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Abstract: Solving real-time optimization problem for multilevel chemical process systems 
(MCPS) is associated with the challenge of involving extensive computational resources 
required for prompt solution of high-dimension nonlinear optimization problems. The article 
introduces a method for decomposition of online optimization problem in multilevel chemical 
process systems with collector structure based on identification of compromise sets. The 
method allows bringing optimization search procedures to higher control levels leaving the 
tasks of process stabilization in calculated optimum points to the lower level subsystems. The 
article describes the scope of application for the method illustrated with a sample solution of 
the problem of online optimization of process unit parameters including the system of carbon 
black reactors operating in parallel for the common collector. 

1. Introduction
The problems discussed in this article are considered as part of the class of process real-time 
optimization problems (RTO) that rank above the tasks of stabilization and advanced process control 
in the continuous process control hierarchy shown in figure 1 [1]: 

 

Figure 1. Hierarchy of control and 
optimization problems for continuous 
processes. 

Advance achieved in the sphere of software and hardware for industrial automation allow modern 
controller to solve real-time optimization problems of significant complexity including the online 
mode optimization using technical and economic parameters based on process mathematical models 
that take into account the effects produced by disturbances. However, it is not possible to assert that 
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the problem of involving extensive computational resources required to solve online optimization 
problems for complex multiparameter objects is fundamentally solved. Besides, RTO developers need 
to exclude or minimize many problems encountered in “classical” or “academical” optimization of 
nonlinear systems, such as the solution dependence on initial approximation, algorithm looping, 
attribution of the solution to local optimum or degeneration of the solution, etc. 
The method introduced in this publication is mostly in line with the decomposition ideas of the general 
optimization problem originally suggested by Dantzig and Wolf [2], i.e. the idea of breaking the 
problem down into stages in time (iteration) in the same way as, for instance, in method [3] that 
includes the model identification (correction) based on current conditions and subsequent process 
optimization. However, in the case considered it is suggested that, in addition to the stages performed 
at different time intervals, the problem should be also broken down by levels and subsystems in the 
variable space.  
In several cases, the hierarchical multilevel topology of a chemical plant allows making this 
decomposition. This paper describes the model of a chemical plant with a collector structure where the 
lower subsystems serve as the sources and the higher subsystems are used as the receivers (collectors). 
The scheme of a multilevel CPS with a collector structure is shown in figure 2 in the form of a three-
level complex (υ is the level number) where rectangles are process subsystems; lines and arrows are 
links S between the subsystems of different levels; Xυ, Yυ,Zυ are input and output variables of the 
subsystems. 

Figure 2. Scheme of a multilevel CPS with a collector structure.  
Both direct and indirect material merging of streams can occur in the collectors, for example, by 
summing up the company income from individual business units. The last observation imputes a 
relatively universal character to the CPS model considered in addition to the popular operating process 
when several units use a common collector, which takes place, for example, in petroleum products 
compounding (mixing) processes or in case chemical reactors are parallelly connected to the common 
collector. 
Solving the task of online optimization in such systems where local process criteria have to be agreed 
with the corporate goals of the higher level and must take into account the evolving external 
conditions is associated with significant computational challenges arising out of the high 
dimensionality of the problem  and, in general, nonlinearity of the mathematical description. Even if it 
is possible to create a system of linear equations that correctly describe the process statics for 
individual units, nonlinearities usually emerge at higher levels due to the nature of mixing and 
interaction of products in the collectors [4-6].  
In many cases it turns out that, despite the significant computational resources involved (time, 
computer memory), traditional methods of nonlinear programming used to solve optimization 
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problems with a large number of variables and limitations do not reach the global optimum due to the 
creation of gaps in the search space or for other reasons [7]. 
The decomposition approach can be considered as one of the main methods used to solve optimization 
problems in complex multilevel CPSs; this method is being constantly supplemented with new ideas 
and achievements [8, 9]. In recent years, the methodology of multicriteria (vector) optimization has 
been proposed with increasing frequency as the practical tool for solving control tasks in multilevel 
systems [10, 11]. 
The theory of multicriteria (vector) optimization originates in the works of prominent economists of 
the late 19th and early 20th centuries F. Edgeworth and V. Pareto and was developed in numerous 
subsequent studies [12–14]. One of the key tenets of the theory formulated by Pareto comprises the 
definition of the compromise set of mutually unimprovable criteria. Later on, this set was often 
referred to by the author’s name as “Pareto set” or “Pareto area”, or “Pareto boundary”. 
At the present time, the vector optimization methodology is usually used in preproject studies. This 
paper suggests using several important concepts and methods of the vector optimization in the practice 
of solving operative tasks; an appropriate method has been formulated and its efficiency is 
demonstrated by a particular model example of solving a mode optimization problem in a system of 
technical carbon reactors operating in parallel for one collector. 

2. General formulation of MCPS optimization problem
The mathematical model of a multilevel CPS with a collector structure includes equations between the 
input and output variables of blocks of different levels: 

Y3=Y3(Y1
2,…,Yn

2) (1) 
Z3(Y1

2,…,Yn
2)=0 (2) 

Yi
2=Yi

2(Y1i
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We assume that there are no connections between the input and output variables of the same level 
(which is a peculiarity of the MCPS model considered) and these connections are realized through the 
common collector: 

Xli 
1≠ Yei

1 { }pkkel ,1:, =∈  l ≠ e (7) 
The problem of process mode optimization for the facility in question can be formulated as the 
requirement to optimize a certain function Ψ(Z3, Y3) that depends on parameters of the higher level: 

opt Ψ(Z3, Y3),      (8) 
D 

where opt is the optimization (maximization or minimization) operator Ψ on the admissible set D 

described in the form of a system of equations (1) - (7) and additional limitations imposed by the 
requirements of process regulations and equipment design on control and output variables.  
Considering the aforementioned computational problems, even if all mathematical expressions and 
values of factors are known, it is advisable to supplement conditions (1) – (8) written in a general form 
by indicating a specific  method (algorithm) that allows solving the problem  most efficiently. 

3. Method for decomposition of the optimization problem in MCPS with a collector
structure based on multilevel approximation of compromise sets 
The compromise set (more precisely, “strict compromise set”) of the problem of vector optimization 
of criterion F= [f1(x),…, fm(x)] in region Dx ⊂Ex is subset Xc ⊂  Dx,  where in any point (εx ⊂  Dx) of
ε-neighborhood there is no improvement of at least one j-th criterion while other criteria preserve 
constant values. 
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Subset Xw
 = Dx \ Xc

 of space Ex where simultaneous improvement is possible for several (at least two) 
criteria is referred to as the “agreement region” Dx = Xc

   Xw
 , Xc

   Xw
 = ∅ [14]. 

Figure 3 shows an example of relative positions of Xc and Xw in admissible region Dх of two criteria 
formed by functions F1 and F2 that must be maximized and are linearly dependent on parameters Х1 
and Х2. The figure shows lines F1 and F2 of equal levels and the directions of their gradients in the 
form of vectors gradF1 and gradF2. In this case, the compromise set (Pareto region) is formed by 
curve segment ab. The agreement region Xw includes all points Dх with the exception of Xc (segment 
ab). 

In case functions F1 and F2 are not linearly dependent on parameters Х1 and Х2, the compromise set 
may be located both on the border of the admissible region and inside the region as shown by figure 4 
illustrating the case of two maximization criteria set by convex functions F1 and F2 on admissible set 
D1 or D2. 

Figure 3. Example of relative position of 
compromise set Xc and agreement region Xw in 
admissible region Dх of criteria F1 and F2 that are 
linearly dependent on parameters Х1 and Х2 

In region D1, compromise set Хс is on the border on the straight line a1b1; in region D2 it is partially on 
the border (segments of the straight lines a2b2 and d2e2) and partially inside region D2 (segment of 
curve b2c*d2), while in total it belongs to segment a2b2c*d2e2.  

Figure 4. Example of relative position of 
compromise set Xc of criteria F1 and F2 that are 
not linearly dependent on parameters Х1 and Х2 
for two cases of admissible region D1 and D2. 

The case when the compromise set is fully within the internal area of the admissible region is an 
example of unconditional vector optimization problem that can be identified by analyzing the relative 
position of the gradient vectors of local criteria, which are linearly dependent in the points of the 
compromise sets, and is solved by one of the unconditional vector optimization methods [15, 16]. 
The method of identification (and subsequent approximation) of the compromise set is selected 
depending on many factors including the type of admissible set (either convex or nonconvex), type of 
criteria dependence on the problem parameters (linear and nonlinear), and other factors. The example 
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given below describes case D1 of the compromise set belonging to the boundary of the admissible 
region. 
According to the idea of the proposed method, in the course of solving the single-criterion problem of 
scalar criterion Ψ optimization (1-8), the problem is transferred to the sphere of vector optimization. In 
this case, a system of lower level local criteria is selected where the compromise set (Pareto region) Xc 
would totally contain the points of probable solutions by criterion Ψ.  
The system of local criteria is selected considering the external conditions that change most 
frequently, such as the change of feed batch, commissioning/decommissioning of equipment units, or 
changes in limitations for feed stock, and are taken into account in formulation (1) - (8) as the problem 
constraints. In this case, the constraint equations of the initial scalar optimization problem are 
transferred to the rank of local criteria of vector optimization problem, for which points Xc of 
compromise set are searched. 
Further, points Xc are sequentially mapped in the upper level regions (since functional relationships 
exist that connect the variables of adjacent levels) including the highest level. i.e. identification of Yc is 
performed. After that, it becomes possible to find optimum Ψ (vector Yopt) not in the initial region Dx 
but among the points of the revealed compromise set Yc: 

opt Ψ(Z3, Y3) 
 Yc 

After that, the backward mapping of Yopt solution is performed sequentially into the lower level 
regions including the first region (calculation of Xopt). This means that solving the optimization 
problem for a multilevel system comprises computational procedures performed sequentially in 
counter directions. 
It is suggested that a well-known method should be used to perform the identification and, if needed, 
approximation of the compromise set [16, 17]. 
Introducing additional constraints identifying the compromise set Xc allows reducing the number of 
degrees of freedom of the initial problem (1) – (8), i.e. the optimization problem dimensionality. Since 
it is originally assumed that the lower level objects are locally independent, the admissible sets and 
compromise sets of individual objects turn out to be disjoint, which ensures the decomposition effect. 
The method is mainly applied for multilevel systems where the issue of repeated solution of the 
optimization problem formulated as (1) - (8) is relevant due to the frequently changing external 
conditions. In such systems, each manifestation of one of the above-mentioned external factors entails 
the need to use significant computational resources in order to solve the initial complex 
multidimensional optimization problem. 
According to the method under consideration, it is suggested that the resource-intensive problems of 
identification and approximation of compromise sets Хс and Yс and the problem of optimization 
(search for Yopt among Yс points) be solved considering the nature of the changing external factors in 
routine offline mode at the upper control level which is usually equipped with powerful computational 
resources.  
It is assumed that it will be possible to solve the operational tasks of optimization in the region of 
compromise sets Хс и Yс identified in offline mode and perform the mode stabilization on the lower 
control levels. It is understood that the dimensionality of the operational optimization tasks and, 
consequently, their computational resource-intensity are significantly lower than in case of the original 
formulation (1) - (8). 
The issue of theoretical justification of the applicability limits of the method suggested is generally 
beyond the scope of this paper, which is focused on demonstrating the idea and proving the efficiency 
of the method for the case of MCPS with a collector structure (as formulated in (1) – (8)) as well as 
illustrating them with particular example of a compromise set localization on the boundary of the 
admissible set. 
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4. Sample solution of the problem of online process mode optimization of reactor section in
carbon black production plant 
Let us illustrate the essence of the given method using a model example that describes the problem of 
online optimization for one flow of the reactor section in a carbon black production plant. This object 
can be represented in the form of a two-level system consisting of a group of units operating in parallel 
for one collector (refer to figure 5). 

Figure 5. Diagram of flow in reactors operating for one collector. 

The diagram shows a conventional representation of n number of reactors (in the problem solved the 
number n=6). The following variables are independent (control) parameters of individual reactors: 
Tzri is temperature in the reaction zone, оС; Qgasi is fuel gas consumption in the reactor, m3/h; Qoili – 
hydrocarbon feed consumption in the reactor, kg/h; Qvvdi – air consumed to spray feed in the reactor, 
m3/h. 
The output reactor variables are Gbc_i – reactor output, kg/h; Sg_i – specific geometric surface of 
carbon black particles, m2/g; Qairi – air consumed for combustion, m3/h. 
According to [6], the relationship between the reactor input and output parameters is as follows:  
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The individual peculiarities of the reactors are taken into account by supplementing the model with 
the following values of the adjustable absolute terms of equations Sg_0i and Qair_0i: 

Sg_0i = [-99; -100; -101; -102; -103; -104]; 
Qair_0i = [-6100; -6050; -6000; -5950; -5900; -
5850]. 

(10) 

Constraints for i-th reactor: 
• The ratio of combustion air consumption to fuel gas consumption shall not be less than Kmin=38

determined based on the thermal strength of the reactor combustion chamber:
Kmin i*Qgas i - Qair i ≤ 0; (11) 
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• Constraints on mode parameters imposed by the process regulations:
1500 ≤ Tzr i ≤ 1600 оС; 
40 ≤  Qgas i ≤ 80 m3/h; 
500 ≤ Qoil i ≤ 700 kg/h; 
280 ≤ Gvvd i ≤ 320 m3/h. 

(12) 

Collector parameters: 
• Total reactors output Gbc_С:

Gbc_С = ∑
=

n

i
iGbc

1
_  (13) 

• Specific geometric surface of carbon black particles in the collector Sg_С:

Sg_С = 
СGbc

iGbciSgn

i

_
_*_

1∑= ; (14) 

• Dispersion (dissipation) of individual value indicators of specific geometric surface in reactors
relative to the average D_Sg is calculated using the formula:

D_Sg = 
1

)__(
1

2

−

−∑ =

n
iSgСSgn

i ; (15) 

• Homogeneity of carbon black based on the specific geometric surface indicator Homog_Sg, i.e. the
dispersion of the size of carbon black particles is calculate as the mean square deviation of the
values of specific geometric surface by reactors:

Homog_Sg = SgD _ (16) 

Constraints on general flow parameters 
• Homogeneity shall not exceed the maximum allowable value of 2 m2/g:

Homog_Sg ≤ 2; (17) 
• Specific geometric surface of carbon black in the collector Sg_С shall not be less than the

minimum allowable value of 95 m2/g:
95 ≤ Sg_С.       (18) 

The task of the total output maximization in the reactors (13) on the admissible set specified by 
equations (9) - (12) and (14) - (18) is a nonlinear problem, where the dimensionality determined by 
independent variables (number of degrees of freedom) is 4n=24. Solving this problem by traditional 
methods depends to a large extent on the initial approximation and, in case of a bad choice of initial 
data, may lead to one of the local minima.  The authors of paper [6] had to significantly simplify the 
problem formulation in order to reduce the computational problems while solving a similar problem 
by traditional methods of nonlinear programming. 
Let us demonstrate how the global optimum can be reached using the suggested method. A 
preliminary analysis showed that indicators Gbc_С and Sg_С are competing criteria in the formulation 
under consideration, i.e. the maximum total output of the reactors and the output of each reactor taken 
separately is achieved at the minimum size of specific surface and vice versa. Thus, first of all, it is 
necessary to identify the compromise set to maximize the specified criteria in the parameter space of 
each reactor. To this end, let us perform a linear convolution of criteria Gbc_i and Sg_i, i.e. form the 
following specific problem of maximization of the weighted sum of these criteria: 

max [αi * Gbc_i + (1 - αi) * Sg_i] , αi ≥ 0, ni ,1= (19) 
 Di  

in the admissible set Di determined by equations and inequations (9) - (12) and solve it sequentially by 
linear programming method for each of the reactors at different values of factor αi that varies from 0 
to 1 with the interval of 0.1. If αi = 1, the problem (19) is identical to the problem of maximization of 
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Gbc_i; if αi = 0, it is identical to the problem of maximization of Sg_i; if αi is between 1 and 0, the 
optimum will be in intermediate points of the compromise set. 

5. Discussion
The results of problem (19) solution performed using Optimization Toolbox MATLAB software are 
summarized in table 1. 

Table 1. Values of the compromise set points in parameter space Xc
i and criteria space Yc

i. 

Xc
i Yc

i 
# αi Tzr i Qgas i Qoil i Qvvd i Qair i Qair i/ Qgas i Sg_i Gbc_i 

i=1 

0.0 a1 1600.0 62.7 500.0 320.0 2382.2 38.0 110.6 165.3 
0.1 b1 1600.0 80.0 662.7 320.0 3040.0 38.0 101.0 280.4 
0.2 c1 1578.0 80.0 700.0 320.0 3040.0 38.0 95.6 313.9 
0.4 d1 1500.0 66.0 700.0 320.0 2506.7 38.0 84.3 339.4 
1.0 e1 1500.0 68.3 700.0 280.0 2596.6 38.0 80.9 340.2 

i=2 

0.0 a2 1600.0 64.8 500.0 320.0 2463.0 38.0 109.8 161.5 
0.1 b2 1600.0 80.0 642.7 320.0 3040.0 38.0 101.4 262.4 
0.2 c2 1566.1 80.0 700.0 320.0 3040.0 38.0 93.1 313.9 
0.4 d2 1500.0 68.1 700.0 320.0 2587.6 38.0 83.5 335.5 
1.0 e2 1500.0 70.5 700.0 280.0 2677.5 38.0 80.1 336.3 

i=3 

0.0 a3 1600.0 66.9 500.0 320.0 2543.9 38.0 108.9 157.6 
0.1 b3 1600.0 80.0 622.7 320.0 3040.0 38.0 101.7 244.4 
0.2 c3 1555.4 80.0 700.0 320.0 3040.0 38.0 90.5 313.9 
0.4 d3 1500.0 70.2 700.0 320.0 2668.4 38.0 82.7 331.7 
1.0 e3 1500.0 72.6 700.0 280.0 2758.3 38.0 79.3 332.5 

i=4 

0.0 a4 1600.0 69.1 500.0 320.0 2624.7 38.0 108.1 153.7 
0.1 b4 1600.0 80.0 602.7 320.0 3040.0 38.0 102.1 226.4 
0.2 c4 1554.3 80.0 700.0 320.0 3040.0 38.0 88.0 313.9 
0.4 d4 1500.0 72.3 700.0 320.0 2749.3 38.0 81.8 327.8 
1.0 e4 1500.0 74.7 700.0 280.0 2839.2 38.0 78.4 328.6 

i=5 

0.0 a5 1600.0 71.2 500.0 320.0 2705.6 38.0 107.3 149.9 
0.1 b5 1600.0 80.0 582.7 320.0 3040.0 38.0 102.4 208.4 
0.2 c5 1553.1 80.0 700.0 320.0 3040.0 38.0 85.4 313.9 
0.4 d5 1500.0 74.5 700.0 320.0 2830.1 38.0 81.0 323.9 
1.0 e5 1500.0 76.8 700.0 280.0 2920.0 38.0 77.6 324.8 

i=6 

0.0 a6 1600.0 73.3 500.0 320.0 2786.5 38.0 106.4 146.0 
0.1 b6 1600.0 80.0 562.7 320.0 3040.0 38.0 102.8 190.4 
0.2 c6 1551.9 80.0 700.0 320.0 3040.0 38.0 82.9 313.9 
0.4 d6 1500.0 76.6 700.0 320.0 2911.0 38.0 80.2 320.1 
1.0 e6 1500.0 79.0 700.0 280.0 3000.9 38.0 76.8 320.9 

Points а1…е1, …а6…е6 are the nodes of the corresponding compromise sets for each of the reactors. 
Figure 6 includes a graphic illustration of the solution obtained in the three-dimensional space of 
independent parameters of reactors Tzr i, Qgas i, Qoil i. The cube faces in the figure are created by 
constraints (12). 
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Let us map points а1…е1, …а6…е6 in the criteria space of indicators Gbc_i, Sg_i, i.e. plot the graphs 
of the last two columns of table 1 that create sets Yc

i. The result is shown in figure 6. 
The final stage is to solve the maximization problem (13) under constraints (14) - (18) in the 
admissible set Yc

i  ni ,1=  created by the segments of lines а1…е1, …а6…е6, figure 7. 

Figure 6. Location of the compromise set points 
in the three-dimensional space of independent 

reactor parameters.  

Figure 7. Mapping of the points of 
compromise set Yc

i in the parameter space 
Gbc_i, Sg_i. 

It was also possible to preliminary formulate and solve the problem of approximating the broken lines 
by curve segments that form nonlinear dependences Gbc_i = f(Sg_i), for example, by regression 
analysis or neural networks in order to add the identified relationships to the constraint system (14) - 
(18). However, in the specific case under consideration, an algorithm was identified that allows 
avoiding the procedure of compromise sets approximation in the criteria space and addition of 
additional nonlinearities by searching for the optimum directly in set Yc

i ni ,1=  defined by broken lines 
segments а1…е1, …а6…е6. 
This problem was solved using MATLAB tools in the space of independent variables n=6, i.e. the 
search was performed by 6 independent variables (as opposed to 4n=24 variables of the original 
problem) and, despite its nonlinear character arising from the type of dependencies (13) - (16), and led 
to global optimum Yopt with the points shown in figure 6. Figure 6 also shows the mapping of Yopt in 
the space in independent reactor variables in the form of points Хopt. 

Table 2 summarizes the final results of solving the problem of indicator (13) optimization on the 
admissible set defined by equations and inequations (9) – (12) and (14) – (18). 

Table 2. Results of the problem solving in parameter space Xopt and criteria space Yopt. 

Xopt Yopt 
# Tzr i Qgas i Qoil i Qvvd i Qair i Ratio i Sg_i Gbc_i 

i=1 1588.7 80.0 686.6 320.0 3040 38.0 97.6 301.7 
i=2 1580.2 80.0 676.4 320.0 3040 38.0 96.5 292.7 
i=3 1574.2 80.0 666.2 320.0 3040 38.0 95.4 283.4 
i=4 1568.6 80.0 656.0 320.0 3040 38.0 94.4 274.4 
i=5 1562.6 80.0 645.7 320.0 3040 38.0 93.3 265.0 
i=6 1557.1 80.0 635.5 320.0 3040 38.0 92.2 256.0 

The values of general flow optimum parameters: 
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• Gbc _С = 1673.1 kg/h;
• Sg_C = 95.0 m2/g;
• Homog_Sg = 2 m2/g.

As evident from the numerical values of the last two inequations, the potentialities provided by 
constraints (17) and (18) were totally exhausted in the course of searching for the optimum solution. 
The solution is found in the extreme point of the admissible region determined by these constraints. 
As the need arises, the online optimization problem considered above can be formulated and solved at 
the level of the unit comprising all reactor flows and further at the level of the plant consisting of 
several units that produce different grades of carbon black. 
In this case, the enterprise profit can be used as the global criteria while the cost indices for individual 
plants are added to the local criteria showing the costs incurred to maintain the specified quality of 
technical carbon on the reactor flows. 

6. Conclusion and summary
The paper describes the controlled object represented with a multilevel chemical process system. The 
paper specifies the methods that can be used to solve static optimization problems for such objects and 
the issues associated with the problem solving. 
A method was suggested that allows solving the problem of online optimization of an initially scalar 
criterion of MCPS with a collector structure by transferring the problem to the sphere of vector 
optimization through the selection of the local parameter system where the compromise set comprises 
the points of possible solutions required to optimize the specified criterion and, simultaneously, the 
parameters of measures disturbances. 
After that, it is suggested that the optimum should be searched for not in the initial admissible region, 
but among the points of the identified compromise set whose collector property makes it possible to 
divide the compromise set into independent subsets. This produces the decomposition effect leading to 
the reduction of the optimization problem dimensionality and saves computational resources. 
The problem of online process mode optimization in MCPS was formulated in accordance with 
described method. 
A model example is given demonstrating the implementation of the method in solving the problem of 
online optimization of a process unit performance including the system of carbon black reactors 
operating in parallel for one collector. The example proves the effectiveness of the method suggested.  

 References 
[1] Marco Vaccari and Gabriele Pannocchia 2017 Real-Time Optimization MDPI AG vol 246 pp 71–

91 
[2] Dantzig G B and Wolf Ph 1960 Decomposition Principle for Linear Programs Operations 

Research vol 8 No 1 pp 101–111 
[3] Chen C Y and Joseph B 1987 On-line optimization using a two-phase approach: An application 

study Ind Eng Chem Res 26 pp 1924–1930 
[4] Nikitin V A and Mussaev A A 2007 Hydrocarbon Mixtures Compounding Optimization in a Flow 

with Nonlinear Component Interaction Papers (Saint-Petersburg: Nauka) pp 327–336 
[5] Kirgina M V, Sakhnevich B V, Maylin MV, Ivanchina E. D and Chekantsev N V 2014 

Development of a Smart Computer System to Support the Motor Fuel Production Process 
Chemistry and Chemical Technology vol 57 11 pp 84-86 

[6] Faruntsev S D, Perov V L and Bobrov D A.1981 Algorithm for Optimal Control of Parallel 
Operating Carbon Black Production Reactors Automation and Instrumentation in Refining and 
Petrochemical Industries (Moscow: CNIITEneftekhim) 1 pp 9–12 



AMSD-2019

Journal of Physics: Conference Series 1441 (2020) 012058

IOP Publishing

doi:10.1088/1742-6596/1441/1/012058

11

[7] Zakharova E M and Minashina I K 2014 Review of Multidimensional Optimization Methods 
Information Processes vol 14 3 pp 256–274 

[8] Lisitsyn N V 2003 Optimization of oil Refining Production. Saint-Petersburg: Khimizdat 180 p  
[9] Chekanina E A 2014 The Problem of Hierarchical Control of an Industrial Complex with 

Continuous Technology in the Class of Linear Models Automation and Modern Technology 7 
pp 35–37 

[10] Faruntsev S D 1980 The Multi-criteria Principle of Decomposition of Large-scale Optimization 
Problems in Multilevel Collector Systems Optimization of ACS Structures in Mechanical 
Engineering Regional scientific and practical conference (Omsk, Russia, 1980) pp 88–89. 

[11] Chikunov P A and Krivodubsky O A 2014 Analysis of Modern Methods of Building Decision 
Support Systems for Multi-level Enterprises Philosophical Problems of Information Technology 
and Cyberspace vol 2 (8) pp 20–40 

[12] Wentzel E S 1988 Operations Research: Objectives, Principles, Methodology (Moscow: Nauka) 
203 p 

[13] Podinovskiy V V and Nogin V D 2007 Pareto Optimal Solutions for Multicriteria Problems 
(Moscow: Fizmatlit) 256 p 

[14] Sorin Mihai Grad 2014 Vector Optimization and Monotone Operators via Convex Duality: 
Recent Advances (Springer) 269 p 

[15] Claus Hillermeier 2012 Nonlinear Multiobjective Optimization: A Generalized Homotopy 
Approach ISNM (Birkhäuser) 135 p 

[16] Lotov A V and Pospelova I I 2008 Multi-Criteria Decision Making Problems (Moscow State 
University) 197 p 

[17] Karpenko A P, Semenikhin A S and Mitina E V 2012 Population Methods for Approximating the 
Pareto Set in a Multicriteria Optimization Problem. Overview Science and Education: 
Electronic Scientific and Technical Publication vol 4 
(http://technomag.edu.ru/doc/363023.html) 

https://irbis.amursu.ru/cgi-bin/irbis64r_11/cgiirbis_64.exe?LNG=en&Z21ID=&I21DBN=SPRV&P21DBN=SPRV&S21STN=1&S21REF=&S21FMT=fullwebr&C21COM=S&S21CNR=20&S21P01=0&S21P02=1&S21P03=A=&S21STR=%D0%A7%D0%B5%D0%BA%D0%B0%D0%BD%D0%B8%D0%BD%D0%B0,%20%D0%95.%20%D0%90.
https://www.google.ru/search?hl=ru&tbo=p&tbm=bks&q=inauthor:%22Claus+Hillermeier%22
http://technomag.edu.ru/doc/363023.html

	1.  Introduction
	2.  General formulation of MCPS optimization problem
	3.  Method for decomposition of the optimization problem in MCPS with a collector structure based on multilevel approximation of compromise sets
	4.  Sample solution of the problem of online process mode optimization of reactor section in carbon black production plant
	5.  Discussion
	6.  Conclusion and summary
	References



