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1.  Introduction

Image-guided radiotherapy (IGRT) is used routinely during the course of treatment in order to improve its 
accuracy and precision. Cone-beam computed tomography (CBCT) is widely utilized for IGRT to aid in patient 
positioning and assessment of tumor response for possible adaptation (adaptive radiotherapy—ART) (Ghilezan 
et al 2013, Lou et al 2013, Thörnqvist et al 2016). However, CBCT presents some limitations including patient 
motion during image acquisition, photon scattering between the patient and detector, image noise and other 
artifacts (Hansen et al 2018, Landry and Hua 2018). These effects may result in inaccurate CT numbers and lower 
image quality than a diagnostic CT scanner (Peroni 2011). Moreover, the reduced contrast in CBCT can affect 
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Abstract
To evaluate fast-kV switching (FS) dual energy (DE) cone beam computed tomography 
(CBCT) using the on-board imager (OBI) of a commercial linear accelerator to produce virtual 
monoenergetic (VM) and relative electron density (RED) images.

Using an polynomial attenuation mapping model, CBCT phantom projections obtained at 80 
and 140 kVp with FS imaging, were decomposed into equivalent thicknesses of aluminum (Al) 
and polymethyl methacrylate (PMMA). All projections were obtained with the titanium foil and 
bowtie filter in place. Basis material projections were then recombined to create VM images by using 
the linear attenuation coefficients at the specified energy for each material. Similarly, RED images 
were produced by replacing the linear attenuation values of Al and PMMA by their respective RED 
values in the projection space. VM and RED images were reconstructed using Feldkamp–Davis–
Kress (FDK) and an iterative algorithm (iCBCT, Varian Medical Systems). Hounsfield units (HU), 
contrast-to-noise ratio (CNR) and RED values were compared against known values.

The results after VM-CBCT production showed good material decomposition and consistent 
HUVM values, with measured root mean square errors (RMSE) from theoretical values, after FDK 
reconstruction, of 20.5, 5.7, 12.8 and 21.7 HU for 50, 80, 100 and 150 keV, respectively. The largest 
CNR improvements, when compared to polychromatic images, were observed for the 50 keV 
VM images. Image noise was reduced up to 28% in the VM-CBCT images after iterative image 
reconstruction. RED values measured for our method resulted in a mean percentage error of 
0.0%  ±  1.8%.

This study describes a method to generate VM-CBCT and RED images using FS-DE scans 
obtained using the OBI of a linac, including the effects of the bowtie filter. The creation of VM and 
RED images increases the dynamic range of CBCT images, and provides additional data that may be 
used for adaptive radiotherapy, and on table verification for radiotherapy treatments.

PAPER
2020

RECEIVED  
2 September 2019

REVISED  

15 November 2019

ACCEPTED FOR PUBLICATION  

27 November 2019

PUBLISHED  
13 January 2020

https://doi.org/10.1088/1361-6560/ab5c35Phys. Med. Biol. 65 (2020) 015013 (12pp)

publisher-id
doi
https://orcid.org/0000-0002-3073-4131
mailto:jroeske@lumc.edu
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6560/ab5c35&domain=pdf&date_stamp=2020-01-13
https://doi.org/10.1088/1361-6560/ab5c35


2

R Cassetta et al

soft-tissue visibility, thereby limiting CBCT use for organ delineation and re-planning purposes (Lu et al 2011, 
Lütgendorf-Caucig et al 2011). However, since the on-board imager (OBI) used for CBCT acquisition is directly 
mounted to the linac gantry, it represents a convenient and efficient method for patient imaging in the treatment 
position. Thus, methods to improve CBCT image quality are desired.

In the diagnostic imaging community, there is increased interest in dual-energy (DE) CT imaging (Forghani 
et al 2017, Vaniqui et al 2017, Fredenberg 2018). DECT consists of imaging the patient with two different x-ray 
spectra to obtain more detailed information on the tissues within. There are multiple applications of DECT 
imaging that may benefit patients receiving radiotherapy. Among these applications is the generation of virtual 
monoenergetic (VM) CT scans (McCollough et al 2015). These image sets are produced from DE imaging data 
and the CT numbers represent the attenuation coefficients at an exact energy (Yu et al 2012). VM images offer the 
potential to reduce metal artifacts (Lewis et al 2013), increase soft tissue contrast (Noid et al 2018), and provide 
quantitative information on contrast agent concentration (Larsson 2010, Nasirudin et al 2015, Van Elmpt et al 
2016). DECT can also provide additional information on material characterization (Lee et al 2016), including 
relative electron density (RED) and effective atomic number (Z) (Martz et al 2016). Such data has been shown to 
be valuable for treatment planning with low energy brachytherapy sources (Williamson et al 2006, Landry et al 
2016). Recently, DECT has shown promising results for proton therapy, since relative stopping power (RSP) can 
also be derived from these images (Vilches-Freixas et al 2017, Landry and Hua 2018, Zhang et al 2018, 2019).

In this study, we examine the feasibility of fast-kV switching (FS) (Haytmyradov et al 2019) DE-CBCT on the 
OBI of a linac using material decomposition (Wong and Huang 1983). Based on this approach, the scatter-cor-
rected projections are decomposed into images of effective basis material thicknesses on a pixel-by-pixel basis (Li 
et al 2012). The basis material projections are then recombined to create VM images by using the corresponding 
attenuation coefficients at the specified energy for each basis material. This technique may allow for the determi-
nation of the optimal energy for artifact reduction (Li et al 2012) and soft tissue contrast enhancement (Wu et al 
2009). In addition, this approach is used to generate RED images that may be used for adaptive treatment plan-
ning (Vilches-Freixas et al 2017).

2.  Materials and methods

DE imaging using material decomposition involves a number of steps. First, a mapping function must be created 
to relate high/low energy pixel values to equivalent thicknesses of basis materials. Next, following DE-CBCT 
image acquisition, scatter correction and image alignment between consecutive DE projections is performed 
followed by material decomposition. Lastly, selected VM or RED images are reconstructed using the basis 
material projections. Each of these steps will be described in the sections below.

2.1.  Image decomposition—theory
The attenuation of an incident photon beam with intensity I0 can be expressed as a combination of photoelectric 
and Compton interactions along its path (Alvarez and Macovski 1976). In previous studies, this phenomenon 
was taken into account by approximating the attenuation as being due to two basis materials (Alvarez and 
Macovski 1976, Wong and Huang 1983, Li et al 2013b). One of the materials has a relatively high Z to represent 
the photoelectric effect while the other has a relatively lower Z to represent the Compton effect (Lehmann et al 
1981). In practice, the basis materials that are used with this approach are often aluminum (Al) and polymethyl 
methacrylate (PMMA), representing high and low Z, respectively (Wong and Huang 1983, Chuang and Huang 
1988). Therefore, using this approximation, the attenuation of a monoenergetic x-ray beam can be written as:

ln

Å
I

Io

ã
= −µAl (E) tAl − µPMMA (E) tPMMA� (1)

where I is the intensity of the exiting beam, t represents the thickness of each basis material (Al and PMMA) 
traversed by the incident beam and µ is the energy dependent linear attenuation coefficient for each material, 
respectively. For the case of monoenergetic x-ray beams irradiating at two different distinct energies (h and l), the 
transmitted intensities are described using the following equations:

ln

Å
Il

Ilo

ã
= − µAl (El) tAl − µPMMA (El) tPMMA� (2)

ln

Å
Ih

Iho

ã
= −µAl (Eh) tAl − µPMMA (Eh) tPMMA.� (3)

The solution of these equations allows for the individual thicknesses of each basis material to be determined 
analytically (Chuang and Huang 1987).
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Clinical x-ray beams, however, have a spectrum of energies. In this case, the high- and low- energy spectrum 
Sh (E) and Sl (E), result in transmitted intensities that can be represented as (Alvarez and Macovski 1976, Li et al 
2012):

ln

Å
Il

Ilo

ã
=

ˆ
Sl(E) [−µAl (E) tAl − µPMMA (E) tPMMA] dE

� (4)

ln

Å
Ih

Iho

ã
=

ˆ
Sh(E) [−µAl (E) tAl − µPMMA (E) tPMMA] dE� (5)

where S(E) implicitly includes the detector efficiency. Because detailed information on the x-ray spectra are 
required, it is difficult to analytically solve for the basis materials thicknesses in equations (4) and(5). Cardinal 
and Fenster (1990) and Li et al (2012) proposed a solution to this problem consisting of fitting a rational function 
to calibration data. In this study, a 3rd order polynomial was used to fit calibration data consisting of:

tPMMA = a1L + a2H + a3L2 + a4LH + a5H2 + a6L3 + a7L2H + a8LH2 + a9H3� (6)

tAl = b1L + b2H + b3L2 + b4LH + b5H2 + b6L3 + b7L2H + b8LH2 + b9H3� (7)

where H  =  −ln(Ih/I0) and L  =  −ln(Il/I0) are the scatter-corrected (or scatter-free if using simulated data) 
attenuations measured at both energies. That is, using data where the thicknesses of basis materials and 
scatter-corrected x-ray intensities are known, the parameters ai and bi (i  =  1–9) can be determined through 
a minimization process. By applying the calibration function to DE projection data, these images can be 
decomposed into equivalent thicknesses of the individual materials.

2.2.  Calculation of material decomposition parameters
In order to determine the material decomposition parameters of equations  (6) and (7), the scatter-free 
attenuations H and L, expected for a known thickness combination of tAl and tPMMA, were calculated using a 
virtual (calculational) phantom with thickness combinations ranging from 0–450 mm of PMMA (5 mm steps) 
and 0–24 mm Al (1 mm steps) with equations (4) and (5). These calculations were performed by integrating the 
respective kV source spectra, for 80 and 140 kVp, with the detector efficiency and material attenuations for both 
thicknesses over all energies. The kV spectra used on these calculations were simulated previously, including 
the specific tube output window filtration and are used clinically for TrueBeam image reconstructions. The 
detector efficiency was also previously calculated by Monte Carlo simulations, taking into account the geometry 
(scintillator thickness and material) of the PaxScan 4030CB Flat Panel Detector (Varex Imaging, Salt Lake City, 
UT), calculated in 1 kV steps of the source spectra (Lehmann 2019). Following simulation, a least-square fit was 
performed to calculate the parameters a1 to a9 and b1 to b9.

2.3.  DE-CBCT image acquisition
DE-CBCT scans were acquired of the Catphan 604 (The Phantom Laboratory Incorporated, Salem, NY, United 
States) using FS on a TrueBeam version 2.7MR3 (Varian Medical Systems, Palo Alto, CA) in Developer Mode. The 
FS software provides consecutive x-ray pulses that alternate between high and low energies using a programmed 
sequence. The image parameters used were 80 kVp (20 mA, 60 ms) and 140 kVp (20 mA, 10 ms). The relative 
exposures of low and high energies were chosen to generate similar pixel intensities as a precautionary measure, 
since possible lag effects were not quantified in this study. After a full rotation (360 degrees), the FS acquisition 
(11 frames s−1) generated 662 alternating projections (331 projections for each energy) with approximately 
0.55 degree angular increment per energy, corresponding to total exposures of 400 and 66 mAs, respectively. 
The resultant DE frame rate is half of the programmed frame rate with each image pair resulting in one DE 
image. Projections were acquired using a frame grabber system (Matrox Imaging, Quebec, Canada) for off-line 
processing and encoded in 16-bit unsigned integers. Each projection consisted of 768  ×  1024 pixels, acquired 
with dynamic gain mode and with both the titanium foil (0.89 mm) and bowtie filter, corresponding to the 
standard clinical CBCT protocols.

2.4.  VM/RED image production
The method to create VM/RED images is outlined in figure 1. Following FS-DE image acquisition, a scatter 
correction is first applied to the individual images using iTools Reconstruction (Varian). The scatter correction 
method is described by Sun et  al (Sun and Star-Lack 2010), and consists of a scatter kernel superposition 
(SKS) algorithm for deconvolving scatter from projection data. Following scatter correction, the images were 
normalized to the energy-specific air projections, thus treating the bowtie as part of the imaged object. To 
account for the angular separation between high- and low-energy projection pairs that is caused because of the 
rotational acquisition, a 2D image registration step was included in which projection pairs were rigidly registered 
by optimizing the mutual information (MI) metric (Wells et al 1996).

Phys. Med. Biol. 65 (2020) 015013 (12pp)
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Based on the polynomial attenuation mapping (equations (6) and (7)), the projections were then decom-
posed, using a custom MATLAB code, into equivalent thicknesses of PMMA and Al. New intensity projections 
for each VM were created by weighting the basis material projections by the material specific linear attenuation 
coefficients of the chosen energies (50, 80, 100 and 150 keV) and appropriate thickness values. These values were 
substituted into the following equation:

I = I0e−µAltAl−µPMMAtPMMA .� (8)
Additionally, RED images were produced by replacing the attenuation coefficient of Al and PMMA by their 
corresponding RED values in the decomposed projections.

The bowtie filter modifies the spectrum in a non-uniform way, therefore a positional-dependent approach 
needs to be performed. In order to compensate for the bowtie filter, rotational FS images were obtained with the 
bowtie in place. The wobbling effect from the bowtie (Zheng et al 2011) was taken into account by acquiring the 
scans in both the clockwise and counter-clockwise direction. As described previously, both scatter correction and 
image registration were performed prior to material decomposition of the bowtie images. VM/RED projections 
of the bowtie were created using the same approach described previously (figure 1). Bowtie air normalization 
images were computed for ten sectors, by averaging all air projections having the bowtie within a 36° sector. This 
was performed for both rotation directions. These VM bowtie images were placed in the respective air calibra-
tion folder within iTools. The program then normalized all projections with the bowtie air normalization image 
of the appropriate gantry sector. This normalization removed the bowtie from the VM/RED projections leaving 

Figure 1.  VMCBCT/RED image reconstruction steps. FS projections at low- and high-energies are acquired. Scatter correction is 
applied to the projections, rigid image registration is performed and the calibration functions are used to decompose the projections 
into thicknesses of Al and PMMA basis materials to be recombined. The VM/RED intensity images of the bowtie are used for log 
normalization before image reconstruction to remove the bowtie from the projections.

Phys. Med. Biol. 65 (2020) 015013 (12pp)
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only the object to be reconstructed. Conceptually, this is equivalent to subtracting the material thickness images 
of the bowtie-only measurements.

VM/RED projections were then loaded into iTools software for volumetric image reconstruction at the speci-
fied energies, using FDK (FeldKamp et al 1984) and iterative reconstruction with medium noise suppression 
with 0.5  ×  0.5  ×  2.0 mm3 voxels (detail of Varian's iCBCT can be found in Cai et al 2019 and Mao et al 2019). 
Compared to the standard CBCT image reconstruction framework, the scatter correction and analytical spec-
trum correction (beam hardening correction) steps were removed. The former was removed because the scatter 
correction was already applied to the original projections and the latter was not used as the VM projections con-
sisted of a single energy (not a spectrum). Moreover, the beam hardening correction was inherently taken into 
account during the decomposition process. As mentioned previously, iTools performs a normalization of the 
projections to the correspondent VM/RED bowtie image.

In order to assess the consistency of the Hounsfield Units (HU) values generated for VM-CBCT, a calibration 
was used to produce theoretical HU values according to the nominal linear attenuation coefficient values µVM of 
the Catphan 604 inserts provided by the vendor (The Phantom Laboratory Incorporated 2015). Theoretical HU 
values for each VM image (HUVM) were determined using the following equation:

HUVM = 1000(
µVM − µwater

µwater
)� (9)

where µVM and µWater are linear attenuation coefficients of the measured insert and water, respectively, at a 
particular VM value. The theoretical values extracted from equation (9) were used to determine the slope and 
intercept for our VM-CBCT HUVM calibration for each energy evaluated. Before reconstructing the VM-CBCT, 
the calibration curves for HUVM values were defined inside the reconstruction framework for each chosen energy. 
RED images were reconstructed using a similar approach.

2.5.  Contrast-to-noise ratio
The VM images provide data at a particular energy value, and may provide improved soft tissue contrast (Noid 
et al 2018), particularly at low energies. However, the increased contrast often comes at the expense of increased 
image noise (Hatton et al 2009, Gondara 2016, Chen et al 2017, Mentl et al 2017). To evaluate this effect, the 
contrast-to-noise ratio (CNR) was assessed and defined as:

CNR =
Sins − Sbg

σmean
� (10)

where Sins is the average CT number inside the insert with a circular region-of-interest (ROI—242 pixels), Sbg is 
the average CT number for the background (region without inserts), and σmean is the mean standard deviation 
within the insert ROI. CNR values were calculated within the sensitometry slice of the Catphan 604 for the VM-
CBCT images after FDK and iterative reconstruction. For comparison, these quantities were also calculated for 
the 80 and 140 kVp images reconstructed inside iTools, using standard FDK and iterative reconstructions with 
medium noise suppression.

3.  Results

3.1.  Material decomposition
The model for mapping the attenuations was evaluated and fit errors over all values used for the calibration are 
shown in figure 2. The error maps show the difference between the actual thicknesses used for the attenuation 
calculation and the polynomial fit, over a larger thickness range, expected to include most clinical situations. 
Within the fitting range (red rectangle), the residual errors are well below 1 mm for both materials. Outside 
the fitting range, even for large material thicknesses, such as 500 mm of PMMA and 30 mm of Al, the errors are 
within 2 mm. Of note, the errors of the two material thicknesses tend to be in opposite directions, thus reducing 
the total error when the materials are combined to create VM/RED projections. An example of the material 
decomposition for the Catphan 604 into equivalent thicknesses of Al and PMMA is shown in figure 3.

3.2.  VM-CBCT
Figure 4 shows the reconstructed images of the Catphan 604 inserts for each selected VM. The theoretical and 
measured HUVM for each insert are summarized in table 1. The inserts listed in the table begin with air, located 
at the 12 o’clock position on the figure, and proceed in a clockwise manner. Note that for the air inserts, the 
measured value of exactly  −1000 HU is caused by the HU mapping implementation of the reconstruction, 
which clips values below  −1000 HU. Following FDK image reconstruction, the HUVM resulted in RMSE of 20.5, 
5.7, 12.8 and 21.7 HU for 50, 80, 100 and 150 keV respectively. After iterative image reconstruction, the HUVM 
resulted in RMSE of 21.1, 5.8, 11.3 and 20.5 HU for 50, 80, 100 and 150 keV respectively.

Phys. Med. Biol. 65 (2020) 015013 (12pp)
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Figure 2.  Representation of the 3rd order polynomial fit errors of PMMA thickness (left) and the Al thickness (right). The least 
square fit was based on material thickness pairs covering a range of 0–450 mm PMMA and 0–24 mm Al, as indicated by the red 
rectangle.

Figure 3.  Projection images representing the thicknesses of Al (left) and PMMA (right) of the Catphan 604 following material 
decomposition. On the left, the bright part at the borders correspond the thickest part of the bowtie filter. The displayed Al 
thicknesses vary from 0–30 mm and PMMA thicknesses from 0–200 mm.

Figure 4.  VM-CBCT images derived using our method. The FDK reconstructions are shown on the top row and iterative 
reconstruction on the bottom. Window/level: [−1000/1251].

Phys. Med. Biol. 65 (2020) 015013 (12pp)
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The largest errors were observed for the high-density materials at lower energies (50% bone and Teflon). 
These errors were most likely due to uncertainties during the SKS scatter correction which is a water-based 
approach. Thus the scatter through high-density materials may not be modeled accurately (Maslowski et al 
2018). Additionally, a polynomial fit is an approximation and these high density inserts may not be effectively 
modelled using the approach by Alvarez and Macovski. The materials with the smallest differences (excluding 
air inserts), across all energies, between theoretical and calculated values were the LDPE and polystyrene inserts. 
This effect may also be related to the HU calibration process, which tends to reduce errors for inserts in the mid 
HU range.

With respect to the individual VM images, the 50 keV image had the largest dynamic range in HUVM rang-
ing from  −1000 to  +1063. This is expected as the photoelectric effect is dominant at low energies, resulting in 
attenuation coefficient related to Z3 of the materials. At 150 keV, the range in HUVM is  −1000 to  +860.

3.3.  Contrast-to-noise ratio
The results for the CNR are presented for all energies in figure 5. The measurements were made for each insert, 
excluding air, Teflon and 50% Bone, since these are much higher contrast inserts and it was decided to focus on 
inserts with attenuation coefficients more similar to soft tissue. The background values were obtained from a 
circular region of the phantom without the inserts. For FDK reconstruction, the largest relative increase in CNR 
was from 6.2 (80 kVp) to 10.3 (50 keV) for the LDPE insert and the smallest relative increase in CNR was from 
12.0 (80 kVp) to 15.2 (50 keV) for the Delrin insert. For the Acrylic (PMMA) insert, that mimics soft-tissue, the 
increase was from 2.8 (80 kVp) to 3.6 (50 keV). Overall, for the FDK reconstruction, the 50 keV image resulted 
in a mean improvement of 43% and 63% of the CNR compared to 80 kVp and 140 kVp respectively, for the 
materials shown.

Following iterative reconstruction, the relative largest increase in CNR was from 10.2 (140 kVp)  
to 24.8 (50 keV) for the 20% Bone insert and the smallest relative increase in CNR was from 18.9 (140 kVp) to 
21.8 (50 keV) for the Delrin insert. For acrylic, the improvement was from 3.6 (140 kVp) to 6.6 (50 keV). The 
50 keV image resulted in a mean improvement of 41% and 71% of the CNR compared to 80 kVp and 140 kVp 
respectively, for the materials shown.

Table 1.  HU values comparison between theoretical and VM-CBCT for the energies of 50, 80, 100 and 150 keV.

50 keV 80 keV

Theoretical FDK Iterative Theoretical FDK Iterative

Air (Upper) −1000 −1000 −1000 −1000 −1000 −1000

Teflon 1030 1061 1063 913 916 920

Delrin 320 343 343 351 346 343

20% Bone 298 307 309 146 156 152

Acryllic 79 79 78 122 109 110

Air (Lower) −1000 −1000 −1000 −1000 −1000 −1000

Polystyrene −98 −91 −93 −32 −33 −28

LDPE −155 −160 −160 −90 −84 −85

50% Bone 1092 1046 1043 545 544 540

PMP −238 −257 −255 −179 −178 −177

20.5 21.1 5.7 5.8

100 keV 150 keVC

RMSE Theoretical FDK Iterative Theoretical FDK Iterative

Air (Upper) −1000 −1000 −1000 −1000 −1000 −1000

Teflon 895 886 889 874 859 860

Delrin 354 342 336 354 334 333

20% Bone 120 130 131 95 107 109

Acryllic 132 108 116 141 109 113

Air (Lower) −1000 −1000 −1000 −1000 −1000 −1000

Polystyrene −24 −20 −20 −11 −11 −15

LDPE −75 −73 −75 −68 −69 −69

50% Bone 441 469 465 354 408 405

PMP −165 −166 −166 −159 −158 −157

RMSE 12.8 11.3 21.7 20.5

Phys. Med. Biol. 65 (2020) 015013 (12pp)
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3.4.  RED images
By combining the equivalent thicknesses of Al and PMMA weighted by their respective RED, RED images 
were created. This method reduces errors by avoiding the HU-RED conversion on single energy kVp images 
(Hatton et al 2009). For each insert, RED values were measured inside a circular ROI, as described previously. 
The measured RED values are presented and compared to reference values provided by the Catphan 604 vendor 
in table 2. Overall, the average percentage difference between theoretical and measured values was 0.0%  ±  1.8%. 
The measured median percent error was 0.2%. All values were obtained using FDK reconstruction. Iterative 

reconstruction did not result in any significant differences (data not shown).

4.  Discussion

In this study, that is the first of its kind, we obtained FS DE-CBCT scans using the OBI of a commercial linear 
accelerator. The projections were subsequently processed off-line, using a material decomposition approach, 
allowing for the creation of VM and RED images. The HUVM and RED values from these images were compared 
with theoretical values, and showed good overall agreement. Previously, the evaluation of DE-CBCT has been 
studied mainly on bench-top systems (Li et al 2013a, Zbijewski et al 2014, Iramina et al 2018), and more recently 
on a Synergy linear accelerator (Elekta, Stockholm, Sweden) (Men et al 2017). Li et al (2012, 2013a). These 
approaches used a material decomposition approach based on attenuation measurements on scatter-corrected 
calibrations images of physical step wedges. Iramina et al (2018) used a filter-based DE separation technique 
on a bench-top micro-CBCT system. The authors evaluated a split-filter and alternate switching filters during 
image acquisition for spectral separation, and found the latter to be useful for metal artifact reduction. Zbijewski 
et al (2014) investigated the use of differential filtering and regularization for DE-CBCT material classification 
as a function of iodine concentration. This study was also performed on a bench-top system, and demonstrated 
a material classification accuracy over 90%. Men et  al (2017) described a dual scan image acquisition, the 
creation of a look-up-table for basis material decomposition to produce RED images. However, none addressed 
the challenges of using DE-CBCT with the bowtie filter, which is highly desirable clinically (Mail et al 2009). 

Figure 5.  CNR measurements after FDK (stripes) and iterative reconstruction for 50, 80, 100 and 150 keV VM-CBCT and 80 and 
140 kVp CBCT.

Table 2.  Reference and measured RED values. The measurements were taken inside a circular ROI on a Catphan 604 reconstructed slice 
containing all inserts.

  Reference FDK Percent Difference

Air (upper) 0.001 0.001 0.0%

Teflon 1.868 1.856 0.7%

Delrin 1.363 1.340 1.7%

20% bone 1.084 1.101 −1.6%

Acrylic 1.147 1.120 2.3%

Air (lower) 0.001 0.001 0.0%

Polystyrene 0.998 0.994 0.4%

LDPE 0.945 0.942 0.3%

50% bone 1.312 1.365 −4.0%

PMP 0.853 0.852 0.1%

Mean % difference 0.0%

Standard deviation 1.8%

Phys. Med. Biol. 65 (2020) 015013 (12pp)
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Moreover, our studies were obtained using a FS acquisition on a linac, thus reducing the potential of motion 
artifacts when using a dual scan approach.

Compared to material decomposition calibration using a physical step wedge phantom, the virtual phantom 
allows for a much larger thickness range with user selected thickness increments. Moreover, this method avoids 
errors derived from imperfect scatter correction (Maslowski et al 2018), especially for thicker regions of a physi-
cal phantom. Within the fitting range, 0–24 mm for Al and 0–450 mm for PMMA, the residual errors were within 
1 mm for both materials. The errors from the material mapping for the two materials tended to be in the opposite 
directions, which results in a total error reduction when the materials are combined in VM/RED projections. 
Therefore, our theoretical calibration is capable of providing material decomposition, being a fast and robust 
way to address this fundamental step for VM/RED image production. Finally, the theoretical approach allows for 
verification of the fit quality beyond the thickness range used for the least-square fit. However, such an approach 
requires detailed knowledge of x-ray spectra and detector response. An alternative approach to the presented 
calibration uses maximum likelihood basis-component decomposition.

Overall, the HUVM values generated from our approach agree well with theoretical values. For the range 50–
150 keV, the RMSE of 16.5 (FDK) and 16.0 (iterative) HU values are similar to those found in the literature. Zucca 
et al (2016) observed HUVM RMSE values of 26.8 HU and 13.4 HU, for GE and Siemens DE-CT scanners, respec-
tively. In their study, VM images were created from 40–140 keV. The maximum RMSE values observed were 43.9 
and 35.8 for the high Z material, for both scanners respectively. Sellerer et al (2018) compared different DE-CT 
scanners using an abdominal phantom. The comparison was made between three types of DE-CT scanners: 
dual-layer CT (DLCT), rapid-kVp-switching CT (KVSCT) and dual-source CT (DSCT). Similar to our study, 
the authors concluded that the HU values agreed well with theoretical results (Schlomka et al 2008).

VM-CT has been studied to define the optimal energy for tumor signal-to-noise (SNR), which would benefit 
clinical follow-up and improve contour delineation (Wichmann et al 2014, Albrecht et al 2015, Lam et al 2015). 
Further studies are required on VM-CBCT to determine the optimal energy for tumor and soft tissue contrast for 
each anatomical site. Wang et al (2019) described a clinical protocol to determine the optimal VM in twin beam 
CT for organ segmentation of head-and-neck patients. In general, low energy VM images can provide enhanced 
image contrast, which in turn may result in improved organ segmentation (Lu et al 2011, Lütgendorf-Caucig et al 
2011). Bazalova et al, demonstrated that DE imaging may also provide improved dose calculations compared to 
using single energy CT (Bazalova et al 2008); therefore the demonstrated accuracy in this study can potentially 
contribute to improved CBCT dose calculations.

In this study, RED images were created by replacing the µ values of the basis materials with the corresponding 
RED values when creating the projections. Following image reconstruction, RED values were measured within 
the inserts on the sensitometry slice of the Catphan 604 phantom. Compared to the reference values provided by 
the vendor, our method obtained a mean percent error of 0.0%  ±  1.8%. The largest uncertainties were observed 
for the bone inserts, which are known to be a problematic region for correct RED and RSP measurement (Mat-
sufuji et al 1998, Kanematsu et al 2012, Peng et al 2016). Nevertheless, the results for the other inserts compare 
well to the 2% maximum error observed in the Men et al (2015) study. The mean error measured for our RED 
estimation method was 0.00  ±  0.02 which compares well with Schyns et al (2017) who observed a mean error 
of 0.01  ±  0.03. In that study, they used 50 and 90 kVp with an integrated CBCT on a small animal irradiator that 
acquired the images consecutively. Our median error of 0.22% for RED compares favorably to the 1.4% found by 
Shen et al (2018) which used 3 distinct energies.

The results of using the iterative CBCT reconstruction improved CNR by reducing image noise, consistent 
with the work published by Mao et al (2019). The noise reduction improved the CNR values of the 50 keV images 
by approximately 71%, for the measured inserts, compared with the 140 kVp images. Note, however, that the 
exact amount of noise reduction related to the iterative reconstruction is somewhat arbitrary, since it depends on 
the selected noise suppression settings.

An important consideration of the proposed method is that the scatter correction performed on the projec-
tions uses a water-based approach. Therefore, a projection of the Catphan with high-density inserts would be 
interpreted and corrected as water slabs. This effect may explain the largest error found for HU values of high-
density materials at lower energies, since we have a larger contribution of the Al base material when weighting the 
decomposed thicknesses into a VM projection. Future studies will involve the use of more sophisticated scatter 
correction algorithms, such as Acuros (Maslowski et al 2018, Wang et al 2018).

An advantage of our approach is that it uses the Varian image reconstruction algorithms, which are clinically 
available and computationally efficient. Therefore, this method allows one to decide the best energy for a desired 
task, and create a VM-CBCT in a timely manner for clinical applications such as image-guidance, treatment 
planning, dose recalculation for ART (Hudobivnik et al 2016, Peng et al 2016, Zhu and Penfold 2016, Men et al 
2017, Vaniqui et al 2017, Vilches-Freixas et al 2017), among other applications discussed in the literature (Yu et al 
2012, Patino et al 2016, Van Elmpt et al 2016, Forghani et al 2017, Fredenberg 2018). The iTools software allows 
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for integration of a MATLAB script within its image reconstruction pipeline, which would completely automate 
our basis material decomposition and VM-CBCT production method.

There are a number of limitations with this study. First, the full scan takes approximately one minute. While 
this works well for phantoms, there can be a significant amount of organ or patient motion during the image 
acquisition. However, the implementation of FS DE-CBCT avoided the additional second scan used in a previous 
study (Men et al 2017). Additionally, the time can be further reduced by using half-arc scans or faster CBCT scan 
times (Mao et al 2019). Another limitation is that scans were obtained using a full-fan technique, resulting in a 
limited field of view (FOV). To facilitate the calibration, we assumed the beam spectra were spatially uniform, 
and the heel effect was not taken into account. To take into account a larger FOV, a half-fan scan, with the detec-
tor offset, would be required. In the latter case, the calibration process may exhibit a positional dependence that 
needs to be taken into account. Also, the high- and low-energy projections were acquired consecutively with a 
separation of approximately 0.55 degrees, resulting in the need to align the images prior to basis material decom-
position. Thus, future studies are required to determine whether frame interpolation or an increased frame rate 
would present any improvement to current results. Future directions may also include determining the optimal 
kVp/mA settings for imaging with fast-kV switching.

5.  Conclusion

We presented a method for obtaining FS DE-CBCT images using the OBI of a linear accelerator including the 
effects of the bowtie filter. The creation of VM and RED images increases the dynamic range of CBCT images, and 
provides additional data that may be used for adaptive radiotherapy, and on table verification for radiotherapy 
treatments.
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