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1.  Introduction

Radiomics is an area of active research that seeks to apply computer vision techniques including texture and 
geometric image feature extraction for use in predictive modelling and machine learning applications.(Aerts 
et al 2014, Fave et al 2017, Parekh and Jacobs 2017) Radiomics has been applied to various clinical endpoints 
and anatomical sites with varying levels of success. The radiomic work flow is comprised of four basic steps (1) 
image acquisition, (2) target definition, (3) feature extraction, and (4) analysis. While each step of the radiomic 
process has challenges, the image acquisition is the foundation of the process. CT images are the basis of radiation 
therapy planning and are an integral part of diagnosis and treatment follow-up. Several CT image acquisition 
parameters have been shown to effect the extracted radiomic features including contrast enhancement, (He et al 
2016) slice thickness, (Mackin et al 2015, He et al 2016, Lu et al 2016, Zhao et al 2016) reconstruction algorithms, 
(Mackin et al 2015, He et al 2016, Kim et al 2016, Lu et al 2016, Zhao et al 2016) voxel size, (Mackin et al 2015,  
Shafiq-Ul-Hassan et al 2017) and number of grey levels (Shafiq-Ul-Hassan et al 2017). As several imaging 
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Abstract
This work seeks to evaluate the combatting batch effect (ComBat) harmonization algorithm’s 
ability to reduce the variation in radiomic features arising from different imaging protocols and 
independently verify published results. The Gammex computed tomography (CT) electron density 
phantom and Quasar body phantom were imaged using 32 different chest imaging protocols. 107 
radiomic features were extracted from 15 spatially varying spherical contours between 1.5 cm and 
3 cm in each of the lung300 density, lung450 density, and wood inserts. The Kolmogorov–Smirnov 
test was used to determine significant differences in the distribution of the features and the 
concordance correlation coefficient (CCC) was used to measure the repeatability of the features from 
each protocol variation class (kVp, pitch, etc) before and after ComBat harmonization. P-values were 
corrected for multiple comparisons using the Benjamini–Hochberg–Yekutieli procedure. Finally, the 
ComBat algorithm was applied to human subject data using six different thorax imaging protocols 
with 135 patients. Spherical contours of un-irradiated lung (2 cm) and vertebral bone (1 cm) were 
used for radiomic feature extraction. ComBat harmonization reduced the percentage of features 
from significantly different distributions to 0%–2% or preserved 0% across all protocol variations 
for the lung300, lung450 and wood inserts. For the human subject data, ComBat harmonization 
reduced the percentage of significantly different features from 0%–59% for bone and 0%–19% for 
lung to 0% for both. This work verifies previously published results and demonstrates that ComBat 
harmonization is an effective means to harmonize radiomic features extracted from different 
imaging protocols to allow comparisons in large multi-institution datasets. Biological variation can 
be explicitly preserved by providing the ComBat algorithm with clinical or biological variables to 
protect. ComBat harmonization should be tested for its effect on predictive models.
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parameters impact the resulting radiomic features, there is a need for standardization and/or harmonization 
(Yip and Aerts 2016, Zwanenburg et al 2016). Standardization, in this context, involves implementing a defined 
procedure for the radiomic process including (a) using set imaging protocols that produce consistent images 
for the extraction of radiomic features across different scanners and institutions, and (b) applying a defined 
methodology for extracting the radiomic features to ensure high fidelity. Harmonization, on the other hand, is 
reconciling the difference in the radiomic feature values due to changes in imaging protocol or institution after 
the images and/or radiomic features have been acquired.

In order to reduce the impact of different imaging protocols in studies using radiomics to predict clinical end-
points, many studies will use the same imaging protocol, (Hunter et al 2015, Fave et al 2017) or controlled proto-
cols (Ger et al 2018). Using specified imaging parameters and controlled protocols may help combat the imaging 
parameter variations in prospective studies, but for retrospective studies, a controlled protocol approach would 
require either patients to be re-imaged with a certain imaging protocol, which is impractical, or limiting data to 
only those derived from one imaging protocol. Harmonization of pixel size through resampling (Mackin et al 
2017) and grey level normalization (Shafiq-Ul-Hassan et al 2018) have been applied in retrospective studies, but 
these techniques can change the pixel or voxel values which may not be desirable in all cases. Isotropic resampling 
of the voxels, a common pre-processing step in radiomic workflows, requires either up-sampling or down-sam-
pling the image. This can introduce uncertainty due to the interpolation algorithm or reduction of the fine detail 
in an image, but it can also reduce the impact of different pixel sizes (Mackin et al 2017). Grey level normalization 
involves binning the grey levels in the image prior to feature extraction into a standardized number or width 
of bins to reduce the impact of noise on the feature values (Shafiq-Ul-Hassan et al 2018). Another approach is 
to apply a z-score normalization to the radiomic features for comparison. This technique does not change the 
image values, but has not been successful in harmonizing all the differences in the features from different imaging 
parameters (Lu et al 2016). The ComBat harmonization method differs from z-score normalization, grey level 
normalization and resampling in two distinct manners: first, it is not applied to the image itself, and second, it 
estimates the fraction of total variance across the feature values due to the differences in the imaging protocols 
before correcting the feature values to remove the batch effect.

Recently, Orlhac et al proposed using the ComBat harmonization technique from the field of genetics to 
correct for batch differences for PET (Orlhac et al 2018) and CT (Orlhac et al 2019) images. The advantage of 
the ComBat technique is that the correction is applied directly to the derived radiomic features post extraction 
as opposed to the image values pre-extraction. This could allow for an easier comparison of features from retro-
spective or multi-institution data. Our work seeks to verify the findings of Orlhac et al (2019) on an independent 
phantom study and in an independent cohort of non-small cell lung cancer (NSCLC) patients utilizing a wider 
range of radiomic features.

2.  Materials and methods

2.1.  Phantom imaging protocols
The phantom setup consists of the Quasar Respiratory Motion Multi-Purpose Body Phantom (ModusQA, 
London, Ontario) and the Gammex CT Density Phantom (Sun Nuclear, Melbourne, FL). The Quasar phantom 
contained a solid wood insert on the phantom left, cube insert in the centre, and a 60-degree air wedge insert 
on the phantom right. The Gammex phantom was placed adjacent to the Quasar phantom with lung300 and 
lung450 inserts placed on either side of the lowest insert chambers on the inner circle, see figure 1. This location 
was chosen to align with the Quasar body phantom.

The phantom setup was imaged using 32 different chest imaging protocols on 2 Siemens CT scanners (Erlan-
gen, Germany), the Sensation 64 and the Definition Flash. The protocol variations included different combi-
nations of 6 reconstruction kernels, 3 pitch/bowtie filter combinations, 4 peak kilovoltage (kVp) levels, 3 slice 
thicknesses, and 2 pitch values with same bowtie filter (pitch only). Only one protocol attribute was varied at a 
time except for the pitch/bowtie comparison where both the pitch and bowtie filter were varied simultaneously 
with all other parameters held constant. See table 1 for additional details on the protocol parameter classes inves-
tigated, and see supplemental material table 1 (stacks.iop.org/PMB/65/015010/mmedia) for a full description of 
all protocol parameter comparisons investigated.

2.2.  Patient characteristics
Longitudinal follow-up images between three-months and 24-months from 135 patients treated with stereotactic 
body radiotherapy (SBRT) for primary NSCLC and lung metastases between 2008 and 2018 were retrospectively 
analysed. The 135 patients were 52.5% female and 47.5% male and ranged in age from 45.1 to 91.4 years at 
time of treatment. Stage I NSCLC accounted for 86.7% of patients, with stage II comprising an additional 2.2%. 
The remaining 11.1% were treated for lung metastases. Approximately 25% of patients had all follow-up images 
acquired with the same imaging protocol.
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From the 135 patients identified for this Institutional Review Board approved study, a total of 474 images 
were available. A subset of 203 images was identified for further analysis by selecting from imaging protocols with 
at least nine images available for analysis. Six unique imaging protocols were investigated, the details of which can 
be seen in table 2. Only one image from each protocol was selected per patient. When the patient had more than 
one image from the same protocol, the earliest time point was used. There was an average interval of 10  ±  6.5 
months (range: 3–21 months) between images for patients contributing more than one image from different 

image protocols.

2.3.  Radiomic feature extraction
Spherical regions of interest (ROIs) were delineated on the phantom and patient images using MIM version 
6.6 (MIM Software, Cleveland, OH). Within the lung300 and lung450 Gammex inserts, 15 spherical ROIs were 
drawn with a 1.5 cm diameter. The centre of each sphere was spatially varied while the whole sphere remained 
within the insert using a one slice offset between contours and allowing overlap. An additional 15 spherical 
ROIs with a 3 cm diameter were delineated in the wood insert in the Quasar phantom, again with spatially 

Figure 1.  Image of the lung300 (right arrow), lung450 (left arrow) in the Gammex Phantom (left image) and imaging setup for the 
phantom study (right image).

Table 1.  Summary of different imaging protocol classes and variations investigated.

Protocol class Variations

Slice thickness 2, 3, 5 mm

Pixel width 0.78a, 0.68b mm

kVp 80a, 100, 120, 140

Pitch only 0.65a, 1a

Pitch/bowtie filter 0.65/Wedge0a, 2.5/Wedge2b, 0.6/Wedge3b

Reconstruction kernel B30f, B31f, B40f, B41f, B45f, B70f

a Parameter only acquired on Sensation 64 Scanner.
b Parameter only acquired on Definition Flash Scanner.

Table 2.  Imaging parameters for the six unique patient imaging protocols.

Parameters

Protocol

Slice  

thickness (mm)

Pixel width 

(mm) kVp

Bowtie 

filter Pitch

Reconstruction 

kernel

Number 

of images

Sensation64_A 3 0.58–0.80 100 None 0.65 B40f 12

Sensation64_B 3 0.58–0.80 120 None 0.65 B40f 106

DefinitionFlash_A 3 0.56–0.78 100 Wedge 3 0.6 B41f 44

DefinitionFlash_B 3 0.56–0.78 100 Wedge 3 0.6 B43f 16

DefinitionFlash_C 3 0.56–0.68 120 Wedge 2 0.6 B43f 16

DefinitionFlash_D 3 0.56–0.68 120 Wedge 2 2.5 B41f 9

Phys. Med. Biol. 65 (2020) 015010 (10pp)
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varying contour centres and using a three slice offset. Each spherical contour from the same image protocol was 
considered a separate sample instead of imaging the phantoms multiple times.

For the patient images, one spherical ROI was drawn in each of two tissues outside the radiation therapy field: 
the lung, with a 2 cm diameter, and a vertebra (bone), with a 1 cm diameter. In patients, where multiple tumour 
lesions were irradiated, regions of the thorax receiving less than 2 Gy of total dose were considered. Only one set 
of lung and bone contours were delineated per image.

Radiomic texture features were extracted from each ROI using the pyRadiomics (2.2.0) package with python 
2.7 (van Griethuysen et al 2017). Prior to feature extraction, the images were resampled to the in-plane voxel size 
using the default B-spline interpolator. No further filters, image pre-processing, or grey level quantization was 
performed. A total of 107 texture features were extracted from each ROI. The features were from seven catego-
ries: shape (14 features), first order or histogram (18 features), the grey level dependence matrix (GLDM) (14 
features), the grey level co-occurrence matrix (GLCM) (24 features), the grey level run length matrix (GLRLM) 
(16 features), the grey level size zone matrix (GLSZM) (16 features), and the neighbourhood grey tone difference 
matrix (NGTDM) (5 features). A detailed list of the radiomic features extracted can be seen in supplemental 
material table 2. These radiomic feature categories represent geometrical descriptors as well as basic histogram 
statistics and higher order texture features which incorporate information regarding the spatial distribution for 
the grey values within the ROI. A complete mathematical description of the texture features can be found in the 
pyRadiomics documentation at: https://pyradiomics.readthedocs.io/en/latest/features.html.

2.4.  ComBat harmonization
The ComBat harmonization algorithm was originally proposed for the genetics field to address the ‘batch 
effect’ seen in microarray analysis. The ‘batch effect’ refers to non-biological noise, such as operator, time of 
day the measurements are taken, etc, that affect the assay samples and limits direct comparability. For radiomics 
studies, the different ‘batches’ can be thought of as the different image protocols, centres, machines, etc. The 
ComBat algorithm originally proposed by Johnson and Rabinovic (Johnson et al 2007) had the advantage of 
being effective even with small batch sizes, defined as less than 25 in the aforementioned paper. The ComBat 
harmonization method is derived from the location and scale (L/S) family of corrections where it is assumed that 
the error introduced by the batch differences can be corrected by standardizing the means and variances across 
the batches. In the L/S model, the value Y  for feature f  from sample j  in batch i follows equation (1):

Yijf = af + Xβf + γif + δif εijf .� (1)

af  is the overall feature value, X is the design matrix for the sample, βf  is the coefficient matrix for the design 
matrix, γif  is the additive batch effect, δif  is the multiplicative batch effect and εijf  is the error, assumed to have 

a normal distribution with mean 0 and variance σ2
f . By estimating the additive and multiplicative batch effect 

parameters for each feature, the corrected feature value, Y∗
ijf  can be found using equation (2):

Y∗
ijf =

Y
ijf− âf −Xβ̂f −γ̂if

δif
+ âf + Xβ̂f� (2)

where the hat (̂ ) indicates the estimated parameters from the model in equation (1) (Johnson et al 2007). The 
parameter estimates can be determined by applying assumptions about the underlying probability distributions 
of the additive and multiplicative terms, such as they follow a normal and inverse gamma distribution, respectively. 
Alternatively, these parameter estimates can be determined empirically using non-parametric assumptions. In 
addition, known biological variations can be preserved by supplying a model to the ComBat algorithm as the 

design matrix, X, and associated parameters, β̂f , in equation (1). This work utilized the code developed by Fortin 

et al (2017, 2018), which can be found at https://github.com/Jfortin1/ComBatHarmonization, using R (3.5.1) 
and R studio (1.1.456, R Studios Inc., Boston, MA) with the non-parametric settings and without a biological 
model.

2.5.  Statistical analysis
For the phantom portion of this work, comparisons in protocol differences were made on a class-wise basis where 
all image parameters were held at a ‘standard’ protocol level except the class being evaluated. The ‘standard’ 
protocol was acquired at 100 kVp, with a slice thickness of 3 mm, and was reconstructed using the B41f kernel for 
both machines. As the same bowtie filters were not available on both machines, the ‘standard’ protocol included 
a pitch of 0.65 and no bowtie filter (Wedge0) on the Sensation 64 and a pitch of 0.6 and the Wedge3 bowtie filter 
on the Definition Flash. When performing the ComBat harmonization, each parameter variation was considered 
a different batch. For example, when harmonizing the reconstruction parameter class, there were six different 
batches harmonized at once.

Phys. Med. Biol. 65 (2020) 015010 (10pp)
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For the patient data, comparisons were also made on a class-wise basis. However, all imaging protocols with 
the desired parameter variation were considered together to mimic a closer to real life situation and test the Com-
Bat harmonization algorithm’s ability to correct for multiple imaging acquisition parameter variations at once. 
For example, two of the six imaging protocols were acquired at 100 kVp, while the other four were acquired at 
120 kVp. All images acquired with 100 kVp would be compared to all images acquired with 120 kVp regardless of 
which other parameters were varied. When performing the ComBat harmonization, all images were harmonized 
together resulting in six different batches.

The 2-sample Kolmogorov–Smirnov test was used to determine if there was a significant difference in the 
distribution of the features from each protocol variation class (kVp, pitch, etc) both before and after ComBat 
harmonization. The 2-sample Kolmogorov–Smirnov test is a non-parametric test of whether two samples are 
derived from the same underlying probability distribution. Repeatability of texture features was assessed for all 
protocol variations using the concordance correlation coefficient (CCC) as described by Lin (1989). The CCC 
measures the correlation between two paired measurements by calculating the deviation from one-to-one cor-
relation. For all comparisons, a threshold of 0.9 was used to determine whether or not a feature was repeatable, 
as suggested by McBride (2005). All p -values were corrected for multiple comparisons using the Benjamini-
Hochberg-Yekutieli procedure (Benjamini and Hochberg 1995, Benjamini and Yekutieli 2001) using the built in 
p.adjust function in R.

3.  Results

3.1.  Phantom results
The ComBat harmonization procedure reduced the percentage of features having significantly different 
underlying distributions in a variety of situations. For the 150 different image protocol comparisons there was a 
large reduction, or a constant 0%, in the percentage of features that were from significantly different distributions 
after harmonization, see table 3. None of the image protocol comparisons resulted in an increase in the number 
of features from significantly different distributions. Following harmonization, there were five comparisons 
that still exhibited a significant difference in the distributions: slice thickness 3 mm versus 5 mm for the lung300 
insert from the Definition Flash, the reconstruction filter comparisons of B30f to B31f, B30f to B40f, and B30f 
to B41f for the lung450 insert on the Sensation 64, and the filter comparison of Wedge0 to Wedge2 for the wood 
insert with one image being acquired on each machine. An example of the distribution of the long run emphasis 
texture features for the different pitch/bowtie filter combinations before and after ComBat harmonization for 
the lung300 insert, figure 2, demonstrates a successful harmonization. Examples of the protocol comparisons 
where the harmonization failed can be seen in supplemental material figures 1 and 2.

The repeatability of features between the 150 different comparisons as measured by the CCC followed a simi-
lar pattern as the analysis of the significantly different distributions. For all comparisons, the number of features 
that had a CCC score greater than 0.9 remained the same or increased following ComBat harmonization. For the 
case of the Pitch/Bowtie Filter comparisons, the differences in the images resulted in no features being repeatable 
before or after harmonization. However, on average, an additional 23 features became repeatable following har-
monization across all image comparisons for all features.

3.2.  Patient results
The six different image protocols resulted in seven protocol variation class comparisons: kVp 100 versus 
120; reconstruction kernels B40f versus B41f, B40f versus B43f, and B41f versus B43f; and pitch/bowtie filter 
combinations of 0.65 pitch /Wedge0 versus 0.6 pitch/Wedge3, 0.65 pitch/Wedge0 versus 2.5 pitch/Wedge2, 
and 0.6 pitch/Wedge3 versus 2.5 pitch/Wedge2. A large range of variation in the average relative feature value 
difference between protocol comparisons before ComBat harmonization can be seen for both the bone (figure 3) 
and lung (figure 4). The shape features show no variation before harmonization as expected since a uniform shape 

Table 3.  Percentage of 107 radiomic features derived from significantly different distributions before and after harmonization for all 
protocol comparisons.

Lung300 Lung450 Wood

Before After Before After Before After

Number of comparisons 

per contour

Pitch/Bowtie Filter 64%–72% 0% 57%–66% 0% 11%–50% 0%–1% 3

kVp 0%–83% 0% 31%–78% 0% 0%–68% 0% 9

Pitch 69%–75% 0% 66%–68% 0% 45%–50% 0% 2

Reconstruction Kernel 7%–87% 0% 7%–85% 0%–2% 0%–78% 0% 30

Slice Thickness 43%–67% 0%–1% 40%–71% 0% 4%–66% 0% 6

Phys. Med. Biol. 65 (2020) 015010 (10pp)
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Figure 3.  Heat map of relative difference between average texture feature values for the seven protocol variation comparisons 
for bone contour before ComBat harmonization. Features include the shape, GLDM, GLCM, histogram, GLRLM, GLSZM, and 
NGTDM features.

Figure 2.  Example of the probability density curves for the long run emphasis feature from the GLRLM before ComBat 
harmonization (left image) and after ComBat harmonization (right image) for the lung300 phantom contour. Each fill colour 
represents a different pitch/ bowtie filter combination: 0.65pitch/Wedge0 (Wedge0—red); pitch 2.5/Wedge2 (Wedge2—green); and 
pitch 0.6/Wedge3 (Wedge3—blue).

Phys. Med. Biol. 65 (2020) 015010 (10pp)
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and size contour was created in each image. Following harmonization, the average relative difference between 
all radiomic features was between  −0.1 and 0.1. ComBat harmonization was able to reduce the percentage of 
radiomic features from significantly different distributions to 0% in all cases, see table 4. The distribution of the 
long run emphasis example feature for the patient data before and after harmonization can be seen in figure 5.

4.  Discussion

This work sought to evaluate the ComBat harmonization algorithm on data from our institution and verify 
the finding of Orlhac et al (2019) regarding the use of ComBat harmonization in CT radiomics studies using 
additional features and applying it to a larger patient cohort. This work was able to demonstrate the ComBat 
harmonization algorithm’s ability to correct radiomic features from a variety of different imaging protocols 
in both phantom and patient datasets. The ComBat method has the advantage of correcting the radiomic 
features post extraction and not modifying the original images making it potentially easier to share data in multi-
centre studies as the image data themselves would not have to be shared. In addition, it provides a method of 
correcting feature values from retrospective, multi-centre, and/or longitudinal studies so they are comparable 
and potentially able to be used in predictive modelling.

When compared to the Orlhac et al (2019) paper, the phantom portion of our work investigated similar dif-
ferences in imaging protocol: reconstruction kernels, slice thickness, and spiral pitch factor. While Orlhac et al 
allowed the effective milliamperage, manufacturer, and voxel size to also vary, this work allowed the kVp to vary. 
Whereas Orlhac et al used a 10 HU binning of the grey level values prior to feature extraction in the phantom 
data, we did not apply grey level quantization. Binning the grey level values is a common practice in radiomics 
as it can reduce the impact of noise on the feature values at the expense of smoothing over finer texture patterns. 
However, there is not a consensus on the width of the bin to use (Zwanenburg et al 2016). By not quantizing the 

Figure 4.  Heat map of relative difference between average texture feature values for the seven protocol variation comparisons 
for lung contour before ComBat harmonization. Features include the shape, GLDM, GLCM, histogram, GLRLM, GLSZM, and 
NGTDM features.

Phys. Med. Biol. 65 (2020) 015010 (10pp)
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Figure 5.  Example of the probability density curves for the long run emphasis feature from the GLRLM before ComBat 
harmonization (left image) and after ComBat harmonization (right image) for the bone contour. Each fill colour represents a 
different pitch/ bowtie filter combination: pitch 0.65/Wedge0 (Wedge0—red); pitch 2.5/Wedge2 (Wedge2—green); and pitch 0.6/
Wedge3 (Wedge3—blue).

grey level, this work can be seen as testing the technique on a ‘more challenging’ situation with regards to image 
noise impacting the feature values. This work chose the lung300, lung450 and wood phantom for analysis as 
they have an inherent texture pattern. Both the lung300 and lung450 are foam like inserts with different size and 
distribution of air bubbles to mimic the density of lungs. The wood insert has a natural wood grain texture with 
more directional dependence than the foam inserts. These inserts are similar to the cork and sycamore wood 
inserts used in the Orlhac et al paper. In addition, this work expanded the number of texture features investigated 
from 40, for the phantom data, with the LIEFx freeware (www.lifexsoft.org) used by Orlhac et al, to 107 texture 
features extracted using the pyRadiomics (van Griethuysen et al 2017) software. The additional features were 
predominately from the addition of the GLDM features and shape features. Both the pyRadiomics and LIFEx 
software programs calculate features from the first order histogram, GLCM, GLRLM, GLSZM, and NGTDM. 
The patient data in this work was expanded to include 135 patients and six different protocols compared to the 
74 patients and six protocols analysed by Orlhac et al. In addition, the same 107 features were analysed on the 
patient data. Orlhac et al examined 10 to 89 features extracted from two different in-house software packages on 
their patient data. The results of this work are in good agreement with the findings of the aforementioned paper. 
Mainly, the ComBat harmonization was able to reduce or remove the batch effect for both the phantom and 
patient data sets in both studies. The ability of the ComBat harmonization to perform well in different imaging 
scenarios demonstrates the flexibility of the procedure.

The ComBat harmonization technique is based on estimating the statistical variance present among the dif-
ferent batches. This procedure has the same goal as a normalization procedure but with subtle differences. In a 
traditional normalization procedure, like dividing by a reference value or z-score normalization, metrics such 
as the overall mean and standard deviation are used to determine the deviation from ‘normal’. In the Combat 
algorithm, only a fraction of the total variance is removed. The algorithm estimates the fraction of the total 
variance across the different batches that is due only to the differences in the imaging protocols for each feature 
independently without the use of a reference. Normalization procedures do not normally target a single source of 
variation, but adjust the values on overall variation, while the ComBat algorithm seeks to preserve real difference 
in the data. In addition, the ComBat harmonization estimates two contribution modes of the effect, the additive 
and the multiplicative effects. Most normalization procedures do not estimate multiple modes. As harmoniza-
tion could lead to some of the variation explained by true clinical or biological differences in the data to be inad-
vertently corrected, the ComBat algorithm does allow for the option of preserving known or suspected biological 
variation explicitly by providing the algorithm with a model that uses the desired biological features as covariates.

Table 4.  Summary of percentage of radiomic features derived from significantly different distributions for the patient images before and 
after ComBat harmonization.

Bone Lung

Before After Before After

Pitch/bowtie filter 0%–62% 0% 0%–19% 0%

kVp 2% 0% 0% 0%

Reconstruction kernel 0% 0% 0% 0%

Phys. Med. Biol. 65 (2020) 015010 (10pp)
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A few general trends in image acquisition parameters could be seen in the pre harmonization percentage 
of features derived from significantly different distributions. The number of features from significantly differ-
ent distributions appeared directly proportional to the difference in acquisition kVp for comparisons between  
100 kVp and 140kVp. In addition, all comparisons with 80 kVp had a larger number of features from signifi-
cantly different distributions than comparisons among the 100–140 kVp range. The comparisons with 80 kVp 
still showed an increase in the number of features from significantly different distributions with increasing gap 
in acquisition kVp. A similar directly proportional trend was seen between the number of significantly different 
features and the difference in slice thickness. However, the image protocols acquired on the Sensation 64 tended 
to have a higher number of significantly different features than the Definition Flash images when evaluating 
the same slice thickness comparisons, suggesting a difference between the machines in addition to the imaging 
parameters. Finally, the reconstruction kernels B30f, B31f, B40f, and B41f all had a comparable number of sig-
nificant features. There was approximately a 15%–30% increase in the percentage of features from significantly 
different distributions when any reconstruction kernel was compared to the B45f and B70f kernels. As the num-
ber in the name of the reconstruction kernel increases, the sharpness of the kernel also increases to emphasize 
high spatial frequency features and hence less smoothing occurs. The B30f, B40f and B70f are base kernels with 
the B31f and B41f differing by having a finer grain noise and milder edge enhancement than their corresponding 
bases. The B45f kernel has a sharpness half way in between B40f and B50f. The ‘B’ in the kernel name represents 
a body kernel while the ‘f’ represents a fast implementation of the kernel. Given the kernel sharpness, it is under-
standable that both the B45f and B70f reconstructed images appeared noisier than the other tested reconstruc-
tion kernels. This increase in noise could cause the observed higher percentage of features from significantly 
different distributions which may be mitigated by applying grey level quantization.

Five image protocol comparisons were not harmonized following the ComBat harmonization procedure. In 
four of the five instances, cluster prominence from the GLCM was unsuccessfully harmonized. In the fifth instance, 
kurtosis from the intensity features was not successfully harmonized. Cluster prominence is a measure of uniform-
ity and proximity as it relates to perception in an image (Conners et al 1984). Kurtosis is a measure of the sharpness 
of the peak in the distribution of pixel values. These features could have still shown a significant difference after 
harmonization in part due to a multi-modal distribution of values. The Kolmogorov-Smirnov test measures the 
maximum vertical distance between two probability density curves. The existence of a shift between the mean peaks 
can increase the maximum vertical distance causing the Kolmogorov–Smirnov test to be more sensitive to shifts 
in the mean (Berger and Zhou 2005). With the cluster prominence and kurtosis features, the distribution before 
harmonization had one dominant peak, with additional smaller peaks further away. For the kurtosis feature, the 
additional peaks were relatively close to the dominate peak, while the cluster prominence was spread over a larger 
area. Following harmonization, for both features, the peaks moved closer together, but a widening shift can be seen 
between the centres of the dominant peaks. Supplemental material figures 1 and 2 illustrate this resulting shift in the 
peaks that may contribute to their significant difference as measured by the Kolmogorov–Smirnov test.

An alternative method to the ComBat approach, a post extraction standardization method proposed by 
Andrearczyk et al (2019) uses a two layer multi-layer perceptron (MLP) network to harmonize features. The 
Andrearczyk et al phantom study showed the MLP based harmonization was able to increase the inter-class cor-
relation for the features from 0.63 to 0.78 averaged across all features. However, this process requires an adequate 
training set to determine the network weights. In comparison, the ComBat harmonization method does not 
need extensive training. In both methods, the weights for MPL, and the correction parameters for ComBat, are 
dependent on the data provided to the algorithm. In theory, the MPL method applied to a new data set could 
make use of transfer learning as a starting point for the weights, but training with the new data set may still be 
needed, which could be time consuming. The ComBat harmonization is applied to each new set of data to deter-
mine the correction parameters with results in a matter of seconds.

While this work demonstrated the effectiveness of the ComBat harmonization on the radiomic features, 
it did not investigate the effect of adding a biological model to the ComBat algorithm. The biological model 
optionally allows the user to explicitly prevent variation due to clinical or other biological factors from acci-
dently being removed in addition to the batch effects. Providing this model with biological parameters allows the 
iterative algorithm to estimate the fraction of the total variation due to the parameters included in the biological 
model and protects this variation. The algorithm then derives the parameter estimates for the batch effect on the 
remaining non protected variation. The use of a biological model should be investigated fully. In addition, the 
effect of using harmonized parameters on predictive models for clinical endpoints should be investigated as a 
future work.

5.  Conclusion

This work demonstrates the ability of the ComBat harmonization algorithm to make radiomic features 
from different imaging protocols comparable and validates previously published results. In addition, this 
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harmonization method has the ability to increase the repeatability of texture features. ComBat harmonization 
is easy to implement and does not affect the original imaging data making it ideal for retrospective, longitudinal, 
or multi-institutional studies. The effect of ComBat harmonization on imaging-feature based predictive models 
needs to be investigated.
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