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Abstract
Following the work of Kawai, Matsuo and Yokokura, we study the dynamical 
collapsing process with spherical symmetry in the time-dependent space-time 
background including the back-reaction of Hawking radiation. We show that 
in this model there are two classes of asymptotic solutions. One of the two 
classes is known previously. These states have the slope ∂a/∂r approximately 
equal to 1. The other class of asymptotic solutions is that of shells with a 
small thickness. We emphasize that these thin shells should be properly 
understood as configurations in the low-energy effective theory. They behave 
characteristically differently from the singular states of ideal thin shells of 
zero thickness.
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(Some figures may appear in colour only in the online journal)

1.  Introduction

In the study of the black holes, it is common practice to study the formation and evaporation 
of a black hole separately as independent processes for the simplicity of calculation. During 
the formation process, which is typically treated as a purely classical process, classical matter 
collapses and an event horizon appears. After that, the evaporation process due to the quantum 
effect is considered as an independent process. In this approximation scheme, the evapora-
tion is computed in the presence of the event horizon of a classical black hole with a constant 
Schwarzschild radius.

Of course, in reality, the Schwarzschild radius must decrease over time if the black hole 
completely evaporates in the end. But some people argued that the extremely slow change in 
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the Schwarzschild radius can be ignored for the study of the black-hole evaporation. As a test 
of the robustness of these arguments, one should check whether the evaporation is signifi-
cantly modified if the time-dependence of the Schwarzschild radius is turned on.

This was done in the paper of Kawai et al [1]. (See also [2–8].) The formation and evapo-
ration of a black hole is viewed as a single process, and the back-reaction of Hawking radia-
tion on the geometry is included from the very beginning of the black-hole formation. The 
Schwarzschild radius is time-dependent due to Hawking radiation.

It turns out that, as the vacuum energy-momentum tensor is assumed to be dominated 
by the Hawking radiation outside the collapsing matter in this model, when the collapsing 
matter has a smooth density distribution, it completely evaporates without apparent horizon 
[1]. In contrast, an ideal thin shell with a delta-function energy density does not evaporate 
completely. Instead, it approaches a classical black hole in the infinite future with an event 
horizon [1].

There are a few obvious questions. For example, is the ideal thin shell of delta-function 
energy distribution physical? Are there other classes of behaviors characteristically different 
from the two classes of solutions already found in [1]? These are the questions that motivated 
this research project.

In this paper, we first discuss the difference between the thin shell with delta function energy 
distribution and that with a finite but very small thickness. These two shells are expected to be 
almost indistinguishable. However, they have characteristically different behaviors in calcul
ations of the Hawking radiation. We shall demonstrate the difference by comparing a thin shell 
with a thickness of the Planck scale and a shell with a delta function energy distribution. While 
the latter survives in the end as a classical black hole, the former evaporates completely within 
finite time. Thus, the thin shell with delta function density distribution is unphysical, and 
hence we will focus on the configurations with a finite thickness no less than the Planck scale.

Then, we will show that there are at least two classes of asymptotic behaviors of the col-
lapsing matter as a result of the back-reaction of Hawking radiation3. One of the two classes 
has already been proposed and studied in [1] and [2–8]. The other class is described as a thin 
shell in the low-energy theory, and it should be distinguished from the ideal thin shell of zero 
thickness. We will examine the details of both classes of collapsing processes in this paper 
through both analytical study and numerical simulation.

The plan of this paper is as follows. In section 2, we briefly review the KMY model. In 
section 3, we examine the notion of thin shells in the context of low-energy effective theo-
ries. We argue that it is inappropriate to apply the low-energy theory to ideal thin shells of 
zero thickness, as their behavior is characteristically different from thin shells of a small but 
finite thickness. In section 4, we consider shells with an energy distribution for which the 
slope ∂a/∂r � 1. These configurations are particularly interesting as asymptotic states [1]. 
Excluding the unphysical ideal thin shells, in section 5, we argue that there are two types 
of asymptotic states, the slope-1 states and the thin shell states. This claim is backed up by 
numerical simulation presented in section 6. Finally, we conclude in section 7.

2.  Review of KMY model

We will refer to the approach of [1], which is followed by [2–8], as the KMY model. One 
of the crucial points of this approach is that the back-reaction of Hawking radiation to the 

3 Recall that 2D black holes are also categorized as two classes. It was shown in [9] that an apparent horizon will 
either appear or be absent depending on the magnitude of the ingoing energy flux.
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geometry is taken into account. But the importance of the back-reaction of Hawking radiation, 
or that of the vacuum energy-momentum tensor, has been considered before the KMY model 
[10–14] in the literature. (See also [15–20] for later proposals.) Another crucial feature of the 
KMY model is that it further assumes that the vacuum energy-momentum tensor is dominated 
by Hawking radiation.

Unlike most of the models of black holes, the null energy condition is not violated in the 
KMY model, and this is directly related to the absence of the apparent horizon. (See e.g. [21].) 
Strictly speaking, the violation of the null energy condition in conventional models of black 
holes is based on a few assumptions. For instance, it is often considered as a consequence of 
the equivalence principle. However, in general, the quantum states cannot be defined locally. 
Instead, they depend on the boundary conditions. The quantum state of the black hole can 
break the local equivalence principle, and the vacuum energy-momentum tensor should be 
determined by a specific quantum field theory which has a consistent UV limit including 
quantum gravity. It is not clear whether certain important quantum gravity effects are missing 
from the quantum field theories people usually consider in their models. Furthermore, as it 
was pointed out in [22], there must be ‘drama’ at the horizon for the information to be pre-
served, as it was also argued in [23].

Our viewpoint is that the quantum state breaks the equivalence principle to admit uni-
tarity for a UV-complete theory. The vacuum energy-momentum tensor obviously depends 
on the matter content of the model. While the vacuum energy-momentum tensor is typically 
calculated in some simplified models of matter fields (e.g. two dimensional massless scalar 
fields of s-wave approximation in [24]) in the conventional model, the KMY model sim-
ply assumes the vacuum energy-momentum tensor to be dominated by the outgoing positive 
energy flux (i.e. the Hawking radiation) as an alternative. It turns out that, as a consequence of 
the semi-classical Einstein equation, a pressure at the Planck scale [2] appears on the collaps-
ing shell as an effective ‘firewall’. This is consistent with the analysis of [25], which shows 
that a pressure-less thin shell is inconsistent with the absence of horizon, and in agreement 
with [26], which says that either pressure or charges are necessary to keep the shell null.

While there is no good reason to strictly preserve the null energy condition in a quantum 
field theory for all quantum states, it may be only weakly violated to the extent that the KMY 
model is still a good approximation. (See [8] for a generalization of the KMY model with 
a more general vacuum energy-momentum tensor.) To say the least, the KMY model is an 
interesting alternative to conventional models of black holes that may provide a self-consistent 
story including quantum effects.

In this paper, we are interested in the asymptotic configurations in the KMY model. It 
was shown in [1] that there would be no event or apparent horizon4 for a certain smooth 
configuration, which will be referred to as the ‘slope-1’ configuration in this paper5. In fact, 
it can be proven [3, 5] that there is no apparent horizon as long as the collapsing matter com-
pletely evaporates within a finite time. According to the semiclassical Einstein equation, the 
Schwarzschild radius shrinks with time in a superluminal fashion due to the loss of energy into 
Hawking radiation. As a result, the collapsing matter can never fall through the Schwarzschild 
radius, as long as the (incipient) black hole evaporates completely within finite time [1, 3].

An exceptional configuration for the collapsing matter that does not evaporate within a 
finite time is the case of the thin shell with an energy density given by the Dirac delta function. 

4 The possibility that black holes have no horizon has also been proposed by many others. For an incomplete list, 
see [12, 13, 15, 16, 27–36].
5 It was called an ‘asymptotic black hole’ in [7].
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Its Hawking radiation decreases with time so that the black hole survives in the infinite future, 
and an event horizon arises like a classical black hole [1].

Notice that the time evolution of a thin shell of absolutely zero thickness may or may not be 
obtained by the zero thickness limit from a thin shell of finite thickness, as the equation deter-
mining Hawking radiation involves higher derivatives. We investigate in this paper whether 
small (Planck-scale) deviations from the mathematical notion of a perfect zero-thickness thin 
shell would lead to characteristically different space-time structures at large scales.

Another specific question we would like to answer is whether the smooth configuration 
studied in [1] (called the ‘slope-1’ configuration) is the only asymptotic limit for generic ini-
tial states. We shall find that there is another class of asymptotic configurations.

2.1.  Metric

A generic, spherically symmetric 4D metric can be put in the following form in the outgoing 
Eddington–Finckelstein coordinate

ds2 = −e2ψ(u,r)
(

1 − a(u, r)
r

)
du2 − 2eψ(u,r)dudr + r2dΩ2,� (1)

which involves two parametric functions ψ(u, r) and a(u, r). The time evolution of this metric 
will be studied in terms of the Eddington retarded time u. Due to spherical symmetry, the func-
tions ψ(u, r) and a(u, r) only depend on u and the areal radius r.

At any given instant of time u, the function a(u, r) in the metric (1) gives twice the Bondi 
mass inside the ball of the radius r centered at the origin. The other function ψ(u, r) in the 
metric (1) is the exponent of the redshift factor eψ(u,r) between the retarded time coordinate u 
at spatial infinity and the retarded time coordinate û(u, r) at r [7].

The metric (1) is only suitable for the region r > r∗(u), where r∗(u) is the (largest) solution 
to the equation r∗(u) = a(u, r∗(u)). It is also only valid outside the apparent horizon. As the 
apparent horizon appears in most models of black holes, the metric (1) is often considered 
inappropriate, and so the coordinate system using the (v, r) coordinates (with the ingoing 
Eddington–Finckelstein coordinate) is more commonly used in the literature. However, as 
we mentioned in the introduction, there is no apparent horizon in the KMY model, as a con-
sequence of the non-violation of the null energy condition, as opposed to the conventional 
model. (It has been shown in [6, 21] that the null energy condition has to be violated for the 
existence of the apparent horizon.) In any case, one can use any metric until a (coordinate) 
singularity appears. The metric (1) will turn out to be convenient in the discussion below for 
the KMY model.

We assume that the collapsing matter has an outer radius R0(u) beyond which there is no 
ingoing energy flux (but there can be outgoing energy flux as Hawking radiation), so that 
a(u, r) is r-independent outside the outer radius R0(u):

a(u, r) = a0(u) for r � R0(u)� (2)

for some function a0(u) which is twice the total Bondi mass of the collapsing matter.
When a0(u) is time-independent, as in the classical case without Hawking radiation, 

the metric (1) is equivalent to the Schwarzschild metric with Schwarzschild radius a0 for 
r  >  R0(u). When a0(u) is not time-independent, there is outgoing energy flux for r  >  R0(u) 
given by

Tuu = − 1
κr2

da0(u)
du

,� (3)

P-M Ho et alClass. Quantum Grav. 37 (2020) 035002
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where κ = 8πGN  and GN is the Newton constant. This outgoing energy flux is used to repre-
sent Hawking radiation and is assumed to be positive, so that the Schwarzschild radius a0(u) 
decreases over time and da0/du < 0.

For simplicity, in this paper, we shall assume that the collapsing matter is falling at the 
speed of light. Applying the general results of [7] to this special case, the redshift factor eψ(u,r) 
is given by

ψ(u, r) = −
∫ ∞

r
dr̄

∂a(u,̄r)
∂ r̄

r̄ − a(u, r̄)
.� (4)

Because of equation (2), ψ(u, r) = 0 for r  >  R0(u).
According to equation (4), the redshift factor for the retarded time U of the Minkowski 

space inside the collapsing matter is

log

(
dU(u)

du

)
= ψ0(u) = −

∫ R0(u)

0
dr

∂a(u,r)
∂r

r − a(u, r)
.� (5)

Since a(u, r) is always a monotonic function of r in the range of integration in equation (5), a 
can be used as a coordinate in place of r to parametrize the integral, hence the integral (5) can 
also be expressed as

ψ0(u) = −
∫ a0(u)

0

da
r(u, a)− a

.� (6)

One may wonder if ψ0(u) diverges in the limit r → a. It is impossible as long as there 
is no divergence in the Hawking radiation, as we will discuss later in the paragraph below 
equation (19). This also means that r can never coincide with a, and thus there would be no 
apparent horizon.

2.2.  Hawking radiation

The Hawking radiation is created during the gravitational collapse because the quantum vac-
uum state of incoming matter in the infinite past evolves to a state that is no longer the vacuum 
state at large r after the gravitational collapse. We shall adopt the formula for Hawking radia-
tion of [1], which is in agreement with that of [24, 37], although the rest of the vacuum energy-
momentum tensor is omitted.

Following these works, approximating the vacuum energy-momentum tensor by that of 
s-wave modes of massless scalar fields, and assuming that the initial state in the infinite past is 
the Minkowskian vacuum state, the Hawking radiation is given by the energy flux

Tuu =
N

4πr2 {u, U(u)},� (7)

where κ = 8πG, N  is a numerical constant proportional to the number of massless fields in 
Hawking radiation and {u, U(u)} is the Schwarzian derivative defined by

{u, U(u)} ≡

[
d2U(u)

du2

dU(u)
du

]2

− 2
3

d3U(u)
du3

dU(u)
du

.� (8)

Using equation (5), one can rewrite the Schwarzian derivative as

{u, U(u)} ≡ 1
3

[
ψ̇2

0(u)− 2ψ̈0(u)
]

,� (9)

P-M Ho et alClass. Quantum Grav. 37 (2020) 035002
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where the dots denote u-derivatives.

3. Thin shells

In this section, we first review the case of an ideal thin shell, i.e. a thin shell of zero thickness. 
Then we compare it with the notion of a pseudo thin shell, which has a finite thickness larger 
than the cutoff length scale of the low-energy effective theory, but it is thin enough so that its 
behavior is not sensitive to the precise thickness. Their behaviors turn out to be characteristi-
cally different.

3.1.  Ideal thin shell

For a thin shell of zero thickness, the function a(u, r) in the metric (1) is given by

a(u, r) = a0(u)Θ(r − R0(u)),� (10)

where Θ(x) is the step function that is 0 or 1 for x  <  0 or x  >  0. It has a diverging energy 
density proportional to the Dirac delta function that diverges at r  =  R0(u). For the low-energy 
effective theory to be applicable, a shell should have a finite thickness much larger than the 
Planck length, and an energy density much smaller than the Planck scale. However, this notion 
of an ideal thin shell has been widely used in the literature in the context of low-energy effec-
tive theories.

To evaluate ψ0(u), we use equation (6), with r(u, a) given by inverting equation (10):

r(u, a) = R0(u) .� (11)

Hence equation (6) can be evaluated as

ψ0(u) = −
∫ a0(u)

0

da
R0(u)− a

= log

(
R0(u)− a0(u)

R0(u)

)
.� (12)

3.1.1.  Background With constant Schwarzschild radius.  Let us first consider the evolution of 
the ideal thin shell with a fixed Schwarzschild radius, ignoring the back-reaction of Hawking 
radiation.

The thin shell is by assumption falling at the speed of light, hence we have

dR0(u)
du

= −1
2

R0(u)− a0(u)
R0(u)

� (13)

according to the metric (1). When a0 is assumed to be time-independent, its solution is

R0(u) � a0 + C0e−
u

2a0� (14)

when R0(u)− a0 � a0. Equation (12) then gives

ψ̇0(u) � − 1
2a0

,� (15)

and the Schwarzian derivative can be easily computed

{u, U(u)} =
1
3

(
ψ̇2

0 − 2ψ̈0

)
� 1

12a2
0

,� (16)

P-M Ho et alClass. Quantum Grav. 37 (2020) 035002
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which gives the conventional result of Hawking radiation

da0

du
� − κN

48πa2
0

.� (17)

As a result, the thin shell evaporates completely within a finite time of order O(a3
0/κ).

Some people have argued that a constant background is justified as a good approximation 
because the time scale of the change in the Schwarzschild radius is O(a3

0/κ), while the time-
scale of the gravitational collapse is O(a0); the large hierarchy in the time scales implies that 
the former cannot have a significant effect on the latter. This argument is not rigorous because, 
strictly speaking, it makes sense to compare the time scales only when both are defined with 
respect to the same observers. The time scale of the Schwarzschild radius is O(a3

0/κ) for distant 
observers, and yet the time-scale of gravitational collapse is O(a0) only for infalling observers. 
Classically, it takes an infinite time for distant observers to see the star falling inside the hori-
zon, so after including the quantum effect, the time scale of gravitational collapse should also 
be O(a3

0/κ) for distant observers. Indeed, we will see below that the time-dependence of the 
Schwarzschild radius, despite of how small it is, can have a significant effect.

3.1.2.  Back-reacted background.  However, as there is Hawking radiation, a0(u) must 
decrease over time due to the outgoing energy flux (3). Since the Hawking radiation is given 
by (7), the time evolution of a0(u) is given by the differential equation; 

da0(u)
du

= −κN
4π

{u, U(u)}.� (18)

This modification would change the evaluation of ψ̇0(u) (15). Using equations (12) and (13), 
we find

ψ̇0(u) � − a0(u)
2R2

0(u)
− ȧ0(u)

R0(u)− a0(u)
.� (19)

While the first term is always finite, the 2nd term diverges at the horizon unless ȧ0(u) vanishes 
at the horizon.

As the outgoing energy flux Tuu of the energy-momentum tensor is identified with the 
Hawking radiation in the KMY model, the finiteness of Tuu implies, through equations (7) 
and (9), that ψ̇0 must be finite, unless its divergence cancels the divergence in the other term 

in equation (9). The cancellation of divergence in equation (9) demands ψ̇0 ∼ 2
c−u

 for some 
constant c as u → c, with the implication that ψ̇0 is positive when u → c (but u  <  c). However, 
ψ̇0 should be negative according to equation (5), since the factor dU/du should be decreasing 
with time. Hence it is impossible for ψ̇0 to blow up. Thus, it is inconsistent to have a diverging 
ψ̇0 at the horizon, hence ȧ0 must vanish at the horizon. The conclusion is thus that once the 
time-dependence of the Schwarzschild radius a(u) is taken into account, the ideal thin shell 
cannot cross the horizon without turning off Hawking radiation. Indeed, it was shown in [1] 
that the Hawking radiation decreases to zero and a classical black hole survives the incomplete 
evaporation for a collapsing ideal thin shell.

More explicitly, assuming that a0(u) changes very slowly, equation (13) implies that the 
shell asymptotes to the Schwarzschild radius r  =  a0(u). When the shell is sufficiently close to 
the Schwarzschild radius R0(u) � a0(u), equation (18) is solved with [1]

u � e−
D2
2

6πB

∫ ξ

D
dξ′ e

ξ′2

4 ,� (20)

P-M Ho et alClass. Quantum Grav. 37 (2020) 035002
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a(u) � a(0)− B
∫ ξ

D
dξ′ e−

ξ′2

4 ,� (21)

for constant parameters B and D. This solution describes a decaying Hawking radiation that 
vanishes at the event horizon, and the ideal thin shell is only partially evaporated. See [1] also 
for numerical simulation.

To be more precise, the collapsing shell exponentially approaches the shell as described by 
equation (14) for constant Schwarzschild radius when the back-reaction from Hawking radia-
tion is ignored. In the back-reacted geometry, equation (14) is modified as

R0(u) � a0(u) + C0e−
u

2a0(u) − 2a0(u)ȧ0(u) .� (22)

As ȧ0(u) � 0, the shell cannot reach the Schwarzschild radius unless ȧ0(u) → 0 [1]. By using 
the conventional formula of the Hawking radiation, ȧ0 = −σ/a2

0, the minimum distance after 
a long time would be

R0(u) � a0(u) +
2σ

a0(u)
.� (23)

This argument is generalized in [36] to the general metric (1) with finite and continuous ψ(u, r) 
and with positive definite a(u, r) before the complete evaporation. (See the reference for more 
detailed conditions on the geometry.)

To summarize, for the ideal thin shell, if we ignore the time-dependence of the Schwarzschild 
radius, the black hole would completely evaporate as in the conventional model, but if we 
account for the time dependence of the Schwarzschild radius, the black hole would not evapo-
rate completely. While one may suspect that certain omitted details of the quantum effect 
involved in this process could further change the conclusion, it is, to say the least, an example 
showing that the back-reaction of Hawking radiation has the potential to play a crucial role. 
Calculations without back-reaction need to be further justified.

3.2.  Pseudo thin shell

Here we discuss the notion of a ‘pseudo thin shell’ in the context of the low-energy effective 
theory with a cutoff length scale � larger than the Planck length �p. It turns out that the behav-
ior of the pseudo thin shell is characteristically different from the ideal thin shell (when the 
time-dependence of the background is turned on). This means that we cannot trust the low-
energy effective theory on its description of the ideal thin shell. In the context of low-energy 
effective theories, the notion of the ideal thin shell should be viewed as invalid.

The purpose of this subsection is to point out the fact that the ideal thin shell is over-sensi-
tive to details at the Planck scale. For this purpose, we do not have to justify our choice of the 
profile for the pseudo thin shell. Nevertheless, the pseudo thin shell is a natural consideration 
as an interpolation between the ideal thin shell and the slope-1 configuration described in the 
next section.

It was pointed out in [1] that the Hawking radiation from a single ideal thin shell and that 
from the continuum limit of infinitely many shells (the slope-1 configuration) are very differ-
ent. This may seem weird at first sight since the slope-1 configuration was constructed as a 
collection of many thin shells. The reason behind is that the ideal thin shell has pathological 
behavior due to higher-derivative terms in its evolution equation, which can be removed in a 
suitable continuum limit.

P-M Ho et alClass. Quantum Grav. 37 (2020) 035002
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When we model a smooth configuration as a large (but finite) number of thin shells in 
numerical simulation, it is better to consider a collection of pseudo thin shells (instead of ideal 
thin shells) to avoid the pathological behaviors of ideal thin shells. In terms of pseudo thin 
shells, that there is no drastic difference between the Hawking radiation for a single (pseudo 
thin) shell and that for a configuration of many thin shells (e.g. the slope-1 configuration). We 
will have more discussions on the pseudo thin shell in the next subsection.

Here, we consider the pseudo thin shell with the following profile; 

a(u, r) �
(

r − 2σ
r

)
[Θ(r − Ri(u))−Θ(r − R0(u))] + a0(u)Θ(r − R0(u)),

� (24)
where R0 and Ri are the outer and inner radii, and R0(u)− Ri(u) is assumed to be much 
smaller than R0(u). This pseudo thin shell still contains an ideal thin shell at the innermost 
surface. While this does not interfere with our purpose to show that a small deviation from 
an ideal thin shell makes a large difference, the difference between an ideal thin shell only at 
the innermost surface and a finite-density distribution everywhere is negligible since physics 
at the innermost part is almost irrelevant due to the large redshift factor as we will see soon.

The Schwarzschild radii at the outer and inner surfaces of the shell are thus

a0(u) ≡ R0(u)−
2σ

R0(u)
,� (25)

ai(u) ≡ Ri(u)−
2σ

Ri(u)
.� (26)

These formulas, together with the assumption that the shells are collapsing at the speed of 
light, imply that the Schwarzschild radii a(u) change with time according to the conventional 
formula of Hawking radiation ȧ � −σ/a2 for some constant σ. In comparison with equa-
tion (17), σ is a constant parameter of the Planck scale

σ � κN
48π

∼ O(�2
P),� (27)

where N  was defined in equation (7). We shall compare the rates of evaporation for a pseudo 
thin shell and an ideal thin shell, taking into consideration the time-dependence of the 
Schwarzschild radius.

Within the shell (r ∈ (Ri(u), R0(u)]), except for the innermost surface of the shell, this 
is the same profile as the smooth configuration proposed in [1], which will be discussed 
below in section 4. But at the same time, at a length scale much larger than the thickness 
∆R ≡ R0(u)− Ri(u), its profile is essentially the same as that of the ideal thin shell.

For this configuration (24), we have

ψ0(u) � log

(
Ri(u)− ai(u)

Ri(u)

)
− R2

0(u)− R2
i (u)

4σ

� log

(
σ

R2
i (u)

)
− R2

0(u)− R2
i (u)

4σ
� −R2

0(u)− R2
i (u)

4σ
,

� (28)

where in the last line we have assumed that

∆R(u) ≡ R0(u)− Ri(u) �
2σ

Ri(u)
log

(
R2

i (u)
σ

)
.� (29)
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Notice that, since σ is of the order of the Planck length squared, the inequality above is satis-
fied even when ∆R ≡ R0(u)− Ri(u) is as short as a Planck length if R2

i (u) � σ. This differ-
ence ∆R(u) in the areal radius corresponds to a thickness of the shell

∆L �
√

grr(R0(u))∆R(u) � O
(
�P log

(
R0(u)
�P

))
.� (30)

Even for a shell as heavy as 1010 solar mass, ∆L only needs to be greater than 110 times the 
Planck length for the approximation above. Therefore, in a low-energy effective theory appli-
cable only to energies well below 1017 GeV, such a pseudo thin shell is indistinguishable from 
an ideal thin shell.

To calculate Hawking radiation, we take the time derivative of equation (28):

ψ̇0(u) � −R0(u)Ṙ0(u)− Ri(u)Ṙi(u)
2σ

.� (31)

Assuming that Ri(u) is falling at the speed of light,

Ṙi(u) = −1
2

eψ(u,Ri(u)) Ri(u)− ai(u)
Ri(u)

� −1
2

e−
R2

0(u)−R2
i (u)

4σ
Ri(u)− ai(u)

Ri(u)
.

� (32)

The huge redshift factor above

e−
R2

0(u)−R2
i (u)

4σ � e−
R0(u)(R0(u)−Ri(u))

2σ � σ

R2
i (u)

� (33)

implies that the 2nd term in equation (31) is much smaller than the 1st term. Hence,

ψ̇0(u) � −R0(u)Ṙ0(u)
2σ

� 1
2a0(u)

,� (34)

which is the same as equation (42) for a slope-1 shell in section 4, but differs significantly 
from the ideal thin shell in section 3.1.26. As a result, this thin shell of a finite thickness will 
evaporate completely, rather than approaching a classical black hole like the ideal thin shell.

It is an interesting coincidence that the Hawking radiation of the pseudo thin shell (with 
its back-reaction included in the calculation) happen to agree with that of the ideal thin shell 
when the back-reaction is ignored, while they disagree when the back-reaction is turned on. 
This observation suggests that, despite its sensitivity to modifications at a length scale slightly 
larger than the Planck scale, e.g. 100�P for a shell of 1010 solar mass, there is still some robust-
ness in the Hawking radiation of the conventional model of black holes.

3.3.  Analogy with electromagnetism

The pseudo thin shells considered above imply that the equations governing the Hawking 
radiation (7) is too sensitive to Planck-scale details so that the notion of ideal thin shells is 
inappropriate for discussions in the context of low-energy effective theories.

6 Equation (34) differs significantly from the ideal thin shell (with back-reaction from Hawking radiation) in sec-
tion 3.1.2 which has ψ̇0 → 0. It also differs by an overall sign from the conventional result (15) which ignores the 
back-reaction of Hawking radiation.
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Similar issues have been discussed in other branches of physics. It is not uncommon for 
low-energy effective theories to involve higher-derivative terms. Typically, such higher-deriv-
ative terms lead to various pathologies. A well known simple example can be found in the 
textbook on classical electromagnetism [38]. According to the Abraham–Lorentz formula, the 
back-reaction force of the electromagnetic radiation by a point charge is proportional to the 
2nd time-derivative of the velocity of the charge. Any solution of a point-charge is then either 
a runaway solution (accelerating indefinitely to infinite velocity even after all external forces 
are removed—instability), or it suffers pre-acceleration (acceleration before external forces 
are applied—a violation of causality). The proper way to deal with this issue is, of course, to 
keep in mind that, strictly speaking, it is unreasonable to claim a charge to be point-like in a 
low-energy effective theory. The equation of motion should be solved for a charge with finite 
size and finite density, and the point charge limit, up to the cut-off scale, should be taken after 
solving the equation. As long as all charge distributions have a sufficiently smooth profile, 
these problems can be ignored.

In the light of this analogy, a pseudo thin shell satisfying the inequality (30)) is a valid thin-
shell configuration in the low-energy effective theory, while the ideal thin shell is not.

It is well known that the Abraham–Lorentz formula is still applicable to point charges 
in perturbative calculations. At the lowest-order approximation, a point charge is assumed 
to move without back-reaction. The first-order correction to the point-charge trajectory due 
to back-reaction can then be calculated, and it provides a good approximation whenever the 
radiation is sufficiently weak.

In general, in a low-energy effective theory, one can consider a derivative expansion, which 
would be truncated at a certain order of the expansion. Assuming that higher-derivative terms 
are less important, the physical result should not be dramatically changed when the order of 
the truncation is slightly changed. However, higher-derivative terms always introduce new 
solutions and new instabilities. An approach to deal with the higher-derivative terms in a low-
energy effective theory was suggested by Yang and Feldman [39], which was later extended 
to a general formulation in [40]. Following this prescription, one can include the effect of 
higher-derivative terms order by order without introducing unphysical solutions. In the rest 
of this paper, we adopt this approach to take care of the higher derivatives in the Schwarzian 
derivative in equation (7).

Notice that, the ideal thin shell without back-reaction from Hawking radiation and the 
pseudo thin shell produces the same formula

da
du

� − κN
48πa2

� (35)
for Hawking radiation. This is compatible with our analogy with point charges in classical 
electromagnetism. We will, therefore, take this formula (35) as the lowest-order approx
imation for the Hawking radiation from pseudo thin shells. Corrections from higher-order 
terms in the Schwarzian derivative can then be added iteratively order by order. We will com-
pute the first-order correction and check that it is small in our simulation.

4.  Slope-1 shell

In this section, we review the smooth configuration of the collapsing matter proposed in [1]:
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a(u, r) =





a0(u) ≡ R0(u)− 2σ
R0(u) , r > R0(u),

r − 2σ
r , R0(u) > r > R1(u),

< r − 2σ
r , r < R1(u),� (36)

where σ is given by equation (27). We assume that R0(u)− R1(u) is of a macroscopic value 
much larger than σa . The matter at r has approached the Schwarzschild radius a(u, r) for the 
total mass inside r, and the slope of a(u, r) as a function of r is approximately equal to 1 within 
the range of r ∈ (R1(u), R0(u)). The functional form of a(u, r) within the inner part of the shell 
for r  <  R1(u) will turn out to be irrelevant due to the huge redshift factor.

The slope of the a  −  r curve is approximately 1 for this profile, so we will refer to it as 
a slope-1 shell. The slope-1 shell is interesting because it is an asymptotic solution com-
patible with the following assumptions: (1) all layers of the collapsing matter are close to 
their Schwarzschild radii, and (2) the decay rate due to Hawking radiation is given by equa-
tion (17). We also show in the appendix that slope-1 configurations of an arbitrary thickness 
are unique as asymptotic states under certain assumptions.

The outer radius R0(u) satisfies equation (13) as it falls at the speed of light. When the shell 
is sufficiently close to the Schwarzschild radius, it can be approximated as

R0(u) = a0(u)− 2R0(u)
dR0(u)

du
� a0(u)− 2a0(u)

da0

du
.� (37)

Combining it with equation (17), we see that [1]

R0(u) � a0(u) +
2σ

a0(u)
.� (38)

The inverse of this relation is

a0(u) � R0(u)−
2σ

R0(u)
.� (39)

For spherically symmetric configurations, we can decompose the collapsing matter into 
infinitely many infinitesimal collapsing layers labeled by a number n. The total mass enclosed 
in each shell of radius Rn defines the Schwarzschild radius an associated to that shell. (The 
geometry of the infinitesimal gap between the nth layer and the (n + 1)st layer is thus deter-
mined by an.) we can, therefore, apply the same argument to every layer below the surface, to 
claim that eventually

Rn(u) � an(u) +
2σ

an(u)
,� (40)

and hence equation (36) is motivated. This was why the slope-1 configuration was referred to 
as the ‘asymptotic black hole’ in [7].

For this smooth configuration (36), equation (5) implies that

ψ0(u) � −R2
0(u)
4σ

,� (41)

so that

ψ̇0(u) � −R0(u)Ṙ0(u)
2σ

� −a0(u)ȧ0(u)
2σ

� 1
2a0(u)

.� (42)
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Notice that this differs from the conventional result (15) for the ideal thin shell without back-
reaction by a sign, but the Hawking radiation is the same at the leading order! It is very differ-
ent from the case of the ideal thin shell when the back-reaction of Hawking radiation is taken 
into consideration.

It was proposed in [7] that, from the viewpoints of distant observers, the slope-1 configura-
tion is expected to appear as an asymptotic configuration for generic initial states of the col-
lapsing matter. On the other hand, it was also noted there that, as the surface of the collapsing 
shell gets very close to the Schwarzschild radius (i.e. when equation (38) is satisfied), every-
thing below a short depth under the surface is essentially frozen. It is, therefore, possible that 
the collapsing matter demonstrates a different asymptotic profile. One of the main results of 
this paper is to show that, even though the slope-1 configuration is indeed an asymptotic state, 
there exists another asymptotic state.

5.  Asymptotic states

The rest of the paper is focused on the question ‘What are the asymptotic states of gravitational 
collapses?’ First, in section 5.1, we consider the collapsing layers in the static Schwarzschild 
background. The back-reaction of Hawking radiation is ignored, and the geometry between 
the collapsing layers is given by the static Schwarzschild background. In section  5.2, we 
describe our result about how things are different when the back-reaction is turned on.

5.1.  Without back-reaction of Hawking radiation

For a static Schwarzschild background, each layer in the collapsing matter approaches its 
event horizon. If the initial profile has a slope da/dr  much smaller than 1, the inner layers 
approach their Schwarzschild radii earlier, and the outer layers to theirs later. The inner layers 
do not impose redshift factors to slow down the collapse of outer layers for a distant observer. 
Therefore, in the end, for distant observers, all the layers are quite close to their Schwarzschild 
radii and the profile of the whole collapsing matter is frozen. Such configurations approach 
states with slopes da/dr  approximately equal to 1, although in detail they are in general dif-
ferent from the slope-1 state described in section 4. The attractor states have slope 1 for initial 
states with sufficiently small slopes da/dr .

If, however, the initial state has a slope da/dr  larger than 1, the outer layers approach their 
Schwarzschild radii earlier, and they impose a large redshift factor on the inner layers from the 
viewpoint of a distant observer. With the inner layers frozen by the large redshift factor, the 
profile of the inner layers remains essentially the same as the initial state. There is no unique 
asymptotic profile in this case.

This picture will be modified by turning on the back-reaction of Hawking radiation.

5.2.  Back-reaction of Hawking radiation

When the back-reaction of Hawking radiation is taken into consideration, the situation is 
slightly changed. The geometries between the layers are given by the outgoing Vaidya met-
ric, whose Schwarzschild radii have time dependence and are decreasing due to the effect of 
Hawking radiation. The profile of the energy distribution is affected by the time dependence 
of the Schwarzschild radii between the layers.

For a profile with da/dr � 1, the inner layers would get close to their Schwarzschild radii 
before the outer layers do theirs, so the inner layers evaporate first. As in the case without the 
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back-reaction, the outer layers are never frozen, so they keep falling in until they also approach 
their Schwarzschild radii. Eventually, all layers are close to their Schwarzschild radii, and this 
is the slope-1 configuration (section 4). It looks approximately the same as the asymptotic 
state without the back-reaction in section 5.1. The effect of the back-reaction gives no sig-
nificant modification before the layers approach the slope-1 configuration. The layers are still 
moving inward even after it becomes the slope-1 configuration since the Schwarzschild radii 
are decreasing. However, the profile remains the same.

On the other hand, for an initial state with a large slope da/dr � 1, the outer layers reach 
close to their Schwarzschild radii a(u, r) before the inner layers do. The inner layers are frozen 
by the 1/(r − a) contribution of the outer layers due to the redshift factor (4), and the outer 
layers evaporate first. As the outer layers are evaporating, the thickness of an outer layer close 
to its Schwarzschild radius a(u, r) reduces over time until it is barely thick enough to keep 
the inner shells frozen. As outer layers evaporate away, inner layers are thawed and start fall-
ing close to their Schwarzschild radii. After the evaporation of the outer layers, the outermost 
part of the inner layers plays the role of the outer layers. If the profile of the inner layers also 
has a large slope da/dr � 1, the same process to the above is repeated. Thus, the thickness 
of the whole shell decreases over time. Although the inner part of the collapsing matter deep 
under its surface still has an arbitrary profile depending on the initial condition, the part close 
to the surface approaches a thin shell. The thin shells can thus be viewed as another class of 
asymptotic states. The back-reaction of Hawking radiation plays an important role in this 
mechanism. This result is quite different from the case without the back-reaction.

6.  Numerical simulation

In this section, through numerical methods, we investigate the dynamical process leading to 
the asymptotic states described in the previous section. As it was explained in section 3, we 
shall not consider ideal thin shells and the higher-derivative terms in the Hawking radiation 
should be treated in a way suitable for the low-energy effective theory.

6.1.  Numerical methods

In numerical simulation, we discretized the continuous matter distribution as a set of collaps-
ing thin shells labeled by a number n = 1, 2, · · · , N from the innermost shell (n  =  1) to the 
outermost shell (n  =  N). Each shell has a radius Rn, and the total mass Mn enclosed in the shell 
defines the Schwarzschild radius an = 2GMn  associated with the shell. The metric between 
the nth shell and the (n + 1)st shell is given by the outgoing Vaidya metric and determined by 
the Schwarzschild radius an.

As it was explained in section 3.3, we adopt the perturbative approach in which each layer 
of the thin shell evaporates according to equation (35), to avoid unphysical dependence on 
Planck-scale structures. Hence, we assume that for the nth layer, at the leading order

dan

dun
� − σ

a2
n

(
σ ≡ κN

48π

)
,� (43)

where un is the outgoing light-cone coordinate for the segment between the nth and the (n + 1)
st shell. This assumption is iterated back into the Schwarzian derivative {un,U} for the first-
order correction.

P-M Ho et alClass. Quantum Grav. 37 (2020) 035002



15

Schematically, the first-order correction is calculated in the following way. The Schwarzian 
derivative introduces first and second-order derivatives of an into the decay rate equation of 
an as

dan

dun
= f

(
an,

dan

dun
,

d2an

du2
n

, Rn

)
,� (44)

through a certain function f . In general, there could be dependence on the first and second 
derivatives of Rn in the function f , but they can be traded for zeroth and first derivatives of an 
through the evolution equation of Rn

dRn

dun
= −1

2

(
1 − an

Rn

)
,� (45)

respectively. By using this equation  repeatedly, the derivatives of Rn can be removed from 
the expression of f , and therefore, f  in (44) does not depend on the derivatives of Rn. Thus the 
decay rate equation (44) contains only the derivatives of an.

As we explained in section 3.3, to avoid the pathologies introduced by higher derivatives, 
we will solve the equation by the perturbative method. We first take the conventional formula 

(43) as the zeroth-order approximation for dan
dun

. As a result,

d2an

du2
n
� −2σ2

a5
n

,� (46)

so that dan
dun

 and d2an
du2

n
 on the right-hand side of equation (44) can be replaced by functions of an 

and Rn, without their time derivatives at all. This way, we get a first-order differential equa-

tion for an. That is, dan
dun

 is given by a function of an and Rn. (It is straightforward to derive this 
lengthy expression so we will not present it here.) In general, one can do this iteratively to 
get higher-order corrections to obtain a more accurate approximation. We will check that the 
first-order correction is small, and ignore higher-order corrections.

To study the astrophysical black holes, we need to consider a sufficiently large mass. To 
study such a large mass, a huge number of layers are necessary. However, the simulation of a 
lot of layers is computationally expensive. Here, we are interested in the asymptotic states of 
the collapsing layers, in particular, whether they approach the slope-1 state or evaporate from 
the outer layers. To see this, it is sufficient to study the outer shells. To save computer time in 
our simulation, we sometimes include a massive core at the center that also evaporates accord-
ing to the conventional formula (43). This way we can efficiently describe a configuration with 
a large mass, while we focus on the behaviors of the outer shells, and see if they evaporate 
first. Note that the inner core is essentially frozen because of the strong redshift factor due 
to the outer shells when the outer shells are close to their Schwarzschild radii, so we do not 
expect the replacement of many inner shells by a massive core to make much difference to the 
behavior of the outer shells. To verify this assumption, one can compare the dynamics of the 
outer n layers of a system of N  +  n layers of collapsing shells, versus the dynamics of n layers 
in a second system, in which a massive core replaces the N shells of the first system. One can 
check that the dynamics of the n shells in both systems agree. Furthermore, one can check that 
the geometry outside all the shells agrees with that of a single massive core of the same total 
mass. Hence the assumption can be justified by induction.
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6.2.  Numerical results

Now, we study the time evolution of collapsing layers, taking the back-reaction of Hawking 
radiation into account. Unless otherwise specified, the time evolution Rn and an will be pre-
sented as functions of the light-like coordinate u  =  u0 outside all shells.

We assume that there is no horizon in the initial state, that is, no shell is inside its 
Schwarzschild radius,

Rn(uinit) > an(uinit) ∀n� (47)

at the initial time u = uinit. Rn(u) decreases as the nth shell collapses. Its associated 
Schwarzschild radius an(u) slowly decreases due to Hawking radiation when Rn(u) gets close 
to an(u).

The profile of a collapsing matter distribution at any given time u is given by the plot of an 
versus Rn for that u. While the profile (the a  −  r graph) of the initial configuration is arbitrary 
except that it must be a monotonically increasing relation, we shall focus on linear profiles 
with various slopes. Once they are understood, it is straightforward to generalize the knowl-
edge to a generic profile by decomposing the profile into many small segments which are 
approximated by linear relations between a and r.

With the assumption that all layers n are falling at the speed of light, the radius Rn satisfies 
the equation

dRn(u)
du

= −1
2

eψn
Rn − an

Rn
.� (48)

This assumption also ensures that the shells do not cross each other. When the collapsing 
matter is still far away from its Schwarzschild radius, at large distances where the spacetime 
is nearly flat, the a  −  r profile remains roughly unchanged as it shifts along the r-axis over 
time. We shall, therefore, focus on the initial states in which at least a part of the a  −  r pro-
file is very close to the a  =  r line. That is, some of the layers have already approached their 
Schwarzschild radius | Rn � an for at least some values of n.

When the radius Rn of a layer n is close to its Schwarzschild radius an, the decreasing rate 
in Rn slows down. If the initial slope is smaller than 1, the innermost layers get close to the 
curve a  =  r first, and then, the slope ∂a/∂r increases over time. If the initial slope is larger 
than 1, the outermost layers approach a  =  r first. In this case, the inner layers also slow down 
because of the redshift factor due to the outer shells. Therefore, the slope does not decrease. 
See figures 1–4 for the profiles at each moment of the collapse. It should be noted that, for 
a large initial slope of the profile, the effect of the redshift factor appears because the time 
evolution is measured by using the time coordinate outside all shells. Although the collapse 
does not slow down for the local observer at the inner layers, it slows down for the observer 
outside the collapsing matters.

Despite the tendency of increasing the slope ∂a/∂r over time, once a layer is very close 
to the a  =  r line, it can only move diagonally along the a  =  r line (more precisely, a curve 
along which r � a + 2σ

a ). Our simulation shows that, for initial configurations with slopes 
∂a/∂r � 1, the slope only approaches 1 in the end, while configurations with initial slopes 
∂a/∂r � 1, the slope approaches infinity, which implies that the collapsing layers approach 
a thin shell.

To conclude, there are two distinct classes of asymptotic states of black holes. The first 
class approaches the slope-1 configuration, for initial profiles with a small slope. The second 
class approaches thin-shell configurations for initial profiles with large slopes. The criterion 
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deciding whether an initial configuration evolves towards one class or another is whether the 
slope of the initial profile da/dr  is much smaller than 1 or much larger than 1.

We considered only the profiles with constant slopes so far. It is straightforward to study 
more generic profiles. For example, if the slope for inner layers is large but that for outer lay-
ers is small, the middle layers will approach the line of a  =  r first. The inner layers will be 
frozen and moving inward without changing the slope, while the outer layers will asymptote 
to the slope-1 configuration.

Recall that the volume density of matter is defined as

Figure 1.  a  −  r graph for ∂a
∂r = ∞. The profile of the collapsing sphere is shown at 

different instants of u. The initial state with ∂a
∂r = ∞ is the first vertical line on the right. 

The profile gets shorter as it moves to the left due to evaporation. The slope remains 
infinite throughout the dynamical process.

Figure 2.  a  −  r graph for ∂a
∂r = 10. The profile of the collapsing sphere is shown at 

different instants of u. The initial state with ∂a
∂r = 10 is the first vertical line on the right. 

The profile gets shorter as it moves to the left due to evaporation. The slope approaches 
infinite in the dynamical process.
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dm
dvol

=
1

8πGNr2

da
dr

,� (49)

so the critical volume density ρc (around the Schwarzschild radius) corresponding to 
da/dr = 1 is

Figure 3.  a  −  r graph for ∂a
∂r = 0.1. The profile of the collapsing sphere is shown at 

different instants of u. The initial state with ∂a
∂r = 0.1 is the first straight line (blue). The 

profile gets shorter and the slope becomes larger as it moves to the left. Eventually, the 
slope approaches 1.

Figure 4.  a  −  r graph for ∂a
∂r = 1. The profile of the collapsing sphere is shown at 

different instants of u. The initial state with ∂a
∂r = 1 is the diagonal line in blue, partially 

overlapping with the profile at later times. The profile gets shorter and the slope remains 
approximately equal to 1.
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ρc ≡
1

4πr2

∂M
∂r

∣∣∣∣
critical

� 1
8πGNa2 =

1
κa2 ,� (50)

where we have used a  =  2GNM. This corresponds to a volume density of order O(1/a4) at 
a distance of order O(a) away from the horizon. It is of the same order of magnitude as the 

Figure 5.  a(u) for da/dr = 0.1. The values an for all layers are shown as functions of 
time u. The values of an do not start at 0 because there is a massive core at the center. 
The innermost layers evaporate first, so in the diagram, they merge with other layers 
initially on top of them. At larger u, the outermost layers evaporate and appear to merge 
with other layers initially under them.

Figure 6.  a(u) for da/dr = 1. The values an for all layers are shown as functions of 
time u. The values of an do not start at 0 because there is a massive core at the center. 
The outermost layers evaporate first so they appear to merge with other layers initially 
under them.
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Hawking radiation. In fact, the ingoing energy of the collapsing matters balances with that 
of Hawking radiation in the special case of the slope-1 configuration which is studied in [1]. 
Hence, we expect the ingoing energy flux of density higher (lower) than Hawking radiation to 
resemble the thin shell (slope-1 configuration) as it approaches the horizon.

Even for a black hole as small as a solar mass, its Hawking radiation is much weaker 
than the current cosmic microwave background radiation. Hence all existing black holes are 
expected to have a surface layer resembling the thin shell configuration. That is, the slope 
da/dr  is very large at the surface of the black hole.

Figure 7.  m(u) for ∂a/∂r = 0.1. The masses of some of the layers are shown as 
functions of time u. It is clear that, generically, inner layers evaporate faster in the 
beginning, while outer layers evaporate faster at a later time. There is roughly a point 
of intersection of the curves when they have evaporated the same percentage of their 
masses. The mass of the first layer R1 outside the massive core appears to be anomalous 
as it initially increases with time. This is because the outgoing energy due to the 
evaporation of the massive core is temporarily counted as its energy. This is merely an 
artifact of our choice of the configuration.

Figure 8.  m(u) for ∂a/∂r = 1. The masses of some of the layers are shown as functions 
of time u. The situation is simple in this case: outer layers evaporate faster than inner 
layers at all times.
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6.3.  Stages of evaporation

In the KMY model, it was found [1] that, for the ideal slop-1 shells, the collapsing shells are 
moving inward as they lose the energy by Hawking radiation. It is also argued [4] that the 
evaporation of the collapsing shells, in most cases, happens in the same fashion as peeling an 
onion—layer by layer from the outside. The reason is that the inner shells are frozen due to 
the huge redshift factor.

Here we would like to ask in general, when would the evaporation start from the layers 
on the outside or the inside. To see this, we calculate the time evolution of the Schwarzschild 
radii for each shell, as functions of u. We find that the evaporation process is a competition 
between the suppression due to a large redshift factor and the enhancement of evaporation due 
to the short separation of a layer from its Schwarzschild radius a. The details are described in 
the following.

6.3.1.  Small-slope configurations.  For the profile of a collapsing matter with a very small 
slope (da/dr � 1), the innermost shell approaches its Schwarzschild radius before the other 
shells and starts to evaporate first. As more and more layers approach their Schwarzschild 

Figure 9.  1st-order correction in Hawking radiation for da
dr = 0.1. (a) The first-order 

correction ∆
( da

du

)
 as percentage of the 0th-order expression of da

du . (b) Modeling 
the dependence of the first-order correction ∆

( da
du

)
 by power law ∆

( da
du

)
= Aan 

for some constant A. (c) Modeling the first-order correction by the coefficient C in 
∆

( da
du

)
= (1−C)σ

a2 .
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radii, a layer that is already close to its Schwarzschild radii will stay locked at a separation 
Rn − an � 2σ/an until it is evaporated.

As the outer layers approach their Schwarzschild radii, the redshift factor becomes large 
for the remaining inner layers, so that the radiation from the remaining inner layers is sup-
pressed. The outer layers are then evaporated before them.

Therefore, for a profile with a tiny slope, its evaporation can be very roughly decomposed 
into two stages. In the first stage, the inner layers evaporate first, and the outer layers are still 
far from their Schwarzschild radii. In the 2nd stage7, after it has turned into a slope-1 configu-
ration, the outer layers get close to their Schwarzschild radii and start to evaporate, and the 
inner layers surviving the first stage are frozen until outer layers are evaporated. The configu-
ration of the collapsing matter is now in agreement with the slope-1 shell.

This process is shown in figure 5. The plot consists of many curves of the Schwarzschild 
radii for each shell. A layer completely evaporates when the curve merges with the next 
curve—its Schwarzschild radius becomes the same as that of the inner layer. In comparison, 

Figure 10.  1st-order correction in Hawking radiation for da
dr = 1. (a) The first-order 

correction ∆
( da

du

)
 as percentage of the 0th-order expression of da

du . (b) Modeling 
the dependence of the first-order correction ∆

( da
du

)
 by power law ∆

( da
du

)
= Aan 

for some constant A. (c) Modeling the first-order correction by the coefficient C in 
∆

( da
du

)
= (1−C)σ

a2 .

7 This is the stage of onion peeling described in the KMY model.

P-M Ho et alClass. Quantum Grav. 37 (2020) 035002



23

the process for ∂a/∂r � 1 is shown in figure 6, for which the outer layers are evaporated first, 
resembling the late stage of figure 5.

By the analogy with the radiation of point charges in classical electromagnetism in sec-
tion 3.3, the gravitational collapse with Hawking radiation in our formulation should be free 
of pathological instabilities. Indeed, in all of our numerical simulation, the system under study 
always approaches one of the asymptotic states. Nevertheless, we study in more detail the 
transition process towards the asymptotic states.

The time-dependence of the masses of different shells are plotted in figures 7 and 8 for 
∂a/∂r = 0.1 and ∂a/∂r = 1, respectively. In both cases, after a short time with non-uniform 
behavior, the collapsing shells approach the asymptotic states.

Figure 12.  a(u) for ∂a/∂r = 10. This diagram is essentially the same as figure 11.

Figure 11.  a(u) for ∂a/∂r = ∞. The values an for all layers are shown as functions of 
time u. The values of an do not start at 0 because there is a massive core at the center. 
The outermost layers evaporate first, so in the diagram, they appear to merge with other 
layers initially below them.
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For both da
dr  equal to 0.1 and 1, the first-order correction to the 0th-order Hawking radiation 

is relatively small. We analyzed this deviation in three different ways: (1) the percentage of 

correction with respect to the 0th-order amplitude: ∆
( da

du

)
/ da(0)

du , (2) how the correction ∆
( da

du

)
 

scales with a during the collapsing process, and (3) If we use the formula da
du = −C(u)σ/a2 to 

model the Hawking radiation, how is the coefficient C(u) changing with time. In all analyses, 
we find the first-order correction to Hawking radiation sufficiently small to justify our pertur-
bative interpretation of the Schwarzian derivative. See figure 9 for da

dr = 0.1 and figure 10 for 
da
dr = 1.

6.3.2.  Large-slope configurations.  For a collapsing profile with a large slope (da/dr � 1), 
the outer layers reach close to their Schwarzschild radii earlier than the inner layers. Hence the 
inner layers are frozen until outer layers are evaporated.

Whenever the outer layers are very close to their Schwarzschild radii, the inner layers are 
frozen by the large redshift factor, and the radiation of the inner layers can be ignored (in terms 
of the time coordinate u) regardless of whether the inner layers are close to their Schwarzschild 
radii. Therefore, for a collapsing ball with an outer surface that has been evaporating for a long 
time, it is evaporating from the outer layers in most cases. See figures 11 and 12.

Figure 13.  m(u) for ∂a/∂r = ∞. The masses of some of the layers are shown as 
functions of time u. Generically, outer layers evaporate faster.

Figure 14.  m(u) for ∂a/∂r = 10. This diagram is essentially the same as figure 13.
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An exception would be the stationary solution which is studied in [1]. In this case, the inner 
layers are also very close to their Schwarzschild radii and the evaporation proceeds simulta-
neously. On the other hand, even in this case, although the inner layers completely evaporate 
first, the process is extremely slow because of the very large redshift factor, and the Hawking 
radiation mostly comes from the outer layers.

The inner layers stay frozen until the outer layers are evaporated. For an outer layer as 
close to the Schwarzschild radius as Rn − an ∼ O(σ/an), the redshift factor for the layer at a 
separation ∆R under the outer surface is of order e−R0∆R/2σ. Therefore, roughly speaking, it 
is natural to think of a layer of matter to have the thickness of a Planck length, and the layer is 
evaporated before the next layer starts to evaporate.

We also check the issue of stability for the large-slope configurations as we did for the 
small-slope configurations above. The transition process towards the asymptotic states is 
shown via the time-dependence of the masses of different shells. See figures 13 and 14. For 
both da

dr = ∞ and da
dr = 10, the first-order correction to the 0th-order Hawking radiation is also 

very small (see figures 15 and 16), as the case of small slopes.

Figure 15.  1st-order correction in Hawking radiation for da
dr = ∞. (a) The first-

order correction ∆
( da

du

)
 as percentage of the 0th-order expression of da

du . (b) Modeling 
the dependence of the first-order correction ∆

( da
du

)
 by power law ∆

( da
du

)
= Aan 

for some constant A. (c) Modeling the first-order correction by the coefficient C in 
∆

( da
du

)
= (1−C)σ

a2 .
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7.  Discussion and conclusion

In this paper, we studied the dynamical process of collapsing spheres in the KMY model, 
in which the Schwarzschild radii are time-dependent due to the back-reaction of Hawking 
radiation.

First, we note that, while an ideal thin shell does not completely evaporate in the KMY 
model, a pseudo thin shell does. The origin of this over-sensitivity on short-distance features 
is the higher derivatives needed to determine Hawking radiation. By properly treating the 
higher-derivative terms (in a way analogous to how the Abraham–Lorentz formula is applied 
to point charges), the discrepancy between the ideal thin shell and pseudo thin shell disap-
pears. All smooth configurations evaporate completely within finite time.

Secondly, we showed that there are two classes of asymptotic states in the KMY model. 
Their initial states are separated by a critical energy density ρc (50). When the initial energy 
density is much higher than the critical energy density, the collapsing shell approaches a thin 
shell state. If the initial energy density is much lower than ρc, the collapsing shell approaches 
a slope-1 configuration.

Figure 16.  1st-order correction in Hawking radiation for da
dr = 10. (a) The first-

order correction ∆
( da

du

)
 as percentage of the 0th-order expression of da

du . (b) Modeling 
the dependence of the first-order correction ∆

( da
du

)
 by power law ∆

( da
du

)
= Aan 

for some constant A. (c) Modeling the first-order correction by the coefficient C in 
∆

( da
du

)
= (1−C)σ

a2 .
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To approach the slope-1 configuration, the initial density of the matter has to be smaller 
than Hawking radiation, which is, for a large range of black-hole masses, much smaller than 
that of the current CMB. Therefore, the outer layers of black holes at present are expected to 
resemble a (pseudo) thin shell configuration.

Despite the apparent difference between the profiles of the slope-1 states and the thin shell 
states, both configurations appear to be very similar from the viewpoint of a distant observer. 
The reason is that the matter at a Planck length under the surface of the shell is essentially 
frozen [7]. It will be interesting to investigate how these asymptotic states can be distinguished 
by certain high-precision observations.

Similarly, the difference between either of the two asymptotic states and the conventional 
model of a black hole with a horizon is very small to a distant observer due to the huge red-
shift factor. How to distinguish the KMY model and the conventional model of black holes is 
a very interesting and important question. The most salient feature of the KMY model is the 
Planckian scale pressure under the surface of the collapsing matter, which is at a Planck-scale 
distance above the incipient horizon (hence the horizon will not appear). In contrast, the near-
horizon region of a black hole in the conventional model is usually assumed to be empty. This 
difference is expected to be reflected in the gravitational wave signal for black-hole mergers. 
The gravitational wave signal of black-hole mergers has not yet confirmed the existence of the 
horizon [41, 42], while future gravitational wave observations with greater precision may be 
able to distinguish the KMY model and the conventional model [43, 44].

It should be noted that we have assumed that the gravitational force dominates over other 
forces in the gravitational collapse and that the collapsing matter is close to the speed of light, 
while the pressure of the matter is negligible (except for that from the quantum effect). For 
example, neutron stars have strong Fermi degeneracy pressure to resist the gravitational force. 
Thus the black hole formed by the gravitational collapse of a star has a minimal mass around 
a few solar masses. In this paper, we have assumed that the collapsing matter does not have 
such a large pressure which can stop the collapse.
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Appendix.  Derivative expansion of collapsing shells

Here we verify that, under certain assumptions about the asymptotic limit, the slope-1 shells 
of an arbitrary thickness (including the pseudo thin shell) are the only lowest-order solutions 
in the derivative expansion of the formulas of Hawking radiation. The equations of Hawking 
radiation in the KMY model are equations (6), (9), (13) and (18). The lowest-order approx
imation of equation (9) is8

{u, U} � 1
3
ψ̇2

0.
� (A.1)

8 There is, in fact, an ambiguity in the derivative expansion depending on which variable (ψ0 versus dU/du) is used.
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First of all, it should be clear that the Hawking radiation is dominated by the contributions 
of those layers in the collapsing shell which are very close to their Schwarzschild radii. It 
is also obvious that, in terms of the coordinate u suitable for a distant observer, these layers 
spend a very long time approaching their Schwarzschild radii. The assumption we make is 
that the distribution of these layers eventually approach a certain universal asymptotic profile

R(a)− a � f (a)� (A.2)
for a certain given function f (a) that depends only on a and other physical constants. As the 
only relevant constant parameter in this model is σ (or κN ), f (a) can always be rewritten as 
ag(σ/a2) for a certain function g. Since σ/a2 is an extremely tiny number, it is dominated by 
the leading-order term in its power expansion in σ/a2. Therefore, we assume that

R(a)− a � C
an� (A.3)

at the leading-order in the (σ/a2)-expansion for a constant C and a number n. (This assump-
tion excludes ideal thin shells.) A generic consequence of this is that

Ṙ(a)− ȧ � 0� (A.4)

at the leading order. Taking u-derivatives on this equation and using equation (13), we find

ȧ0 � Ṙ0 � −R0 − a0

2R0
� − C

2an+1
0

.� (A.5)

According to equation (6),

ψ0 � −
an+1

0

(n + 1)C
.� (A.6)

Then equations (18) and (A.1) imply

ȧ0 � −κN
12π

ψ̇2
0 � −κN

12π
a2n

0

C2 ȧ2
0,� (A.7)

from which we find

ȧ0 � −12π
κN

C2

a2n
0

.� (A.8)

The agreement between equations (A.5) and (A.8) demands that

n = 1,� (A.9)

C =
κN
24π

.� (A.10)

Therefore the asymptotic profile (A.3) is precisely the slope-1 configuration (without restric-
tion on its thickness so pseudo thin shells are included). For the self-consistency of this result, 
one can check that the higher-order terms ignored in equation (A.1) are indeed much smaller 
than the lower-order terms.
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