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Abstract
Recently found spin-flip non-invariant (SFNI) conserved quantities play
important roles in discussing nonequilibrium physics of the XXZ model. The
representative examples are the generalized Gibbs ensemble (GGE) and the
ballistic transport of the spin current. In spite of big progress in understanding
nonequilibrium physics of integrable systems, the general framework to
determine a minimal complete set of conserved quantities which describes
the long-time steady state has not yet been found. This paper shows that
the GGE of the gapless XXZ model consists of functionally independent
conserved quantities rather than linearly independent. At the same time, the
physical meaning of SFNI conserved quantities is provided. We also discuss
that there exist ballistic channels of the spin current supported by non-
quasilocal conserved quantities. The saturation of the lower bound for the
Drude weight by quasilocal conserved quantities reads the linear dependence
of non-quasilocal conserved quantities on quasilocal ones. We show that their
(generalized) linearly dependence relation is consistent with the statement that
the GGE consists of functionally independent conserved quantities without
containing all linearly independent conserved quantities.

Keywords: generalized Gibbs ensemble, XXZ model, spin-flip non-invariant
charges, complex-spin representations

1. Introduction
Recently, it has been found for the XXZ model that the spin-flip non-invariant (SFNI) con-
served quantities exist [28], although the model itself is spin-flip symmetric. Here we use

the word ‘spin-flip’ as the operation to exchange the roles of an up spin and a down spin.
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The conserved quantities of integrable systems are obtained from the parameter expansion of
the transfer matrix that consists of the ordered product of the Lax operators. The Lax opera-
tor is defined on the tensor product of the auxiliary space and the local quantum space. The
quantum space is the physical space to be chosen as the spm-— representation for the XXZ
model, whereas the auxiliary space does not appear in physical quantities and can be arbi-
trarily chosen. The spin-flip non-invariance of conserved quantities occurs when we choose
the complex-spin representations for the auxiliary space of the Lax operators. Some of SFNI
conserved quantities possess quasilocality [27] and, consequently, extensivity [13], which is
the expected property as thermodynamic variables. Indeed, the SFNI conserved quantities
play quite important roles in discussing nonequilibrium physics, as we will see below.

The existence of macroscopic number of conserved quantities brings interesting nonequi-
librium phenomena. The representative example is non-thermalization of integrable systems.
Although ‘the eigenstate thermalization hypothesis’ (ETH) [30] succeeded to explain the
mechanism why isolated systems thermalize, ETH is no more true for integrable systems.
Instead, ‘the generalized Gibbs ensemble’ (GGE) [31] has been proposed to describe the
steady state which an integrable system approaches in the long-time limit. The GGE is the
generalization of the Gibbs ensemble that consists of a macroscopic number of conserved
quantities Q-

pGGE — 27167 Z,- ﬂrQr, Z — tre* E, ﬂrQ'. (l)

This means that the existence of as many conserved quantities as the order of the system-size
strongly restricts relaxation processes of the system. The question which has been discussed is,
among infinitely many conserved quantities existing for integrable systems, which conserved
quantities form a minimal complete set to constitute the GGE. The description of the steady
state of the XXZ model by the GGE is well-studied through ‘the string-charge duality’ [15]. As
a Bethe-ansatz solvable model, the steady state is characterized by the Bethe string densities in
the thermodynamic limit [6]. The string-charge duality provides the correspondence between
the expectation values of conserved quantities on the initial state and the Bethe string densities
for the steady state. Therefore, a set of conserved quantitites which completely determines the
Bethe string densities of the steady state is considered to constitute the GGE. There are several
trials to this direction [14, 15, 21, 35]. The complete GGE has been heuristically constructed
by using the conserved quantities associated with (half-)integer spins and one complex spin
[21]. In this paper, we explain why adding one complex spin conserved quantity completes the
GGE from the viewpoint of independence of conserved quantities.

Another interesting nonequilibrium phenomena brought by many conserved quantities of
integrable systems is non-vanishing currents. Under the presence of many conserved quanti-
ties, ballistic transport of currents and hence the finite Drude weight has been predicted
[32, 38]. In the context of the linear response theory, the Drude weight is evaluated by the
current-current correlation whose lower bound is given by the overlap with an ‘orthogonal set’
of conserved quantities [23, 28, 33, 38]:

i (,
D(B) > NWZNZ' |QQ"|§"» (0 Q)5 = dial Q43 @

Since each conserved quantity, if it has finite overlap with the current, supports a ballistic
channel, ‘a complete set’ of conserved quantities covers all ballistic channels and saturates the
above lower bound. As a spin-flip anti-symmetric (SFAS) operator, the spin current operator
has overlap only with the spin-flip non-symmetric conserved quantities [28]. The saturation
of the lower bound for the Drude weight by quasilocal SFNI conserved quantities has been
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suggested in comparison with the result obtained from the thermodynamic Bethe ansatz [37],
although, in our analysis, non-quasilocal conserved quantities also provide ballistic channels
of the spin current in the thermodynamic limit at high temperature. Actually, the improve-
ment of the lower bound occurs only when the conserved quantities are linearly independent,
which is checked by decomposing an operator into conserved quantities [33]. This implies that
non-quasilocal SFNI conserved quantities are the (generalized) linear combination of quasilo-
cal ones in the thermodynamic limit. We show that a subsequently obtained relation from
the generalized linear combination is consistent with the statement that conserved quantities
constituting the GGE of the gapless XXZ are functionally independent rather than linearly
independent.

The paper is organized as follows. We first review the construction of conserved quantities
of the XXZ model including SFNI ones. The complex spin representations of sl,(2) are also
explained. The locality and extensivity of SFNI conserved quantities is discussed from the
large-volume analysis of the operator inner product and norm. After then, two important appli-
cations are discussed. The first one is the GGE which we show consists of a set of functionally
independent conserved quantities. The physical meaning of SFNI conserved quantities is also
provided. In the next section, we discuss the non-vanishing spin current. We show that the
non-quasilocal conserved quantities provide the ballistic channels. The saturation of the lower
bound by the quasilocal conserved quantities indicates that the non-quasilocal conserved
quantities are linearly dependent on the quasilocal ones in the thermodynamic limit, which we
show is consistent with the functional dependence of conserved quantities in the GGE.

2. Conserved quantities without spin-flip invariance

The XXZ model is known to be integrable, which has as many conserved quantities as the
order of the system size N. Many conserved quantities arise from commuting transfer matri-
ces. In this section, we review how conserved quantities of the XXZ model are constructed.
Then we discuss how the SFNI conserved quantities are obtained from the spin-flip symmetric
XXZ model. Quasilocality and extensivity of the conserved quantities is also discussed.

2.1. The model

Let us consider the XXZ model defined on the Hilbert space given by the tensor product
H= HQ’ZI ®h,,. The Hamiltonian is given by

H= Z SiSEiy +S)Sh,, +cosySiSEL) 3)

where ~ determines the anisotropy of the model. The model shows different physics depend-
ing on -y by showing the gapped energy spectrum for pure imaginary -y, whereas the gapless
energy spectrum for real -y. The spin operators S (a € {x,y, z}) are ultralocal operators in the
sense that they nontrivially act only on the nth quantum space #,;

Si=1®-- 2189591 @

We impose the periodic boundary condition so that n = n + N. The defining ultralocal algebra
for the spin operators S“ is the s[(2) commutation relations:

S, S5] = ieapyS) dmn (5)
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where €.+ is a completely antisymmetric tensor €3 = 1. The non-trivial finite-dimensional
L,...

representations for S are realized in C**! labeled by positive (half-)integers s = %
For the XXZ model, we choose the smallest nontrivial representations realized by s =

o 1L 0 —4i L
()G ) G L) e
10 0 0 —1

Although written in terms of the s[(2) spin operators, the model is more related to the
q(= e'7)-deformed s[(2) algebra, denoted by sl,(2), due to the anisotropy. The g-deformed
spin operators ST, ¢% define the s5l,(2) algebra by the relations

@*) (")
q—q"
which are reduced to the normal sl(2) relations at the g — 1 limit by identifying
§¢ = S3,8F = S! +iS?. The finite-dimensional representations are realized in C***! as in the
sl(2) case for generic g. The special care is required for ¢ at the root of unity, as is explained

later.

The Lax operator is defined in the tensor product of the auxiliary space V and the local
quantum space ,. Let V be C2. Then the Lax operator acting in V ® h,, is written as the
2 x 2-matrix in the auxiliary space:

Lon()) = sinh(A +1iyS3)  isinvy-S,
G dsiny - S sinh(A —ivSE) /)

l—

qSZSi _ qilsiqsz’ [S+, S_] _ , (7)

®)

with the entries being operators in the quantum space /,. The Lax operator satisfies the RLL
relation in V; ® Vo ® hy,:

Rayay (A = 1) Lay n(A) Layn (1) = Layn (1) Lay n (M) Ray.ay (N — 1), )

where Ry, 4, is the R-matrix which nontrivially acts on V| ® V; as

Rayar(N) = Layar <)\ + 1;) : (10)
We call the ordered product of the Lax operators the monodromy matrix:

Ta(A) = Lan(A) -+ Laa(A). (11)
The monodromy matrix satisfies the RTT relation in the tensor product V ® HnN:1 ®hy,:

Rayay (A = 1) Tay (M) Ty (1) = Ty (1) Tay (M Ray 0, (A = 1) (12)

as a result of the RLL relation. The transfer matrix is defined by the trace of the monodromy
matrix over the auxiliary space:

T(A) =tr, T,(N) (13)
that is commuting for different parameters A due to the RTT relation:
[T(A), T(w)] = 0. (14)

The transfer matrix allows the f-expansion in the N — oo limit:

(60— 6o)"
T(i6) =i") %Qr(%)- (15)
r=0 ’
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Since the Hamiltonian (3), which is explicitly written as the logarithmic derivative of the
transfer matrix:

d
Hoc —logT(A)|
dX A=3 (16)
belongs to this family, we call commuting operators Q, () conserved quantities. Note that
the total spin operator S does not belong to this family since it is a SFAS operator.
The auxiliary space is straightforwardly generalized to V = C>*! for (half-)integers s. Let

|r) (r =0,...,2s) be a natural basis in C>*!;
=0 - 0 1 o --.. o)T‘ (17)

The Lax operators for V = C**! is given by the same expression for the V = C? case (8) but
by inserting the (half-)integer spin-s representations into each spin operator S + g5

2s—1 2s—1
+_ N sin(y(r+ 1) -\ sin(v(2s = 1)) (s
Sa —;T|r)(r+l|, Sa —;T| r+1 ;ev( 1)
(18)
Note that here we consider only generic g. (The case for g at the root of unity is discussed in
the next subsection.) The (half-)integer spin-s representations are the highest weight repre-
sentations ST|0) = 0 and finite dimensional representations S~|2s) = 0. Under the choice of
(half-)integer s, the action of the transpose exchanges S*-operators :
(§H)T = sTF. (19)

Let V, be V, = C**!by keeping V; as V| = C2 Remarkably, the product of the Lax operators
still satisfy the RLL relation in V; ® V, ® h, [19]:

R (= ) L5 () L8, (1) = L, (L5 (V) RS (A — ) (20)

‘ar,n

leading to the commuting transfer matrices:

TN, TO(w)] =0, TO(u) =tr, (Lffﬁv(u) L) (u)) : 2D

The above commutativity of the transfer matrices provides another family of conserved
quantities. Especially at large N, the transfer matrices admit the §-expansion:

(6 — 6
7O (i0) = i Z 0 56 (6y), 22)
where the conserved quantities are obtained as the coefficients (90)

2.2. Complex spin representations and associated conserved quantitites

The s(,(2) spin operators admit arbitrary spin-s € C representations besides the (half-)integer
spin representations. Let g be generic. The complex spin-s representations are still the highest
weight representations S|0) = 0 but infinite dimensional:

2 sin(y(r + 1)) _ &Ksin(y(2s — 1))
Sf=) ———+ 1), s; =S IR, =Y e
I LSRR Ve e A §Oje "

(23)
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The truncation to the finite-dimensional irreducible representations occurs for the (half-)inte-
gers s case which we discussed in the previous subsection. When ¢ is at the root of unity
g=2¢e"T(y= 7°7) where m and [ are coprime, we are able to take / X [-dimensional irreduc-
ible representations
4 _yasin(y(r+ 1)) - _§osin(y(2s 1) P S
e e §:j . g = §:j< ) (ol
(24)

due to the existence of extra centers (S*)! and (¢%)' [11]. The action of the transpose does
not exchange the spin operators (S*)T # ST under these representations but the highest
weight vector and the lowest weight vector exchanges their roles. There also exist the other
I x I-dimensional irreducible representations which are cyclic or semi-cyclic. For (half-)
integers s < 51, there exist the (25 + 1) x (25 + 1)-dimensional representations which are
similar to the generic g case given in (18). Note that the finite-dimensional representations
associated with arbitrary complex spin-s never exist in the gapped regime nor the isotropic
point.

For the Lax operator with the complex-spin auxiliary space, it is reasonable to consider s
as a parameter [27]:

sinh(A + iyS%(s)) siny - S, (s) ) (25)

Lan(A, S) = ( sin-y - S;f‘ (s) sinh(\ — ivSi(s))

which coincides with the Lax operator of the (half-)integer s just by replacing the spin opera-
tors with those of the complex-spin representations. Then the transfer matrix:

T(\s) =trg(Lan (A, s) -+ - Lot (A, 8)) (26)

admits the s-expansion as well as the (= %)-expansion at large N:

oo

0 —00)" (s — s0)"
SR IR SR U DAL @7)
r,r’'=0 ’ )

producing a two-parameter family of conserved quantities Q,.,» (6o, so) [25, 27].

Since the Hamiltonian (3) is given by the logarithmic derivative of the transfer matrix, we
are motivated to introduce another series of conserved quantities H, , obtained by the loga-
rithmic derivatives of the transfer matrix:

Hi.pr (Mo, 50) = 0305 log T(A,s) (28)

>\:>\U,S:S0 ’

These are more natural definition of the conserved quantities since they are extensive, i.e. their
expectation values are proportional to the system size for large N, as we will see in the second
next subsection. The series of conserved quantities H,, are functionally dependent on the
previously introduced conserved quantities Q, ,». We give a few examples of how to connect
H, ,» with Q, , in the thermodynamic limit:
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N 000(6o, 59) = eoolifos0)

V101060, 50) = Hy (i, 59)eMo0i050)

N7205,0(00,50) = (Ha0(i00, 50) + Hi o (i, 50) e/ 0s0)

N73050(60,50) = (Hs,0(i6o, 50) -+ 3H2,0(i60, 50)Hy0(i60, 50) -+ Hj o (i60, 50) )00 (0os0) (29)
¥ 00,1 (80, 50) = Ho 1 (i60, so)e!00(%-s0)

002 (00, 50) = (Ho2(io, s0) + Hg., (6o, s0) )eH0o(Po-0)

™ 005(00.50) = (Ho (i, s0) + 3Ho (6o, s0)Ho,1(i00, 50) + H, 1 (i60, so) o0 (%050,

These relations are obtained by comparing the differential coefficients 0j,0; l T(0,s)at 0 = 0,
s = 5o expressed in terms of H, ,» with those of O, .

2.3. Spin-flip invariance

Now, we restrict our attention to the case v = 7. The Hamiltonian (3) possesses the spin-flip
symmetry. Nevertheless, it is known that there exist conserved quantities without spin-flip
invariance [29]. We write the Lax operator with the auxiliary space of the spin-s representation
as the tensor product of the auxiliary part and the physical part:

LGi0,s) =i Y o*®L(0,s),

30
a€e{0,z,+,—} ( )

L°(8,s) = sin @ cos(yS(s)), L*(,s) = cosfsin(yS(s)), LF(0,s) =siny-ST(s). (31)

Here we dropped the indices a, n. The Pauli matrices 0@ are twice the s[(2) spin operators of
spin-% representations. It is easy to check that the transfer matrix

1 —_ N aN N 0 a1 [N ay

T(i0,5) =i" > w(L(0.5) L (0.5)0" @ - @0 32)
ae{0,z,+,—}

is spin-flip invariant (SFI) only for (half-)integers s < I_T' The operator part of the transfer

matrix consists of the Pauli matrices. Since the spin-flip operator Uy transposes the Pauli

matrices, it acts on the transfer matrix as

UsT(i0,s)Us " =i¥ Y w(L*(0,5) -+ L (0,5))0™ @ -+ @ o™
ae{0,z,+,—} (33)
=i X a8 LY Os)o @@ o™, (34)
a€e{0,z,+,—}

where we used the notation & defined by

0=0, z=2, +=—-, — =+ (35)
From (31) and (34), we obtain that UsT(if), s)Ug ' = T(if, s) holds only if the transpose
exchanges the S*-operators. Therefore, the transfer matrix is SFI only for (half-)integers
s < % The symmetry of the transfer matrix directly determines the symmetry of conserved

quantities since they are obtained from the parameter expansion of the transfer matrix. Thus,
the conserved quantities Q.+, H,.,» associated with complex spin s have no spin-flip invariance.
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2.4. Locality and extensivity of conserved quantities

Extensivity is a natural property we expect for conserved quantities as thermodynamic
variables.

Extensivity is obtained as a consequence of ‘locality’ of an operator [13]. Here we say an
operator is local if it is written as a translationally invariant sum of local operators ¢’ with
support size r:

N—1
0=> (" @1%V™) (36)
x=0
IL, is the shift operator II,(c* ® -+ ® o) = 0™+ ® - - - ® o™+ under the identification
N + x = x due to the periodic boundary condition. The question is how much the notion of
locality is extended to obtain extensivity.

The weakest condition to obtain extensivity is called ‘pseudolocality’ [13]. Pseudolocality
is defined through the Hilbert-Schmidt inner product. Within the space Ay of all translation-
ally invariant traceless operators consisting of N sites, let the traceless deformation of the

Hilbert—Schmidt inner product be defined by

tr(ATB trAf trB
ap=TAB A ub
tr(1°7)  w(1®7) tr(1°7)

Note that (B,A) = (A, B) # (A, B) for non-Hermitian A and B. The deformed norm is defined
through the inner product by ||Q|| = 1/{Q, Q). The deformed Hilbert—Schmidt inner product
satisfy the Cauchy—Schwartz inequality [13]:

(A, B)| < l|A] [IB]l- (38)

We say an operator Q € Ay is pseudolocal when the square norm IIQII> has volume-scaling in
the thermodynamic limit N — oo:

A,B € Ay. (37)

o1 2 .1
0<1}gngoﬁ||Q|| —IJLIT;ON<Q,Q><OO (39)
and finite overlap with at least one local operator b:
(b,Q) # 0. (40)

Slightly stronger locality than pseudolocality is called ‘quasilocality’ [13]. We call Q € Ay
a quasilocal operator if there exists, for an operator Q written in the form of translationally
invariant sums of local operators and a non-local correction:

lim
N—oo

N—1 N

0= > (¢ @1%¥), (41)

x=0 r=2

a positive ¢ such that
g < cem¥ (42)

with a constant C. Actually, many conserved quantities are known to have quasilocality [12,
27].

Our interest is whether quasilocality and extensivity holds for conserved quantities
0, (0, s) by changing the parameters, especially their derivatives (r, r"). Among several ways
to derive the N-dependence of the norms ||Q; (6, s)|| [25, 27], we follow the method used



J. Phys. A: Math. Theor. 53 (2020) 134001 C Matsui

in [27], which allows us to check the quasilocality as well. The case of (r,r") = (0,1) in our
notation is discussed in the original paper [27]. Since the calculation for an arbitrary set (r, )
is cumbersome, we show the (r,7') = (0,2) and (1, 1) cases as representative examples. The
arbitrary (r, ') case is also briefly mentioned.

Due to the parameter expansion of the transfer matrix (27), we have

Qoa(b0.50) = 2 T(0.9)| 3)
= Y w{Bu 0 O |, oteeem gy
ae{0z+.—} e

By definition, a conserved quantity is written as a translationally invariant summation form:

Q02(60, 50) =(sin )N (v cot #)? Z 197907 @19 ot @19V

1<x<y<N
N—1 N h 45
+ (sin9) NZ ( ) @19V ) + (sin&)NHX( (N)(é? )) (43)
x=0 r=2

-+ const.

The first two terms and the constant are obtained from the expectation value on the highest
weight vector |0) in the auxiliary space, while the third term is obtained as the expectation

value on the other vectors. For so = In (n € Z), the operator Q (0 so) consists of local opera-
tors with support size r:

r—1 r—1

1
~cot 6 Z 4“D(8,50) 19779 ® 6% + y cot 0 Z @18 @ gD (0,50) + 09" (0,50) 1< NT
o =2 d=2
Qs (0,50) =
! N+1
~cot 6 Z @179 @ ¢ D0, 50) + 9.q™ (8, 50) rz 5
d=2
(46)

where g(@) (6, 50) is a local operator with support size d:

q“D(0,50) = (sin )2y sinfyZ(HLo‘d*‘ (0,50) -+ L (0, 50)|1)0” @0 @ @™ ®@ot.

47
We denote ‘the restricted differentiation” by 9. which acts as ()
min(r—1,%51)
g (0,s) = (sinf) "2y sin’yz Z (1L =" (0, ) - - - O L (B, 5) - - - L*2(0, 5)|1) -
X0T RN R0 ®cT
(48)

becoming the normal differentiation for r < NT’I Note that these expressions are available
only for odd N, although the even N case is similarly expressed. The non-local correction is
also written in terms of the restricted differentiation as

P3y (0.5) = 9p™(0.5), (49)
p™M(0,5) = (sinh)™ Z Z m|L*Y(6,5) - - L (6, )OsL™ (0, 5)|m)c™ @ - -+ @ g™V, (50)
a m=l1
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Qo2 1s a quasilocal operator if there exists, for the local operators Q0 4» a positive £ such that
||Q(r)|| < Ce™%" and the corrections P(() 2) are exponentially small as the system size grows
||P02 || < C'e V. In order to compute the norms ||Q(r)|| ||P(N)|| we use the real and sym-
metric matrix T(H, 5;0,s) deﬁnegi in [27], Wfllch originates in ‘the double Lax operator’. We
also introduce its derivatives V(0,5;0,s), U(0,5; 0, s):

-1

T(0,50:0,50) = Z ((cos(’ym))2 + | cot 9|2(sin('ym))2) |m) (m|

m=1
1-2
sin(ym) sin(y(m + 1))
51
+m§;1 e () (m + 1]+ m + 1) (m]) (51)

V(0,50; 0, 50) Z’y sin(ym))* + | cot O]* (cos(ym))?) |m) (m|

m=1

2~2 +1
‘|‘Z 7*(cos(ym))? sin(y(m ))|

| sin 0|2 sin(ym) ot 1) ml (52)

U(0,50;0, 50) Z’y cos(ym))?* + | cot 0 (sin(ym))?) |m) (m|

8v* sin(ym) sin(y(m + 1)) 53
3 R D o, "

The square norm of the local operator ¢ is then expressed as
114 (8, 50)|1> = (2ysiny)?| sin 6] ~*(1|T (8, 50; 6, 50)>|1) (54)

whose upper bound is evaluated by the leading eigenvalue 7(6, so) of T(8,50; 6, 5). For the
spectral parameter 6 in ‘the quasilocal strip’ Im 6 € (I_Tl + In, HTI + In) (n € Z), the eigen-
values are contracting and the largest one 7; satisfies 0 < 7; < 1 [27]. Note that the condi-
tions Im @ € (f% + In, % + In) also provide another quasilocal strip for sy = I(n + %) Thus
we have

g (8. 50)|| < Cre™*" (55)

with the decay length £ = —% log T > 0 [27]. Indeed, the quasilocal operator Qg (6, so) is
written by the translationally invariant sums of the exponentially decaying operators ¢'” with
their support size 7 (r = 2,...,N) [27]. The upper bound of the norm ||8/¢("|| is also evalu-
ated by 7. Using the Cauchy—Schwartz inequality for the Hilbert—-Schmidt norm, we obtain
N-—-1
Core ™" +0(e ™) r< ——
10047 (0. )] _, || < (56)

N+1
CiNe ™ +0(e™") r> T+

10
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Then we find that the norm of the operators Q(()g, P(()Z) behave as

N —1
20, +0(re ) r<

2
105726, 50)]| <

N+1
Cy+ O(Neigr) r= +

5

(57)

1PSY) (8, 50)|| < CsNe™N + O(e™ ), (58)

which indicates that the operator Qg is not quasilocal. Moreover, extensivity does not hold
for Qp, since

N
1002(6.50)[12 = N S 1105 (6. 50> + 2Re |05 (8. 50)1| [1PS2 (6. 50)1| + [[PS2 (6. 50)]

r=2
N 5 N
SND Ci+2N*) 2CiCsNe™ N +2N? Y CuCsNe N + CINte N
r=2 r=2 r:NTJrl
< N*C} + O(N) (59)
not being proportional to the system size N.
For the operator Qy (0, so), we obtain the decomposition:
N
01.1(0,50) = —(sin )Y Z 197 @ ot @ 19V
x=1
N—-1 N N—1
33 (060 @ 1Y) + 31 (P (6.50)
x=0 r=2 x=0
+ const. (60)
Similar analysis reads each component behaving as
1011 (8.0)|| < Cale ™ + O(re™*"), (61)
1PIY(6.50)]| < CoNe™ S + O(e~Y). (62)

Thus, the Q) is not quasilocal. No extensivity is observed for Q; ; since

N
101.1(0.50)|1> = N > (1017 (8.50)11* + 2Re] [} (8. 50)|| [Py (8..50)1| + [P (6. 50)|

r=2
N N
<N CN*e ™ 42N> CoCre™Ne N + CIN*e 2N
r=2 r=2

—4¢
< CgN:%liﬁ + O(N4e_£N), (63)

which is not proportional to N. We found that the conserved quantity Q,, (6, so) for arbitrary
(r, ") behaves as

1
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10, (8, 50)||> ~ N¥ 7. (64)

Thus, only the operator Qg (6, so) has extensivity, which is also quasilocal.

The extensivity of another series of conserved quantities H,,- is showed from direct calcul-
ation of their expectation values on ‘the Bethe states’. The expectation value of the transfer
matrix on the Bethe state has been obtained [21] as

-1

AITS)A) =QA+irs+ 1)) QA —ints + 1) Y

m=0

SO+ (s +m)
QA +iv(s+m+ QA +iv(s+m— 1))

(65)
A set of Bethe roots A = {\;}j=1,..» characterizes each highest weight eigenstate called the
Bethe state. Here we introduced the functions Q(\) and f(\) defined by

QM) = [[sinh(x = X)), f(A) = (sinh \)". (66)
j=1

For large N, the term of m = 0 becomes dominant for s = sy around the shift point A = i%,
while the other terms exponentially decay as N grows. Thus, (65) effectively becomes

QA —iv(s+ 1))
QA +iv(s— 1))’

In the thermodynamic limit, the Bethe roots A; form the Bethe strings by densely distributing
along the real axis [34]. There are finite  types of Bethe strings for the anisotropy v = 7. The

(AT (A 5)[A) ~F(A+ivs) (67)

string of type r (r = 1,...,1 — 1) consists of r strings:
1
)\Z/\R—I—i’)/<m—r_|2— >, m=1,...,r (68)

with the real center A\g € R, while the Bethe string of type / contains only one string with
the shifted center whose imaginary part given by % The former types of strings are called
‘positive parity’ strings and the latter ‘negative parity’ strings. By introducing the Bethe string
densities p,(\) (r = 1,...,1), i.e. the density of the Bethe string centers, the logarithmic deriv-
ative of (67) reads

1
: 1 o (r,r")
i VA (1) = | k0= pesiaen (©)

for (r,r") # (0,0). In the right-hand side, a set of Bethe roots are replaced by a set of Bethe
string densities {p,(\)},—1....; which a set of Bethe roots A approaches in the thermodynamic

limit. The bound-state particle density h}”/) is given by

,sinh((I — 2s)77k) sinh(j2%)

—ik) =tor 2o j=1,...,01—1
(Zik™2 sinh(%k)sinh(l%k) /

") —
by (k,s) = _ )
,sinh(—2s%)

_ _'k r—lar
(k)0 sinh (/%)

(70)

12
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Table 1. Locality and extensivity properties of conserved quantities for the gapless
XXZ model are listed. Remind that pseudolocaliy is the weakest condition for an
operator to be extensive. The spectral parameter 6 is to be in the quasilocal strip.

1 .
The charge Hr(z)()\) at the shift point A = 7 is the local c,harge which coincides with
the Hamiltonian for » = 1. Although quasilocality of Hl(f)(% +1) (t € R) has been
proved only at the isotropic point [12], we expect the same for the anisotropic case. No

1
classification has been achieved yet for Qrz)(G) which are not listed here.

pseudolocal = extensive

Hy' (A): Hrr (A, ) non-extensive

quasilocal local Qv 21(6,50)
: i : i rr! 65

H{P (5 +1), Q01(6,50) (i) Q1. (6,5 # 50)

in the Fourier space. Thus, the right hand side of (69) remains finite in the thermodynamic
limit, which indicates the extensivity of H,,. The list of known locality properties of con-
served quantities are provided in table 1.

Note that the SFNI conserved quantities H,, (A, s) are linearly independent from those
with spin-flip invariance Hr(s) (M) which are associated with (half-)integer spins [35]. We dis-
cuss the functional dependence of the SFNI conserved quantities later in connection with the
string-charge duality.

3. Generalized Gibbs ensemble

Unlike non-integrable systems, integrable systems do not thermalize. Instead, they approach
to the steady state described by the generalized Gibbs ensemble (GGE) [31] that maximize the
entropy under the constraint of fixed expectation values of conserved quantities. Later it has
been showed that the system locally approaches to the GGE steady state but not as a whole
[1, 8]. Finally, the GGE conjecture was formulated in the form

i (01O ¥(0)

B N TATT ) tr (pGGEOlocal) (71)

was formulated in [5, 9]. The GGE density matrix pggg (1), whose idea was first introduced
in [16, 17], consists of the macroscopic number of conserved quantities [31] where the
Lagrangian multipliars g, are determined by the initial condition:

(v (0)|0,¥(0))
(W(0)|w(0))

since the expectation value of conserved quantities are invariant under time evolution. (Under
the presence of the dynamical symmetry, the discussion must be modified by using the time-
dependent GGE introduced in [22]. )

The question we ask is which conserved quantities form a minimum complete set to
describe the GGE. This question has been discussed for the XXZ model by using the string-
charge duality [4, 15, 35]. However, we are still far from understanding the general framework
to construct the GGE for arbitrary integrable systems. In this section, we show that the GGE
for the XXZ model consists of functionally independent conserved quantities.

=tr (pcGeQr) » (72)

13
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3.1. String-charge duality and linear dependence of conserved quantities

The string-charge duality provides the relation between the Bethe string densities for the
steady state and the expectation values of conserved quantities on the initial state for the XXZ
model [4, 15, 35]. As a conserved quantity is invariant under time evolution, its expectation
value on the initial state is the same as that on the relaxation steady state. Since the steady state
of the XXZ model is characterized by the Bethe string densities [6] up to the freedom coming
from the Z,-symmetry, the string-charge duality indicates that a set of conserved quantities
which determines all the Bethe string densities is nothing but what constitutes the GGE. As
the thermodynamic variables, we use the extensive conserved quantities H, - rather than non-
extensive ones O, , in this section.

The first trial of finding the relation between the Bethe string densities and the charges has
been discussed in [35], which provides the one-to-one correspondence between all local con-
served quantities associated with spin—% and the one-string hole density for the zero magneti-
zation initial state. The apparent discrepancy was obtained [26, 35] between the calculation
by the GGE with spin-% conserved quantities and the results obtained from the microcanonical
viewpoint by ‘the quench action (QA) method’ [6, 7]. The improved GGE, which includes
quasilocal conserved quantities associated with (half-)integer spins, has been proposed based
on the string-charge duality that connects [ string-densities with / — 1 quasilocal conserved
quantities associated with (half-)integer spin [15]:

0 i) = 2008 () AP0 - BT w0 - w0, 03)
Here we denote the expectation value of conserved quantities in the thermodynamic limit (69)
simply by H,..(\). H,. (k) is their Fourier transforms. The relation was systematically derived
from the Y-system [20], which is equivalent to the thermodynamic Bethe ansatz (TBA). The
mismatch between the number of the string-density functions (/) and the conserved quantities
(I — 1) has been explained as a result of the truncation of the Y-system [15] that occurs for
v = 7 [20]. The construction of the complete GGE has been achieved in [21] by adding one
SENI conserved quantity H; (A, 0) as the entry of the string-charge duality:

=N k\ ~(i=t 1 . k\ ~
pi(k) = — cosh (é) Hf ? )(k) ok sinh (ry2> Hy,(k,0). (74)

However, the question still remaining is why specifically the operator H; (), s) with s =0
is chosen to complete the GGE in spite of the existence of infinitely many SFNI conserved
quantities.

We found that the generalized string-charge duality:

~ ’ ~ (=t ~ / ~
pik) = G (ke s)H 7 (k) + GO (k. )H,po (K, 5) (75)

for (r,7’) # (0,0). The main difference from (74) is obtained as the SFNI operator in the last
term. This means that any SFNI conserved quantity can determine the string density p;(\).
The explicit forms of the functions G'""") (X, s) and G"") (A, 5) are, for instance for Hy (), s),
obtained as

sinh(%k)

sinh((/ —2s — 1)%)

~

pi(k) =

sinh((1 — 25) %)

B Hio(k,s).
sinh((1 — 2s — 1) %) 1o(k, )

(76)

A(ﬂ)
H, 7 (k) +

14
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For arbitrary choice of (r, ') and s, they are determined by the relations

inh((1 —2s — 1)%) . inh((2r — 25) %) (=21
b= 20 = D% ) gy — S 290%) fis
sinh((1 -2t —1)%) sinh((1 -2t —1)%)

H,op(k,s) = (—ik)" =" (—vk) P H, o(k, 5),

;Ir,Zp—l (k’ S) - (_ik)r71 (_’Yk)zpil

I/‘il’o(k, S) =

1 A(ﬂ)
H "’
sinh((1 — 25 — 1)2%)

2
+ (k)" (—vk) P~  coth((1 — 25 — 1) Z)Hy o(k, s), (77)

which hold for s satisfying Im s € (0, /). For s without satisfying this condition, we obtain the
similar convolution form. The convolutions are naturally regarded as the generalization of linear
combination in the continuous A-space. Therefore, the relations indicate that any SFNI conserved

quantity is expressed by a generalized linear combination of one SFNI conserved quantity and

a spin-flip symmetric term with H (=) (A). We can easily check that the SFI conserved quantity
L L

Hr(z) (A)is also linearly dependent on H} (j = 1,...,[ — 1) in a very similar way.
Thus, the known set of conserved quantities {Hi?)()\)}jzl,_“,[fl U {H;1(\,0)} that con-

stitutes the complete GGE is equivalent to a set {Hf%) (M) }i=t,...i—1 U{H,, (A, s1)} for any
fixed (r1,7}) and s; € C\{3,..., 5} in the sense of functional independence (and linear
independence here). This is the minimal set to constitute the complete GGE. Note that the
product of conserved quantities are in general linearly independent but do not cast in the
string-charge duality. That is, the complete string-charge duality, and subsequently, the com-
plete GGE consists only of functionally independent conserved quantities. We show that a
certain product of conserved quantities is functionally independent from its components rather
than linearly independent in the next section. This indicates that the GGE does not contain all
linearly independent conserved quantities.

3.2. Magnetization as a SFNI conserved quantity

The characteristic properties of the conserved quantities H, (A, s) associated with complex
spin are extensivity and spin-flip non-invariance. On the other hand, the total spin operator,
which is not a family of conserved quantities obtained from the transfer matrix associated with
(half-)integer spins, is also extensive and pin-flip non-symmetric. This similarity motivates us
to expect that the physical meaning of the SFNI conserved quantities is interpreted in terms of
the total spin operator. Indeed, the operator Hy (), sr + is1) coincides with S* up to multiplic-
ity in the large imaginary-spin limit:

s;—00 N—o0

1

AR O . >~ A

lim lim Nm(MHLO()\,sR +isp)|A) = E 1 n; /_OO dhpi(N) = Nh_)n;o N(MSZ\)\). (78)
=

n; are the lengths of Bethe strings where n; = j for positive parity strings and n; = 1 for nega-
tive parity strings [34]. Thus, the conserved quantities without spin-flip invariance is regarded
as a generating function of the total spin operator.

3.3. Remarks on Generalized Gibbs ensemble

The GGE consisting of a set of conserved quantities {Hfé)()\)}jzl,__,l_l UL{H,, (A 51)}
(51 € (C\{%, e, %}) never allows a SFNI conserved quantity and its spin reverse to cast at
15
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the same time. If this is allowed, we would face the problem of non-diagonalizability of the
GGE density matrix, which implies non-existence of the steady state. Due to the existence of
the SFNI conserved quantity, our GGE correctly describes the non-vanishing spin current,
which is remarked in [21, 24]. Note that, we cannot identify whether we are working on the
positive magnetization sector or the negative one only by the information of the Bethe strings
since the Bethe ansatz method discusses only either the sector of positive magnetization or
that of negative magnetization. We must properly choose either of two reference states, i.e. the
fully polarized positively magnetized state |2) or the fully polarized negatively magnetized
state |2) according to the initial condition.

As was showed in [14], the complete GGE of the XXZ model in the gapped regime consists
only of the SFI conserved quantities, due to the emergence of an infinite tower of string types
which invalidating the notion of string parity. The same Bethe-string structure is obtained at
the isotropic point, from which we naturally expect that the complete GGE of the XXX model
consists only of the SFI conserved quantities as well. This means that the XXZ model in these
regimes never exhibits persistent spin transport, although there exist SFNI conserved quanti-
ties which are not necessarily extensive.

4. Ballistic channels for spin currents

Another important application of the SFNI conserved quantities is found in the discussion
of the non-vanishing spin current. Non-vanishing currents are characteristic phenomena
obtained for integrable systems. Ballistic channels of currents are supported by their overlap
with conserved quantities [28, 32, 38]. The existence of ballistic channels for the spin current
of the XXZ model has been in discussion for a long time [3, 37] until the discovery of SFNI
conserved quantities [28]. Besides the spin-flip non-invariance, the key property used in the
proof to show the non-vanishing spin current is the system-size dependence of the square
norms of conserved quantities which cancels the system-size dependence of the overlap in the
thermodynamic limit. Although discussed only for quasilocal conserved quantities, we found
that the cancellation occurs also for non-quasilocal conserved quantities. In this section, we
discuss which non-quasilocal conserved quantities provide ballistic channels of the spin cur-
rent and whether they improve the lower bound of the Drude weight.

4.1. Lower bound for Drude weight

Finite Drude weight indicates the existence of non-vanishing DC current. The Drude weight of
current is evaluated by the current-current correlation in the framework of the linear reponse
theory:

e B /
D(B) = zl—l>r<r>l<>1vlggo ), dr’ (J(0),J(1))s. (79)
The thermal average (-,-)s at the temperature 7 = 37! is reduced to the Hilbert—Schmidt
inner product in the high temperature limit 7 — oo (8 — 0). The Drude weight is bounded
from below by the overlap between the current and conserved quantities [23, 33]. The ballistic
channel supported by Q is obtained as the lower bound for the current-current correlation:

L I [/, 00
lim lim — [ df' (J(0),J({))p > 5= 5>
N5 2Nt/0 R S T T (80)
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which survives in the thermodynamic limit if the ratio [(J, Ox) 5|*/||Qx|[ is of the order of the
system size. For a finite orthogonal set {Qy} such that (Q;, Ox) = d;x]|Qx||* a ballistic channel
supported by each Oy does not overlap and thus we have

T (. Q)
1 lim — [ df (J(0 > .
e N 2Nz/0 (0), ()5 2NZ ol &

The saturation condition for the lower bound is clearly understood by decomposing a cur-
rent into conserved quantities [33]. The idea is to write down a current and any physical
quantity, in principle, by a linear combination of conserved quantities Qy and its non-con-
served part J':

T=> Qi +7. 82)
k

The summation is taken over ‘a complete set’ of linearly independent conserved quantities
[33]. Here the completeness means that the dimension of the linear space spanned by the con-
served quantities are equal to the dimension of the Hilbert space. That is, we need the same
number of conserved quantities as the dimension of the Hilbert space to express an arbitrary
physical quantity in the above form. In this context, the product of conserved quantities must
be regarded as an independent conserved quantity from its components. This is very much
unlike the independence of conserved quantities in the GGE which consists of functionally
independent conserved quantities without containing their product. The coefficients oy are, for
a finite set {Q;};=1,..., to be determined by the inner product (J, Qx) s [13]:

=Y (J,0)sK; " (83)
j=1
Here we used (J', Ox) = 0 [33]. Thus, we have the current-current correlation in terms of the
overlap with the conserved quantities:

n

s =D (1.0)sK; Qi T) 5. (84)

Jk=1

If only a subset of conserved quantities is used, the right hand side gives a lower bound. The
difference from the previous lower bound (80) shows up as the matrix K = (K;;)1<;j<n given
by K;; = (0, Q) 3, which almost consists of the square norms of conserved quantities but
contains their overlap coming from non-orthogonality of conserved quantities. Indeed, the
matrix K is invertible only when all Oy are linearly independent.

The spin current operator Js is SFAS and, therefore, does not have overlap with the SFI
conserved quantities. The finite lower bound of its Drude weight was found to be realized by
the quasilocal conserved quantity Qg (6, so) without spin-flip invariance [27]:

D> >0 Re/ d*0£(0)(Js, Qo1 (0,50))s, D ={0|Imb € (5, 1)}
2N TER ’ 2002
(85)
Since the conserved quantities of the XXZ model have a continuous parameter 6, the summa-
tion in (81) is replaced by the integral. The function f(6) solves

/Dd29' (Q0.1(0,50), Q0.1 (8", 50)) af (0") = (Qo.1(6.50),Js) 5 (86)
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which is again almost the inverse of the square norms of the conserved quantities but contains
their overlap.

4.2. Ballistic channels supported by non-quasilocal conserved quantities

We focus on the high temperature limit 5 — 0 where the thermal average becomes the Hilbert—
Schmidt inner product. Now we ask whether non-quasilocal conserved quantities also provide
ballistic channels for the spin current. From the relation (80), we expect the existence of bal-
listic channels supported by non-quasilocal conserved quantities if the ratio |(Js, Q¢ )|?/||Qk||?
is of the order of the system size N. Since we have already derived the system-size dependence
of the denominator in the second section (64), we now compute the system-size dependence of
the numerator (current-charge overlaps). Remind that the spin current is defined by

N
Js:iZ(aja;H—a;a;l:_l). (87)
n=1
Its overlap with the conserved quantity is then calculated as
(Js. Qrr (0.50)) = 27 Ntr(J{ Q1. (8, 50))

= VOO (1L (0.9), LF 0909 2|
" (88)

Taking into account of the vanishing condition for Jj A L*(0, 5) at s = s, we obtain that only
odd r’ leads to the finite overlap:

(Js, Qrop—1(0,50)) ~ N7

89
<Js, QrQQP(H,S()» = O ( )

From (64) and (89), we obtain
|5 Qrap—1 (050" ©0)

1Qr2p-1(6, 50) 2

for any positive integer p. Therefore, any non-quasilocal conserve quantity Q,, (6, s¢) with
odd r’ provides a ballistic channel for the spin current.

The next question is whether the non-quasilocal conserved quantities Q,5,—| improve the
lower bound of the Drude weight. Actually, it seems that a continuous set of quasilocal con-
served quantities already saturates the lower bound [27]:

l 2
D> Lore [ @07(0)0s Quith.s)s =1 - - (5F) o1

in comparison with the result obtained by the thermodynamic Bethe ansatz [37]. This contra-
dictory-looking fact is explained if the non-quasilocal conserved quantities Q,»,_ are writ-
ten as the convolution, i.e. the continuum generalization of the linear combination of the
quasilocal ones Qg in the thermodynamic limit. As the SFAS operator, the spin current is
decomposed as

1 _
Js = 5/ d’6 Zar,prl(g)(Qr,prl(a’ 50) — UsQrap—1(0,50)Us ') + J§.
D 5
’ 92)
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The convolution relation

Or2p—1(0,50) = / d*0' K, 2p—1(0 — 0,50) Q0.1 (6, 50) (93)
D
reads the spin current in terms of the quasilocal conserved quantities Qg ;:
1 ~ -
Is =5 | E0F01(0)(Qur(6.50) = UsQr (6.50)U5 ) + 5,
D

(94)
810(0) = 3 [ PV (0K 07~ Ou50),
rr’ D

which indeed indicates that the spin current is purely supported by the quasilocal conserved
quantities. We are able to convert the convolution relations (93) into the functional relations
among H,

el (i6, 50)H)?2 (i, 50) - .-

ni,na,... i0’ s . (95 )

_ /D PO K] (0 0 sy (i 50).
Due to the existence of the factor o0, the relation (95) indicates that the product of H, (), so)
is not written by the linear combination of Hy (A, so) unless Hoo(A,so) is proportional to
identity. This is consistent with our statement in the previous section that the GGE for the gap-
less XXZ model consists of functionally independent conserved quantities, i.e. the GGE does
not contain all linearly independent conserved quantities.

5. Concluding remarks

In this paper, we discussed nonequilibrium behaviors of the gapless XXZ model brought by
SENI conserved quantities. First, we showed that the GGE is given by a set of functionally
independent conserved quantities. We derived the generalized string-charge duality which
connects all SFNI conserved quantities by convolution, which is the continuum generaliza-
tion of linear combination. The physical meaning of the SFNI conserved quantities is also
provided. We found that the total spin S* operator is obtained from the large imaginary spin
limit of H, o. The second result is the existence of ballistic channels for the spin current sup-
ported by non-quasilocal conserved quantities. In the derivation, we used the system-size
dependence of the square norms of conserved quantities and the overlap between the current
and the conserved quantities. The saturation of the lower bound for the Drude weight implies
that non-quasilocal conserved quantities are expressed by the convolution of quasilocal ones.
We obtain that this convolution relation is consistent with the statement that the GGE consists
of functionally independent conserved quantities.

As we mentioned in the abstract, a general framework to construct the GGE has not yet
been found. Although we found that the GGE for the gapless XXZ model consists of a set
of functionally independent conserved quantities, it has been proposed that the product of
conserved quantities must be added to correctly describe the steady state of the Lieb—Liniger
model with finite repulsive coupling, if one starts from the initial state with long-range corre-
lation [10]. We leave it as a future work to answer the question which kind of independence is
required for conserved quantities to completely describe the steady state of arbitrary integra-
ble systems. As is known as an example in which the GGE consisting only of local conserved
quantities fails [36], the attractive Lieb—Liniger model would be a good starting point.
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The second question we did not answer in this paper is what is the completeness of con-
served quantities which characterize the steady state. Originally the string-charge duality has
been derived based on the Y-system [15, 20], which is equivalent to the thermodynamic Bethe
ansatz. Our next project would be to put the SFNI conserved quantities in the framework of
the Y-system. There exists the discussion to construct the Baxter’s Q-operator associated with
the complex-spin auxiliary space [2] and we expect this would help to proceed this project.

The third problem we are interested in is how the SFNI conserved quantities lose their
contribution to the long-time steady state at the isotropic point (and also in the gapped regime).
If naively considered, the SFNI conserved quantities are no more extensive in these regimes
and they have no contribution in the thermodynamic limit. Contrarily, the Drude weight has
a finite value in the isotropic case at zero temperature [3], which implies the existence of the
SENI conserved quantities valid in the thermodynamic limit.

In the classical case, it is known that ‘quasi-integrable systems’ possess chaotic structure
although having the singularity confinement property [18]. By analyzing these systems, we
expect to see how nonequilibrium behavior changes as the system becomes toward integrable.
We leave this question as a future work.
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