restricts relaxation processes of the system. The question which has been discussed is, 
among infinitely many conserved quantities existing for integrable systems, which conserved 
quantities form a minimal complete set to constitute the GGE. The description of the steady 
state of the XXZ model by the GGE is well-studied through ‘the string-charge duality’ [15]. As 
a Bethe-ansatz solvable model, the steady state is characterized by the Bethe string densities in 
the thermodynamic limit [6]. The string-charge duality provides the correspondence between 
the expectation values of conserved quantities on the initial state and the Bethe string densities 
for the steady state. Therefore, a set of conserved quantitites which completely determines the 
Bethe string densities of the steady state is considered to constitute the GGE. There are several 
trials to this direction [14, 15, 21, 35]. The complete GGE has been heuristically constructed 
by using the conserved quantities associated with (half-)integer spins and one complex spin 
[21]. In this paper, we explain why adding one complex spin conserved quantity completes the 
GGE from the viewpoint of independence of conserved quantities.

Another interesting nonequilibrium phenomena brought by many conserved quantities of 
integrable systems is non-vanishing currents. Under the presence of many conserved quanti
ties, ballistic transport of currents and hence the finite Drude weight has been predicted  
[32, 38]. In the context of the linear response theory, the Drude weight is evaluated by the 
current-current correlation whose lower bound is given by the overlap with an ‘orthogonal set’ 
of conserved quantities [23, 28, 33, 38]:

D(β) � lim
N→∞

β

2N

∑
k

|〈J, Qk〉β |2

||Qk||2β
, 〈Qj, Qk〉β = δj,k||Qk||2β .� (2)

Since each conserved quantity, if it has finite overlap with the current, supports a ballistic 
channel, ‘a complete set’ of conserved quantities covers all ballistic channels and saturates the 
above lower bound. As a spin-flip anti-symmetric (SFAS) operator, the spin current operator 
has overlap only with the spin-flip non-symmetric conserved quantities [28]. The saturation 
of the lower bound for the Drude weight by quasilocal SFNI conserved quantities has been 
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suggested in comparison with the result obtained from the thermodynamic Bethe ansatz [37], 
although, in our analysis, non-quasilocal conserved quantities also provide ballistic channels 
of the spin current in the thermodynamic limit at high temperature. Actually, the improve-
ment of the lower bound occurs only when the conserved quantities are linearly independent, 
which is checked by decomposing an operator into conserved quantities [33]. This implies that 
non-quasilocal SFNI conserved quantities are the (generalized) linear combination of quasilo-
cal ones in the thermodynamic limit. We show that a subsequently obtained relation from 
the generalized linear combination is consistent with the statement that conserved quantities 
constituting the GGE of the gapless XXZ are functionally independent rather than linearly 
independent.

The paper is organized as follows. We first review the construction of conserved quantities 
of the XXZ model including SFNI ones. The complex spin representations of slq(2) are also 
explained. The locality and extensivity of SFNI conserved quantities is discussed from the 
large-volume analysis of the operator inner product and norm. After then, two important appli-
cations are discussed. The first one is the GGE which we show consists of a set of functionally 
independent conserved quantities. The physical meaning of SFNI conserved quantities is also 
provided. In the next section, we discuss the non-vanishing spin current. We show that the 
non-quasilocal conserved quantities provide the ballistic channels. The saturation of the lower 
bound by the quasilocal conserved quantities indicates that the non-quasilocal conserved 
quantities are linearly dependent on the quasilocal ones in the thermodynamic limit, which we 
show is consistent with the functional dependence of conserved quantities in the GGE.

2.  Conserved quantities without spin-flip invariance

The XXZ model is known to be integrable, which has as many conserved quantities as the 
order of the system size N. Many conserved quantities arise from commuting transfer matri-
ces. In this section, we review how conserved quantities of the XXZ model are constructed. 
Then we discuss how the SFNI conserved quantities are obtained from the spin-flip symmetric 
XXZ model. Quasilocality and extensivity of the conserved quantities is also discussed.

2.1. The model

Let us consider the XXZ model defined on the Hilbert space given by the tensor product 
H =

∏N
n=1 ⊗hn. The Hamiltonian is given by

H =

N∑
n=1

(Sx
nS

x
n+1 + Sy

nS
y
n+1 + cos γSz

nS
z
n+1)� (3)

where γ  determines the anisotropy of the model. The model shows different physics depend-
ing on γ  by showing the gapped energy spectrum for pure imaginary γ , whereas the gapless 
energy spectrum for real γ . The spin operators Sαn  (α ∈ {x, y, z}) are ultralocal operators in the 
sense that they nontrivially act only on the nth quantum space hn:

Sαn = 1 ⊗ · · · ⊗ 1 ⊗ Sα
n
⊗ 1 ⊗ · · · ⊗ 1.� (4)

We impose the periodic boundary condition so that n ≡ n + N . The defining ultralocal algebra 
for the spin operators Sα is the sl(2) commutation relations:

[Sαm, Sβn ] = iεαβγSγn δmn� (5)
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where εαβγ is a completely antisymmetric tensor ε123 = 1. The non-trivial finite-dimensional 
representations for Sα are realized in C2s+1 labeled by positive (half-)integers s = 1

2 , 1, . . .. 
For the XXZ model, we choose the smallest nontrivial representations realized by s = 1

2:

S1 =

(
0 1

2
1
2 0

)
, S2 =

(
0 − i

2
i
2 0

)
, S3 =

( 1
2 0
0 − 1

2

)
.� (6)

Although written in terms of the sl(2) spin operators, the model is more related to the 
q(= eiγ)-deformed sl(2) algebra, denoted by slq(2), due to the anisotropy. The q-deformed 
spin operators S±, qSz

 define the slq(2) algebra by the relations

qSz
S± = q±1S±qSz

, [S+, S−] =
(qSz

)2 − (qSz
)−2

q − q−1 ,� (7)

which are reduced to the normal sl(2) relations at the q → 1 limit by identifying 
Sz = S3, S± = S1 ± iS2. The finite-dimensional representations are realized in C2s+1 as in the 
sl(2) case for generic q. The special care is required for q at the root of unity, as is explained 
later.

The Lax operator is defined in the tensor product of the auxiliary space V  and the local 
quantum space hn. Let V  be C2. Then the Lax operator acting in V ⊗ hn is written as the 
2 × 2-matrix in the auxiliary space:

La,n(λ) =

(
sinh(λ+ iγSz

n) i sin γ · S−
n

i sin γ · S+
n sinh(λ− iγSz

n)

)

a
� (8)

with the entries being operators in the quantum space hn. The Lax operator satisfies the RLL 
relation in V1 ⊗ V2 ⊗ hn:

Ra1,a2(λ− µ)La1,n(λ)La2,n(µ) = La2,n(µ)La1,n(λ)Ra1,a2(λ− µ),� (9)

where Ra1,a2 is the R-matrix which nontrivially acts on V1 ⊗ V2 as

Ra1,a2(λ) = La1,a2

(
λ+

iγ
2

)
.� (10)

We call the ordered product of the Lax operators the monodromy matrix:

Ta(λ) = La,N(λ) · · · La,1(λ).� (11)

The monodromy matrix satisfies the RTT relation in the tensor product V ⊗
∏N

n=1 ⊗hn:

Ra1,a2(λ− µ)Ta1(λ)Ta2(µ) = Ta2(µ)Ta1(λ)Ra1,a2(λ− µ)� (12)

as a result of the RLL relation. The transfer matrix is defined by the trace of the monodromy 
matrix over the auxiliary space:

T(λ) = traTa(λ)� (13)

that is commuting for different parameters λ due to the RTT relation:

[T(λ), T(µ)] = 0.� (14)

The transfer matrix allows the θ-expansion in the N → ∞ limit:

T(iθ) = iN
∞∑

r=0

(θ − θ0)
r

r!
Qr(θ0).� (15)
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Since the Hamiltonian (3), which is explicitly written as the logarithmic derivative of the 
transfer matrix:

H ∝ d
dλ

log T(λ)
∣∣∣
λ= iγ

2� (16)
belongs to this family, we call commuting operators Qr(λ0) conserved quantities. Note that 
the total spin operator Sz does not belong to this family since it is a SFAS operator.

The auxiliary space is straightforwardly generalized to V = C2s+1 for (half-)integers s. Let 
|r〉 (r = 0, . . . , 2s) be a natural basis in C2s+1:

|r〉 = (0 · · · 0 1
r

0 · · · 0)T.� (17)

The Lax operators for V = C2s+1 is given by the same expression for the V = C2 case (8) but 
by inserting the (half-)integer spin-s representations into each spin operator S±

a , qSz
a:

S+
a =

2s−1∑
r=0

sin(γ(r + 1))
sin γ

|r〉〈r + 1|, S−
a =

2s−1∑
r=0

sin(γ(2s − r))
sin γ

|r + 1〉〈r|, qSz
a =

2s∑
r=0

eiγ(s−r)|r〉〈r|.

� (18)
Note that here we consider only generic q. (The case for q at the root of unity is discussed in 
the next subsection.) The (half-)integer spin-s representations are the highest weight repre-
sentations S+|0〉 = 0 and finite dimensional representations S−|2s〉 = 0. Under the choice of 
(half-)integer s, the action of the transpose exchanges S±-operators :

(S±)T = S∓.� (19)

Let V2 be V2 = C2s+1 by keeping V1 as V1 = C2. Remarkably, the product of the Lax operators 
still satisfy the RLL relation in V1 ⊗ V2 ⊗ hn [19]:

R( 1
2 ,s)

a1,a2 (λ− µ) L( 1
2 )

a1,n (λ) L(s)
a2,n(µ) = L(s)

a2,n(µ)L
( 1

2 )
a1,n (λ)R( 1

2 ,s)
a1,a2 (λ− µ)� (20)

leading to the commuting transfer matrices:

[T( 1
2 )(λ), T(s)(µ)] = 0, T(s)(µ) = tra

(
L(s)

a,N(µ) · · · L(s)
a,1(µ)

)
.� (21)

The above commutativity of the transfer matrices provides another family of conserved 
quantities. Especially at large N, the transfer matrices admit the θ-expansion:

T(s)(iθ) = iN
∞∑

r=0

(θ − θ0)
r

r!
Q(s)

r (θ0),� (22)

where the conserved quantities are obtained as the coefficients Q(s)
r (θ0).

2.2.  Complex spin representations and associated conserved quantitites

The slq(2) spin operators admit arbitrary spin-s ∈ C representations besides the (half-)integer 
spin representations. Let q be generic. The complex spin-s representations are still the highest 
weight representations S+|0〉 = 0 but infinite dimensional:

S+
a =

∞∑
r=0

sin(γ(r + 1))
sin γ

|r〉〈r + 1|, S−
a =

∞∑
r=0

sin(γ(2s − r))
sin γ

|r + 1〉〈r|, qSz
a =

∞∑
r=0

eiγ(s−r)|r〉〈r|.

� (23)
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The truncation to the finite-dimensional irreducible representations occurs for the (half-)inte-
gers s case which we discussed in the previous subsection. When q is at the root of unity 
q = eiπ m

l  (γ = π m
l ) where m and l are coprime, we are able to take l × l-dimensional irreduc-

ible representations

S+
a =

l−2∑
r=0

sin(γ(r + 1))
sin γ

|r〉〈r + 1|, S−
a =

l−2∑
r=0

sin(γ(2s − r))
sin γ

|r + 1〉〈r|, qSz
a =

l−1∑
r=0

eiγ(s−r)|r〉〈r|,

� (24)

due to the existence of extra centers (S±)l and (qSz
)l  [11]. The action of the transpose does 

not exchange the spin operators (S±)T �= S∓ under these representations but the highest 
weight vector and the lowest weight vector exchanges their roles. There also exist the other 
l × l-dimensional irreducible representations which are cyclic or semi-cyclic. For (half-)
integers s � l−1

2 , there exist the (2s + 1)× (2s + 1)-dimensional representations which are 
similar to the generic q case given in (18). Note that the finite-dimensional representations 
associated with arbitrary complex spin-s never exist in the gapped regime nor the isotropic 
point.

For the Lax operator with the complex-spin auxiliary space, it is reasonable to consider s 
as a parameter [27]:

La,n(λ, s) =
(
sinh(λ+ iγSz

a(s)) sin γ · S−
a (s)

sin γ · S+
a (s) sinh(λ− iγSz

a(s))

)

n
� (25)

which coincides with the Lax operator of the (half-)integer s just by replacing the spin opera-
tors with those of the complex-spin representations. Then the transfer matrix:

T(λ, s) = tra(La,N(λ, s) · · · La,1(λ, s))� (26)

admits the s-expansion as well as the θ(= λ
i )-expansion at large N:

T(iθ, s) = iN
∞∑

r,r′=0

(θ − θ0)
r

r!
(s − s0)

r′

r′!
Qr,r′(θ0, s0)� (27)

producing a two-parameter family of conserved quantities Qr,r′(θ0, s0) [25, 27].
Since the Hamiltonian (3) is given by the logarithmic derivative of the transfer matrix, we 

are motivated to introduce another series of conserved quantities Hr,r′ obtained by the loga-
rithmic derivatives of the transfer matrix:

Hr,r′(λ0, s0) = ∂r
λ∂

r′
s log T(λ, s)

∣∣∣
λ=λ0,s=s0

.� (28)

These are more natural definition of the conserved quantities since they are extensive, i.e. their 
expectation values are proportional to the system size for large N, as we will see in the second 
next subsection. The series of conserved quantities Hr,r′ are functionally dependent on the 
previously introduced conserved quantities Qr,r′. We give a few examples of how to connect 
Hr,r′ with Qr,r′ in the thermodynamic limit:
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iNQ0,0(θ0, s0) = eH0,0(iθ0,s0)

iN−1Q1,0(θ0, s0) = H1,0(iθ0, s0)eH0,0(iθ0,s0)

iN−2Q2,0(θ0, s0) = (H2,0(iθ0, s0) + H2
1,0(iθ0, s0))eH0,0(iθ0,s0)

iN−3Q3,0(θ0, s0) = (H3,0(iθ0, s0) + 3H2,0(iθ0, s0)H1,0(iθ0, s0) + H3
1,0(iθ0, s0))eH0,0(iθ0,s0)

iNQ0,1(θ0, s0) = H0,1(iθ0, s0)eH0,0(iθ0,s0)

iNQ0,2(θ0, s0) = (H0,2(iθ0, s0) + H2
0,1(iθ0, s0))eH0,0(iθ0,s0)

iNQ0,3(θ0, s0) = (H0,3(iθ0, s0) + 3H0,2(iθ0, s0)H0,1(iθ0, s0) + H3
0,1(iθ0, s0))eH0,0(iθ0,s0).

� (29)

These relations are obtained by comparing the differential coefficients ∂r
θ∂

r′
s T(θ, s) at θ = θ0, 

s  =  s0 expressed in terms of Hr,r′ with those of Qr,r′.

2.3.  Spin-flip invariance

Now, we restrict our attention to the case γ = π
l . The Hamiltonian (3) possesses the spin-flip 

symmetry. Nevertheless, it is known that there exist conserved quantities without spin-flip 
invariance [29]. We write the Lax operator with the auxiliary space of the spin-s representation 
as the tensor product of the auxiliary part and the physical part:

L(iθ, s) = i
∑

α∈{0,z,+,−}

σα ⊗ Lα(θ, s),
� (30)

L0(θ, s) = sin θ cos(γSz(s)), Lz(θ, s) = cos θ sin(γSz(s)), L±(θ, s) = sin γ · S∓(s).� (31)

Here we dropped the indices a, n. The Pauli matrices σα are twice the sl(2) spin operators of 
spin-1

2 representations. It is easy to check that the transfer matrix

T(iθ, s) = iN
∑

α∈{0,z,+,−}

tr(LαN (θ, s) · · · Lα1(θ, s))σα1 ⊗ · · · ⊗ σαN

� (32)

is spin-flip invariant (SFI) only for (half-)integers s � l−1
2 . The operator part of the transfer 

matrix consists of the Pauli matrices. Since the spin-flip operator US transposes the Pauli 
matrices, it acts on the transfer matrix as

UST(iθ, s)U−1
S = iN

∑
α∈{0,z,+,−}

tr(LαN (θ, s) · · · Lα1(θ, s))σᾱ1 ⊗ · · · ⊗ σᾱN

� (33)

= iN
∑

α∈{0,z,+,−}

tr(LᾱN (θ, s) · · · Lᾱ1(θ, s))σα1 ⊗ · · · ⊗ σαN ,
� (34)

where we used the notation ᾱ defined by

0̄ = 0, z̄ = z, +̄ = −, −̄ = +.� (35)

From (31) and (34), we obtain that UST(iθ, s)U−1
S = T(iθ, s) holds only if the transpose 

exchanges the S±-operators. Therefore, the transfer matrix is SFI only for (half-)integers 
s � l−1

2 . The symmetry of the transfer matrix directly determines the symmetry of conserved 
quantities since they are obtained from the parameter expansion of the transfer matrix. Thus, 
the conserved quantities Qr,r′ , Hr,r′ associated with complex spin s have no spin-flip invariance.
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2.4.  Locality and extensivity of conserved quantities

Extensivity is a natural property we expect for conserved quantities as thermodynamic 
variables.

Extensivity is obtained as a consequence of ‘locality’ of an operator [13]. Here we say an 
operator is local if it is written as a translationally invariant sum of local operators q(r) with 
support size r:

Q =

N−1∑
x=0

Πx(q(r) ⊗ 1⊗N−r).� (36)

Πx is the shift operator Πx(σ
α1 ⊗ · · · ⊗ σαN ) = σα1+x ⊗ · · · ⊗ σαN+x under the identification 

N + x ≡ x due to the periodic boundary condition. The question is how much the notion of 
locality is extended to obtain extensivity.

The weakest condition to obtain extensivity is called ‘pseudolocality’ [13]. Pseudolocality 
is defined through the Hilbert–Schmidt inner product. Within the space AN  of all translation-
ally invariant traceless operators consisting of N sites, let the traceless deformation of the 
Hilbert–Schmidt inner product be defined by

〈A, B〉 = tr(A†B)
tr(1⊗N)

− tr A†

tr(1⊗N)

tr B
tr(1⊗N)

, A, B ∈ AN .� (37)

Note that 〈B, A〉 = 〈A, B〉 �= 〈A, B〉 for non-Hermitian A and B. The deformed norm is defined 
through the inner product by ||Q|| =

√
〈Q, Q〉. The deformed Hilbert–Schmidt inner product 

satisfy the Cauchy–Schwartz inequality [13]:

|〈A, B〉| � ||A|| ||B||.� (38)

We say an operator Q ∈ AN  is pseudolocal when the square norm ||Q||2 has volume-scaling in 
the thermodynamic limit N → ∞:

0 < lim
N→∞

1
N
||Q||2 = lim

N→∞

1
N
〈Q, Q〉 < ∞� (39)

and finite overlap with at least one local operator b:

lim
N→∞

〈b, Q〉 �= 0.� (40)

Slightly stronger locality than pseudolocality is called ‘quasilocality’ [13]. We call Q ∈ AN  
a quasilocal operator if there exists, for an operator Q written in the form of translationally 
invariant sums of local operators and a non-local correction:

Q =

N−1∑
x=0

N∑
r=2

Πx(q(r) ⊗ 1⊗N−r),� (41)

a positive ξ such that

||q(r)|| � Ce−ξr� (42)

with a constant C. Actually, many conserved quantities are known to have quasilocality [12, 
27].

Our interest is whether quasilocality and extensivity holds for conserved quantities 
Qr,r′(θ, s) by changing the parameters, especially their derivatives (r, r′). Among several ways 
to derive the N-dependence of the norms ||Qr,r′(θ, s)|| [25, 27], we follow the method used 
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in [27], which allows us to check the quasilocality as well. The case of (r, r′) = (0, 1) in our 
notation is discussed in the original paper [27]. Since the calculation for an arbitrary set (r, r′) 
is cumbersome, we show the (r, r′) = (0, 2) and (1, 1) cases as representative examples. The 
arbitrary (r, r′) case is also briefly mentioned.

Due to the parameter expansion of the transfer matrix (27), we have

Q0,2(θ0, s0) = ∂2
s T(θ, s)

∣∣∣
θ=θ0,s=s0

� (43)

=
∑

α∈{0,z,+,−}

tr
{
∂2

s (L
αN (θ, s) · · · Lα1(θ, s))

} ∣∣∣
θ=θ0,s=s0

σα1 ⊗ · · · ⊗ σαN .� (44)

By definition, a conserved quantity is written as a translationally invariant summation form:

Q0,2(θ0, s0) =(sin θ)N(γ cot θ)2
∑

1�x<y�N

1⊗x−1 ⊗ σz ⊗ 1⊗y−x−1 ⊗ σz ⊗ 1⊗N−y

+ (sin θ)N
N−1∑
x=0

N∑
r=2

Πx

(
Q(r)

0,2(θ, s)⊗ 1⊗N−r
)
+ (sin θ)NΠx

(
P(N)

0,2 (θ, s)
)

+ const.

� (45)

The first two terms and the constant are obtained from the expectation value on the highest 
weight vector |0〉 in the auxiliary space, while the third term is obtained as the expectation 

value on the other vectors. For s0  =  ln (n ∈ Z), the operator Q(r)
0,2(θ, s0) consists of local opera-

tors with support size r:

Q(r)
0,2(θ, s0) =




γ cot θ
r−1∑
d=2

q(d)(θ, s0)⊗ 1⊗r−d ⊗ σz + γ cot θ
r−1∑
d=2

σz ⊗ 1⊗r−d−1 ⊗ q(d)(θ, s0) + ∂′
sq

(r)(θ, s0) r �
N − 1

2

γ cot θ
r−1∑
d=2

σz ⊗ 1r−d−1 ⊗ q(d)(θ, s0) + ∂′
sq

(r)(θ, s0) r �
N + 1

2
,

� (46)

where q(d)(θ, s0) is a local operator with support size d:

q(d)(θ, s0) = (sin θ)−d2γ sin γ
∑
α

〈1|Lαd−1(θ, s0) · · · Lα2(θ, s0)|1〉σ− ⊗ σα2 ⊗ · · · ⊗ σαd−1 ⊗ σ+.

� (47)
We denote ‘the restricted differentiation’ by ∂′

s which acts as

∂′
sq

(r)(θ, s)
∣∣∣
s=s0

= (sin θ)−r2γ sin γ
∑
α

min(r−1, N−1
2 )∑

k=2

〈1|Lαr−1(θ, s) · · · ∂sLαk(θ, s) · · · Lα2(θ, s)|1〉
∣∣∣
s=s0

× σ− ⊗ σα2 ⊗ · · · ⊗ σαr−1 ⊗ σ+

� (48)

becoming the normal differentiation for r � N−1
2 . Note that these expressions are available 

only for odd N, although the even N case is similarly expressed. The non-local correction is 
also written in terms of the restricted differentiation as

P(N)
0,2 (θ, s) = ∂′

sp
(N)(θ, s),� (49)

p(N)(θ, s) = (sin θ)−N
∑
α

l−1∑
m=1

〈m|LαN (θ, s) · · · Lα2(θ, s)∂sLα1(θ, s)|m〉σα1 ⊗ · · · ⊗ σαN .� (50)
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Q0,2 is a quasilocal operator if there exists, for the local operators Q(r)
0,2, a positive ξ such that 

||Q(r)
0,2 || � Ce−ξr and the corrections P(N)

0,2  are exponentially small as the system size grows 

||P(N)
0,2 || � C′e−ξN . In order to compute the norms ||Q(r)

0,2 ||, ||P
(N)
0,2 ||, we use the real and sym-

metric matrix T(θ̄, s̄; θ, s) defined in [27], which originates in ‘the double Lax operator’. We 
also introduce its derivatives V(θ̄, s̄; θ, s), U(θ̄, s̄; θ, s):

T(θ̄, s̄0; θ, s0) =
l−1∑
m=1

(
(cos(γm))2 + | cot θ|2(sin(γm))2) |m〉〈m|

+
l−2∑
m=1

sin(γm) sin(γ(m + 1))
2| sin θ|2

(|m〉〈m + 1|+ |m + 1〉〈m|) ,

�

(51)

V(θ̄, s̄0; θ, s0) =
l−1∑
m=1

γ2 ((sin(γm))2 + | cot θ|2(cos(γm))2) |m〉〈m|

+

l−2∑
m=1

2γ2(cos(γm))2 sin(γ(m + 1))
| sin θ|2 sin(γm)

|m + 1〉〈m|,

�

(52)

U(θ̄, s̄0; θ, s0) =

l−1∑
m=1

γ4 ((cos(γm))2 + | cot θ|2(sin(γm))2) |m〉〈m|

+

l−2∑
m=1

8γ4 sin(γm) sin(γ(m + 1))
| sin θ|2

|m + 1〉〈m|.

�

(53)

The square norm of the local operator q(r) is then expressed as

||q(r)(θ, s0)||2 = (2γ sin γ)2| sin θ|−4〈1|T(θ̄, s̄0; θ, s0)
r−2|1〉� (54)

whose upper bound is evaluated by the leading eigenvalue τ1(θ, s0) of T(θ̄, s̄0; θ, s0). For the 
spectral parameter θ in ‘the quasilocal strip’ Im θ ∈ ( l−1

2 + ln, l+1
2 + ln) (n ∈ Z), the eigen-

values are contracting and the largest one τ1 satisfies 0 < τ1 < 1 [27]. Note that the condi-
tions Im θ ∈ (− 1

2 + ln, 1
2 + ln) also provide another quasilocal strip for s0 = l(n + 1

2 ). Thus 
we have

||q(r)(θ, s0)|| � C1e−ξr� (55)

with the decay length ξ = − 1
2 log τ1 > 0 [27]. Indeed, the quasilocal operator Q0,1(θ, s0) is 

written by the translationally invariant sums of the exponentially decaying operators q(r) with 
their support size r (r = 2, . . . , N ) [27]. The upper bound of the norm ||∂′

sq
(r)|| is also evalu-

ated by τ1. Using the Cauchy–Schwartz inequality for the Hilbert–Schmidt norm, we obtain

||∂′
sq

(r)(θ, s)
∣∣
s=s0

|| �




C2re−ξr +O(e−ξr) r �
N − 1

2

C3Ne−ξr +O(e−ξr) r �
N + 1

2
.

� (56)
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Then we find that the norm of the operators Q(r)
0,2 , P(N)

0,2  behave as

||Q(r)
0,2(θ, s0)|| �




2C4 +O(re−ξr) r �
N − 1

2

C4 +O(Ne−ξr) r �
N + 1

2
,

� (57)

||P(N)
0,2 (θ, s0)|| � C5Ne−ξN +O(e−ξN),� (58)

which indicates that the operator Q0,2 is not quasilocal. Moreover, extensivity does not hold 
for Q0,2 since

||Q0,2(θ, s0)||2 = N
N∑

r=2

||Q(r)
0,2(θ, s0)||2 + 2Re||Q(r)

0,2(θ, s0)|| ||P(N)
0,2 (θ, s0)||+ ||P(N)

0,2 (θ, s0)||2

� N
N∑

r=2

C2
4 + 2N2

N−1
2∑

r=2

2C4C5Ne−ξN + 2N2
N∑

r= N+1
2

C4C5Ne−ξN + C2
5N4e−2ξN

< N2C2
4 +O(N)

�

(59)

not being proportional to the system size N.
For the operator Q1,1(θ, s0), we obtain the decomposition:

Q1,1(θ, s0) = − γ(sin θ)N
N∑

x=1

1⊗x−1 ⊗ σz ⊗ 1⊗N−x

+

N−1∑
x=0

N∑
r=2

Πx

(
Q(r)

1,1(θ, s0)⊗ 1⊗N−r
)
+

N−1∑
x=0

Πx

(
P(N)

1,1 (θ, s0)
)

+ const.

�

(60)

Similar analysis reads each component behaving as

||Q(r)
1,1(θ, s0)|| � C6Ne−ξr +O(re−ξr),� (61)

||P(N)
1,1 (θ, s0)|| � C7Ne−ξN +O(e−ξN).� (62)

Thus, the Q1,1 is not quasilocal. No extensivity is observed for Q1,1 since

||Q1,1(θ, s0)||2 = N
N∑

r=2

||Q(r)
1,1(θ, s0)||2 + 2Re||Q(r)

1,1(θ, s0)|| ||P(N)
1,1 (θ, s0)||+ ||P(N)

1,1 (θ, s0)||2

� N
N∑

r=2

C2
6N2e−2ξr + 2N2

N∑
r=2

C6C7e−ξrNe−ξN + C2
7N4e−2ξN

< C2
6N3 e−4ξ

1 − e−2ξ +O(N4e−ξN),

�

(63)

which is not proportional to N. We found that the conserved quantity Qr,r′(θ, s0) for arbitrary 
(r, r′) behaves as
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||Qr,r′(θ, s0)||2 ∼ N2r+r′ .� (64)

Thus, only the operator Q0,1(θ, s0) has extensivity, which is also quasilocal.
The extensivity of another series of conserved quantities Hr,r′ is showed from direct calcul

ation of their expectation values on ‘the Bethe states’. The expectation value of the transfer 
matrix on the Bethe state has been obtained [21] as

〈λ|T(λ, s)|λ〉 = Q
(
λ+ iγ(s + 1

2 )
)
Q
(
λ− iγ(s + 1

2 )
) l−1∑

m=0

f (λ+ iγ(s + m))

Q(λ+ iγ(s + m + 1
2 ))Q(λ+ iγ(s + m − 1

2 ))
.

� (65)
A set of Bethe roots λ = {λj}j=1,...,n characterizes each highest weight eigenstate called the 
Bethe state. Here we introduced the functions Q(λ) and f (λ) defined by

Q(λ) =
n∏

j=1

sinh(λ− λj), f (λ) = (sinhλ)
N .� (66)

For large N, the term of m  =  0 becomes dominant for s  =  s0 around the shift point λ = iγ
2 , 

while the other terms exponentially decay as N grows. Thus, (65) effectively becomes

〈λ|T(λ, s)|λ〉 ∼ f (λ+ iγs)
Q(λ− iγ(s + 1

2 ))

Q(λ+ iγ(s − 1
2 ))

.� (67)

In the thermodynamic limit, the Bethe roots λj form the Bethe strings by densely distributing 
along the real axis [34]. There are finite l types of Bethe strings for the anisotropy γ = π

l . The 
string of type r (r = 1, . . . , l − 1) consists of r strings:

λ = λR + iγ
(

m − r + 1
2

)
, m = 1, . . . , r� (68)

with the real center λR ∈ R, while the Bethe string of type l contains only one string with 
the shifted center whose imaginary part given by iπ

2 . The former types of strings are called 
‘positive parity’ strings and the latter ‘negative parity’ strings. By introducing the Bethe string 
densities ρr(λ) (r = 1, . . . , l), i.e. the density of the Bethe string centers, the logarithmic deriv-
ative of (67) reads

lim
N→∞

1
N
〈λ|Hr,r′(λ, s)|λ〉 =

l∑
r=1

∫ ∞

−∞
dµ h(r,r′)

j (λ− µ, s)ρj(µ)� (69)

for (r, r′) �= (0, 0). In the right-hand side, a set of Bethe roots are replaced by a set of Bethe 
string densities {ρr(λ)}r=1,...,l  which a set of Bethe roots λ approaches in the thermodynamic 

limit. The bound-state particle density h(r,r′)
j  is given by

ĥ(r,r′)
j (k, s) =





(−ik)r−1∂r′
s
sinh((l − 2s)γk

2 ) sinh( jγk
2 )

sinh(γk
2 ) sinh(lγk

2 )
j = 1, . . . , l − 1

−(−ik)r−1∂r′
s
sinh(−2sγk

2 )

sinh(lγk
2 )

j = l

� (70)
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in the Fourier space. Thus, the right hand side of (69) remains finite in the thermodynamic 
limit, which indicates the extensivity of Hr,r′. The list of known locality properties of con-
served quantities are provided in table 1.

Note that the SFNI conserved quantities Hr,r′(λ, s) are linearly independent from those 

with spin-flip invariance H(s)
r (λ) which are associated with (half-)integer spins [35]. We dis-

cuss the functional dependence of the SFNI conserved quantities later in connection with the 
string-charge duality.

3.  Generalized Gibbs ensemble

Unlike non-integrable systems, integrable systems do not thermalize. Instead, they approach 
to the steady state described by the generalized Gibbs ensemble (GGE) [31] that maximize the 
entropy under the constraint of fixed expectation values of conserved quantities. Later it has 
been showed that the system locally approaches to the GGE steady state but not as a whole  
[1, 8]. Finally, the GGE conjecture was formulated in the form

lim
t→∞

〈Ψ(t)|Olocal|Ψ(t)〉
〈Ψ(t)|Ψ(t)〉

= tr (ρGGEOlocal)� (71)

was formulated in [5, 9]. The GGE density matrix ρGGE (1), whose idea was first introduced 
in [16, 17], consists of the macroscopic number of conserved quantities [31] where the 
Lagrangian multipliars βr are determined by the initial condition:

〈Ψ(0)|Qr|Ψ(0)〉
〈Ψ(0)|Ψ(0)〉

= tr (ρGGEQr) ,� (72)

since the expectation value of conserved quantities are invariant under time evolution. (Under 
the presence of the dynamical symmetry, the discussion must be modified by using the time-
dependent GGE introduced in [22]. )

The question we ask is which conserved quantities form a minimum complete set to 
describe the GGE. This question has been discussed for the XXZ model by using the string-
charge duality [4, 15, 35]. However, we are still far from understanding the general framework 
to construct the GGE for arbitrary integrable systems. In this section, we show that the GGE 
for the XXZ model consists of functionally independent conserved quantities.

Table 1.  Locality and extensivity properties of conserved quantities for the gapless 
XXZ model are listed. Remind that pseudolocaliy is the weakest condition for an 
operator to be extensive. The spectral parameter θ is to be in the quasilocal strip. 

The charge H( 1
2 )

r (λ) at the shift point λ = iγ
2  is the local charge which coincides with 

the Hamiltonian for r  =  1. Although quasilocality of H( l
2 )

1 ( iγ
2 + t) (t ∈ R) has been 

proved only at the isotropic point [12], we expect the same for the anisotropic case. No 

classification has been achieved yet for Q( l
2 )

r (θ) which are not listed here.

pseudolocal ⇒ extensive

H( l
2 )

r (λ), Hr,r′(λ, s) non-extensive

quasilocal local Qr,r′ �=1(θ, s0)

H( l
2 )

1 ( iγ
2 + t), Q0,1(θ, s0) H( 1

2 )
r ( iγ

2 )
Qr,r′(θ, s �= s0)
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3.1.  String-charge duality and linear dependence of conserved quantities

The string-charge duality provides the relation between the Bethe string densities for the 
steady state and the expectation values of conserved quantities on the initial state for the XXZ 
model [4, 15, 35]. As a conserved quantity is invariant under time evolution, its expectation 
value on the initial state is the same as that on the relaxation steady state. Since the steady state 
of the XXZ model is characterized by the Bethe string densities [6] up to the freedom coming 
from the Z2-symmetry, the string-charge duality indicates that a set of conserved quantities 
which determines all the Bethe string densities is nothing but what constitutes the GGE. As 
the thermodynamic variables, we use the extensive conserved quantities Hr,r′ rather than non-
extensive ones Qr,r′ in this section.

The first trial of finding the relation between the Bethe string densities and the charges has 
been discussed in [35], which provides the one-to-one correspondence between all local con-
served quantities associated with spin-1

2 and the one-string hole density for the zero magneti-
zation initial state. The apparent discrepancy was obtained [26, 35] between the calculation 
by the GGE with spin-1

2 conserved quantities and the results obtained from the microcanonical 
viewpoint by ‘the quench action (QA) method’ [6, 7]. The improved GGE, which includes 
quasilocal conserved quantities associated with (half-)integer spins, has been proposed based 
on the string-charge duality that connects l string-densities with l  −  1 quasilocal conserved 
quantities associated with (half-)integer spin [15]:

ρ̂r(k)− δr,l−1ρ̂l(k) = 2 cosh
(
γk
2

)
Ĥ( r

2 )

1 (k)− Ĥ( r+1
2 )

1 (k)− Ĥ( r−1
2 )

1 (k).� (73)

Here we denote the expectation value of conserved quantities in the thermodynamic limit (69) 
simply by Hr,r′(λ). Ĥr,r′(k) is their Fourier transforms. The relation was systematically derived 
from the Y-system [20], which is equivalent to the thermodynamic Bethe ansatz (TBA). The 
mismatch between the number of the string-density functions (l) and the conserved quantities 
(l  −  1) has been explained as a result of the truncation of the Y-system [15] that occurs for 
γ = π

l  [20]. The construction of the complete GGE has been achieved in [21] by adding one 
SFNI conserved quantity H1,1(λ, 0) as the entry of the string-charge duality:

ρ̂l(k) = − cosh

(
γk
2

)
Ĥ( l−1

2 )

1 (k)− 1
γk

sinh

(
γk
2

)
Ĥ1,1(k, 0).� (74)

However, the question still remaining is why specifically the operator H1,1(λ, s) with s  =  0 
is chosen to complete the GGE in spite of the existence of infinitely many SFNI conserved 
quantities.

We found that the generalized string-charge duality:

ρ̂l(k) = Ĝ′(r,r′)(k, s)Ĥ( l−1
2 )

1 (k) + Ĝ(r,r′)(k, s)Ĥr,r′(k, s)� (75)

for (r, r′) �= (0, 0). The main difference from (74) is obtained as the SFNI operator in the last 
term. This means that any SFNI conserved quantity can determine the string density ρl(λ). 
The explicit forms of the functions G′(r,r′)(λ, s) and G(r,r′)(λ, s) are, for instance for H1,0(λ, s), 
obtained as

ρ̂l(k) = −
sinh((l − 2s)γk

2 )

sinh((l − 2s − 1)γk
2 )

Ĥ( l−1
2 )

1 (k) +
sinh(γk

2 )

sinh((l − 2s − 1)γk
2 )

Ĥ1,0(k, s).

� (76)
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For arbitrary choice of (r, r′) and s, they are determined by the relations

Ĥ1,0(k, s) =
sinh((l − 2s − 1)γk

2 )

sinh((l − 2t − 1)γk
2 )

Ĥ1,0(k, t)−
sinh((2t − 2s)γk

2 )

sinh((l − 2t − 1)γk
2 )

Ĥ( l−1
2 )

1 (k),

Ĥr,2p(k, s) = (−ik)r−1(−γk)2pĤ1,0(k, s),

Ĥr,2p−1(k, s) = (−ik)r−1(−γk)2p−1 1
sinh((l − 2s − 1)γk

2 )
Ĥ( l−1

2 )

1 (k)

+ (−ik)r−1(−γk)2p−1 coth((l − 2s − 1)γk
2 )Ĥ1,0(k, s),

�
(77)

which hold for s satisfying Im s ∈ (0, l). For s without satisfying this condition, we obtain the 
similar convolution form. The convolutions are naturally regarded as the generalization of linear 
combination in the continuous λ-space. Therefore, the relations indicate that any SFNI conserved 

quantity is expressed by a generalized linear combination of one SFNI conserved quantity and 

a spin-flip symmetric term with H( l−1
2 )(λ). We can easily check that the SFI conserved quantity 

H( j
2 )

r (λ) is also linearly dependent on H
j
2
1  ( j = 1, . . . , l − 1) in a very similar way.

Thus, the known set of conserved quantities {H( j
2 )

1 (λ)}j=1,...,l−1 ∪ {H1,1(λ, 0)} that con-

stitutes the complete GGE is equivalent to a set {H( j
2 )

1 (λ)}j=1,...,l−1 ∪ {Hr1,r′1(λ, s1)} for any 

fixed (r1, r′1) and s1 ∈ C\{ 1
2 , . . . , l−1

2 } in the sense of functional independence (and linear 
independence here). This is the minimal set to constitute the complete GGE. Note that the 
product of conserved quantities are in general linearly independent but do not cast in the 
string-charge duality. That is, the complete string-charge duality, and subsequently, the com-
plete GGE consists only of functionally independent conserved quantities. We show that a 
certain product of conserved quantities is functionally independent from its components rather 
than linearly independent in the next section. This indicates that the GGE does not contain all 
linearly independent conserved quantities.

3.2.  Magnetization as a SFNI conserved quantity

The characteristic properties of the conserved quantities Hr,r′(λ, s) associated with complex 
spin are extensivity and spin-flip non-invariance. On the other hand, the total spin operator, 
which is not a family of conserved quantities obtained from the transfer matrix associated with 
(half-)integer spins, is also extensive and pin-flip non-symmetric. This similarity motivates us 
to expect that the physical meaning of the SFNI conserved quantities is interpreted in terms of 
the total spin operator. Indeed, the operator H0,1(λ, sR + isI) coincides with Sz up to multiplic-
ity in the large imaginary-spin limit:

lim
sI→∞

lim
N→∞

1
N

iπ〈λ|H1,0(λ, sR + isI)|λ〉 =
l∑

j=1

nj

∫ ∞

−∞
dλ ρj(λ) = lim

N→∞

1
N
〈λ|Sz|λ〉.� (78)

nj  are the lengths of Bethe strings where nj   =  j  for positive parity strings and nj   =  1 for nega-
tive parity strings [34]. Thus, the conserved quantities without spin-flip invariance is regarded 
as a generating function of the total spin operator.

3.3.  Remarks on Generalized Gibbs ensemble

The GGE consisting of a set of conserved quantities {H( j
2 )

1 (λ)}j=1,...,l−1 ∪ {Hr1,r′1(λ, s1)} 

(s1 ∈ C\{ 1
2 , . . . , l−1

2 }) never allows a SFNI conserved quantity and its spin reverse to cast at 
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the same time. If this is allowed, we would face the problem of non-diagonalizability of the 
GGE density matrix, which implies non-existence of the steady state. Due to the existence of 
the SFNI conserved quantity, our GGE correctly describes the non-vanishing spin current, 
which is remarked in [21, 24]. Note that, we cannot identify whether we are working on the 
positive magnetization sector or the negative one only by the information of the Bethe strings 
since the Bethe ansatz method discusses only either the sector of positive magnetization or 
that of negative magnetization. We must properly choose either of two reference states, i.e. the 
fully polarized positively magnetized state |Ω〉 or the fully polarized negatively magnetized 
state |Ω̃〉 according to the initial condition.

As was showed in [14], the complete GGE of the XXZ model in the gapped regime consists 
only of the SFI conserved quantities, due to the emergence of an infinite tower of string types 
which invalidating the notion of string parity. The same Bethe-string structure is obtained at 
the isotropic point, from which we naturally expect that the complete GGE of the XXX model 
consists only of the SFI conserved quantities as well. This means that the XXZ model in these 
regimes never exhibits persistent spin transport, although there exist SFNI conserved quanti-
ties which are not necessarily extensive.

4.  Ballistic channels for spin currents

Another important application of the SFNI conserved quantities is found in the discussion 
of the non-vanishing spin current. Non-vanishing currents are characteristic phenomena 
obtained for integrable systems. Ballistic channels of currents are supported by their overlap 
with conserved quantities [28, 32, 38]. The existence of ballistic channels for the spin current 
of the XXZ model has been in discussion for a long time [3, 37] until the discovery of SFNI 
conserved quantities [28]. Besides the spin-flip non-invariance, the key property used in the 
proof to show the non-vanishing spin current is the system-size dependence of the square 
norms of conserved quantities which cancels the system-size dependence of the overlap in the 
thermodynamic limit. Although discussed only for quasilocal conserved quantities, we found 
that the cancellation occurs also for non-quasilocal conserved quantities. In this section, we 
discuss which non-quasilocal conserved quantities provide ballistic channels of the spin cur
rent and whether they improve the lower bound of the Drude weight.

4.1.  Lower bound for Drude weight

Finite Drude weight indicates the existence of non-vanishing DC current. The Drude weight of 
current is evaluated by the current-current correlation in the framework of the linear reponse 
theory:

D(β) = lim
t→∞

lim
N→∞

β

2Nt

∫ t

0
dt′ 〈J(0), J(t′)〉β .� (79)

The thermal average 〈·, ·〉β at the temperature T = β−1 is reduced to the Hilbert–Schmidt 
inner product in the high temperature limit T → ∞ (β → 0). The Drude weight is bounded 
from below by the overlap between the current and conserved quantities [23, 33]. The ballistic 
channel supported by Qk is obtained as the lower bound for the current-current correlation:

lim
t→∞

lim
N→∞

1
2Nt

∫ t

0
dt′ 〈J(0), J(t′)〉β �

1
2N

|〈J, Qk〉β |2

||Qk||2β
,� (80)
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which survives in the thermodynamic limit if the ratio |〈J, Qk〉β |2/||Qk||2β is of the order of the 
system size. For a finite orthogonal set {Qk} such that 〈Qj, Qk〉 = δj,k||Qk||2, a ballistic channel 
supported by each Qk does not overlap and thus we have

lim
t→∞

lim
N→∞

1
2Nt

∫ t

0
dt′ 〈J(0), J(t′)〉β �

1
2N

∑
k

|〈J, Qk〉β |2

||Qk||2β
.� (81)

The saturation condition for the lower bound is clearly understood by decomposing a cur
rent into conserved quantities [33]. The idea is to write down a current and any physical 
quantity, in principle, by a linear combination of conserved quantities Qk and its non-con-
served part J′:

J =
∑

k

αkQk + J′.� (82)

The summation is taken over ‘a complete set’ of linearly independent conserved quantities 
[33]. Here the completeness means that the dimension of the linear space spanned by the con-
served quantities are equal to the dimension of the Hilbert space. That is, we need the same 
number of conserved quantities as the dimension of the Hilbert space to express an arbitrary 
physical quantity in the above form. In this context, the product of conserved quantities must 
be regarded as an independent conserved quantity from its components. This is very much 
unlike the independence of conserved quantities in the GGE which consists of functionally 
independent conserved quantities without containing their product. The coefficients αk are, for 
a finite set {Qj}j=1,...,n , to be determined by the inner product 〈J, Qk〉β  [13]:

αk =

n∑
j=1

〈J, Qj〉βK−1
jk .� (83)

Here we used 〈J′, Qk〉 = 0 [33]. Thus, we have the current-current correlation in terms of the 
overlap with the conserved quantities:

〈J, J〉β =

n∑
j,k=1

〈J, Qj〉βK−1
j,k 〈Qk, J〉β .� (84)

If only a subset of conserved quantities is used, the right hand side gives a lower bound. The 
difference from the previous lower bound (80) shows up as the matrix K = (Ki,j)1�i,j�n given 
by Ki,j = 〈Qi, Qj〉β, which almost consists of the square norms of conserved quantities but 
contains their overlap coming from non-orthogonality of conserved quantities. Indeed, the 
matrix K is invertible only when all Qk are linearly independent.

The spin current operator JS is SFAS and, therefore, does not have overlap with the SFI 
conserved quantities. The finite lower bound of its Drude weight was found to be realized by 
the quasilocal conserved quantity Q0,1(θ, s0) without spin-flip invariance [27]:

D �
β

2N
Re

∫

D
d2θ f (θ)〈JS, Q0,1(θ, s0)〉β , D = {θ | Im θ ∈ ( l−1

2 , l+1
2 )}.

� (85)
Since the conserved quantities of the XXZ model have a continuous parameter θ, the summa-
tion in (81) is replaced by the integral. The function f (θ) solves

∫

D
d2θ′ 〈Q0,1(θ, s0), Q0,1(θ

′, s0)〉β f (θ′) = 〈Q0,1(θ, s0), JS〉β ,� (86)
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which is again almost the inverse of the square norms of the conserved quantities but contains 
their overlap.

4.2.  Ballistic channels supported by non-quasilocal conserved quantities

We focus on the high temperature limit β → 0 where the thermal average becomes the Hilbert–
Schmidt inner product. Now we ask whether non-quasilocal conserved quantities also provide 
ballistic channels for the spin current. From the relation (80), we expect the existence of bal-
listic channels supported by non-quasilocal conserved quantities if the ratio |〈JS, Qk〉|2/||Qk||2 
is of the order of the system size N. Since we have already derived the system-size dependence 
of the denominator in the second section (64), we now compute the system-size dependence of 
the numerator (current-charge overlaps). Remind that the spin current is defined by

JS = i
N∑

n=1

(
σ+

n σ−
n+1 − σ−

n σ+
n+1

)
.� (87)

Its overlap with the conserved quantity is then calculated as

〈JS, Qr,r′(θ, s0)〉 = 2−N tr(J†SQr,r′(θ, s0))

= − i
4

N∂r
θ∂

r′
s tr

{
[L−(θ, s), L+(θ, s)](L0(θ, s))N−2} ∣∣∣

s=s0

.
� (88)

Taking into account of the vanishing condition for ∂r
θ∂

r′
s Lα(θ, s) at s  =  s0, we obtain that only 

odd r′ leads to the finite overlap:

〈JS, Qr,2p−1(θ, s0)〉 ∼ Nr+p

〈JS, Qr,2p(θ, s0)〉 = 0.
� (89)

From (64) and (89), we obtain

|〈JS, Qr,2p−1(θ, s0)〉|2

||Qr,2p−1(θ, s0)||2
∼ N� (90)

for any positive integer p . Therefore, any non-quasilocal conserve quantity Qr,r′(θ, s0) with 
odd r′ provides a ballistic channel for the spin current.

The next question is whether the non-quasilocal conserved quantities Qr,2p −1 improve the 
lower bound of the Drude weight. Actually, it seems that a continuous set of quasilocal con-
served quantities already saturates the lower bound [27]:

D �
β

2N
Re

∫

D
d2θ f (θ)〈JS, Q0,1(θ, s0)〉β = 1 − l

2π
sin

(
2π
l

)
� (91)

in comparison with the result obtained by the thermodynamic Bethe ansatz [37]. This contra-
dictory-looking fact is explained if the non-quasilocal conserved quantities Qr,2p −1 are writ-
ten as the convolution, i.e. the continuum generalization of the linear combination of the 
quasilocal ones Q0,1 in the thermodynamic limit. As the SFAS operator, the spin current is 
decomposed as

JS =
1
2

∫

D
d2θ

∑
r,p

αr,2p−1(θ)(Qr,2p−1(θ, s0)− USQr,2p−1(θ, s0)U−1
S ) + J′S.

� (92)
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The convolution relation

Qr,2p−1(θ, s0) =

∫

D
d2θ′ Kr,2p−1(θ − θ′, s0)Q0,1(θ

′, s0)� (93)

reads the spin current in terms of the quasilocal conserved quantities Q0,1:

JS =
1
2

∫

D
d2θ α̃0,1(θ)(Qr,r′(θ, s0)− USQr,r′(θ, s0)U−1

S ) + J′S,

α̃1,0(θ) =
∑
r,r′

∫

D
d2θ′ αr,r′(θ

′)Kr,r′(θ
′ − θ, s0),

� (94)

which indeed indicates that the spin current is purely supported by the quasilocal conserved 
quantities. We are able to convert the convolution relations (93) into the functional relations 
among Hr,r′:

eH0,0(iθ,s0)Hn1
r1,r′1

(iθ, s0)Hn2
r2,r′2

(iθ, s0) . . .

=

∫

D
d2θ′ K{n1,n2,... }

{(r1,r′1),(r2,r′2),... }(θ − θ′, s0)eH0,0(iθ′,s0)H0,1(iθ′, s0).
� (95)

Due to the existence of the factor eH0,0, the relation (95) indicates that the product of Hr,r′(λ, s0) 
is not written by the linear combination of H0,1(λ, s0) unless H0,0(λ, s0) is proportional to 
identity. This is consistent with our statement in the previous section that the GGE for the gap-
less XXZ model consists of functionally independent conserved quantities, i.e. the GGE does 
not contain all linearly independent conserved quantities.

5.  Concluding remarks

In this paper, we discussed nonequilibrium behaviors of the gapless XXZ model brought by 
SFNI conserved quantities. First, we showed that the GGE is given by a set of functionally 
independent conserved quantities. We derived the generalized string-charge duality which 
connects all SFNI conserved quantities by convolution, which is the continuum generaliza-
tion of linear combination. The physical meaning of the SFNI conserved quantities is also 
provided. We found that the total spin Sz operator is obtained from the large imaginary spin 
limit of H1,0. The second result is the existence of ballistic channels for the spin current sup-
ported by non-quasilocal conserved quantities. In the derivation, we used the system-size 
dependence of the square norms of conserved quantities and the overlap between the current 
and the conserved quantities. The saturation of the lower bound for the Drude weight implies 
that non-quasilocal conserved quantities are expressed by the convolution of quasilocal ones. 
We obtain that this convolution relation is consistent with the statement that the GGE consists 
of functionally independent conserved quantities.

As we mentioned in the abstract, a general framework to construct the GGE has not yet 
been found. Although we found that the GGE for the gapless XXZ model consists of a set 
of functionally independent conserved quantities, it has been proposed that the product of 
conserved quantities must be added to correctly describe the steady state of the Lieb–Liniger 
model with finite repulsive coupling, if one starts from the initial state with long-range corre-
lation [10]. We leave it as a future work to answer the question which kind of independence is 
required for conserved quantities to completely describe the steady state of arbitrary integra-
ble systems. As is known as an example in which the GGE consisting only of local conserved 
quantities fails [36], the attractive Lieb–Liniger model would be a good starting point.
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The second question we did not answer in this paper is what is the completeness of con-
served quantities which characterize the steady state. Originally the string-charge duality has 
been derived based on the Y-system [15, 20], which is equivalent to the thermodynamic Bethe 
ansatz. Our next project would be to put the SFNI conserved quantities in the framework of 
the Y-system. There exists the discussion to construct the Baxter’s Q-operator associated with 
the complex-spin auxiliary space [2] and we expect this would help to proceed this project.

The third problem we are interested in is how the SFNI conserved quantities lose their 
contribution to the long-time steady state at the isotropic point (and also in the gapped regime). 
If naively considered, the SFNI conserved quantities are no more extensive in these regimes 
and they have no contribution in the thermodynamic limit. Contrarily, the Drude weight has 
a finite value in the isotropic case at zero temperature [3], which implies the existence of the 
SFNI conserved quantities valid in the thermodynamic limit.

In the classical case, it is known that ‘quasi-integrable systems’ possess chaotic structure 
although having the singularity confinement property [18]. By analyzing these systems, we 
expect to see how nonequilibrium behavior changes as the system becomes toward integrable. 
We leave this question as a future work.
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