
Classification for Unrecognized Spectra in LAMOST DR6 Using
Generalization of Convolutional Neural Networks

Zi-Peng Zheng1 , Bo Qiu1, A-Li Luo2,3,4 , and Yin-Bi Li2
1 School of Electronic and Information Engineering, Hebei University of Technology, Tianjin, 300401, Peopleʼs Republic of China; qiubo@hebut.edu.cn

2 Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, Peopleʼs Republic of China
lal@nao.cas.cn

3 University of Chinese Academy of Sciences, Beijing 100049, Peopleʼs Republic of China
4 Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA

Received 2019 August 12; accepted 2019 December 4; published 2020 January 13

Abstract

Commonly used template classification for celestial spectra always fails dealing with low signal-to-noise ratio (S/N)
spectra, which are very numerous in spectroscopic surveys. In the sixth data release of Large sky Area Multi-Object
Fiber Spectroscopic Telescope (LAMOST DR6 V1), more than 0.7 million bad quality data were refused to classify by
LAMOST pipeline and archived as “UNKNOWN.” To recognize as many objects with low S/N spectra as possible in
the “UNKNOWN” data set, one-dimensional convolutional neural network (CNN) based classifier was adapted from
the widely used two-dimensional CNN. In this work, two CNN based classifier were applied, a classifier for
distinguishing galaxy, QSO and star, and a classifier for discriminating subtypes of stars. To solve the problem caused
by imbalanced training samples among different classes for the stellar classifier, a semi supervised learning algorithm
by two CNNs and Spectral Generative Adversarial Network (SGAN) was introduced to produce artificial spectra for
the minority O type. The SGAN solution is better than over-sampling in solving overfitting caused by imbalanced
training set. The trained CNN classifiers were applied to classify “UNKNOWN” spectra into candidates of galaxies,
QSOs, and stars. and further classify star candidates into spectral subclasses of O to M. Each spectra can be recognized
to a spectral type with a probability by CNN algorithm, and 101,082 stellar spectra were remained with the probability
larger than 99%, making up a supplemental star catalog of LAMOST DR6, which includes 294 O, 2 850 B, 269 A, 6
431 F, 626 G, 60 527 K, and 30 085 M types. To verify the catalog, the distances to corresponding templates from
recognized spectra in each class were also checked comparing with known spectra. In addition, 200 O type stars were
manually confirmed from 294 automatically identified O type stars in the catalog, because O type spectra have weak
features and easily to be confused with no signal spectra. The classification result as a part of this work are available
athttp://paperdata.china-vo.org/Classification_SGAN/result.zip.
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1. Introduction

In recent years, more and more large-scale spectral surveys
have been performing or completed, yielding unprecedented
numbers of spectra of various celestial objects, which promote the
vigorous development of research in various fields of astronomy.
The celestial spectra contains physical properties, chemical
compositions, and kinematics information of the objects, which
could be derived through spectral analysis. Generally, the first step
of spectral analysis is to classify and identify spectra, which is the
basis for further study. For any large spectral database, automated
classification methods are required, and many previous works
(LaSala 1994; Bailer-Jones 1997; Carricajo et al. 2004; Bailer-
Jones et al. 2008) focused on distinguishing large quantity spectra
of different celestial type. However, these methods always fails
when dealing with low signal-to-noise ratio (S/N) data.

The most commonly used spectral classification method is to
compare observed spectra with theoretical or empirical spectra
templates, namely cross-match, which is also adopted by the
LAMOST pipeline (Luo et al. 2015). The pipeline cross-matches
each observed spectrum with a set of templates to calculate
chi-square values, and select the smallest value representing
the class that the object belongs to. However for a low S/N
spectrum, the confidence of the chi-square value of its best-fitted
template is sometimes too low, so that the pipeline cannot judge
its class and only has to label it as “UNKNOWN” (Guo et al.
2019). In this paper, we try to solve the classification problem of
low S/N spectra with the help of data-driven method.
Artificial neural network (ANN) has long been applied in

spectral classification, for example, Weaver & Torres-Dodgen
(1995) used ANN to classify the near-infrared spectra of
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A-type stars, Folkes & Maddox (1999) applied ANN algorithm
to classify spectra of galaxies, and Schierscher & Paunzen
(2011) also used ANN to classify stellar spectra of SDSS DR7.
Besides, Hampton et al. (2017) utilized ANN to classify
multicomponent emission lines with integral field spectroscopy
from SAMI and S7. The emerging Deep Learning (DL) method
inherits the idea of ANN, which was successfully used in many
fields with big data, and greatly improves the efficiency and
accuracy of spectral classification (Kim & Brunner 2016; Liu
et al. 2016; Paoletti et al. 2017; Fabbro et al. 2018; Tao et al.
2018).

Convolutional neural networks (CNNs) are deep neural
networks that use convolution in place of general matrix
multiplication in at least one of their layers (Heaton &
Jeff 2017). Different with ANNs, the regularization of CNNs
take advantage of the hierarchical pattern in data and assemble
more complex patterns using smaller and simpler patterns. The
major advantage of CNNs for spectral classification is that the
convolution core in various scales can retain information of
spectral features especially for low S/N spectra, and in other
words the weak features could be enhanced by convolution. As
we know that feature extraction steps for a neural network input
layer will result in loss of information inevitably (Acquarelli
et al. 2017).

Another issue that affects the classification performance of
machine learning algorithms, including CNNs, is the imbal-
anced training set problem (Du et al. 2016; Zhan et al. 2018;
Zhu et al. 2018). For example, the total number of O-type
spectra with high S/N in LAMOST DR1∼DR6 is only 156,
which is relatively small compared with other types of stars
attributing to their lifetime (Li et al. 2018; Martins 2018). The
internal reaction rates of massive and hot O type stars make the
gravitational field unable to be restrained (Puls et al. 1995).
Unstable to exist for a long time makes the O type stars scarce
to be observed, so they are too precious to be missed. In order
to recognize rare objets like O type stars as many as possible in
a survey data set requires the classifier to be well trained by a
big balanced training data set, and it is obvious insufficient for
any class which have only one hundred positive samples.

Over-sampling is a simple approach to balance training
sets, which means to repeatedly sample the minority classes
with relatively low proportion in the training set, however
over-sampling can not better avoid overfitting of training.
Another way in dealing with imbalanced training set is using
simulated data (Im et al. 2016; Antoniou et al. 2017; Bowles
et al. 2018; Luo et al. 2018). To increase the proportion of
O type stars in the training set for CNN classifier in this
paper, we propose an objective spectra producing method
based on one-dimensional Generative Adversarial Network
(GAN), namely Spectral GAN(SGAN), which is modified
from popular two-dimensional GAN. By feeding 156 O type
stars to train the SGAN, a large quantity O-type spectra can

be produced to balance the training set for improving the
performance of the CNN classifier.
This paper is organized as follows. Section 2 briefly

introduces the spectral data used in the paper along with the
spectrum preprocessing. Section 3 presents details of the
methods we used including 1D CNN for spectral classification,
and 1D SGAN spectra generator. Section 4 discusses the model
training for CNN classifiers and the construction of balanced
training data set, as well as the performance evaluation on real
spectral data. Section 5 describes the application of the trained
model to “UNKNOW” data set in LAMOST DR6 V1,
including the identification of stellar spectra with probability
cut, verification through measuring distances between classified
spectra with their corresponding templates, and manual
identification of O type stars. Section 6 summarizes the work
of this paper, analyzes the final results, and presents
challenging aspects.

2. Data and Preprocessing

The LAMOST telescope is one of the world’s most efficient
telescope for spectral acquisition, adopting the technologies of
active optics, parallel fiber positioning and complex data
analysis (Cui et al. 2012). It can obtain spectra of 4000 celestial
bodies per exposure equipped with 4000 fibers, 16 spectro-
graphs, and 32 CCD cameras. LAMOST has been running for
eight years, and released more than ten million spectra in the
six data release (LAMOST DR6). It is a complete astronomical
data set not only because of the number of samples, but also for
sky coverage, the survey volume, the sampling density, and
statistical consistency (Luo et al. 2018).

2.1. “UNKNOWN” Data from LAMOST DR6

In 2017 June, the LAMOST phase one survey LAMOST-I
completed. From 2017 September, the LAMOST phase two
survey LAMOST-II starts which includes the new launched
mid-resolution pilot survey and continuous low-resolution
regular survey. The LAMOST DR6 released data from 2011
September to 2018 June including low-resolution spectra of
first seven years and medium-resolution spectra for the first
year. DR6 totally contains 4902 observations obtaining 11.25
million spectra, and 9.91 million of them are low-resolution
spectra. Among low-resolution spectra of DR6, 9.37 million
are high quality spectra with (S/N>10), and 719,651 bad
quality spectra are labeled as “UNKNOWN” which were
refused to classify by LAMOST pipeline. The pipeline refuses
to classify a spectrum in the following two cases, either the
confidence that matches the best fit template is low, or a similar
chi-square matches multiple templates.
The spectra we used in this paper are internal release of

DR6 (LAMOST DR6 V1), and the formal version of DR6
will be released in 2020 September. The data set of this paper
is divided into four parts. For SGAN, 156 O-spectrums are
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selected as training samples. For the first CNN, 10,500 spectra
of three categories including Galaxy, QSO, and STAR are
collected in the training set, and another 1500 are used as
validation samples. For the second CNN, 7000 spectra of the O
to M type are used as training samples (where the O-type
spectrum is generated by SGAN), and there are another 2800
samples in the validation set. Finally, we collected 30,000
stellar spectra to be the test samples, among which 5000 are for
each type from B to M respectively. The 5000 test samples of
each type are distributed averagely in five S/N bins, i.e., 5–10,
10–20, 20–50, 50–100, and >100.

2.2. Data Preprocessing

The main preprocessing is normalization (Miyato et al.
2018). In order to ensure effective training of CNN, all the
original spectra needs to be scaled to the same size using the
following same normalization:

=
-
-

x
x x

x x
1min

max min
* ( )

where xmax is the maximum value of the sample data and xmin is
the minimum value of the sample data. It should be noticed that
the normalization here only means to scale the spectra rather
than continuum normalization. We have compared the
classification accuracy of CNN between using continuum
normalized and non normalized spectra, and there is no obvious
difference, which means the spectral continuum would not
affect CNN algorithm. To avoid addition error might be
introduced by the step of continuum normalization, we keep the
continuum in spectra.

Before scale normalization, we have to eliminate abnormal
points in spectra which may lead to error in subsequent
computation. The flux values of most abnormal points In
LAMOST spectra have been given “0” or “NAN,” and it is
easy to find them and replace then by smoothing.
Then, the wavelength range of all spectra are cut in to the

same window from 3700.0 to 8671.6Å, and re-sampled to
guarantee same format of the data. After the preprocess, each
spectrum is an array of 1×3700.

3. Method

3.1. CNN Based Classifier

LeNet is a classic CNN architecture consisting mainly of
convolutional layer, pooling layer, and fully connected layer
Lecun et al. (1998), Ketkar (2017). The one-dimensional (1D)
CNN proposed as a spectral classifier in this paper is similar to
LeNet. In order to accommodate the particularity of 1D spectral
data, we used different convolution kernel sizes, number of
feature maps, and number of convolution layers. The network
structure diagram of 1D CNN is shown in Figure 1, and the
parameters of each layer are shown in Table 1.
The input layer size is 1×3700. A convolution kernel of a

specific size performs the convolution operation to generate m
feature maps,
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= =
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where s •( ) is the Relu activation function, w m( ) is the weight
matrix and b m( ) is the bias vector. The formula for the Relu

Figure 1. Architecture of the 1D CNN and training it for classifying spectra. The final MLP fully connected layers outputs a 1×3 vector to illustrate the type of the
spectrum.

(A color version of this figure is available in the online journal.)
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function is

=O xmax 0, . 3i j, ( ) ( )

The reason for selecting the Relu activation function is
mainly because of its good nonlinearity and unsaturation,
which can effectively reduce the computational complexity
of the network and better the converge the network. In the
convolution layer, the feature map would be sampled by the
sliding of the window. Using the max-pooling layer can
achieve the feature compression and reduce the computational
complexity. The formula is

=O hmax , 4i j q r
m

, ,{ } ( )( )

where Î + + + +q r i j i j i j i j, 2 , 2 , 2 1, 2 , 2 , 2 1 , 2 1, 2 1( ) ( ) ( ) ( ).
After four convolutional and four max-pooling layers, all features
are reshaped as a one-dimensional vector f and transmitted to the
MLP fully connected network, i.e.,

åf w= +
=

-

y f b , 5c
j

f

j j c c
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where bc is the offset and ω is the weight matrix. Then the
probability of which class the spectrum belongs to are
calculated by using the SoftMax function, i.e.,

å
f =

=

h
e

e
, 6c

h

j

P h
1

c

j

( ) ( )

The output is a one-dimensional vector representing
corresponding categories of spectra, such as Galaxy, QSO
and Star.

3.2. SGAN—Spectrum Generator

To balance the training data set for CNN classifier, the
minority classes can be repeatedly sampled in the total training
set, which is also called over-sampling. Although it is a simple
way to enlarge the member of minority classes, the resulting
problem of CNN over-fitting can not be well solved. In this
paper, we calculate the amount of information contained in
the data set by calculating the information entropy of the data
set. When the amount of information is small, it is easy for
the CNN to cause over-fitting, resulting in a decrease in
classification accuracy. The formula for calculating information

Table 1
Parameters of Each Layer in CNN

Layer Type Maps Kernel Size Stride Padding Size Activation

OUT Fully Connected L L L L 1×3 Softmax
F9 Fully Connected L L L L 1×11500 Relu
S8 Max Pooling 50 2×2 1 VALID 1×230 L
C7 Convolution 50 1×2 1 VALID 1×460 Relu
S6 Max Pooling 40 2×2 2 VALID 1×461 L
C5 Convolution 40 1×3 1 VALID 1×922 Relu
S4 Max Pooling 20 2×2 1 VALID 1×924 L
C3 Convolution 20 1×2 1 VALID 1×1848 Relu
S2 Max Pooling 10 2×2 1 VALID 1×1849 L
C1 Convolution 10 1×3 1 VALID 1×3698 Relu
IN INPUT 1 L L L 1×3700 L

Figure 2. Comparison of classification accuracy by using different sample balance approach. The left panel shows the result of over-sampling method, while the right
panel gives the accuracy of classification by using SGAN generated spectra.
(A color version of this figure is available in the online journal.)
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entropy is as follows

å= -
=

H X p x p xlog . 7
i

n

i i
1

( ) ( ) ( ) ( )

Where p xi( ) represents the probability that the random event
X is xi. The information entropy of the data set through the
over-sampling is 5.64, while the information entropy of the
SGAN generated data set is 12.29. In the information entropy
calculation, the over-sampled data set is a set of 1000 sizes
obtained by copying 156 original O-type spectra, and the
SGAN data set consists of 1000 O-type spectra generated
by SGAN.

Furthermore, it is better using SGAN generated spectra to
train CNN than using over-sampled data, and the comparison is
shown in Figure 2. The figure shows training accuracy and

validating accuracy by using over-sampling or SGAN data to
train CNN respectively. From the figure, the validation
accuracy using SGAN training data is more closer to the
training accuracy when the iteration converges, which means
the over-fitting phenomenon in CNN training process can be
effectively controlled by SGAN produced data which leads to
higher classification accuracy for O-type spectra.
The network structure of the one-dimensional SGAN is

shown in Figure 3. The SGAN consists of two neural networks,
one is the Generator (G) and the other is the Discriminator (D),
which competes with each other over the available training data
to improve the spectral quality of the generated (Goodfellow
et al. 2014; Radford et al. 2015).
The trained G models the underlying probability distribution

pg of the training spectra. An artificial mapping qG z, g( ) is

Figure 3. Architecture of the 1D SGAN. The generator uses random samples from the latent space as input to mimic real spectra in the training set as its output. The
purpose of the discriminator is to distinguish the output of the generated network from real samples as much as possible. A game of both is used to generate artificial
spectra.
(A color version of this figure is available in the online journal.)
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proposed so that the input noise variable p zz ( ) can be mapped
to real spectral data. As shown in Figure 3, a 900-dimensional
noise vector z is projected to a spatially expanded convolu-
tional representation with 1024 feature maps, then through
three convolution layers the projected and reshaped noise
vector z is converted to spectra of 1×3700 sampling data
points.

Spectra generated by the generator G and real spectra are
marked as false and true, and then input those into the
discriminator network qD x, d( ) to train the discriminator. The
parameters in the generator network are not updated at this
time. The discriminator then outputs an evaluation value ô for
each input spectrum and calculates ŷ by formula (8)

=
+

Îy
e

s t y
1

1
. . 0, 1 8

o
ˆ ˆ ( ) ( )ˆ

where ŷ states that the spectrum is generated or real. And by
the discriminating result ŷ , the parameters in the generator are
updated in the next iteration process, thereby improving the
capability of the generator. The competition between G and D
can be expressed as the discriminator that makes the generator’s
maximum loss value L D G,( ) smaller. Formula is

=

+ -
~

~

 D G E x D x

E D G z

min max , log

log 1 . 9
G D x p

z p zz

data

( ) ( )[ ( )]

[ ( ( ( )))] ( )
( )

In each iteration process, the discriminator network updates
the parameters through spectra generated by the generator, and
the generator network updates the parameters through the
discriminating result of the discriminator, and the two perform

adversarial learning, so that the generated spectral quality is
higher (Lin et al. 2017). The training set and SGAN code are
available athttps://github.com/Top-secreter/SGAN.

4. Training and Testing the Models

The whole flow chart of the classification solution for
“UNKNOWN” spectra in LAMOST DR6 is shown in Figure 4.
From the figure, there are two CNN classifiers, one for dividing
“UNKOWN” spectra into 3 types, and another for dividing
stellar candidates into 7 subclasses.

4.1. Training the CNN Model for Separating Galaxy,
QSO and Star

The CNN model is trained and validated by a total of 10,500
spectra of galaxies, QSOs and stars randomly selected in
LAMOST DR6, which include 3000 spectra for each type as
the training set and 500 spectra for each type as the validation
set. The minimum batch size for training, the number of
training iterations, and the learning rate are set to 500, 1000,
and 1×10−4 respectively. The classification accuracy curves
in the training process are shown in Figure 5, and the final
classification accuracy are stable to 98.2%, 90.8%, and 91.8%
for galaxies, QSOs and stars respectively when the CNN
converges.

4.2. Combining SGAN and CNN to Classify Stellar
Spectra

We experiment different dimensional Gaussian random
noise input to the SGAN, and find that the quality of generated
spectra gets better with the dimension of the input noise
increases. We fix the best dimension to 1×900 from
experience the since more dimension would prone to mode
collapse.
The noise is subjected to a fully connected three-layer strided

convolution operation in the generator, and finally a batch of
1×3700 size data is obtained. The generated spectra are

Figure 4. The low chart of the classification solution for “UNKNOWN”
spectra in LAMOST DR6. First, the “UNKNOWN” spectra are divided into
three types: Galaxy-QSO-Star, and then stellar spectra are divided into seven
types: O, B, A, F, G, K, M.

Figure 5. The accuracy curves of training process for CNN classifier which is
used to divide “UNKNOWN” data into 3 types. The horizontal axis is the
number of iterations and the vertical axis is the accuracy of validation set.
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marked with 0 and the preprocessed O-type star spectra are
marked with 1, and fed into the discriminator to train its
discriminating ability. In the process of marking, we used the
operation of bilateral label smoothing, which makes network
convergence easier.

The discriminator’s discriminating result is passed to the
generator through the loss function to update the network
parameters in the generator. In each iteration, we train
the discriminator twice and train the generator once to ensure the
stability and fast convergence of the network. We determine
whether the network has reached convergence by observing
the value of the loss function, as shown in Figure 7.

Since the number of O type star is much fewer than other
types in DR6, the SGAN is mainly used to generate O-type
samples for the CNN training set. The architecture and
algorithm has been discussed in Section 3.2. After a certain
number of iterative trainings, SGAN can generate O-type
spectra stably. Both generated and real spectra are used to train
CNN to classy stellar spectra into spectral classes of O, B, A, F,
G, K, and M. The network structure of the combination of
CNN and SGAN is shown in Figure 6.

We select three spectra from the official release data of
LAMOST as the template spectrum of each class, and calculate
the similarity between generated spectra and template spectra
by calculating the Euclidean distance. The Euclidean distance
between generated spectra and template spectra is taken as the

loss function for the generator of the 1D SGAN. As shown in
Figure 7, the distance decreases with the number of iterations
increases, which means that the capability of the generator is
constantly increasing with the iterations increase, and generated
spectra are becoming closer to real spectra constantly. When
the number of iterations reaches 1500 or more, SGAN reaches
convergence. Figure 8 shows an example of comparison
between a generated spectra with a real spectra, and the two
spectra are similar both in continuum and absorption lines,

Figure 6. Architecture of the combination of CNN and SGAN. The O-type spectra generated by SGAN is mixed with the real spectra as the balanced training data set
to train CNN for stellar spectral classification.

(A color version of this figure is available in the online journal.)

Figure 7. Loss graph of SGAN. The horizontal axis is the number of iterations,
and the vertical axis is the average of the Euclidean distance of generated
spectra from real spectra.
(A color version of this figure is available in the online journal.)
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which proves that the generated spectra can be used as training
samples for CNN model.

4.3. Training and Testing the CNN Model for Stellar
Classification

The training and validation sets for the CNN model are
randomly selected from LAMOST DR6. For B, A, F, G, K, and
M types, 1000 spectra for each are taken as training samples,
and 400 spectra for each as the validation samples. For O type,
156 real spectra from DR6 and 1244 generated spectra are
mixed to randomly make up 1000 training samples and 400
validation samples. The minimum batch size for training is 500,
the number of training iterations is 1500, and the learning rate
is 1×10−4. After training completed, the classification
accuracy varies with the number of iterations as shown in
Figure 9, and the final classification accuracy of each type is
shown in Table 2. We can see that the classification accuracy of
the stellar spectra increases with the number of iterations. We
choose a network with the iteration number of 1500 to save.
The average classification accuracy of the stellar spectra at this
time reaches 95.3%. In order to better reflect the purity and

pollution of each category, the confusion matrix of the CNN
classification stellar spectra is shown in Figure 10. From the
figure we can see that the spectral classification results are
better concentrated on the diagonal, and the CNN has
converged. We save the model at this time for the classification
of the stellar spectra.
We also discuss learning parameters and classification

accuracy by analyzing how the learning parameters affect the
performance of the CNN. Figure 11 shows the correlation
between the number of convolution layers, learning rate, kernel
size, the number of feature maps, and classification accuracy.
The left upper panel illustrates that the training time increases
rapidly with the number of convolution layers when there are
more than 4 layers in CNN. However, the classification
accuracy does not increase with increasing number of network
layers. So we set the number of the layers to 4. The choice of
learning rate has a great influence on the algorithm conv-
ergence. In the right upper panel we can see that when the
value of the learning rate is greater than 0.003, the classification
performance of the CNN decreases obviously. When the
learning rate is 0.0001, the network can achieve a high
accuracy rate without too long training time. In the left lower
panel, the network does not converge when the size of the
convolution kernel of the network is greater than 64. So, we
suggest that the size of the convolution kernel should be less
than 32. In the right lower panel we can see that when the
number of the feature maps is greater than 64, it does not
improve the performance of network classification. However,
as the number of feature maps increases, the training time of

Figure 8. Comparison of a real and an artificial O-type spectrum. The
horizontal axis is the wavelength, and the vertical axis is the normalized flux
values. The red curve is a typical O-type real spectrum, and the blue one is
generated by SGAN.

Figure 9. The accuracy curves of dividing stellar candidates into 7 types. The
horizontal axis is the number of iterations and the vertical axis is the validation
set accuracy.

Figure 10. CNN classifies the confusion matrix of stellar spectra.
(A color version of this figure is available in the online journal.)
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CNN increases significantly. So we set the number of the
feature maps to 64. After analyzing the accuracy, training time,
and convergence rate, the configurations are set and described
in detail in Table 1.

We make a test set based on the value of the spectral S/N for
testing the classification accuracy of spectra with different S/N.
The B to M spectra are in five groups according to the S/N.,
including 5–10, 10–20, 20–50, 50–100, and greater than 100.
The classification accuracy for different S/N is shown in
Figure 12. We can see that when the spectral S/N is greater
than 10, CNN can achieve classification accuracy better than
85%, which is a very good solution for ‘UNKNOWN” spectra
with S/N around 10.

In addition, we add Gaussian white noise to the observed
spectra to verify the anti-interference ability of CNN. The

observed spectra we used and the spectra after adding noise are
shown in Figure 13. Noise is added to all the test spectra, and
the classification accuracy rate is shown in the Table 3. We
notice that the classification accuracy of the B-type spectra with
added noise are significantly reduced, waning us that most
spectral lines in the B-type star are weak and susceptible to
noise. On the contrary, the accuracy of O-type spectral
classification has increased, mainly because of the strong
helium lines that are less affected by noise.

5. Application to “UNKNOWN” Data

5.1. Automated Identification of Stellar Spectra

Then the trained CNN classifiers are applied to recognize
some “UNKNOWN” spectra as 26,761 galaxies, 7760 QSOs

Table 2
The Correct Rate of Classification of Validation Sets of 7 Types Stellar Spectra After 1500 Iterations

Star Type O B A F G K M Average

Accuracy rate 88.5% 93.3% 97.3% 95.8% 96.0% 97.5% 98.8% 95.3%

Figure 11. The correlation between the number of convolution layers, learning rate, kernel size, the number of feature maps and classification accuracy. The left panel
up shows the relationship between the number of convolution layers and the classification accuracy. The right panel up shows the relationship between learning rate
and the classification accuracy. The left panel down shows the relationship between kernel size and the classification accuracy. The right panel down shows the
relationship between the number of feature maps and the classification accuracy.
(A color version of this figure is available in the online journal.)

Table 3
The Correct Rate of Classification of Test Sets of 7 Types Stellar Spectra After add Gaussian White Noise

Star Type O B A F G K M Average

Accuracy rate 92.9% 71.4% 94.3% 89.3% 87.2% 95.2% 97.6% 89.7%
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and 683,127 stars, and stars are further classified to 7
subclasses of O, B, A, F, G, K, and M. In order to obtain
reliable results, we only retained the recognized spectra with
probability larger than 99%, and 112,605 stars are finally
identified. The number of identified spectra of each type is
shown in Table 4, and Figures 14 shows examples of identified
spectra. From the figures, we can see that the stellar spectra
(blue) we find from “UNKNOWN” are consistent with the
continuum of the template spectra (red), and the absorption
lines can also be matched. We show the distribution of the
confidence of all the “UNKNOWN” spectra in Figure 15. From

the figure, the confidence of more than 66% of the spectra are
above 0.5, and the spectral confidence of more than 30.8% is
above 0.9. This proves the validity of the classification method.

5.2. The Limitation of the Method

In the “UNKNOWN” spectral data, there are still some
spectra that we cannot distinguish, and we select three
representative spectra shown in the Figure 16. The S/N of
these three spectra is too low, and the value of magnitudes are
too large, indicating that these stars are too dark for the
telescope to obtain its valid information, which lead CNN not

Figure 12. The accuracy of the different S/N spectra is classified by CNN. The horizontal axis is the division of the S/N. The vertical axis is the classification
accuracy.
(A color version of this figure is available in the online journal.)

Figure 13. The left panel shows the original spectrum, the middle panel shows the added Gaussian white noise, the right panel shows the spectrum after adding the
noise.
(A color version of this figure is available in the online journal.)
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unable to classify them. Of cause, there may be some other
reasons to make spectra worse, such as partial loss of a certain
band and instrument response. Even human can hardly judge
the type of spectra.

5.3. Verification Through Average Spectra

To verify the classification result for “Unknown” data, we
would compare the classified spectra with their corresponding
template described in Section 4.2. To simplify the comparison,
we co-add all the classified stellar spectra for each class and
calculate the average spectra for the class. Using this co-added
average spectra, we can augment the commonality of the
spectra to compare with templates. As shown in Figure 17, we

note that the continuum of the template spectra of the seven
types of stellar spectra are almost identical to those of the
average spectra, and the absorption lines can be well matched,
which can be proved types of the classified spectra are correct.

5.4. Manual Identification

In the training set of stellar spectra, we used SGAN to
generate 1,244 O-type spectra to balance the data set.
Compared with over-sampling, this algorithm greatly improves
the classification accuracy of O-type spectra, and we find 294
O-type spectra from “UNKNOWN” spectra by the CNN. In
order to check the results of the CNN, we have carried out an
artificial identification of these spectra.
We identify the O-type with He lines and Balmer lines at the

wavelengths of 4009, 4026, 4101, 4121, 4144, 4200, 4340,
4387, 4471, 4541, 4686, 4713, 4861 and 6563Å, which are
shown in Figure 18. Finally, 200 O-type spectra are identified
manually, and other 94 spectra are refused because of strict
identification. Most of the 94 spectra have low S/Ns, and it is
difficult to recognize them manually.

6. Summary

In this paper, we present adapted 1D CNN and SGAN model to
classify low S/N “UNKNOWN” spectra in LAMOST DR 6. By
comparing with the over-sampling method, we prove that SGAN
can better augment the data set and improve the classification
performance of CNN. We demonstrate that the artificial data
generated by 1D SGAN can augment the real data set, thus
providing a larger amount of data for the training of the DL
network, and can balance the data set, thereby greatly improving
the classification accuracy for minority classes. Trained 1D CNN
by combining real spectra with generated spectra and obtained the
best results. Through two CNN based classifiers, we classified the
“UNKNOWN” spectra of the LAMOST DR6 V1 into different
spectral types and subtypes, and the classification results are shown
in Section 5.1. The accuracy of the classification results are verified
by comparing with a traditional distance metrics. Further, we
confirm O-type spectra by visually identifying the absorption lines
at specific wavelengths. The classification result as a part of this
work is available athttp://paperdata.china-vo.org/Classification_
SGAN/result.zip. The result extends the existing O-type spectral
data set, and reduces the number of spectra of the “UNKNOWN”
type of DR6, which confirms the feasibility of the method.
The results in this paper show that the use of simulated

spectra generated by 1D SGAN can improve the distribution of
training data sets, thus improving the generalization perfor-
mance of the “UNKNOWN” data classification. Our work not
only reduce the “UNKNOWN” spectra in LAMOST, but also
extract about 200 new O-type spectra, which is a sub-catalog
for very rare objects astronomers. The successful application of
this semi-supervised learning algorithm in the “UNKNOWN”

Table 4
Number of 7 Types Spectra Classified by the Saved 1D CNN Model

Star Type O B A F G K M

Number 294 3224 297 7898 661 66687 33533

Figure 14. The examples of identified spectra of each class from O to M. The
blue spectra are “UNKNOWN” spectra, and the red spectra are corresponding
templates spectra. The flux in the plot is normalized.

Figure 15. This is the histogram of the confidence distribution of the
“UNKNOWN” spectra after CNN classification. The horizontal axis is the
distribution of confidence. There are 100 confidence intervals from 0 to 1. The
vertical axis is the number of spectra in each confidence interval.
(A color version of this figure is available in the online journal.)
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classification, we believe that it can get more applications in the
classification of unbalanced data, especially for low S/N data.
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