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Abstract

Axions are a viable candidate for cold dark matter, which should generically form minihalos of subplanetary
masses from white-noise isocurvature density fluctuations if the Peccei–Quinn phase transition occurs after
inflation. Despite being denser than the larger halos formed out of adiabatic fluctuations from inflation, axion
minihalos have surface densities much smaller than the critical value required for gravitational lensing to produce
multiple images or high magnification, and hence are practically undetectable as lenses in isolation. However, their
lensing effect can be enhanced when superposed near critical curves of other lenses. We propose a method to detect
them through photometric monitoring of recently discovered caustic transiting stars behind cluster lenses, under
extreme magnification factors μ103–104 as the lensed stars cross microlensing caustics induced by intracluster
stars. For masses of the first gravitationally collapsed minihalos in the range ∼10−15

–10−8 h−1Me, we show that
axion minihalos in galaxy clusters should collectively produce subtle surface density fluctuations of amplitude
∼10−4–10−3 on projected length scales of ∼10–104 au, which imprint irregularities on the microlensing lightcurves of
caustic transiting stars. We estimate that, inside a cluster halo and over the age of the universe, most of these minihalos
are likely to avoid dynamic disruption by encounters with stars or other minihalos.

Unified Astronomy Thesaurus concepts: Cosmology (343); Gravitational lensing (670); Gravitational microlensing
(672); Dark matter (353); Galaxy clusters (584)

1. Introduction

Gravitational lensing can reveal self-gravitating objects
containing only dark matter (DM), which are difficult to detect
by other means because they have expelled or have never
accreted baryons. Most DM theories predict the presence of
these objects on mass scales much smaller than that of galaxies.
Direct detection of these structures would provide crucial clues
to the physical origin of DM. A common problem is that these
structures are predicted to have surface densities well below the
critical value, so they by themselves cannot act as gravitational
lenses capable of creating multiple images or inducing
substantial image magnifications and distortions, and their
effects are often unnoticeable.

However, when these small-scale objects are superposed on
a large-scale lens near lensing critical curves, very small
surface density perturbations may result in large observable
changes (Minor et al. 2017; Dai et al. 2018b). Recently, the first
highly magnified stars have been discovered in the field of
massive clusters of galaxies (Kelly et al. 2018; Chen et al.
2019; Kaurov et al. 2019). Near the critical curve of the cluster,
individual superluminous stars in the background become
visible to our most powerful telescopes when magnified by a
factor of ∼102–103. Microlensing by intracluster stars in the
lensing cluster introduces fast variability in the magnification
(Venumadhav et al. 2017; Diego et al. 2018; Oguri et al. 2018),
turning highly magnified stars into a probe not only of the
abundance and mass function of intracluster stellar objects, but
also of any small-scale density inhomogeneity in the DM.

Axions are a promising DM candidate produced by non-
thermal mechanisms in the early universe. As a famous example,
the quantum chromodynamics (QCD) axion is motivated by the
Peccei–Quinn mechanism (Peccei & Quinn 1977), which

explains the absence of a charge-conjugation parity (CP)
violating term in the QCD Lagrangian (Weinberg 1978;
Wilczek 1978; Kim 1979; Shifman et al. 1980; Dine et al.
1981) as implied by the null value of the neutron electric dipole
moment (Pendlebury et al. 2015). Generic axions can arise from
other spontaneous broken U(1) symmetries (Chikashige et al.
1981; Gelmini & Roncadelli 1981; Wilczek 1982; Berezhiani &
Khlopov 1990; Jaeckel 2014) or from low-energy effective
theories emerging from string theory (Georgi et al. 1981;
Witten 1984; Conlon 2006; Choi et al. 2009; Cicoli et al.
2012; Dias et al. 2014), and may also account for the DM.
Cosmological models involving axions as the DM predict

the existence of very dense, low-mass DM halos through
gravitational instability (Hogan & Rees 1988; Kolb &
Tkachev 1994) if the Peccei–Quinn symmetry breaking occurs
after inflation. However, the surface density of these minihalos
would be too low to make them generally detectable through
gravitational lensing. Despite a number of proposed lensing
methods to detect small-scale axion structures (Kolb &
Tkachev 1996; Fairbairn et al. 2017, 2018), so far the range
of axion minihalo densities and masses does not seem
accessible with any foreseeable observational techniques.
In this paper, we propose the first realistic astrophysical

method to detect axion minihalos through gravitational lensing.
Highly magnified stars lensed by clusters of galaxies can have
apparent fluxes affected by the presence of axion minihalos
when they are crossing one of the microcaustics produced by
intracluster stars. While the intracluster stars disrupt the cluster
critical curve into a network of microcritical curves on angular
scales of ∼10 μas, axion minihalos having subplanetary masses
and solar system sizes would produce finer magnification
variations on much smaller scales of ∼102–103 nano-
arcseconds. When crossing a microcaustic, the observed
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lightcurve of a highly magnified star should be altered by
surface density fluctuations caused by axion minihalos inside
the cluster lens. This paper aims to predict the lensing impacts
of axion minihalos on highly magnified stars, which can be
monitored through dedicated observations with our most
powerful space-borne or ground-based optical and infrared
telescopes (Windhorst et al. 2018; Diego 2019).

We outline this work as follows. In Section 2, we start with a
review of primordial isocurvature density fluctuations expected
to arise from a Peccei–Quinn phase transition in axion DM
scenarios. Then, in Section 3, we derive the physical properties
of axion minihalos that collapse from primordial isocurvature
density fluctuations and show that they are significantly denser
and more compact than halos of comparable masses expected
in the standard cosmology. In Section 4, we discuss the mass
function of axion minihalos. In Section 5, we calculate the size
of surface mass density fluctuations due to the cumulative
effect of many substructure minihalos along the line of sight
through the cluster halo. In Section 6, we estimate the possible
dynamic disruption of axion minihalos by mutual encounters or
encounters with stars. In Section 7, we study the lensing
signatures of axion minihalos imprinted on highly magnified
stars and show that sizable irregularities are expected in their
lightcurves during microcaustic crossings. Additional discus-
sion is presented in Section 8, and we conclude in Section 9.
We discuss some technical details in a few appendices. We use
the conventional notation in cosmology wherein many physical
quantities are expressed in a way that scales with the
dimensionless Hubble parameter h.

2. Isocurvature Density Fluctuations in Axion Cosmology

Axions are a viable particle candidate for nonthermal DM,
namely DM that has never interacted substantially with the
baryonic matter in the universe since it was created. The axion
DM hypothesis is that a global U(1) symmetry of a complex
scalar field j was spontaneously broken in the very early
universe (Peccei & Quinn 1977) and gave rise to the axion
particle f as the Goldstone mode associated with the angle of
j. If the global U(1) symmetry breaking occurs after inflation
during the era of radiation domination, causally disconnected
Hubble patches settle down to different vacuum expectation
values of f.

The axion can acquire a nonzero mass ma through
nonperturbative effects such as instantons (Gross et al. 1981),
which can tilt the potential so that it is no longer flat with
respect to f. The axion mass is in general temperature
dependent, which induces fluctuations of order unity in the
axion field energy density as the field configuration oscillates
around the potential minimum f=0. This, however, does not
occur immediately after the axion acquires its mass because the
Hubble timescale is shorter than ( ) m ca

2 in the beginning
and the axion is dynamically “frozen.” During this time, the
field configuration is smoothed over the instantaneous horizon
scale by the Kibble mechanism (Kibble 1976).

The situation changes when the cosmic expansion eventually
slows down to be comparable to the axion field oscillation
timescale, ( ) ( ) H t m t c3 a0 0

2 . The axion field, which is
coherent on the horizon scale at this epoch, λH(t0)∼c/H(t0),
starts to oscillate around f=0 and to contribute to the cosmic
matter density budget. This generates isocurvature perturba-
tions in addition to the inflationary adiabatic perturbations. The
QCD axion starts to oscillate when the universe cools to a

temperature T0=T(t0);1.3 GeV (Buschmann et al. 2019),
and the axion mass evolves with the temperature from
ma(T0)∼6×10−9 eV to ma=2.5×10−5 eV at zero temp-
erature (di Cortona et al. 2016; Buschmann et al. 2019),
although the exact numbers are subject to theoretical
uncertainties (Borsányi et al. 2016). A generic axion particle
can have a different mass for which the onset of field oscillation
is at a different epoch.
Assuming Gaussian statistics, the total power spectrum for the

matter overdensity is the sum of the standard inflationary
adiabatic power spectrum Pcdm and the axion isocurvature power
spectrum Piso.

4 At the initial time t0, the latter can be modeled
as a white-noise power spectrum (Hogan & Rees 1988;
Fairbairn et al. 2018), ( ) ( ) ( )p= Q -P k k k k24 5iso 0

2
0
3 ,

where k0=a(t0)H(t0)/c is a cutoff comoving wavenumber
associated with the horizon scale at t0. Requiring a DM
overdensity variance of order unity on the scale k0 at t0 fixes the
normalization of Piso. The total amount of axion mass enclosed
within a spherical volume of a comoving radius π/k0 defines a
characteristic mass scale

( )( ) ¯ ( )p p r=M k4 3 , 1a0 0
3

0

where r̄a0 is the present-day mean density in axions. This sets
the mass scale of the first collapsed objects from the
isocurvature perturbations. For the QCD axion, we obtain
M0;5×10−10Me based on the axion mass parameterization
used in Buschmann et al. (2019) and the the effective number
of relativistic degrees of freedom presented by Husdal (2016;
see Appendix A). After accounting for a factor of 4π4/3≈130
larger in our definition, this number is compatible with the
characteristic masses for the first gravitationally collapsed
axion minihalos quoted in other references (Davidson &
Schwetz 2016; Hardy 2017; Fairbairn et al. 2018). We
therefore estimate that the typical mass for the first collapsed
axion minihalos is ∼0.01M0, and is ∼5×10−12Me for QCD
axions. For generic axion DM, a wide range of values for M0

are possible.
The white-noise model is not likely to be a good

approximation around the cutoff scale k0, where the axion
field fluctuations are subject to complicated nonlinear dynamics
and can be significantly non-Gaussian (Kolb & Tkachev 1996).
Numerical simulations find intricate axion clumps on scales
shorter than k0

−1 (Vaquero et al. 2019; Buschmann et al. 2019).
Unrelated to gravitational instability, these clumps emerge soon
after the onset of field oscillation at t0 as a result of complicated
Klein–Gordon dynamics, with mass scales as much as four
orders of magnitude smaller than the analytic estimate of
∼0.01M0 for the smallest gravitationally collapsed minihalos
(Vaquero et al. 2019; Buschmann et al. 2019). These clumps
are likely to be contained within the first gravitationally
collapsed minihalos, and we distinguish them from axion
minihalos, which are the focus of study throughout this paper.
The Gaussian white-noise model for minihalos should work
well in the shot-noise regime k=k0, regardless of the
formation of smaller clumps.
With favorable parameter values for the axion cosmology,

k0 typically translates into a length scale many orders of

4 Throughout the paper, we adopt the simplifying terminology “isocurvature
fluctuation” to mean the perturbation in the ratio of the axion density to total
density, with a constant baryon-to-photon ratio, which should be distinguished
from other forms of isocurvature modes.
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magnitude smaller than the range of scales probed through the
cosmic microwave background (CMB) anisotropies and the
large-scale clustering of galaxies. Therefore, the isocurvature
modes that dominate over the adiabatic modes enter the horizon
well before the epoch of radiation–matter equality at zeq;3400,
so they have wave numbers ( ) ( ) =k k a z H z ceq eq eq . Analy-
tic and numerical calculations of linear perturbations have shown
that subhorizon isocurvature matter modes start to grow
substantially only when z>zeq (Efstathiou & Bond 1986).
Adiabatic modes behave differently during the era of radiation
domination: upon entering the horizon, the oscillation of the
photon–baryon fluid as an acoustic wave generates an initial
peculiar velocity in the DM, leading to a comoving displacement
of the DM that grows logarithmically with the scale factor and is
responsible for the shape of the linear cold dark matter (CDM)
power spectrum at k>keq. In comparison, isocurvature modes
induce no such initial peculiar velocities and grow only through
the self-gravitation of the DM after horizon entry and the photon–
baryon acoustic oscillation (see Appendix B for more details).

Because the white-noise isocurvature power spectrum is only
meant to be a crude model, we adopt the approximation that all
isocurvature modes grow by the same factor, equal to the usual
ΛCDM growth factor D+(z). We ignore the growth of
isocurvature modes at z<zeq, noting that this small growth
is in any case a nearly constant factor over the relevant range of
scales that can be reabsorbed into the definition of k0. We can
then write the linear power spectrum for the total matter
overdensity (including both isocurvature and adiabatic modes,
but ignoring the gravitational influence of baryons on the
isocurvature component) at redshift z as

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( ) ( ) ( ) ( )

( )
( )

( )p

= + Q -

´
+

+

+

+

+

P k z P k D z k k

k

D z

D z

z

z

,

24

5

1

1
. 2

m

i i

cdm
2

0

2

0
3

2
eq

2

This is valid for z<zeq, where zi is an arbitrarily chosen
reference redshift during the era of matter domination
satisfying 1=zi=zeq.

We note that any primordial adiabatic fluctuations of large
amplitude and on small scales would be subject to stringent
constraints on entropy production from acoustic damping in the
primordial plasma (Jeong et al. 2014; Inomata et al. 2016).
Because modes of k∼102–108 hMpc−1 enter the horizon well
before the epoch of radiation–matter equality, they would have
rapidly dissipated. By contrast, large CDM isocurvature
fluctuations are allowed because density fluctuations during
the radiation era z?zeq are highly suppressed. Neither are
these axion isocurvature modes subject to Big Bang nucleo-
synthesis constraints, which apply to baryonic isocurvature
modes of k109 hMpc−1 (Inomata et al. 2018).

In Figure 1, we plot the total matter overdensity power
spectrum linearly extrapolated to z=0 for M0 in the range
10−10

–10−6Me h−1. On comoving scales shorter than the
inverse of k∼104–108 hMpc−1, the isocurvature contribution
can dominate the total power. This means that isocurvature
perturbations lead to earlier gravitational collapse on those
small scales. In fact, on scales k∼k0, fluctuations are initially
of order unity, and they reach nonlinear collapse near the epoch
of radiation–matter equality. Note that the sharp reduction of
power at scale k0 in Figure 1 is expected to be smoothed once
axion dynamics on scales shorter than k0 are accurately
calculated.

On sufficiently small scales, gravitational instability is
prohibited by the quantum degeneracy pressure of the axion
field. The comoving wavenumber of the effective Jeans scale is
given by (Fairbairn et al. 2018)

⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

( ¯ ) ( )
( )

( )

p r=

= ´ +

´
W

- -

-

k G a m

z

h m

16

6.7 10 Mpc 1

0.12 10 eV
. 3

J a a

m a

0
1 4 1 2

10 1 1 4

2 1 4

4

1 2

Structure formation becomes efficient at z<zeq;3400, and the
expected QCD axion has a mass in the range ma∼10−6–10−4 eV
at zero temperature, so Equation (3) suggests that quantum
degeneracy pressure is negligible for the gravitational instability of
the isocurvature modes shown in Figure 1.

3. Size and Density of Axion Minihalos

During the epoch of matter domination, collapsed objects
form after the matter overdensity amplitude reaches a value
near unity. Around the epoch of radiation–matter equality, the
first collapsed objects form on a comoving scale ∼1/k0 with
masses ∼0.01M0. Similar to that in the standard cosmology,
hierarchical assembly of collapsed objects proceeds in a
bottom-up fashion toward larger length scales (and smaller
comoving wave numbers). Increasingly larger halos are built
up from mergers of smaller ones and accretion of smooth
matter, and they develop an internal structure of orbiting
satellite halos, with at least a fraction of them surviving
dynamical disruption. This structure may have multiple levels
of orbiting satellites within orbiting satellites. The hierarchical
process takes place first during zeq>z20 on very small
scales, where the white-noise isocurvature power spectrum
dominates. Then, at z20, the inflationary adiabatic power
spectrum is dominant, and structure formation proceeds in a
way identical to that of the standard CDM cosmology, except

Figure 1. Linear power spectrum of matter overdensity Pm(k) at z=0
assuming all DM is made of axions. The black solid curve shows the standard
adiabatic power spectrum, and the colored dashed curves show isocurvature
contributions corresponding to various values of M0. Only isocurvature modes
of >k keq, which enter the horizon prior to radiation–matter equality, are
shown. For reference, k is converted into a mass scale ¯ ( )( )r p p=M k4 3a0

3

along the top axis.

3
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that a fraction of the DM is clumped in the form of vast
numbers of very small and dense orbiting minihalos.

Consider the collapse of a spherical region at redshift zcoll,
which has a comoving Lagrangian radius R and an enclosed
mass ( ) ¯p r=M R4 3 a0

3. Exact spherical symmetry in collapse
is unrealistic for predicting the correct density profile of the
collapsed halos. Numerical studies of collapse from Gaussian
random overdensities using N-body simulations suggest that
halos formed through hierarchical assembly in general follow the
phenomenological Navarro–Frenk–White (NFW) density profile
(Navarro et al. 1996, 1997) ( ) [( )( ) ]r r= +r r r r r1s s s

2 ,
which is defined by a scale density ρs and a scale radius rs.

The literature on CDM halos has commonly used three
quantities to characterize an NFW halo: the virial mass
M200, the virial radius r200, and the concentration parameter
c200=r200/rs. Instead, we treat ρs and rs as fundamental
parameters that are closely tied to the time of halo collapse.
Numerical studies suggest a “two-step” picture for the
formation and evolution of halos (especially at low peak
heights): upon collapse, the halo first undergoes a phase of
rapid growth to reach a typical concentration factor cå;4
(Zhao et al. 2003, 2009); after that, halo growth slows down
while its inner profile stabilizes (Bullock et al. 2001; Ludlow
et al. 2013). During the second phase, which is often referred to
as pseudo-evolution, ρs and rs hardly change if measured in
proper units, while the virial mass and the virial radius still
increase due to mass accretion onto the outer parts. The picture
of pseudo-evolution applies particularly well to isolated halos
that grow slowly from the low-density surrounding material,
which are typically of low mass compared to the characteristic
collapsing mass at each epoch. Using ρs and rs is convenient
for quantifying the gravitational lensing effect; they character-
ize the halo’s inner region, which is much denser and more
compact than the entire virialized region at high halo
concentration. We therefore describe NFW halos using ρs and
rs, assumed to be stationary from the onset of the pseudo-
evolution phase.

The linear matter overdensity smoothed over a scale R has a
variance ( ) òs =M z d k, ln2 [ ( )] ( )∣ ( )∣pk P k z W k R, 2 ,m

3 2 2,
where ( ) ( ) [ ( ) ( ) ( )]= --W k R kR kR kR kR, 3 sin cos3 is the
spherical top-hat window function. At each redshift, one can
derive the mass scale M and the comoving radius scale R=
R(M) that collapse from any given peak height ν(M, z)=
δc/σ(M, z), where δc=1.686 is the threshold overdensity
during the era of matter domination. Halos of mass M collapse
over a broad range of redshifts, but we can define a universal
median collapse redshift corresponding to a fluctuation with
ν=νmed=0.67. For any M, a characteristic mass-dependent
collapse redshift zcoll(M) follows by solving νmed=δc/σ(M, zcoll).
When isocurvature fluctuations dominate the overdensity power
spectrum in Equation (2), the median collapse redshift is derived
to be

( ) ( ) ( )( )( )
( )( )

( )

p n d+ = +

= +

z M z M M

z M M

1 18 5 1

0.24 1 .

4

ccoll
2 1 2

med eq 0
1 2

eq 0
1 2

To estimate the NFW fundamental parameters, we assume that
the collapsed NFW halo has a universal concentration
parameter cå=r200/rs=4, its enclosed mass within r200
equals M, and the mean density within r200 is 200 times the

cosmic mean ¯ ( ) ¯ ( )r r= +z z1a acoll 0 coll
3. For cå=4, we find

¯ ( )r r» z5271s a coll , [ ¯ ( )]r»r M z0.0265s a coll
1 3, and M≈

10.2 ρsr
3
s . When the white-noise isocurvature power spectrum

dominates, the resultant halos, which we refer to as minihalos,
obey the following scaling relations with the mass scale M,

⎛
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It is useful at this point to compare the characteristic surface
density of axion minihalos, ρs(M)rs(M), with the critical surface
density in gravitational lensing, required for an isolated lens to
produce multiple images and high magnification. The critical
surface density is given by Σcrit=c2/(4πGDeff), where
Deff=DLDLS/DS for angular diameter distances DL to the lens,
DS to the source, and DLS from the lens to the source. The
typical lensing convergence of an axion minihalo near the scale
radius, κs(M)≈ρs(M)rs(M)/Σcrit, is tiny,
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Even for dense minihalos with M=10−10Me h−1, acting as
individual lenses at cosmological distances, κs(M) is no greater
than ∼10−3. Axion minihalos can therefore not produce
substantial lensing effects by themselves, but we will show in
this paper that they can be detected when acting in conjunction
with a galaxy cluster lens and intracluster stars near a lensing
critical curve.
In Figure 2, we check whether the above simple peak-height

prescription gives reasonably good estimates for the funda-
mental parameters ρs and rs of halos at low masses. We first
generate random NFW halos in the standard ΛCDM cosmology
within a range of redshifts 0<z<15 and a range of virial
masses ( )- < <M h M16 log 10200 sampled from N-body
simulations (Diemer & Joyce 2018). Next, we calculate their rs
and ρs using a number of median concentration–mass relations
from the literature, which are empirically calibrated to
simulations. When we scatter-plot the halos on the (rs, ρs)
plane, they all lie within a squeezed band, which is particularly
narrow at very small halo masses. This indicates that the notion
of pseudo-evolution is reasonably valid for low-mass halos. For
a comparison, we then analytically estimate the ρs and rs of
median halos using the peak-height prescription: we identify
peaks with a median height ν=νmed at various redshifts, and
then calculate using the relations ¯ ( )r r» z5271s a coll and
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[ ¯ ( )]r»r M z0.0265s a coll
1 3, where at any given collapse

redshift zcoll we solve the top-hat mass M from ν(M, zcoll)=
δc/σ(M, zcoll)=νmed. On the (rs, ρs) plane, this produces
a single curve parameterized by the collapse redshift zcoll or
alternatively the top-hat mass M. At small halo masses, this
curve aligns reasonably well with the narrow band of halos
identified from numerical simulations.

With this justification, hereafter we rely on the above peak-
height prescription to estimate halo size and density in axion
cosmology. We show some sample curves in Figure 2. We see
that in axion cosmology, sufficiently small halos can be many
orders of magnitude denser than their ΛCDM counterparts
(Diemand et al. 2005; Berezinsky et al. 2006; Diemand et al.
2006).

The inner region of the collapsed axion halo has a typical de
Broglie wavelength ( ) ( )l p s=  m2 adB , where we estimate
velocity dispersion as ( )s r~ G rs s

1 2. The quantum degen-
eracy pressure is dynamically unimportant if λdB=rs, which
requires
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Whenever this is valid, the axion halo can be modeled as a self-
gravitating system made of classical collisionless particles (if
axion self-interaction is negligible). In Figure 2, we overplot
contours for this minimum axion mass, such that for any given
value of ma, halos located on the upper-right side of the contour
on the (rs, ρs) plane are not dynamically affected by the
degeneracy pressure. For the mass range ma∼10−6

–10−4 eV
(at zero temperature) which brackets the theoretically favorable
mass for the QCD axion, axion minihalos formed from
isocurvature fluctuations are not affected by the degeneracy
pressure.

4. Mass Function of Axion Minihalos

The Press–Schechter (PS) formalism (Press & Schechter
1974) predicts that at a given time t, the collapsed halos have
a mass function ( ) ( ¯ ( ) ) ( )r=n M t t M df M t d M, , lnm

3 . We
define n(M, t) to be the proper volume number density of halos
per logarithmic interval of mass M. The mass fraction per
logarithmic interval of mass is
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Here, ¯ ( )r tm is the mean matter density and ν(M, t)=δc/σ(M, t)
is the peak height.
The PS mass function excludes small halos that have been

incorporated into larger ones as subhalos. Some subhalos are
disrupted, while others may survive for long. Both isolated halos
and subhalos act as perturber lenses, so as far as gravitational
lensing is concerned; Equation (9) sets a lower limit to the fraction
of mass locked up in collapsed, dense objects.
In Figure 3, we adopt the PS formalism to compute

df d Mlog at various redshifts. We consider different values
of M0 for the axion cosmology and compare the results to
those of standard cosmology. As an example, for M0=
10−10 h−1Me, by z=100, virtually all DM is locked up in

Figure 2. Scale radius rs vs. scale density ρs for NFW halos in standard or
axion cosmologies. We scatter-plot rs and ρs for standard CDM halos drawn
from 0<z<15 and ( )- < <M h M16 log 10200 assuming the median halo
concentration–mass relation from Bullock et al. (2001, green dots) and from
Diemer & Joyce (2018, magenta dots). Curves show rs and ρs calculated from
the simple prescription that a spherical top-hat region enclosing mass M with a
median peak height ν=νmed=0.67 collapses into an NFW halo with
concentration c200=r200/rs=4 and mass M within r200. The black dashed–
dotted curve is for standard ΛCDM cosmology. Blue (M0=10−10 Me h−1)
and red (M0=10−6 Me h−1) curves are computed using the axion cosmology
power spectrum Equation (2). Black dotted contours show r r10.2 s s

3 in units of
Meh

−1. Brown dotted contours show the axion mass ma below which quantum
degeneracy pressure is dynamically important, in units of eV·h.

Figure 3. Differential mass fractions of isolated collapsed halos,
( )df M d Mlog , computed from the Press–Schechter formalism. We compare

the standard CDM cosmology (black) and the axion cosmology with two
different values for the M0 parameter, 10−10 h−1Me (blue) and 10−6 h−1Me
(red), at three different redshifts: z=1 (solid), z=10 (dashed), and z=100
(dotted).
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collapsed axion minihalos of masses M<10−6 h−1Me, well
before any galactic-scale halos form. As hierarchical assembly
proceeds, small minihalos gradually assemble into larger halos.
By z=10, about 50% of DM resides in isolated minihalos of
masses M<10−4 h−1Me, and a substantial fraction has
already assembled into the first dwarf-galaxy halos from the
nonlinear collapse of adiabatic fluctuations. By z=1, around
the time when the most massive galaxy clusters are forming,
isolated minihalos of masses M<10−4 h−1Me still contribute
about 10% of all DM. This provides a lower limit on the mass
budget of minihalos of M<10−4 h−1Me in the universe,
because we have excluded subhalos of similar masses whose
contribution depends on the substructure survival fraction and
is not accounted for by the PS formalism.

Figure 3 shows that structure formation in axion cosmology
differs substantially from that in standard cosmology because
the collapse times of the very low-mass halos shift to earlier
epochs. In standard cosmology, practically no DM structures
have collapsed on any scales by z=100. The lowest-mass
halos form only at z∼20, at an epoch not well separated from
the formation times of the first halos of dwarf-galaxy scale. For
the axion cosmology with M0=10−10 h−1Me, isolated halos
with M10−4 h−1Me account for ∼30% of all DM. By
z=1, this fraction drops to ∼10% as more of them merge into
larger halos. On the other hand, the DM mass fraction
(including substructure) residing in large halos converges
between the standard cosmology and the axion cosmology. The
PS calculation indicates that in axion cosmology, the mass
fraction in tiny isolated minihalos with M<10−4 h−1Me is
much higher than that in standard cosmology. Moreover, the
low-mass axion minihalos are much denser, so they are much
more likely to survive as substructure when they merge into
larger halos. When the value ofM0 is increased, for example, to
M0=10−6 h−1Me, the characteristic minihalo masses shift to
larger masses; the aforementioned conclusions remain qualita-
tively true after numbers are appropriately rescaled.

The PS calculation includes only isolated minihalos, whereas
observations of caustic transiting stars behind lensing clusters
are predominantly probing DM subhalos inside galaxy clusters
rather than intervening field halos in intergalactic space (see
discussion in Section 5). Nevertheless, we make the following
argument to translate the above results to the subhalo mass
fraction inside a galaxy cluster, up to caveats regarding
minihalos surviving dynamic disruption in the intracluster
environment. Most of the mass of a galaxy cluster accretes at
z∼1 from the intergalactic medium, where the abundance of
small DM halos shortly before the accretion to the cluster is
well described by the PS mass function. Being much denser
than the cluster halo, the axion minihalos are unlikely to be
disrupted once they merge into the cluster. The fractional mass
function of minihalos inside the cluster halo can therefore be
approximately described by Equation (9). This approximation
is still a lower limit to the number of minihalos, because the PS
formalism does not include minihalos that collapse and survive
as subhalos in intermediate-mass halos, and are incorporated
into the cluster when the intermediate-mass object merges into
the cluster.

Using this justification, we will use Equation (9) to estimate
the power spectrum of the surface density projected along the
line of sight through a cluster halo in Section 5. The various
theoretical uncertainties regarding dynamical disruption of
minihalos and the multiple levels of subhalos inside subhalos

will affect our result only by a moderate factor reflecting the
fraction of DM in axion minihalos.

5. Cumulative Effect of Minihalos along a Line of Sight

The main goal of this paper is to analyze the gravitational
lensing impact of axion minihalos in the line of sight to a
source observed at high magnification. As mentioned, axion
minihalos are difficult to detect with gravitational lensing
because of their low surface density. However, small surface
density fluctuations ΔΣ produce large effects near critical
curves, when the lensing magnification is as high as
∼Σcrit/ΔΣ.
Near the critical curve of a galaxy cluster, the total cluster

surface density is close to Σcrit, whereas the surface density of
an individual minihalo is much lower. This implies that if, as
argued above, axion minihalos contain a substantial fraction of
all the DM, their area covering factor is much larger than unity.
Therefore, axion minihalos must move through each other on
many high-speed encounters as they orbit inside the cluster
halo. At the same time, surface density fluctuations near a
lensing critical curve result from the superposition of many
axion minihalos, and can therefore be treated as a Gaussian
random field, with all the information being included in the
power spectrum. We evaluate the surface density power
spectrum in this section.

5.1. Surface Density Power Spectrum

A useful starting point of the calculation is to consider that
all the relevant density fluctuations are contained in a
statistically homogeneous slab of thickness L, which is much
larger than any transverse scales of interest. As shown in
Appendix C, the power spectrum of the surface density field Σ
is in this case related to that of the volumetric density field ρ as
PΣ(q⊥)=Pρ(q⊥)L, where q⊥ is the two-dimensional Fourier
wavenumber conjugate to the transverse length scale in proper
units. This also assumes that the power spectrum is not too
blue, obeying ( ) <rd P q d qln ln 1, where q denotes the
three-dimensional Fourier wavenumber.
If all mass were locked into subhalos of some mass M

and number density per unit Mln given by ( ) =n M
( ¯ ) ( )r M df M d Mln , the volumetric density power spectrum
is (see Cooray & Sheth 2002),
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2

is the Fourier transform of the halo density profile (assumed to
be spherically symmetric) at halo mass M. In principle, the
subhalo mass distribution does not have to be the same as the
field distribution in Equation (9) considered in the previous
section, but by the argument put forward in Section 4, we will
use the approximation here that they are the same.
We now consider a long slab along the line of sight through

the cluster halo. The total length of the slab is of the order of
the cluster virialization scale ∼Mpc. The scale of the relevant
transverse modes is comparable to the radii of the axion
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minihalos, which is orders of magnitude smaller. Because the
coarse-grained density profile varies substantially from the
inner region to the outer region of the cluster halo, it is invalid
to assume that the volumetric density field is statistically
homogeneous when deriving the power spectrum of the surface
density field across the slab. Therefore, we divide the slab
along the line of sight into many subslabs. Each subslab is
sufficiently thin for the density field to have approximately
homogeneous statistics, but is thick enough for the derivation
of Appendix C to be valid. The surface density field through
the entire slab has a power spectrum equal to the uncorrelated
sum of the contributions from all subslabs.

We make another simplifying premise that all subslabs share
the same fractional mass distribution as a function of halo
mass, df d Mln . Then, the halo mass function is linearly
proportional to the local mean density in each subslab.
According to Equation (10), the power spectrum for the
surface density field is given by a summation over all subslabs,
or an integral along the line of sight in the limit of a large
number of subslabs,
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where ( )ò dL is the line-of-sight integral. The fractional

surface overdensity, defined as ≔d S S2d , has a power
spectrum
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Under our assumptions, only the mean surface density S is
needed for computing ( )d ^P q2d , provided that the (uniform)
fractional mass distribution df d Mln and the halo density
profiles are known.

Apart from minihalos residing in the cluster halo, intervening
minihalos freely floating in intergalactic space are also
expected. Indeed, in substructure tests utilizing galaxy-scale
lensing, intervening field halos integrated over a cosmological
distance can be equally important or even dominant compared
to subhalos (Despali et al. 2018). By comparison, the amount
of substructure through a rich galaxy cluster is substantially
larger. Assuming similar mass fractions of minihalos inside the
cluster halo and in intergalactic space, the relative importance
of the two contributions can be inferred from comparing the
surface density through the cluster Scl and the integrated DM
surface density everywhere else along the line of sightSlos. For
the two known highly magnified stars behind MACS J1149
(Kelly et al. 2018) and behind MACS J0416 (Chen et al. 2019;
Kaurov et al. 2019), we find S » 0.1los – S0.2 cl, which
indicates that intergalactic minihalos should be subdominant.

It is convenient to measure the surface mass density in units
of Σcrit, which gives the lensing convergence κ=Σ/Σcrit.
Ignoring intergalactic minihalos, the lensing convergence has a
power spectrum
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We emphasize that this calculation is conservative because it
only counts minihalos formed in isolation prior to cluster
formation and excludes minihalos who themselves orbit
intermediate-mass subhalos (i.e., subhalos of subhalos).
In Figure 4, we present a calculation of the convergence

power spectrum for the specific case of the line of sight toward
the highly magnified star LS1 behind MACS J1149. In the
calculation, we assume that axion minihalos inside the cluster
halo obey the PS mass function, Equation (9), but ignore
additional contributions to the clumpy surface density, due to
those minihalos having their own satellite minihalos.
In the left panel of Figure 4, we compute ( ) ≔Dk q̂

[ ( ) ( )]pk^ ^q P q 22 1 2, which quantifies the characteristic fluctua-
tion in the lensing convergence κ as a function of the transverse
length scale. For M0=10−10Me h−1, κ can fluctuate at the
level of Δκ∼10−4 on scales r⊥=(2π)/q⊥= 10–104 au h−1,
which, as we will explain in Section 7, are probed by the
lightcurves of the highly magnified stars during events of
microlensing peaks. The right panel of Figure 4 shows that at a
fixed wavenumber q⊥, the convergence fluctuation originates
mainly from minihalos with a typical scale radius rs;r⊥=
(2π)/q⊥.
For an increased value for the parameter = - -M M h100

6 1,
axion minihalos of M10−2Me h−1 form earlier and thus are
more compact. As a result, the typical convergence fluctuation
on those scales can increase to Δκ∼10−3. If instead M0 is
several orders of magnitudes smaller, axion minihalos in the
mass range of our interest become less dense, and the resultant
convergence fluctuation is reduced.
The left panel of Figure 4 indicates convergence fluctuations

at the level of Δκ∼10−4
–10−3 for a broad range M0=

10−13
–10−6Me h−1, which translates into the mass scale of the

earliest gravitational collapse ∼0.01M0=10−15
–10−8Me h−1.

The results are not very sensitive to the choice of the cluster
formation redshift zf at which the PS mass function is evaluated.

5.2. Area Covering Factor

Assuming a uniform df d Mln throughout the cluster halo,
we can calculate the optical depth to intersecting a minihalo of
mass M within the scale radius rs(M). Taking a geometric cross
section πr2s , the differential optical depth is

( ) ( ) ( ) ( )t p
=

Sd M

d M

r M

M

df M

d Mln ln
. 15s

2
cl

This can be interpreted as the area covering factor.
Figure 5 plots this optical depth as a function of the halo mass,

for M0=10−10 and 10−6Me h−1, respectively. Taking M0=
10−10Me h−1 as the example, we find that minihalos formed
from isocurvature density fluctuations M∼10−10

–10−6Me h−1

generally have td d Mlog 1. Within this mass range, as
increasingly massive (and hence physically bigger)minihalos are
considered, a single line of sight traversing the entire cluster halo
intersects an increasingly larger number of minihalos. Because
these minihalos are the major contributors to convergence
fluctuations on scales of ∼10–104 au h−1, the convergence field,
by the central limit theorem, is locally well described by a
Gaussian random field with an isotropic power spectrum
Equation (14). The supercritical area covering fraction for axion
minihalos is in sharp contrast to their volume occupation
fraction, which is tiny because of the characteristic density of
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minihalos being many orders of magnitude higher than that of
the cluster halo.

As for the more massive halos M10−6Me h−1 formed
from the adiabatic density fluctuations, the area covering factor
starts to decrease. That part of the curve is shown as dotted,
because the area covering factor is certainly overestimated
toward larger M. Applying the PS mass function df d Mln to
intracluster substructures severely overestimates the abundance
of those halos inside the cluster halo as simulations suggest that
many of them do not survive disruption. This is because the
density hierarchy between those halos and the cluster halo is

substantially narrower, and because across several decades of
masses those halos collapse at similar redshifts and therefore all
have similar densities (Diemand et al. 2006). It should be clear
to readers that those halos are not the focus of this study.
In the case of M0=10−6Me h−1, we reach a similar

conclusion for minihalos of masses M∼10−4
–10−2Me h−1,

although the overlap in projection for the least massive
minihalos (M10−4Me) are not high enough to render the
convergence field completely Gaussian. Finally, we note that
our evaluation of Equation (15) has left out minihalos inside
subhalos or minihalos into higher levels of substructure
hierarchy. Including those will further Gaussianize the
convergence field and increase its power spectrum.

6. Dynamical Disruption of Minihalos inside Clusters

We now discuss the dynamical processes that determine the
survival rate of axion minihalos orbiting within larger CDM
halos. We consider minihalos of mass m1 and radius r1 orbiting
within a parent halo of mass M and radius R. Those account for
a fraction of the total host halo mass ( )df m M d m; lnsub 1 1. We
distinguish this from the PS mass fraction ( )df m d mln1 1,
which neither accounts for the dynamic destruction of
subhalos, nor for the fact that minihalos of mass m1 exist at
multiple levels of substructure hierarchy (subhalos of subhalos,
and so on), all of which participate in dynamical processes.
We discuss three important dynamical processes that

determine the destruction rate of minihalos:

1. Spiraling to the host halo center by dynamical friction,
and tidal disruption at the high central halo mass density
(which may be enhanced by baryonic processes in
galactic centers such as disk and bulge formation).

2. Dynamical heating during high-speed encounters with
other minihalos.

3. Dynamical heating during high-speed encounters with
baryonic structures, including stars and molecular clouds.

We will show that among these destruction mechanisms, the
most important is the second one if only DM is present, and the

Figure 4. The case of the line of sight to the caustic-straddling lensed galaxy behind the lensing cluster MACS J1149. Left panel: characteristic fluctuation ( )Dk ^q in
the convergence κ as a function of the projected Fourier wavenumber q⊥. When evaluating the PS mass function df d Mln (see Equation (9)), we set the redshift
zf=0 (dotted), 1 (solid), and 2 (dashed). We plot curves for three different values for the axion cosmology characteristic mass scale (in units of Me h−1) M0=10−6

(blue), 10−10 (red), and 10−13 (brown). The top axis indicates the corresponding projected proper length scale r⊥=2π/q⊥. Right panel: differential contribution to
the variance of the convergence from axion minihalos of different masses at a given q⊥. We set M0=10−10 Me h−1, and show curves for q⊥=10−1 (dashed–
dotted), 10−2 (solid), 10−3 (dashed) and 10−4 (dotted), all in units of h au−1. The top axis indicates the corresponding minihalo-scale radius rs. Calculations exclude
subhalos inside subhalos.

Figure 5. Differential area covering fraction td d Mlog for axion minihalos of a
range of masses (Equation (15)). We consider two values for the axion cosmology
characteristic mass scale M0=10−10 Me h−1 (red) and 10−6 Me h−1 (blue). For
each curve, the left portion (solid) corresponds to halos that form from isocurvature
density fluctuations, and the right portion (dotted) corresponds to halos that form
from adiabatic density fluctuations.
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third one after stars have formed. Our estimates suggest that,
over the age of the universe, minihalos of our concern are
unlikely to be disrupted by a significant fraction in a typical
galaxy cluster when stars in member galaxies are taken into
account. Some useful order-of-magnitude formulae are col-
lected in Appendix D.

6.1. Dynamical Friction and Tidal Disruption near the Halo
Center

For a subhalo of mass m1 orbiting inside a parent halo of
mass M, the timescale for orbital decay due to dynamical
friction is (Binney & Tremaine 2011)
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After a few tdf, the subhalo can spiral into the very inner part of
the parent halo where they are destroyed by the tidal force of
the dense central mass concentration.

Equation (16) suggests that this mechanism is effective on
minihalos if the parent halo is a larger minihalo so that M/m1 is
not too large. The orbital timescale is evaluated in Equation (41).
For example, a minihalo with m1=10−8Me h−1 can sink to
the center of a parent minihalo with M=10−6Me h−1 within
∼3 Gyr. Precise understanding of this hierarchical assembly
and destruction of minihalos from white-noise initial density
fluctuations will require a dedicated study that employs
numerical simulations.

However, many minihalos should evade dynamic friction
constraints. First, the PS analysis in Section 4 has shown that a
significant fraction of minihalos can be directly bound into
either the cluster halo or its galactic-scale subhalos without first
being assembled into a moderately larger parent halo or a series
of slightly larger parent halos. For these minihalos, the
humongous M/m1 ratio ensures immunity to dynamic friction.

Second, even if a minihalo is first bound into a moderately
larger parent halo and starts to spiral in, the parent may be
subsequently disrupted by an even larger halo. In this case, the
increased M/m1 ratio allows the minihalo to survive for a
longer time. This is especially relevant if the first parent halo is
one on the portion of the colored curve in Figure 2 that levels
off. In this case, this halo is very susceptible to disruption
because subsequent hierarchical mergers take place quickly and
involve small density differences. If the original minihalo is
quickly “liberated” into orbiting a very large and low-density
parent halo, then tdf becomes certainly too long compared to
the age of the universe.

A subhalo can be destroyed even without spiraling in, simply
by being randomly placed into a highly radial orbit toward the
very inner part of a larger halo. This can lead to a high-speed
encounter with either the central DM density cusp, or possibly
with other highly condensed form of matter and compact
objects. We will see in the following subsections that these
fine-tuned encounters are not the most important processes
compared to encounters with other minihalos and ordinary
stars.

6.2. High-speed Encounters with Other Subhalos

The large optical depth calculated for Equation (15) of
Section 5 and the fact that over the cluster’s age minihalos
should have completed many orbits inside the cluster halo
imply that direct encounters between minihalos are frequent.

We now consider the dynamical heating experienced by a
subhalo of mass m1 and internal velocity dispersion σ1, when
passing close to or moving through another subhalo of mass
m2, due to a random encounter. We focus on high-speed
encounters for which the typical encounter relativity velocity5

σ is much greater than other velocity scales (Aguilar &
White 1985; Binney & Tremaine 2011).
We first consider the case m m2 1. Then, when the two

subhalos fly through each other at an impact parameter b
smaller than the subhalo scale radii r1, the velocity perturbation
induced on any particle of the subhalos is  s sDv 1

2 , which
is a small fraction of σ1. This is because the tidal perturbation
during the encounter is comparable to the orbital acceleration
within one halo, but the duration of the encounter is shorter
than the orbital time by a factor σ1/σ. The fractional amount by
which the internal subhalo energy varies owing to dynamical
heating at each encounter with b<r1 is therefore

( )s
s
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E
. 171
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2

2

Dynamical heating scales as the second power of Δv/σ1 if
Δv/σ1=1. At the level of individual bound particles of halo
m1, the leading-order fractional change in the particle’s energy
is linearly proportional to Δv/σ1, but can be either positive or
negative depending on the orbital phase during the encounter.
After the halo relaxes back to equilibrium, the average energy
injection scales as (Δv/σ1)

2.
For unequal encounters, the minimum impact parameter is

the larger rs of the two halos. Larger impact parameters are less
important, because the induced velocity perturbations scale as
-b 2, and the internal dynamical heating as b−4, whereas the rate
of encounters within b increases only as b2.
In the case m1<m2, an impact parameter b smaller than the

scale radius r2 of the perturber halo m2 leads to an encounter
with the inner density cusp. For an NFW slope of the halo inner
density profile, the cusp mass scales as b2. The velocity
perturbation Δv is therefore comparable to that if b;r2, but
the probability for a smaller impact parameter is suppressed as
∝b2. This implies that inner density cusps are not the dominant
sources of dynamic heating, and it is justified to take the larger
rs of the two halos to be the minimum impact parameter.
At the minimum impact parameter, the induced velocity

perturbation is maximized for m2;m1. Encounters with a less
massive perturber, with m2<m1, has D µv m2. For encoun-
ters with a higher mass halo with m2>m1, we focus on
minihalos that collapse at high redshifts from the white-noise
isocurvature density fluctuations, for which the scale radius
goes as µr m2 2

5 6. In this case, the tidal acceleration scales as
µ- -m r m2 2

3
2

3 2, and the encounter time as r2, soD µ -v m2
2 3.

As even in the worst case m2;m1 we have Δv/σ1=1,
particle ejections by a single tidal shock are unlikely, and hence
the quadratic scaling Equation (17) is justified.
We now show that the cumulative heating from many

encounters is still dominated by nearly equal encounters with
m2;m1. For the case m2<m1, dynamical heating per
encounter scales as m2

2, while the encounter rate will scale as
( )-m df m M d m; ln2

1
sub 2 2. If the PS mass function Equation (9)

is applicable to subhalos, ( ) µdf m M d m m; lnsub 2 2 2
1 2 for

5 Our chosen notation σ is motivated because the typical encounter velocity is
set by the internal velocity dispersion of the host halo. This should not be
confused with the peak height σ(M, t) of the PS formalism.
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minihalos, and the encounter rate goes as -m2
1 2. In principle,

subhalos of subhalos or multiple levels of subhalos also contribute
to the disrupting tidal field, which are not included in
Equation (9). Without a detailed calculation, we argue that
including those ( )df m M d m; lnsub 2 2 should depend logarith-
mically on m2 because minihalos are not easy to disrupt through
hierarchical merging, and accordingly, the encounter rate goes
as -m2

1. In either case, the increase in the encounter rate does
not compensate for the decreased heating per encounter. For
the case m2>m1, dynamical heating per encounter decreases
as -m2

4 3, but the encounter rate increases only as
µ-r m df d m m df d mln ln2

2
2

1
sub 2 2

2 3
sub 2, again insufficient

to compensate for the decreased heating per encounter. The above
analysis should be valid unless the more massive minihalos have
somehow increased their density by dissipative processes above
the value reached through virialization at the collapse epoch.

Encounters between halos of comparable masses with impact
parameters comparable to their common-scale radii have a rate
inside the cluster halo,

( )
( )

( )
( )G ~m M

m

df m M

d m

R

t M

r M

R
;

1 ;

ln
, 18enc 1

1

sub 1

1 orb

1
2

3

where R is the scale radius of the cluster halo. Given the
fractional heating per encounter, Equation (17), the timescale of
dynamic disruption is

⎛
⎝⎜

⎞
⎠⎟( ) ( )

( )
( )~

-

t m M t M
R

r

df m M

d m
;

;

ln
, 19dispt 1 orb

1

sub 1

1

1

where we have assumed virial equilibrium for both the
minihalo and the host halo ( )( )s s=R r M m1 1 1

2. This result
can also be expressed in terms of tdf of Equation (16),

⎜ ⎟⎛
⎝

⎞
⎠

⎛
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⎞
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s
s

~
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M

m
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ln
ln .

20

dispt 1 df 1
1

2
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1

1

1

As the velocity dispersion for minihalos is much smaller than
that of the host halo (see Equation (40)), we have tdispt<tdf.
The dominant process for minihalo destruction is therefore
dynamical heating by high-speed encounters among compar-
able minihalos, where they repetitively go through each other
before they are disrupted by gradual heating and expansion.
Numerically, the disruption timescale is (where we have
inserted the relation GM/R∼σ2 for the host halo by the virial
theorem)
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Even for the largest possible ( )df m M d m; lnsub 1 1, this is much
longer than the age of the universe within cluster-size or
galaxy-size hosts, and even true for minihalos orbiting small

CDM halos that form from the adiabatic density fluctuations,
say one with M=106Me h−1 and σ=5 km s−1.

6.3. High-speed Encounters with Stars

After the gas in halos condenses into stars and other compact
objects, the potential for the tidal disruption of minihalos is
greatly enhanced. The reason for perturber minihalos of similar
masses (m2;m1) dominating the destruction rate by high-
speed encounters rather than perturber minihalos of larger
masses has to do with the fact that the more massive minihalos
are also less dense, with ρs∝m1

−3/2 in the regime that
minihalos collapse and assemble from the white-noise initial
isocurvature density fluctuations. By contrast, for a compact
perturber m2, the minimum impact parameter is fixed by the
size of the minihalo m1, then the amount of dynamical heating
per encounter increases with the mass of the perturbing object
as m2

2. If the number density of perturbers only decreases
approximately as -m2

1, dynamical heating should be dominated
by the most massive perturbers.
Tidal interactions between generic small halos and passing

stars have been extensively studied (Angus & Zhao 2007;
Goerdt et al. 2007; Green & Goodwin 2007; Zhao et al. 2007).
Here we present a simple order-of-magnitude estimate applied
to axion minihalos. A minihalo of mass m1 and radius r1
encountering a star with mass må at an impact parameter b and
a relative velocity on the order of the host halo’s internal
velocity dispersion σ is subject to a tidal acceleration
~ G m r b1

3 during the encounter time ∼b/σ, and suffers an
impulsive velocity perturbation,

( )
s s s
D v G m r

b
. 22

1

1
2

1

Unlike mutual encounters between minihalos, the velocity
perturbation induced by a stellar perturber can be large enough
that minihalo particles are unbound after a single encounter.
This happens for Δv/σ1;1, which sets a minimum impact
parameter bmin for the minihalo to survive a complete
disruption (Goerdt et al. 2007; Schneider et al. 2010; Tinyakov
et al. 2016),
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11 24

For a range of minihalo parameters, bmin is comparable to or
larger than the minihalo scale radius r1. Provided that the
overall tidal disruption rate is dominated by encounters with
small impact parameters, we therefore conclude that a minihalo
is disrupted whenever it passes within bmin from a pertur-
ber star.
Let ¯n be the mean stellar number density within the host

halo (including the stellar populations in all member galaxies).
The stellar disruption timescale for minihalos orbiting within
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the host halo can be estimated as
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Here, the fiducial value ¯ = -
n 10 kpc5 3 roughly corresponds to

enclosing ∼1013Me of stars within a sphere of ∼300 kpc. Note
that the internal velocity dispersion of the host halo σ cancels
out in this calculation. Equation (24) suggests that the most
massive minihalos are the most vulnerable because they are the
puffiest. For minihalos in the most interesting mass range
concerning this work, m1<10−6 h−1Me, and in axion
cosmology scenarios with M0>10−10Me h−1, stellar disrup-
tion is not significant throughout the current age of the
universe. More massive minihalos, however, are expected to
have been destroyed by passing stars in an intracluster
environment.

By chance, minihalos can pass the central regions of larger
halos at high speed on radial orbits. Apart from stars,
supermassive black holes residing at the center of member
galaxies are probably the most disruptive perturbers, for which
the previous analysis remains applicable. Equation (24) implies
that the disruption timescale is inversely proportional to the
average mass density of the perturbers within the cluster halo.
Despite being much more destructive individually, super-
massive black holes still make a smaller contribution to the
total mass budget than the stars and hence are not the major
sources of disruption.

Finally, we note that even if all minihalos orbiting within the
intracluster space are dynamically destroyed, we still expect a
remaining contribution from an intergalactic population of
minihalos. Those minihalos are not subject to dynamic
disruption from encounters with stars. Some of those are
isolated, while others are bound to larger intergalactic halos.
The latter are susceptible to additional dynamic disruption from
mutual encounters inside the parent halo.

7. Impact on Microlensing Lightcurves of Highly Magnified
Stars

Despite several theoretical uncertainties, our analyses in the
previous sections lead us to the following physical picture if a
Peccei–Quinn phase transition in the early universe induces
isocurvature density fluctuations on small scales:

1. Minihalos below the mass scale of planets form by
gravitational instability starting at the epoch of radiation–
matter equality, with characteristic densities much higher
than in the standard CDM cosmology.

2. Plenty of these minihalos should survive over the age of
the universe as subhalos orbiting inside the halos of
galaxy clusters.

3. The high area covering factor of minihalos implies that a line
of sight traversing a cluster lens near a typical lensing critical
curve (with an impact parameter of tens of kiloparsecs)
probes nearly Gaussian random fluctuations in the lensing
convergence κ (and hence also in the shear). For the mass
scale parameter M0∼10

−13
–10−6Meh

−1, which corre-
sponds to the first gravitationally collapsed minihalos having
masses ∼10−15–10−8Me h−1, the level of fluctuations is
Δκ10−4–10−3, on scales of ∼10–104 au h−1.

In most applications of gravitational lensing, convergence
fluctuations of ∼10−4

–10−3 on the lens plane are too small to
lead to any interesting observational consequences. However,
caustic transiting stars behind a galaxy cluster lens provide
extreme situations in which these minuscule small-scale
fluctuations in the convergence can leave observable imprints.

7.1. Detectable Scales of Surface Density Fluctuations under
Microlensing

We consider the effect of convergence and shear irregula-
rities on the total flux of a point source. The flux
magnification of one image equals the inverse determinant
of the lensing Jacobian matrix at the image position, whose
matrix elements are expressed in terms of the convergence
and shear. When an image is highly magnified (∣ ∣ m 1), the
corresponding Jacobian matrix is fine-tuned to a level ∣ ∣m~1
to be nearly degenerate. Any irregularity in the convergence
and/or shear at a level ∣ ∣m~1 substantially perturbs the
image flux.
The detected highly magnified stars behind MACS J1149

(Kelly et al. 2018) and behind MACS J0416 (Chen et al. 2019;
Kaurov et al. 2019) are observed thanks to magnification
factors of hundreds to thousands. If the projected mass
distribution in the cluster lens were smooth, the magnification
would simply vary as the inverse of the angular separation from
the image to the critical curve, and could reach values above a
million when a luminous star crosses the cluster caustic.
However, intracluster stars introduce intermittent microlensing
flux variations and microcaustic crossings at which a pair of
microimages dominate the flux. This makes the highly
magnified stars more easily identifiable from their variability,
even though the maximum magnifications reached are reduced
to ∼104 (Venumadhav et al. 2017; Diego et al. 2018; Oguri
et al. 2018). Flux variations of up to a factor of 10 have been
observed from microlensing events in the fields of MACS
J1149 (Kelly et al. 2018) and of MACS J0416 (Chen et al.
2019). During microcaustic crossings, with typical durations of
days to weeks, the star flux becomes susceptible to even a
minuscule nonsmoothness of Δκ∼10−4 in the lens surface
density.
During a microcaustic transit event, the two dominant

microimages are highly elongated to a length (∣ ∣m»5000 au
)( )R R10 1004 . Surface density irregularities are detectable

down to these scales, which are interestingly comparable to the
axion minihalo sizes we have discussed.

7.2. Microfold Model

We now demonstrate how minuscule surface density
fluctuations imprint irregularities on microlensing lightcurves.
Appendix E shows that geometric optics is applicable to our
problem.
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For a concrete case study, we consider the highly magnified
star LS1 detected in a lensed galaxy at zS=1.49 behind the
cluster lens MACS J1149 at zL=0.544 (Kelly et al. 2018).
This sets the angular diameter distances to the source
DS=1.79 Gpc, to the lens DL=1.35 Gpc, and from the
lens to the source DLS=0.95 Gpc. Two resolved macro-
images of LS1 are observed at a separation of 0 13 from the
cluster critical curve, symmetrically positioned around a
point where the macrolens model GLAFIC (Kawamata et al.
2016) predicts a surface mass density corresponding to a
convergence κ0=0.83, and a magnification for each macro-
image of ∼300.

The presence of microlenses implies that each macroimage
actually consists of several unresolved microimages. During a
transit of a fold caustic (the most common caustic type), a pair
of microimages usually becomes much brighter than the
combined flux from all the rest (which is in any case nearly
constant). This justifies considering only the two dominant
microimages; instead of simulating a network of microlensing
caustics induced by many intracluster stars, constructing a
simple fold model for the microcaustic crossing suffices. The
fold model is described by two parameters: the local
convergence k̃0 and an eigenvalue gradient vector d̃ at the
point between the two images along the microcritical curve.
The total smooth convergence κ0 is split into a smooth
contribution k̃0, including the DM and any diffuse baryonic
component, and the average contribution from stellar objects,
which is κå≈0.005 near the LS1 images in MACS J1149
(Oguri et al. 2018). We use ˜ k k k= -  0.830 0 as a good
approximation.

The vector d̃ is perpendicular to the microcaustic and, in the
fold approximation, is related to the peak magnification mpk at
the time when the source stellar disk grazes the microcaustic on
the source plane:
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where ã is the angle between the microcritical curve and the
degenerate direction of the local Jacobian matrix, and the stellar
radius is RS. This fold approximation is accurate when the
highly magnified images are much closer to the microcritical
curve than the typical angular scale of variation of the vector d̃.

The presence of microlenses generates a region around the
macrocritical curve of the cluster lens where the microcritical
curves interact and join together, forming a network of width

∣ ˜∣k~ -
 d 1 (Venumadhav et al. 2017). Within this network, the

scale of variation of d̃ is about the mean separation between
microlenses, q k~  

1 2, where θå is the Einstein angular radius of
each individual microlens of mass Må, θå=(4GMå/Deffc

2)1/2,
with Deff=DLDS/DLS. At the same time, the typical magnitude

of d̃ in the corrugated network is
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To demonstrate typical cases, we shall set in the next subsection
∣ ˜∣ k q=  d 3 2 , with fiducial values for k and Må as in the
above equation. We shall focus on situations of high magnifica-
tion, with μpk103–104, which requires the lensed star to be
close enough to a microcaustic. In fact, the typical average
magnification of an image at an angular separation q k 

1 2 from
a microcritical curve is ∣ ˜ ∣ (∣ ˜∣ ∣ ˜ ∣ )m k a q k~ - - - -

 d1 sin0
1 1 2 1 2

∼ ∣ ˜ ∣k- -1 0
1 k-

 101 2 3–104, for κå∼10−2. For the high
magnification of our interest, the two dominant microimages
have a much smaller angular separation than q k 

1 2, justifying
our use of a fold model locally.
The timescale of caustic transients depends on an effective

source velocity vt. Roughly, this is the relative transverse
velocity between the source star and the lens cluster (defined in
Equation(12) of Venumadhav et al. 2017), which is constant.
Although intracluster stellar microlenses and DM substructure
have random velocities of ∼1000 km s−1 within the host
cluster, their impact is dwarfed by the even larger apparent
velocity of the microimages on the image plane owing to the
large magnification factor. Therefore, for the numerical
simulations in the next subsection, the assumptions of a
stationary microfold caustic model and time-independent
realizations of axion minihalos along the line of sight are
justified.

7.3. Numerical Examples

The analytical estimates in Equation (25) and (26) suggest
that microlensing peak magnifications can reach ∼103–104 for
reasonable lens and source parameters. We employ a numerical
simulation to verify that fractional fluctuations ∼10−4

–10−3 in
the lens surface density on appropriate scales are sufficient to
imprint observable effects in the total flux.
On top of the microfold model, we add a spatially varying

convergence perturbationΔκ due to minihalos. Without having
to generate individual minihalos, we are justified to model Δκ
as a Gaussian random field as shown in Section 5. We generate
random realizations of Δκ according to the homogeneous and
isotropic power spectrum in Equation (14), converting the
linear Fourier wave vector to the angular Fourier wave vector
= q̂ℓ DL . In the case of MACS J1149, the critical surface

density is computed to be Σcrit=2.3×109Me kpc−2 and
S̄ = S0.83cl crit. The perturbed deflection required for inverse
ray-tracing can then be computed in the Fourier domain

( ) ( ) ( )a kD = - Dℓ i ℓ ℓ ℓ2 2 .
In Figure 6, we present a numerical example of how

minihalos collectively induce irregularities in the lightcurve
during a microcaustic transit event, assuming parameters
appropriate for the case of MACS J1149 LS1. In the absence
of minihalos, the total flux rises smoothly as ∣ ∣- -t t 1 2

*
after the two highly elongated microimages become domi-
nant, peaks when the finite source effect kicks in, and then
plummets when the two microimages merge and disappear.
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Minihalos cause sizable brightening and fading “bumps” in
the lightcurve despite the minuscule surface density fluctua-
tions they induce. As the microlensing peak is approached,
these irregularities become more prominent. In this example,
the irregularities occur on a timescale of several days for
vt∼300 km s−1. Unlike the usual microlensing signature
of compact lenses, these irregularities lack abrupt changes;
due to caustic crossings, microlensing lightcurves usually

show asymmetric peaks, which have a slowly varying wing
followed by an abrupt cutoff, or the time-reversed behavior.
In the perturbed lightcurve, the time of microimage

merger shifts relative to that in the unperturbed one. This
is due to coherent deflection perturbation generated by long
wavelength modes. Causing merely a uniform remapping of
the image plane coordinates, this bears no observable
significance.

Figure 6. Example of a microlensing peak event for a highly magnified supergiant star of =R R100S , and macrolensing parameters measured for MACS J1149
LS1. For axion cosmology, we set M0=10−10 Meh

−1. We set ã p= 2 and ∣ ˜∣ k q=  d 3 2 , with κå=0.005 and θå computed for a microlens mass Må=0.3 Me.
Top four rows: dominant microimage pair in the image plane (in proper length units) and magnification pattern including its sign, with (right column) and without (left
column) small-scale surface density fluctuations due to axion minihalos. Coordinates x1 and x2 (shown on drastically different scales!) are parallel and perpendicular,
respectively, to the degeneracy direction of the local microfold model. Each row corresponds to a numbered epoch. Color scales for magnification are shown to the
right of the bottom panel. Bottom row: total flux magnification vs. the source’s one-dimensional position y1 (in proper units) in the source plane and the variability
timescale converted from an effective source velocity vt, with (black curve) and without (gray curve) surface density fluctuations, due to minihalos. The coordinate y1
measures the position perpendicular to the microcaustic. Only contributions from the two dominant microimages are included. The four numbered epochs examined in
the top rows are marked by magenta lines.
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As visualized in Figure 6, we observe that the perturbing
effect is one-dimensional in nature: only nonsmoothness along
the degenerate direction of the microfold matters as the two
microimages are highly elongated along this direction.

The perturbed lightcurve varies depending on a number of
factors, as we show in Figure 7. First, the length of the elongated
microimage scales with the source size, which smooths out
irregularities below certain scales. For a smaller source star,
therefore, irregularities are present on shorter timescales.

Second, larger convergence fluctuations will result in larger
magnitude irregularities. This can be the case if more minihalos
survive dynamic disruption and are bound to intermediate sized
subhalos, as the amount of minihalos contributing to surface
density clumpiness will then be more than what Equation (14)
predicts.

Moreover, susceptibility to lensing perturbations depends on
the d̃ vector of the microfold model. Although in Figure 6 we
have set ∣ ˜∣ k q=  d 3 2 , ∣ ˜∣d actually varies among microcaustic
crossing events. At a fixed distance from the microcaustic, a
smaller ∣ ˜∣d corresponds to a larger magnification of the two
microimages. This means that the flux is more prone to surface
density perturbations and is subject to larger irregularities.

If the typical convergence fluctuation Δκ greatly exceeds the
inverse magnification factor, even a microimage can be strongly
perturbed and break into yet smaller images. For example, this is
likely the case for the scenario with M0=10−6Me h−1 shown in
the left panel of Figure 4. The underlying physical principle is
analogous to the disruption of macroimages into microimages due
to a supercritical number density of intracluster microlenses

(Venumadhav et al. 2017; Diego et al. 2018; Oguri et al. 2018), or
due to a high abundance of CDM subhalos (Dai et al. 2018b). A
detailed analysis of this regime of strong image disruption is
beyond the scope of this work but is certainly an important
situation to consider. Excessively large surface density fluctua-
tions on length scales being considered here should be constrained
by microlensing observations because they would smooth out
stellar microlensing peaks.

8. Discussion

Minihalos are predicted to form in many cases when the dark
matter is composed of axion particles that can solve the strong CP
problem of QCD. So far, no viable method for detecting these
axion minihalos through their gravitational lensing effect has been
proposed. A generic problem to detect them is their low surface
density. This paper proposes that axion minihalos can be detected
during extreme magnification events when luminous stars cross
microcaustics produced by intracluster stars near the macrocritical
curves of massive galaxy clusters. Substantial deviations from the
predicted lightcurve of a fold microcaustic crossing over timescales
from hours to days will be the signature of large numbers of axion
minihalos which should superpose along a line of sight to produce
nearly Gaussian fluctuations in the surface density.
The predicted lightcurve will in general be affected by limb-

darkening effects in the source star. These effects should
nevertheless be accurately predictable once the spectral type of
the source star is known. An irregular behavior of the flux
might, however, arise for other physical reasons. We now

Figure 7. Perturbed lightcurves (colored curves) compared to a smooth lightcurve (dashed black curve) around the time of a microlensing peak event. Each panel
shows four random realizations of convergence fluctuations (one color for each). (a) Default case as in Figure 6. (b) A more compact source star with =R R30S .
(c) Power spectrum Pκ enhanced by a factor of 4. (d) ˜ ∣ ˜∣= dd decreased by a factor of 2.
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discuss some of these other possible sources of deviations from
a predicted lightcurve.

8.1. Microlensing by Planet-sized Lenses

Planets or planetesimals inside the foreground galaxy cluster
may imprint distortions onto stellar microlensing lightcurves.
Inside the microcritical curve network, and without substellar
lenses, the typical separation between a segment of micro-
critical curve and nearby microlens stars is ( )k~ S -

 Mcrit
1 2

≈ ( ) ( ) ( )k -
 D M M0.1 pc 0.01 1 Gpc 0.31 2

eff
1 2 1 2. Bound

planets orbiting their host stars much more closely than this do
not induce independent critical curves.

If any rogue or wide-orbit planets lie far (in projection) from
any stellar critical curves, the minimal surface density for them
to form a finer network of critical curves is ¯k m 1ffp , where
m̄∼100–1000 is the magnification factor of the image being
observed. This would require a comparable amount of mass in
rogue planets and stars, which is ruled out by Milky Way
microlensing surveys implying κffp10−3 κå (Sumi et al.
2011; Mróz et al. 2017).

Free-floating planets which happen to lie in the vicinity of
the stellar microcritical curve can have greatly enhanced
microlensing effects. If these planets have mass Mffp, corresp-
onding to an angular Einstein scale θffp, one requires

( ˜) ( )k q k~   d M Mffp ffp
2 3

ffp
1 3 for breakup of stellar

microcritical curves to be common (Venumadhav et al.
2017). This implies a much higher abundance of free-floating
planets than main-sequence stars, which is unlikely.

If the stellar microcritical curve is indeed substantially
disrupted by substellar lens objects (see, e.g., Dai &
Guerras 2018, for an analogous consideration of quasar
microlensing), finer variability structures are expected in the
lightcurve near a stellar microlensing peak. However, in this
case, signatures of planets or planetesimals would likely be
sharp minor peaks rather than smoothly behaved irregularities.

8.2. Blended Source Stars

The observed flux of the magnified star within its point-
spread function is likely to be contaminated by blended fainter
stars. Although lensing of these fainter stars (or intrinsic
variability if they are Cepheids) could contaminate the
lightcurve, this is unlikely to happen because the highly
magnified stars that are observed are usually among the most
luminous in a galaxy, and they are sufficiently rare to make the
superposition of two detectable lensed stars highly improbable.
Contaminating microlensing is expected to produce sharp
minor peaks in the lightcurve rather than the more smoothly
behaved irregularities from axion minihalos, as can be seen in
Figures 6 and 7. If the contaminator is of a different stellar type,
variability will be chromatic, which is not generally expected
from the lensing of a single star.

8.3. Inhomogeneous Gas

The dominant baryonic component inside a cluster halo is
the ionized gas, which is shock heated to T∼108 K and has a
number density ne∼10−3 cm−3. What is of our concern is the
surface density fluctuations in the intracluster gas along the line
of sight. However, what matters to the inquiry of this paper is
inhomogeneities on minuscule scales ∼10–104 au, which is
orders of magnitude smaller than even the mean free path
λmfp∼1 pc of the dilute gas. Although X-ray surface

brightness measurements have clearly shown sizable turbulent
density fluctuations Δδgas,3d∼10% (fractional) on scales of
10–1000 kpc (Schuecker et al. 2004; Kawahara et al. 2008;
Churazov et al. 2012), the characteristic amplitude of
fluctuation is expected to decrease toward smaller scales
following a Kolmogorov-like power law Δδgas,3d(k)∝kα with
α;−1/3 (Gaspari et al. 2014) and is likely to cut off well
before scales of 1/k∼10–104 au due to dissipation (Luan &
Goldreich 2014). For fixed volumetric density fluctuation, the
surface density fluctuation is further suppressed by projection

( ) ( )( )d dD ~ D^ ^ ^
-q q q Lgas,2d gas,3d

1 2 (Appendix C), where
L∼1Mpc is the path length traversing the gas halo. Given
the huge hierarchy between our projected scale of interest 1/q⊥
and L, roughly q⊥L∼107–1010, we hardly expect any
detectable contribution to the lens surface density fluctuations
from the hot diffuse gas. Cold and compact ISM gas structures
of tiny sizes, if existing, may possibly perturb microlensing
lightcurves, although their abundance and physical properties
in the intracluster environment or in the surroundings of the
BCG are poorly known. The lensing phenomenon we have
been considering will probe or constrain any such small-scale
baryonic structures.

9. Conclusion

Recently discovered lensed individual stars behind cluster
lenses have the largest magnification factors among all
currently known gravitational lensing phenomena. Flux
amplification by ~103–104 is expected when they transit
microlensing caustics induced by intracluster stars. We have
shown that, during these extreme magnification events, their
lightcurves are susceptible to minuscule nonsmoothness
∼10−3

–10−4 in the lens surface mass density, across very
small projected scales ∼10–104 au, which are hardly accessible
with other observational means.
Within the strongly motivated paradigm of axion DM

particles, solar system sized minihalos in the mass range
M∼10−10

–10−6Me are predicted to copiously orbit the DM
halo of galaxy clusters. This prediction should be generic if the
Peccei–Quinn symmetry breaking occurs after inflation. Our
calculations have shown, for a promising range of axion mass,
that a large number of minihalos along the line of sight are able
to collectively induce detectable surface density fluctuations.
This result applies to M0=10−13

–10−6Meh
−1, translating

into typical masses for the earliest gravitationally collapsed
minihalos in the range ∼0.01M0≈10−15

–10−8Me, an
interval which includes the predicted parameters for the QCD
axion. To our knowledge, monitoring microlensing variability
of highly magnified stars is the first practical lensing-based
method to probe axion minihalos.
Primordial black holes formed in the early universe are

another DM candidate (Zel’dovich & Novikov 1967; Hawking
1971; Carr & Hawking 1974; Carr et al. 2016; García-Bellido
2017). The mass budget of stellar-mass black holes (Bird
et al. 2016; Sasaki et al. 2016; Clesse & García-Bellido 2017)
has been subject to stringent limits set by microlensing and
dynamics. Recently, however, Montero-Camacho et al. (2019)
showed that the majority of DM may be made of black holes
in the mass range 10−17MeMPBH10−12Me without
contradicting known astrophysical constraints. Such primordial
black holes of asteroid masses may cluster into minihalos in a
hierarchical fashion(see, e.g., Inman & Ali-Haïmoud 2019),
created from a white-noise power spectrum in a similar way as
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axion minihalos, and they may produce similar lensing effects
as the axion minihalos although with some detailed differences
arising from dynamical relaxation and the discrete nature of
black holes that may give rise to distinct observational
signatures.

Accurate and high-cadence lightcurves of highly magnified
stars around the times of microlensing caustic transits have not
been acquired so far. This will require dedicated monitoring
using either space telescopes or large ground-based telescopes
to reach the extremely faint fluxes at optical or near-infrared
wavelengths, executed over days to weeks around the peak
time with high cadence. In the case of stars lensed by MACS
J1149 and MACS J0416, one or two microlensing peaks were
mapped out only at crude levels. Since microlensing caustic
transits occur randomly, an approximate time window bracketing
the moment of flux culmination will need to be forecasted based
on low-cadence premonitoring that can detect a trend in which
the star gradually brightens following a ∣ ∣µ -n

-f t t0
1 2 law.

Because any detected highly magnified star is generally expected
to undergo intermittent microcaustic transits for many years to
follow, and the opportunity to discover DM minihalos or any
other dark or baryonic small-scale lumpiness is unique and highly
rewarding, there is a strong incentive to design and carry out these
programs.
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from the Raymond and Beverly Sackler Foundation Fund. J.M.
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00444 and by the Corning Glass Works Foundation Fellow-
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Appendix A
Mass Scale of First Gravitationally Collapsed Minihalos

We evaluate the mass parameter M0 defined in Equation (1)
for the standard cosmological thermal history. In this appendix,
we adopt the natural units for which = = =c k 1B .

Let T0 be the radiation temperature at time t0 at the onset
of axion field oscillation. The axion mean density at present
is ¯ ( ) ( )r p= WH G3 8a a0 0

2 . In Equation (1), we write k0=
a(t0)H(t0). The scale factor at t0 is
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where the temperature of the CMB =gT 2.7250 K, the
temperature of the relic neutrinos Tν 0=(4/11)1/3 Tγ 0, and
g*s≈78 is the effective number of relativistic degrees of
freedom for entropy when the temperature is ∼1 GeV
(Husdal 2016). We calculate the Hubble parameter H(t0) using
the Friedmann equation during the era of radiation domination

( ) [( )( ) ]p p= H t G g T8 3 300
2

0
4 1 2

*
, where g*ò≈78 is the

effective number of relativistic degrees of freedom for energy
density at a temperature ∼1 GeV (Husdal 2016). Putting all the

pieces together, we find
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We note that our definition ofM0 is adopted from Fairbairn et al.
(2018), which is a factor of 4π4/3 larger than what is used in
several other references(e.g., Davidson & Schwetz 2016; Hardy
2017). Following the definition of the latter authors, the typical
mass for the smallest minihalos that collapse the earliest from
gravitational instability should be two orders of magnitude
smaller than M0. The exact number is not sharply defined
because even these minihalos contain finer axion substructures
as uncovered in numerical simulations.

Appendix B
Linear Growth of Isocurvature Modes

Under the assumption that the DM is made of axions, the
isocurvature matter modes under consideration here are
superhorizon modes at the onset of axion field oscillation,
but enter the horizon during the era of radiation domination.
These perturbations do not grow during the radiation-
dominated epoch. After the epoch of radiation–matter equality,
they lock onto a growing mode that scales linearly with the
scale factor.
To verify this picture, consider a toy universe composed of a

radiation fluid and a matter fluid that does not interact with the
radiation. We normalize the scale factor such that it is equal to
unity aå=1 when the mean radiation density equals the mean
matter density ρr(aå)=ρm(aå). Define a synchronous-comov-
ing coordinate system in which the peculiar velocity of the
matter fluid is always zero. We can derive the following set of
equations (Efstathiou & Bond 1986; Ma & Bertschinger 1995)

( ) ( )
( ) ( )d d +

+
+
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+

+h
a

a a
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a a
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2 3

2 1

3

1
2 , 29r m2
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, 31r r

⎛
⎝⎜

⎞
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a H a2 1 2 1
. 32r

r r

Here, a and Hå=H(aå) are the scale factor and the Hubble
parameter at the epoch of radiation–matter equality, respectively,
δm and δr are matter and radiation overdensities, respectively, h is
the trace of the spatial metric perturbation in the synchronous
gauge (to be distinguished from the dimensionless Hubble
parameter h elsewhere), and we have defined ≔ ( )c q a Hr r

2

with θr being the velocity divergence of the radiation fluid. The
notation ( ) ¢ represents the derivative with respect to the scale
factor a.
We consider modes that enter the horizon well before the

epoch of radiation–matter equality ( )  c k a H 1. The
isocurvature initial condition is set at some initial time ai in
the superhorizon regime ck/(aiH(ai))=1. At the initial time,
the isocurvature initial condition requires δr(ai)=−δm(ai)ai,

( ) ( ) ( )c = = ¢ =a h a h a 0r i i i .
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In the limit of matter domination  ¥a , the matter mode
satisfies

( )d d d + ¢ - =
a a

3

2

3

2
0, 33m m m2

which has a growing solution d µ am .
By numerically solving the above set of linear equations, we

find that deep in the era of matter domination a?1, the
solution for the matter perturbation is roughly

( ) ( ) ( )d d=


a C
a

a
a , 34m m i

where C is an order-unity coefficient with a logarithmic
dependence on ck/(aåHå). The exact value of C is cosmology
dependent, but its value is not much different from unity.

We note that in principle the initial isocurvature overdensity
can be much greater than unity. In this case, virialized
structures can form well before the epoch of radiation–matter
equality (Kolb & Tkachev 1994; Enander et al. 2017). A
distribution of large initial overdensity patches were suggested
by Kolb & Tkachev (1996) according to numerical results.
Microlensing constraints, e.g., suggested by Fairbairn et al.
(2017, 2018), have relied on ruling out extremely compact mini
structures that collapse from such patches. We caution that it is
unclear whether an extrapolation to huge initial overdensity
values is physically plausible in realistic models, or whether
such patches are sufficiently common to be important. This
study restricts to initial isocurvature fluctuations not much
greater than unity.

Appendix C
Surface Density Power Spectrum

In this appendix, we consider a slab with a homogeneous and
isotropic clumpiness property. We derive the relation between
the two-dimensional power spectrum of the surface density
field and the three-dimensional power spectrum of the
volumetric density field.

We focus in the regime where the slab length L along the
direction of projection (i.e., the line of sight) is much larger
than the dimensions perpendicular to the direction of projection
(i.e., parallel to the plane of the sky). The surface density field
can be written as
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Here, r and r̂ are the coordinates, in proper units, along and
perpendicular to the direction of projection, respectively. The
three-dimensional wave vector q can be decomposed into a
perpendicular component q̂ and a parallel component. The
Fourier transform of the surface density field is
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Therefore, the projected power spectrum is
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The regime we are interested in is q̂ L 1.
We specialize to the case wherein ( ) µr

gP q q with γ<1. In
this case, the dominant contribution to the integral comes from
modes with qP=q⊥ but qP∼1/L. We therefore obtain
PΣ(q⊥)∼Pρ(q⊥)L. Carrying out the qP integral explicitly, we
can fix the normalization factor of order unity and obtain

( ) ( ) ( )= rS ^ ^P q P q L. 39

This relation can be verified for a halo model of density
inhomogeneity. Under the assumption that halos are uniformly
distributed in space, Pρ(q) and PΣ(q) can be explicitly
computed in terms of the halo mass function and the halo
density profiles, and Equation (39) indeed holds.

Appendix D
Dynamic Scales of Minihalos

Minihalos that form from the white-noise isocurvature density
fluctuations have extremely small internal velocity dispersions,
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Generally, σv(M) is much smaller than the internal velocities of
large CDM halos of any galaxies or galaxy clusters,
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∼1–1000 km s−1. The orbital timescale is
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These timescales are much shorter than the age of the present
universe but are usually not so short compared to galactic
orbital timescales. Even for minihalos of M=10−10Meh

−1,
the dynamic timescale ∼30 kyr is quite long.

Inside a galaxy cluster, minihalos are flying around at the
huge internal velocities of clusters, σcl∼1000 km s−1, taking
less than a few years to cross the size of even the largest axion
minihalos under our consideration. Therefore, dynamic inter-
actions among minihalos are always much faster than their
internal orbital timescales, which is in the regime of high-speed
encounters.

Appendix E
Validity of Geometric Optics

We show here that in the context of lensing discussed in this
paper, geometric optics is valid if observations are done at UV,
optical, or near-infrared wavelengths. The angular size of a
typical star producing the observed microcaustic crossing
events regulates the maximum magnification factor, up to a
wavelength at which wave diffraction effects become impor-
tant. Simple estimates are presented in this appendix to
justify that.

For a single lens plane, the chromatic amplification factor for
the amplitude of an electromagnetic wave is given by the
following diffraction integral (see, e.g., Dai et al. 2018a):
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where λ is the wavelength and ( )t x y; is the ray travel time as a
function of the source position y and the image position x,
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Considering only the two dominant microimages during a
microcaustic transit, the Shapiro term ( )f x can be written as
the sum of the contribution from the microfold model and
a stochastic contribution from surface density fluctuations,

( ) ( ) ( )f f f= + Dx x xfold .
Geometric optics is valid if the diffraction integral in

Equation (42) can be replaced by complex Gaussian integrals
around extrema of ( )t x y; . This requires that ( )t x y; is locally
well approximated by a quadratic function of x in the lowest
order Fresnel zones, which in the case of an elongated
microimage with magnification μ has angular dimensions
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where we denote D0=DLDS/DLS. The validity of the
quadratic approximation for ( )t x y; around extrema is typically
limited by the longer dimension Δx1.
For the microfold model, the third derivative of ( )t x y; is

typically comparable to ∣ ˜∣d . So, the departure from the quadratic
approximation for the phase of the integrand in Equation (42) is
roughly
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This is negligibly small for reasonable parameters considered in
this paper.
If included, small-scale surface density fluctuations may be

the dominant contribution to the third derivative of ( )t x y; . The
characteristic amplitude can be estimated as ( )~Dk r̂ DL ,
where the convergence fluctuation has a typical amplitude Δκ

on a typical transverse proper length scale r⊥. Similar to
Equation (45), the correction to the phase of the diffraction
integrand is
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For a range of parameters relevant to this work, this correction
is also unimportant.
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