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Abstract
In this paper we consider a model based on interacting p -forms and explore 
some cosmological applications. Restricting to gauge invariant actions, 
we build a general Lagrangian allowing for arbitrary interactions between 
the p -forms (including interactions with a 0-form, scalar field) in a given 
background in D dimensions. For simplicity, we restrict the construction to 
up to first order derivatives of the fields in the Lagrangian. We discuss with 
detail the four dimensional case and devote some attention to the mechanism 
of topological mass generation originated by couplings of the form B ∧ F 
between a p -form and a (3 − p)-form. As a result, we show the system of 
the interacting p -forms ( p = 1, 2, 3) is equivalent to a parity violating, 
massive, Proca vector field model. Finally, we discuss some cosmological 
applications. In a first case we study a very minimalistic system composed 
by a 3-form coupled to a 0-form. The 3-form induces an effective potential 
which acts as a cosmological constant term suitable to drive the late time 
accelerated expansion of the universe dominated by dark energy. We study 
the dynamics of the system and determine its critical points and stability. 
Additionally, we study a system composed by a scalar field and a 1-form. This 
case is interesting because the presence of a coupled 1-form can generate non 
vanishing anisotropic signatures during the late time accelerated expansion. 
We discuss the evolution of cosmological parameters such as the equation of 
state in this model.
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1.  Introduction

The inflationary paradigm [1–3] successfully predicts the statistical properties of the fluc-
tuations in temperature of the cosmic microwave background (CMB) and the formation and 
distribution of large scale structures (LSS), whose properties have been measured with a sig-
nificantly increase of precision during the last decades [4]. In its simple form, based on a 
single scalar field with a slow-roll potential, inflation predicts a nearly scale invariant, nearly 
Gaussian and statistically isotropic distribution of the primordial perturbations. However, 
some anomalies in the data, suggest that models beyond the standard slow-roll description are 
needed in order to fully account for its presence. These anomalies are in principle related to 
non-gaussianity, statistical anisotropy, parity violation, the power deficit ta low multipoles, the 
hemispherical power asymmetry, the alignment of low multipoles in the CMB angular power 
spectrum, among others [4–8] (see [7] and [8] for a review of the cosmological anomalies). 
Models based on vector fields [9–11], p -forms [12–18], higher spin fields (HSF) [19–26] or 
axion monodromy inflationary models [27–30] have been considered as a plausible explana-
tion of some of those anomalies. The use of vectors, or general gauge fields is strictly con-
strained by the cosmic no-hair theorem [31], which states that these fields dilute rapidly in 
the presence of a cosmological constant, which render them, in principle, irrelevant during 
the inflationary expansion. Nevertheless, one can evade the conditions behind this theorem by 
introducing couplings of the form f (φ)FµνFµν  and f (φ)Fµν F̃µν  where f (φ) is an arbitrary 
function of the scalar inflaton field, Fµν = ∂µAν − ∂νAµ is the field strength of the 1-form Aµ 
and F̃µν  is its dual. Those couplings allow for the introduction of anisotropic non-diluting sig-
nals in the correlation functions of the primordial curvature perturbation during the inflation-
ary era. The model f (φ)FµνFµν  has been extensively studied in the literature [32–48]. Parity 
violating signals in the correlators and potential applications to primordial magnetogenesis 
can be achieved with a prototypical term of form f (φ)Fµν F̃µν . This term has also been stud-
ied with great interest in the recent literature [49–60].

In the specific context of inflation, a general study of cosmological perturbations and sta-
bilities at background level has been done in [13, 14, 17, 18], in which, a coupling of a func-
tion of a scalar field and a 1- and 2-form, is considered. At perturbative level, the statistical 
anisotropy induced by these models can be parameterized through the power spectrum of 
curvature perturbations [61]

Pζ(k) = P(0)
ζ (k)

[
1 + g∗ cos

2 θk,V
]

,� (1)

being P(0)
ζ (k) the isotropic power spectrum, g* the anisotropy parameter, V  is the preferred 

direction, k the wave vector and θk,V the angle between k and V . It has been shown that the 
different types of anisotropies (coming from the vector and 2-form field) affect the sign of 
g*, being positive for the 2-form field, and negative for the 1-form case [13]. These features 
allow to constraint different inflationary models with current CMB bounds on g*. Interestingly 
enough, some oscillatory features in the spectrum can be derived from certain axion mono-
dromy inflationary models [62, 63] yielding in some cases to a step-like profile on the infla-
ton’s potential [27]. These type of models lead to observational predictions for the power 
spectrum which exhibits great similarities with the predictions from the models discussed 
here. Specifically, the power spectrum of the curvature perturbation can be parametrized in a 
similar form as the one in equation (1) and their predictions are highly degenerated with the 
predictions of inflation in presence of p -forms [28]. Aside of offering a nice explanation of 
the power deficit anomaly at low multipoles, these kind of models predict specific patterns in 
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the temperature and polarization spectra which can be tested and constrained by forthcoming 
CMB observations [28].

A different approach to the p -forms that we consider here, that induce statistically aniso-
tropic signatures in the power spectrum and the bispectrum, is the use of HSF [19–25]. As 
in the model with vector fields, HSF does not generate long-lived perturbations with spin s 
unless they are coupled to the inflaton field through terms of the form f (φ)σµ1···µsσ

µ1···µs 
where σµ1···µs is a symmetric tensor representing a spin s field. Possible observables and sig-
natures from HSF in LSS probes and future galaxy surveys have been discussed in [64–67]. 
A peculiar difference between the p -forms and the HSF are the symmetries involved: while 
p -forms are built with antisymmetric objects, HSF are built out of symmetric tensors. This 
implies that, for instance, it is not possible to introduce non vanishing parity violating signals 
by using HSF since contractions of the antisymmetric tensor εµ1µ2µ3µ4 with any symmetric 
tensor is trivially zero. p -forms on the other hand, due to their antisymmetric structure, are 
better suited to study parity breaking signatures.

Going beyond the 1- and 2-form cases in four dimensions mentioned before, studies of 
general p -forms in Bianchi cosmologies has been carried out recently in [68], and studies spe-
cifically related with 3-forms had been carried out in [16, 29, 30, 69–80]. A property exploited 
in those references relies on the fact that the field strength of the 3-form in four dimensions 
is proportional to the volume element and can be seen as a cosmological constant term. This 
makes three form relevant for the discussion of the cosmological constant problem and also 
viable dark energy candidates [81]. Vector fields, or 1-forms, had also been used as dark 
energy candidates [48, 82–85]. On more theoretical grounds, a generalization of the scalar 
0-form Galileons [86–90] to arbitrary p -forms in D-dimensions has been carried out in [91, 
92]. In the previous construction, it is allowed to have an action with second derivatives of 
the p -form, in close resemblance with Gauss–Bonnet–Lovelock actions. This procedure leads 
to counterterms and non-minimal couplings with the gravity sector when writing the action 
in curved space. Differently from this p -form Galileon generalization which includes second 
order derivatives in the Lagrangian, our aim here is to study general p -forms models with up 
to first order derivatives.

It is desirable to fully describe a theory which couples different types of p -forms demand-
ing only first derivatives of the field strengths, unlike the approach of the p -form Galileons, 
and classifies their possible imprints in statistical correlators. The main purpose of this paper 
is to set up a general Lagrangian based on coupled p -forms, restricted by gauge invariance. 
Additionally, we aim to highlight the role of p -form models in cosmological backgrounds. In 
section 2 we start with the basic definitions of p -forms, their field strengths and duals. After 
discussing the gauge invariance of the p -forms the construction of the Lagrangian starts using 
as building blocks the field strengths coupled with a function of a scalar field (a 0-form), as 
well as couplings between different p -forms in D dimensions. We briefly discuss the exist-
ence of topological terms and their natural appearance in the Lagrangian. Section 3 is devoted 
to exploring the Lagrangian in 4 dimensions, with a detailed description of the field equa-
tions and the energy-momentum tensor. We devote a subsection to describe the mechanism 
of topological mass generation that arises due to the interplay of the 1-form and the 2-form. 
Some cosmological applications are shown in section 4, with special attention to the effect of 
the coupled 3-form-scalar field term in the dynamics; we also discuss a late time evolution of 
the universe in presence of an anisotropic source such as a 1-form; lastly, we also comment 
very shortly on the signatures of p -forms in statistical inflationary correlators. Finally we draw 
the conclusions in section 5. Throughout this paper we will use a Lorentzian metric gµν with 
signature (−,+,+,+); greek indices α,β, γ, . . . will denote space-time coordinates, while 
latin indices i, j, k, . . . denote spatial coordinates.
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2.  p -forms coupled to a scalar in D dimensions

In this section, we recall the basic definitions of p -forms and establish our notation. Our goal 
is to construct a general Lagrangian compatible with gauge symmetry and allowing for cou-
plings between different arbitrary p -forms of different rank. Having in mind applications to 
inflationary physics, we also concede for kinetic coupling with a scalar field φ which we can 
see as a 0-form whose dynamics is introduced through a field strength ∂µφ. So, the Lagrangian 
that we are going to consider is the following

L = Lφ + Lp(φ, Ap),� (2)

where Lφ = Lφ(φ, K) is an arbitrary function of the field and the kinetic term K ≡ ∂µφ∂
µφ. 

In the canonical case we have

Lφ = −1
2
∂µφ∂

µφ− V(φ),� (3)

being V(φ) a potential suitable for the specific case of study, for instance, in the case of infla-
tionary physics, the potential V(φ) should be able to drive slow roll inflationary evolution. A(p ) 
is a p -form

A( p) =
1
p!

A( p)µ1µ2···µp dxµ1 ∧ dxµ2 · · · ∧ dxµp ,� (4)

where the A( p)µ1µ2···µp are taken totally anti-symmetric and ∧ representing the usual ‘wedge’ 
product. To avoid further confusion with indices in a specific dimension, we will use a sub-
script p  between parenthesis to denote the order of the p -form. The Lagrangian Lp(φ, Ap) will 
include all the possible p -forms in a given D-dimensional spacetime. The highest rank of a 
p -form in D dimensions is obviously D, which is proportional to the D-dimensional volume 
element, this is:

AD ∝
√
−gε1···Ddx1 ∧ · · · ∧ dxD,� (5)

where ε1···D is the Levi-Civita tensor. This term can be absorbed as a cosmological constant 
term or can be seen as a redefinition of the vacuum of the potential [12, 15, 77, 93], it has 
no dynamics, and for this reason, we shall only consider up to AD−1 in the following. Given 
a p -form A( p)µ1,µ2···µp, its dynamics is introduced through the field strength F(p ), which is a 
( p + 1)-form defined as the exterior derivative of the p -form3:

F( p) =
1
p!
∇[µ1 A( p)µ2µ3···µp+1]dxµ1 ∧ dxµ2 · · · ∧ dxµp+1 .� (6)

Here, it is important to mention that, although we define the field strength with covariant 
derivatives, in a spacetime endowed with a symmetric connection, without torsion, the anti-
symmetrization in equation (6) will transform all covariant derivatives into ordinary partial 
derivatives. Having said that, applying the definition equation (4) for the field strength, their 
components are computed as

F( p)µ1µ2···µp+1 ≡ ( p + 1)∂[µ1 A( p)µ2µ3···µp+1].� (7)

Joint with this, we define the Hodge dual of a p -form Bp  as a (D − p)-form in the following 
way

3 Notice that we have used the subscript p  as a label for the p -form. The field strength has the same label, but we 
emphasize that F(p ) is a ( p + 1)-form.
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�B( p) =
1
p!

1
(D − p)!

ηµ1···µpν1···νD−p B µ1···µp

( p) dxν1 ∧ · · · ∧ dxνD−p ,� (8)

with ηµ1···µD =
√
−gεµ1···µD. With this definition the Hodge dual of the field strength F(p ) reads

�F( p) =
1

( p + 1)!
1

(D − p − 1)!
ηµ1···µp+1ν1···νD−p−1 F µ1···µp+1

( p) dxν1 ∧ · · · ∧ dxνD−p−1 .

� (9)

Denoting the components of the Hodge dual as F̃( p)ν1···νD−p−1, and using again equation (4) 
for a (D − ( p + 1))-form we find

F̃( p)ν1···νD−p−1 =

√
−g

( p + 1)!
εµ1···µp+1ν1···νD−p−1 F µ1···µp+1

( p) .� (10)

Along with the previous definitions, we will also use the notation for the wedge product of 
any two forms

(A(r) ∧ B(q))µ1···µr ν1···νq =
( p + r)!

p!r!
A(r)[µ1···µr B(q)ν1···νq].� (11)

2.1.  Gauge invariance and minimal coupling to gravity

The field strength is endowed with symmetry under the redefinitions of the p -form

A( p)µ1···µp → A( p)µ1···µp + ∂[µ1ξ( p−1)µ2···µp],� (12)

being ξ( p−1)µ2...µp a ( p − 1)-form. This is the usual form to state that a model is gauge invari-
ant. It is important to mention that, as we said before, the derivatives in the gauge transforma-
tion before involves only ordinary derivatives and the quantity ξµ1···µp is an antisymmetric 
tensor. If we restrict our construction to gauge invariant terms, with only first order derivatives 
in the Lagrangian, the covariant version of this theory do not need to introduce non-minimal 
couplings to gravity. In theories with higher order derivatives, the covariant version for curved 
backgrounds requires the inclusion of non-minimal coupling terms in order to avoid that 
higher than two derivatives terms appearing in the equations of motion for both, the p -forms 
and the gravitational field. The general description to include non-minimal coupling terms for 
theories with second order derivatives in the Lagrangian is carefully described in [91]. As we 
restrict ourselves to first order derivatives, gauge invariant combinations in the Lagrangian, we 
will not need to care about non-minimal coupling with gravity.

2.2.  General procedure

The Lagrangian that we are going to formulate will be built out from the appropriate combina-
tions of the p -forms field strengths and their duals. To start with, in D-dimensions, we endow 
a p -form with dynamics via a term like

S( p) = −1
2

∫
F( p) ∧ �F( p) ≡ − 1

2( p + 1)!

∫
dDx

√
−gF2

( p),� (13)

where

F2
( p) ≡ F( p)µ1µ2...µp+1 F( p)

µ1µ2...µp+1 ,� (14)
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which is a generalization of the usual Maxwell term for the 1-form LM = − 1
4 FµνFµν. Now, 

we will consider couplings as

Lint ∝ fp(φ)F( p) ∧ �F( p),� (15)

where fp(φ) is a function of the scalar field only. We do not consider couplings of the form 
fp(φ, K) where K = ∂µφ∂

µφ, since, for the Aµ1 case, this leads to configurations in which the 
Hamiltonian of the theory is not bounded by below, which renders the theory unstable [94]. 
It is possible to find, however, regions in the parameter space, with appropriate initial condi-
tions, in which the theory behaves stably [95], but, on general grounds we will not consider 
such couplings here, neither contractions of p -forms with ∂µφ since this leads to non-causal 
equations of motion in the case of a 1-form [94]. Couplings like equation  (15) have been 
extensively studied in the literature in the context of inflationary physics [35–41, 44–47]. The 
main motivation for the introduction of those couplings is that they allow the possibility for 
the massless perturbations of the antisymmetric tensors to leave some imprint on the inflation-
ary correlators. It also has some impact on the dynamics of the inflationary curvature and ten-
sor perturbations. Without the coupling, the signatures of the p -forms would be totally washed 
out by the inflationary dynamics.

Aside of the quadratic term in equation (13), we shall also consider general mixing between 
p -forms of different rank. In D-dimensions we have the following general form to couple 
p -forms of different rank:

Lmixing = gp1p2···pr(φ)X( p1) ∧ · · · ∧ X( pr) = gp1p2···pr(φ)η
µ1···µD X( p1)µ1···µp1+1 · · ·X( pr)µpr+1···µD ,

� (16)
where gp1p2···pr(φ) as before, is a coupling function depending only of the scalar field, X( pi) 
can be either the field strength of a p -form or its Hodge dual, and the ranks of the p -forms 
involved in the product is such that ( p1 + 1) + · · ·+ ( pr + 1) = D, when only field strengths 
are involved, and ( p1 + 1) + · · ·+ D − ( pi + 1) · · ·+ ( pr + 1) = D if the Hodge dual of the 
p i-form is involved. It is straightforward to see that with the expression equation (16) we can 
write all the possible combinations of forms constructed as contractions of the field strengths 
with the appropriate number of indices in the covariant and contravariant factors. We could 
also include explicit couplings with the p -forms but we will exclude those couplings because 
they break the gauge symmetry reflected by equation (12). Nevertheless, there are some cou-
plings that include manifestly the p -forms and still retain the gauge symmetry. We will list this 
cases in the next subsection. Restricting to the field strengths, for instance, we can combine 
different p -forms in the following way:

F( p)F(n)F(m) ≡ F( p)µ1µ2...µp+1 F µ1µ2...µn+1

(n) F µn+2...µp+1

(m) ,� (17)

such that the condition p   =  n  +  m  +  1 holds. Indeed, we can contract a p -form with a number 
i of ni-forms satisfying

F( p)F(n1) · · ·F(ni) ≡ F( p)µ1µ2...µp+1 F
µ1µ2...µn1+1

(n1)
· · ·F µs...µp+1

(ni)
,� (18)

with p ≡ n1 + · · ·+ ni + i − 1. In an analogous way, including the Hodge duals, such that the 
rank fullfils p � D, we can also construct gauge invariant terms such as

F̃( p)F(n)F(m) ≡ F̃( p)µ1µ2...µD−( p+1)
F µ1µ2...µn+1

(n) F µ1µ2...µm+1

(m) ,� (19)

taking into account that D − ( p + 1) = n + m + 2 holds. And so on and so forth. It is clear 
that all the possible combinations strongly depend on the dimension of the spacetime and for 
this reason, such possibilities can only be listed when we are working on a specific dimension. 
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In the next section, we will focus on the four dimensional case and we describe with detail all 
the possibilities.

Finally, we add gravity to the system. As we said before, gauge invariance and the antisym-
metric structure of the p -forms avoids us from including non-minimal coupling terms, so, we 
can include gravity in a minimal way to the system by just adding tan Einstein–Hilbert like 
term in D dimensions in the Lagrangian:

S =

∫
dDx

√
ḡ

(
M̄D−2

p

2
R̄ + Lφ + Lp

)
,� (20)

where

Lp = −1
2

D−1∑
n=1

fn(φ)F(n) ∧ �F(n) +
∑

( p1p2···pr)

gp1p2···pr(φ)X( p1) ∧ · · · ∧ X( pr),

= −1
2

D−1∑
n=1

fn(φ)
(n + 1)!

F2
(n) +

∑
( p1p2···pr)

gp1p2···pr(φ)X( p1) ∧ · · · ∧ X( pr),

� (21)
where ( p1p2 · · · pr) is a shorthand notation to express all the possible combinations of field 
strengths and duals for a given dimension. ḡ, R̄ and M̄p are the determinant of the metric, the 
Ricci scalar and the Planck mass in D dimensions, respectively.

2.3. Topologic terms

The procedure that we outlined before allows us to include topological terms. Although such 
terms are not relevant for the dynamics of the system, they will play a non-trivial dynamical 
role when they couple to a scalar field. One of the most widely studied case in even dimen-
sions D = 2( p + 1) is the Chern–Pontryagin density or θ-term, which is written as:

SCP = −1
2

∫
F( p) ∧ F( p) with D = 2( p + 1).� (22)

According with the definition in equation (11), we have

SCP = − 1
2( p + 1)!

∫
dDx

√
−gF̃( p)µ1···µp+1 F( p)

µ1···µp+1 .� (23)

This theory is topological as it is manifestly independent of the metric, so, this particular term 
does not modify the structure of the gravitational field equations because its energy-momen-
tum tensor vanishes. Nevertheless, once it is coupled to a scalar field,

SφCP =

∫
g1(φ)F( p) ∧ F( p),� (24)

it becomes relevant for the dynamics of the scalar and the p -form field. In this case, it could 
leave an imprint on the gravitational field because of the scalar field coupling. This term has 
been extensively studied for the case of a vector field in the context of inflation [49–59], in 
particular, it has been used to provide a mechanism to seed chiral gravitational waves [51, 53, 
57].

At this point, we have to stress out that, with the procedure outlined before, by including 
couplings of the form (16), we have not considered other topological terms which are gauge 
invariant under the transformation given in equation (12). Depending on the dimensionality 
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of the spacetime, we can add two more terms to the list. For odd dimensions we have the 
Chern–Simons invariant [96]

SφCS =

∫
g2(φ)A( p) ∧ F( p), with D = 2p + 1,� (25)

which is only gauge invariant when the coupling g2 is a constant. For even dimensions, we 
have the so called BF-theories [97–100] which couples a p -form with the field strength of a 
( p − 1)-form. This theory is usually written in the following way

SφBF =

∫
g3(φ)A( p) ∧ F(D−p−1),� (26)

which, in the decoupled case, produces the equations  of motion dA(D−p−1) = dB( p) = 0, 
where d is the exterior derivative of the form εµ1µ2µ3µ4∂µ1. There exists another combination of 
the form A(D−p−1) ∧ F( p) but it is easy to see that, after integration by parts, this is equivalent 
to equation (26) and produces the same dynamics. The better studied case is the four dimen-
sional case, which couples a 2-form B(2) and the field strength of a 1-form F(1)

SφBF =

∫
g3(φ)B(2) ∧ F(1) =

∫
d4x

√
−gg3(φ)η

µ1···µ4 B(2)µ1µ2 F(1)µ1µ2 .

� (27)
Notice that when we couple the BF term with the scalar field, the action is not gauge invariant 
anymore under the transformations in equation (12). However, the theory is still symmetric 
under the next transformations:

A(1)µ → A(1)µ + ∂µξ and B(2)µν → B(2)µν +
1

g3(φ)
∂[µξν].� (28)

In the presence of terms like F(1) ∧ �F(1) and F(2) ∧ �F(2), the theory is not invariant under the 
previous transformation unless the coupling g3 is constant. Of course, all the previous quanti-
ties, although expressed for an Abelian symmetry group, can be extended straightforwardly 
for non-Abelian internal symmetry groups.

An interesting feature that we want to highlight here is the fact that some of the terms listed 
before break parity symmetry. As mentioned previously, in the context of inflation, the parity 
violating nature of equation  (24), have been exploited to source chiral gravitational waves 
and to study parity violating signals in the inflationary correlators [49, 51]. For instance, for 
the three point correlator, it was found in [52, 54] that the term in equation (24) is related to 
the presence of angular dependencies with odd multipole terms in the correlation functions. 
The idea that we want to promote here is that such parity violating features are generic from 
topological terms like the ones that we discussed in this section, and, in this way, the presence 
of parity violating signatures in the correlation functions can be related to global, topological 
features of the spacetime. In particular, we consider that BF-like models could be of potential 
interest for the discussion of chiral gravitational waves and parity odd signals in the statistical 
distribution of the inflationary perturbations. We expect to come back to this issues elsewhere.

3.  p -forms in four dimensions

In this section, we work in a four dimensional background. According to the discussion in 
the previous section, we will have three p -forms in this case. Following the definition of 
equation (4):

J P Beltrán Almeida et alClass. Quantum Grav. 37 (2020) 035001
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A(1) = A(1)µ1 dxµ1 , A(2) =
1
2

A(2)µ1µ2 dxµ1 ∧ dxµ2 , and A(3) =
1
6

A(3)µ1µ2µ3 dxµ1 ∧ dxµ2 ∧ dxµ3 .

� (29)
As we said before, in four dimensions the list stops here since the 4-form is proportional to the 
volume element, which is proportional to a cosmological constant term. Moreover, there is no 
associated field strength and consequently, this field is non dynamical and for this reason, we 
do not consider it here4.

Associated with them, from equation (7), we have the field strengths

F(1)µ1µ2 = 2∂[µ1 A(1)µ2], F(2)µ1µ2µ3 = 3∂[µ1 A(2)µ2µ3], and F(3)µ1µ2µ3µ4 = 4∂[µ1 A(3)µ2µ3µ4].� (30)
Besides, we also have the Hodge duals, which, according with equation (10), are:

F̃(1)µ1µ2 =

√
−g
2!

εµ1µ2µ3µ4 F(1)
µ3µ4 ,

� (31)

F̃(2)µ1 =

√
−g
3!

εµ1µ2µ3µ4 F(2)
µ2µ3µ4 ,

� (32)

F̃(3) =

√
−g
4!

εµ1µ2µ3µ4 F(3)
µ1µ2µ3µ4 .

� (33)
Then, we will construct the Lagrangian with the field strengths F(1), F(2) and F(3), their duals, 
and with A(1), A(2) and A(3) whenever gauge invariance is respected. This is, aside from the 
scalar field couplings, we have the following building blocks:

A(1)µ1 , A(2)µ1µ2 , A(3)µ1µ2µ3 , F(1)µ1µ2 , F̃(1)µ1µ2 , F(2)µ1µ2µ3 , F̃(2)µ1 , F(3)µ1µ2µ3µ4 , F̃(3),� (34)
and we will construct our Lagrangian as the various contractions build up from these, having 
always in mind that the presence of A(p ) terms is restricted by gauge invariance. First, let us 
write the Maxwell like terms F( p) ∧ �F( p), with the proper coefficients coming from the first 
term of equation (21). This is:

LM
p (φ, Ap) = − f1(φ)

4
F(1)µ1µ2 F(1)

µ1µ2 − f2(φ)
12

F(2)µ1µ2µ3 F(2)
µ1µ2µ3 − f3(φ)

48
F(3)µ1µ2µ3µ4 F(3)

µ1µ2µ3µ4 .
� (35)

Now, we formulate the mixing terms following the prescription in equation (16). The only 
possible contractions that we can form according to equation (16) are the following:

Lmixing
p (φ, Ap) = −g1(φ)

4
F(1)µ1µ2 F̃(1)

µ1µ2 − g2(φ)

2
A(2)µ1ν2 F̃(1)

µ1µ2 − g3(φ)F̃(3).
� (36)

Other possible cubic terms, mixed contractions (in the abelian case that we are dealing here 
with), are trivially zero due to antisymmetrization. Alternative combinations can be seen to be 
equivalent to the combinations already present in equations (35) and (36), as example:

F(3)
µ1µ2µ3µ4 F(1)µ1µ2 F(1)µ3µ4 ∝ F(1)µ1µ2 F̃(1)

µ1µ2 ,� (37)

F(3)
µ1µ2µ3µ4 F(1)µ1µ2 F̃(1)µ3µ4 ∝ F(1)µ1µ2 F(1)

µ1µ2 .� (38)

Combinations such as F(2)
µ1µ2µ3 F̃(2)µ1 F̃(1)µ2µ3 and F(2)

µ1µ2µ3 F̃(2)µ1 F(1)µ2µ3 that are appar-
ently nonvanishing, can be proved to be identically zero when we write them as in equa-
tion (16). This is:

4 Nevertheless, see [101] for an attempt to construct a model with a propagating degree of freedom out of a 4-form.
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F(2)
µ1µ2µ3 F̃(2)µ1 F̃(1)µ2µ3 ∝ ησµ1µ2µ3 F̃(2)σF̃(2)µ1 F̃(1)µ2µ3 = 0,� (39)

F(2)
µ1µ2µ3 F̃(2)µ1 F(1)µ2µ3 ∝ ησµ1µ2µ3 F̃(2)σF̃(2)µ1 F(1)µ2µ3 = 0,� (40)

where the last equality is a consequence of antisymmetrization over the indices σ,µ1.
The first term in equation (36), as discussed in section 2.3, is topological and parity violat-

ing. The second one, as we will see in section 3.1.1 can be absorbed in a parity conserving 

massive vector field model. Despite its appearance, the last term F̃(3) is not parity violating 
since it consists of two ε symbols contracted, one from the Hodge dual definition and the 
other one from the field strength 4-form. This term is not topological either and it has a non-
trivial contribution to the dynamics of the coupled system. To understand better the role of the 
3-form in the dynamics of the system, it is useful to isolate the part of the Lagrangian involv-
ing only the scalar and the 3-form:

LφA(3) = −1
2
∂µφ∂

µφ− V(φ)− f3(φ)
48

F2
(3) − g3(φ)F̃(3).� (41)

The structure of the action of the 3-form is very particular, and, as pointed out in [69–
72] (and more recently reviewed and generalized in [16]), in order to have well defined 
variation for general field configurations, it is necessary to add the boundary term 
∂µ1

[
(g3 − f3F̃(3))ε

µ1µ2µ3µ4 A(3)µ2µ3µ4/4!
√
−g

]
 to the action. So, the full action reads

LφA(3) = −1
2
∂µφ∂

µφ− V(φ)− f3(φ)
48

F2
(3) − g3(φ)F̃(3) + ∂µ1

[
(g3 − f3F̃(3))

εµ1µ2µ3µ4

4!
√
−g

A(3)µ2µ3µ4

]
.

� (42)
The equations of motion derived from the previous action are:

�φ− V,φ − f3,φ

48
F2
(3) −

g3,φ

24
εµ1µ2µ3µ4

√
−g

F(3)µ1µ2µ3µ4 = 0,� (43)

∇µ
[

f3F(3)µ1µ2µ3µ4 + g3
√
−gεµ1µ2µ3µ4

]
= 0,� (44)

where we use the notation V,φ ≡ dV/dφ. The equation of the 3-form can be integrated exactly 
by using the fact that F(3)µ1µ2µ3µ4 is proportional to the four dimensional volume element:

F(3)µ1µ2µ3µ4 = X(xµ)
√
−gεµ1µ2µ3µ4 ,� (45)

where X(xµ) is a scalar function. With this, we obtain the solution to equation (44):

X(xµ) =
c − g3(φ)

f3(φ)
,� (46)

where c is an integration constant. Using F2
(3) = −4!X2 and F̃(3) = −X, and substituting the 

solution (46) into the action (42) we obtain

LφA(3) = −1
2
∂µφ∂

µφ− V(φ)− (c − g3(φ))
2

2f3(φ)
.� (47)

From the previous equation we see that the 3-form was integrated out and it was absorbed as 
a potential term for the scalar field, generating an effective potential

Veff(φ) = V(φ) +
(c − g3(φ))

2

2f3(φ)
.� (48)
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It is straightforward to see that the equation of motion (43) coincides with the equation of 
motion derived from the effective Lagrangian (47). Interesting applications of this mechanism 
to dark energy in the string theory landscape and to chaotic inflation were considered in [75, 
76]. Models involving the mixing of multiple scalars with 3-forms were also studied in detail 
in [16, 29, 30, 80].

With the previous results we see that the role of the 3-form in the dynamics of the system 
is to contribute with an induced potential, so, the complete system of interacting p -forms is 
reduced to a system composed by a scalar field, a 1-form and a 2-form. The 3-form was inte-
grated out and absorbed by the scalar field. Thus, the complete Lagrangian for the p -forms is 
reduced to:

Lp(φ, Ap) = −1
2

2∑
n=1

fn(φ)
(n + 1)!

F2
(n) −

g1(φ)

4
F(1)µ1µ2 F̃(1)

µ1µ2 − g2(φ)

2
A(2)µ1ν2 F̃(1)

µ1µ2 ,
� (49)

where we used the shorthand notation for the Maxwell like terms equation (14).
Remarkably, although at first sight we could expect more available non-trivial mixing 

combinations, the list reduces to the terms shown in equation  (49). The only term which 
actually mixes p -forms of different rank is the B ∧ F term, which, as we pointed out before, 
preserves gauge invariance only when the coupling function g2 is a constant. The Lagrangian 
consists only of two dynamical and two topological terms. As we said before, including grav-
ity can be done in a minimal way by just adding the Einstein–Hilbert Lagrangian, so, the total 
Lagrangian for the coupled system, including the scalar field is

Sp =

∫
d4x

√
−gLT , LT =

(
M2

p

2
R + Lφ + Lp(φ, Ap)

)
.� (50)

Even if in this work we only deal with abelian gauge fields, all the arguments and pro-
cedures can be generalized straightforwardly to the case of non-Abelian gauge symmetry 
groups. Certainly, much more combinations will appear if we consider non-abelian groups or 
multiple p -forms of the same rank. As an example, in the presence of non-abelian group, cubic 
non-vanishing terms will appear, terms like

fabcF(a)
µαF(b)α

βF(c)βµ and fabcF(a)
µαF(b)α

βF̃(c)βµ,� (51)

where f abc are the structure constants of the gauge group and F(a)
µα = ∂[µA(a)

ν] + f a
bc

[
A(b)

µ , A(c)
ν

]
. 

Some four dimensional models have been considered in the recent literature in the context of 
inflation. For an extensive review of inflationary models with non-abelian symmetry groups, 

see [9, 11]. From those models, it is important to highlight the Gauge-flation model [102, 

103] which involves a dimension eight operator (Tr[F(a)
µν F̃(a)µν ])2 as the cause of the infla-

tionary expansion and the closely related one, the Chromo-natural inflation model [104], 
which involves a coupling between a scalar, inflaton field and a Chern–Pontryagin term 
φTr[F(a)

µν F̃(a)µν ]. Those models, on their original version, have serious challenges when con-
fronted with current CMB data [105], and in an attempt to correct the observational discrepan-
cies, massive versions of them have been proposed, so, we can find the massive Gauge-flation 
[106] and the Higgsed chromo-natural model [107], and in a more theoretical context, a gen-
eralized Proca model with non-abelian gauge groups [108]. Models including the presence of 
cubic terms like the ones in equation (51) and its relevance for gravitational leptogenesis and 
the production of chiral gravitational waves were considered in [109, 110]. The models listed 
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before and models related to them, have appealing phenomenological features and provide 
interesting connections with particle physics.

In the next subsection we will write the equations of motion and the energy-momentum 
tensor for the coupled system.

3.1.  Equations of motion and energy momentum tensor

For obtaining the energy-momentum tensor of the p -form Lagrangian equation (49), we take 
into account that the topological terms F(1) ∧ F(1) and A(2) ∧ F(1) do not contribute to the 
energy-momentum tensor as they are metric independent. The result from a direct calculation 
is

T( p)
αβ = − 2√

−g
δ(
√
−gLp)

δgαβ
,

=

2∑
n=1

fn(φ)
(n + 1)!

[
(n + 1)F(n)αµ2···µn+1 F(n)β

µ2···µn+1 − 1
2

gαβF2
(n)

]
,

= f1(φ)
(

F(1)αµ2 F(1)β
µ2 − 1

4
gαβF2

(1)

)
+ f2(φ)

(
1
2

F(2)αµ2µ3 F(2)β
µ2µ3 − 1

12
gαβF2

(2)

)
.

� (52)
Additionally, we have the energy momentum tensor for the scalar field

T(φ)
αβ = ∂αφ∂βφ− 1

2
gαβ∂σφ∂

σφ− gαβVeff(φ),� (53)

so, the Einstein equations are written as

Rαβ − 1
2

Rgαβ = 8πG
(

T(φ)
αβ + T( p)

αβ

)
,� (54)

where we split the metric variation of the Lagrangian in two parts: T(φ)
αβ  the energy-momentum 

tensor for the scalar field (equation (53)) and T( p)
αβ  the associated with the p -forms (equation 

(52)). We also set M−1
pl = 8πG.

The equations of motion of the scalar field and the p -form are obtained via variation of the 
Lagrangian with respect to φ, Ap

Eφ =
1√
−g

δ(
√
−gLT)

δφ
= 0, E( p)µ1···µp =

1√
−g

δ(
√
−gLp)

δA µ1µ2···µp

( p)

= 0.� (55)

Explicitly, we have, for the scalar field:

�φ− Veff,φ +

(
f1,φ

4
F2
(1) +

f2,φ

12
F2
(2) +

g1,φ

4
F(1) ∧ F(1)

)
= 0,� (56)

and for the p -forms

∇µ
(

f1(φ)F(1)µν + g1(φ)F̃(1)µν + g2Ã(2)µν
)
= 0,� (57)

∇µ
(

f2(φ)F(2)µνα
)
+

g2

2
F̃(1)να = 0.� (58)

These equations are supplemented with the Bianchi identities:

∇µF̃(1)µν = 0, ∇µF̃(2)µ = 0.� (59)
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Next, we will deal with each field in detail. For concrete reference, we will write the equa-
tions of motion for a Friedmann–Lemaître–Robertson–Walker (FLRW) solution in conformal 
time:

ds2 = a(τ)2 [−dτ 2 + dx2] .� (60)

3.1.1.  Equations for the coupled 1-form and 2-form system.  The previous system of equa-
tions describe an interesting interacting system when the coupling functions are different from 
zero, otherwise, all the p -forms evolve independently. For definiteness, we will introduce 
some simplifying assumptions. First of all, to untangle notation, in this and in the next sub-
section, we will use A for the 1-form, F for its field strength, B for the 2-form and H for its 
field strength, as it is commonly used in the literature (see for instance [93]). In order to retain 
gauge invariance in the coupled system, we have to demand that g2 is a constant coupling. 
Moreover, we will assume that aside of g2, all the coupling functions are only time dependent 
which is consistent with a homogeneous background. The e.o.m for the 1-form and for the 
2-form equations (57) and (58), can be written as

∇µ
(

f1(φ)Fµν + g1(φ)F̃µν + g2B̃µν

)
= 0,� (61)

∇µ ( f2(φ)Hµνα) +
g2

2
F̃να = 0.� (62)

And in the following, we describe the system in terms of the four dimensional components of 
the fields. To start with, we notice that the components A0, B0i are non dynamical as its time 
derivative do not appear in the Lagrangian, so, we will use the gauge freedom and set them to 
zero. Moreover, we will also use the gauge freedom to set a null divergence of the fields, this 
is ∂iAi = ∂iBij = ∂jBij = 0. In components, an using ∇µF̃µν = 0, in the first equation when 
ν = 0 we have

f1∂iFi0 =
1
2

g2ε0ijk∂iBjk,� (63)

which using the gauge choice A0 = 0 = ∂iAi = 0 we get

ε0ijk∂iBjk =
1
3
ε0ijkHijk = 0.� (64)

For the spacial components ν = i we get

∇µ
(

f1(φ)Fµi + g1(φ)F̃µi + g2B̃µi
)
= 0,� (65)

which, after using the gauge choice gives:

f1(∇2 − ∂2
τ )Ai − f ′1A′

i − g′
1ε0ijk∂jAk − g2∇0B̃0i = 0,� (66)

where we used, according with the gauge choice, that B̃ij = 0, and primes ′ denoting deriva-
tives with respect to conformal time. Using B̃0i =

1
2ε0ijkBjk we can write

−f1

[
A′′

i −∇2Ai +
f ′1
f1

A′
i +

g′1
f1
ε0ijk∂jAk

]
=

g2

2

[
∂τ − 2

a′

a

]
ε0ijkBjk.� (67)

On the other hand, we can write the equations for the 2-form as

∇ j ( f2(φ)Hj0i) +
g2

2
ε0ijk∂jAk = 0,� (68)
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∇µ ( f2(φ)Hµij)−
g2

4
ε0ijk∂0Ak = 0,� (69)

which in the Friedmann metric becomes

f2
a2 ∂jH0ij = −g2

2
ε0ijk∂jAk,� (70)

f2
a2

(
∂0H0ij − ∂kHkij +

(
f ′2
f2

− 2
a′

a

)
H0ij

)
= −g2

4
ε0ijk∂0Ak.� (71)

Using

H0ij = ∂0Bij + ∂iBj0 + ∂jB0i, Hijk = ∂iBjk + ∂jBki + ∂kBij,� (72)

and the gauge choice mentioned before B0i = ∂iBij = ∂jBij = 0, we obtain

f2
a2 ∂jB′

ij = −g2

2
ε0ijk∂jAk = 0,� (73)

f2
a2

(
B′′

ij −∇2Bij +

(
f ′2
f2

− 2
a′

a

)
B′

ij

)
= −g2

4
ε0ijkA′

k.� (74)

By doing g2  =  0 we obtain the uncoupled version of this system

A′′
i −∇2Ai +

f ′1
f1

A′
i +

g′1
f1
ε0ijk∂jAk = 0,� (75)

B′′
ij −∇2Bij +

(
f ′2
f2

− 2
a′

a

)
B′

ij = 0,� (76)

which (except by the parity violating term due to the coupling g1) has been studied in extent 
in [13, 93].

The equations (67), (73) and (74), define the dynamics of the coupled system in a Friedmann 
background. This is a system difficult to solve analytically and numerically, and depends on 
the particular details of the kinetic coupling functions. It is beyond the scope of this paper to 
enter into the concrete details of the solution of the coupled system as our main goal here is to 
describe the general features and possibilities that arise when a general mixing between arbi-
trary p -forms is allowed. Nevertheless, the coupled system involving the B ∧ F, has a great 
potential interest for cosmological applications due to the fact that it constitutes, as we will see 
next, an interesting mechanism for generation of mass due to the topological coupling in the 
context of inflationary physics, a mechanism which is different from the Higgs mechanism. 
We hope to come back to the study of the specific details of this system elsewhere.

To conclude this section, we comment on the mass generation mechanism that we men-
tioned before which is an interesting possibility offered by the coupled system equations (61) 
and (62). First, we notice that the 2-form equation (62) can be solved for Fµν as follows:

Fµν = − 1
3g2

∇[µf2(φ)H̃ν].� (77)

Defining the vector field:

Vµ ≡ f2(φ)
3g2

H̃µ,� (78)

and replacing in equation (61) we get
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∇µ

(
f1(φ)∇[µVν] +

g1(φ)

2
√
−gεµναβ∇[αVβ]

)
= m2(φ)Vν ,� (79)

where m2(φ) ≡ 3g2
2

2f2
 and where we used ∇µB̃µν = H̃ν/2. Equation (79) is the equation corre

sponding to a massive vector field derived from an action of the form

SV = −1
4

∫
d4x

√
−g

[
f1(φ)WµνWµν + g1(φ)WµνW̃µν + 2m2(φ)VµVµ

]
,

� (80)
with Wµν = ∇[µVν]. This action is not invariant under gauge transformations Vµ → Vµ + ∂µξ 
as the gauge symmetry is broken by the coupling f2(φ). Nevertheless, the theory is indeed 
invariant under the transformation H̃µ → H̃µ + ∂µξ. Actually, the action and the equations of 
motion can be formulated in terms of the 1-form Aµ by solving equation (77). By using equa-
tion (78), we see that equation (77) can be solved as Vµ = Aµ + ∂µv for a convenient v func-

tion. Using the gauge ∇ν∇µAµ = −m2

f1
∂νv we obtain

�Aν − RνµAµ +
∂µf1

f1
(∇µAν −∇νAµ) +

∂µg1

f1
ηµναβ∇αAβ − m2

f1
Aν = 0,

� (81)
which is the equation of motion of a Proca vector field with kinetic couplings in a curved 
background. This peculiarity of obtaining a massive theory from a massless gauge invariant 
theory through the introduction of a topological coupling term such as B ∧ F, is an example 
of the mechanism of ‘topological mass generation’ described in [111, 112]. Generalizations of 
the Proca model has been studied with interest in recent literature [113–117] and, although the 
mechanism described here differs from the construction developed in those studies by the fact 
that we keep gauge invariance of the fields, it would be interesting to study if some connection 
can be made with those models at certain limits. An appealing and interesting relation of these 
terms with the Julia–Toulouse mechanism in solid state physics [118] and the condensation of 
topological defects was also studied in [119]. We refer the interested reader to go through this 
reference for further details. It is worth mentioning that we can also extrapolate the consider-
ations followed here to the non-abelian case that we discussed before and obtain a non-abelian 
version of equation (80). Notice however, that here we have a mechanism different from the 
Higgs-like mechanism for the generation of a mass that was considered in the massive Gauge-
flation model [106] and the Higgsed chromo-natural inflation model [107] mentioned before.

We should also comment that the theory described by equation (80) is consistent with the 
gauge symmetries and the number of degrees of freedom in the theory described by equa-
tions (61) and (62). The theory described by a 1-form coupled to a 2-form consistent with 
gauge symmetry contains a total of 3 propagating degrees of freedom, two transverse polari-
zations for the 1-form and one degree of freedom for the 2-form. This is precisely the same 
number of degrees of freedom present in the model equation (80) which contains two trans-
verse and one longitudinal propagating polarization. Equivalently, we could think this theory 
in terms of a massive 2-form field with three propagating degrees of freedom.

3.1.2.  3-form.  We saw before that the 3-form can be integrated out and absorbed as a poten-
tial term of the scalar field. Nevertheless, it is instructive to analyze the time evolution of the 
3-form potential and discuss some of its particular features. To this end, let us recall equa-
tion (44) and the solution equation (46). From equation (45) we evaluate the component (0ijk)

F(3)0ijk =
√
−gX(xα)ε0ijk = ∂0A(3)ijk, or

√
−gX(xα) = ∂0A(3),� (82)
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where A(3) ≡ A(3)ijk . It is interesting to notice that the solution of this equation is invariant 
under the transformation A(3) → A(3) + b(xi) where b(xi) is an arbitrary time-independent 
function. This invariance reflects the gauge symmetry of the 3-form which manifests as a shift 
(space dependent) symmetry. For an arbitrary background, the solution of this equation is

A(3)(τ) =

∫
dτ ′

√
−g

(
c − g3(φ)

f3(φ)

)
.� (83)

For a Friedmann background, and assuming that the coupling functions depend only on the 
conformal time, the previous solution reads

A(3)(τ) =

∫
dτ ′a4(τ ′)

(
c − g3(τ

′)

f3(τ ′)

)
.� (84)

This solution is valid for any Friedmann cosmology and for any time dependence of the cou-
plings f3, g3. Given this result, we realize that, when coupled to a scalar field, the 3-form 
potential has a non-trivial time evolution depending on the particular form of the couplings 
f3, g3. As mentioned before, the 3-form is invariant under constant space dependent shifts of 
the form A(3) → A(3) + b(xi) which also reflects the fact that this field does not propagate in 
space, and it is not a true physical propagating degree of freedom. Furthermore, given that it 
only depends on time, the 3-form evolves in a homogeneous way and no statistical anisotro-
pies are seeded by this field.

To conclude, we comment about the energy-momentum tensor of the 3-form. The 3-form 
only enters in the energy-momentum tensor through the effective potential equations (48) in 
(53):

T(3)
αβ = − (Veff(φ)− V(φ)) gαβ = − (c − g3(φ))

2

2f3(φ)
gαβ ,� (85)

which is a cosmological constant term. In the decoupled case, the 3-form acts as a true constant 
term, but in the coupled case, the cosmological constant term acquires an evolving behaviour 
due to the coupling functions f3, g3 and mimics the effect of a cosmological constant with an 
exact equation of state (hereafter e.o.s.) parameter w(3)  =  −1. The evolution of this cosmo-
logical constant term depends on the specific coupling functions f3, g3. This feature makes the 
3-form useful for applications related to the inflationary period and the late time accelerated 
inflation of the universe. We discuss some application of this behaviour in section 4.

4.  Some simple applications to cosmological backgrounds

In this section we discuss some applications of cosmological interest (at background level) of 
the model presented here. We consider reduced versions of the model for simple choices of 
the couplings of the p -forms and the scalar field. Previous studies of the background evolution 
of a system involving a 1-form and a 2-form fields in the context of inflation, assuming an 
exponential form for the potential V(φ) and the kinetic coupling functions fi(φ), can be found 
in [13, 14, 17, 18, 48, 93]. Aside of these, others interesting applications of p -forms in the 
context of inflation and dark energy scenarios have been widely discussed in the recent litera-
ture (see e.g. [12, 15, 16, 18, 77, 79, 120–122]). In the following two subsections we employ 
dynamical system techniques in order to give statements about the evolution of the degrees of 
freedom and the physical parameters of the model [123].
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4.1.  Single scalar field with effective potential induced by a 3-form

Here we concentrate in the effect of the 3-form field, more precisely, in the induced effective 
potential obtained in equation (48). As we discussed before, the presence of 3-form is consis-
tent with an homogeneous and isotropic evolution, so, the background metric that we use here 
is the FLRW metric

ds2 = −dt2 + a2(t)dx2.� (86)
With this background metric, the Lagrangian equation (50) reduces to

LT =

[
3M2

Pl

(
ȧ2

a2 +
ä
a

)
+

1
2
φ̇2 − Veff(φ)

]
,

� (87)
and the e.o.m for the scalar field is

φ̈+ Veff,φ + 3Hφ̇ = 0,� (88)
where and overdot means derivative w.r.t cosmic time. Additionally, we will add an energy-
momentum for matter as a perfect fluid in the form

Tx
µν = (ρx + px)uµuν + pxgµν ,

� (89)
being uµ the 4-velocity of the fluid with uµuµ = −1, ρx the energy density and p x the pressure. 
In the following we consider two matter sources, pressureless cold dark matter and radiation 
with e.o.s. p m  =  0 and pr = ρr/3 respectively. With these definitions, the Friedmann equa-
tions coming from equation (54) reads

3M2
PlH

2 =
1
2
φ̇2 + Veff(φ) + ρm + ρr,� (90)

2M2
PlḢ = −

[
φ̇2 + ρm +

4
3
ρr

]
.� (91)

It is useful to define the energy density and pressure for each component, namely the scalar 
field and the 3-form. From the energy-momentum tensor of the scalar field equation (53), we 
can define as usual

ρφ =
1
2
φ̇2 + V(φ), pφ =

1
2
φ̇2 − V(φ), wφ =

pφ

ρφ
=

1
2 φ̇

2 − V(φ)
1
2 φ̇

2 + V(φ)
.

� (92)
While, from equation (85), we have

ρ(3) = −p(3) ≡
(c − g3(φ))

2

2f3(φ)
so w(3) ≡

p(3)

ρ(3)
= −1,� (93)

for the 3-form. Furthermore, we will assume f 3  >  0 to achieve a strictly positive energy den-
sity for the 3-form. Using the definition of equations (93) and (48), we split the contributions 
to the effective potential as

Veff(φ) = V(φ) + ρ(3),� (94)

and we define the dark energy density, the pressure and its equation of state as

ρDE =
φ̇2

2
+ V(φ) + ρ(3), pDE =

φ̇2

2
− V(φ)− ρ(3), wDE ≡ pDE

ρDE
.� (95)
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Now, to study the dynamics of this system, we define the variables

X =
1√

6Mpl

φ̇

H
, Y =

1√
3Mpl

√
V

H
, Ω(3) =

ρ(3)

3M2
plH2

, Ωr =
ρr

3M2
plH2

.

� (96)
The first Friedmann equation, equation  (90), can be written as a constraint in the density 

parameter Ωm ≡ ρm
3M2

plH
2  as

Ωm = 1 − ΩDE − Ωr, ΩDE ≡ X2 + Y2 +Ω(3).� (97)

To gain some insight in the physics, we also define the effective e.o.s. for the system as

weff ≡
pm + pr + pφ + p(3)

ρm + ρr + ρφ + ρ(3)
= wmΩm + wrΩr + wφΩφ + wpΩ(3) = −1 − 2

3
Ḣ
H2 ,

� (98)

where the ratio Ḣ/H2 can be computed from equations (90) and (91)

Ḣ
H2 = −1

2
(
3 + 3X2 − 3Y2 − 3Ω(3) +Ωr

)
.� (99)

Now, we notice from equation (88) that the evolution of the scalar field depends on the deriva-
tive of the effective potential Veff . Then, in order to solve the system in a closed way, we need 
to assume a particular form for the potential V(φ) and the coupling functions f3(φ) and g3(φ). 
Another possibility remains to leave the potential as an additional dynamical variable, but, 
we prefer here to choose a particular form for the potential and the couplings. For the sake of 
simplicity we use exponential functions for them

V(φ) ∝ e
−λ φ

Mpl , f3(φ) ∝ e
−β φ

Mpl , g3(φ) ∝ e
−γ φ

Mpl ,� (100)

where λ,β and γ  are constants. Further, we set the integration constant c in equation (93) to 
zero. With this setup, the energy density of the 3-form has a simple form:

ρ(3) =
e
(β−2γ) φ

Mpl

2
=

e
δ φ

Mpl

2
, δ ≡ β − 2γ,� (101)

where we also drop the proportionality constants in equation (100); the constant δ is introduced 
to simplify further calculatations. We emphasize in the fact that δ comes directly from the 
choice of the coupling functions, and its behaviour depends entirely on them. Differentiating 
w.r.t to N  each of these parameters, with dN = Hdt, and using equations (88) and (99), we 
find

X′ =
3
2

X
(

X2 − Y2 − 1 − Ω(3) +
Ωr

3

)
+

√
3
2
(
λY2 − δΩ(3)

)
,� (102)

Y ′ =
1
2

Y
(

3X2 − 3Y2 + 3 − 3Ω(3) +Ωr −
√

6λX
)

,� (103)

Ω′
(3) = Ω(3)

(
3X2 − 3Y2 + 3 − 3Ω(3) +Ωr −

√
6δX

)
,� (104)

Ω′
r = Ωr

(
3X2 − 3Y2 − 1 − 3Ω(3) +Ωr

)
.� (105)
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The critical points for the system, being the points in which dX
dN = dY

dN =
dΩ(3)

dN = dΩr
dN = 0, 

are presented in table 1. The dynamical system, equations (102)–(105), reveals the invariance 
under the transformation

Y �→ −Y , and Ω(3) �→ −Ω(3),� (106)

this was used in the construction of table 1, since also fixed points with negatives Y and Ω(3) 
appeared, but discarded by the previous invariance; in other words, it is enough to consider the 
dynamics for positive values of Y and Ω(3). From the exponential form of the potential and the 
coupling function, another simultaneous invariance is present

λ �→ −λ, and δ �→ −δ, and X �→ −X,� (107)

meaning that the system could be fully described assuming only λ > 0, and δ > 0.

4.1.1.  Stability of the fixed points.  The conditions of stability are related with the behavior of 
the system under small perturbations close to the fixed points [123, 124]. If we denote our set 
of critical points presented in table 1 as x0 = (X0, Y0,Ω(3) 0,Ωr 0) and consider small perturba-
tions around them, denoted as X = {δX, δY , δΩ(3), δΩr}, the linearized system (after perturb-
ing equations (102)–(104)), could be written as

X′ = MX,� (108)

being M a Jacobian matrix. The stability criteria refers to the relative signs of the eigenvalues 
for the Jacobian matrix M, evaluated at the fixed points. Denoting the eigenvalues by λi, and 
assuming them in general to be complex, the stability criteria can be summarized as

	(i) Stable point: The critical point x0 is a stable point if all the eigenvalues λi are real and 
negative.

	(ii) Unstable point: If the eigenvalues λi are real and positive, x0 is a unstable point.
	(iii) Saddle point:	Again, if the eigenvaues λi are real, and any of these λi is negative, x0 is a 

saddle point.
	(iv) Stable spiral:	if the eigenvalues λi are complex with negative real parts, the point x0 is 

called a stable spiral.

Table 1.  Critical points for the dynamical system defined in equations (102)–(105). We 
also show the expressions for the effective EoS weff and the total dark energy density 
parameter ΩDE.

Point X Y Ω(3) Ωr Ωm ΩDE weff

O 0 0 0 0 1 0 0

A± ± 1 0 0 0 0 1 1

B 0 0 0 1 0 0 1
3

C 2
√

6
3λ

2
√

3
3λ

0 1 − 4
λ2

0 4
λ2

1
3

D 0
√
δ√

δ+λ

λ
δ+λ

0 0 1 −1

E
√

6
2λ

√
6

2λ
0 0 1 − 3

λ2
3
λ2

0

F λ√
6

√
1 − λ2

6
0 0 0 1 λ2−3

3

G
√

6δ
2(δ2−3)

0
− 3(δ2−6)

2(δ2−3)2

0 1 − 9
(δ2−3)2

9
(δ2−3)2

3
δ2−3

H 2
√

6
3δ

0 − 4
3δ2 1 − 12

δ2
32
3δ2

4
3δ2

1
3
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Applying these criteria we found general statements for the behaviour of the critcal points of 
table 1.

	 •	�Point O: This is the origin of the phase space. Since ΩDE = 0, this point corresponds to a 
matter dominated universe with Ωm = 1. The eigenvalues for this point are 

{
3,− 3

2 , 3
2 ,−1

}
, 

corresponding thus to a saddle point. Since the kinetic and potential energy of the scalar 
field and the coupled 3-form are zero, this point has no physical importance.

	 •	�Points A±: In these two points the universe is dominated by the scalar field kinetic energy 
in which weff = 1 corresponding to stiff matter, with no acceleration. The eigenvalues are

{
3, 2, 6 ∓

√
6δ, 3 ∓

√
6

2
λ

}
.� (109)

		 Thus, they never are stable points. They are unstable if δ <
√

6 (β < 2γ +
√

6), λ <
√

6, 
and δ > −

√
6  (β > 2γ −

√
6), λ > −

√
6  for A+ and A−, respectively. Similarly, A+ 

is a saddle point if δ >
√

6 (β > 2γ +
√

6) or λ >
√

6, while A− becomes saddle for 
δ < −

√
6  (β < 2γ −

√
6), or λ < −

√
6 . For current observations of accelerated expan-

sion, a stiff matter fluid is not relevant, and only have importance at early times.
	 •	�Point B: This point matches a pure raditation dominance. The eigenvalues are {4, 2,−1, 1}, 

corresponding to a saddle point.
	 •	�Point C: This point corresponds also a radiation dominance with ΩDE = 4

λ2 . From big 
bang nucleosynthesis (BBN) bounds [125, 126], we have ΩDE < 0.045 translating into 
λ > 9.2. The eigenvalues read

{
1, 4 − 4δ

λ
,−1

2
±

√
64 − 15λ2

2λ

}
,� (110)

		 which under the previous bound give rise to a saddle point.
	 •	�Point D: Dark energy dominated point. This point provides accelerated expansion 

(weff = −1) with ΩDE = 1. For the existence of this point we should set λ > 0 and δ > 0 
(β > 2γ). The eigenvalues are

{
−4,−3,−3

2
±

√
3
√
(δ + λ) (3λ+ δ(3 + 4λ(δ − λ)))

2(δ + λ)

}
.� (111)

		 Under the bound λ > 9.2, three of the eigenvalues are negative and one is positive, 
becoming a saddle point.

	 •	�Point E: This point corresponds to a matter dominated point with weff = 0, and ΩDE = 3
λ2 . 

Under the CMB bound for the dark energy density parameter ΩDE < 0.02 [127], we restrict 
λ to be λ > 12. The eigenvalues are

{
−1, 3 − 3δ

λ
,−3

4
± 3

√
24 − 7λ2

4λ

}
.� (112)

		 Under the previous bound for λ this point becomes saddle.
	 •	�Point F : This point could give cosmic acceleration with weff < − 1

3, translating into 
λ2 < 2. From table 1 this point exists for λ2 < 6. The eigenvalues are

{
λ(λ− δ),

1
2
(
λ2 − 6

)
,λ2 − 4,λ2 − 3

}
.� (113)
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		 It could be stable if λ2 < 3 with two options depending the sign of δ: if δ > 0, 0 < λ < δ, 
otherwise δ < λ < 0.

	 •	�Point G : This point could give cosmic acceleration with ΩDE = 9
(δ2−3)2  and exists for 

δ �= ±
√

3 . From the BBN bound ΩDE = 0.045 we have δ = ±4.14. The eigenvalues are
{

3
4
± W,

9
δ2 − 3

− 1,
3δ(δ − λ)

2 (δ2 − 3)

}
,� (114)

		 being

W =

√
− (7δ2 − 48) δ2

(δ2 − 3)2 +
9

δ2 − 3
− 1.� (115)

		 The function W has two asymptotes in δ = ±
√

3 , and inside this range becomes 

negative. For δ < −4
√

3
7  or δ > 4

√
3
7  the term inside the radical is negative and the 

whole function is complex; in addition we have the limiting value of −1 + i
√

7 for 

W when δ → ±∞. Thus, the first eigenvalue (3
4 + W ) is negative when δ ranges the 

interval (−
√

3,
√

3), while the second eigenvalue (3
4 − W ) is negative in the interval 

[−4
√

3/7,−
√

3) ∪ (
√

3, 4
√

3/7]. The third eigenvalue is positive inside δ ∈ (−
√

3,
√

3). 
Finally, for λ > 0 there are three options for the fourth eigenvalue to be negative: for 
λ ∈ (0,

√
3), δ ∈ (−

√
3, 0) or δ ∈ (λ,

√
3), for λ =

√
3, δ ∈ (−

√
3, 0), and for λ >

√
3, 

δ ∈ (−
√

3, 0) or δ ∈ (
√

3,λ).
	 •	�Point H: This point corresponds to radiation domination with Ωr = 1 − 12

δ2 . The eigen-
values are

{
1 − Z2/3

3
√

Z
,

Z2/3 − 1 ± i
√

3(Z2/3 + 1)
2 3
√

Z
, 2 − 2λ

δ

}
,� (116)

		 with

Z =
24
δ2 +

√
5 − 96 (δ2 − 6)

δ4 − 2.� (117)

		 We check numerically the behaviour of Z in function of δ. Besides the asymptotic nature 
at δ = 0, Z never gets negative values. In fact, the asymptotic value of −2 +

√
5  is reached 

when δ → ±∞. For Z  >  0, the first eigenvalue is always negative, while is positive for 
Z ranging [0, 1]; conversely, the real part of the two complex eigenvalues is positive for 
Z  >  1, and negative for Z ∈ [0, 1]. Finally, the third eigenvalue is positive for δ > 0 or 
δ > λ being λ positive, while is negative with δ ranging [0, 1] assuming λ > 0.

The tipical viable cosmological dynamics corresponds to a transition between a radia-
tion epoch (weff � 1

3 ,Ωr � 1) to a matter dominated epoch (weff � 0,Ωm � 1), and finally an 
accelerated expansion epoch (weff � − 1

3 ,ΩDE � 1). Such transition can be made as

Radiation︷ ︸︸ ︷
{B, C,H} −→

Matter︷ ︸︸ ︷
{O, E} −→

Dark Energy︷ ︸︸ ︷
{D,F ,G} .

� (118)

For the radiation domination we observe that point H can not realize Ωr � 1, except for 
δ → ∞, implying an unbounded energy density for the 3-form. Moreover, the point B has 
more positive eigenvalues than point C, this suggest that the solutions approach the saddle 
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point C during the radiation era. The matter domination can be realized by point E, noticing 
that point O has two negative eigenvalues while E has one negative, and two complex eigen-
values with negative real parts when the CMB bound (λ > 12) is considered. Finally, for the 
CMB bound for λ the point F  can not realize the accelerated expansion due to the existence 
condition λ2 < 6; under the BBN δ = ±4.14 the point G  has two negative eigenvalues and 
two complex eigenvalues with positive real parts, nevertheless, point D under this bounds 
has two complex numbers with negative real parts, and two negative eigenvalues, becoming 
a stable spiral. In summary, we can produce a viable cosmological evolution by the sequence

Radiation︷︸︸︷
C −→

Matter︷︸︸︷
E −→

Dark Energy︷︸︸︷
D .

� (119)

From the definitions of the critical points C and E, we realize that the transition from radia-
tion to matter dominance can be made without the existence of the 3-form, i.e. only with the 
quintessence field φ. The 3-form induced potential is only relevant for the dark energy domi-
nated epoch.

4.2.  Anisotropic dark energy: coupled 1-form with a scalar field

In this section, we briefly discuss some aspects of a model for dark energy built with a 1-form 
coupled to a scalar field. The particular model that we will study is described by the action

S =

∫
d4x

√
−g

(
M2

p

2
R + L(1) + Lφ + Lx

)
,� (120)

where

L(1) = −1
4

f1(φ)F(1)µνFµν
(1).� (121)

Lφ is give by equation (3) and Lx  stands for the perfect fluid of matter and/or radiation. This 
model has some interest since it can be responsible for a late time anisotropic accelerated 
expansion. It was previously studied in [48], but adding an explicit coupling between matter 
and the scalar field. In this reference, the authors use the dynamical system approach to show 
that the kinetic coupling can produce anisotropic scaling solutions which can be interpreted 
as a matter and dark energy dominated epochs. For this reason, in this section we only focus 
on the kinetic coupling to call the attention of a particular behaviour of the equation of state 
that was not mentioned in [48], and that is interesting from the observational point of view.

We will use the gauge freedom A0 = ∂iAi = 0, to choose the vector field along the x direc-
tion A(1) = A1(t)dx. Due to the rotational symmetry in the yz plane we will use a Bianchi I 
metric:

ds2 = −dt2 + e2α(t)
[
e−4σ(t)dx2 + e2σ(t)(dy2 + dz2)

]
,� (122)

being eα ≡ a with a the scale factor, and σ the spatial shear. In this configuration and from 
equation (57), the e.o.m. for the field A1µ1 leads to

Ä1 +

[
2

f ′1
f1
φ̇+ α̇+ 4σ̇

]
Ȧ1 = 0, =⇒ Ȧ1 = p̃1f1(φ)−2e−α−4σ,� (123)

being p̃1 an integration constant. Friedmann equations and the e.o.m for the scalar field can 
be written as
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α̇2 = σ̇2 +
1

3M2
pl

[
ρm + ρr +

1
2
φ̇2 + V(φ) + ρ(1)

]
,� (124)

α̈ = −3α̇2 +
1

M2
pl

[
ρm

2
+

ρr

3
+ V(φ) +

1
3
ρ(1)

]
,� (125)

σ̈ = −3α̇σ̇ +
2

3M2
pl
ρ(1),� (126)

φ̈ = −3α̇φ̇− V,φ + 2
f1,φ

f1
ρ(1),� (127)

where we have defined the energy density of the 1-form field as

ρ(1) =
f 2
1

2
e−2α+4σȦ2

1.� (128)

By using the parameters defined in equation (96) and two more related to the anisotropy and 
energy density of the 1-form:

Σ =
σ̇

H
, Ω(1) =

ρ(1)

3H2M2
pl

.� (129)

As in the previous subsection, we can define the following set of quantities

ΩDE = X2 + Y2 +Σ2 +Ω(1),� (130)

ρDE =
φ̇

2
+ V(φ) + ρ(1) + 3M2

plH
2Σ2, pDE =

φ̇

2
− V(φ) +

ρ(1)

3
+ 3M2

plH
2Σ2,

� (131)

wDE ≡ pDE

ρDE
=

3(X2 − Y2 +Σ2) + Ω(1)

3(X2 + Y2 +Σ2 +Ω(1))
,� (132)

where ρDE, pDE, ΩDE and wDE are the energy density, the pressure, the density parameter and 
the equation of state related to dark energy component, respectively. The effective equation of 
state weff has a simple form:

weff = X2 − Y2 +Σ2 +
Ω(1)

3
+

Ωr

3
.� (133)

Again, we fix the potential and the coupling f 1 with exponential forms as in equation (100):

V(φ) ∝ e
−λ φ

Mpl , f1(φ) ∝ e
−µ φ

Mpl .� (134)

With the previous definitions the equations (123)–(126) can be converted like an autonomous 
system as

X′ =
3
2

X
(

X2 − Y2 +Σ2 − 1 +
Ω(1)

3
+

Ωr

3

)
+

√
6

2
(λY2 − 2µΩ(1)),� (135)

Y ′ =
1
2

Y
(

3X2 − 3Y2 + 3Σ2 + 3 +Ω(1) +Ωr −
√

6λX
)

,� (136)
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Σ′ =
1
2
Σ
(
3X2 − 3Y2 + 3Σ2 − 3 +Ω(1) +Ωr

)
+ 2Ω1,� (137)

Ω′
(1) = Ω(1)

(
3X2 − 3Y2 + 3Σ2 + 4Σ− 1 + 2

√
6µX +Ω(1) +Ωr

)
,� (138)

Ω′
r = Ωr

(
3X2 − 3Y2 + 3Σ2 − 1 +Ω(1) +Ωr

)
.� (139)

The previous set of equations allow us to fully describe the background evolution of the 
universe characterised by this model, from the analysis of the dynamical system, as we made 
in section 4.1, or by direct numerical integration of the variables. Since our ultimate goal is to 
illustrate the applications of the coupled p -forms formalism, without rigurous treatment, we 
decide here to implement the second choice. By fixing the couplings constants to be λ = 2 
and µ = 100, we integrate the whole system equations (135)–(139) with suitable initial con-
ditions. In figure  1(a) we show the evolution of the density parameters and the e.o.s. for 
dark energy. We clearly see a well-behave cosmological dynamics, starting from a radiation- 
dominated epoch, followed by a matter-dominated era around the redshift z � 2200, and after-
wards a dark energy-dominated epoch in which the dark energy density ΩDE start to deviate 
from zero around z � 8. The shear Σ, which measure the degree of anisotropy, has interesting 
features. We check numerically that even if it starts from a null value, it gained shear in two 
stages: first it decreases from a value of �10−5 at z � 107 until a minimum value of order 10−8 
at around z � 1, and then increases until a value of 0.1 today. Thus, starting from a nearly iso-
tropic configuration, the system acquires anisotropy through time. In addition, an interesting 
feature of this model, that was not mentioned in [48], appears: the dark energy e.o.s. acquires 
a value around  −1 close to z � 100, but present an oscillating behaviour over z � 3 to finally 
reached again the value  −1 close to the present time. This characteristic represents an inter-
esting observational signature for distinguishing this scenario from other dark energy models, 
since one of the current observational interest is to reconstruct the temporal evolution of the 
equation of state of dark energy. In this sense, we expect that future surveys like Euclid [128] 
can elucidate if models like the one present here are viable or not. In figure 1(b) we present 
the evolution of the dark energy e.o.s for different values of the coupling µ. We can observe 
that the amplitude of the oscillations of wDE strongly depend on the value of µ, in particular 
if µ ∼ 102 then wDE approaches to  −1 at present time, as expected. We plan to make a full 
analysis for the cosmogical dynamics of coupled p -form system in a forthcoming publication.

Before concluding this section, it is worth to mention the possible impact of this scenario 
in current issues such as the so called H0 tension. This tension appears when comparing the 
value of the Hubble rate today from local distance indicators or low redshift (distance ladder 
method) and high redshift (CMB) observations from the Planck survey; even both methods 
give precision measurements, they have a significant statistical discrepancy of around 3.3σ  
[129]. Besides possible explanations coming from statistical analysis and problems when 
modeling, for instance, the astrophysics behind the supernovae events, models beyond the flat 
ΛCDM paradigm had been considered to aliviate this discrepancy [130–135]. Most of them 
use contributions from the dark sector in the form of a dynamical equation of state for dark 
energy. Since our model reveals an oscillatory behavior as shown in figure 1(b), it could be 
interesting if, with a proper statistical analysis using current data, we could give some hints in 
the discussion on this tension. We expect to come back to this issues in a future work.
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4.3.  A comment on topologic terms and parity breaking signatures

As we realized in section 3.1.1, the system involving a general coupling between the 1-form 
and the 2-form can be expressed as a model of a massive vector field with kinetic couplings as 
in equation (80). Aside of this, we also saw in section 3.1.2 that the 3-form, when gauge invari-
ance is respected, evolves homogeneously only as a function of time and do not contribute to 
the sourcing of statistical anisotropies. This implies that the possible cosmological signatures 
of the model involving all the possible coupling between the p -forms are equivalent to the 
signatures of a massive vector field model. There is a great body of literature about about 
cosmological signatures of vector field models, an incomplete list of references on the subject 
include [32, 34–47] for parity conserving vector field models; [49–59] for parity violating 
vector field models and [13, 14, 17] for 2-forms models.

As evidenced by the previous list of references, the issue of the statistical anisotropies and 
parity breaking signatures in vector fields and 2-form field models with kinetic couplings have 
been explored in great detail in recent literature, and there is nothing really new more to say 
about this subject here. Nevertheless, one aspect that we would like to mention here is the 
fact that parity violating signatures, in the presence of p -forms, appears always as topological 
terms. In the four-dimensional case that we considered here, the only topological term which 
plays a decisive role in the dynamics of the system is F(1) ∧ F(1). This term is responsible for 
the breaking of parity in the transverse polarizations of the vector field [49–59]. Some striking 
features of this model is the production of chiral gravitational waves [49, 51] and the presence 

Figure 1.  (a) Evolution of ΩDE, Ωr , Ωm, wDE, weff versus z + 1 (= 1/a) for λ = 2 and 
µ = 100 with the initial conditions X  =  10−13, Y  =  10−14, Σ = 0, Ω(1) = 10−5, and 
Ωr = 0.999 96 at the redshift z = 7.9 × 107. The present epoch (z  =  0) is identified 
by ΩDE = 0.68. (b) Evolution of wDE versus z  +  1 for λ = 2 with the same initial 
values of X, Y, Σ, and Ω(1), as those in figure (a). Each line corresponds to (A) µ = 5, 
(B) µ = 10, (C) µ = 30, and (D) µ = 100. The initial conditions of radiation density 
parameter are chosen to be (A) Ωr = 0.999 94 at z = 5.5 × 107, (B) Ωr = 0.999 951 
at z = 6.5 × 107, (C) Ωr = 0.999 96 at z = 7.9 × 107, and (D) Ωr = 0.999 961 at 
z = 8.3 × 107, respectively, to realize the value Ωr(z = 0) � 10−4.
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of odd terms in the multipolar expansion of the inflationary correlators such as the bispectrum 
of primordial curvature perturbations [54], among others.

If the features mentioned before, turns out to be measurable by near term future missions, 
this could be seen as signatures of either topological defects, similar to topological defects in 
a continuous medium [118] during the inflationary expansion, or as global topological charac-
teristics of the background spacetime during the inflationary era.

5.  Conclusions

In this paper we provided a general construction of a Lagrangian based on coupled p -forms 
in D dimensions. Assuming as building blocks the p -forms, their field strength and their 
duals, we wrote down the general expression of the Lagrangian including general mixtures 
of the p -forms. Under the assumption of a Lagrangian based solely on first derivatives of the 
p -forms, and providing as well gauge invariance, the construction, of course, becomes much 
more simpler, but not trivial, in comparison with the case of generalized p -forms Galileons, 
since no extra couplings with curvature are invoked.

We specialized to the case of a four dimensional space-time, and besides the standard 
1-form, its dual and the 2-form, we allow the Lagrangian to have a contribution from the 
3-form. In addition to the general result which implies that the field strength of the 3-form acts 
as a cosmological constant, we provide an expression for the energy momentum-tensor, prob-
ing effectively that this component has an equation of state w(3)  =  −1. We see how the 3-form 
is absorbed in an effective potential for the scalar field and how it contributes to the dynamics 
of the system. In this sense, the 3-form-scalar field system offers an interesting approach to the 
inflationary problem, and also to the current accelerated expansion of the universe. We discuss 
as well the importance of topological terms, which are the seeds for parity violating signatures 
in the statistical correlators. Working in four dimensions, we show that the system composed 
by interacting p -forms is equivalent, under a particular parametrization of the coupling scalar 
functions, to a massive, parity violating vector field Lagrangian, giving thus an alternative 
mechanism to mass generation consistent with gauge symmetry.

Next, we provided some applications to cosmological backgrounds. We studied a very 
minimalistic system composed by a scalar field and a 3-form. We isolated the analysis of the 
3-form due to its relevance in the context of an accelerated expansion driven by dark energy 
or a cosmological constant. We considered the late time evolution of this system in the pres-
ence of a perfect fluid with matter and radiation components, examined the dynamics and its 
critical points and their stability. We also analized, at the background level, the signatures 
of an anisotropic source such as a 1-form field in the late time evolution of the universe. We 
plan to include the information of all the coupled p -form interacting system in a forthcoming 
publication.

Finally, we made some general statements about the signatures of p -forms in the correla-
tion functions. As expenses of a homogeneous evolution in time of the 3-form, no statistical 
anisotropies are generated by this degree. In fact, all possible signatures of parity violation 

rely in the topological terms F ∧ F of the 1-form. Despite their appearance, the terms F̃(3) and 
B ∧ F, do not introduce further parity violating signatures. Due to the vast literature concern-
ing statistical anisotropies with single 1-forms, no more studies in this paper were made in 
this direction. Nevertheless, the statistical signatures in the system of coupled 1- and 2-forms 
was not studied in detail in the literature and we expect to come back to study these subject 
elsewhere.
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