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Abstract
We obtain finite-time existence for the massless Boltzmann equation, with a 
range of soft cross-sections, in an FLRW background with data given at the 
initial singularity. In the case of positive cosmological constant we obtain 
long-time existence in proper-time for small data as a corollary.
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1.  Introduction

The work in [1] showed that there exists a well-posed Cauchy problem for cosmological 
solutions of the physical massless Einstein–Vlasov equations, which is to say the Einstein 
equations with massless, collisionless matter as source, with an initial conformal gauge singu-
larity, [14]. A conformal gauge singularity, or isotropic singularity, is essentially a curvature 
singularity which can be removed by conformally rescaling the metric, and which is therefore 
one at which the Weyl tensor is finite. There are reasons for thinking that the initial singular-
ity of our actual physical universe is one at which the Weyl tensor is finite, [15], and that it 
might in fact be a conformal gauge singularity, [16]. With a conformal gauge singularity, in 
the unphysical, rescaled space-time the singularity is a smooth space-like hypersurface, which 
we will call the bang surface, and data may be given at this hypersurface. From the stand-
point of the physical space-time, there is a curvature singularity at the bang surface, so that 
these points are not part of space-time, but the singularity can be regularised by rescaling the 
metric and then data is given actually at what was the singularity. The question naturally arises 
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of extending the work of [1] to the Einstein–Boltzmann equations, that is to say the Einstein 
equations with collisional matter as source.

Mathematically, with any of these matter models, the problem is to find an extended set 
of conformal Einstein equations in the conformally extended manifold for which finite-time 
existence can be proved with data at the bang surface. This was achieved for a range of poly-
tropic perfect fluids in [2], for massless Einstein–Vlasov with a spatially homogeneous metric 
in [3], and for massless Einstein–Vlasov without symmetry in [1]. For both kinds of source, 
the conformal Einstein equations can be formulated as a Fuchsian system with the pole located 
at the bang surface but the appropriate Cauchy data are strikingly different in the two cases: 
for the perfect fluid case the data are simply a Riemannian 3-metric, in fact the metric of the 
bang surface, with no separate degrees of freedom for the fluid, while for the Einstein–Vlasov 
case there is a single datum, the initial distribution function subject only to non-negativity 
and a vanishing dipole condition. The initial metric is extracted from the initial distribution 
function.

The question was raised4 as to whether the Einstein–Boltzmann case, which is to say the 
Einstein–Vlasov case with the inclusion of a collision term in the Vlasov equation, might 
make a bridge between these two cases, with perfect fluids as one limit and Vlasov as the 
other, depending on the scattering cross-section. This possibility was explored informally in 
[20] and received some support. The intention now is to proceed more rigorously. The prob-
lem is difficult because the collision term inevitably has singularities which have to be dealt 
with (these are visible in equations (12) and (13) below).

One considers massless particles because, near the bang, one expects the particles to be so 
energetic that their rest-mass, even if nonzero, would have negligible effect. Likewise, near the 
bang the cosmological constant Λ would be expected to be physically irrelevant, and there have 
been studies [21] to indicate that indeed, in the cases so far studied, the inclusion of nonzero 
rest-mass or Λ have negligible effect, but we include the case of a positive cosmological con-
stant to make contact with Penrose’s conformal cyclic cosmology (or CCC, [16]). In that theory 
the rest-mass of all elementary particles is zero near the bang and in the remote future.

There are rather few mathematical results on the Einstein–Boltzmann system since the 
original existence results of [5], and fewer still on massless Einstein–Boltzmann, where the 
masslessness introduces extra poles in the collision term (see (14): in the case of nonzero mass 
m the term q in the denominator is replaced by (q2 + m2R2)1/2  which is bounded away from 
zero except at the bang surface). This is to be contrasted with the collisionless case, where 
the linearity of the Vlasov equation means that, in situations with symmetry, many explicit 
solutions can be simply written down, and in systems without symmetry one still has linearity.

As a first step in extending [1], we consider the homogeneous and isotropic case. The 
metric is Friedman–Lemaître–Robertson–Walker (hereafter FLRW) and the scale-factor is 
fixed by imposing the Einstein equations with trace-free energy-momentum tensor as source. 
We assume the source is determined by a homogeneous and isotropic distribution function 
that is subject to the Boltzmann equation, so that this is a self-consistent Einstein–Boltzmann 
solution, although the Einstein and Boltzmann equations decouple. Since there are rather few 
mathematical results on the massless Einstein–Boltzmann system, our strategy with respect to 
an appropriate choice of cross-section is pragmatic: we look among the families of physically-
reasonable cross-sections classified for example in [8] for some which lead eventually to a 
tractable initial-value problem in our setting. We need to make assumptions about the scatter-
ing cross-section, specifically about its behaviour at large energies and the dependence on the 

4 Anguige and Rendall; private communication to Tod, 2000.
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FLRW scale-factor that this implies. This is to be expected when one wishes to give data at the 
bang surface, where the scale factor vanishes. We also need to regularise the Boltzmann equa-
tion by redefining the time-coordinate (see equations (20) and (21))—proper time is defined 
by the physical metric and this is singular at the bang surface, so that one should be prepared 
to change the time-coordinate to regularise the equations—and this also imposes a restriction 
on the scattering cross-sections considered. However all these constraints are satisfied by the 
family of cross-sections that we consider in our main result, theorem 1. It is worth noting that 
the origin of the redefined time coordinate s in (20) can be chosen to coincide with the origin 
of proper time t, namely at the bang surface, but with a positive Λ there is only a finite amount 
of s-time before the conformal infinity I+ which is attached at infinite proper time t. Since we 
eventually prove existence for finite s-time, one may reduce the norm of the initial distribu-
tion function f 0 so that the solution exists for finite s-time but infinite t-time in the case Λ > 0.

Once this FLRW case can has been successfully handled, the next step is to extend the 
analysis to spatially-homogeneous space-times and a homogeneous and isotropic distribution 
function, following [3], [10] and [11].

The plan of the paper is as follows. In section 2, we discuss the flat FLRW metric and the 
Einstein–Boltzmann equations with the corresponding symmetry assumption. The massless 
Boltzmann equation gives rise to a trace-free energy-momentum tensor and, given a choice of 
positive, zero or negative cosmological constant, this determines the FLRW scale-factor and 
therefore the whole metric via the Einstein equations. We have still to prove well-posed-ness 
of the Boltzmann equation with some choice of cross-section, but this is now a problem set in 
a given space-time metric. We give a discussion of possible scattering cross-sections, follow-
ing the discussions and classifications in [8, 13] and [18], and we focus on a small family of 
so-called soft ones which satisfy the constraints we need to impose. To add the bang surface as 
a boundary requires conformally rescaling the metric, so we also describe the behaviour under 
conformal rescaling of the massless Boltzmann equation in an FLRW background.

In section 3, we give the statement and proof of long-time existence in s-time of solutions 
of a modified Boltzmann equation, with a cut-off imposed at small momentum to remove 
the singularity in the collision integral at zero centre-of-mass energy—this singularity arises 
because we are treating massless particles, and this is a characteristic difficulty of the massless 
case, not present in the massive case. This is the content of proposition 1 in section 3.1. Then, 
in section 3.2, comes the key novelty and hardest part of the proof which is to prove conv
ergence of the solution to a solution of the Boltzmann equation as the cut-off is removed. This 
only goes through for a finite s-time, i.e. existence is proved for finite time but in the redefined 
time coordinate. This is theorem 1. To be explicit:

Theorem 1.  Let f0 ∈ L1(R3) be initial data for the distribution function at t  =  0, equiva-
lently s  =  0, satisfying f0 � 0 and

∫

R3
f0( p) pmd3p < ∞

for −2 � m � 2. Then, there exists a positive value T of the redefined time coordinate s such 
that the massless Boltzmann equation (21) with scattering cross-sections in the family given in 
(17) has a unique solution f ∈ C1([0, T]; L1(R3)) for the distribution function in s-time which 
is non-negative and satisfies

sup
0�s�T

∫

R3
f (s, p) pmd3p � CT ,

for −1 � m � 2.

H Lee et alClass. Quantum Grav. 37 (2020) 035005
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Since we have the FLRW scale-factor already, by solving the Einstein equations, we there-
fore obtain a solution of the coupled Einstein–Boltzmann equations with positive, zero or 
negative cosmological constant, at least for a finite amount of proper time. However, in the 
Λ > 0 case, as noted above, we shall see that the whole infinite range in proper time t cor-
responds to a finite amount of s-time, and by adjusting the size of the initial distribution func-
tion f 0 we can ensure that the solution exists for all proper time. The theorem also provides a 
continuation criterion: the solution can be extended in the time coordinate s as long as the five 
moments corresponding to integer m in the range −2 � m � 2 remain finite.

2.  Einstein–Boltzmann system in the FLRW case with spatially flat topology

We will suppose for simplicity that the spatial curvature is zero, and then the spatially-flat 
FLRW models have the following metric:

g = −dt2 + R2(dx2 + dy2 + dz2),� (1)

where R = R(t) > 0 is the scale factor, vanishing at the initial singularity which we will 
locate at t  =  0. The Einstein equations reduce to equations for R, and, for a trace-free energy-
momentum tensor corresponding to a radiation fluid source (so p = ρ/3) and positive cosmo-
logical constant, they are given by

Ṙ2

R2 =
8π
3
ρ+

Λ

3
,� (2)

R̈
R

= −8π
3
ρ+

Λ

3
,� (3)

with the overdot for d/dt, and where the energy density ρ  will be given in terms of the distri-
bution function f  introduced below, and Λ is the cosmological constant, which we will usually 
assume to be non-negative.

2.1. The scale factor and conformal time

In the massless case, we can find the scale factor at the outset, so that the Einstein equa-
tions are solved and only the Boltzmann equation remains for consideration.

Adding the Einstein equations (2)–(3) we have

Ṙ2

R2 +
R̈
R

=
2Λ
3

,

which can be expressed as

d2

dt2 (R
2) =

4Λ
3

R2.

We consider a solution which starts with an initial singularity at t  =  0. In the case of vanishing 
cosmological constant (Λ = 0) we have for t � 0

R = C1t
1
2 ,� (4)

while for a positive cosmological constant (Λ > 0) we set Λ = 3H2 and obtain

R = C2
√
sinh(2Ht),� (5)

H Lee et alClass. Quantum Grav. 37 (2020) 035005
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where C1 and C2 are some positive constants of integration related to the matter content5. Note 
that Ṙ/R → H  as t → ∞ so that this H is the limiting Hubble parameter.

It will be convenient to introduce conformal time τ  by

dt
dτ

= R,

with the origins of t and τ  coinciding: this will be important—the singularity at t  =  0 is also 
at τ = 0, and this will be where we wish to give data.

Then, the metric (1) can be written as

g = R2(−dτ 2 + dx2 + dy2 + dz2) = R2η,

where η is the Minkowski metric6. In the absence of a cosmological constant the relation 
between the usual cosmic time t and the conformal time τ  is given by

τ =
2

C1
t

1
2 ,� (6)

where C1 is the constant given in (4). Hence when Λ = 0, up to a constant the scale factor 
equals the conformal time, and both time coordinates, t and τ , go to infinity together. On the 
other hand, in the presence of a positive cosmological constant, i.e. with Λ > 0, (6) holds 
approximately near the bang but there is only a finite amount of conformal time between the 
bang and future infinity (or I+) at t = ∞. One calculates

τ =

∫ t

0

√
2eHt′dt′

C2
√

e4Ht′ − 1
=

√
2

C2H

∫ eHt

1

dx√
x4 − 1

�

√
2

C2H

∫ ∞

1

dx√
x4 − 1

.

The final expression gives the total amount of conformal time between the initial singularity 
and future infinity at t = ∞. Note that the integral is

∫ ∞

1

dx√
x4 − 1

=

√
πΓ( 5

4 )

Γ( 4
3 )

≈ 1.311 03.

2.2. The massless Boltzmann equation

For massless particles the momentum pα as a one-form satisfies

pαpβgαβ = 0,

where the momentum pα = ( p0, p1, p2, p3) is defined by

pαdxα = p0dt + p1dx + p2dy + p3dz

(so these are coordinate indices) and is assumed to be future directed, i.e. p 0  >  0. It will often 
be convenient to write

p := ( p1, p2, p3),

5 One could also consider a negative cosmological constant, Λ = −3H2 when R = C3
√

sin(2HT) and the metric 
recollapses. Since we eventually obtain a finite-time existence result, the solution in this case could last until recol-
lapse, but this universe model is less attractive than the others.
6 And not to be confused with conformal time, which for us is denoted by τ .

H Lee et alClass. Quantum Grav. 37 (2020) 035005



6

and we denote for simplicity

p := |p| = (

3∑
i=1

( pi)
2)1/2,� (7)

then it’s easy to see that p  and p are constant along geodesics, and for null momenta we have

p0 = −p0 = R−1p.� (8)

For consistency with the metric, we assume that the distribution function is also homogeneous 
and isotropic, so that it takes the form

f = f (t, p).

With this distribution function, the energy density ρ  is defined by

ρ =

∫

R3
( p0)

2fωp = 4πR−4
∫

R+

fp3 dp,� (9)

where ωp = dp1dp2dp3/( p0√−g) = d3p/( pR2) is the volume-form on the null cone for pα 
(when integrating a function isotropic in momenta we have of course d3p = 4πp2dp). The 
Boltzmann equation (12) is coupled to the Einstein equations (2) and (3) through the energy 
density (9). The last vestige of the Einstein equations is the relation between the constant C1 
in (4) (or C2 in (5) if Λ > 0) and the conserved quantity in (9). From (2):

∫

R3
pfd3p = R4ρ =

3
32π

C4
1 or

3H2

8π
C4

2

which tie together the scale factor and f  via the energy density in the cases Λ = 0 and Λ > 0 
respectively.

The number current vector is in general

Nα =

∫

R3
pαfωp,

and the only non-zero component, given isotropy, is

N0 = 4πR−3
∫

R+

fp2 dp.� (10)

The divergence conditions on the energy-momentum tensor and the number current vector 
show that the following are constants of the motion:

R3N0 = 4π
∫

R+

p2f dp, R4ρ = 4π
∫

R+

p3f dp,� (11)

which we shall want to be finite, which in turn imposes conditions on initial data for f .
We consider only binary collisions, in which particles with null momenta pα, qα collide to 

produce particles with null momenta p′
α, q′α, all four future-pointing. Conservation of momen-

tum is assumed, and then the post-collision momenta p′
α, q′α can be represented in terms of 

the pre-collision momenta pα, qα and a unit 3-vector ωi  (there are different ways to achieve 
this—the details of our parametrisation are in section 3). We write dω  for the standard volume 
form on the unit 2-sphere, thought of as the sphere of (ωi).

The Boltzmann equation (see e.g. [12], [13]) for homogeneous and isotropic f  in an FLRW 
background reduces to

H Lee et alClass. Quantum Grav. 37 (2020) 035005
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∂tf = R−3
∫

R3

∫

S2
vMσ(h,ω)

(
f ( p′) f (q′)− f ( p) f (q)

)
dωd3q.� (12)

Here, the integral operator on the right hand side is the collision operator and describes the 
effect of binary collisions between particles. With pα, qα as the pre-collision momenta, the 
relative momentum h and the total energy s are defined by

h =
√

( pα − qα)( pα − qα), s = −( pα + qα)( pα + qα),

so that for massless particles h2 = s = −2pαqα, and the Møller velocity vM is defined by

vM =
h
√

s
p0q0 .

For massless particles then (12) simplifies to

∂tf = R−3
∫

R3

∫

S2

1
p0q0 sσ(h,ω)

(
f ( p′) f (q′)− f ( p) f (q)

)
dωd3q.� (13)

The quantity σ in (12) is called the scattering cross-section or scattering kernel and depends 
only on h and the scattering angle Θ, which in turn is defined by

cosΘ = ( p′
α − q′

α)( pα − qα)/h2.

One of the extra complications of the massless case can be seen by noting that in the massive 
case one has

p0 = (m2 + R−2p2)1/2

for mass m, in place of (8) and at least away from the space-time singularity at R  =  0, this 
is bounded away from zero. Therefore in the massless case the right-hand-side of (13) has 
singularities at p   =  0 or q  =  0 which are absent in the massive case away from R  =  0 (or in 
Minkowski space where R ≡ 1).

The results we obtain depend critically on the behaviour of the scattering cross-section at 
large energy s so we next discuss some possibilities.

2.3.  Scattering cross-sections

We recall the discussion of hard and soft scattering cross-sections in [8, 13] and [18], modified 
slightly for the massless case (g in [13] is h here, and for massless particles s  =  g2).

	 •	�A cross-section is soft if there exists a real γ > −2 and a real b in the range 
0 < b < min(4, γ + 4) and positive constants c1, c2, c3 such that

c1h−bσ0(Θ) � σ(h,Θ) � c2h−bσ0(Θ),

		 with

σ0(Θ) � c3(sinΘ)γ .

	 •	�A cross-section is hard if there exists a real γ > −2, a real a in the range 0 � a � γ + 2 
and a real b in the range 0 < b < min(4, γ + 4) and positive constants c1, c2, c3 such that

c1haσ0(Θ) � σ(h,Θ) � c2(ha + h−b)σ0(Θ),

H Lee et alClass. Quantum Grav. 37 (2020) 035005
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		 with

σ0(Θ) � c3(sinΘ)γ .

		 Note that soft cross-sections all decrease with increasing h while hard cross-sections 
grow unless a  =  0.

	 •	�A particular case of a hard cross-section is the so-called hard spheres cross-section for 
which

σ(h,Θ) = σ0 = constant,

		 and a  =  0. This cross-section was used in [6] with a new time coordinate d̃t = dt/R3 
which we will discuss below, in section 2.5.

	 •	�The cross-section for Israel particles was introduced in [9] as a mathematically tractable 
relativistic counterpart of classical, massive Maxwell particles. Transformed to the mass-
less case and with our definition7 of σ it is

σ(h,Θ) = Γ(Θ)/h3,

		 with no restriction on Γ. If Γ is constant then this is classified as soft with b  =  3.

2.4.  Equilibrium solutions

A distribution function of the form

f (t, p) = exp(−α− βp),

with real constants α,β  automatically gives zero on the right in (12) by conservation of momen-
tum and so automatically solves (12), regardless of the choice of cross-section. Furthermore, 
as is familiar, these are the only solutions giving zero on the right. They are the equilibrium 
solutions and α,β  can be related to the constants of integration found in (11):

R3N0 = 8πe−αβ−3, R4ρ = 24πe−αβ−4.

A distribution function of this form is perfectly well-defined at t  =  0 and in t  >  0 it can be 
written

f (t, p) = e−α−βR(t) p0
,

when it is recognisably a Maxwell state with temperature kT = 1/(βR(t)) which diverges 
initially and then decays to zero.

Evidently, given values for the constants of integration R3N0 and R4ρ there is a unique 
corresponding Maxwell state, and it is a question of interest whether other solutions converge 
to one of these states.

2.5.  Conformally rescaling the Boltzmann equation

As a general rule, conformal rescaling (see e.g. [17]) is the change of metric

gαβ → ĝαβ = Ω2gαβ ,

with smooth Ω. This is accompanied by

7 Note that σ in [9] is hσ in our terms.

H Lee et alClass. Quantum Grav. 37 (2020) 035005
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gαβ → ĝαβ = Ω−2gαβ ,

and corresponding changes to the connection and curvature (see e.g. [17]). In the context of 
massless kinetic theory one has

p̂α = pα, f̂ (xα, pβ) = f (xα, pβ). ω̂p = Ω−2ωp, dω̂ = dω.

As consequences of these we also have

p̂ = p, ŝ = Ω−2s, ĥ = Ω−1h, p̂0 = Ω−2p0,

and so on.
With the specific metric (1) of interest in this paper of course one does not need much of 

the theory of conformal rescaling: with Ω = R−1 we have ĝab = ηab, the flat metric and keep-
ing track of powers of Ω corresponds to keeping track of powers of R. The Boltzmann equa-
tion (13) (not rescaled but with powers of R introduced and simplified) can be written

∂tf = R−1
∫

R3

∫

S2

sσ
pq

(
f ( p′) f (q′)− f ( p) f (q)

)
dωd3q,� (14)

or in conformal time

∂τ f =

∫

R3

∫

S2

sσ
pq

(
f ( p′) f (q′)− f ( p) f (q)

)
dωd3q.� (15)

We want to find a well-posed Cauchy problem with data at t = 0 = τ  and clearly the possibil-
ity of this is now tied to the behaviour of sσ for small R. We have

h2 = s = R−2( pq − p · q),

so that h diverges as O(R−1) near t  =  0. Now

	 •	�For a hard cross-section from section 2.3 we have

sσ = O(ha+2) = O(R−2−a),

		 and a � 0. The right-hand-side in (15) is O(R−2−a) = O(τ−2−a) near the bang surface 
and so diverges at least quadratically at τ = 0: we cannot expect solutions to exist for 
wide classes of data.

	 •	�For a soft cross-section from section 2.3, the first term in the integrand in (15) is

sσ
pq

∼ h2−b

pq
=

( pq − p · q)(2−b)/2

R2−bpq
.

		 If b  >  2 then this has a pole at h  =  0, which happens when the incoming particles have 
parallel momenta (or when one of them is zero, but there are already singularities at 
pq  =  0). If b � 2 then there is a pole at R  =  0 which we can seek to absorb in a redefini-
tion of the time variable: introduce s with8

ds = Rb−2dτ = Rb−3dt,� (16)

		 then

∂sf = R2−b∂τ f

8 This s is not to be confused with total energy s which can always be eliminated as h2.

H Lee et alClass. Quantum Grav. 37 (2020) 035005
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		 and the factor Rb−2 is cancelled from (15). Near t  =  0, and using either (4) or (5) in (16) 
gives

ds ∼ t(b−3)/2dt and s ∼ t(b−1)/2.
		 We need the singularity, which is at t  =  0, to be at s  =  0 (or at least at finite s) so we 

require b  >  1. Thus to avoid the pole at h  =  0 and to ensure the data surface is at s  =  0 we 
should restrict to soft cross-sections with b in the range 1  <  b  <  2 (the possibility b  =  2 
is ruled out in section 3).

	 •	�Note that for the hard spheres cross-section σ = σ0 =constant, (14) becomes

∂tf = R−3
∫

R3

∫

S2

σ0( pq − p · q)
pq

(
f ( p′) f (q′)− f ( p) f (q)

)
dωd3q.

		 In [6], a remarkable explicit solution was given for this Boltzmann equation in an FLRW 
background. These authors redefine the time coordinate by

ds = R−3dt so that s ∼ C − 2t−1/2 and ∂sf = R3∂tf ,

		 which removes the factor R−3 from the Boltzmann equation, which they then solve by an 
ingenious method. However this change of time coordinate pushes the initial singularity 
off to minus infinity in s. This is not a cause of concern in [6], where the authors evolve 
only into the future from a positive value of t, but it does not serve our purposes. In fact 
one can see that the distribution function in equation (22) of [6] becomes negative in the 
past (since their K(τ) becomes negative in the past).

	 •	�For Israel particles, sσ = Γ/h = O(R) which goes to zero at τ = 0. Thus the right-hand-
side in (15) goes to zero, and even in terms of proper time, in (14), all powers of R cancel 
and the Boltzmann equation is exactly as it would be in flat space. None-the-less the pole 
at h  =  0 makes this case currently unmanagable.

3.  Solutions to the Boltzmann equation

Now we seek to prove well-posedness of (15) with data at the initial singularity and, motivated 
by section 2.3, the family of scattering cross-sections

σ(h,Θ) = C1h−b� (17)

with positive real C1, not to be confused with C1 in section 2.1, and real b in the range 1  <  b  <  2. 
After some general theory, in section 3.1 we modify the Boltzmann equation by imposing a 
cut-off at small momentum, in order to remove a pole in the collision integral. We prove long-
time existence of a positive distribution function for this modified Boltzmann equation  in 
section 3.1. Then in section 3.2 we prove that this solution to the modified Boltzmann equa-
tion converges to a positive solution of the actual (unmodified) Boltzmann equation at least for 
a finite interval in s. This is the content of theorem 1 and our main result.

We work in the rescaled picture, so that the unphysical null momentum is parametrised as

p̂α = ( p, p) with p =
(
Σ3

i=1( pi)
2)1/2

.� (18)

It will be convenient and will aid readability to omit all hats from now on but the reader is 
reminded that these momenta are unphysical and should be hatted.

The physical centre of mass energy is as before

h2 = 2R−2( pq − p · q)
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but it is convenient to introduce

� = Rh =
√

2( pq − p · q),

(again, strictly speaking � = ĥ but the current definition avoids the proliferation of hats and 
simplifies equations). As noted, all collisions will be binary conserving four-momentum 
which as usual is expressed as

pα + qα = p′α + q′α,

with the out-momentum p′ parametrised in terms of a unit vector ωi by

(
p′

p′

)
=

( 1
2 ( p + q) + 1

2 (p + q) · ω
1
2 (p + q) + 1

2�ω + 1
2 ((p + q) · ω) (p+q)

( p+q+�)

)
,� (19)

and similar for q′ with the sign switched on ωi. Note this is the same expression as for this 
problem in Minkowski case—all appearances of the scale-factor have been eliminated from 
these expressions.

For the Boltzmann equation with the cross-sections considered we have

∂τ f =

∫

R3

∫

S2

C1�
2−b

R2−bpq

(
f ( p′) f (q′)− f ( p) f (q)

)
dωd3q,

so we redefine the time-coordinate again, introducing s by

ds = Rb−2dτ = Rb−3dt.� (20)

From the discussion around equation  (16) in section  2.5 we know that, with the assumed 
restrictions on b, we can choose s  =  0 at t  =  0, so that the data-surface is fixed. It should be 
noted that, as we are free to choose R as one or other of the choices (4) or (5) we simultane-
ously treat the cases Λ = 0 and Λ > 0. One important difference between the cases is that for 
Λ = 0 there is an infinite amount of s-time in the future, but for Λ > 0 there is only a finite 
amount of s-time before infinity in t. Since we eventually obtain finite-time existence in s, this 
could be sufficient for infinite time in t.

Now the Boltzmann equation becomes

∂sf = C1

∫

R3

∫

S2

�2−b

pq

(
f ( p′) f (q′)− f ( p) f (q)

)
dωd3q.� (21)

Below, we show that the equation (21) with (19) admits unique local-in-time solutions. We 
first collect some lemmas:

Lemma 1.  Let pα, qα, p′α, and q′α be pre- and post-collision (unphysical) momenta given 
by (18) and (19). Then, the following holds:

�2 � 4min( pq, p′q′).

Proof.  We have

�2 = 2( pq − p · q) � 4pq.

Since �  is a collision invariant, the inequality also holds for p′q′.� □ 

H Lee et alClass. Quantum Grav. 37 (2020) 035005



12

Lemma 2.  The relative momentum �  can be written as

�2 = 4pq sin2 θ

2
,

where θ is the angle between the three-dimensional vectors p and q.

Proof.  This is a simple calculation. Note that

�2 = 2( pq − p · q) = 2pq(1 − cos θ) = 4pq sin2 θ

2
.

� □ 

The following is a special case of the Povzner inequality. We refer to [13, 19] for more 
general versions of the inequality in the case of massive particles.

Lemma 3.  Let pα, qα, p′α, and q′α be pre- and post-collision (unphysical) momenta given 
by (19). Then, the following holds:

( p′)2 + (q′)2 − p2 − q2 � 2pq.

Proof.  By (19) we have

( p′)2 + (q′)2 − p2 − q2

=

(
p + q

2
+

( pj + qj)ω
j

2

)2

+

(
p + q

2
−

( pj + qj)ω
j

2

)2

− p2 − q2

=
( p + q)2

2
+

(( pj + qj)ω
j)2

2
− p2 − q2

�
( p + q)2

2
+

( pj + qj)( p j + q j)

2
− p2 − q2

= pq + pjq j

� 2pq,

where we used p2 = pjp j and q2 = qjq j.� □ 

Lemma 4.  Let pα, qα, p′α, and q′α be pre- and post-collision (unphysical) momenta given 
by (19). Then, for any 0  <  a  <  1, there exists C  >  0 so that

∫

S2

1
p′

dω =

∫

S2

1
q′

dω �
C

�a( p + q)1−a .

Proof.  For simplicity we write nα = pα + qα such that

n0 = p + q, n · ω = ( pj + qj)ω
j, |n| =

√√√√
3∑

j=1

( pj + qj)2.
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Then, we have
∫

S2

1
p′ dω =

∫

S2

2
n0 + n · ω

dω

= 4π
∫ π

0

sin θ

n0 + |n| cos θ
dθ

=
4π
|n|

ln

(
n0 + |n|
n0 − |n|

)

=
8π
|n|

ln

(
n0 + |n|

�

)
,

where we used (n0)
2 − |n|2 = �2. Since n0 =

√
�2 + |n|2 , we obtain

8π
|n|

ln

(
n0 + |n|

�

)
=

8π
|n|

ln

(√
�2 + |n|2 + |n|

�

)

=
8π
�

ln
(

|n|
� +

√
1 + |n|2

�2

)

|n|
�

=
8π

�a(n0)1−a

(
n0

�

)1−a ln
(

|n|
� +

√
1 + |n|2

�2

)

|n|
�

=
8π

�a(n0)1−a

(
1 +

|n|2

�2

) 1−a
2 ln

(
|n|
� +

√
1 + |n|2

�2

)

|n|
�

.

Here, we note that the quantity

(1 + x2)
1−a

2
ln(x +

√
1 + x2)

x

is bounded on [0,∞). Hence, we conclude that

8π
|n|

ln

(
n0 + |n|

�

)
�

C
�a(n0)1−a .

The calculation for q′0 is the same, and this completes the proof.� □ 

Lemma 5.  Let pα, qα, p′α, and q′α be pre- and post-collision (unphysical) momenta given 
by (19). Then, the following holds:

∫

S2

1
( p′)2 dω =

∫

S2

1
(q′)2 dω =

16π
�2 .

Proof.  We use the notation nα = pα + qα as in the previous lemma. A simple calculation 
shows that
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∫

S2

1
( p′)2 dω =

∫

S2

4
(n0 + n · ω)2 dω

= 8π
∫ π

0

sin θ

(n0 + |n| cos θ)2 dθ

=
8π
|n|

(
1

n0 − |n|
− 1

n0 + |n|

)
=

16π
�2 .

The calculation for q′ is the same, and this completes the proof.� □ 

We now prove the existence of solutions to the equation (21) with (19). We first consider 
a modified Boltzmann equation to remove the singularity (pq)−1. Here, we follow the results 
of [4, 13, 19], where the authors considered massive particles. The arguments are standard 
(see Chapter 6 of [7] for more details about the arguments), and we observe that the argument 
applies to the massless case with the modification we make. In the section 3.2 we remove 
the modification and establish existence of positive solution for the unmodified Boltzmann 
equation.

3.1.  Solutions to the modified equation

We take ε > 0 and consider the modified collision operator defined by

Qε( f , f ) = C1

∫ ∫

��ε

�2−b

pq

(
f ( p′) f (q′)− f ( p) f (q)

)
dωd3q.

Note that the quantity �2−b/( pq) is bounded for � � ε with 1  <  b  <  2 by lemma 1. The modi-
fied operator Qε is bounded in L1 as follows:

‖Qε( f , f )‖L1

� C1

∫ ∫ ∫

��ε

�2−b

pq
|f ( p′)||f (q′)|dωd3qd3p + Cε

∫ ∫ ∫

��ε

|f ( p)||f (q)|dωd3qd3p

� C1

∫ ∫ ∫

��ε

�2−b

p′q′ |f ( p′)||f (q′)|dωd3q′d3p′ + Cε‖f‖2
L1

� Cε‖f‖2
L1 ,

�

(22)

where we used lemma 1 and the standard change of variables

1
pq

d3pd3q =
1

p′q′ d3p′d3q′.� (23)

For f , g ∈ L1 we consider the following expression

Qε( f , f )− Qε(g, g)

=
C1

2

∫ ∫

��ε

�2−b

pq

(
( f + g)( p′)( f − g)(q′) + ( f + g)(q′)( f − g)( p′)

− ( f + g)( p)( f − g)(q)− ( f + g)(q)( f − g)( p)
)

dωd3q.
� (24)

By the same estimates as in (22) we obtain

‖Qε( f , f )− Qε(g, g)‖L1 � Cε‖f + g‖L1‖f − g‖L1 ,� (25)
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which shows that Qε is Lipschitz continuous with respect to f . The estimates (22) and (25) 
show that the modified equation

∂sf = Qε( f , f ), f (0) = f0 � 0,� (26)

admits a unique solution in C1([0, T]; L1) for some T  >  0, where T depends only on ε and 
‖f0‖L1.

Next, we show that the solutions of (26) are non-negative for f0 � 0. Note that the solution 
satisfies

∫

R3
Qε( f , f )d3p = 0,� (27)

which is a consequence of (23). Hence, we obtain
∫

R3
fd3p =

∫

R3
f0d3p = ‖f0‖L1 .� (28)

If f  is non-negative on [0, T], then we have ‖f (T)‖L1 = ‖f0‖L1 and obtain existence on [T , 2T] 
by the same arguments again. In this way we obtain existence of solutions on any finite time 
interval, so that the solutions exist globally in time. In other words, the non-negativity of f  
leads to the global-in-time existence.

To prove the non-negativity of f  we rewrite the equation (26) for a large µ > 0 as

∂sf + µf
∫

R3
f d3q = Qε( f , f ) + µf

∫

R3
f d3q,

and introduce the following equation:

∂sh + µ0h = Γµ
ε (h), h(0) = f0 � 0,� (29)

where µ0 = µ‖f0‖L1 and Γµ
ε  is defined by

Γµ
ε (h) = Qε(h, h) + µh

∫

R3
hd3q.

Note that the solutions of (26) satisfy the equation (29) for any µ > 0 because of (28). Since 
the solutions are unique, it is now enough to obtain the non-negativity of solutions to the 
equation (29). We first notice that the operator Γµ

ε  is non-negative, if µ is sufficiently large. 
Moreover, it is monotone as follows.

Lemma 6.  The operator Γµ
ε  is monotone, i.e. for f � g � 0 in L1 we have

Γµ
ε ( f ) � Γµ

ε (g).

Proof.  Let f � g � 0. We need to show

Qε( f , f )− Qε(g, g) + µf
∫

R3
fd3q − µg

∫

R3
gd3q � 0.

By the expression (24), we have

Qε( f , f )− Qε(g, g)

=
C1

2

∫ ∫

��ε

�2−b

pq

(
( f + g)( p′)( f − g)(q′) + ( f + g)(q′)( f − g)( p′)

)
dωd3q

− C1

2

∫ ∫

��ε

�2−b

pq

(
( f + g)( p)( f − g)(q) + ( f + g)(q)( f − g)( p)

)
dωd3q,
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and the first integral is non-negative by the assumption. The second integral is estimated as 
follows.

− C1

2

∫ ∫

��ε

�2−b

pq

(
( f + g)( p)( f − g)(q) + ( f + g)(q)( f − g)( p)

)
dωd3q

� −Cε

(
( f + g)( p)

∫

R3
( f − g)(q)d3q + ( f − g)( p)

∫

R3
( f + g)(q)d3q

)
.

The remaining terms can be written as

µf
∫

R3
fd3q − µg

∫

R3
gd3q

=
µ

2

(
( f + g)( p)

∫

R3
( f − g)(q)d3q + ( f − g)( p)

∫

R3
( f + g)(q)d3q

)
.

We combine the above estimates to conclude that Γµ
ε ( f )− Γµ

ε (g) � 0 for a sufficiently large 
µ > 0.� □ 

Consider an iteration: let h0  =  0, and define

hn+1(s) = e−µ0sf0 +
∫ s

0
e−µ0(s−r)Γµ

ε (hn)(r)dr.

Note that h1 = e−µ0sf0 � 0 = h0. Suppose inductively that hn � hn−1 for some n � 1. Then, 
by lemma 6 we have

hn+1 − hn =

∫ s

0
e−µ0(s−r)

(
Γµ
ε (hn)− Γµ

ε (hn−1)
)

dr � 0.

Hence, we obtain a monotonically increasing sequence

0 � h1 � h2 � · · · .

Moreover, the sequence {hn} is bounded in L1. To see this, note that h0 satisfies ‖h0‖L1 � ‖f0‖L1, 
so suppose inductively that ‖hn‖L1 � ‖f0‖L1 for some n � 0. From the iteration we have

∫

R3
hn+1d3p = e−µ0s

∫

R3
f0d3p +

∫ s

0
e−µ0(s−r)

∫

R3
Γµ
ε (hn)d3pdr.

By the property (27) we observe that
∫

R3
Γµ
ε (hn)d3p = µ

(∫

R3
hnd3p

)2

� µ‖f0‖2
L1 .

Hence, we estimate
∫

R3
hn+1d3p � e−µ0s‖f0‖L1 + µ‖f0‖2

L1

∫ s

0
e−µ0(s−r)dr = ‖f0‖L1 ,

where we used µ0 = µ‖f0‖L1, and this proves ‖hn‖L1 � ‖f0‖L1 for all n. Consequently, the 
sequence {hn} has a limit h, which is non-negative and bounded by ‖f0‖L1, by the Monotone 
Convergence theorem. The limit h solves the equation (29), and therefore we conclude that 
the solution f  to the equation (26) is non-negative. We therefore obtain the existence part of 
the following result:
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Proposition 1.  Let ε > 0 be given. For any initial data f0 ∈ L1(R3) with f0 � 0 the modi-
fied equation (26) has a unique solution f ∈ C1([0,∞); L1(R3)) which is non-negative. More-
over, if f 0 satisfies

∫

R3
f0( p) pmd3p < ∞

for −2 � m � 2, then there exists T  >  0 such that

sup
0�s�T

∫

R3
f (s, p) pmd3p � CT ,

where CT is independent of ε.

Proof.  Multiplying the equation (26) by p m and integrating it over p we obtain

d
ds

∫

R3
f ( p) pmd3p =

∫

R3
Qε( f , f )( p) pmd3p.� (30)

We use the property (23) to write the right hand side as follows. For the gain term we observe

C1

∫∫∫

��ε

�2−b

pq
f ( p′) f (q′) pmdωd3qd3p

= C1

∫∫∫

��ε

�2−b

p′q′ f ( p′) f (q′) pmdωd3q′d3p′

= C1

∫∫∫

��ε

�2−b

pq
f ( p) f (q)( p′)mdωd3qd3p.

By interchanging p  and q we have

C1

∫∫∫

��ε

�2−b

pq
f ( p′) f (q′) pmdωd3qd3p

= C1

∫∫∫

��ε

�2−b

pq
f ( p) f (q)(q′)mdωd3qd3p.

Similarly, the loss term can be written as

C1

∫∫∫

��ε

�2−b

pq
f ( p) f (q) pmdωd3qd3p

= C1

∫∫∫

��ε

�2−b

pq
f ( p) f (q)qmdωd3qd3p.

We combine the above expressions to write
∫

R3
Qε( f , f )( p) pmd3p

=
C1

2

∫∫∫

��ε

�2−b

pq
f ( p) f (q)

(
( p′)m + (q′)m − pm − qm

)
dωd3qd3p.

�

(31)

H Lee et alClass. Quantum Grav. 37 (2020) 035005



18

Let us consider the case m  =  0. In this case we obtain from (30) and (31) that

d
ds

∫

R3
f ( p)d3p = 0.

Since f  is non-negative, we can see that for all s � 0

‖f (s)‖L1 = ‖f0‖L1 .� (32)

In the case m  =  2 we apply lemma 3 to (30) and (31) to obtain

d
ds

∫

R3
f ( p) p2d3p � C1

∫∫∫

��ε

�2−bf ( p) f (q)dωd3qd3p

� C
∫

R3

∫

R3
(1 + p2q2) f ( p) f (q)d3qd3p

� C‖f (s)‖2
L1 + C

(∫

R3
f ( p) p2d3p

)2

,

where we used lemma 1 and the fact that 0  <  2  −  b  <  1. Note that the constant C does not 
depend on ε. Then, applying (32) and Grönwall’s inequality to the above we obtain that there 
exists T  >  0 such that

sup
0�s�T

∫

R3
f ( p) p2d3p � CT ,� (33)

where T and CT do not depend on ε.

In the case m  =  −2 we estimate the expression (31) as
∫

R3
Qε( f , f )( p)

1
p2 d3p

�
C1

2

∫∫∫

��ε

�2−b

pq
f ( p) f (q)

(
1

( p′)2 +
1

(q′)2

)
dωd3qd3p

and apply lemma 5 to obtain
∫

R3
Qε( f , f )( p)

1
p2 d3p � C

∫

R3

∫

R3

�−b

pq
f ( p) f (q)d3qd3p.

Let us consider the integration over q on the right hand side. By lemma 2 we have
∫

R3

�−b

pq
f (q)d3q = 2−b

∫

R3

1

( pq)1+ b
2 sinb(θ/2)

f (q)d3q

=
21−bπ

p1+ b
2

∫

R+

∫ π

0

q2 sin θ

q1+ b
2 sinb(θ/2)

f (q)dθdq

=
21−bπ

p1+ b
2

∫

R+

q1− b
2 f (q)dq

∫ π

0
sin θ sin−b(θ/2)dθ,
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where we used the fact that f  is isotropic. Note that9

∫ π

0
sin θ sin−b(θ/2)dθ =

∫ π

0
2 cos(θ/2) sin1−b(θ/2)dθ =

4
2 − b

.

Hence, we can estimate
∫

R3

�−b

pq
f (q)d3q �

C

p1+ b
2

∫

R+

q1− b
2 f (q)dq

�
C

p1+ b
2

∫

R3
f (q)

1

q1+ b
2

d3q.

Considering the integration over p we now obtain
∫

R3
Qε( f , f )( p)

1
p2 d3p � C

(∫

R3
f ( p)

1

p1+ b
2

d3p
)2

� C‖f (s)‖2
L1 + C

(∫

R3
f ( p)

1
p2 d3p

)2

.

Applying (30), (32), and Grönwall’s inequality to the above, we obtain that there exists T  >  0 
such that

sup
0�s�T

∫

R3
f ( p)

1
p2 d3p � CT .� (34)

We combine the results (33) and (34) to complete the proof.� □ 

3.2.  Solutions to the unmodified Boltzmann equation

We need to remove the modification by letting ε → 0. To be explicit, let f k denote the solution 
constructed in proposition 1 with ε = k−1 and k = 1, 2, · · ·. Then, it satisfies

∂sfk = Qk( fk, fk), fk(0) = f0 � 0,

where

Qk(g, g) = C1

∫

R3

∫

S2
1{��k−1}

�2−b

pq

(
g( p′)g(q′)− g( p)g(q)

)
dωd3q,

where 1A  is the usual characteristic function of A. The strategy is to show that {f k} is a 
Cauchy sequence in a suitable weighted L1 space. Let us take k  <  m and write ∂sfk − ∂sfm 
as in (24):

9 This is where we first need b  <  2.
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∂sfk − ∂sfm = Qk( fk, fk)− Qm( fm, fm)

= C1

∫

R3

∫

S2
1{��k−1}

�2−b

pq

(
fk( p′) fk(q′)− fk( p) fk(q)

− fm( p′) fm(q′) + fm( p) fm(q)
)

dωd3q

− C1

∫

R3

∫

S2
1{m−1���k−1}

�2−b

pq

(
fm( p′) fm(q′)− fm( p) fm(q)

)
dωd3q

=
C1

2

∫

R3

∫

S2
1{��k−1}

�2−b

pq

×
(
( fk + fm)( p′)( fk − fm)(q′) + ( fk + fm)(q′)( fk − fm)( p′)

− ( fk + fm)( p)( fk − fm)(q)− ( fk + fm)(q)( fk − fm)( p)
)

dωd3q

− C1

∫

R3

∫

S2
1{m−1���k−1}

�2−b

pq

(
fm( p′) fm(q′)− fm( p) fm(q)

)
dωd3q.

Since ∂s|fk − fm| = sgn( fk − fm)∂s( fk − fm), we multiply the above expression by sgn( fk − fm) 
to obtain

∂s|( fk − fm)( p)|

�
C1

2

∫

R3

∫

S2

�2−b

pq

(
( fk + fm)( p′)|( fk − fm)(q′)|+ ( fk + fm)(q′)|( fk − fm)( p′)|

+ ( fk + fm)( p)|( fk − fm)(q)|
)

dωd3q

+ C1

∫

R3

∫

S2
1{��k−1}

�2−b

pq

(
fm( p′) fm(q′) + fm( p) fm(q)

)
dωd3q,

� (35)
where we used sgn( fk − fm)( p)( fk − fm)( p) = |( fk − fm)( p)| and the fact that the solutions 
are non-negative.

Integrating (35) over p we obtain by (23)

d
ds

∫

R3
|( fk − fm)( p)|d3p

�
3C1

2

∫∫∫
�2−b

pq
( fk + fm)( p)|( fk − fm)(q)|dωd3qd3p

+ C1

∫∫∫
1{��k−1}

�2−b

pq
fm( p) fm(q)dωd3qd3p

=: I1 + I2.

The integral I1 is estimated as follows:

I1 � C
∫∫

1

( pq)
b
2
( fk + fm)( p)|( fk − fm)(q)|d3qd3p

� CT

∫

R3
|( fk − fm)(q)|

1

q
b
2

d3q

� CT

(∫

R3
|( fk − fm)(q)|d3q +

∫

R3
|( fk − fm)(q)|

1
q

d3q
)

,

�

(36)
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where we used lemma 1 and the properties of solutions given in proposition 1 with 1  <  b  <  2. 
The integral I2 is estimated as follows:

I2 � Ck−2+b
∫∫

1
pq

fm( p) fm(q)d3qd3p � CTk−2+b.� (37)

In a similar way, multiplying (35) by 1/p  and integrating it over p we obtain

d
ds

∫

R3
|( fk − fm)( p)|1

p
d3p

�
C1

2

∫∫∫
�2−b

pq

(
( fk + fm)( p′)|( fk − fm)(q′)|+ ( fk + fm)(q′)|( fk − fm)( p′)|

+ ( fk + fm)( p)|( fk − fm)(q)|
)1

p
dωd3qd3p

+ C1

∫∫∫
1{��k−1}

�2−b

pq

(
fm( p′) fm(q′) + fm( p) fm(q)

)1
p

dωd3qd3p

=
C1

2

∫∫∫
�2−b

pq
( fk + fm)( p)|( fk − fm)(q)|

(
1
p′ +

1
q′

+
1
p

)
dωd3qd3p

+ C1

∫∫∫
1{��k−1}

�2−b

pq
fm( p) fm(q)

(
1
p′

+
1
p

)
dωd3qd3p,

where we used the same argument as in (31). Let J1, J2, J3, J4, and J5 denote the integrals in 
the last expression, for instance J1 is the integral containing 1/p′ in the first term, J2 is the one 
containing 1/q′ in the first term, etc.

The integrals J3 and J5 are easily estimated as follows:

J3 =
C1

2

∫∫∫
�2−b

pq
( fk + fm)( p)|( fk − fm)(q)|

1
p

dωd3qd3p

� C
∫

R3
( fk + fm)( p)

1

p1+ b
2

d3p
∫

R3
|( fk − fm)(q)|

1

q
b
2

d3q.

Since 1  <  b  <  2, we obtain

J3 � CT

(∫

R3
|( fk − fm)(q)|d3q +

∫

R3
|( fk − fm)(q)|

1
q

d3q
)

.� (38)

Similarly, we have

J5 = C1

∫∫∫
1{��k−1}

�2−b

pq
fm( p) fm(q)

1
p

dωd3qd3p

� Ck−2+b
∫

R3
fm( p)

1
p2 d3p

∫

R3
fm(q)

1
q

d3q

� CTk−2+b.

�

(39)

To estimate J1, J2, and J4, we use lemma 4. We first choose 0  <  a  <  1 satisfying

a + b < 2,
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(which is possible since we have fixed b  <  2). Then, J1 is estimated as follows:

J1 =
C1

2

∫∫∫
�2−b

pq
( fk + fm)( p)|( fk − fm)(q)|

1
p′

dωd3qd3p

� C
∫∫

�2−b−a

pq( p + q)1−a ( fk + fm)( p)|( fk − fm)(q)|d3qd3p

� C
∫∫

1

( pq)
a+b

2 ( p + q)1−a
( fk + fm)( p)|( fk − fm)(q)|d3qd3p.

Recall that Young’s inequality can be written as x + y � cx1−γyγ for 0 < γ < 1. To apply this 
inequality we choose γ  as

0 < γ �
2 − a − b
2(1 − a)

.

Then, we observe that

1

( pq)
a+b

2 ( p + q)1−a
�

C

p
a+b

2 +(1−γ)(1−a)q
a+b

2 +γ(1−a)
,

where 0 < a+b
2 + (1 − γ)(1 − a) < 2 and 0 < a+b

2 + γ(1 − a) � 1 by the assumptions on a, 
b, and γ . Hence, J1 can be estimated as

J1 � C
∫∫

1

p
a+b

2 +(1−γ)(1−a)q
a+b

2 +γ(1−a)
( fk + fm)( p)|( fk − fm)(q)|d3qd3p

� CT

∫

R3

1

q
a+b

2 +γ(1−a)
|( fk − fm)(q)|d3q

� CT

(∫

R3
|( fk − fm)(q)|d3q +

∫

R3
|( fk − fm)(q)|

1
q

d3q
)

.

�

(40)

The estimate of J2 is exactly the same with J1:

J2 � CT

(∫

R3
|( fk − fm)(q)|d3q +

∫

R3
|( fk − fm)(q)|

1
q

d3q
)

.� (41)

With the exponents a and γ  chosen as above the integral J4 is estimated as follows:

J4 = C1

∫∫∫
1{��k−1}

�2−b

pq
fm( p) fm(q)

1
p′

dωd3qd3p

� C
∫∫

1{��k−1}
�2−b−a

pq( p + q)1−a fm( p) fm(q)d3qd3p

� Ck−2+a+b
∫∫

1
p1+(1−γ)(1−a)q1+γ(1−a) fm( p) fm(q)d3qd3p

� Ck−2+a+b
∫∫

1
p1+(1−γ)(1−a)q1+γ(1−a) fm( p) fm(q)d3qd3p

� CTk−2+a+b,

�

(42)

where we used the fact that 1 + (1 − γ)(1 − a) < 2 and 1 + γ(1 − a) < 2 and proposition 1.
Let Xkm denote

Xkm(s) =
∫

R3
|( fk − fm)(s, p)|

(
1 +

1
p

)
d3p.
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The estimates (36)–(42) show that Xkm satisfies the differential inequality:

dXkm(s)
ds

� CTk−2+a+b + CTXkm(s).

Note that fk(0) = fm(0) = f0 and Xkm(0)  =  0. Hence, we obtain on [0, T],

Xkm(s) � CTk−2+a+b.

Since a  +  b  <  2 and k  <  m, we conclude that {f k} converges in L1 with weight 1  +  1/p  as 
k → ∞. We obtain the following result.

Theorem 1.  Let f0 ∈ L1(R3) be initial data satisfying f0 � 0 and
∫

R3
f0( p) pmd3p < ∞

for −2 � m � 2. Then, there exists a positive value T of the redefined time coordinate s such 
that the Boltzmann equation (21) has a unique solution f ∈ C1([0, T]; L1(R3)) in s-time which 
is non-negative and satisfies

sup
0�s�T

∫

R3
f (s, p) pmd3p � CT ,

but where now −1 � m � 2.

Note that:

	 •	�The Grönwall arguments in section 3.1 show that the rescaling f0( p) → λf0( p) has the 
effect T → λ−1T  on the time of existence while, in the case Λ > 0, we compute the effect 
on the total life-time in s, which we can call

s∞ :=
∫ ∞

0
R3−bdt,

		 as s∞ → λ(b−3)/4s∞; thus

T
s∞

→ λ−(1+b)/4 T
s∞

,

		 and by choice of λ (small) we can ensure that this is greater than one. That means that for 
Λ > 0 and small data we have long-time existence in proper time t.

	 •	�The change of time coordinate from t to s eliminates the scale-factor R(t) from the equa-
tions, so that this result gives finite-time existence in s for Einstein–Boltzmann with all 
signs of Λ; this translates as finite-time in t for Λ � 0 and finite or (as above) possibly 
infinite time in t for Λ > 0.

	 •	�By the same argument, the theorem gives finite-time existence in proper-time for mass-
less Boltzmann with this family of cross-sections in Minkowski space.

	 •	�The argument also yields a continuation criterion: provided that

∫

R3
f (s, p) pmd3p < ∞ for m = −2
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		 continues to hold, since it is straightforward to see that this moment with m  =  2 grows 
only linearly in time, and the other relevant values of m can then be controlled, the 
theorem allows a larger T.
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