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Abstract. Analytical expressions of the coordinates of the load, the suspension point and the 
rope deviation angle, as well as their first three time derivatives were obtained by setting the 
desired load movement trajectory on a pendulum type flexible crane suspension using two-
point Hermite splines with the quartic highest derivatives. A well-known mathematical model 
of the oscillatory system described by a linearized differential equation was used. With the 
described movements, the uncontrollable pendulum oscillations of the load are absent. The 
load moves exactly along a reference trajectory. The superposition of load movements in two 
mutually perpendicular planes solves the problem of synthesising the suspension point 
trajectory, which ensures the movement of load along an arbitrary smooth curvilinear trajectory 
in the horizontal plane. The second horizontal coordinate of the load was represented as an 
interpolation polynomial from the first horizontal coordinate. The division of the movement 
trajectory along the axis of the second horizontal coordinate into several sections of the same 
length provide the determination of the load movement and its derivatives at reference points, 
as well as the calculated suspension point trajectory. The developed technique is promising for 
application in intelligent mechatronic control systems for travelling and bridge-travelling 
cranes. 

Keywords: Hermite spline, load swinging, reference trajectory, pendulum suspension, 
travelling crane, oscillations, forced motion. 

1. Introduction
In recent decades, a large number of studies have been devoted to a search for effective methods of 
automatic control of the moving links of travelling cranes (TC) [1] in order to provide partial or 
complete limitation (damping) of uncontrolled oscillations of the load on a flexible suspension [2] 
Uncontrolled oscillations with non-optimal (including manual) control of the TC are characteristic 
both of the process of load moving and after stopping the moving links. They reduce the efficiency 
and safety of the TC application [3]. 

The group of methods for controlling the movement of TC open-loop moving links require no 
additional feedback sensors tracking the actual deviation angle of the elevator rope from the vertical or 
the coordinates of the load on a real object. Within this group of methods, two main approaches can be 
distinguished: 1) using input formers [4] particularly used in controllers of automatic control systems 
for links of real cranes [5] and in mathematical modelling of their movements [6]; 2) trajectory 
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planning [7], which can be applied both for lightly loaded systems [8] and systems with uncertainties 
[9]. 

In a number of works, the mathematical apparatus of fuzzy logic [10], including the adaptive one 
[11], and the apparatus of neural networks [12] are used to limit the oscillations of the TC load. In 
[13], the problem of obstacle avoidance by a load is considered, taking into account the prohibited 
zones around obstacles. The optimisation of the trajectory cost function by the energy criterion is 
performed. As a result, the oscillation movements of the load carrier are limited. In [14], an approach 
to planning a trajectory with an analytical expression of acceleration is proposed. Here, an analytical 
expression is obtained that relates the oscillations of the load and the acceleration of the TC load 
carrier. The use of smooth functions in a three-segment acceleration trajectory is proposed. The task of 
acceleration to a given speed of movement of the suspension point in the absence of residual angular 
oscillations of the rope is solved analytically in [15]. 

Most of the known techniques and algorithms have disadvantages. As a rule, they do not solve the 
problem of the accurate movement of the load along the reference trajectory. With a different degree 
of efficiency, another task of limiting the oscillations of the load is being solved. Most often, it is 
interpreted as a decrease in the amplitude of oscillations of a rope or load. The movement time in the 
specified task, as a rule, increases. Often, oscillations are not completely damped. The vast majority of 
methods do not take into account the attenuation coefficients of the pendulum oscillations of the load 
due to energy dissipation. In the known methods, characterised by high quality oscillation damping, a 
relatively complex and resource-intensive mathematical apparatus is used. 

2. Formulation of the problem
To eliminate the drawbacks of the known methods, the article presents a simple analytical method for 
determining the movement trajectory of the load suspension point, ensuring the movement of the load 
along the reference curvilinear trajectory. 

There is a curvilinear trajectory of load movement in the Y = f(X) horizontal plane specified in the 
form of n reference points. The curve of the trajectory, described by an interpolation polynomial, 
passes through the X and Y specified horizontal coordinates of the reference points (figure 1). 

Figure 1. Schematic view of an cubic interpolation polynomial of the spatial load trajectory passing 
through 4 reference points and the corresponding trajectory of the suspension point. 
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Using the mathematical model of the TC with a rope suspension of the load (figure 2), it is 
necessary to determine such a trajectory of the suspension point of the load (bridge and load carrier of 
the TC moving along the X and Y horizontal axes, respectively), which will allow the reference 
movement trajectory of the load to be realised during the T  time with the observance of additional 
conditions of equality to zero of the speeds and accelerations of the load and the suspension point both 
at the initial and at the final moments of time. 

3. Theoretical part
The method is intended for low-loaded TCs (moving loads of the mass comparable to the mass of the 
TC carrier), which do not experience significant wind loads (indoor operation). The assumption is 
made about the negligible influence of the load mass on the controlled parameters of movement, speed 
and acceleration of the TC moving links, such as bridge and load carrier. The scope of application of 
the method is limited to small angles of deviation of the elevator rope from the vertical (not more than 
5°) and a constant length of the rope in the process of load movement. 

Taking into account the smallness of the deviation angles of the elevator rope, the motion of the TC 
spatial dynamic system (see figure 2(a)) was presented as a superposition of plane oscillations in two 
mutually perpendicular planes. These are the plane of movement of the crane bridge with a load (along 
the X axis, angle θx) and the plane of movement of the TC carrier with load (along the Y axis, angle 
θy). The scheme of moving a flexible suspension point of TC with a load in a separate plane (for 
example, the plane of motion for the TC crane bridge) is shown in figure 2(b). 

b)
Figure 2. Bridge crane with rope suspension: (a) – spatial diagram; (b) – the scheme of movement in a 

separate plane. 

In the mathematical model and on the plane oscillation scheme (see figure 2(b)), the following 
designations of the parameters of the dynamic system are set (using the example of motion along the X 
axis): L is the length of the pendulum suspension of the load (i.e., elevator rope) from the suspension 
point of the TC load carriage to the mass centre of the load, m; q is the angle of deviation of the TC 
elevator rope from the vertical, rad; m is the load mass, kg; g is the gravitational acceleration, m/s2; t is 
the current time of the moving process, s; T is the end time of the moving process, s; b=B/(mL2) is the 
oscillation damping factor, s–1; B is the drag torque factor of the angular rotation of the rope relative to 
the gravitational vertical, kg·m2/s; xt is the linear horizontal coordinate of the suspension point, m; xl0= 
0 is the linear horizontal coordinate of the load at the t= 0 initial time, m; xlT  is the linear horizontal 
coordinate of the load at the T end time, m. Top points above all variable parameters denote their time 
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derivatives. When considering the movement along the Y axis, all parameters containing the x-axis 
symbol will correspond to the parameters containing the y-axis symbol. 

The basis of the mathematical description of the process of TC load moving was formed on the 
well-known differential equation of the pendulum oscillations with a moving suspension point [16]. In 
the case of small angles and taking into account the damping of oscillations, this linearized differential 
equation has the form 

/ / 0tq x L bq q g L+ + + ⋅ =    (1) 

Differential equation (1) is obtained by linearizing the nonlinear differential equation of large 
oscillations in the plane. 

The linearized equations of the relations of movements, velocities, accelerations and snatches of 
the suspension point and the load point at small values of the q angle have the form 

( ) ( ) ( )–t lx t x t L q t= ⋅ ; ( ) ( ) – ( )t lx t x t L q t= ⋅   ; ( ) ( ) (– )t lx t x t L q t= ⋅   ; ( ( )–( ) )t lx t x t L q t= ⋅   . (2) 

When substituting the expression for the ( )tx t  acceleration of the suspension point from (2) in the 
second-order differential equation (1), the latter is reduced to the first order. The differential equation 
of the first derivative of the q  angle in the Cauchy form is formed as: 

( ) / ( )lq x q g L b= − + ⋅ ⋅  (3) 

When substituting expressions of the ( )lx t  acceleration of the load in the form of smooth functions 
to the differential equation (3), in some cases an analytical solution of this differential equation can be 
obtained. 

In order to set the reference trajectory of the load, this article proposes to apply Hermite splines. 
Using the well-known general derivation formulas [17, 18], an expression was obtained for the two-
point Hermite spline with the highest order of derivatives at the m= 4 nodal points, given below. For 
the m order being less than 4, snatches in the acceleration of the suspension point at the initial and 
final moments of the process are observed. The m order greater than 4, in turn, significantly increases 
the complexity of the resulting analytical expressions and makes them rather cumbersome. Therefore, 
it was decided to settle upon the m= 4 value. Two-point Hermite spline that defines the trajectory of 
the load at m= 4 has the form [17, 18]: 

9 8 7 6 5 4 3 2
9 8 7 6 5 4 3 2 1( )lx s t s t s t s t s t s t s t s t s tt = + + + + + + + + (4) 

where s1...s9 are constant coefficients determined by the specified values of the time of movement 
and derivatives of the linear movement of the load at the starting and ending nodal points: 

1 0ls x=  ;       
3 2

0 0 0
2 3

3 30 5
6

l l lx T x T xs
T T
+

= −
  

; 
3 2 3 2

0 0 0 0 0 0
3 2 4 3

10 15 150 15 90
6 6

l l l l l lx x T x T x T x T x Ts
T T T

+ + +
= − +

     
; 

3 2 3 2 2
0 0 0 0 0 0 0 0 0

4 5 3 4 3

15 150 10 5 75 450 5 45 210 ;
3 6 6

l l l l l l l l lx T x T x x T x T x T x T x T xs
T T T T
+ + + + +

= − − +
        

3 2 3 2
0 0

5 6

3 2 2
0 0 0 0 0 0 0

4 5 4

5
(21 ) / 2 56 126 15 150

3
5 5 75 450 25 225 1050 ;

3 6

lT lT lT lT l l

l l l l l l l

x T x T x T x x T x T
T T

x x T x T x T x T x T x
T T

s

T

− + − + +
− +

+ +
+ + −

=

+ +

    

      

2 3 2
0 0

6 5 7

3 2 2
0 0 0 0 0 0 0
5 6 5

196 (77 ) / 2 (23 ) / 6 (420 ) / 15 150
6

5 75 450 25 225 1050 ;
3 3

lT lT lT lT l l

l l l l l l l

x Tx T x x T x T x Ts
T T

x x T x T x T x T x T x
T T T

− + − +
= + −

+ + + +
− − +

    

      



AMSD-2019

Journal of Physics: Conference Series 1441 (2020) 012101

IOP Publishing

doi:10.1088/1742-6596/1441/1/012101

5

3 22
0 0

5 8

3 2 2
0 0 0 0 0 0

7 6

7

11 260 54053 3 302
6

5 75 450 25 225 1050 ;
6 3

lT lT lT
lT

l l

l l l l l l

T x x xx x T x TT T
T T

x T x T x T x T x T x
T

s

T

− − + +
− +

+ + + +
+

=

−

 
  

     

3 22 3
0 0 0

5 8

2
0 0 0

8

7

7 65 155 315
15 902 2

6
25 225 1050 ;

6

lT lT lT lT

l l l

l l l

s

x x x x
x T x T x TT T T

T T
x T x T x

T

− + −
+ +

− +

+ +

=

+

  

  

  

22 3 4
0 0 0

5 89

15 5 35 70
5 45 2102 6 .

6

lT lT lT lT

l l l

x x x x
x T x T xT T T T

T
s

T

− − +
+ +

−=

  

  
; (5) 

Thus, a separate movement of the load from the start to the end point is characterised by a set of 
boundary conditions at the initial and final time points in the form of coordinate values, its first three 
derivatives, as well as the initial value of the q0 angle of inclination of the rope. 
The expressions of the first three time derivatives of the Hermite spline (4), determining the specified 
speed, acceleration and snatch of the load, are of the form: 

8 7 6 5 4 3 2
9 8 7 6 5 4 3 2 19 8 7 6 5 4 3 2lx s t s t s t s t s t s t s t s t s= + + + + + + + + ; (6) 

7 6 5 4 3 2
9 8 7 6 5 4 3 272 56 42 30 20 12 6 2lx s t s t s t s t s t s t s t s= + + + + + + + ; (7) 

6 5 4 3 2
9 8 7 6 5 4 3504 336 210 120 60 24 6lx s t s t s t s t s t s t s= + + + + + + . (8) 

The derived coordinates of the load (6) - (8), obtained by time differentiating expressions (4), 
provide the expressions of speeds, accelerations and snatches of the load suspension point from 
equations (2). This is possible in the presence of analytical expressions of the first three derivatives of 
the rope angle, as will be discussed below. 

For differential equation (3), after substituting into it the expression of the second derivative of the 
Hermite spline (7), a solution can be obtained in the analytical form. The solution consists in a time 
dependence of the deflection angle of the load rope: 
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The expression of the C1 constant coefficient, determined by substituting the initial value of the q0 
angle to (9), has the form: 

3 3 4 4 5 52 2
5 6 72 4

1 0 3 4 5 6

6 6 7 7
8 9 3

7 8 2

120 720 50402 24

40320 362880 6 .

L b s L b s L b ss L b sC q
g g g g g

L b s L b s Lb s
g g g

= + + − + − +

+ − −

(10) 

By time differentiating the formula (9), analytical expressions of the first three derivatives of the 
rope angle are obtained: 

( )

( ) ( )

( )
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6 7
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4 5
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g
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+
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The movement of the suspension point and its derivatives can be determined by substituting the 
values of the rope angle and its first three derivatives obtained in (9), (11), (12) and (13) directly into 
the constraint equations (2). 

All the above analytical expressions describe the movement of the pendulum system of the load 
with a moving suspension point in a separate plane. Thus, the obtained expressions allow analytical 
expressions of the trajectory of the load suspension point, given by equations (4), (6) - (8) for the load, 
to be obtained, i.e. to obtain the expressions of the working parts of TC: bridge or load carrier. Moving 
the latter along the trajectory (2) promote the realisation of the given trajectory of the load in the plane 
in the absence of uncontrolled vibrations, subject to the rest conditions at the initial and final moments 
of time. 

4. Experimental results
Next, let us consider the method of using the obtained expressions to study the spatial movements of 
the load along a curve located in the horizontal plane (with the restriction in the form of a L constant 
rope length). It is necessary to set the curved trajectory of the load in the horizontal plane, and then 
present it as a superposition of two plane controlled vibrations. The simplest and most universal way 
of defining a curved trajectory of the load movement in the XY plane as a Y = f(X) function is to 
specify the X and Y coordinates for n reference points through which the curve should pass, and the 
subsequent generation from them of coefficients of the interpolation polynomial of n–1 degree by 
known numerical methods [19]. The only necessary condition is the following. It is required that the 
values of the X coordinate in the sequence of reference points of the trajectory monotonously increase. 
The values of the Y coordinate can be changed arbitrarily. 

As an example, with the number of reference points of the trajectory equal to 4 (see figure 1), the 
expressions of the interpolation polynomial and its first three derivatives take the form: 

3 2
1 2 3 4l l l ly p x p x p x p= + + + ; 2

1 2 33 2l l l l l ly p x x p x x p x= + +    ; 

2 2 2
1 2 1 2 36 2 3 2l l l l l l l l ly p x x p x x p x x p x x p= + + + +      ; (14) 

3 2
1 1 1 2 2 36 18 3 6 2l l l l l l l l l l l ly p x p x x x p x x p x x p x x p x= + ++ + +         , 

where p1, p2, p3, p4 are the interpolation polynomial coefficients sorted in decreasing order. 

5. Results and discussion
For the example shown in figure 1, four reference points of a given load trajectory have X= [0; 2; 8; 
10] m, Y= [0; 2; –3; 0] m coordinates. The coefficients of the interpolation polynomial take the values
of p1= 0.052083; p2= –0.75; p3= 2.291667; p4= 0. 

As an example of one of the methods for setting the spatial trajectory, let the movement of the load 
along the X axis be set using the only Hermite spline of the form (4), determined by the following 
values of the constant parameters: 

m=1000 kg; B=5 kg·m2/s; T=30 s; q0=0°; xl0=0 m; 0 0lx =  m/s; 0 0lx =  m/s2; 0 0lx =  m/s3; 

xlT=yl(T)=10 m; 0lTx =  m/s; 0lTx =  m/s2; 0lTx =  m/s3. (15) 
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Figure 3. Time dependences of a number of variable parameters during the load movement along the 
X axis: xl denote load coordinates, xt are coordinates of the suspension point, q is the angle of the 

deviation of the rope from the vertical, tx  is the speed of the suspension point, tx  is the acceleration of 
the suspension point (example). 

Figure 4. Time dependences of the load movements, speeds and accelerations ( , ,l l ly y y  ) of the load 
and load suspension point ( , ,t t ty y y  ) when moving along the Y axis (example). 
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Figure 3 present the time dependences of the variable parameters of the system, calculated for a 
single movement of the load along the X axis. Single acceleration and deceleration, similar to those 
shown in figure 3, is advisable to use for defining the movement along the X axis of the TC bridge, 
which has a large inertia in comparison with a load carrier. 

Expressions (14) make it possible to determine the values of the load movement along the Y axis, 
as well as the first three derivatives of this displacement for an arbitrary number of reference points of 
the Y(t) trajectory. The movement of the load along the Y axis has a variable direction. The [0; T] total 
time interval of the movement can be divided into k gaps. 

Figure 4 shows the time dependences of the movements, velocities and accelerations of the load 
and the load suspension point in the direction of the Y axis for the considered example with k=6. In 
this case, the yl (t) number of reference points of the trajectory is equal to k+1, i.e. 7. The final value of 
the angle of deviation of the load rope in each of the gaps acts as the initial q0 value for the subsequent 
interval. 

Figure 5. Synthesised time dependences of the ty  acceleration of the suspension point for the k= 16 
(а) and k= 7 (b) number of reference points of the yl(t) trajectory; diagram of the values of the absolute 

error of the Δymax coordinate of the load for k= 11, 7, 6 and 5 (c). 

The parameters of the load trajectory specified by (14) and obtained by formulas (4), (6) and (7) 
visually coincide. For the parameters of the trajectory of the suspension point, the smoothness of the 
functions is observed only for yt  movement  and ty  speed. The ty  acceleration plot of the suspension 
point has break points with time values coinciding with the reference points of the yl (t) trajectory 
(figure 5(a), (b)). 

An increase in the number of control points reduces the maximum absolute error in the 
implementation of a planned trajectory of the load along the Y axis (Figure 5(c)).  
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The absolute error was determined as the difference between the current values of the yl coordinate 
of the load obtained by the formula (14) and the corresponding values obtained on the TC simulation 
model [20] of applying to it as input actions at the same time two movements of the suspension point 
obtained by formulas (2) along the X and Y axes. The simulation model allows large spatial 
movements of the load to be explored. Possible values of the deviation angles of the load rope in this 
model are not limited. 

The Δymax maximum absolute error at k≥7 is less than 1 mm (see figure 5(c)), which can be 
considered a negligible value. 

The maximum absolute error along the axis of movement of the bridge in this example took 
constant values: Δxmax= 0.55 mm due to the movement of the load along the X axis of the bridge being 
specified by the same two-point Hermite spline in all the calculation cases. 

6. Conclusions
1. The use of two-point Hermite splines with the highest order of derivatives, equal to 4, made it
possible to obtain analytical expressions of load movements, its suspension point, the angle of 
deviation of the rope from the vertical, as well as their time derivatives. In this case, the movement of 
load in a spatial separate plane is carried out exactly along a projected trajectory, in the mode of 
absence of uncontrolled oscillations. When using the presented analytical expressions, there is no need 
for a numerical solution of the differential equations describing the considered plane oscillatory 
system of the load with a moving suspension point. 

2. A superposition of load oscillations in two mutually perpendicular planes of the bridge
movement and the movement of the load carrier is permissible for small deviation angles of the 
elevator rope from the vertical. It provides the salvation of the problem of moving load on a flexible 
pendulum suspension of constant length along a planned curvilinear trajectory, when the latter is set in 
the horizontal plane. For this, the coordinate of the load along the axis of movement of the load carrier 
can be represented as an analytical function (for example, an interpolation polynomial) from the 
coordinate of the load along the axis of movement of the crane bridge. As an example, the article gives 
the formulas of the interpolation polynomial of the third degree, as well as its first three time 
derivatives. This polynomial describes a trajectory possessing one inflection point and passing through 
four reference points with given geometric coordinates. Such a trajectory allows two obstacles to 
avoided by the load. By dividing the time trajectory of the load along the axis of movement of the load 
carrier into several sections of the same duration, the necessary values of the movement of the load 
and its first three derivatives at the reference points can be calculated. Then, using the above analytical 
expressions for each section, the trajectory of the suspension point along the axis of movement of the 
load carrier can be determined. 

3. For the considered interpolation polynomial of the third degree, which determines the
dependence of the coordinate of the load along the movement axis of the carrier on the coordinate of 
the load along the movement axis of the bridge, it is advisable to use seven or more reference points of 
the time dependence for the load trajectory. This reduces the maximum absolute error of the method in 
the considered example to an insignificant value of less than 1 mm. The specified error was obtained 
by forcing the movements of the bridge and the load carrier in the spatial simulation model according 
to time trajectories obtained from the analytical expressions given in the article. 
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