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1.  Introduction

The concept of Diffusing alpha-emitters radiation therapy (DaRT) was first introduced by Arazi et al (2007), as 
a method for treating solid tumors with alpha particles. In DaRT, tumors are treated by the insertion of specially 
prepared radioactive sources, loaded with low activities of radium-224 (224Ra), which continuously release from 
their surface its short-lived alpha-emitting daughter atoms. These spread within the tumor by the combined 
effects of diffusion and convection (vascular and interstitial), delivering a lethal dose over several mm around 
each source through their alpha decays.

The 224Ra decay chain is shown in figure 1. The source—a small-diameter cylinder carrying a few µCi of 224Ra 
several nanometers below its surface—is inserted by a fine-gauge needle applicator into the tumor. Once inside 
the tumor and over a period determined by the 224Ra half-life (3.632 d), the source releases radon-220 (220Rn, 
55.6 s half-life), polonium-216 (216Po, 0.145 s half-life), lead-212 (212Pb, 10.64 h half-life) and thallium-208 
(208Tl, 3.053 min half-life) atoms, while 224Ra remains fixed on the source surface1. 220Rn, a noble gas, diffuses in 
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Abstract
Diffusing alpha-emitters radiation therapy (‘DaRT’) is a new cancer-treatment modality, which 
enables treating solid tumors by alpha particles. The treatment utilizes implantable seeds embedded 
with a low activity of radium-224. Each seed continuously emits the short-lived alpha-emitting 
daughters of radium-224, which spread over several mm around it, creating a ‘kill region’ of high 
alpha-particle dose. DaRT is presently tested in clinical trials, starting with locally advanced and 
recurrent squamous cell carcinoma (SCC) of the skin and head and neck, with promising results 
with respect to both efficacy and safety. This work aims to provide a simple model which can serve 
as a zero-order approximation for DaRT dosimetry, allowing for calculating the macroscopic alpha 
particle dose of a point source, as a basis for more realistic source geometries. The model consists of 
diffusion equations for radon-220, lead-212 and bismuth-212, with the other short-lived daughters 
in local secular equilibrium. For simplicity, the medium is assumed to be homogeneous, isotropic 
and time-independent. Vascular effects are accounted for by effective diffusion and clearance terms. 
To leading order, the alpha particle dose can be described by simple analytic expressions, which shed 
light on the underlying physics. The calculations demonstrate that, for a reasonable choice of model 
parameters, therapeutic alpha-particle dose levels are obtained over a region measuring 4–7 mm in 
diameter for sources carrying a few µCi of radium-224. The model predictions served as the basis for 
treatment planning in the SCC clinical trial, where treatments employing DaRT seeds carrying 2 µCi  
of radium-224 and spaced 5 mm apart resulted in  ∼80% complete response of the treated tumors 
with no observed radiation-induced toxicity. The promising results of the SCC clinical trial indicate 
that in spite of its approximate nature, the simple diffusion-based dosimetry model provides a 
quantitative starting point for DaRT treatment planning.

PAPER

1 All nuclear data, including isotope half-lives, alpha particle energies and branching ratios are taken from Brookhaven 
National Laboratory’s (BNL) National Nuclear Data Center, NuDat 2.7 online database, www.nndc.bnl.gov/nudat2/ 
Sonzogni (2005).
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the extra- and intra-cellular space near the source with no chemical interactions, occasionally entering and leav-
ing the porous network of tumoral blood vessels. It contributes two alpha particles through its own decay and 
through that of its short-lived daughter 216Po, which disintegrates essentially at the same point. 212Pb enters the 
tumor either by direct release from the source or following the decay of 216Po away from the source, giving rise to 
a third alpha particle: it beta-decays to bismuth-212 (212Bi, 60.55 min half-life), which either alpha-decays to 208Tl 
or beta-decays to polonium-212 (212Po, 0.299 µs half-life), which then alpha-decays to stable lead-208. As 224Ra 
is itself the result of the alpha decay of thorium-228 (228Th, 1.913 y half-life), the production of 224Ra-bearing 
sources is based on the use of a 228Th generator.

DaRT has been extensively studied in vitro and in vivo on a large variety of cancer cells and mice-borne 
tumors of murine and human origin, both as a stand-alone treatment and in conjunction with chemotherapy 
and immunotherapy (Arazi et al 2007, Cooks et al 2008, 2009a, 2009b, Lazarov et al 2011, Cooks et al 2012, 
Horev-Drori et al 2012, Milrot et al 2013, Confino et al 2015, 2016, Reitkopf-Brodutch et al 2015). The inser-
tion of a single DaRT source into tumors with a typical diameter of 5–7 mm was shown to drastically reduce 
the tumor growth rate for all of the studied cell lines, leading in many cases to significant tumor shrinkage, up 
to complete regression with no recurrence. Importantly, in all cases of complete regression, there was no sign of 
damage to the skin adjacent to the tumor.

Autoradiography measurements (Arazi et al 2007, Cooks et al 2009a, 2012, Horev-Drori et al 2012, Reitkopf-
Brodutch et al 2015) demonstrated that, in all of the tumor models investigated, the alpha emitting atoms indeed 
spread over significant distances around the source, creating a high-dose ‘kill region’ measuring several mm in 
size. In murine squamous cell carcinoma (SCC), for which the largest autoradiography dataset was gathered, the 
average diameter of the region receiving an estimated alpha particle dose of  >10 Gy was  ∼5–6 mm for sources 
carrying  ∼0.4–4 µCi (∼15–150 kBq) 224Ra (Arazi et al 2007). While a considerable fraction of the 212Pb activity 
leaves the tumor through the blood and spreads throughout the body, biokinetic and internal-dosimetry mod-
eling of this effect in humans showed that the expected dose to distant organs falls at least an order of magnitude 
below the maximal tolerated levels for realistic treatment scenarios (Arazi et al 2010).

Starting in 2017, DaRT is under investigation in clinical trials, within the framework of Alpha TAU Medical 
Ltd. The first-in-human study focuses on locally advanced and recurrent SCC of the skin and head and neck, and 
its initial results are reported on in a recent publication (Popovtzer et al 2019). Tumors were treated by the inser-
tion of multiple DaRT sources (‘seeds’), each carrying 2 µCi (74 kBq) 224Ra, at a nominal spacing of 5 mm (in 
more recent treatments the seed activity was changed to 3 µCi). All treated tumors displayed positive response 
(30%–100% shrinkage) starting within days after the treatment, and close to 80% showed complete regression, 
with no relapse in the vast majority of cases within the followup period. Side effects in all cases were mild to 
moderate, with no sign of radiation-induced damage to adjacent tissue or distant organs. Radioactivity measure-
ments of 212Pb in the blood and urine were consistent with the predictions of the biokinetic model (Arazi et al 
2010), with typical estimated organ doses of a few cGy.

Figure 1.  The 224Ra decay chain. Data taken from the NuDat2 database website, www.nndc.bnl.gov/nudat2/
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The recent introduction of DaRT in clinical settings calls for the development of detailed tumor dosimetry. 
This is a broad effort, which will be divided into several publications, with the aim of laying the theoretical basis 
for DaRT dosimetry, and provide a quantitative starting point for treatment planning. The present manuscript 
focuses on a zero-order approximate model for the macroscopic alpha particle dose, introducing the key param
eters influencing the spread of alpha emitters in the treated tumor and understanding the spatial and temporal 
behavior of the dose profile. We present the basic assumptions leading to the model equations and solve them 
numerically for the case of an ideal point source, as a basic building block for more complicated geometries. We 
further describe approximate solutions to the model equations, providing physically-motivated dose estima-
tions without resorting to full numerical computation. The subsequent theoretical publications will extend the 
discussion to additional source geometries and arrays of multiple sources, provide calculations of the beta and 
gamma dose, and relate the macroscopic dose estimates to microdosimetric quantities. An additional manu-
script will discuss in detail the experimental methodology employed to determine the model parameters.

2.  General considerations regarding the transport of 224Ra progeny inside the tumor

The tumor microenvironment into which 224Ra releases its daughters is complex and dynamic. The local 
properties of the medium can substantially vary between different sub-regions of the tumor, and may also 
change with time—both because of ‘normal’ biological processes (e.g. cell division) and due to the treatment 
itself, which leads to the formation of a necrotic region around the source. The removal of dead cell debris results 
in tumor shrinkage—starting within the first few days after the treatment (Popovtzer et al 2019)—which, in turn, 
can bring the seeds closer together.

The vascular architecture of the tumor, which affects the migration of 224Ra progeny atoms both through 
convection and partial clearance, is very different from that of normal tissue (Jain and Baxter 1988). The tumor 
interior is largely avascular and necrotic (or semi-necrotic), while the outer regions comprise the angiogenically-
formed blood network. The tumor vascular system is highly chaotic, consisting of thin and leaky tortuous capil-
laries, with nearby ‘pools’ of still fluid. Since tumors do not have a lymphatic network, fluids slowly ooze out by 
interstitial flow, driven by the elevated interstitial fluid pressure in the tumor bulk (Jain 2001).

224Ra progeny atoms migrate through this complicated heterogeneous environment by a combination of 
diffusion and convection (vascular and interstitial). Luckily, of the six radionuclides entering the tumor, only 
three—220Rn, 212Pb and 212Bi – warrant detailed discussion. The other three isotopes—216Po, 212Po and 208Tl—
are sufficiently short-lived to safely assume that they are in local secular equilibrium with their parents. In the 
following section we write the most general equations describing the transport of 220Rn, 212Pb and 212Bi through 
the tumor, before turning to the simplified approach described in section 3.

2.1.  220Rn and 216Po
220Rn leaves the source surface with a desorption probability Pdes(Rn) ∼ 40%—i.e. for each decay of 224Ra below 
the surface there is a  ∼40% probability that 220Rn will enter the tumor. Pdes(Rn) is determined experimentally 
by alpha spectroscopy, as described in appendix A. 220Rn release from the source occurs by direct recoil, with 
a maximal kinetic energy of 103 keV. The recoiling atom, which most likely enters the tumor as a positive ion 
(Cano and Dressel 1965, Gunter et al 1966) slows down within a few nm to thermal energy, collects its missing 
electrons and continues by diffusion2.

The migration of 220Rn inside the tissue can be described in the most general form (in the framework of a 
continuum approach) by the following transport equation:

∂nRn

∂t
+∇ · jRn = sRn − λRnnRn� (1)

where nRn (r, t) is the local concentration (number density) of 220Rn atoms (in units of cm−3), sRn (r, t) is the 
220Rn source term (in units of cm−3 s−1), and λRn is the decay rate constant 

(
λ = ln 2/τ1/2

)
. The current density 

jRn (r, t) is the net vector flux of 220Rn atoms (in units of cm−2 s−1). In the most general case, it is composed of 
both diffusive and convective terms:

jRn (r, t) = −DRn (r, t)∇nRn (r, t) + nRn (r, t) v (r, t)� (2)

where DRn (r, t) is the local effective diffusion coefficient (in units of cm2 s−1) and v (r, t) is the local fluid velocity 
field (describing both blood and interstitial fluid flow). Note that both the diffusion coefficient and velocity field 
depend, in general, on space and time. The spatial dependence may be characterized by abrupt changes over 
cellular distances. The temporal dependence, describing biological processes occurring inside the tissue (in part, 
as a result of the treatment itself), is characterized by changes occurring over a typical time scale of days.

2 An alternative source production method involves the application of a thin polymer layer on the source surface. In this case, 
220Rn diffuses out from the layer into the tumor as a neutral atom.

Phys. Med. Biol. 65 (2020) 015015 (24pp)
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In the absence of inadvertent 224Ra release from the DaRT source, sRn (r, t) is described mathematically as a 
delta function for a point source, or as a flux boundary condition for a finite source. For a point source:

sRn (r, t) = Pdes(Rn)Γsrc
Ra (0) e−λRatδ (r)� (3)

where t  =  0 is the time of source insertion into the tumor and Γsrc
Ra (t) = Γsrc

Ra (0) e−λRat  is the 224Ra activity on the 
source.

216Po enters the tumor either by recoil (with a maximal kinetic energy of 116 keV), following alpha decays of 
220Rn below the source surface, or by alpha decays of 220Rn away from the source. The diffusive spread of 216Po 
inside the tissue can be estimated based on its mean lifetime, τPo216 � 0.2 s, and an order-of-magnitude estimate 
for its diffusion coefficient DPo216 ∼ 10−6  cm2s−1 (which is typical for positive ions in water):

216Po spread ∼
√

DPo216τPo216 ∼ 4 µm.� (4)

Hence, for all practical purposes, 216Po emitted from the source decays essentially on the source surface, while 
216Po created away from the source is in local secular equilibrium with 220Rn and their specific activities are the 
same:

λPo216nPo216 (r, t) = λRnnRn (r, t) .� (5)

2.2.  212Pb
The next radionuclide in the chain is 212Pb, which enters the tumor via three possible routes: (1) direct recoil from 
the source (with a maximal kinetic energy of 128 keV), following 216Po alpha decay events below its surface; (2) 
alpha decays of 216Po atoms which have recoiled out of the source and (3) alpha decays of 216Po following 220Rn 
decays away from the source. Summed over these three possible routes, the effective desorption probability of 
212Pb, Pef f

des(Pb) (i.e. the total probability that a 212Pb atom enters the tumor following a 224Ra decay event on the 

source), is found experimentally to be  ∼55%, employing a methodology described in appendix A.
Following its creation, 212Pb probably remains a free ion for a short while (Lide 2008). It is well known, how-

ever, that the percentage of bio-available lead (i.e. free lead ions) in tissue is very low (Payne et al 1999). Thus, 
the free ion state is short-lived and 212Pb can be assumed to rapidly bind to various surrounding proteins (Grif-
fin and Matson 1972, Fowler 1998, Smith et al 1998). The 212Pb population inside the tumor is therefore likely 
composed of several molecular species, each having its own effective diffusion coefficient (depending on the 
mass and shape of the binding protein), which may also interchange 212Pb among themselves. It is further well 
established that  ∼99% of stable lead atoms inside the blood are concentrated inside the red blood cells (RBCs). 
The typical time it takes a lead atom to pass from the plasma to the RBCs is of the order of a few minutes, while 
the typical time characterizing the opposite transition (RBCs to plasma) is several days (Leggett 1993). Thus, red 
blood cells effectively act as traps for 212Pb atoms entering the blood.

This complicated problem may be described by a set of equations, each pertaining to one 212Pb molecular 
species, with its own diffusion coefficient and source terms, and with additional terms describing 212Pb exchange 
between species. However, in the absence of detailed information required for such complete analysis, we choose 
here to lump all species together, leading to

∂nPb

∂t
+∇ · jPb = sPb − λPbnPb.� (6)

Here, nPb (r, t) is the total 212Pb number density (sum over the number densities of all species), jPb (r, t) is the 
total current density, sPb (r, t) is the source term (describing 212Pb creation following 216Po decays on the source 
and inside the tumor) and λPb is the radioactive decay rate constant. Similar to 220Rn, the 212Pb current density 
comprises diffusive and convective terms:

jPb (r, t) = −DPb (r, t)∇nPb (r, t) + nPb (r, t) v (r, t)� (7)

where DPb (r, t) is the local effective diffusion coefficient, representing a weighted average over the diffusion 
coefficients of all species. For the case of a point source, the source term is

sPb (r, t) = λPo216nPo216 (r, t) +
(

Pef f
des (Pb)− Pdes (Rn)

)
Γsrc

Ra (0) e−λRatδ (r)

= λRnnRn (r, t) +
(

Pef f
des (Pb)− Pdes (Rn)

)
Γsrc

Ra (0) e−λRatδ (r)
� (8)

where we have assumed local secular equilibrium between 216Po and 220Rn (equation (5)).

2.3.  212Bi, 212Po and 208Tl
Since typical recoil kinetic energies in beta decays are a few eV, 212Bi is generally not emitted directly from the 
source, but is rather created inside the tumor in 212Pb decays. Similarly to its parent, it might also exist in several 

Phys. Med. Biol. 65 (2020) 015015 (24pp)
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molecular forms. The transport equation relating to the total 212Bi number density can be derived in a similar 
fashion (by summing over all species):

∂nBi

∂t
+∇ · jBi = sBi − λBinBi.� (9)

In this case, the source term is simply

sBi (r, t) = λPbnPb (r, t)� (10)
212Po is in local secular equilibrium with 212Bi and hence (figure 1):

λPo212nPo212 (r, t) = 0.64λBinBi (r, t) .� (11)

Although 208Tl, with its 3 min half-life, may show some redistribution relative to 212Bi, this effect is of little 
dosimetric importance. Hence we assume that, like 212Po, 208Tl is in secular equilibrium with 212Bi:

λTlnTl (r, t) = 0.36λBinBi (r, t) .� (12)

3.  The diffusion-leakage model

The full-blown transport equations given above provide the most general framework for describing the migration 
of 224Ra progeny atoms inside the tissue. However, they are of limited practical use, since their complete solution 
requires detailed three-dimensional and time-dependent information on the sub-mm scale which is presently 
unavailable in clinical settings. It is thus natural to seek approximate modeling techniques that, while avoiding 
any pretension to accurately describe this highly complicated problem, will provide quantitative dosimetric 
estimates that could serve as a starting point for actual treatment planning. We propose a simple model to that 
effect, based on the following simplifying assumptions.

	 •	�224Ra daughter migration inside the tumor is predominantly diffusive. Vascular convection by the tortuous 
capillaries is characterized by a short correlation length (relative to therapeutically significant distances) and 
can thus be incorporated into an effective diffusion coefficient. Interstitial convection is neglected.

	 •	�The tissue is homogeneous, isotropic and time-independent. All model parameters are constant in space and 
time.

	 •	�212Pb migration can be described using a single effective diffusion coefficient representing the average over all 
212Pb molecular species.

	 •	�212Pb atoms reaching major blood vessels are trapped in red blood cells and immediately cleared from the 
tumor. This process is described by a uniform volumetric sink term. The finite clearance rate reflects the time 
it takes migrating 212Pb atoms to reach such traps.

	 •	�Since the short-lived 220Rn atoms are free to diffuse with no chemical interaction through blood vessels and 
RBCs, the equation for 220Rn does not include a sink term (i.e. blood vessels do not act as traps for 220Rn).

	 •	�The diffusion equation for 212Bi does include a sink term. However, this is considered a second order effect.

Under these assumptions, the number densities of 220Rn, 212Pb and 212Bi are governed by the following diffusion 
equations:

∂nRn

∂t
= DRn∇2nRn + sRn − λRnnRn

� (13)

∂nPb

∂t
= DPb∇2nPb + sPb − λPbnPb − αPbnPb

� (14)

∂nBi

∂t
= DBi∇2nBi + λPbnPb − λBinBi − αBinBi.� (15)

Note that the clearance (sink) term in equation (14) is given by αPbnPb, where 1/αPb is the average clearance time. 
The corresponding term in equation (15) is αBinBi.

4.  Integral properties of the diffusion-leakage model

Before delving into the spatial and temporal properties of the solutions to equations (13)–(15), it is worthwhile 
to investigate the integral properties of these equations. This provides insights on quantities which can be 
determined experimentally, and helps bracketing the values of some of the model parameters. We begin by 
rewriting equations (13)–(15) in a form that gives explicit representation of the current terms:

Phys. Med. Biol. 65 (2020) 015015 (24pp)
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∂nRn

∂t
+∇ · jRn = sRn − λRnnRn� (16)

∂nPb

∂t
+∇ · jPb = sPb − (λPb + αPb) nPb� (17)

∂nBi

∂t
+∇ · jBi = λPbnPb − (λBi + αBi) nBi.� (18)

We now integrate the equations over all space. We assume that the tumor is large enough so that the current 
densities vanish on its external boundary (this assumption holds to an accuracy of  <1% if the tumor radius is of 
the order of a few mm as discussed below). We reiterate that 212Pb and 212Bi leakage from the tumor is considered, 
in this model, to be a volumetric effect (described by the respective sink terms αPbnPb and αBinBi), rather than a 
surface effect. Thus, the current densities can be assumed to vanish on the periphery without contradicting the 
observed leakage of radionuclides from the tumor through the blood.

The total number of atoms of species k inside the tumor, Ntum
k (t), is

Ntum
k (t) =

∫

Ω

nk(r, t) d3r� (19)

where Ω denotes the entire tumor. The volume integral of the current terms (for all species) is evaluated using the 
divergence theorem:

∫

Ω

∇ · jkd3r =

∫

∂Ω

jk · n ds = 0� (20)

where ∂Ω denotes the external surface of the tumor and n is a unit surface vector.

4.1.  220Rn
The integrated source term for 220Rn is the rate of 220Rn release from the source:

∫

Ω

sRn d3r = Pdes(Rn)Γsrc
Ra(0)e

−λRat .
� (21)
Thus the integral of equation (16) over all space gives

dNtum
Rn

dt
= Pdes(Rn)Γsrc

Ra(0)e
−λRat − λRnNtum

Rn .
� (22)
Since Ntum

Rn (0) = 0,the total 220Rn tumor activity Γtum
Rn (t) = λRnNtum

Rn (t) is

Γtum
Rn (t) =

λRn

λRn − λRa
Pdes(Rn)Γsrc

Ra(0)
(
e−λRat − e−λRnt

)
.� (23)

Since λRn
λRn−λRa

= 1.0002, it converges within several minutes to

Γtum
Rn (t) ≈ Pdes(Rn)Γsrc

Ra(0)e
−λRat .� (24)

4.2.  212Pb
The source term for 212Pb for the case of a point source is given in equation (8). Its integral of over all space gives

∫

Ω

sPb(r, t) d3r = Γtum
Rn (t) +

(
Pef f

des(Pb)− Pdes(Rn)
)
Γsrc

Ra(0)e
−λRat

= Pef f
des(Pb)Γsrc

Ra(0)e
−λRat

� (25)

where we used equation (24). Thus, the integral of equation (17) over all space gives

dNtum
Pb

dt
= Pef f

des(Pb)Γsrc
Ra(0)e

−λRat − (λPb + αPb)Ntum
Pb .� (26)

Since Ntum
Pb (0) = 0 the total tumor 212Pb activity Γtum

Pb (t) = λPbNtum
Pb (t) is

Γtum
Pb (t) =

λPb

λPb + αPb − λRa
Pef f

des(Pb)Γsrc
Ra(0)

(
e−λRat − e−(λPb+αPb)t

)
.� (27)

The initial buildup is characterized by an effective 212Pb lifetime, which reflects both its radioactive decay and 
clearance from the tumor:

Phys. Med. Biol. 65 (2020) 015015 (24pp)
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τ
ef f
Pb =

1

λPb + αPb
.� (28)

Depending on the leakage rate coefficient, the total tumor 212Pb activity reaches a maximum  ∼1–2 days after the 
treatment.

The total number of 212Pb decays inside the tumor, Ntum
decays(Pb) is found by integrating Γtum

Pb (t) from zero to 
infinity:

Ntum
decays(Pb) =

∫ ∞

0
Γtum

Pb (t)dt =
λPb

λPb + αPb
Pef f

des(Pb)Nsrc
Ra(0)� (29)

where Nsrc
Ra(0) = Γsrc

Ra(0)τRa is the initial number of 224Ra atoms on the source (for example, for a 3 µCi source 
Nsrc

Ra(0) = 5.0 · 1010). The total number of 212Pb atoms released from the source is

Nrel(Pb) = Pef f
des(Pb)Nsrc

Ra(0).� (30)

We define the 212Pb leakage probability as the probability that a 212Pb atom released from the source decays 
outside of the tumor. It is equal to one minus the probability that a 212Pb atom released from the source decays 
inside the tumor. Hence

Pleak(Pb) = 1 −
Ntum

decays(Pb)

Nrel(Pb)
=

αPb

λPb + αPb
.� (31)

Depending on the ratio αPb/λPb, Pleak(Pb) changes from 0 to 1. In particular, if αPb = λPb, Pleak(Pb) = 1
2 .

4.3.  212Bi
Integrating equation (18) over the entire tumor leads to

dNtum
Bi

dt
= λPbNtum

Pb − (λBi + αBi)Ntum
Bi .� (32)

The full solution of this equation shows that the total activity of 212Bi follows closely that of 212Pb, lagging 

by  ∼2–3 h. For t � τ
ef f
Pb , the asymptotic ratio between the 212Bi and 212Pb activities becomes

Γtum
Bi asy(t)

Γtum
Pb asy(t)

=
λBi

λBi + αBi − λRa
.� (33)

In the special case αBi = 0, this ratio equals 1.012. Experimental data in mice SCC tumors (Arazi et al 2007) 
suggest that this is very nearly the case in reality: values measured for tumor samples with masses in the range 
20–50 mg were 1.03 ± 0.15, and for 100–200 mg samples—0.98 ± 0.08. Thus, it appears that αBi � λBi and may 
be set, in most cases, to zero. In other words, 212Bi leaves the tumor primarily as a result of 212Pb clearance by the 
blood, with no ‘independent’ leakage.

Figure 2 shows the total (normalized) activity of 224Ra on the source, and the tumor activities of 220Rn, 212Pb 
and 212Bi, for a typical choice of the desorption probabilities and leakage rate coefficients.

5.  Numerical values for the diffusion-leakage model parameters

The predictions of the diffusion-leakage model obviously depend on the choice of numerical values for its 
parameters—the effective diffusion and leakage rate coefficients. In particular, these parameters, which can vary 
between tumors of different histologies, determine the size of the ‘kill region’ of a single DaRT source and the 
inter-source spacing in DaRT-source lattices. The following section provides reasonable ranges for the values of 
the model parameters. We rely on both experimental data obtained in mice-borne tumors (for which an example 
is given in section 7.5, deferring detailed description to a separate publication), and additional information from 
the literature. We highlight, in particular, the numerical values obtained from experiments on squamous cell 
carcinoma (SCC) tumors in mice. These presently serve as the starting point for DaRT treatment planning for 
oral cavity and skin SCC tumors in clinical trials.

5.1.  220Rn
Direct measurement of 220Rn diffusion in DaRT-treated mice tumors is challenging because of its one-minute 
half-life. Our estimates for 220Rn therefore rely on data from the literature.
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	 •	�The diffusion coefficient of radon in water at 37 ◦C is 1.9 · 10−5 cm2 s−1 (Jähne et al 1987).
	 •	�In the NRC report on radon in drinking water (NRC 1999), the authors assumed a value of 0.5 · 10−5 cm2 s−1 

for the diffusion coefficient of radon through the stomach wall, adopting the measured value for xenon as a 
reference, since no data were available on radon. For comparison, the diffusion coefficient of xenon in water 
at 35 ◦C is 1.95 · 10−5 cm2 s−1 (Lide 2008), similar to that of radon.

Vascular convection may enhance the spread of 220Rn in the blood-rich peripheral regions of the tumor, but is 
expected to be much less important in the tumor interior. Interstitial flow should have a negligible effect on the 
spread of 220Rn because of its short half-life and the low flow velocities (∼0.1–0.2 µm s−1 in animal models and 
likely ten-fold lower in more realistic scenarios (Jain 2001)).

To conclude, in the tumor interior, the effective diffusion coefficient of 220Rn will be assumed to lie in the 
range 0.5–2 · 10−5 cm2 s−1. The lower bound relies on the NRC report on radon in drinking water. This repre-
sents a conservative limit, since tumor tissue may be less fibrous than the stomach wall and will thus hinder 220Rn 
diffusion to a lesser extent (especially when considering that the tumor tissue is at least partially necrotic). The 
upper limit allows for possible convective effects to enhance the diffusion coefficient towards its value in water. A 
representative nominal value would be 1 · 10−5 cm2 s−1.

5.2.  212Pb
Unlike 220Rn, 212Pb has a sufficiently long half-life to allow for direct measurement of its spread in dissected DaRT-
treated mice tumors, as well as of the associated leakage probability. Such measurements therefore supplement 
expectations based on the available literature.

	 •	�As shown in Arazi et al (2007), in experimental tumors in mice the 212Pb leakage probability varies in the 
range  ∼0.1–0.9, with the majority of cases lying between 0.3 and 0.7, depending on the tumor size3. This 
indicates that the leakage rate coefficient αPb is of the same order of magnitude as the decay constant λPb.

	 •	�Using the diffusion-leakage model to analyze autoradiography measurements in mice-borne tumors (Arazi 
et al 2007, Cooks et al 2009a, 2012, Horev-Drori et al 2012, Reitkopf-Brodutch et al 2015), indicates that the 
effective 212Pb diffusion coefficient lies in the range  ∼0.2–4 · 10−7 cm2 s−1. An example for SCC tumors is 
given in section 7.5.

	 •	�As mentioned above, 212Pb is likely bound to various proteins inside the tumor, with only a small 
(negligible?) fraction in free ion form Godwin (2001), Payne et al (1999). The masses of such proteins 
(studied in the context of lead toxicity) range from a few kDa (Smith et al 1998), through several dozen 
kDa (Griffin and Matson 1972, Fowler and DuVal 1991, Smith et al 1998), up to 280 kDa (Payne et al 1999, 
Godwin 2001). A rough estimate of the possible range of diffusion coefficient values can be made based on 
data regarding the diffusion coefficient of dextrans (20–150 kDa) in VX2 carcinoma (Jain 1987), which can 
be approximated by the formula D  =  aM−b, with a = 2.5 · 10−2 cm2 s−1 and b  =  1.14 (M is the molecular 

Figure 2.  224Ra activity on the source, and 220Rn, 212Pb and 212Bi activities inside the tumor. The initial conditions are Γsrc
Ra (0) = 1 

(arbitrary units), Γtum
Rn (0) = Γtum

Pb (0) = Γtum
Bi (0) = 0 (the initial buildup of 220Rn is on the scale of minutes and not shown). The 

212Pb leakage probability is assumed to be 50% and αBi = 0.

3 The data shown in Arazi et al (2007) concern the fraction of 212Pb activity remaining inside the tumor, which is simply 
related to Pleak(Pb).
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mass of the protein). This represents a monotonically decreasing curve, ranging from 3.1 · 10−7 cm2 s−1 for 
M  =  20 kDa down to 3.2 · 10−8 cm2 s−1 for M  =  150 kDa. Thus, the empirically estimated range of values 
for the effective 212Pb diffusion coefficient in murine tumors (∼0.2–4 · 10−7 cm2 s−1) is consistent with a 
spectrum of protein masses in the range of a few dozen kDa.

Similar to 220Rn, convective flows may have a considerable influence on the spread of 212Pb in the peripheral 
regions of the tumor. In this case, however, rapid 212Pb clearance following trapping in RBCs is expected to act in 
the opposite direction and somewhat compensate for this effect. Unlike 220Rn, the long effective lifetime of 212Pb 
can allow also for a significant contribution by interstitial flows, pushing protein-bound 212Pb atoms radially 
from the tumor interior towards its periphery, to a degree which may be comparable to the pure-diffusion case.

In summary, based on our preclinical observations, the 212Pb leakage rate coefficient will be assumed to lie in 
the range  ∼(0.5–2)λPb, i.e. Pleak(Pb) ∼ 0.3–0.7, with a nominal value of 0.5. The effective 212Pb diffusion coef-
ficient may be tumor-dependent (and may also depend on the viability of the tissue). It will be assumed to lie in 
the range  ∼0.2–4 · 10−7 cm2 s−1. Within the simplistic analysis of the diffusion leakage model, we will presently 
not describe interstitial and vascular effects.

5.3.  212Bi
Measurements performed on murine SCC tumors suggest that 212Bi and 212Pb are very close to secular 
equilibrium (driven by 224Ra) throughout the tumor (Arazi et al 2007). As noted in section 4, this suggests that 
αBi � λBi. As discussed in appendix B, it also suggests that the effective diffusion coefficient of 212Bi (which may 
also be bound to various proteins) is considerably smaller than that of 212Pb. In what follows, we will therefore 
assume that αBi = 0. As a conservative assumption (in terms of the estimated alpha particle dose) the effective 
diffusion coefficient of 212Bi will be taken in the range  ∼(0.1–0.3)DPb.

6.  Solving the diffusion-leakage equations for the point source

This section is dedicated to solving the diffusion-leakage equations for the ideal point source. We begin by 
studying the asymptotic behavior of the solutions for 220Rn, 212Pb and 212Bi, i.e. for times where their respective 
populations are driven by the exponential decay of 224Ra. The full derivation is given in appendix B while the 
main results are provided in the text. We then turn our attention to the complete time-dependent solutions. 
For 220Rn, this is done analytically (with the full derivation given in appendix C). For 212Pb and 212Bi the time 
dependent equations are solved numerically.

6.1.  Asymptotic solutions
The asymptotic forms of the solutions for the diffusion-leakage equations are

nasy
Rn (r, t) = ñRn (r) e−λRat� (34)

nasy
Pb (r, t) = ñPb (r) e−λRat� (35)

nasy
Bi (r, t) = ñBi (r) e−λRat .� (36)

Based on the preceding analysis of the temporal properties of the 224Ra decay chain, this is expected to hold 
for 220Rn within minutes after source insertion, and for 212Pb and 212Bi within several effective 212Pb lifetimes. As 
shown below, the time for convergence to the asymptotic form increases with the distance from the source.

6.1.1.  220Rn
As shown in appendix B, inserting (34) into the 220Rn diffusion equation (13) for the point source given in 
equation (3), leads to

nasy
Rn(r, t) =

Pdes(Rn)Γsrc
Ra(0)

4πDRn

e−r/LRn

r
e−λRat� (37)

where we define the effective 220Rn diffusion length:

LRn =

√
DRn

λRn − λRa
.� (38)

The effective diffusion length is the key parameter which dictates the spatial distribution of the diffusing 
atoms, and therefore that of the macroscopic alpha particle dose. When the radial distance from the source is 
increased by one effective diffusion length, the alpha dose drops by 1/e (with further reduction arising from the 
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1/r factor). This spatial dependence is far steeper than the gross 1/r2 behavior of (point-like) photon brachyther-
apy sources, resulting in a much more confined dose field.

The appearance of λRa  in the definition of the effective diffusion length reflects the fact that the 220Rn popula-
tion is driven by the exponential decay of 224Ra. Since λRn � λRa , LRn is very nearly equal to 

√
DRnτRn  (which 

would be a natural definition for the ‘proper’ diffusion length; in what follows we will use the terms ‘diffusion 
length’ and ‘effective diffusion length’ interchangeably). For 220Rn diffusion in water (DRn = 1.9 · 10−5 cm2 
s−1), LRn = 0.39 mm. For the lower value of the chosen range (DRn = 0.5 · 10−5 cm2 s−1), LRn = 0.20 mm.

The ratio between the outgoing diffusion flux of 220Rn on the surface of a sphere of radius r to its release rate 
from a source at its center is

4πr2jRn(r, t)

Pdes(Rn)Γsrc
Ra(t)

= e−r/LRn

(
1 +

r

LRn

)
� (39)

falling below 1% at r = 6.6LRn. For LRn = 0.3 mm the outgoing diffusion flux is therefore negligible for a tumor 
radius of � 2 mm.

6.1.2.  212Pb
For 212Pb we need to consider the source term (8), comprising contributions from the DaRT source and its 
immediate vicinity and a volumetric term describing 220Rn decays. As discussed in appendix B, substituting the 

asymptotic forms (34) and (35) in equation (14), yields for t � τ
ef f
Pb  for a point 224Ra source:

nasy
Pb (r, t) =

(
APb

e−r/LRn

r
+ BPb

e−r/LPb

r

)
e−λRat� (40)

where we define the effective 212Pb diffusion length:

LPb =

√
DPb

λPb + αPb − λRa
.� (41)

In this case the effective diffusion length comprises the 224Ra mean lifetime, τRa = 1/λRa and the effective 
212Pb lifetime, τ ef f

Pb = 1
λPb+αPb

, that takes into account the two processes which remove 212Pb atoms from the 

system—radioactive decay and clearance by the blood. Increased 212Pb removal by the blood thus reduces LPb 
leading to a more rapid fall-off of the dose.

As outlined in section  7.5, when analyzed using the diffusion-leakage model, the experimental data 
from murine SCC tumors (Arazi et  al 2007) indicate that for this type of tumors LPb generally lies in the 
range  ∼0.5–0.8 mm, while αPb typically ranges from 0.5λPb to 2λPb (giving DPb = 0.6–3.3 · 10−7 cm2 s−1). Pre-
liminary data from other tumor histologies indicate LPb values in the range 0.3–0.5 mm (Cooks et al 2009a, 2012, 
Horev-Drori et al 2012, Reitkopf-Brodutch et al 2015).

The coefficients APb and BPb are given by:

APb =

(
L2

RnL2
Pb

L2
Rn − L2

Pb

)
λRn

DPb

Pdes(Rn)Γsrc
Ra(0)

4πDRn
� (42)

BPb =

(
Pef f

des(Pb)− Pdes(Rn)
)
Γsrc

Ra(0)

4πDPb
− APb.� (43)

Similar to equation (39), the ratio between the outgoing diffusion flux of 212Pb to its release rate from the 
source falls below 1% for a tumor whose radius is  ∼2.5–4.5 mm, depending on the assumed values of LRn and 
LPb, justifying the assumption that 212Pb leakage from the tumor is predominantly a volumetric effect.

6.1.3.  212Bi
The procedure for finding the asymptotic solution for 212Bi follows closely the ones for 220Rn and 212Pb and is also 
described in appendix B. Its general form is given by

nasy
Bi (r, t) =

(
ABi

e−r/LRn

r
+ BBi

e−r/LPb

r
+ CBi

e−r/LBi

r

)
e−λRat

� (44)
where we define the effective 212Bi diffusion length:

LBi =

√
DBi

λBi + αBi − λRa� (45)
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and:

ABi =

(
L2

RnL2
Bi

L2
Rn − L2

Bi

)
λPb

DBi
APb� (46)

BBi =

(
L2

PbL2
Bi

L2
Pb − L2

Bi

)
λPb

DBi
BPb� (47)

CBi = − (ABi + BBi) .� (48)

As mentioned in section 4.3, measurements of treated tumor samples, indicate that 212Bi and 212Pb are prac-
tically in local secular equilibrium driven by 224Ra. This, in turn, implies αBi/λBi � 1, leading us to adopt the 
assumption αBi = 0. In appendix B we show that the observation of local secular equilibrium also implies that 
LBi/LPb � 0.2 (or less).

6.2.  Time-dependent solutions
6.2.1.  220Rn—exact analytical solution
In appendix C we give a full derivation of the closed-form solution of the time-dependent 220Rn diffusion 
equation for a point source. The resultant expression is

nRn (r, t) =
Pdes (Rn) Γsrc

Ra (0) e−λRat

8 (πDRn)
3/2

∫ t

0

1

τ 3/2
e−

r2

4DRnτ e−(λRn−λRa)τdτ .� (49)

As shown in appendix C:

lim
t→∞

∫ t

0

1

τ 3/2
e−

r2

4DRnτ e−(λRn−λRa)τdτ =
2

r

√
πDRne−r/LRn� (50)

such that for t � τRn the exact solution (49) converges to the asymptotic one (37).
Figure 3(A) shows the ratio between the exact and asymptotic solutions as a function of time for several 

radial distances from the source. The asymptotic solution is attained within minutes over a distance of a few dif-
fusion lengths, with a delay that scales roughly linearly with the distance from the source. Figure 3(B) shows the 
220Rn specific activity at r = 6LRn  for LRn = 0.3 mm. The source parameters are Γsrc

Ra(0) = 3 µCi (111 kBq) and 
Pdes(Rn) = 0.4. The initial buildup of the specific activity is obviously of no practical importance on the time 
scale relevant for dose calculations (days) and the dose calculation can therefore rely on the asymptotic solution.

6.2.2.  212Pb and 212Bi—exact numerical solution
The exact time-dependent solutions for 212Pb and 212Bi can found by numerically solving the diffusion-leakage 
model equations for 220Rn, 212Pb and 212Bi. The solution was obtained here using a one-dimensional computer 
code (DART1D) developed for this purpose, which employs a fully-implicit scheme with an adaptive time step 

Figure 3.  Time-dependent solution for 220Rn, point source geometry. (A) Buildup curves of the exact solution of the time-
dependent diffusion equation for 220Rn for the case of a point source. The curves represent the ratio between the exact solution and 
the asymptotic one, as a function of the time for varying distances from the source, over the first few minutes after source insertion. 
(B) Specific activity at r = 6LRn = 1.8 mm as a function of time over several days.

Phys. Med. Biol. 65 (2020) 015015 (24pp)



12

L Arazi﻿

that enables calculating both the 220Rn and 212Pb/212Bi transients without resorting to an excessive number of 
iterations. DART1D will be described in detail in a separate technical note.

Figure 4(A) shows the ratio between the exact and asymptotic solutions for the number density of 212Pb 
as a function of time for several radial distances from the source. The results are shown for LRn = 0.3 mm and 
LPb = 0.6 mm. The exact solution converges to the asymptotic one on a scale of several effective 212Pb life-
times. Similarly to 220Rn the delay in this convergence increases roughly linearly with the radial distance from 
the source. Figure 4(B) shows the time-dependent specific activities of 212Pb and 212Bi at r = 4LPb = 2.4 mm. 

Additional parameters in this calculation were Γsrc
Ra (0) = 3 µCi (111 kBq), Pdes (Rn) = 0.4, Pef f

des (Pb) = 0.55, 

Pleak(Pb) = 0.5 (αPb = λPb), LBi = 0.1LPb and αBi = 0. Unlike the case for 220Rn, the delayed buildup of 212Pb 

and 212Bi is not negligible, affecting the total dose at a level of  ∼10%–15% (scale of τ ef f
Pb /τRa).

7.  Macroscopic alpha particle dose for a point source

In this section we use the diffusion-leakage model to estimate the macroscopic alpha particle dose contributed by 
the diffusing atoms for the case of an ideal point source. We divide the alpha particle dose into two components: 
the alpha particles emitted by 220Rn and 216Po, at distances which scale with the 220Rn diffusion length, and the 
alpha particles emitted by 212Bi and 212Po at distances which are governed by the diffusion and leakage of 212Pb 
(unless LPb < LRn, in which case the dose scales with the latter). The analysis is limited to alpha particles emitted 
by the diffusing atoms. Alpha particles emitted directly from the source deposit their entire energy within several 
dozen micrometers from its surface and are thus of no practical importance in terms of macroscopic dose 
coverage. We note, however, that the biological effect of the extremely high alpha-particle dose rate on the source 
surface may warrant further investigations.

7.1.  220Rn/216Po alpha particle dose
The macroscopic alpha particle dose contributed by 220Rn and 216Po from source insertion (t  =  0) to any 
particular time t is given by

Doseα(RnPo; r, t) =
Eα(RnPo)

ρ

∫ t

0
λRnnRn(r, t′)dt′� (51)

where Eα(RnPo) is the total alpha particle energy of 220Rn and 216Po: Eα(RnPo) = (6.288 + 6.778) MeV =

13.066 MeV  (Browne 2005, Wu 2007) and ρ  is the tissue density. The rationale behind this expression is that the 
range of alpha particles is much smaller than the diffusion length, and therefore the associated energy depositions 
occur locally, following the spatial distribution of the 220Rn number density.

We define the asymptotic dose as the dose delivered from source insertion to infinity:

Doseasy
α (RnPo; r) =

Eα(RnPo)

ρ

∫ ∞

0
λRnnRn(r, t)dt.� (52)

Figure 4.  Numerical solutions for the diffusion-leakage equation for 212Pb and 212Bi for the point source geometry. (A) Ratio 
between the exact solution and the asymptotic one for 212Pb at varying distances from the source as a function of time for 
LRn = 0.3 mm and LPb = 0.6 mm. (B) Exact and asymptotic solutions for the specific activities of 212Pb and 212Bi at a fixed 
distance from the source.
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Because of the short half-life of 220Rn, the 220Rn/216Po alpha particle dose can be calculated to an accuracy 
of  ∼10−4 (in the framework of the diffusion model) by neglecting the initial buildup of 220Rn and assuming that 
the local 220Rn activity attains its asymptotic form immediately at t  =  0 throughout the tumor. Thus, using equa-
tion (37) for the asymptotic 220Rn number density, we get, for the point source:

Doseα(RnPo; r, t) =
λRnPdes(Rn)Γsrc

Ra(0)Eα(RnPo)

4πρDRn

e−r/LRn

r
τRa

(
1 − e−t/τRa

)
.� (53)

Asymptotically:

Doseasy
α (RnPo; r) =

λRnPdes(Rn)Γsrc
Ra(0)Eα(RnPo)

4πρDRn

e−r/LRn

r
τRa.� (54)

Throughout the tumor, the 220Rn/216Po alpha particle dose builds up exponentially towards its asymptotic 
value:

Doseα(RnPo; r, t)

Doseasy
α (RnPo; r)

= 1 − e−t/τRa .� (55)

Thus, within about one week (two 224Ra half-lives), the 220Rn/216Po alpha particle dose reaches 75% of its 
asymptotic value (∼95% within two weeks), regardless of the distance from the source.

It is instructive to cast equation (54) into a form which conveys its meaning more intuitively. The starting 
point is to approximate the time dependence of the number density of 220Rn by

n0D
Rn(r, t) =

Pdes(Rn)Γsrc
Ra(0)

4πDRn

e−r/LRn

r

(
e−λRat − e−λRnt

)
� (56)

where we assumed a zero-dimensional picture in which the time dependence is uniform throughout the tumor, 
similar to equation  (23) which includes the initial buildup term. Introducing n0D

Rn(r, t) into the integral in 
equation (52) and rearranging yields

Doseasy,0D
α (RnPo; r) = Pdes(Rn)Γsrc

Ra(0)τRa ·
Eα(RnPo)

4πρL3
Rn

· e−r/LRn

r/LRn
.� (57)

The first factor in this expression, Pdes(Rn)Γsrc
Ra(0)τRa , is the total number of 220Rn atoms released by the source 

(which is the same as the total number of 220Rn atoms decaying inside the tumor, assuming no 220Rn leakage). The 
second factor, Eα(RnPo)/(4πρL3

Rn), is a characteristic dose per decay: it is the total alpha particle energy released 

in the decay of an 220Rn/216Po pair, deposited in a sphere of radius 1.44LRn. The last factor, e−r/LRn/(r/LRn), pro-
vides the spatial dependence of the dose as a function of the radial distance expressed in units of LRn.

Figure 5(A) shows the asymptotic 220Rn/216Po alpha particle dose as a function of the distance from a point 
source having an initial 220Rn release rate SRn(0) = Pdes(Rn)Γsrc

Ra(0) = 1 µCi (37 kBq). The dose is plotted for 
the two extreme values considered for the 220Rn effective diffusion coefficient: DRn = 0.5 · 10−5 cm2 s−1 and 
DRn = 2 · 10−5 cm2 s−1, for which the effective diffusion lengths are 0.20 mm and 0.40 mm, respectively. For 
reference we show the 10 Gy line, as a reasonable value representing therapeutic alpha-particle dose levels. Fig-
ure 5(B) shows the diameter of the spherical region receiving an asymptotic dose of 10 Gy, as a function of the 
initial 220Rn release rate, SRn(0), for 0.20 � LRn � 0.40 mm (for a point source). The plot was constructed by 
numerically solving equation (54) for r for a dose of 10 Gy for varying values of SRn(0). In both figures, the tissue 
density was taken as 1.0 g cm−3. Note that, depending on the source activity, therapeutically significant doses are 
obtained over a region measuring several millimeters in diameter (radial distance of  ∼5–10 diffusion lengths), 
even for the case LRn = 0.2 mm.

7.2.  212Bi/212Po alpha particle dose—numerical solution
Following the same reasoning as for the 220Rn/216Po case, the macroscopic alpha particle dose contributed by 
212Bi and 212Po from source insertion to any time t is given by

Doseα(BiPo; r, t) =
Eα(BiPo)

ρ

∫ t

0
λBinBi(r, t′)dt′� (58)

where Eα(BiPo) = 7.804 MeV  is the weighted-average energy of the alpha particles emitted by 212Bi and 212Po 
(Martin 2007). The asymptotic 212Bi/212Po alpha particle dose is

Doseasy
α (BiPo; r) =

Eα(BiPo)

ρ

∫ ∞

0
λBinBi(r, t)dt.� (59)

Because of the delayed buildup of 212Pb throughout the tumor, the asymptotic 212Bi/212Po alpha particle 
dose should be calculated numerically—by solving the time-dependent diffusion-leakage equations—to pro-
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duce accurate results (an approximate method to calculate the dose is discussed below). Figure 6(A) shows the 
asymptotic 212Bi/212Po dose as a function of the distance from a point source with Γsrc

Ra(0) = 3 µCi (111 kBq), 

Pdes(Rn) = 0.4 and Pef f
des(Pb) = 0.55. We keep the same choice of model parameters as before: αPb = λPb, 

αBi = 0 and LBi = 0.1LPb, leaving LRn and LPb as adjustable parameters. For 220Rn, we continue using the range 
0.2 � LRn � 0.4 mm. For 212Pb, we consider the range 0.3 � LPb � 0.7 mm. Figure 6(A) thus contains 4 curves, 
corresponding to LRn = 0.2, 0.4 mm and LPb = 0.3, 0.7 mm. As could be expected, the dose profile is more 
sensitive to changes in the 220Rn effective diffusion length when the effective 212Pb diffusion length is small. Fig-
ure 6(B) shows the dependence of the diameter of the spherical region in which the 212Bi/212Po dose exceeds 
10 Gy (for the same range of 220Rn and 212Pb effective diffusion lengths) on the initial release rate of 220Rn from 
the source, assuming the same desorption probabilities as in figure 6(A). Comparing figures 5 and 6, it is evident 
that for the range of model parameters under consideration, the 212Bi/212Po dose extends over a larger region 
than that covered by 220Rn and 216Po.

7.3.  212Bi/212Po alpha particle dose—approximate solution
A simple approximation to the 212Bi/212Po alpha particle dose can be made by assuming that the local 212Bi activity 
throughout the tumor can be factorized into a pure space-dependent part and a pure time-dependent part, 
similarly to the zero-dimensional approximation for 220Rn, equation (56). The space-dependent part is taken 
to be the same as that of the asymptotic 212Bi function, given—for the case of a point source—in equation (44). 

Figure 5.  (A) The asymptotic 220Rn/216Po alpha particle dose as a function of the distance from a point source with an initial 220Rn 
release rate of 1 µCi (37 kBq). The dose is plotted for DRn = 2 · 10−5 cm2 s−1 (LRn = 0.40 mm) and DRn = 0.5 · 10−5 cm2 s−1 
(LRn = 0.20 mm). The 10 Gy level is indicated for reference. (B) Diameter of the spherical region receiving an asymptotic 
220Rn/216Po alpha particle dose larger than 10 Gy as a function of the initial 220Rn release rate of the (point) source, for the range 
0.2 � LRn � 0.4 mm (0.5 · 10−5 � DRn � 2 · 10−5 cm2 s−1).

Figure 6.  (A) The asymptotic 212Bi/212Po alpha particle dose as a function of the distance from a point source for LRn = 0.2, 0.4 mm 
and LPb = 0.3, 0.7 mm, with the other model parameters given in the figure. The 10 Gy level is shown for reference. (B) Diameter of 
the spherical region receiving an asymptotic 212Bi/212Po alpha particle dose larger than 10 Gy as a function of the initial 220Rn release 
rate of the (point) source, for the range 0.2 � LRn � 0.4 mm, 0.3 � LPb � 0.7 mm. The remaining model parameters are the same as 
in (A).
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The time-dependent part is taken as that of the total 212Pb activity inside the tumor, equation (27). Under this 
approximation, the local 212Bi activity (for the case of a point source) is given by

λBin
0D
Bi (r, t) = λBi

(
ABi

e−r/LRn

r
+ BBi

e−r/LPb

r
+ CBi

e−r/LBi

r

)

·
(

e−λRat − e−(λPb+αPb)t
)� (60)

where the coefficients ABi , BBi and CBi are given in equation (46)–(48). The asymptotic dose is then

Dose0D,asy
α (BiPo; r) =

Eα(BiPo)

ρ
λBi

·
(

ABi
e−r/LRn

r
+ BBi

e−r/LPb

r
+ CBi

e−r/LBi

r

)(
τRa − τ

ef f
Pb

)
.

� (61)

Figure 7 shows a comparison between the exact and approximate solutions for the 212Bi/212Po asymptotic 
alpha particle dose, for a representative case of the model parameters. The 0D approximation is within 5%–10% 
of the exact solution for r ∼ 2–3 mm (but overestimates it by up to  ∼20% at r  =  5 mm).

Assuming the 0D temporal behavior, in the limit LRn, LBi � LPb one obtains the intuitive expression:

Dose0D,asy
α (BiPo; r) ≈ [1 − Pleak(Pb)] Pef f

des(Pb)Γsrc
Ra(0)τRa ·

Eα(BiPo)

4πρL3
Pb

· e−r/LPb

r/LPb
.

�
(62)

This expression is analogous to the one obtained above for the 220Rn/216Po dose, eq. (57). The first factor, 

[1 − Pleak(Pb)] Pef f
des(Pb)Γsrc

Ra(0)τRa, is the total number of 212Pb atoms released by the source which decay inside 

the tumor. Assuming no independent leakage of 212Bi, this is equal to the total number of alpha decays of 212Bi 
and 212Po inside the tumor. The second and third factors are similar in their meaning to the ones appearing in the 
expression for the 220Rn/216Po dose.

7.4.  220Rn/216Po and 212Bi/212Po alpha particle dose combined
The overall asymptotic macroscopic alpha particle dose, comprising the contributions from 220Rn/216Po and 
212Bi/212Po is shown in figure 8 for the range 0.2 � LRn � 0.4 mm and 0.3 � LPb � 0.7 mm. The other model 
parameters are the same as those used before. The shaded region represents the range of possible values for the 
total dose. The blue line shows the specific case LRn = 0.3 mm and LPb = 0.6 mm (characteristic of murine SCC).

The region where the overall alpha particle dose is close to  ∼10 Gy (several 212Pb diffusion lengths away from 
the source) is the most critical one in terms of treatment planning. At shorter distances cell killing is trivially 
guaranteed by dose levels of the order of several dozen Gy, leading, on average, to several dozen alpha particle 
hits to cell nuclei of typical sizes. Farther away (where the dose is of order of  ∼1 Gy), statistical fluctuations in the 
number of alpha particle hits to cell nuclei are large, leading to partial cell killing. A detailed study on the relation 
between the macroscopic alpha particle dose and the microdosimetric aspects of the problem will be discussed 

Figure 7.  Comparison between the 0D approximation for the 212Bi/212Po alpha particle dose and the exact solution (point source 
geometry).
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in a separate publication, relying on established methodologies such as those described, for example, in MIRD 
Pamphlet 22 (Sgouros et al 2010).

7.5.  Example: estimating the model parameters for murine SCC tumors
A detailed description of several complementary methodologies employed to estimate the diffusion-leakage 
model parameters in mice tumors will be given in a separate publication. Here we show, as an example, a particular 

Figure 8.  Total asymptotic alpha particle dose for a point source, comprising contributions from 220Rn/216Po and 212Bi/212Po. The 
shaded region represents the dose for for 0.2 � LRn � 0.4 mm, 0.3 � LPb � 0.7 mm and the blue line the case LRn = 0.3 mm and 
LPb = 0.6 mm. The source parameters and other model parameters are given in the figure.

Figure 9.  Autoradiography data from murine SCC tumors: effective diameters corresponding to a macroscopic 212Bi/212Po alpha 
particle dose of 5,10 and 20 Gy as a function of the initial 212Pb release rate from the source. The data are fitted with the diffusion-
leakage model, keeping Pleak  =  0.5 and LRn = 0.3 mm, resulting in a best fit value of LPb = 0.62 mm.
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analysis of murine SCC data. The autoradiography procedure was previously described in Arazi et al (2007). 
Briefly, two-dimensional images of 212Pb activity distributions in histological sections taken perpendicularly 
to the source and close to its mid plane, are translated to estimates of the macroscopic 212Bi/212Po alpha particle 

dose. For a given dose D0, we calculate the area of the section subject to higher or equal dose levels A(dose � D0), 

and define the corresponding effective diameter as Def f (dose � D0) = 2
√

A(dose � D0)/π. Figure 9 shows the 

measured effective diameter for Doseasy
α (BiPo) = 5, 10, 20 Gy as a function of SPb(0) = Pef f

des(Pb)Γsrc
Ra(0), for 

11 murine SCC tumors (SQ2 cell line). Error bars represent systematic uncertainties related to the image 
processing method. The entire dataset is fitted by a numerical calculation of the 212Bi/212Po dose in the mid plane 
of the source, with LPb as the free parameter, for Pleak(Pb) = 0.5 and LRn = 0.3 mm (for simplicity we assumed 
LBi � LPb). The best fit value is LPb = 0.62 mm. Varying the parameters over the ranges 0.3 � Pleak(Pb) � 0.7 
and 0.2 � LRn � 0.4 mm yields 0.49 � LPb � 0.84 mm (but with considerably better fit quality for values 
close the the center of these intervals). Keeping Pleak(Pb) = 0.5 with both LRn and LPb as free parameters gives 
LRn = 0.48 mm and LPb = 0.55 mm. Scanning the range 0.3 � Pleak(Pb) � 0.7 gives 0.43 � LRn � 0.55 mm 
and 0.48 � LPb � 0.71 mm. Other analysis methods lead to similar values for LPb.

7.6.  Example of an array of line sources
A systematic parametric study of arrays of DaRT sources will be dealt with in a subsequent publications. As an 
example, we show in figure 10 the case of an hexagonal array of 3 cm long line sources spaced 5 mm apart, each 

carrying 3 µCi 224Ra per cm, with Pdes (Rn) = 0.4 and Pef f
des (Pb) = 0.55. The diffusion lengths are LRn = 0.3 

mm and LPb = 0.6 mm. The 212Pb leakage probability is taken as 50%, LBi = 0.1LPb and αBi = 0. The total alpha 
particle dose (sum of all contributions) was calculated using the 0D approximation, by dividing the sources to 
point-like increments and summing the contribution of all sources at each point. Panel A shows the dose in the 
mid-plane of the sources (z  =  0), while panel B shows the dose in a plane parallel to the sources and passing 
thorough the center of the array (x  =  0). The minimal dose between sources is 14 Gy.

8.  Summary and discussion

DaRT is a radically new form of radiation therapy, which allows, for the first time, the treatment of solid tumors 
by alpha particles. After years of extensive preclinical investigations, it has recently reached clinical trials with 
promising results, as reported in Popovtzer et al (2019). Its main advantages are the ability to deliver a lethal 
alpha particle dose to the tumor without risking adjacent critical structures, the efficacy of alpha radiation 
against hypoxic and radiation-resistant cancer cells, and the rapid shrinkage of treated tumors (on the scale of 
days). DaRT has so far been tested clinically as a stand-alone treatment, but can also be combined with systemic 
therapy (in particular, immunotherapy) or with conventional radiation (for example as a boost to external beam 
radiation therapy).

DaRT dosimetry is challenging because of the complex and dynamic nature of the tumor tissue through 
which the alpha-emitting atoms migrate. A complete description of the problem on a patient- and tumor-spe-
cific basis will require detailed spatial and temporal information which is presently unattainable in clinical set-

Figure 10.  Asymptotic alpha particle dose for an hexagonal array of line sources. The sources are 3 cm long and carry 3 µCi 
224Ra per cm. Source spacing is 5 mm. The desorption probabilities are the same as in previous figures. The model parameters are 
LRn = 0.3 mm, LPb = 0.6 mm, LBi = 0.1LPb, Pleak(Pb) = 0.5, αBi = 0. The dose was calculated using the 0D approximation. (A) 
Isodose curves in the mid-plane of the array (z  =  0); (B) isodose curves in the x  =  0 plane.
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tings. This calls for the development of practical modeling techniques that can provide an approximate quantita-
tive starting point for treatment planning.

The diffusion-leakage model introduced in this work is a first step in this direction. While being highly sim-
plistic (assuming the medium is homogeneous, isotropic and time-independent), it constitutes a zero-order 
approximate framework which allows for gross macroscopic dose estimates. Importantly, the activity and spac-
ing of the sources used in the SCC clinical trial were set based on the predictions of the model, with param
eters extracted from animal studies. The promising outcomes of the trial, where essentially all treated tumors 
responded by drastic shrinking within days after the treatment, indicate that the approach presented here can 
indeed provide a meaningful base for further development.

Much additional work is required to expand the physical basis for DaRT dosimetry. This includes extensive 
measurements of the model parameters in other (non-SCC) tumor types; investigation of convective and non-
linear effects in treated tumors; microdosimetry simulations augmented by detailed in vitro studies, to under-
stand the relation between the macroscopic alpha particle dose and cell survival; studies on establishing cor-
relations between observables accessible by medical imaging and local tissue parameters affecting the spread of 
alpha-emitters; studies on tumor shrinkage rate and its effect on the overall dose, and the development of in vivo 
probes to locally measure the alpha particle dose in preclinical and clinical settings.

One can hope that the knowledge and experience that will be gained in these studies, as well as in ongoing and 
planned clinical trials, will bring DaRT treatment-planning closer to the present degree of confidence of photon-
based radiation therapy, allowing for effective utilization of the many advantages offered by this method.
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Appendix A.  Experimental determination of the 220Rn and 212Pb desorption probabilities

A.1.  220Rn
The measurement setup is based on a silicon charged particle detector (model ULTRA, EG&G ORTEC) and 
auxiliary electronics. Data are read to a PC-based multichannel analyzer. The setup enables the measurement 
of alpha particle energy spectra with a resolution of 2.5 keV/channel and a typical alpha-line FWHM of 20 keV. 
The detector is mounted inside a vacuum chamber, whose outlet is connected to a rotary pump. A needle valve 
controls air inlet. The detector has a circular aperture with an active area of 150 mm2. The DaRT source is 
mounted vertically on a rotating device positioned opposite to the detector to obtain the time average of the 
activity distributed on its surface. The 224Ra activity and 220Rn desorption probability are determined based 
on the 5685 keV line (95%) of 224Ra and the 6288 keV line (100%) of 220Rn. The detection efficiency of the 
setup is calculated based on its geometry to an accuracy of  ∼2%, which also sets the accuracy of the activity 
measurement. Usually, spectral measurements of alpha emitting samples are performed in vacuum, to avoid 
modifications of the energy spectrum. In our case, in order to determine the 220Rn desorption probability, the 
measurement is performed at low pressure under continuous air flow, which takes the 220Rn atoms emitted from 
the source out of the measurement chamber. The pressure level (about 5 mbar), adjusted by the inlet needle valve, 
was set to prevent the emitted 220Rn atoms from being stuck in the chamber walls and on the detector itself. The 
flow rate is sufficient to replace all chamber gas within about one second. Thus, in an obtained spectrum, the 
220Rn line is comprised of alpha particles arriving at the detector only from the source, and the 220Rn desorption 
probability is given by

Pdes(Rn) = 1 − Γsrc
Rn

Γsrc
Ra

� (A.1)

where Γsrc
Ra and Γsrc

Rn are the respective source activities of 224Ra and 220Rn. Typical values are Pdes(Rn) ∼ (40 ± 4)%.

A.2.  212Pb
Since 220Rn is a noble gas, its release rate from the source does not depend on the medium in which the source is 
placed. Therefore, its desorption probability can be determined in low pressure gas, being the same as in tissue. 
The situation is different for 212Pb, as its desorption probability is much higher in gas than in tissue. The reason 
is that in gas 220Rn, 216Po and 212Pb are emitted by recoil and cannot return to the source surface. On the other 
hand, in tissue, the recoiling positive ions stop within a few nm from the surface, and can drift back to it. While 
220Rn ions returning to the surface are neutralized on it and diffuse back into the tissue, returning 216Po and 212Pb 
ions may bind to it. Therefore, in order to correctly determine the desorption probability of 212Pb, one should 
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place the source inside tissue or a medium with similar properties (such as serum). The 212Pb activity inside the 
medium is given by

Γmed
Pb (t) =

λPb

λPb − λRa
Pef f

des(Pb)Γsrc
Ra(0)

(
e−λRat − e−λPbt

)
� (A.2)

where t  =  0 is the time of source placement inside the medium. Knowing the 224Ra activity at t  =  0 and 

measuring the 212Pb activity inside the medium one can then obtain Pef f
des(Pb) from equation (A.2). In practice, 

measurements are performed using a small amount (∼1 ml) of serum in a vial placed inside a NaI(Tl) well-type 
gamma spectrometer of known efficiency, and the 212Pb activity is determined from its photopeak at 239 keV 
(43.6%). An alternative approach, required in cases where the medium is a live tissue and 212Pb leakage through 

the blood must be considered, is to find Pef f
des(Pb) by measuring the 212Pb activity on the source after its extraction 

from the sample. In this case, one should take into consideration a contribution from the 241 keV line of 224Ra 
(4.1%) to the 212Pb photopeak, and apply a bi-exponential fit to the time-dependent count rate to account for the 

evolution of both isotopes. Typical measured values are Pef f
des(Pb) ∼ 55 ± 5%.

Appendix B.  Derivation of the asymptotic solutions to the time-dependent diffusion-
leakage model

B.1.  220Rn
We consider the case of a point source of 224Ra in an infinite homogeneous medium. In spherical coordinates, the 
time-dependent 220Rn diffusion equation (13) becomes

∂nRn

∂t
=

DRn

r2

∂

∂r

(
r2 ∂nRn

∂r

)
+ sRn − λRnnRn� (B.1)

where the source term is sRn (r, t) = Pdes (Rn) Γsrc
Ra (0) e−λRatδ (r). For t � τRn (i.e. at times larger than a few 

minutes), substituting the asymptotic form nasy
Rn (r, t) = ñRn (r) e−λRat  gives, for r  >  0:

1

r2

d

dr

(
r2 dñRn

dr

)
− 1

L2
Rn

ñRn = 0� (B.2)

where we used the definition of the effective 220Rn diffusion length:

LRn =

√
DRn

λRn − λRa
.� (B.3)

The solution for equation (B.2) requires a change of variables. We substitute ñRn = w
r , leading to

d2w

dr2
− 1

L2
Rn

w = 0.� (B.4)

The general solution for this equation is w = ARne−r/LRn + BRner/LRn. Since the second term diverges for r → ∞, 
BRn = 0 and thus

ñRn =
ARne−r/LRn

r
.� (B.5)

The coefficient ARn is found using the boundary condition at r → 0:

lim
r→0

4πr2jasy
Rn (r, t) = Pdes (Rn) Γsrc

Ra (0) e−λRat .� (B.6)

The radial component of the asymptotic current density, jasy
Rn  is given by

jasy
Rn (r, t) = −DRn

∂nasy
Rn

∂r
=

DRnARn

r2
e−r/LRn

(
1 +

r

LRn

)
e−λRat .� (B.7)

Substituting result (B.7) in the boundary condition (B.6), gives

ARn =
Pdes (Rn) Γsrc

Ra (0)

4πDRn
� (B.8)

and hence

nasy
Rn (r, t) =

Pdes (Rn) Γsrc
Ra (0) e−λRat

4πDRn

e−r/LRn

r
.� (B.9)
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B.2.  212Pb
The time-dependent diffusion-leakage equation for 212Pb in spherical coordinates is

∂nPb

∂t
=

DPb

r2

∂

∂r

(
r2 ∂nPb

∂r

)
+ sPb − (λPb + αPb) nPb.� (B.10)

The source term sPb in equation (B.10) can be written as

sPb (r, t) = λRnnRn +
(

Pef f
des (Pb)− Pdes (Rn)

)
Γsrc

Ra (0) e−λRatδ (r) .� (B.11)

The boundary condition at r → 0 is

lim
r→0

4πr2jPb (r, t) =
(

Pef f
des (Pb)− Pdes (Rn)

)
Γsrc

Ra (0) e−λRat .� (B.12)

The first step in the asymptotic analysis for 212Pb is substituting the asymptotic forms, equations (34) and 
(35) in the diffusion-leakage equation (B.10). For r  >  0 this gives

−λRañPb =
DPb

r2

d

dr

(
r2 dñPb

dr

)
− (λPb + αPb) ñPb + λRnñRn.� (B.13)

Substituting the asymptotic result for 220Rn and rearranging gives

1

r2

d

dr

(
r2 dñPb

dr

)
− 1

L2
Pb

ñPb +
λRn

DPb
ARn

e−r/LRn

r
= 0� (B.14)

where we used the definition of the effective 212Pb diffusion length:

LPb =

√
DPb

λPb + αPb − λRa
.� (B.15)

We now attempt a solution of the form

ñPb (r) = APb
e−r/LRn

r
+ BPb

e−r/LPb

r
.

� (B.16)

When this solution is inserted into equation (B.14) the terms comprising e
−r/LPb

r  cancel out and we get

APb =

(
L2

RnL2
Pb

L2
Rn − L2

Pb

)
λRn

DPb
ARn

=

(
L2

RnL2
Pb

L2
Rn − L2

Pb

)
λRn

DPb

Pdes (Rn) Γsrc
Ra (0)

4πDRn
.

�
(B.17)

The second coefficient, BPb, is found from the boundary condition (B.12). The radial component of the cur
rent density is

jPb (r, t) =− DPb
∂nPb

∂r

=
DPbe−λRat

r2

(
APbe−r/LRn

(
1 +

r

LRn

)
+ BPbe−r/LPb

(
1 +

r

LPb

))
.

�
(B.18)

Inserting this into the boundary condition and taking the limit r → 0 gives

BPb =

(
Pef f

des (Pb)− Pdes (Rn)
)
Γsrc

Ra (0)

4πDPb
− APb.� (B.19)

Thus

nasy
Pb (r, t) =

(
APb

e−r/LRn

r
+ BPb

e−r/LPb

r

)
e−λRat� (B.20)

where APb and BPb are given by equations (B.17) and (B.19).

B.3.  212Bi
The diffusion-leakage equation for 212Bi in spherical coordinates is

∂nBi

∂t
=

DBi

r2

∂

∂r

(
r2 ∂nBi

∂r

)
− (λBi + αBi) nBi + λPbnPb.� (B.21)
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Since there is no direct release of 212Bi from the source, the boundary condition at r → 0 is

lim
r→0

4πr2jBi = 0.� (B.22)

Substituting into equation (B.21) the asymptotic form nasy
Bi (r, t) = ñBi (r) e−λRat, yields

1

r2

d

dr

(
r2 dñBi

dr

)
− 1

L2
Bi

ñBi +
λPb

DBi
ñPb = 0� (B.23)

where we used the definition of the effective 212Bi diffusion length:

LBi =

√
DBi

λBi + αBi − λRa
.� (B.24)

Following the approach used for 212Pb, we attempt a solution of the form

ñBi (r) = ABi
e−r/LRn

r
+ BBi

e−r/LPb

r
+ CBi

e−r/LBi

r
.� (B.25)

When this solution is substituted into equation (B.23), along with the asymptotic solution for 212Pb, equa-

tion (B.16), the terms containing e
−r/LBi

r  cancel out. The coefficients ABi  and BBi are found by equating the terms 

containing e
−r/LRn

r  and e
−r/LPb

r , respectively, giving

ABi =

(
L2

RnL2
Bi

L2
Rn − L2

Bi

)
λPb

DBi
APb� (B.26)

BBi =

(
L2

PbL2
Bi

L2
Pb − L2

Bi

)
λPb

DBi
BPb� (B.27)

where APb and BPb are given in equation (B.17) and (B.19). Substituting (B.25) into the boundary condition 
(B.22), gives

CBi = − (ABi + BBi) .� (B.28)

Thus, the asymptotic solution for 212Bi is

nasy
Bi (r, t) =

(
ABi

e−r/LRn

r
+ BBi

e−r/LPb

r
+ CBi

e−r/LBi

r

)
e−λRat� (B.29)

where ABi , BBi and CBi are given in equation (B.26), (B.27) and (B.28).
The ratio LBi/LPb affects the local ratio of 212Bi and 212Pb activities. Figure B1 shows the activity ratio as a func-

tion of the radial distance from a point source (in units of LPb), for varying values of LBi/LPb. The curves do not 
depend on αBi and vary only weakly with the ratio LRn/LPb. In order to conform to the experimental data, which 
shows that the activity ratio is very close to 1.01 (the ratio at secular equilibrium), we must have LBi/LPb � 0.2 (or 
less). In terms of the effective diffusion coefficients, this also means that DBi/DPb � 0.3, assuming that αBi = 0.

Figure B1.  The local asymptotic 212Bi/212Pb activity ratio predicted by the diffusion-leakage model as a function of the radial 
distance from the (point) source, for varying values for LBi/LPb. The calculation assumed αBi = 0 and αPb = λPb. The distance from 
the source is expressed in units of LPb.
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Appendix C.  Derivation of the analytic time-dependent solution to the diffusion-leakage 
model for 220Rn

The time-dependent 220Rn diffusion equation  for a point source in an infinite homogeneous and isotropic 
medium is (for r  >  0)

∂nRn

∂t
=

DRn

r2

∂

∂r

(
r2 ∂nRn

∂r

)
− λRnnRn.� (C.1)

With the boundary condition:

lim
r→0

4πr2jasy
Rn (r, t) = Pdes (Rn) Γsrc

Ra (0) e−λRat
� (C.2)

and initial condition:

nRn (r, 0) = 0.� (C.3)

We make the following substitution:

nRn (r, t) =
e−λRnt

r
φ (r, t) .� (C.4)

Substituting nRn in equation (C.1) yields

∂φ

∂t
= DRn

∂2φ

∂r2
.� (C.5)

Substituting nRn in the boundary condition (C.2) gives

φ (0, t) =
Pdes (Rn) Γsrc

Ra (0)

4πDRn
e(λRn−λRa)t .� (C.6)

From (C.3), the initial condition for φ is

φ (r, 0) = 0.� (C.7)

We define the Laplace transform:

Φ (r, s) = L [φ (r, t)] =

∫ ∞

0
φ (r, t) e−stdt.� (C.8)

We now take the Laplace transform of both sides of equation (C.5). On the left hand side we have:

L
[
∂φ

∂t

]
= sΦ (r, s)− φ (r, 0) = sΦ (r, s) .� (C.9)

On the right hand side we have

L
[

DRn
∂2φ

∂r2

]
= DRn

∂2Φ

∂r2
.� (C.10)

Thus

∂2Φ

∂r2
− s

DRn
Φ = 0� (C.11)

for which the general solution is

Φ = A (s) e−
√

s
DRn

r
+ B (s) e

√
s

DRn
r.� (C.12)

In order to avoid divergence at r → ∞, we must set B (s) = 0 for all s. Hence

Φ (r, s) = A (s) e−
√

s
DRn

r.� (C.13)

The coefficient A (s) is found by taking the Laplace transform of the boundary condition (C.6):

L [φ (0, t)] = Φ (0, s) = A (s) =
Pdes (Rn) Γsrc

Ra (0)

4πDRn
L
[

e(λRn−λRa)t
]

=
Pdes (Rn) Γsrc

Ra (0)

4πDRn

1

s − (λRn − λRa)
.

� (C.14)

Phys. Med. Biol. 65 (2020) 015015 (24pp)



23

L Arazi﻿

Hence

Φ (r, s) =
Pdes (Rn) Γsrc

Ra (0)

4πDRn

1

s − (λRn − λRa)
e−

√
s

DRn
r.� (C.15)

We define two auxiliary functions, F (r, s) and G (s):

F (r, s) =
Pdes (Rn) Γsrc

Ra (0)

4πDRn
e−

√
s

DRn
r

� (C.16)

G (s) =
1

s − (λRn − λRa)
� (C.17)

so that Φ (r, s) = F (r, s)G (s). We use the identities

L−1

[
e−a

√
s

πa

]
=

1

2 (πt)3/2
e−

a2

4t� (C.18)

L−1

[
1

s − a

]
= eat� (C.19)

to find the inverse transforms:

f (r, t) = L−1 [F (r, s)] =
Pdes (Rn) Γsrc

Ra (0) r

8 (πDRn)
3/2

1

t3/2
e−

r2

4DRn t� (C.20)

g (t) = L−1 [G (s)] = e(λRn−λRa)t .� (C.21)

We now use the Laplace transform convolution theorem, namely that if H (s) = L [h (t)] and 

H (s) = F (s)G (s), then h (t) =
∫ t

0 f (τ) g (t − τ) dτ , where f (t) = L−1 [F (s)] and g (t) = L−1 [G (s)]. In our 
case, Φ (s) = F (r, s)G (s) and hence

φ (r, t) = L−1 [Φ (r, s)]

= L−1 [F (r, s)G (s)]

=

∫ t

0
f (r, τ) g (t − τ) dτ

=
Pdes (Rn) Γsrc

Ra (0) r

8 (πDRn)
3/2

∫ t

0

1

τ 3/2
e−

r2

4DRnτ e(λRn−λRa)(t−τ)dτ .

� (C.22)

Finally

nRn (r, t) =
Pdes (Rn) Γsrc

Ra (0) e−λRat

8 (πDRn)
3/2

∫ t

0

1

τ 3/2
e−

r2

4DRnτ e−(λRn−λRa)τdτ .� (C.23)

In order to show that this solution converges to the asymptotic form (37), we evaluate the integral in (C.23) 

in the limit t → ∞. We make the following substitutions: x2 = 1
τ , a = r2

4DRn
 and b = λRn − λRa. The integral now 

becomes

lim
t→∞

∫ t

0

1

τ 3/2
e−

r2

4DRnτ e−(λRn−λRa)τdτ = 2

∫ ∞

0
e−(ax2+ b

x2 )dx

=

√
π

a
e−2

√
ab

=
2

r

√
πDRne−2

√
r2

4DRn
(λRn−λRa)

=
2

r

√
πDRne−r/LRn

� (C.24)

where use has been made of an integral table  to evaluate 
∫∞

0 e−(ax2+ b
x2 )dx . Inserting this result into 

equation (C.23) gives the asymptotic solution (37), as required.
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