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Abstract
One method for the numerical treatment of future null-infinity is to decouple 
coordinates from the tensor basis and choose each in a careful manner. This 
dual-frame approach is hampered by logarithmically divergent terms that 
appear in a naive choice of evolved variables. Here we consider a system 
of wave equations that satisfy the weak-null condition and serve as a model 
system with similar nonlinearities to those present in the Einstein field 
equations in generalized harmonic gauge. We show that these equations can be 
explicitly regularized by a nonlinear change of variables. Working in spherical 
symmetry, a numerical implementation of this model using compactified 
hyperboloidal slices is then presented. Clean convergence is found for the 
regularized system. Although more complicated, it is expected that general 
relativity can be treated similarly.

Keywords: numerical relativity, null infinity, weak null conditon, dual frame 
formalism

(Some figures may appear in colour only in the online journal)

1.  Introduction

For applications in gravitational wave astronomy it is desirable to consider generic asymptoti-
cally flat spacetimes and compute, using the methods of numerical relativity, waveforms at 
infinity. This is a long-standing open problem. Following Penrose [1] and Friedrich [2, 3], a 
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natural strategy is to work on compactified hyperboloidal slices, see [4] or [5] for reviews. 
This approach has seen a steady flow of numerical work, based either directly on the con-
formal field equations  [6–9] or on alternative formulations with the same geometric setup 
[10–12]. The main alternative approach is that of Cauchy-characteristic-matching [13], in 
which the weak-field region is again evolved using a compactified radial coordinate, but now 
on outgoing null-slices. These slices are then glued to an interior ‘Cauchy’ code through 
suitable boundary conditions. Related is the use of Cauchy-characteristic-extraction [14–18], 
in which data from the Cauchy grid is communicated to the null domain, but not vice versa. 
Despite this remarkable collection of work, however, the problem should still be considered 
open because, to date, no method has been completely satisfactorily used to compute waves 
at infinity from binary systems. For example, Cauchy-characteristic-extraction—the current 
state-of-the-art method—does not, as a matter of principle, avoid effects from the boundary of 
the Cauchy grid, and the full matching conditions still present subtle problems without sym-
metry. Similarly, although the conformal field equations are custom-built to treat null-infinity, 
they have not been employed in the strong-field for compact binaries.

Obtaining a method that extends existing techniques smoothly from the strong-field up to 
infinity is therefore very appealing. One proposal for this [19] is to use a dual-frame (DF) [20] 
approach. In this setting the Einstein field equations (EFEs) are written using a generalized 
harmonic tensor basis, and solved in the aforementioned hyperboloidal coordinates. The key 
necessary requirement for this approach to work is that certain derivatives of outgoing radial 
coordinate lightspeeds have suitable decay. Recently it was shown [21] that this lightspeed 
condition is related to the weak-null condition [22], an important structural condition for 
small-data global existence to nonlinear wave-equations, see [23] for further discussion of the 
latter. Using the notion of the asymptotic system, it was furthermore heuristically shown that 
even in a pure free-evolution setup, by making a suitable addition of constraints to the field 
equations, the lightspeed condition can be satisfied within the scheme of [19].

The equations of motion in [19] were constructed to avoid the presence of formally singular 
terms, but the simplest choice of variables leaves some variables like (lnR)/R, near null-infinity. 
Such terms could be problematic for numerics. Therefore, going beyond the bare-bones scheme 
of [19], we would like to obtain regular equations for regular unknowns that are not required 
to vanish at future-null infinity. The aim here is to show that this can be achieved in a nonlin-
ear good-bad-ugly wave equation model whose nonlinearities mimic those present in the for
mulation of the EFEs given in [21]. This builds towards a full-blown regularization of general 
relativity (GR) in harmonic gauge, which will be presented elsewhere, and may serve as an alter-
native to the conformal field equations [24]. We present an implementation with a battery of tests 
indicating that reliable, convergent, results can be obtained using our regularization technique.

2.  A good-bad-ugly model

In this section we present our model problem and give a new strategy for regularization on 
hyperboloidal slices that exploits the nonlinear structure of the field equations. We start in sec-
tion 2.1 with the model in second order form and then reduce to first order in section 2.2. The 
regularization is implemented in section 2.3, and finally give a form of the asymptotic system 
in compactified hyperboloidal coordinates in section 2.4.

2.1.  Second order form

In our previous study [21] we found that in harmonic gauge the field equations of GR can be 
divided into three categories, which we call the good, the bad and the ugly. This categorization 

E Gasperín et alClass. Quantum Grav. 37 (2020) 035006



3

is made by deriving from the original set of equations an associated asymptotic system, which 
in turn can be used to predict decay rates of the variables near null-infinity. The good equa-
tions are those for whom the asymptotic system indicates fall-off identical to that of the stan-
dard wave-equation. The bad equations  are those whose solutions decay slower than that. 
In the case of GR in harmonic gauge this can be restricted to a logarithmic loss in a single 
equation. The ugly equations are those associated with the constraints. These equations can be 
manipulated by addition of the constraints. This can give messier expressions, but ultimately 
results in fall-off faster than that of the wave equation. Let (R4, mab) denote the Minkowski 
spacetime and metric and denote its corresponding Levi-Civita connection as ∇. The model 
equation to be studied in this paper,

�g = 0, �b = (∂Tg)2, �u =
2
χ
∂Tu,� (1)

consists of a system of wave equations that ape this structure. Here � denotes the d’Alembert 

operator in the Minkowski spacetime and χ � R where R2 = δijXiXj . In these expressions 
Xµ = (T , Xi), with µ ∈ {0, 1, 2, 3} and i ∈ {1, 2, 3}, denote global inertial Cartesian coordi-
nates. We use the symbol � to represent equality at large radius up to error terms that decay 
faster in R than those displayed in the expression. For instance f = R−1 + O(R−(1+δ)) with 
δ > 0 will be written simply as f � R−1. The model (1) is an example of a system of wave 
equations satisfying the weak null condition. To understand what this means, one has to derive 
the asymptotic system mentioned above.

Here we sketch the construction as given in [22]. In section 2.4 we give an alternative 
method to obtain the asymptotic system that uses hyperboloidal coordinates directly. We 

begin by introducing shell-coordinates Xµ′
= (T , R, θA) where θA with A ∈ {1, 2} denote 

arbitrary coordinates on S2, whose specific form will be fixed later, and then defining the 
rescaled variables G = Rg, B = Rb and U = Ru. Now, consider the coordinate change 
(T , R, θA) → (υ, s, θA) where υ = T − R and s = lnR . Rewriting the system in terms of G , B 
and U and formally equating the terms with coefficients 1/R2 gives,

2∂s∂υB = −(∂υG)2, ∂s∂υG = 0, ∂s∂υU = −∂υU .� (2)

This is the asymptotic system associated with equation (1). Observe that the second equa-
tion in (2) implies that ∂υG depends only on υ. Consequently, one can integrate the first equa-
tion of (2) in s and conclude that ∂υB = − s

2 (∂υG)
2. Hence in the asymptotic approximation 

B = − 1
2 ln(R)

∫ υ

υ�
(∂ῡG)2dῡ. From the third equation one concludes that ∂υU = 1

R (∂υU)|s�. 
Integrating this gives U = 1

R

∫ υ

υ�
(∂υU)|s�dῡ. So the asymptotic system for u indicates that one 

could have taken a further power of 1/R in the definition of the rescaled variable U. (The right-
hand side of the equation for u was of course chosen precisely for this purpose). Nevertheless, 
observe that given a function m = m(θ,ϕ) such that /�m = 0, where /� denotes the Laplacian 
on S2, one has that m/R is a solution to any of the equations in (1). In the remainder we will 
discard these solutions. In other words, we consider fields u, g and b where we have subtracted 
any static solutions of this form.

A system of wave equations  is said to satisfy the weak null condition if its asymptotic 
system admits global solutions which grow at most exponentially in s [22]. Recall that a quad-
ratic form Nµν∂µφ∂νφ is a null-form if it vanishes upon replacement of ∂µφ with ξµ where 
ξµ is a null vector. A wave equation is said to satisfy the classical null condition [25–27] if 
its nonlinearity can be written as a sum of null-forms. A system of quasilinear wave equa-
tions  satisfying the classical null condition trivially satisfies the weak null condition. One 
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naive question that arises from this analysis is whether the logarithmic loss predicted by the 
asymptotic equation for B is somehow tied to the choice of the coordinate system (υ, s, θA). 
In other words, is the logarithmic loss only present due to the choice s(R) = ln(R), or could 
better coordinates give a sharper result? In section 2.4 a new version of the above analysis 
is given. In this new approach a compactified radial coordinate is used instead of the afore-
mentioned stretch R = es. Identical results are obtained, indicating that the outcome is robust 
against coordinate changes.

The model equation (1) is an example of a system of wave equations that fails to satisfy 
the classical null condition, but does satisfy the weak null condition. We call the system of 
equation (1) the semilinear good-bad-ugly model since g is a field (the good) that satisfies an 
equation that fulfills the classical null condition while b (the bad) is a field which is responsi-
ble for the failure of the system to satisfy the classical null condition. Since the Einstein field 
equations in harmonic gauge satisfy the weak null condition the good-bad subsystem alone 
constitutes a simple toy model to be implemented numerically in the dual foliation framework 
[19, 20] which encaptures this feature. This subsystem is furthermore the simplest toy model 
in which one can test regularization strategies for the fields analogous to the bad metric comp
onents, as they appear in generalized harmonic gauge in the EFE. The addition of the variable 
u (the ugly) to the good-bad subsystem arises as a model for the type of equations that appear 
in the evolution equations if one adds certain multiples of the harmonic constraints to the EFE. 
As discussed in [21] such an addition is required for a successful numerical implementation 
of the hyperboloidal initial value problem using the DF formalism. The equations in expres-
sion (1) almost decouple, naturally we could have analyzed a more complicated system of 
equations satisfying the weak null condition. Adding null-forms for instance would leave the 
asymptotic system unchanged, but we instead want to consider the simplest good-bad-ugly 
model with the properties described above.

2.2.  First order reduction of the model

Let (S2, qab) denote the unit two-sphere with the standard metric and represent by /∇ the asso-

ciated Levi-Civita connection. The shell coordinates Xµ′
= (T , R, θA) will be regarded, in the 

language of the DF formalism [20] as the uppercase coordinates.
For numerical implementation it is convenient to perform a first order reduction of the 

model. To that end, we make use of the usual 3+1 decomposition. Let ΣT  be the hypersurface 
determined by the condition T = const., Na denotes the timelike unit normal to this surface 
and define the projector γab as (N)γab = mab + NaNb. We then define the time reduction vari-
able gπ by gπ = −∂Tg and introduce a spatial covector ga and denote as gR and gA the comp
onents of ga respect to ((∂R)

a, (∂A)
a). The reduction constraints are

(g)Ca ≡ γa
b∇bg − ga.� (3)

Analogous definitions are made for the b and u fields. Using this notation, the semilinear 
good-bad-ugly model system can be written in first order form as follows. For the goods we 
have,

∂Tg = −gπ ,� (4a)

∂TgR = −∂Rgπ + γ2(−gR + ∂Rg),� (4b)

∂TgA = −∂Agπ + γ2(−gA + ∂Ag),� (4c)
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∂Tgπ = −∂RgR − 1
R2 qAB /∇AgB − 2

R
gR,� (4d)

while for the bads the equations are

∂Tb = −bπ ,� (4e)

∂TbR = −∂Rπ + γ2(−bR + ∂Rb),� (4f )

∂TbA = −∂Abπ + γ2(−bA + ∂Ab),� (4g)

∂Tbπ = gπ
2 − ∂RbR − 1

R2 qAB /∇AbB − 2
R

bR,� (4h)

and finally for the uglies, the evolution equations read

∂Tu = −uπ ,� (4i)

∂TuR = −∂Ruπ + γ2(−uR + ∂Ru),� (4j )

∂TuA = −∂Auπ + γ2(−uA + ∂Au),� (4k)

∂Tuπ = − 2
χ

uπ − ∂RuR − 1
R2 qAB /∇AuB − 2

R
uR.� (4l)

Throughout γ2 is a freely prescribable scalar function of the coordinates. The definition of 
the time reduction variables is encoded in the evolution equations (4a), (4e) and (4i). Setting 
γ2 = 0 one sees that the evolution equations (4b), (4f ) and (4j ) were obtained from the no-tor-
sion condition [∇a,∇b]φ = 0, with φ = g, b, u. Observe that the term next to γ2 corresponds 
to the reduction constraints. These terms are introduced to mitigate constraint violation in free 
evolution schemes. Their addition affects the principal part of the equations, but neverthe-
less the system is symmetric hyperbolic for any choice of the formulation parameter γ2 [28]. 
Finally, expressing (1) using the reduction variables renders the evolution equations (4d), (4h) 
and (4l).

2.3.  Evolution equations for the rescaled variables

In this section we rescale the variables and derive evolution equations for them. In the con-
struction of the asymptotic system we rescaled all of the fields identically. As examined in 
[21], this leads to a first order version of the asymptotic system discussed in section  2.1. 
Nevertheless, evolving the first order variables analogous to G , B and U is not convenient for 
numerical applications because B is expected to diverge as ln(R) and U to decay as 1/R near 
null-infinity. Ideally we want regular equations for variables for which one expects a regular 
behavior and a finite, potentially non-zero, limit at null infinity. The latter suggests performing 
a different rescaling for the good, the bad and the ugly fields. In this section we discuss how to 
do this in such a way that the evolution equations for the rescaled variables in hyperboloidal 
coordinates xµ = (t, r, θA), corresponding to the lowercase coordinates in the nomenclature 
of the DF formalism, are regular.
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2.3.1.  Asymptotic system primer.  We denote the outgoing and incoming null vectors by L and 
L respectively,

La = (∂T)
a + (∂R)

a, La = (∂T)
a − (∂R)

a,� (5)

and define

g+ = −gπ + gR, g− = −gπ − gR,� (6)

and analogous quantities for the fields b and u. Observe that the ‘+’ and ‘−’ variables cor-
respond to the L and L derivatives of the original fields, or, in other words, the characteristic 
variables of the system (4) with γ2 = 0. Substituting gπ, gR, bπ, bR, uπ and uR written in terms 
of the ‘+’ and ‘−’ variables into equations  (4a)–(4l) one obtains a set of evolution equa-
tions for the ‘+’, ‘−’ and ‘A’ variables for g, b and u. The next step is to rescale and choose 
the variables to evolve. Since there is a large freedom in doing this in practice, to explain the 
rationale behind the choice that we make, first, let us examine the standard rescaling sug-
gested by the discussion of the asymptotic system of section 2.1. We use a schematic notation 
and let φ represent g, b, u. Likewise φA encodes the angular variables and, as in equation (6), 
φ± the characteristic variables. Similarly we denote by Φ,ΦA,Φ± the rescaled variables 
G, GA, G±, B, BA, B±, U , UA, U±. With this notation at hand, the following expressions 
should be regarded as the ‘basic’ rescaling,

Φ+ = R2φ+, Φ− = Rφ−, Φ = Rφ, ΦA = RφA.� (7)

This corresponds, in terms of the original fields to taking the derivative first and rescaling 
afterwards, namely

Φ+ = R2Lφ, Φ− = RLφ, Φ = Rφ, ΦA = R∂Aφ.� (8)

Following the procedure described in [21] and, for simplicity of the presentation, taking 
γ2 = 0, one obtains the following first order asymptotic system:

∂υG+ = −1
2
G−, ∂υB+ = −1

2
B− − 1

8
(G−)2,

∂sG− = 0, ∂sB− = −1
4
(G−)2,

∂υU+ = −U−, ∂υΦ =
1
2
Φ−,

∂sU− = −U−, ∂υΦA =
1
2
∂AΦ

−.
�

(9)

Since we have chosen here the same rescaling for all the variables regardless of the equa-
tion they satisfy it is natural that their asymptotic equations differ. Nonetheless, in the follow-
ing we will discuss how to exploit the information provided by the asymptotic system (9) in 
order to obtain optimal definitions for the rescaled variables.

First notice that, although the decay of the good fields cannot be improved, the asymptotic 
system for these fields can be written in a slightly simpler way by considering the following 
variables

G+ = G+ + G, G− = G−, G = G, GA = GA.� (10)
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Then, the asymptotic system for the good variables reads,

∂υG+ = 0, ∂sG− = 0,

∂υG =
1
2

G−, ∂υGA =
1
2
∂AG−.

� (11)

In terms of the original unrescaled field, the latter change corresponds to the following choice 
of variables.

G+ = RL(Rg), G− = RLg, G = Rg, GA = R∂Ag.� (12)

Henceforth, we regard the form of the equation (11) as the prototype for the asymptotic sys-
tem for a set of equations that have the same asymptotics as that of the homogeneous wave 
equation.

In order to find the optimal redefinition for the rescaled uglies, first recall that, as already 
discussed in section 2.1, the in-homogeneity in the equation for the ugly was designed so that 
the field u decays one order 1/R faster than g. This property can be read off directly from the 
asymptotic equation ∂sU− = −U−. This suggests rescaling the fields with one extra power 
of 1/R of that of the basic rescaling (7), furthermore, some experimentation reveals that by 
defining

U+ = R(U+ + 2U), U− = RU−,
U = RU , UA = RUA,

� (13)

the asymptotic equations for these variables are identical to (11) if we formally replace G± 
and G by U± and U respectively. Written in terms of the raw ugly field we have,

U+ = RL(R2u), U− = R2Lu,

U = R2u, UA = R2∂Au.
� (14)

For the bad fields we make the following nonlinear change of variables

B+ = B+ + B +
1
8
η, B− = B− +

1
4

s∂υη,

B = B +
1
8

sη, BA = BA +
1
8
∂Aη,

�

(15)

where η is an auxiliary variable whose evolution equation has to be chosen in such a way that 
in the asymptotic limit it reduces to ∂υη = (G−)2 . With these definitions, a direct calculation 
shows that the asymptotic system for the B-fields, which we call the reformed bads is identical 
to that of the goods under replacement of G± and G by B± and B respectively in equation (11). 
The price to pay for this regularization is the introduction of a new variable η which, as in the 

asymptotic system, encodes 
∫ υ

υ�
(∂ῡG)2dῡ. Although η is defined as an integral it will satisfy 

a local equation of motion. The change of variables (15) can be written in terms of the raw 
bad field as

B+ = RL(Rb +
1
8

sη), B− = RL(b) +
1
8

sLη,

B = Rb +
1
8

sη, BA = R∂Ab +
1
8

s∂Aη.
�

(16)

This regularization strategy can be thought of as ‘subtracting’ the ln(R) part of the asymp-
totic solution for B. An alternative regularization strategy is, instead, to ‘divide’ by ln(R). 
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The disadvantage of the latter, arguably simpler option, is that it generates slowly decaying 
1/ ln(R) terms in the evolution equations. We have implemented this regularization also, but 
find that these slowly decaying terms prevent the code from converging, and so do not discuss 
the method further.

2.3.2.  Complete evolution equations in hyperboloidal coordinates.  The foregoing discussion 
already demonstrates how to choose the rescaled variables in order to have regular equa-
tions at I +. Nevertheless, as will be elaborated further in the remainder of this section, care 
is needed at the origin R  =  0 if we wish to evolve numerically the good-bad-ugly system in 
spherical symmetry. Taking this into account, a suitable choice for the rescaled variables is, 
for the goods,

G+ =χ2g+ + Rg, G− = χg−,
G = χg, GA = χgA,

for the bads,

B+ = χ2b+ + Rb +
1
8
χ−1Rη, B = χb +

1
8
(ξ − 1)η,

B− = χb− +
1
4
(ξ − 1)∂Tη, BA = χbA +

1
8
(ξ − 1)ηA,

and finally, for the uglies,

U+ = χ3u+ + 2χRu, U− = χ2u−,

U = χ2u, UA = χ2uA,
� (17)

where χ = χ(R) and ξ ≡ lnχ. The even function χ is to be chosen such that χ(0) = 1 and 
χ � R at large radii. This ensures that, asymptotically, the change of variables is that of 
equations (10), (13) and (15), while at the origin the transformation reduces to the identity. 
Additionally, we have introduced new variables η and ηA, the latter encoding the angular 
derivatives of the former. Thus, associated to ηA we introduce the constraint

(η)C ≡ /∇Aη − ηA.� (18)

Once the evolution equation for η is chosen, the equation for ηA can be obtained exploiting the 
no-torsion condition [∇a,∇b]η = 0. From the previous discussion we know that the evolution 
equation for η has to be chosen such that it asymptotically reduces to ∂υη = (G−)2  in order 
for our regularization strategy to work. A simple choice, to which we adhere from this point 
onward, is to set

∂Tη = 4R2gπ2.� (19)

Expressed in rescaled variables this reads,

∂Tη =
R2

χ2

(
G− +

1
χ

G+ − R
χ2 G

)2
.� (20)
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Using the no-torsion condition as described before and equation (20) we obtain the following 
for ηA,

∂TηA =
2R2

χ2

(
G− +

1
χ

G+ − R
χ2 G

)(
/∇AG− +

1
χ
/∇AG+ − R

χ2 GA

)
.

�
(21)

Expressing the evolution equation  (4) in terms of the rescaled variables as defined around 
equation (17) is a straightforward but cumbersome calculation. The reason for the latter is 
twofold: the change of variables (17) was designed so that at the origin the rescaled variables 
reduce to the unrescaled characteristic variables φ+,φ−,φ and φA. To do so, we had to intro-
duce functions such as χ instead of simply R or ξ − 1 instead of just ln(R), that when pushed 
through the change of variables produce several non-principal terms. Second, although we 
expect to obtain the simplest possible expression for the asymptotic equation under this choice 
of variables, due to the extra term added in the definition of the  +  fields, we do not get simple 
advection equations. Compare for instance the definition for G+ and G+ in equations (7) and 
(10). Nevertheless, we improve this situation by adding multiples of the constraints appropri-
ately to absorb these extra terms and thus reduce the system to a set of advection equations near 
infinity. We omit the details of this computation. We know that the original equations are sym-
metric hyperbolic, but what of the modified set? After changing variables, we end up with 
a system which takes a standard first order symmetric hyperbolic form for all of the fields 
except the reformed bads B, B+, B−, BA, plus η and ηA, each of which look like a system that 
would be trivially symmetric hyperbolic if the derivative coupling to the rescaled good fields 
could be dropped. This additional coupling can be treated as non-principal however, by not-
ing that the full system can be consistently evolved under the assumption that the good fields 
are one degree of regularity better behaved (in suitable Sobolev spaces) than the reformed 
bads. Although we have identified the leading behavior of the fields via the asymptotic system 
analysis, a deeper understanding of the solution could perhaps be achieved by obtaining a 
hierarchical set of ‘higher order asymptotic systems’ determining the subleading terms in the 
solution. This is left for future work. To express the evolution equations in their final form, 
we define radially compactified hyperboloidal coordinates (t, r, θA) related to (T , R, θA) via,

T = t + H(R(r)), R = R(r),� (22)

and let H′ = dH/dR and R′ = dR/dr . A direct computation shows that the above evolution 
equations for the rescaled variables in the (t, r, θA) coordinates read as,

∂tG+ = −cr
−∂rG+ −A−qAB /∇AGB + SG+ ,

∂tG− = −cr
+∂rG− − γ2cr

+∂rG +A+qAB /∇AGB + SG− ,

∂tGA =
1
2
∂A(G− +

1
χ

G+) + γ2∂AG − γ2GA − R
2χ2 GA,

∂tG =
1
2

G− − R
2χ2 G +

1
2χ

G+,

�

(23)
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for the goods, whilst for the bads we have,

∂tB+ = −cr
−∂rB+ −A−qAB /∇ABB + F−

η ∂rη

+
1
8
(ξ − 1)A−qAB /∇AηB + SB+ ,

∂tB− = −cr
+∂rB− − γ2cr

+∂rB +A+qAB /∇ABB + F+
η ∂rη

− 1
8
(ξ − 1)A+qAB /∇AηB + M∂rG+ + γ2J∂rG

+ KqAB /∇AGB + SB− ,

∂tBA =
1
2
∂A(B− +

1
χ

B+) +
1
8
γ2(ξ − 1)∂Aη + γ2∂AB

−
(
γ2 +

R
2χ2

)
BA + Fθ

ηηA,

∂tB =
1
2

B− − R
2χ2 B +

1
2χ

B+ +
R

16χ2 (ξ − 2)η.

�

(24)

Note here the aforementioned derivative coupling to the rescaled good fields, and the advec-
tion-equation like form of both (23) and (24) near I +. Next for the uglies we get,

∂tU+ = −cr
−∂rU+ −A−qAB /∇AUB + SU+ ,

∂tU− = −cr
+∂rU− − γ2cr

+∂rU +A+qAB /∇AUB + SU− ,

∂tUA =
1
2
∂A(U− +

1
χ

U+) + γ2∂AU − γ2UA − R
χ2 UA,

∂tU =
1
2

U− − R
2χ2 U +

1
2χ

U+,

�

(25)

and for the auxiliary variable,

∂tη =
R2

χ2 P2, ∂tηA =
2R2

χ2 P∂AP,� (26)

where the various coefficients in (23)–(26) are given by,

α+ = 1, α− = χ,
β+ = 0, β− = 1,

cr
± =

±1
(1 ∓ H′)R′ , A± =

R′

R2 α±cr
±,

M =
R′R2

χ3 (ξ − 1)cr
−cr

+P, K =
R′

R2 χM,

J =
χ(1 − R′cr

+)

R′cr
+

M, P = G− +
1
χ

G+ − R
χ2 G,

and,

F±
η =

c±
8

(R
χ
β± + γ2(ξ − 1)α±

)
,

Fθ
η =

1
8

(
γ2(ξ − 1) +

R
2χ2 (ξ − 2)

)
.
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The remaining lower order terms contained in SG± , SB± , and SU± are given in detail in appen-
dix. In view of the definition of the reduction constraints in equation (3) and the definition of 
the rescaled variables (17), we define the rescaled reduction constraints as

(G)CR ≡χ2((g)CR), (G)CA ≡ χ((g)CA),

(B)CR ≡χ2((b)CR), (B)CA ≡ χ((b)CA) +
1
8
(ξ − 1)((η)CA),

(U)CR ≡χ3((u)CR), (U)CA ≡ χ2((u)CA).

Notice that (η)CA is not rescaled as it is associated with the auxiliary variable whose evolution 
equation was chosen ad hoc. It is possible to define η so that it could be treated on an equal 
footing with the other variables, but as it already serves the purpose required we have not tried 
to do so. Moreover, as the evolution equation (26) contain at most first radial derivatives of η 
there is no need to introduce a reduction variable to encode ∂rη and, consequently, the asso-
ciated reduction constraint (η)CR is also not required. Direct computation using equation (3) 
reveals,

(G)CR =
χ

R′ ∂rG +
1

2R′cr
−

G+ +
χ

2R′cr
+

G− − Q
2R′χcr

−
G,

(B)CR =
χ

R′ ∂rB − χ(ξ − 1)
8R′ ∂rη +

1
2R′cr

−
B+

+
χ

2R′cr
+

B− − Q
2R′χcr

−
B − R2(ξ − 1)

8R′χ5cr
+

P2

+
1

16

(
2χ′(ξ − 1)− 2χξ′ +

R(ξ − 2)
R′χcr

−

)
η,

(U)CR =
χ

R′ ∂rU +
1

2R′cr
−

U+ +
χ

2R′cr
+

U− − Q
R′χcr

−
U,

�

(27)

and

(G)CA = ∂AG − GA, (B)CA = ∂AB − BA,
(U)CA = ∂AU − UA, (η)CA = ∂Aη − ηA,

where we have introduced Q = R + 2R′χχ′cr
− to write these expressions succinctly, for the 

constraints. In the next subsection we fix the asymptotics for H′, R′ and χ. Under those condi-
tions one can verify that Q � Rcr

−.

2.3.3.  Discussion.  In [29], in a mathematical relativity context, the Gauss curvature of cer-
tain two-spheres was taken as an unknown variable in place of a component of the four-
dimensional Riemann tensor, the two being related by the Gauss equation. In hindsight our 
regularization strategy is rather similar, in the sense that a nonlinear change of variables is 
made to try and derive equations avoiding the worst behaved quantities. For now it is not clear 
if this method can be applied to arbitrary PDEs satisfying some kind-of weak-null condition, 
but we do suspect that to be the case.

2.4. The compactified asymptotic system

In this subsection we obtain the asymptotic expressions implied by the evolution equa-
tions  (23)–(26). Observe that in these expressions neither the compression nor the height 
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functions R(r) and H(R) have been fixed, and we must now do so. In the following we there-
fore consider χ(R), R(r) and H(R) with the following asymptotics,

χ � R, R′ � Rn, H′ � 1 − R−n.� (28)

Here 1 < n � 2 is a parameter that controls the asymptotic behavior of R(r). Observe that the 
condition n  >  1 is needed so that R → ∞ as r → rI  for a finite rI . On the other hand, as 
discussed in [30], 0  <  n  <  2 is required for numerical stability. Near null-infinity the equa-
tions of motion then take the form,

∂tΨ
+ = −1

2
γ2Ψ

+ +O
(

Rn−2(lnR) pΨ
)

,

∂tΨ
− = −∂rΨ

− + γ2

(
−∂rΨ− 1

2
Ψ− +O

(
R1−n(lnR) pΨ

))
+O

(
Rn−2(lnR) pΨ

)
,

∂tΨ =
1
2
Ψ− +O

(
R−1(lnR) pΨ

)
,

∂tΨA =
1
2
∂AΨ

− + γ2

(
∂AΨ−ΨA − 1

8
pΨ(ξ − 1)(∂Aη − ηA)

)
+O

(
R−1

)
,

∂tη = (G−)2 +O(R−1), ∂tηA = 2G−∂AG− +O(R−1),

�

(29)

where Ψ ∈ {G, B, U} with pG = pU = 0 and p B  =  1. These expressions suggest that, in order 
to obtain regular expressions at I + it is necessary to assume some decay on γ2 and restrict 
the range of the parameter n. Taking these considerations into account, setting γ2 � R−ω with 
ω > 0 and taking 1  <  n  <  2, the asymptotic system reads

∂tΨ
+ � 0, � Ψ− � 0, ∂tΨ � 1

2
Ψ−,

∂tΨA � 1
2
∂AΨ

−, ∂tη � (G−)2, ∂tηA � 2G−∂AG−,
� (30)

where � = ∂t + ∂r. The latter vector corresponds, asymptotically, to the outgoing null direc-
tion. To see this, a direct computation using equation (28) shows that

� � RnL.� (31)

Similarly, the constraints take the form,

(Ψ)CR � −Ψ+ + R1−n(∂rΨ+
1
2
Ψ−) +O(R( pΨ−n)(lnR) pΨ),

(Ψ)CA = ∂AΨ−ΨA.

The first of these implies that if the reduction constraints are satisfied, then even if 
∂rΨ+ 1

2Ψ
− � O(1), a condition weaker than that indicated by the asymptotic system, then 

Ψ+ � R1−n, and so it must decay near I +. It follows from the asymptotic system (29) that 
the choice n  =  2 is out of reach for the bads if we insist on having regular equations for regular 
unknowns. In the approach discussed in [31, 32] the conformal factor is a fixed function of the 
radial coordinate that regularizes the conformal metric and thus, in our setup, corresponds to 
the choice n  =  2. Consequently we can only compare our good field with the wave equation in 
the setup of [33]. Although the asymptotic systems analysis of Hörmander [34, 35] we employ 
has not been performed for the formulation of [31] nor for the conformal field equations [2], 
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given what we have seen for harmonic gauge the presence of logs in the solutions in those set-
ups is possible too. This point could be addressed by such an analysis for those formulations, 
which we postpone for future work.

3.  Numerical evolutions

Having given the model and the strategy for regularization we now move on to our numer
ical implementation. In section 3.1 we discuss the methods employed and the specific data 
evolved. In section 3.2 we present our data.

3.1.  Code overview

3.1.1.  Continuum choices.  For the numerical implementation we take the following for the 
height and compress functions,

H′ = 1 − 1
R′ , R(r) =

r

Ω
1

n−1
, Ω(r) = 1 − r2

l2
,� (32)

so that I + is located at r  =  l, and always set l  =  1. Observe that the above choice for the 
height function implies that,

cr
+ = 1, cr

− = −1
2

R−n +O(R−2n).� (33)

The latter ensures that outgoing pulses propagate without distortion as they move towards 
I +. For the rescaling function χ and the damping parameter we choose

χ =
√

1 + R2, γ2 =
γ

χ
.� (34)

This choice satisfies the conditions of equation (28) so that in the asymptotic limit one recov-
ers equation (30). The reason for setting χ =

√
1 + R2  is to avoid introducing unnecessary 

singular terms at the origin R  =  0. As initial data we set each of the raw fields g, b and u, to

ae−δ(R−R0)
2
+ ae−δ(R+R0)

2
,� (35)

keeping the freedom to adjust the amplitude, width and offset parameters a, δ, R0 separately 
for each field. The values for the regularized fields G, B and U are then computed by taking 
derivatives and/or applying the change of variable in the obvious manner. The auxiliary vari-
able η is taken to vanish initially.

3.1.2.  Numerical setup.  Our experiments have been performed in a one-dimensional code 
that uses very standard methods, and shares the same basic infrastructure as that used for the 
spherically symmetric hyperboloidal evolutions in [31, 32]. We now give a quick overview 
of these methods. The method of lines is employed for time integration, and is performed 
with a fourth order accurate Runge–Kutta. To approximate spatial derivatives we use second 
order centered finite differences. We made this choice because the small stencil makes the 
propagation of noise potentially slower than with higher order finite differences or spectral 
methods. The only subtlety in the implementation is that, because the evolution equation (4) 
were written in spherical polar coordinates the equations (23)–(26) contain divergent terms 
at the origin. Since we are performing spherically symmetric evolutions the 1/R2 coefficient 
of qAB /∇AΨB is not problematic, but the 1/R terms present in the source terms SΨ (displayed 
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in appendix) require special attention. Our solution is to use Evans method [36] as discussed 
in [37] in the context of summation by parts discretizations of the wave equation in spherical 
symmetry. In the latter it is shown that given a system of equations of the form,

∂tψ = ∂rπ, ∂tπ = ∂rψ +
p
r
ψ,� (36)

the spatial derivatives can be discretized as,

∂tψ = h−1Dπ, ∂tπ = h−1D̃ψ,� (37)

where h ≡ ∆r is the grid spacing and the difference operators D and D̃ are given by

h−1D̃ψ = ( p + 1)
r p

i+1ψi+1 − r p
i−1ψi−1

r p+1
i+1 − r p+1

i−1

,

h−1Dπ =
πi+1 − πi−1

2
,

where ψi(t) and πi(t) are grid functions approximating ψ(t, r) and π(t, r) on a grid ri. We work 
always with a non-staggered grid so that there are gridpoints both directly at the origin and at 
I +. In order to rewrite equations (23)–(26) in a form in which the discretization (37) can be 
applied, we define Ξ according to,

1
R

=
1
R′

(1
r
− Ξ′

Ξ

)
,� (38)

which can be used to rewrite the terms in SΨ with contain 1/R and then exploit the aforemen-
tioned discretization to absorb the singular behavior at the origin with D and D̃. Although 
these equations  are regular everywhere (including at I +), the coefficients in these equa-
tions are in general of the form Qm(R)/Qs(R) with m � s or ln(R)Qm(R)/Qs(R) with m  <  s 
where Qn(R) denotes a polynomial in R of degree n. Thus to avoid evaluating numerically the 
quotient of two large numbers careful algebraic manipulations are required. In practice, one 
can opt also to substitute R(r) explicitly. To manage the inner boundary we define ghostzones, 
which are populated from the bulk variables using the known parity of the raw g, b and u fields 
and their derivatives. By construction no physical boundary conditions are needed at I +, 
but derivatives must still be approximated. To make that possible we extrapolate the evolved 
fields from the bulk into one ghostzone at fourth order and use the standard spatial opera-
tors all of the way out to the boundary point. The final ingredient in our method is the use of 
Kreiss–Oliger dissipation [38]

σh3D2
+D2

−/16,� (39)

with D± the standard forward and backward differencing operators, which, as used in [39], is 
added to each of the evolution equations to reduce high-frequency noise. An exception is the η 
variable, which is treated differently because no spatial derivatives of this quantity are present 
anywhere in the system, and experimentally we find that this leads to a misleading third order 
convergent feature at the resolutions we employ when dissipation is used on the variable. At 
the outer boundary we use the same extrapolation mentioned above to fill the additional point 
in the dissipation stencil.
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3.2.  Results with the GBU model

3.2.1.  Basic dynamics.  We begin with a description of the basic dynamics of the system. 
To give ball-park figures we find that 200 spatial points and a CFL factor of 1/2 are typically 
sufficient to provide well-resolved solutions that appear smooth in space and time given our 
initial data, and is also sufficient to see convergence experimentally, see figure 3. We work 
always with the dissipation parameter σ = 2/100, see (39). Following (35) and placing iden-
tical data centered at the origin R0  =  0 with width parameter δ = 1 and amplitude a  =  1/100 
in each of the raw fields g, b, u, and trivial initial data for the auxiliary variable η, we see the 
expected behavior. The data for each field splits into two pulses. The first of these propagates 
directly out to null-infinity, whereas the second appears to oscillate briefly at the origin first. 
A brief comparison with results of an older code for the plain-wave equation in first order in 

Figure 1.  In these plots we display snapshots of the solution for the regularized ugly 
U−,U and bad B−,B fields at fixed times, against the compactified radial coordinate r. In 
the left panel the time t  =  0.4 was chosen as it corresponds roughly with the maximum 
of the radiation field B− at null-infinity (compare with figure 2). The right panel serves 
to demonstrate the decay of the fields after the initial pulse leaves the domain. Note the 
difference in scale.

Figure 2.  Here we plot the reformed bad field B− as a function of spacetime, again 
against the compactified radial coordinate r. The take home message is that the initial 
pulse exits the domain cleanly, with no visible numerical reflection, leaving behind a 
low-frequency feature in space that gradually decays.
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time, second order in space form, written in the same infrastructure, against the good field g 
reveals comparable results, again giving us confidence in the numerics (taking n  =  2 as men-
tioned earlier). In figure 1 we plot snapshots of the solution for the bad and ugly fields given 
the aforementioned initial data. The ugly field u is decoupled from the rest of the system, but 
behaves in a qualitatively similar manner. At late times we see a hump near I + in the rescaled 
ugly field U that appears to decay slowly. The important first result here is that the behavior 
predicted by the asymptotic system and hoped for in our regularization is realized; our evolved 
fields and their derivatives are finite, and the equations of motion are explicitly regular. The 
basic dynamics described above does not change if one adds a small offset R0 �= 0 or gives 
different widths δ for each of the raw fields g, b, u.

3.2.2.  Behavior of the reformed bad and auxiliary fields.  For our particular model there is 
no question of finite time blow-up, so any explosion of the data must be caused by a failure 
of the numerical method; we see no such blow-up. That said, as we increase the amplitude of 
the g field or give non-trivial initial data for η, we see both that the distortion in B increases 
and, obviously, that η grows, indicating that the original b variable is picking up a log-term as 
expected. In figure 2 we display a spacetime plot of the outgoing radiation-field B−. Since the 
g field rapidly propagates out through I +, we find that η reaches a fixed, non-zero end-state 
rather quickly.

3.2.3.  Constraint damping.  One potential weakness of the present formulation is that for 
regularity of the field equations we have to suppress the constraint damping parameter γ2 like 
1/R near I +. One might therefore worry that enforcing strong-damping γ2 = O(1) near the 
origin would result in small violations near the origin and large violations near I +, which 
could generate large gradients and hence large errors, even if the scheme were converging 

Figure 3.  To judge whether or not the numerical method is working reliably we perform 
convergence tests as usual. In going from low to medium and medium to high resolution 
we doubled resolution. In the left panel we demonstrate that the outgoing radiation 
fields U− and B− converge perfectly at second order at null-infinity as a function of 
time, consistent with our discretization. In the second panel we display the experimental 
convergence rate in the norm of the difference of the solutions as a function of time. At 
first glance it seems that there is a problem abound t  =  4 and t  =  6, but, as can be seen 
by the second curve, this effect converges away.
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reliably. To investigate this we have compared evolutions with and without constraint damp-
ing switched on, and find that within the run-times considered t � 100, such problems do 
not manifest. We think it may be possible to adjust the present constraint damping scheme 
to damp violations on outgoing pulses in such a way that we could maintain O(1) constraint 
damping parameters, but since doing so would require re-engineering the entire scheme, and 
we presently do not see a pressing need for such a modification, we have not pushed this line 
of inquiry further.

3.2.4.  Convergence.  In the future we hope that a regularization similar to that employed 
here will be useful in gravitational wave applications. Such work requires meaningful error-
estimates. Our experiments can therefore only be considered a success if clean convergence 
can be experimentally achieved. To investigate this we performed a set of runs in which we 
start from the grid-setup mentioned above and then doubled resolution several times, keeping 
the remaining parameters fixed. These tests were furthermore performed with several different 
choices for the initial data parameters. In figure 3 we display two of the ensuing convergence 
plots. In the first we show that perfect pointwise convergence for the outgoing radiation 
fields B− and U− is attained at I +. The second shows that good second order convergence is 
obtained in the norm of the full solution as resolution is increased. In the latter we do notice 
a gradual drift away from second order at late times, but this effect is suppressed as resolu-
tion increases, so does not appear to be a problem in principle. It may be that by adjusting the 
specifics of our outer boundary treatment this behavior can be improved. So far we have not 
done so systematically however. We have also examined the constraint violations (27) and find 
perfect second order convergence in all quantities.

4.  Conclusions

Continuing towards a robust treatment of future null-infinity in numerical relativity we con-
sidered a semilinear system of wave equations. The system was constructed with the nonlinear 
structure of the field equations of GR in harmonic gauge in mind, and has three different types 
of fields. We call these the good, the bad and the ugly. Of these, the good fields have fall-off 
near null-infinity like solutions of the wave equation, whereas the ugly fields decay faster. 
Finally the bad fields decay worse than solutions to the wave equation by a logarithm in R. 
The main accomplishment in this paper was to give a reformulation that delivers regular equa-
tions  for regular, generically non-decaying, variables on compactified hyperboloidal slices. 
The regularization strategy is to rescale all of the wave fields as aggressively as possible and 
then define new fields to subtract out any potential logarithmic, or perhaps harsher, diver-
gences. The crucial technical tool was the use of an asymptotic expansion, which allowed us 
to discard irrelevant terms. In our model this meant the introduction of the η field, and by anal-
ogy in GR will mean integrating up the square of the Bondi news function near null-infinity. 
Remarkably the asymptotic expansion of the regularized system is identical to that of a set of 
decoupled wave equations. With the regularization in hand we presented a set of numerical 
evolutions in which we demonstrated perfect pointwise and norm convergence over the entire 
computational domain, which included null-infinity explicitly. Future tests of the model will 
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be performed using the bamps pseudospectral numerical relativity code [40, 41], which pres-
ents a more subtle challenge because spectral methods may more susceptible to any lingering 
lower-order log-terms. In forthcoming work we will present a regularization of GR following 
the same approach.
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Appendix.  Source terms in the GBU model

The source terms SΨ of equation (26) are expressions polynomial in the fields Φ with coef-
ficients that are regular functions of R. Using the notation of section 2.3, the sources for G+ 
and G− are given by

SG+ = −
R′cr

−
Rχ

(R − χ)(R + χ)G− +
2R′cr

−
χ2 (χ− Rχ′)G

+
γ2

2

( 1
χ
(R + 2R′χχ′cr

−)G − G+ − χ(1 + 2R′cr
−)G

−
)

+
R′cr

−
Rχ

(2Rχ′ − χ)G+,

and

SG− =
R′cr

+

Rχ
G+ +

R′cr
+

Rχ
(Rχ′ − χ)G− −

R′cr
+

χ2 G

+
γ2

2

( 1
χ
(2R′cr

+ − 1)G+ − G−

+
1
χ2 (R − 2R′Rcr

+ + 2R′χχ′cr
+)G

)
.
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For the B+ and B− fields we have,

SB+ =
1

8χ7 F+
1 (χ2G− − χG+ + RG)2 −

R′cr
−

8χ2 F+
3 η

+
γ2

2

( 1
8χ

F+
2 η − B+ +

1
χ
(R + 2R′χχ′cr

−)B

+
R2cr

−
4χ5cr

+

(ξ − 1)(χ2G− − χG+ + RG)2 −
χcr

−
cr
+

B−
)

−
R′cr

−
Rχ

(R − χ)(R + χ)B− +
2R′cr

−
χ2 (χ− Rχ′)B

+
R′cr

−
Rχ

(2Rχ′ − χ)B+,

SB− =
(R′R

2χ6 F−
1 −

γ2R2cr
−

4χ4cr
+

(ξ − 1)F−
7

)
GG− +

R′cr
+

8χ2 (ξ − 2)η

+
γ2cr

+F−
9

16χ2cr
−
η +

(R′cr
+

Rχ
(Rχ′ − χ)− γ2

2
)
B− + (

R′cr
+

Rχ
−

γ2cr
+

2χcr
−
)B+

+
(γ2R2cr

−
8χ2cr

+

(ξ − 1)(2R′cr
+ − 3)− R′

4χ4 F−
3

)
(G−)2

+
(γ2R2

8χ4 (ξ − 1)(4R′cr
+ − 3)− R′

4χ6 (F
−
4 + F−

5 )
)
(G+)2

−
(R′cr

+

χ2 − γ2

2χ2 (R − 2R′Rcr
+ + 2R′χχ′cr

+)
)
B

+
(γ2R3cr

−F−
8

8χ6cr
+

(ξ − 1)− R′R2

4χ8 (F−
4 + F−

5 − 4R′Rχ2cr
−cr

+)
)
G2

+
(R′R

2χ7 (F
−
4 + F−

5 − 2R′Rχ2cr
−cr

+)−
γ2R2cr

−F−
6

4χ5cr
+

(ξ − 1)
)
GG+

−
(R′F−

2

2χ5 +
γ2R2cr

−
4χ3cr

+

(ξ − 1)(3 − 6R′cr
+ + 4R′2(cr

+)
2)
)
G−G+,

where the coefficients F± are functions of R only. The detailed expressions for these are given 
in the following lists. The ‘+’ quantities are,

F+
1 = R3 − 2R′R3cr

− + 2R′Rχ2cr
− + 2R′χ3cr

−

+ 2R′R3ξcr
− − 2R′Rχ2ξcr

−,

F+
2 = 2R − Rξ + 2R′χχ′cr

− − 2R′χχ′ξcr
− + 2R′χ2ξ′cr

−,

F+
3 = −4χ+ 5Rχ′ + 2χξ − 2Rχ′ξ.
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The ‘−’ quantities are,

F−
1 = χ3cr

+ − 2R3(ξ − 1)cr
−(R

′cr
+ − 1)

+ Rχ2(ξ − 1)cr
−(8R′cr

+ − 3)

− R2χ
(
χξ′cr

+ + χ′(ξ − 1)cr
−(6R′cr

+ − 1)
)
,

F−
2 = χ3cr

+ − 3Rχ2(ξ − 1)cr
+ − 2R3(ξ − 1)cr

−(R
′cr

+ − 1)

− R2χ
(
χξ′cr

+ + χ′(ξ − 1)cr
−(6R′cr

+ − 1)
)
,

F−
3 = 2R3(ξ − 1)cr

− + χ3cr
+ − R2χ(χ′ − χ′ξ + χξ′)cr

+

+ Rχ2(ξ − 1)cr
−(2R′cr

+ − 3),

F−
4 = −Rχ

(
Rχξ′ − 10R′χ(ξ − 1)cr

− + 10R′Rχ′(ξ − 1)cr
−
)
cr
+,

F−
5 = −3Rχ2(ξ − 1)cr

− + R2χχ′(ξ − 1)cr
− + χ3cr

+

+ 2R3(ξ − 1)cr
+,

F−
6 = 4R′χχ′cr

+(R
′cr

+ − 1) + R(10R′cr
+ − 8R′2(cr

+)
2 − 3),

F−
7 = 4R′χχ′cr

+(R
′cr

+ − 1) + R(6R′cr
+ − 4R′2(cr

+)
2 − 3),

F−
8 = 8R′χχ′cr

+(R
′cr

+ − 1) + R(10R′cr
+ − 8R′2(cr

+)
2 − 3),

F−
9 = −R(ξ − 2) + 2R′χ(χ′ − χ′ξ + χξ′)cr

−.

Finally, the sources for U± are given by,

SU+ =
R′cr

−
Rχ

(χ− R)(2R + χ)U− +
2R′cr

−
χ2 (2χ− R − 2Rχ′)U

− γ2

2

(
U+ + χ(1 + 2R′cr

−)U
− − 2

χ
(R + 2R′χχ′cr

−)U
)

+
R′

Rχcr
−
(R − χ+ 3Rχ′)U+,

and,

SU− =
2R′cr

+

χ3 (R − χ)U − R′

Rχ2cr
+

(R − χ)U+

−
R′cr

+

Rχ
(R + χ− 2Rχ′)U−

− γ2

2

(
U− − 1

χ
(2R′cr

+ − 1)U+

− 2
χ
(R − 2R′Rcr

+ + 2R′χχ′cr
+)U

)
.
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