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1.  Introduction

The one-electron spectral function is a key ingredient in the 
understanding of interacting and of disordered electronic 
systems. It can be thought of as the energy distribution of a 
state of momentum k, ρ(k, E). In a non-interacting translation 
invariant system it is simply a Dirac delta function of energy, 
peaked at the single particle energy Ek.

The spectral function has been the subject of intense study 
in correlated electronic systems, because it bears clear sig-
natures of the low-energy phases of interacting electron sys-
tems, whether it be a Fermi liquid [2, 3], a marginal Fermi 
liquid as in high Tc cuprates [1], or a one-dimensional (1D) 
Tomonaga–Luttinger liquid, with charge-spin separation [8]. 
Moreover, it is experimentally accessible by angle-resolved 
photo-emission spectroscopy [5, 12].

Random disorder can introduce a finite width on the spec-
tral function, averaged over disorder realizations, even in the 
absence of interactions. The more common approaches to its 

calculation rely on the Born approximation for the decay rate 
of a momentum state due to scattering by the disordered poten-
tial. They implicitly (or explicitly) assume that the disordered 
potential is a weak perturbation to the kinetic or band energy 
terms of the Hamiltonian, and generally lead to a Lorentzian 
line shape for ρ(k, E). One does not need strong disorder to 
ensure localization in 1D or 2D, and in weak localization this 
approach to the one particle spectral function is quite suffi-
cient [16].

The concept of spectral function, however, is not confined 
to weak disorder. Very efficient numerical methods are able 
to compute ρ(k, E) for any strength of disorder [26]. Trappe, 
Delande and Muller [23] studied a continuum model with cor-
related disorder and argued that when the root mean square of 
the local random potential far exceeds the kinetic energy scale, 
Eξ = �2/2mξ2 (where ξ is the spatial correlation length of the 
disorder), the non-commutativity of position and momentum 
can be ignored, and a classical limit is achieved, in which 
the spectral function portrays the probability distribution of 
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the random potential. The coherent potential approximation, 
a well-known approximation to treat disorder problems  
[21, 24], which in its original formulation cannot account for 
spatially correlated disorder, has been generalized to treat spa-
tially correlated disorder [27] and can also go beyond pertur-
bation theory, reproducing the classical limit results for strong 
disorder.

The exquisite control that has become available in ultra-
cold atom experiments has renewed interest in the exper
imental study of disordered potentials, free of the complication 
of interactions, always present in electronic systems. Atomic 
clouds can be transferred into a random potential created by 
laser speckle and several experiments have been made on 
Anderson localization [10, 13, 15], included a measurement 
of the dependence of the mobility edge with the strength of the 
disordered potential [19].

The random potential implemented in ultra-cold atom 
experiments is correlated in space, in contrast with the 
standard Anderson model of site disorder. Disorder correla-
tion studies of Anderson localization have been carried out for 
several decades now [11]. Significant results were obtained 
in 1D, where it was found that extended states can exist at 
discrete energies in short-range correlated models [7] and that 
a mobility edge appears in models with power-law decay of 
spatial correlation of the random potential [6, 9].

Quite recently, a direct measurement of the one-particle 
spectral function in an ultra-cold atom experiment was 
reported [25]. By varying the intensity of the random poten-
tial, one observes a change from a perturbative Lorentzian 
shape, to an asymmetric line shape, that reflects the prob-
ability distribution of the random potential.

Our focus in this paper is also on the spectral function 
in 1D tight-binding models with correlated disorder. Unlike 
the continuum case, band models have an intrinsic kinetic 
energy scale given by the bandwidth. It is relevant to consider 
whether the classical limit can be reached even when disorder 
is weak, in the sense that the mean free path is much larger 
than the lattice spacing. When the disorder correlation length 
is much larger than the unit cell, scattering becomes local in 
momentum-space and we explore this feature to show analyti-
cally how the classical limit emerges. Moreover, we also study 
the interesting case of disorder correlations that decay as a 
power-law, with a characteristic power spectrum S (k) ∼ 1/kα 
[6]. This type of disorder has an infinite correlation length, 
and would appear to be always in the classical limit. Instead, 
we find that this limit for the averaged spectral function 
requires that α > 1, when the scattering really becomes local 
in momentum space. Our analytical results are confirmed by 
numerical calculations.

Localization properties have been studied for these power-
law spectrum disorder models. While in the Anderson and 
other short-range correlated models, all states are localized 
in 1D, for these power-law spectrum models it has been 
claimed that a mobility edge appears for α � 2 [6]. This con-
clusion has been contested, on the grounds that in the ther-
modynamic limit this potential is not really disordered [17]. 
To investigate possible issues with the thermodynamic limit 
for these models, we investigated the statistical properties of 

the spectral function for different sized chains. We did find a 
transition from self-averaging to non self-averaging behavior 
at α = 1. The spectral function of even a very a large system 
will depend on the specific realization of disorder it carries. It 
is significant, however, that this transition occurs well below 
the value of α = 2. The spectral function remains non self-
averaging beyond α = 2, which makes it hard to argue that 
the potential is not really disordered.

The rest of this paper is organized as follows. In the next 
section, we start by defining our basic tight-binding model. 
Randomness is introduced in the site energies, and is charac-
terized by its Fourier components, which have a prescribed 
magnitude, but randomly distributed independent phases. We 
then briefly review the Kernel polynomial method (KPM) as 
a tool for the numerical calculation of the spectral function. 
In section 3, we present our numerical results for ρ (k, E), and 
confirm our main findings by analytical calculations done in 
section 4. Additionally, some numerical results for the fluc-
tuations of ρ(k, E) and its self-averaging properties are also 
discussed. Finally, in section 5 we sum up our conclusions.

2. The disorder model and the Kernel polynomial 
method

2.1. The disorder model

The Hamiltonian we use is an 1D tight-binding model with 
nearest neighbor hopping and random site energies,

H =

L−1∑
m=0

εm|ϕm〉〈ϕm| − t

[
L−1∑
m=0

|ϕm+1〉〈ϕm|+ |ϕm〉〈ϕm+1|

]

� (1)
where {|ϕm〉; m = 0, . . . , L − 1} are the local Wannier states. 
In what follows, we impose periodic boundary conditions by 
setting |ϕm〉 = |ϕm+N〉, the lattice parameter a is taken as 1, 
and all energies are measured in units of the hopping t (i.e. 
t  =  1).

If there were no disorder, the exact eigenstates of the pre-
vious Hamiltonian would be the Bloch states, defined as

|k〉 = 1√
L

L−1∑
m=0

eikm|ϕm〉.� (2)

The presence of static disorder causes scattering of 
|k〉 → |k + q〉, characterized by the matrix elements of the 
random potential V :=

∑
m εm|ϕm〉〈ϕm| that connect two 

Bloch states, i.e.

〈k + q|V|k〉 = 1
L

∑
m

εme−iqm,� (3)

seen here to depend only on the transferred momentum q. We 
easily invert equation (3) to express the local energies as the 
Fourier sum

εm =
∑

q

〈k + q|V|k〉eiqm.� (4)

For the purposes of this paper, we choose to model the ran-
domness by taking these matrix elements as
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〈k + q|V|k〉 = V(q)eiφq ,� (5)

where V(q) := |〈k + q|V|k〉| is a specified even function of q 
and φq is a random phase with a uniform probability distribu-
tion in the circle [0, 2π[. The different phases are independent 
variables except for the constraints φq = −φ−q, which ensure 
the hermiticity of the Hamiltonian. With these definitions, the 

mean of the site energies is εm =
∑

q V(q)eiφq eiqm = V(0), 
since the condition φq = −φ−q fixes φ0 = 0 and the individual 
phase averages are zero otherwise, eiφq = δq,0. As εm  merely 
shifts the spectrum, we will always choose εm = 0, meaning 
that V(0) = 0.

In general, the values of the energies in different sites will 
be correlated in this model of disorder. The two-site covari-
ance of the potential can be written as

εnεm =
∑

q,q′ �=0

V(q)V(q′)eiφq′ eiφq ei(qm+q′n),� (6)

where all the phase averages factorize (unless q = −q′) and 
the average of a single phase is zero,

eiφq = 0,� (7a)

eiφq′ eiφq = δq+q′,0.� (7b)

Hence (using the property V(q) = V(−q))

εnεm = 2
∑
q>0

V2(q) cos (q(n − m)) .
� (8)

From equation (8), we see that V2(q) can be related to the 
Fourier transform of the spatial correlation function C (n) of 
the disordered potential, as follows

V2(q) :=
1
L

∑
n

εnε0eiqn =
1
L

∑
n

C (n) eiqn.� (9)

In the case of an uncorrelated disorder, like in the usual 
Anderson’s model, we have

εnεm = σ2
εδn,m,� (10)

with σ2
ε := ε2, or, equivalently

V2 (q) =
1
L
σ2
ε.� (11)

Thus, for these models, the magnitude of the scattering matrix 
element from k → k + q is independent of the transferred 
momentum, q.

2.1.1.  Gaussian correlated disorder.  Our first model of cor-
related disorder is the Gaussian case. For that, we choose

V(q) :=
A(qc)√

L
exp

(
−q2/4q2

c

)
,� (12)

where A(qc) is a measure for the strength of disorder. The L− 1
2 

factor in equation (12) is introduced in order to have a well-
defined thermodynamic limit for the local variance and cor-
relation functions of the disordered potential.

In this model, the values of V(q) are only significant inside 
an interval of linear size qc, centered around q  =  0. This 

means that the disordered potential couples Bloch states with 
nearby momenta, more strongly1. The statistical properties of 
the corresponding potential in the L → ∞ limit, can be calcu-
lated through equation (8), yielding

ε2 = σ2
ε = A2(qc)

∫ π

−π

dq
2π

e−q2/2q2
c ,� (13a)

εnεm = A2(qc)

∫ π

−π

dq
2π

e−q2/2q2
c eiq(n−m).� (13b)

From these two equations, we notice that the normalized 
correlation function does not depend on the parameter A(qc), 
i.e.

Γ(n − m) :=
εnεm

σ2
ε

=

∫ π

−π
dq
2π e−q2/2q2

c eiq(n−m)

∫ π

−π
dq
2π e−q2/2q2

c
.� (14)

Finally, all the integrals above can be done analytically in the 
limit when qc � π. In this case, the integration intervals may 
be extended to k ∈ ]−∞,+∞[ and we get,

Γ(m) = exp

(
−q2

cm2

2

)
.� (15)

The correlation function of site energies is Gaussian in real 
space with a decay length ξ = q−1

c . In this same limit, we can 
also relate the parameter A(qc) with the local disorder strength 
using equation (13a), i.e.

A2(qc) =
√

2π
σ2
ε

qc
,� (16)

meaning that,

V(q) = (2π)
1
4

σε√
qcL

exp
(
−q2/4q2

c

)
.� (17)

2.1.2.  Power-law correlated disorder.  For our second model 
of disorder, we take the power-law potential defined by De 
Moura and Lyra [6], for a periodic chain of L sites, as

εm = 2A(α)
L/2∑
p=1

(
2π
L

) 1−α
2 1

p
α
2
cos

(
2πmp

L
+ φp

)
.� (18)

The phases φp have the same properties as before, being uni-
formly distributed in [0, 2π[. We can reduce this definition to 
our formulation by writing the Bloch wave-numbers as

q :=
2π
L

p,� (19)

so that equation (18) becomes

εm = 2A(α)
(

2π
L

) 1
2 ∑

q>0

1
qα/2 cos (qm + φq) .� (20)

1 However, this does not mean an absence of back-scattering, since the full 
effect of this potential must take all the multiple scattering processes into  
account. As a matter of fact, these disordered potentials with short-range cor-
relations are believed to cause an exponential localization of the eigenstates, 
in a manner similar to the 1D Anderson model with uncorrelated disorder.
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Since this sum is carried only over the positive half of the 
first Brillouin zone (i.e. q = 2πp/L, p = 1, . . . L/2), it can be 
rewritten as

εm =
∑
q�=0

V(q)eiφq eiqm,
� (21)

with V(q) defined as

V(q) = A(α)
(

2π
L

) 1
2 1

|q|
α
2

,� (22)

and the independent random phases obeying the constraint 
φq = −φ−q. The q  =  0 term is excluded as before, and we 
have introduced a normalization factor A(α) that will define a 
finite variance for the local disorder.

To study the thermodynamic limit (L → ∞) in the pre-
vious case (Gaussian), we replaced all the sums over q by int
egrals. In this case, since q = 2πp/L, p ∈ Z \ {0} , we could 
try to do the same, but this turns out to be quite tricky due to 
the possibility of generating low-q singularities. Consider, as 
an example, the calculation of the disorder’s local variance,

σ2
ε =

∑
q�=0

V2 (q) = A2(α)

(
2π
L

)∑
q�=0

1
|q|α

,� (23)

for α < 1, the corresponding integral does not have a low-
q singularity and the situation is be very similar to a system 
with uncorrelated disorder. A more interesting case happens 
for α > 1, where the integrals will have low-q singularities 
with a natural cut-off of 2π/L. At the same time, in this case, 
the corresponding sum over p  in

σ2
ε = 2A2(α)

(
2π
L

)1−α L/2∑
p=1

1
pα

,� (24)

is found to converge as L → ∞. These two facts mean that, no 
matter how large L is, the number of terms contributing to the 
sum is always of O(1). Hence, we can never approximate it by 
an integral. Luckily, the infinite sum in equation (24) is known 
to define the Riemann Zeta function [22],

∞∑
p=1

1
pα

:= ζ(α).� (25)

Finally, in the same limit, the local variance of the disorder 
can be written as

σ2
ε = 2A2(α)

(
2π
L

)1−α

ζ(α),� (26)

allowing us to express A2(α) in terms of σε, as follows,

A2(α) =
σ2
ε

2ζ(α)

(
2π
L

)α−1

.� (27)

The correlation function of this potential can also be calcu-
lated using,

εnεm =
∑
q�=0

V2(q)eiq(n−m) =
4πA2(α)

L

∑
q>0

1
|q|α

cos (q(n − m)) .

Writing q = 2πp/L and taking the thermodynamic limit in the 
last sum, we can express the result in terms of a polylogarithm 

function [17, 22], Liα(z) :=
∑∞

p=1 z p/pα, as follows,

Γα(m) =
ε0εm

σ2
ε

=
1

ζ(α)
Re

[
Liα

(
e−

2πim
L

)]
.� (28)

A plot of this space correlation function is shown in the 
figure 1, for several values of the exponent α [17].

As a last remark, we note that to ensure a finite local 
variance, σε, we had to choose A2(α) ∝ 1/Lα−1 (see 

Figure 1.  Plot of the space correlation for the power-law disordered potential as a function, calculated for several values of the exponent 
α. The α → +∞ limit yields a perfect cosine function, corresponding to an ordered system with an applied modulated potential [17]. 
Reprinted figure with permission from [17], Copyright 2013 by the American Physical Society.
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equation  (27)). This weird fact implies that A2(α) → 0, as 
L → ∞ (for α > 1), which will have important consequences 
in what follows.

2.2. The Kernel polynomial method

The spectral function of a large disordered quantum system 
can be efficiently computed by a polynomial expansion-
based technique—the KPM [4, 14, 18, 20, 26]. In this 
approach, a function of an operator with spectrum nor
malized to the interval ]−1, 1[ is approximated by a trun-
cated Chebyshev series. The expansion coefficients can 
be computed either by the stochastic evaluation of a trace  
[14, 26] or by the expectation values of Chebyshev poly-
nomials in a given basis. Furthermore, the accuracy and 
numerical convergence of the KPM estimates are controlled 
by employing an optimized Gibbs damping factor and using 
sufficient number of Chebyshev polynomials [26]. The 
Chebyshev polynomial of the first kind, Tn(x), is an nth-degree 
polynomial in x, defined as

Tn(x) = cos(n arccos(x)), n ∈ N� (29)

where x takes values in the interval ]− 1, 1[. Moreover, the 
Tn(x)’s are generated by the following recurrence relations

T0(x) = 1, T1(x) = x,� (30a)

Tn+1(x) = 2xTn(x)− Tn−1(x),� (30b)

and also satisfy the orthogonality relation
∫ 1

−1
Tn(x)Tm(x)(1 − x2)−1/2dx =

π

2
δn,m(δn,0 + 1).� (31)

In our case, we consider a free electron gas hopping on a 
finite cyclic chain of size L, under the influence of on-site cor-
related disorder. Suppose that the L × L Hamiltonian matrix 
H (equation (1)), has eigenvalues Eβ with corresponding 
eigenstates |Ψβ〉. Then its zero temperature spectral function 
has the form

ρ(k, E) =
L−1∑
β=0

|〈k|Ψβ〉|2 δ(E − Eβ),� (32)

where |k〉 is a Bloch state of one electron as defined in 
last section. Notice also that, in the absence of disorder 
ρ(k, E) = δ(E − Ek), and by summing ρ(k, E) over k one 
obtains the density of states.

To calculate ρ(k, E) we must normalize the Hamiltonian, 
so that its spectrum fits inside the interval ]− 1, 1[2. The KPM 
approximation to the spectral function is written as

ρM(k, E) =
2

π
√

1 − E2

M−1∑
n=0

gnµn

(1 + δn,0)
Tn(E),� (33)

where the expansion coefficients µn are determined as

µn =

∫ 1

−1
Tn(E)ρ(k, E) dE = 〈k|Tn(H)|k〉.� (34)

The recursion relations obeyed by the Chebyshev polynomials 
carry over to these moments, and greatly simplify their calcul
ation. The expression equation (33), represents the truncated 
sum of the Chebyshev series. It is known that the abrupt trun-
cation of the series introduces Gibbs oscillations in the func-
tion to be approximated. This phenomenon can be filtered out 
by employing an optimized damping factor. The most appro-
priate and the one that we use here is the so-called Jackson 
Kernel gn [20] defined as follows

gn =
(M − n + 1) cos( nπ

M+1 )

M + 1
+

sin( nπ
M+1 ) cot(

π
M+1 )

M + 1
.� (35)

The use of this kernel does not alter the series’ convergence to 
the intended function, as M goes to infinity. Furthermore, this 
makes the KPM approximations always non-negative, which 
is particularly relevant when approximating a non-negative 
function, like ρ(k, E).

3.  Numerical results and discussion

We have performed numerical computations of the spectral 
functions for the 1D non-interacting system in the presence 
of on-site Gaussian and power-law correlated disorder with 
periodic boundary conditions, at zero temperature. The com-
putations were carried out by using the KPM. For comparison, 
we also include some results for the usual Anderson model.

3.1.  Gaussian correlated disorder

We start by presenting results for the spectral function in the 
uncorrelated Anderson model. For a rectangular distribution 
of site energies,

P(εn) =
1
W

Θ

(
W
2

− εn

)
,� (36)

and σ2
ε = W2

12 . The strength of disorder is commonly character-
ized by W, but as we are interested in other types of distribu-
tions for the site energies, in this paper we use σε instead.

In figure 2 we show the approximated spectral function for 
various values of the local variance σ2

ε, at the band center, 
i.e. Ek  =  0 (k = π/2). The data is well fitted by a Lorentzian, 
as expected from perturbation theory. In the inset, we show 
a comparison between the half-width of the Lorentzian, 
obtained from the fits, and the value calculated from the Born 
approximation

�Γ =
σ2
ε

2
.� (37)

This perturbative result seems to give a good account of the 
data until values σε � 1.

The spectral function, at the band center (Ek  =  0), for a 
Gaussian correlated disorder with different values of the 
parameter qc, is shown in figure 3 for σε = 1. The magenta 
dashed curves are the corresponding fits. For qc = π (figure 

2 The Hamiltonian and all energy parameters are rescaled by dividing by 
(2Dt + F), where D is the dimension of the hypercubic lattice system, t the 
hopping, and F is a number chosen so that in all cases the spectrum of the 
Hamiltonian fits into the interval ]− 1, 1[.

J. Phys.: Condens. Matter 31 (2019) 175501
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3(a)), the best fit of the numerical data can be found with a 
Lorentzian of width Γ � 0.4456.

When qc = π/128, the scattering becomes local in 
momentum space, and the spectral function is seen to be a 
Gaussian (figure 3(b)). Its width is just the variance of the site 
energies, σ2

ε, as can be seen in figure  4, where the spectral 
functions for different values of σε are scaled to show that

ρ(k = ±π

2
, E) = σ−1

ε N (0, 1, E/σε) , for σε � �vkqc.
� (38)
In equation (38), N (µ,σ, ε) is the normal distribution of mean 
µ and variance σ.

This result calls to mind the classical limit of the spec-
tral function discussed by Trappe et  al [23]. In that limit, 

the disordered potential dominates, and the spectral function 
merely reflects the probability distribution of local potential 
values. This is, in fact, what is observed here. Since

εm = 2
∑
q>0

V(q) cos (qm + φq) ,
� (39)

in the thermodynamic limit (i.e. qc � π/L), the energy at each 
site is a sum of a large number of random independent variables, 
and by the central limit theorem, it is normally distributed. But 
what is significant here is that this limit can be obtained even 
when the disorder strength is small enough to be considered 
a weak perturbation when compared to the bandwidth. As we 
will see later this will turn out to be a consequence of the local 
character of the scattering in momentum space.

Figure 2.  The disorder-averaged spectral function ρ(k, E) of the Anderson model at the band center (k = π/2, Ek  =  0) for different local 
variances of the uncorrelated disorder σ2

ε. The spectral function is well represented by a Lorentzian, as expected for low disorder. The black 
dots in the inset are the corresponding half-widths of the fitted curves; the magenta line is the Born approximation, equation (37).

Figure 3.  The disorder-averaged spectral function for the Gaussian correlated disorder with unit variance σ2
ε = 1, for (a) qc = π, and  

(b) qc = π/128. The spectral functions are reasonably fitted by a Lorentzian (upper panel) of half-width Γ � 0.4456, and very well fitted by 
a Gaussian (lower panel) of variance σ2

ε = 1. The plots (c) and (d), show the spectral function for different values of k and how it relates to 
its shape at the band’s center.
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3.2.  Power-law correlated disorder

A power-law correlated disorder is characterized by the expo-
nent α that determines how fast the Fourier transform of εn 
decays with the wavenumber q,

V2(q) ∼ 1
|q|α

.� (40)

As α increases, scattering becomes increasingly dominated by 
small values of q (q � π). In figure 5, we see that a transition 
for a Lorentzian to a Gaussian shape (with unit variance) of 
the spectral function at the band center and for σε = 1, occurs 
at α ≈ 1.0. This transition seems to hold for other values of 

k as well, as can be seen from the left panels of figure 53. On 
closer scrutiny, however, a perfect Gaussian fit is only pos-
sible for α → 1+, in the large L limit, and deviations become 
increasingly obvious as α increases; the spectral function 
develops a two peaked structure as a function of energy, as 
shown in figure 5(b) in orange.

Even though the form of the spectral function is not a 
Gaussian, one still observes (figure 6) a universal behavior, 

Figure 4.  The normalized spectral function for the Gaussian correlated disorder of the system of size L  =  214 with 8192 Chebyshev 
coefficients for different values of disorder variance σε.

Figure 5.  Mean spectral function for two values of the correlation exponent, α, and σε = 1. The numerical plots show a good agreement 
with the following conclusions: (a) and (c) a Lorentzian fit of width Γ ∼ 0.433 and a strong dependence of the shape with the value of 
k, for α < 1; (b) and (d) a Gaussian fit of unit variance in the large L limit and a very weak dependence of the shape with the value of k 
for α ∼ 1+. In (b) an example of numerical data for α = 2.5 illustrates the double-peak structure which emerges for higher values of the 
exponent.

3 The shape of the Lorentzian ρ(k, E) depends much more strongly on the 
value of of k. This can be understood as the combined effect of a change in 
the central velocity (which affects the mean free path, i.e. the width) and the 
fact that the algebraic tails start to feel the effect of the finite bandwidth.
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for different disorder strengths, similar to the one found for 
Gaussian disorder, namely

ρ(k, E) = σ−1
ε χα

(
E
σε

)
� (41)

with the χα(ε) depending on α, but not on the disorder vari-
ance σε.

As for the Gaussian disorder case, we will show that the 
results of figures  5(b) and 6 reveal the emergence of the 

classical limit, as a consequence of the local character of scat-
tering in momentum space.

3.3.  Statistical properties of the spectral function  
in the thermodynamic limit

Thus far we have discussed the disorder-averaged spectral 
function. It is not however clear if this quantity represents 
a typical value for measurable quantity of macroscopic 

Figure 7.  Plots of the standard deviation of the spectral function at k = ±π
2 , for α = 0.5 (upper left panel), α = 1.0 (upper right panel), 

α = 1.75 (lower left panel) and α = 2.0 (lower right panel). For α = 0.5 the consecutive curves are shown to collapse when rescaled by a 
factor of L− 1

2 (black dots). For α > 1, the curves coalesce to a non-zero limiting profile and no qualitative change of behavior is seen across 
α = 2. In the extreme right panel, we show the decrease of the standard deviation for larger values of α (at a fixed size). All the calculations 
where done with σε = 1.

Figure 6.  The rescaled mean spectral function for the power-law correlated disorder, in a system of size L  =  214 for different values of the 
on-site variance σε. There were 8192 Chebyshev coefficients used for the calculation.
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systems. This becomes specially concerning in the case 
of the power-law disorder model, which is known to have 
pathological properties in the thermodynamic limit [17]. To 
investigate this issue, we calculated the standard deviation of 
ρ(k, E) for increasing number of sites and different values of 
the exponent α. These results are shown for two examples in 
figure 7.

From the numerical data, we conclude that for α < 1 the 
standard deviation scales as L− 1

2, which clearly indicates a 
self-averaging behavior. On the other hand, for α > 1 there 
seems to be a finite standard deviation for ρ(k, E), even in the 
thermodynamic limit, i.e. ρ(k, E) still fluctuates from sample 
to sample in the macroscopic limit. This property clearly 
indicates that α = 1 is a special value for these models, not 
only because the shape of ρ(k, E) changes, but also because it 
becomes a non-self-averaging quantity.

In figure 7, we can also see an example of the same calcul
ation done for α = 2, where no qualitative changes in the 
scaling behavior of σρ can be seen. Obviously, for very large 
values of α, these persistent fluctuations start to decrease, 
since the system is approaching an ordered limit (α → +∞). 
To sum up these results, we present in figure 8, a plot showing 
the scaling of σρ at the central energy, with the increase in the 
chain size.

4.  Analytical results and discussion

If the state at t  =  0 is |ψ(0)〉 = |k〉, the probability amplitude 
that the state at time t is still the same is 〈k|e−iHt/�|k〉. Using a 
complete set of energy eigenstates {|ψβ〉 : β = 0, . . . , N − 1}, 
we can see that this amplitude is the Fourier transform of the 
spectral function defined in equation (32):

〈k|e−iHt/�|k〉 =
∑
β

e−iEβ t/� |〈ψβ〉k|2

=

∫ +∞

−∞
dEe−iEt/�

∑
β

|〈ψβ〉k|2 δ (E − Eβ)

=

∫ +∞

−∞
dEe−iEt/�ρ(k, E).

�

(42)

Expanding both sides in powers of t and averaging over dis
order, we get the following expression for the nth-moment of 
the disorder-averaged spectral function ρ(k, E):

〈k|Hn|k〉 =
∫ +∞

−∞
dEEnρ (k, E).� (43)

The Hamiltonian is the one defined in equation (1) and can be 
written as H = H0 + V where

H0 =
∑

k

Ek|k〉〈k|� (44a)

V =
∑

m

εm|ϕm〉〈ϕm|,� (44b)

with the band Hamiltonian H0 being diagonal in the Bloch 
basis, and the disordered potential, V , in the local Wannier 
basis. In the calculation of 〈k|Hn|k〉, we will assume that 
H0|k〉 = Ek|k〉 = 0. This is strictly true for the states in the 
center of the band (i.e. k = ±π/2), for which we calculated 
numerically the spectral function. However, this assumption 
implies no loss of generality, since for an arbitrary value k, we 
can add an irrelevant constant to H,

H0 → H0 :=
∑

k′
(Ek′ − Ek) |k′〉〈k′|,� (45)

Figure 8.  Scaling of the standard deviation of ρ(k, E) for k = π
2  and E  =  0, as a function of the system’s size. The dashed line stands for 

the usual L− 1
2 scaling.
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such that H0|k〉 = 0, remains true. The calculation will show 
that changing k only shifts the spectral function in energy, by 
the value of Ek.

4.1.  Gaussian case

As a justification for our numerical results, we managed to cal-
culate the average spectral function for the infinite chain, with 
a Gaussian model of correlated disorder. Generally, our ana-
lytical results will be valid in the limits when 2π/L � qc � π 
and qc � σε/�vk .

4.1.1.  Lowest order terms.  To illustrate the gist of the argu-
ment, we begin by looking at the lowest order moments, using 
the equation (43).

It is obvious that for n  =  1 the result is zero, because 
H0|k〉 = 0 and V = 0. For n = 2,

〈k|H2|k〉 =〈k|(H0 + V)(H0 + V)|k〉

=〈k|V2|k〉,
�

(46)

and resolving the identity in the Bloch basis,

〈k|H2|k〉 =
∑

q

〈k|V|k + q〉〈k + q|V|k〉.� (47)

Recalling equation (8),

〈k|H2|k〉 =
∑

q

V2(q) = σ2
ε.� (48)

By the same arguments, in the third moment only one term 
survives:

〈k|H3|k〉 = 〈k|VH0V|k〉

=
∑

q

V2(q)Ek+q; .� (49)

In the thermodynamic limit, the sum over q turns into an 
integral and if qc � π, we can extend the integration range 
to q ∈ ]−∞,∞[ and expand Ek+q ≈ �vkq . In this case, the 
integrand is odd in q and the right-hand side of equation (49) 
vanishes upon integration.

Finally, we tackle the 4th-moment (the last, before pre-
senting the general argument), whose the only non-zero terms 
are

〈k|H4|k〉 = 〈k|VH2
0V|k〉+ 〈k|V4|k〉.� (50)

Using the same technique as above, the first term is
∑

q

V2(q)E2
k+q =

∑
q

V2(q) (�vkq)2 ,� (51)

which is a complete Gaussian integral (in the limit qc � π), 
whose value is

〈k|VH2
0V|k〉 = σ2

ε (�vkqc)
2 .� (52)

On the other hand, the term containing the 4th power of V  is

〈k|V4|k〉 =
∑

q1,q2,q3

V(q1)V(q2)V(q3)V(−q1 − q2 − q3)

× eiφq1 eiφq2 eiφq3 eiφ−q1−q2−q3 .

The averages of these random phase factors are discussed in 
the appendix. In particular, we show that, in the thermody-
namic limit (L → ∞), the expression above reduces to

〈k|V4|k〉 = 3

[∑
q

V2 (q)

]2

= 3σ4
ε.� (53)

Finally, by looking at the equations  (52) and (53), we see 
that, as long as σ2

ε � (�vkqc)
2, we can ignore terms that have 

insertions of H0. Then, we simply write 〈k|H4|k〉 as:

〈k|H4|k〉 ≈ 〈k|V4|k〉 = 3σ4
ε.� (54)

4.1.2.  General expression for the moments of ρ(k , E).  Inspired 
on the results above, we argue that the general form of the 
terms in equation (43) is:

〈k|H2p|k〉 ≈ 〈k|V2p|k〉,� (55)

〈k|H2p+1|k〉 ≈ 0.� (56)

Furthermore, in the appendix we show that the averages 
〈k|V2p|k〉 have the following general form

〈k|V2p|k〉 = (2p − 1)!!
(
σ2
ε

) p
[

1 +O
(

1
L

)]
.� (57)

Using the equations  (55)–(57), in the thermodynamic limit 
(L → ∞), we can rebuild the entire Taylor series for the aver-
aged diagonal propagator, and re-sum it as follows:

〈k|e−iHt/�|k〉 =
∞∑

p=0

1
(2p)!

(
−it
�

)2p

〈k|V2p|k〉

=
∞∑

p=0

(−1) p(2p − 1)!!
(2p)!

(
σ2
εt2

�2

) p

=

∞∑
p=0

1
2 pp!

(
−σ2

εt2

�2

) p

= e−σ2
εt2/2�2

.

The spectral function is the time-domain Fourier transform of 
this last expression, yielding

ρ(k = ±π

2
, E) =

1√
2πσ2

ε

e
− E2

2σ2
ε ,� (58)

which agrees with the results found in our numerical calcul
ations, using the KPM.

For the sake of completeness, we also state the result for a 
general value of k, which can be obtained from equation (58) 
simply by shifting the energy variable by the corresponding 
band energy Ek of that state, i.e.

ρ(k, E) =
1√

2πσ2
ε

e
− (E−Ek)

2

2σ2
ε .

� (59)
In conclusion, we found that, if qc � π and (vkqc)

2 � σ2
ε, 

then the disorder-averaged spectral function, in the thermody-
namic limit, will have a Gaussian shape. This is true, even if 
the disorder strength (measured by σε) is small, as long as this 
is matched by a decrease of qc and corresponding increase of 
the correlation length of the potential. For instance, the mean 
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free path, estimated by � = �vk/σε can still be much larger 
that the lattice parameter, so long as � < ξ, where ξ is the dis
order correlation length.

4.1.3.  Emergence of the classical limit for the spectral func-
tion.  We were able to establish precise conditions in which 
the classical limit of the spectral function, found by Trappe 
et al [23], appears. The statement of this limit is equivalent to 
equation (55), and reads (Ek  =  0)

〈k|e−iHt/�|k〉 = 〈k|e−iV t/�|k〉� (60)

so that

ρ(k, E) =
∫

dteiEt/�〈k|e−iV t/�|k〉.� (61)

Using the Wannier basis (eigenbasis of V) and its transforma-
tion law to the Bloch basis 〈ϕn〉k = exp (ikn) /

√
L, we can 

rewrite the above equation (with Ek  =  0) as

〈k|e−iV t/�|k〉 =
∑
n,m

〈k〉ϕn〈ϕn|e−iV t/�|ϕm〉〈ϕm〉k

=
1
L

∑
m

e−iεmt/� =

∫
dEP(E)e−iEt/�,

�
(62)

where P(E) is the probability distribution of a site energy. 
Comparing the above with equation (42), we have

ρ(k, E) = P(E).� (63)

Thus, the averaged spectral function is just the probability 
distribution of a single site energy. As it is clear for the defini-
tion of the disordered potential (equation (4)), the distribu-
tion P(E) must be a Gaussian according of the Central Limit 
Theorem.

4.2.  Power-law correlated disorder

4.2.1.  Validity of the classical limit.  In the case of Power-law 
correlated disorder, the argument leading to the equation (55) 
still holds, as long as α > 1, but requires a slightly different 
formulation. To see how this comes about, let us consider 
equation (51) as an example. In this case, we have

∑
q

V2(q)E2
k+q =

2π
L

A2(α)
∑
q�=0

1
|q|α

[Ek+q]
2

=
σ2
ε

2ζ(α)

L/2∑
p=1

1
pα

E2
k+2πp/L.

�

(64)

As before, if we expand Ek+q in powers of p , we get terms of 
the form

[
1
n!

dnEk

dkn

]
σ2
ε

2ζ(α)

(
2π
L

)n L/2∑
p=1

1
pα−n .� (65)

If α− n > 1 the sum above is convergent and the result 
vanishes, in the large-L limit, as L−n. On the other hand, if 
α− n < 1 the sum diverges, but instead it can be written as an 
integral over the First Brillouin Zone, as follows

(
2π
L

)n L/2∑
p=1

1
pα−n =

(
2π
L

)α−1 ∫ π

2π
L

dq
1

qα−n

=
1

n − α+ 1

[
2α−1πn

Lα−1 −
(

2π
L

)n]
.

�

(66)

Both terms in the equation above go to zero in the thermody-
namic limit, since α > 1 and n � 1. This argument is obvi-
ously true for every term in 〈k|Hn|k〉, containing insertions of 
H0. Hence, in the L → ∞ limit, the only finite contributions 
come from the all-V  terms, and we re-obtain the classical 
result expressed in equation (63).

In this limit the spectral function can only depend on the 
parameters of the disordered potential, namely σε and α. 
Since α is dimensionless, there is a single energy scale, σε, 
in ρ(k, E). The scaling of equation (41), illustrated in figure 6, 
follows at once. It should be noted, however, that as α gets 
closer to 1, this scaling is not observed numerically. This is 
due to finite size effects that we have not accounted for. An 

example is the very slow convergence of 
∑L/2

p=1 p−α to ζ(α). 

For α = 1.1, for instance, the truncation error is still of order 
10% for L ∼ 1010.

4.2.2. The limiting cases (α → 1 and α → +∞) and the 
double-peaked shape.  Despite the validity of the classical 
limit for the averaged spectral function, we have shown in the 
appendix that it is not clear how to obtain a closed form for 
the nth-moment of ρ(k, E) even in this limit. Nevertheless, the 
limit α → 1+ revealed itself as very special case, where the 
exact averaged spectral function is found to be a Gaussian,

ρ(k, E) =
1√

2πσ2
ε

e
− (E−Ek)

2

2σ2
ε .� (67)

This result is consistent with the numerical results obtained in 
the last section (see figure 5).

For α > 1, however, the higher cumulants of the spec-
tral function cease to be zero, and ρ(k, E) drifts away from a 
Gaussian shape. For illustration, we have calculated the 4th-
cumulant of the averaged spectral function, as a function of 
the exponent α . This has the following definition:

m4 =

∫ +∞

−∞
dEE4ρ (k, E)− 3

[∫ +∞

−∞
dEE2ρ (k, E)

]2

,� (68)

and can be directly computed using the expressions obtained 
in the appendix, i.e.

m4(α) = −3σ4
ε

ζ(2α)
2ζ(α)

.� (69)

Other than explaining the deviations from the Gaussian 
shape that we found in the numerical plots of ρ(k, E), these 
effects have another striking consequence. According to our 
earlier remarks, in the classical limit, the averaged spectral 
function is the same as the probability distribution of the site 
energies. Since the value of the disordered potential in a single 
point is described as a sum of a large number of independent 
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random variables (see equation (18)), the non Gaussian shape 
shows that these do not obey the central limit theorem. To see 
how this comes about, we start by looking at equation (23), 
where

σ2
ε ∝

L/2∑
p=1

1
pα

.� (70)

When α > 1, this sum is convergent in the L → ∞ limit, 
which means that only a number of O(1) of terms actually 

contribute to the variance of the local disorder εn. Furthermore, 
as α increases, this sum is dominated by less and less terms, 
meaning that we are never in the conditions of the central limit 
theorem (which assumes a large number of summed random 
independent variables).

This becomes particularly clear in the extreme case 
α → +∞. In this limit, the local value of the disordered 
potential is dominated by a single term, p   =  1, and the dis
order is a static cosine potential with a wavelength L and a 
random phase,

Figure 9.  Comparison of the local energy distribution P(E) and the disorder-averaged spectral function ρ(k, E), obtained for a system of 
size L  =  217 with 8192 Chebyshev expansion coefficients and a single realization of disorder. The calculation was done for k = π

2 .

Figure 10.  Spectral function ρ(k, E) for the disordered system of size L  =  214 with 8192 Chebyshev moments for different values of α (top 
panel) and qc (lower panel). The limits α � 1 and qc � 2π/L are identical: see text.
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εn ∼
√

2σ2
ε cos(

2πn
L

+ φ2π/L).� (71)

The corresponding probability density function can be calcu-
lated, yielding the expression:

P(E) =
1
π

1√
2σ2

ε − E2
.� (72)

As an illustration, we depict in figure 9 the KPM calculated 
the spectral function for α = 10, and the normalized histo-
gram of site energies for a single realization of disorder. As α 
increases above 1, the spectral function smoothly approaches 
the limiting form of equation (72), by first displaying a two 
peaked shape as illustrated in figure 10(a).

The expression of equation  (72) also corresponds to the 
one we obtain numerically for Gaussian disorder case when 
qc � 2π/L (see figure  10(b)). In either case, of course, a 
single value q dominates the sum

εn = 2
∑
q>0

V(q) cos (qn + φq)� (73)

and the two models of disorder cannot be distinguished.

5.  Conclusions

We have studied the spectral function of Bloch states in a 
tight-binding chain, with two models of correlated disorder: 
the Gaussian model (with a correlation length given by q−1

c ) 
and the power-law model (with an algebraic decay of corre-
lations characterized by an exponent α). For both models, 
we calculated numerically (with KPM), and analytically, in 
certain limits, the disorder-averaged single-particle spec-
tral function ρ(k, E), at zero temperature. We also evaluated 
numerically the fluctuations of this quantity from sample to 
sample, in the power-law model, in order to study its self-
averaging character.

The analytical calculations of ρ(k, E) were done in the ther-
modynamic limit, by resumming the short-time expansion of 
the diagonal propagator in momentum space. For the Gaussian 
case, we found out that, in the regimes when qc � σε/�vk , 
and the correlation length of the disorder is much larger than 
the lattice spacing (qca � 1) but much smaller than the sys-
tem’s size, the spectral function has a Gaussian shape, ρ(k, E) 
with mean µ = Ek and variance σ2

ε, the variance of the random 
site energy. This is consistent with the classical limit for the 
propagator [23] applied to our lattice system.

In the power-law model, where there is no energy scale 
associated with the space-correlations, we still found that the 
averaged spectral function is given by its classical limit, but 
only if the exponent α, characterizing the algebraic decay 
of the power-spectrum, exceeds unity (while the delocaliza-
tion of the eigenstates [6] occurs only at α = 2). The mean 
spectral function is a Gaussian in the limit α → 1+, but 
develops non-zero higher cumulants for larger values of α, 
reflecting the actual distribution of on-site energies. The spec-
tral density follows a scaling law similar to the one found for 
the Gaussian disorder case. Although we are unable to find 

an exact functional form for ρ(k, E), this scaling law can be 
understood from the fact that there are no other energy scales 
in the problem besides σε (since α is a dimensionless param
eter); hence, σερ(k, E) must be a function of E/σε. All these 
results are confirmed by our numerical calculations of ρ(k, E).

For the later model, we discovered that the standard devia-
tion of the spectral function, for α � 1, does not go to zero 
in the thermodynamic limit. This means that in the non-
perturbative regime, the spectral function is not a self-aver-
aging quantity and remains sample dependent in the infinite 
size system. While this may not come as a surprise in such a 
pathological model, it also reinforces that α = 1 is a crossover 
point for these potentials. More surprisingly, the results on the 
single-particle spectral function do not seem to give any indi-
cation that α = 2 is a special point for these models, as was 
argued by Petersen et al [17] in relation to the predicted delo-
calization transition. Granted that there is no obvious relation 
between the spectral function and the localization/delocaliza-
tion of the eigenstates, one could still expect that a qualitative 
change in the disordered potential might show up at the trans
ition point. Yet, we found no such effect.

In conclusion, we studied the spectral function in a 1D band 
model with correlated disorder. Through a combination of 
numerical and analytical work we were able to obtain results 
in a non-perturbative regime, and show explicitly how the clas-
sical limit of the spectral function emerges [23]. In the case of 
power-law disorder, this happens when the local distribution of 
site energies is not Gaussian, due to inapplicability of the central 
limit theorem. The localization transition in these models occurs 
deep in the region where the spectral function is classical, and 
that raises the question of whether something may be learned 
on that transition from this knowledge of the spectral function.
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Appendix.  Random phase averages

In section 4, we needed to calculate terms of the form

exp (iφq1) exp (iφq2) . . . exp
(
iφ−q1−q2−...qn−1

)
� (A.1)
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where φq are independent random phases with an uniform dis-
tribution in the circle and obeying the constraint φq = −φq. 
These expressions appear inside sums over momenta, of the 
form
∑
q1 �=0

· · ·
∑

qn−1 �=0

V(q1) . . .V(qn−1)V(−q1 · · · − qn−1)

×exp (iφq1) . . . exp
(
iφ−q1−q2−...qn−1

)
,

�

(A.2)

where V(q) = V(−q).
Clearly, since these phases are uniformly distributed inde-

pendent variables (except in the case q2 = ±q1), we have

exp (iφq1) = 0,� (A.3a)

exp (iφq1) exp (iφq2) = δq1+q2,0.� (A.3b)

Therefore, we can only obtain a non zero result if all the 
phase factors are paired. This means that F(q1, . . . , qn) =

exp (iφq1) exp (iφq2) . . . exp (iφqn) is zero unless 
∑

i qi = 0.

A.1.  General procedure

To actually calculate the phase averages, we may start with the 
following illustrative case:

F (q1, q2, q3, q4) := exp (iφq1) exp (iφq2) exp (iφq3) exp (iφq4).
� (A.4)
To prevent lengthy notation, we define

δqi+qj,0 → δij

1 − δqi+qj,0 → δij = 1 − δij

such that δij + δij = 1. Note also, that since V(q) = V(−q), 
the contraction of two momenta is equivalent to a Kronecker 
delta in the momentum sums.

Hence, we can write

F(q1, . . . , q4) = δ12F(q3, q4) + δ12F(q1, . . . , q4)

= δ12δ34 + δ12F(q1, . . . , q4),

and repeat the process until we exhaust all possibilities. In this 
case, we just need to do it once,

δ12F(q1, . . . , q4) = δ12
[
δ13δ24 + δ13F(q1, . . . , q4)

]

= δ12
[
δ13δ24 + δ13δ14δ23

]

so

F(q1, . . . , q4) = δ12δ34 + δ12δ13δ24 + δ12δ13δ14δ23.

Finally, if we express everything in terms of Kronecker deltas 
(using δij := 1 − δij), we get

F(q1, . . . , q4) = δ12δ34 + δ13δ24 + δ14δ23

− δ12δ13δ24 − δ12δ14δ23 − δ13δ14δ23

+ δ12δ13δ14δ23.
�

(A.5)

The left-hand side of the above equation  can be divided in 
three groups of terms:

	 (i)	�The first three terms correspond to all the pairwise con-
tractions of momenta, which gives a contribution of the 
form:

3

(∑
q

V2(q)

)2

= 3
(
ε2
)2

= 3σ4
ε;

	(ii)	�The following three involve double contractions (coin-
cidences of momenta) which imply V(q1) = V(q2) =  
V(q3) = V(q4). This contribution is −3

∑
q V4(q); 

	(iii)	�The last term gives no contribution, since it implies that 
q1 = −q2 = −q3 = −q4 and q2 = −q3 . This will always 
yield a factor of V(0) = 0.

Consequently, the four momentum sums of equation  (A.2) 
have the value

3

(∑
q

V2(q)

)2

− 3
∑

q

V4(q).� (A.6)

This procedure is trivially generalized to any number of 
phase factors, although the structure becomes rather compli-
cated for higher order terms. Fortunately, we will see that in 
certain limits, we may ignore the contributions coming from 
the coincidences of momenta, and only the pairwise contrac-
tions will contribute.

A.2.  Phase averages in the Gaussian disorder case

In the case of the Gaussian correlated disorder, the normaliza-
tion of the Fourier transform implies that V2(q) ∼ O(1/L). 
The momentum sums give a factor of O(L), which means that 
the two terms in equation (A.6) will be of order

3

(∑
q

V2(q)

)2

∼ O(1),

3

(∑
q

V4(q)

)
∼ O(L)×O(

1
L2 ) ∼ O(

1
L
).

This means that the second term is negligible in the thermody-
namic limit. This argument can actually be carried through to 
any order, since any term of the form 

∑
q Vn(q) goes to zero in 

the limit L → ∞, which renders all the contributions coming 
from the coincidence of indices irrelevant in this limit.

Therefore, if we want to calculate a general F(q1, . . . , qn), 
we may only consider the sum of all pairwise contractions 
of momenta. The total number of different contractions is 

(n − 1)!!, and each one contributes with a term 
(∑

q V2(q)
)

n
2

to the sum over momenta. Hence, we have
∑

q1...qn−1

V(q1)...V(−q1... − qn−1)eiφq1 ...eiφ−q1...−qn−1 =

=(n − 1)!!

(∑
q

V2(q)

) n
2 [

1 +O
(

1
L

)]
.

� (A.7)

J. Phys.: Condens. Matter 31 (2019) 175501



N A Khan et al

15

A.3.  Phase averages in the power-law disorder case

For the case of Power-law correlated disorder, the equa-
tion  (A.6) is still valid, but one cannot generally ignore the 
V4 term. Let us consider only the cases where α > 1, meaning 
that

V(q) = A(α)
(

2π
L

) 1
2 1

|q|
α
2

� (A.8)

with the normalization

A(α) =
σε√
2ζ(α)

(
2π
L

)(α−1)/2

.
�

(A.9)

Like before, we have 
∑

q�=0 V2(q) = σ2
ε, but the calculation of ∑

q V4(q) is now, slightly different, i.e.

∑
q�=0

V4(q) =A4 (α)

(
2π
L

)2 ∑
q�=0

1

|q|2α

=2A4 (α)

(
2π
L

)2(1−α) L/2∑
p=1

1
p2α .

In the large N limit, the last sum converges if α > 1/2 and 
it gives ζ(2α). Using equation  (A.9), we finally obtain ∑

q�=0 V4(q) = ζ(2α)
2ζ(α)σ

4
ε, which does not scale with the system 

size L. This interesting result suggests that the argument made 
for the Gaussian case does not work here, and any calculation 
of the moments of ρ(k, E) must account for the coincidences 
of momenta. In fact, this is easily seen to be true for any term 

of the form 
∑

q V2n(q), yielding the general form

∑
q

V2n(q) =
ζ(nα)

2nζ(α)n σ
2n
ε .� (A.10)

Nevertheless, a special case happens when α → 1. In 
this limit, the denominator of equation  (A.10) diverges as 
(α− 1)−n , while the numerator remains finite near α = 1. 
This means that, for α → 1 the corrections due to the coinci-
dence of momenta become negligible, and we have

∑
q1...qn−1

V(q1)...V(−q1... − qn−1)eiφq1 ...eiφ−q1...−qn−1 =

=(n − 1)!!

(∑
q

V2(q)

)2n

[1 +O (α− 1)] .

� (A.11)
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