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Abstract. We consider an extension of the well–known optimization placement problem. The
problem is One–Dimensional Space Allocation Problem (ODSAP). The classical formulation of
the problem is to place rectangular connected objects on a line with the minimum total cost
of connections between them. The extension of the problem is that there are fixed objects
(forbidden zones) on the line. The objects are impossible to place in forbidden zones. The placed
objects are connected among themselves and with the zones. The configuration of connections
between objects is defined by a network. A similar situation arises, for example, when designing
the location of technological equipment of petrochemical enterprise. It is necessary to place units
of equipment so that the total cost of the pipeline ties was minimal. In this article a review
of the models and methods to solve of the classical ODSAP is given. The properties of the
problem with the forbidden zones are noted. Models of combinatorial optimization and integer
programming for the problem are constructed. Algorithms for finding an approximate solution
and branch and bounds are described. Results of computational experiments are reported.

1. Introduction
The problems of finding optimal solutions often need to be solved in practice [5, 16, 17, 22]. As
a rule, the problems are difficult to solve. The study of such problems requires the construction
of new mathematical models and the development of effective algorithms. This article explores
one of the problems of optimal placement of connected objects.

To solve practical problems optimal placement, real objects are often replaced by geometric
shapes, such as rectangles [13]. Although that the approximation of the real objects of complex
form by rectangular objects has some mistake, it is widely used in practice in aided design of the
placement technological equipment of various enterprises. This approach reduces the complexity
of calculations in solving the problem. For example, the approximation of objects by rectangles,
allows you to apply well developed methods of computational geometry for rectangles.

A number of mathematical models of various types for optimal placement of rectangles is
constructed [6, 11, 14, 18, 21]. The most developed models and methods of placing objects
between which there are no connections. These are the problems of packing and cutting.
Methods of linear and integer programming, heuristic procedures are used to solve them. For
example, the problem of packing rectangle objects into a semi–infinite strip on plane with
forbidden zones and criterion of minimal length of the strip was considered in [14]. For solving the
problem a search algorithm with prohibitions for finding an approximate solution was proposed.
In [11] the algorithm of local optimization for placement of connected rectangular objects on
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plane with the criterion of minimum summary length of connections between the objects was
reported.

An important direction in the placement of rectangles is the so-called regular placement,
for example, along the center (red) lines. Methods of integer and dynamic programming were
used for solving the problem with two criterion of placement rectangles on parallel lines [21].
One of the known problems of placement connected rectangular objects on the line is the
One–Dimensional Space Allocation Problem (ODSAP). The problem is to find a placement of
connected rectangular objects on the line with the criterion of minimum total cost of connections
[4, 18]. For the solving the problem methods of branch and bounds and dynamic programming
are developed.

Currently, it is relevant to study the problems of optimal placement on the line and plane,
taking into account the forbidden zones and barriers [2, 3, 9, 15, 23, 24]. Forbidden zone is a
region, for example, on the plane, which is forbidden to place objects for any reason. These may
be fixed objects natural elements, such as mountains, swamps and others. At of reconstruction of
the enterprises, such zones may be, for example, technological equipment and available premises.
Barriers are defined as regions in which the placement of objects and carrying out connections
across the barriers not allowed. Allowed to lay a communication only through the passages in
the barriers.

In the article we describe the results research of the problem of optimal placement of connected
rectangular objects on the line in the presence of forbidden zones. The objects are impossible
to place in forbidden zones. The objects and the forbidden zones are the rectangles. As since
the space for placement have dimension one therefore the objects and forbidden zones are linear
segments. The centers of the objects are connected between themselves and with the centers
of the zones. The configuration of connections between objects are presented in the form of an
undirected network. It is necessary to place the objects outside the forbidden zones so that the
total cost of the connections between objects themselves and objects and zones was minimal.
It is extension the One–Dimensional Space Allocation Problem (ODSAP). The review of the
research of the classical ODSAP is reported. The original continuous problem with forbidden
zones for the arbitrary undirected network is reduced to a number of discrete subproblems of
smaller dimension [23]. In addition the review of the properties of the extension ODSAP is given.
A heuristic algorithm [23] and the branch and bound method [24] for solving of the problem are
described. Results of computational experiments on comparison of the efficiency of branch and
bound method and a heuristic algorithm are reported. A model of integer programming and
IBM ILOG CPLEX package were used in the experiments.

2. Practical application
Today, the problem of optimal placement of objects of different sizes is being intensively studied
both in the theoretical aspect and on practice. There are two main areas of practical application
to solve such problems. It is the placement of elements of electronic devices and the placement
of process equipment. In the first direction the problems of placing elements and the tracking
of connections between them are solved [6].

In the design of electronic devices the problem of placement is determined the optimal spatial
arrangement of elements on a given surface (switch field). The criteria and restrictions in the
problem can be divided into metric and topological. The size of the elements and the distance
between them, the size of the switchable zero, the distance between the terminals of the elements,
the permissible length of the connections are included in the metric conditions. The number of
spatial intersections of connections, the number of interlayer transitions, the proximity of fuel
elements or incompatible electromagnetic elements and connections to each other are included
in the topology conditions.

To determine the geometry of the connections of the structural elements of electronic devices
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there is the problem of tracing. There are three types of connection tracking: wired, printed,
and film links. Criteria for the optimal solution of the trace problem can be minimized, for
example, the total length of the connections, the number of layers of installation, the number of
transitions from layer to layer, interference in the circuit elements.

The focus in the second direction is usually on the placement of equipment and the assessment
of links between them. Such problems should be solved not only when designing the placement
of technological equipment, but also when carrying out design work, as a rule, at the preliminary
design (planning) stage in other industries. This is the location of the enterprises workshops,
machine hydraulic elements, facilities for laying oil and gas pipelines, and so on. At the planning
stage, a preliminary assessment of the relationships between the placed elements is usually
carried out. In particular, this refers to the stage of installation of production, as a result
of which the problem of placement of equipment is solved. Here, unlike electronic devices,
the tracking phase is not so important, since everything is done in three-dimensional space.
A number of factors affect the placement option, for example, the type of store construction,
safe operation conditions, transportation conditions for parts (blanks), ease of maintenance and
repair, the ability to replace equipment, and compliance with building codes and regulations.
Often, the creation of direct driveways, ease of operation and maintenance of equipment requires
the ”regularity” of placing [21] (along red lines).

Solving problems of the second direction in practical terms is due to the increase in the
efficiency of work in various industries, reduction of time costs and reduction of production
costs. It is argued that up to half of the production costs in the industry are related to the
processing of materials and the efficient placement of equipment [7]. An improvement plan
often leads to lower costs for handling and transporting materials, reducing the workload on
equipment and speeding up the work process. So, efficient placement of technological equipment
is important for the competitiveness of production. To solve these problems in the process of
designing a new or upgrading an existing production, mathematical tools and applied software
are used.

In the practical application of placement problems it is often necessary to take into account
the sizes of objects. Accounting for this factor in an automated solution allows you to choose
the best option for placement of equipment, which more adequately reflects the real situation.

3. Models of the ODSAP
3.1. Statement of the problem
The set of numbers of the placed objects and a set of the forbidden zones we will designate
through I = {1, . . . , n} and J = {1, . . . ,m} respectively. Every object i and every zone j is the
rectangle with dimensions li × hi and pj × dj respectively, where i ∈ I and j ∈ J . The centers
of objects are connected with each other and with the centers of zones. Connections from the
centers are laid to the line on which the placement is performed, and then along this line. It is
obvious that the lengths of the vertical components of the connections between any objects i and
j and object i and zone j do not depend on the order of the objects placement on the line and
are equal hi/2+hk/2 and hi/2+ dj/2 respectively. The non–intersection conditions of objects i
and k and object i and zone j mean that the specified distances must be at least li/2+ lk/2 and
li/2 + pj/2. We can include the values of minimum admissible distances the objects between
themselves and with zones. Next we assume that the minimum admissible distances between the
projections of the object centers and zones are given. The problem is reduced to the placement
of points, i.e. projections of centers of rectangles on the line. Denote by rik, (rii = 0), i, k ∈ I,
and tij , (tii = 0), i ∈ I, j ∈ J , the minimum admissible distances between objects i and k and
between object i and zone j respectively i, k ∈ I, j ∈ J . We denote by R = (rik), T = (tij)
symmetric matrixes of minimum admissible distances the objects among themselves and with
zones respectively.
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The configuration of connections between objects is defined by a network G = (V,E), where
V = {v1, . . . , vn} is a set of nodes and E is a set of undirected arcs. Arc (vi, vk) ∈ E, if there
is a connection between objects i and k. Let uik ≥ 0 (uik = uki), wij ≥ 0 (wij = wji) are the
costs of connections between objects i and k (weight of the arc (vi, vk)), and between object i
and zone j for i, k ∈ I, j ∈ J , and i < k respectively. Need to find placement of the objects
on the line so that restrictions on the minimum admissible distances between the objects and
between the objects and zones were satisfied and the summary cost of connections the objects
among themselves and the objects with zones was minimal [23].

Consider a line segment of length LS containing rectilinear forbidden zones with the centers
at bj , j ∈ J . For simplicity, we can assume that the left border of the segment has the coordinate
equal to zero. Denote by xi the coordinate of center of object i, i ∈ I; let x = (x1, . . . , xn) is
the placement of the objects. It is need to find minimum of the function:

F (x) =
∑
i∈I

∑
j∈J

wij |xi − bj |+
∑
i,k∈I

∑
(vi,vk)∈E

uik|xi − xk| → min, (1)

under constraints
|xi − bj | ≥ tij , i ∈ I, j ∈ J, (2)

|xi − xk| ≥ rik, i, k ∈ I, i < k, (3)

li
2
≤ xi ≤ LS − li

2
, i ∈ I. (4)

The following conditions for the elements of the matrix R are considered:

(a) rik = li+lk
2 , i, k ∈ I, i ̸= k (noncrossing conditions);

(b) rij + rjk ≥ rik, i, j, k ∈ I, i ̸= j ̸= k (metric problem);

(c) rik − arbitrary, i, k ∈ I, (non-metric problem).

Specified conditions can be considered for the elements of the matrix T .

3.2. The classical ODSAP
The classical ODSAP is the problem (1), (3) without forbidden zones (J = ∅) and with conditions
(a). The ODSAP is NP–hard when G is an arbitrary unweighted and unoriented network of
connections between objects [8, 20].

In this article the focus is on the problem (1)–(4) with conditions (a).
The classical ODSAP problem (1),(3) (J = ∅) in terms of permutations is formulated as

follows. Denote by π = (π(1), . . . , π(n)) the permutation of the objects. Let π−1 denote the
inverse of this permutation: π−1(i) is the position of object i in the permutation π. Consider
the permutation π and two objects i and j. The distance between i and j with respect to this
permutation, assumed to be taken between their centers, is equal to the half–length of object i,
plus the lengths of all objects which are between objects i and j in π, plus the half–length of
object j:

r(i, j, π) = li/2 + lj/2 +
∑

k∈S(i,j,π)
lk,

where S(i, j, π) is the set of the objects between objects i and j in π.
The problem of finding a permutation π which minimizes the weighted sum of the distances

between all pairs of objects is the ODSAP.

D(π) =
∑
i∈I

∑
j∈I,j ̸=i

uijr(i, j, π).
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The following property is true for the classical ODSAP. There is the symmetry of the solutions
to the problem. Let permutation π

′
be the symmetric for permutation π, i.e.

π
′
(t) = π(n− t+ 1) for all t = 1, . . . , n.

Then D(π′) = D(π). So, we can exchange the right and the left hand sides oh the line in our
definition. Thus, we could somewhat simplify the problem by only considering, for instance, the
permutation in which π−1(1) ≤ n/2.

3.3. Model of mixed–integer linear programming
We describe (1)–(4) as a model of mixed–integer linear programming (MILP) [23]. To search of
the minimum of the function (1) without conditions (2) and (3) can be set as linear programming
problem with the addition continuous variables: sij ≥ 0, tik ≥ 0, i, k ∈ I, j ∈ J , i < k. To
formulate the condition of disjointness of objects with each other and with zones and define
their positions relative to each other (to the left or to the right) introduce the Boolean variables:
z2ik, i, k ∈ I, i < k and z1ij , i ∈ I, j ∈ J (z2ik = 1, if oblect i is located to the left of object k,

otherwise z2ik = 0). Subject to designations the MILP model of (1)–(4) is:

F (x) =
n∑

i=1

m∑
j=1

wij · sij +
n−1∑
i=1

n∑
k=i+1

uik · tik → min, (5)

−sij ≤ xi − bj ≤ sij , i ∈ I, j ∈ J, (6)

−tik ≤ xi − xk ≤ tik, i, k ∈ I, i < k, (7){
xi − bj − (li + pj)/2 + C · z1ij ≥ 0, i ∈ I, j ∈ J,
bj − xi − (li + pj)/2 + C · (1− z1ij) ≥ 0,

(8)

{
xi − xk − (li + lk)/2 + C · z2ik ≥ 0, i, k ∈ I, i < k,
xk − xi − (li + lk)/2 + C · (1− z2ik) ≥ 0,

(9)

sij ≥ 0, i ∈ I, j ∈ J, (10)

tik ≥ 0, i, k ∈ I, i < k, (11)

z1ij ∈ {0, 1}, i ∈ I, j ∈ J, (12)

z2ik ∈ {0, 1}, i, k ∈ I, i < k, (13)

li
2
≤ xi ≤ LS − li

2
, i ∈ I. (14)

Constant C > 0 is required to meet the alternative conditions of the placement of the objects
on the line.

4. Methods of solution
4.1. Solving the classical ODSAP
We describe the complexity and methods of the solution of the problem for the following types of
network G: chain, rooted tree and bipolar oriented network taking into account the conditions
(a), (b) and (c).

Denote by P (n) the set of all permutations of n elements. Arbitrary placement of the objects
on the line x = (xi1 , · · · , xin), xik < xik+1

, k ∈ I, k < n, corresponds to the permutation
π(x) = (i1, · · · , in) ∈ P (n). Note that under the condition (c) to obtain an optimal solution of
the problem it is not enough to know the corresponding permutation.
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If G is an undirected chain and minimum admissible distances satisfy condition (b), then the
algorithm for solution of the problem is trivial. Adjacent objects with numbers i and j must be
at the distance rij . In this case the total cost of the connections between objects is∑

(vi,vj)∈E
uijrij .

If there is a violation of triangle inequality between minimum admissible distances, then,
generally speaking, it is impossible to place all adjacent objects at minimum distances.

Let the numbering of objects be such that the arcs of network G have the form (vi, vi+1),
i ∈ I, i < n. In this case it is sufficient to consider permutation π0 = (1, · · · , n) for finding the
optimal solution of the problem.

Therefore, if G is the chain and the elements of the matrix R are arbitrary rational numbers,
then the ODSAP is polynomial solvable for conditions (a), (b), (c). Indeed, is it enough to
consider the permutation π0 for which the problem becomes a linear programming problem
(LP).

Note that if G is the chain and uii+1 = Const, i ∈ I, i < n, then it is not necessary to solve
the LP problem. It is enough to apply the method of sequentially single placement of the objects
on the line. Put, for example, that x1 = 0, and then use the formula xs = max1≤k≤s(xk + rks),
s ≥ 2.

For the fixed order placement of objects on the line and arbitrary network G problem (1)–
(4) becomes the problem of LP. Specific permutation of object numbers corresponds to each
placement of the objects. Without loss of the generality, for simplicity we consider π = (1, · · · , n).
Then the problem for a fixed order placement of the objects on the line given by permutation π
is ∑

i∈I
ūixi → min, (15)

under constraints
xj − xi ≥ rij , i, j ∈ I, j > i, (16)

where the values ūi =
∑i−1

k=1 uki −
∑n

k=i+1 uik obtained by the reduction of similar terms at xi,
i ∈ I. The problem (15)–(16) is LP problem. Thus, to solve (1), (3), (4) it is sufficient to solve
LP problems corresponding to all possible order of objects and choose the best solution. Since
in general the number of permutations of objects is n!, it is necessary to reduce the number
of permutations considered in solving the problem. For example, it is possible to use local
algorithms (rearrange objects within a neighborhood).

Note that the dual for problem (15)–(16) is the problem of finding the optimal flow in some
network. In this case, there are no restrictions on the throughput of arcs. The problem dual to
(15)–(16) is:

W (y) =
∑

i∈I,i<n

∑
j∈I,j>i

rijyij → max,

under constraints ∑
j∈I,j<i

yij −
∑

j∈I,j>i

yij =
∑

j∈I,j<i

uij −
∑

j∈I,j>i

uij , i ∈ I,

yij ≥ 0, i, j ∈ I, j > i.

We present an LP problem equivalent to (15)–(16) in which there are no object coordinates.
Suppose, as before, π = (1, · · · , n). We introduce n − 1 continuous variables p = (pii+1), i ∈ I,
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i < n defining distances between adjacent objects arranged according to the permutation π.
The problem equivalent to (15)–(16) is:∑

i∈I,i<n

(
∑

j∈I,j≤i

∑
k∈I,k≥i+1

ujk)pii+1 → min,

under constraints

l∑
i=k

pii+1 ≥ rkl+1, k, l ∈ I, k ≤ n− 2, k + 1 ≤ l ≤ n− 1,

pii+1 ≥ rii+1, i ∈ I, i < n− 1.

The classical ODSAP was formulated in terms of integer programming [10]. Such formulation
has n(n−1)/2 binary variables and 3[n(n−1)/2] constrains. This integer programming approach
is possibility for getting optimal solutions only for small problems. The approach using integer
programming models and methods is not efficient because does not take into account the
configuration of the connections between objects.

The ODSAP was formulated as a generalization of the Linear and Quadratic Assignment
Problems (QAP) [12]. An interesting placement problem closely related to the ODSAP is the
one–dimensional version of the QAP of the Koopmans–Beckman type: given n points P1, . . . , Pn

with coordinates a1, . . . , an on a line, and given n objects and a matrix of connections between
objects, find a one–to–one assignment of the objects to the points with a view to minimize
the total weighted distance. This problem is called the Generalized Linear Ordering Problem
(GLOP). The generalization is that conditions |ai−aj | ̸= 1 are satisfied in this problem. Dynamic
programming was used to solve the problem.

To solve the classical ODSAP, polynomial algorithms for the cases when G is a rooted tree
and a parallel–sequential network taking into account the conditions (a) were proposed in [1, 20].
If the minimum admissible distances satisfy the constraints (b) then for the specified networks
the problem becomes NP–hard [19]. Thus, the transition from the non–intersection conditions
of objects to the minimum allowable distances satisfying the triangle inequality translates the
problem moves from the polynomial solvable class of the problems to the NP–hard class of the
problems.

4.2. Solving the ODSAP with forbidden zonez
Next we consider NP–hard problem (1)–(4) with conditions (a) of non–intersecting objects with
each other and with zones for the case when G is an undirected network. The area of acceptable
solutions to the problem (1)–(4) consists of the disjoint segments (blocks). Consider an arbitrary
block Bk.

In [23] the algorithm for finding an approximate solution of the problem consists of two stages
is proposed. At the first stage, we find the feasible partition of objects into blocks, and at the
second stage, the objects in the blocks are rearranged in order to minimize the total cost of
connections. Pay attention to some problem properties.

Considering the possible location, the remainder in the Bk block is a non–zero length segment
between two adjacent elements (objects, zones) which do not have a common border or between
the boundary of Bk and the adjacent block. Two elements (objects, zones, remainders) are
called glued if they have a common border.

Let x = (x1, . . . , xn) be a valid solution to problem (1)–(4); Ik(x) is the set of numbers of
objects in the Bk block; ∆k(x) is the set of remainders in Bk; nk is the capacity of the set Ik(x).
Note, that x can be represented as x = (x1, . . . , xr), where xk are the coordinates of the placed
objects in Bk. In [23] it was proved that for a possible solution of the x problem we can find
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another possible solution of x′, such what |∆k(x
′)| ≤ 1, k = 1, . . . , r and F (x′) ≤ F (x). So,

in each Bk, it suffices to consider no more than one remainder. Thus, the original continuous
problem is reduced to a discrete problem.

The coordinates of the left and of the right boundaries of Bk (imaginary objects OL and OR)
denote by BL and BR; JBL and JBR are the sets of zones to the left and to the right of Bk;
IBL and IBR are the sets of objects to the left and to the right of the block Bk, respectively. So,
for a fixed partition objects in blocks, the objective function F (x) can be represented as

F (x) =
r∑

k=1

Fk(x
k) + Const,

where

Fk(x
k) =

∑
s∈Ik(x)

∑
t∈Ik(x),t>s

ust|xs − xt|+
∑

s∈Ik(x)
|xs −BL|

( ∑
j∈JBL

wsj+

+
∑

i∈IBL

usi

)
+

∑
t∈Ik(x)

|xt −BR|
( ∑
j∈JBR

wtj +
∑

i∈IBR

uti

)
.

The sum of the costs for connections between objects in Bk is the first component of Fk(x
k),

the total cost of connections between objects from Bk and BL, and Bk and BR respectively are
the second and the third components of Fk(x

k).
An admissible solution to problem (1)– (4) will be called the local minimum of the problem

if F (x) ≤ F (x′) for x′ : Ik(x) = Ik(x
′), k = 1, . . . , r.

Let us the partition of the objects in the blocks is fixed. Then in every block Bk its possible
to consider the subproblem of location nk + 2 objects. In Bk the subproblem contains two
imaginary objects OL and OR and nk placed objects. Let us denote the summary cost of
connections between placed objects in Bk and the objects OL and OR respectively for every
i ∈ Ik(x) by CiL and CiR and then

CiL =

( ∑
s∈JBL

wis +
∑

t∈IBL

uit

)
,

CiR =

( ∑
s∈JBR

wis +
∑

t∈IBR

uit

)
.

Then the subproblem for Bk is

Fk(x
k) =

∑
s∈Ik(x)

∑
t∈Ik(x),t>s

ust|xs − xt|+
∑

s∈Ik(x)
CsL|xs −BL|

+
∑

t∈Ik(x)
CtR|xt −BR| → min, (17)

|xi − xk| ≥
li + lk

2
, i, k ∈ Ik(x), i < k, (18)

BL+
li
2
≤ xi ≤ BR− li

2
, i ∈ Ik(x). (19)

It is necessary to find the coordinates of xk centers of objects in Bk in order to minimize the
cost of connections between the placed objects between themselves and with the objects OL and
OR.

To find the local optimum of problem (1)–(4) for some fixing the partition of objects into
blocks, it suffices to solve r independent subproblems (17)–(19). Thus, the solution of the
original continuous problem is reduced to solving discrete subproblems.
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4.3. Search for feasible partitions
Here we describe briefly the algorithm of search of the feasible partitions of objects into blocks.
It is presented in more detail in [23]. Let L1 ≥ · · · ≥ Lr and l1 ≥ · · · ≥ ln. To find the initial
feasible partition in the given order, we find the initial conditionally feasible block for each
object. If there is no such a block then we cancel the membership in the block for the previous
objects, and so on. After cancelation, for each of the next objects the search for a conditionally
feasible block begins with B1. If a feasible partition is not found and all feasible blocks for X1

are reviewed then the problem has no solution. To find the next feasible partition starting with
Xn, we find the next conditionally feasible blocks for the objects [23].

To search for an approximate solution of problem (1)–(4), the stopping criterion may be a
runtime, a number of iterations, a finding of an exact solution, or a given accuracy estimate.
Note that the number of possible partitions Xi, i ∈ I into blocks B1, . . . , Br is not more than
rn. The remainder in Bk can be considered as an additional located facility Xnk+1, for which
Cnk+1 L = Cnk+1 R = 0.

It should be noted that if ust = 0, ∀s, t ∈ Ik(x), s < t, then for ∀k = 1, . . . , r local optimum
problem (17)–(19) can be found using the polynomial algorithm [23]. If we introduce a partial
order of objects in the block, which will be represented as a series–parallel network, then in the
block, the problem will be solved by a polynomial algorithm [20].

As a rule, if ∃s, t ∈ Ik(x) : ust > 0, then to solve the subproblem (17)–(19) for a small value
of nk it is possible to use nk! permutations of objects in the block. Can be used for large values
of nk, for example, the branch and bounds algorithm.

4.4. Minimization of the total costs of connections
Consider the heuristic and branch and bounds algorithms for the minimization of the total costs
of connections objects between themselves and with zones.

Algorithm the approximate solution
To minimize the total cost of connections of objects the algorithm A is proposed [23]. Objects

in blocks are glued consistently depending on the total cost of connections with objects and zones
located left (right) of the block Bk. Let NLk denote the set of objects that are glued to each
other so that the leftmost object is glued to the left border of Bk; and NRk, which is glued to
the right border of Bk; and let the objects in Bk be numbered as 1, · · · , nk [23].

Algorithm A

Step 0. S := Ik(x); NLk := ∅; NRk := ∅.
Step 1. If (NLk = ∅) and (NRk = ∅)) then go to Step 2.

If (t ∈ NLk) then CiL := CiL + CtL, otherwise, CiR := CiR + CtR for all i ∈ S .

Step 2. Define t : maxi∈S |CiL − CiR|/li = |CtL − CtR|/lt.

Step 3. If the case of (CtL ≥ CtR), we put xt := BL+
∑

i∈NLk
li +

lt
2 ;

NLk := NLk
∪
{t};

otherwise, let xt := BR−
∑

i∈NRk
li − lt

2 ; NRk := NRk
∪
{t}.

Step 4. S := S\{t}. If (S ̸= ∅) then go to Step 1, otherwise the objects are placed in Bk.

Branch and bounds algorithm
The computation of the lower bounds of the objective function and the branching

methodology are essential for branch and bounds algorithm (BBA). Here we describe briefly
the BBA. It is presented in more detail in [24]. Consider the arbitrary block Bk.

Lower bounds
Denote the sets of numbers of allocated objects in Bk by NOl, NOr. For simplicity, we

assume that objects in the set NOl have numbers from 1 to s, and in the set NOr the number of
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objects ranges from t+ 1 to nk. Denote by SD the set of admissible locations of objects in Bk;
let ζ(SD) be the lower bound of the function Fk(x

k) for SD. Then ζ(SD) can be represented
as follows [25]:

ζ(SD) = ζ1(SD) + ζ2(SD) + ζ3(SD).

The total cost of connections between the placed objects themselves and with the OL and
OR objects is the value of ζ1(SD). This value is calculated exactly, because the coordinates of
all these objects are known. The lower bound of the total cost of connections between unplaced
objects with OL, OR objects and with placed objects in Bk is the value of ζ2(SD). The lower
bound of the total cost of connections between unplaced objects themselves is the value of
ζ3(SD) [25].

Two methods of calculation value ζ2(SD) are offered in [25].
First method. The summary cost of connections between the placed objects themselves and

with objects OL and OR for each i ∈ Ik(x)\{NOl
∪
NOr} is calculated as follows:

SLi = CiL +
∑

k∈NFl

uik, SRi = CiR +
∑

k∈NFr

uik.

Next location of the unplaced objects in Bk is determined by two variants. The objects are
ordered by not increase of the relations SLi/li (SRi/li). The objects consistently are glued
together in that order with the most left (right) placed facility in Bk. For simplicity, we assume
that the glued unplaced objects have numbers from s+ 1 to t (from t to s+ 1). Then

ζ2(SD) = ζ2L(SD) + ζ2R(SD),

where ζ2L(SD) and ζ2R(SD) are the lower bounds of summary cost of the connections unplaced
objects with OL, OR respectively and with the placed objects in Bk. The values ζ2L(SD) and
ζ2R(SD) can be calculated as follows:

ζ2L(SD) =
t∑

q=s+1

(
CqL

q−1∑
g=1

lg +
s∑

i=1

uqi

q−1∑
k=i+1

lk

)
,

ζ2R(SD) =
t∑

q=s+1

(
CqR

nk∑
g=q+1

lg +
nk∑

i=t+1

uqi

i−1∑
k=q+1

lk

)
.

The proof that values ζ2L(SD) and ζ2R(SD) are the lower bounds of the summary cost of
connections unplaced objects with imaginary objects OL, OR and with the placed objects in Bk

is similarly to the proof in [18].
Second method. Note that the set Ik(x)\{NOl

∪
NOr} can be represented as the union of

non–crossing sets NL
∪
NC

∪
NR, where by NL, NC , NR are designated sets of numbers of

objects for which we have the inequalities SLi > SRi, SLi = SRi, SLi < SRi respectively.
Next objects with numbers from NL (NR) are ordered by not increase of the relations

(SLi − SRi)/li ((SRi − SLi)/li). The objects consistently are pasted together in that order
with the most left (right) placed facility in Bk. The objects with numbers from NC are placed
between sets of the objects with numbers from NL and from NR in any order.

So, for each i ∈ Ik(x)\{NOl
∪
NOr} the coordinate of the center is determined. Allow

Ik(x)\{NOl
∪
NOr} = {s+ 1, . . . , t}. We define the value Z1 as follows

Z1 =
t∑

q=s+1

(
CqL

q−1∑
g=1

lg +
s∑

i=1

uqi

q−1∑
k=i+1

lk + CqR

nk∑
h=q+1

lh +
nk∑

j=t+1

uqj

j−1∑
v=q+1

lv

)
.
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The value Z1 is the lower bound of the summary cost of connections the unplaced objects with
objects OL, OR and with the placed objects in Bk [25].

So, to calculate of value ζ3(SD) it is to consider sets of unplaced objects that are all connected
between themselves. Next, for example, by means of viewing of permutations of any three
interconnect objects, to find an order of an arrangement of objects in the block with the minimum
cost of connections between them.

Branching
We describe the branching procedure [24]. At the first level in the branch–decision tree each

of the placing objects with numbers from Ik(x) is glued to the left border of the block Bk. At
the second level each of unplaced objects is glued to the right border of the block Bk. So, at
the second level one of objects is glued to the left border of Bk, another facility is glued to the
right border of Bk. At the subsequent levels unplaced objects are glued to the set of the objects
which are glued among themselves, extreme left of which is glued to the left border of Bk [24].

Note that the number of nodes of the branch–decision tree at the first level is equal nk, at
the second level — nk(nk − 1), at the third level — nk(nk − 1)(nk − 2), etc. The height of the
branch–decision tree is equal to nk, and the quantity of its trailing nodes is nk! that corresponds
to number of possible permutations of objects in Bk [24].

4.5. Computational experiments
Computing experiment in comparison of the solutions obtained by using the BBA [24] and
the heuristic algorithm (A) [23] was carried out. All input data were randomly generated.
More than 100 instances of the problem have been solved. The algorithms stops when all local
optimal solutions are found or the time to solve the problem was running out. Some results
of comparison of the algorithms are presented in Table 1, where notations FA, FBBA and tA,
tBBA are the objective function values and the average running time (in seconds) of the heuristic
algorithm A and the BBA respectively. The average relative error of algorithm A is equal to 3%.
The algorithm A finds the solutions faster than the BBA as follows from Table 1. For example,
for instance 8 the relative error of A is 0,172% and the running time of A is less that of the BBA
more than one order.

In addition, a computing experiment on comparison of the solutions obtained by the BBA and
IBM ILOG CPLEX package using the MILP model was made. Three series of the test problems
were randomly generated each of which includes 5 problems of the same dimension. For each
series, we compared the running times of the BBA and CPLEX package. For the dimensions
|I| = 50, |J | = 20, we could not obtain a solution within time 1000 s using CPLEX. The average
running time for the problem by the BBA is 898 s. Note that for the BBA and CPLEX package,
the average running time solving of the problem with dimensions |I| = 5, |J | = 3 is 0,968 s and
0,96 s respectively.

The computational experiment by algorithm A and application of package IBM ILOG CPLEX
and the MILP model was carried out. The input data were generated by the random() function.
Over 150 problems were tested and the number of forbidden zones was varied from 2 to 10, and
the number of objects was varied from 5 to 40. The algorithm A stops when all feasible solutions
of the problem are reviewed. Some results of the experiment that are obtained by algorithm A
and the package are given in Table 2. Notations FA and Fcplex are the values of the objective
functions found by the algorithm and the package. The average relative error of algorithm A is
equal 3%.

Some series of the test problems were randomly generated with a uniform distribution each
of which includes 15 problems of the same dimensions. We compared the running times of
algorithm A and package CPLEX. For the dimension |I| = 40, |J | = 6, we could not obtain a
solution within time 1000 s using package CPLEX. The average running time for solving of the
problem by algorithm A is 490 s and error is equal 3%. For algorithm A the average running
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Table 1. Comparison of the algorithms A and BBA.

No n m FA tA FBBA tBBA Relative error F , %

1 5 3 12238 1 11892 1 2,91
2 6 3 1844 1 1844 2 0
3 10 3 900,25 2 900,25 8 0
4 10 3 1080 3 1080 7 0
5 10 4 2888 2 2888 4 0
6 10 5 1801 2 1801 3 0
7 10 6 1253 50 1253 56 0
8 15 3 3502 6 3496 136 0,172
9 15 4 4008 5 4008 21 0
10 15 5 4468,5 4 4468,5 10 0
11 15 6 8464 5 8464 40 0
12 15 10 10296 9 10296 20 0
13 20 3 39374,75 12 38810,75 2469 1,453
14 20 10 21533,5 15 21533,5 45 0
15 20 15 19443,5 449 19443,5 724 0
16 30 5 57934 18 57934 231 0
17 30 10 52840 1331 52840 5460 0
18 30 20 128656 26 128656 27 0
19 50 10 181909 86 181909 443 0
20 50 20 430112 269 430112 453 0

time for solving of the problem with dimension |I| = 5, |J | = 5 is 1.29 s, which is greater than
such time of the package equal 0.016 s.

5. Conclusion
In this article we consider the extension of the One–Dimensional Space Allocation Problem
(ODSAP) with forbidden zones. The configuration of connections between objects is defined
by the oriented acyclic network. The review of the formulations and methods for solving the
classical ODSAP are given. A review of the properties of the ODSAP with forbidden zones
is reported. The branch and bound method [24] and a heuristic algorithm [23] for solving
of the problem were described. Results of computational experiments on comparison of the
branch and bound method and a heuristic algorithm were given. In the experiments, the integer
programming model of the problem and IBM ILOG CPLEX package were used.

In the capacity of perspectives for further research of this problem, it should be noted the
following.

(i) Modify of the algorithm for constructing of admissible partitions of the objects into blocks,
taking into account a partial order between objects.

(ii) Look for different structures of the network of connections between objects, for which it is
possible to develop polynomial algorithms to find of local optimum of the problem.

(iii) Develop of exact methods, heuristic algorithms and decomposition methods for arbitrary
oriented network of connections between objects.
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Table 2. Comparison of algorithms A and the package CPLEX.

No n m FA FCPLEX Relative error,%

1 3 3 2113 2113 0,0
2 5 3 1287 1287 0,0
3 5 4 15610 14802 5,5
4 4 3 4751,5 4751,5 0,0
5 4 3 1515 1515 0,0
6 6 3 668 668 0,0
7 6 4 7467 7467 0,0
8 6 5 7841,5 7841,5 0,0
9 5 5 13991 12580 11,2
10 5 5 15459 14519 6,5
11 5 5 14996,5 14996,5 0,0
12 6 5 16277,5 16277,5 0,0
13 6 5 18369 18369 0,0
14 6 5 17646,5 17646,5 0,0
15 8 2 12496,5 11760,5 6,3
16 8 2 27640 26250 5,3
17 7 4 7556 7144 5,8
18 7 4 8172 7657 6,7
19 7 4 7851,5 7851,5 0,0
20 7 4 29638,5 29638,5 0,0

Acknowledgments
The work was supported by the program of fundamental scientific research of the SB RAS No.
I.5.1., project No. 0314-2019-0019

References
[1] Adolphson, D., Hu, T.C.: Optimal linear ordering. SIAM J. Appl. Math. 25(3), 403–423 (1973)
[2] Bischoff, M., Klamroth, K.: An efficient solution method for Weber problems with barriers based on genetic

algorithms. Eur. J. Oper. Res. 177, 22–41 (2007)
[3] Butt, S.E., Cavalier, T.M.: An efficient algorithm for facility location in the presence of forbidden regions.

Eur. J. Oper. Res. 90, 56–70 (1996)
[4] Chan, A.W., Francis, R.L.: Some layout problems on the line with interdistance constraints costs. Oper. Res.

27(5), 952–971 (1979)
[5] Dinu, S., Ciucur, V.: Location–allocation models and new solution methodologies in telecommunication

networks. IOP Conf. Ser.: Mater. Sci. Eng. 145 082021 (2016) https://doi.org/10.1088/1757-
899X/145/8/082021

[6] Erzin, A.I., Cho, J.D.: Concurrent placement and routing in the design of integrated circuits. Automat.
Remote Control 64(12), 1988–1999 (2003)

[7] Foulds, L.R., Hamacher, H.W., Wilson, J.M.: Integer programming approaches to facilities layout models
with forbidden areas. Annals of Operations Research 81, 405–417 (1998)

[8] Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP–Completeness.
(Freeman, San Francisco, (1979); Mir, Moscow, (1982))

[9] Katz, N., Cooper, L.: Facility location in the presence of forbidden regions, I: Formulation and the case of
Euclidean distance with one forbidden circle. Eur. J. Oper. Res. 6, 166–173 (1981)

[10] Love, R.F., Wong, J.Y.: On solving a One–Dimensional Space Allocation Problem with Integer Programming.
INFOR 14(2), 139–143 (1976)



AMSD-2019

Journal of Physics: Conference Series 1441 (2020) 012177

IOP Publishing

doi:10.1088/1742-6596/1441/1/012177

14

[11] Panyukov, A.V.: The problem of locating rectangular plants with minimal cost for the connecting network.
Diskret. Anal. Issled. Oper. Ser. 2, 8(1), 70–87 (2001)

[12] Picard, J.C., Queyranne, M.: On the one–dimensional space allocation problem. Oper. Res. 29(2), 371–391
(1981)

[13] Preparata, F., Shamos, M.: Computational Geometry: An Introduction. Springer-Verlag, (1985)
[14] Rudnev, A.S.: Probabilistic tabu search algorithm for the packing circles and rectangles into the strip.

Diskret. Anal. Issled. Oper. 16(4), 61–86 (2009)
[15] Sarkar A., Batta R., Nagi R.: Placing a finite size facility with a center objective on a rectangular plane with

barriers. European Journal of Operational Research 179(3), 1160–1176 (2006)
[16] Sharifah Shuthairah Syed-Abdullah, Syariza Abdul-Rahman, Aida Mauziah Benjamin, Antoni Wibowo

and Ku-Ruhana Ku-Mahamud: Solving Quadratic Assignment Problem with Fixed Assignment
(QAPFA) using Branch and Bound Approach. IOP Conf. Ser.: Mater. Sci. Eng. 300 012002 (2018)
https://doi.org/10.1088/1757-899X/300/1/012002

[17] Shiloach Y.: A minimum linear arrangement algorithm for undirected trees. SIAM J. Comput. 8(1), 15–32
(1979)

[18] Simmons, D.M.: One–dimensional space allocation: an ordering algorithm. Oper. Res. 17(5), 812–826 (1969)
[19] Zabudsky, G.G.: On the complexity of the problem of placement on a line with restrictions on minimum

distanses. Russian Math. (Iz. VUZ) 49(12), 9–12 (2005)
[20] Zabudsky, G.G.: On the problem of the linear ordering of vertices of parallel–sequential graphs. Diskret.

Anal. Issled. Oper. 7(1), 61-64 (2000)
[21] Zabudskii, G.G., Amzin, I.V.: Algorithms of compact location for technological equipment on parallel lines

(in Russian). Sib. Zh. Ind. Mat. 16(3), 86–94 (2013)
[22] Zabudskii, G.G., Filimonov, D.V.: An algorithm for minimax location problem on tree with maximal

distances. Proc. of the Second International Workshop ”Discrete Optimization Methods in Production
and Logistics” (DOM 2004). –Omsk–Irkutsk, 81–85 (2004)

[23] Zabudskii, G.G., Veremchuk, N.S.: An algorithm for finding an approximate solution to the Weber problem
on a line with forbidden gaps. J. Appl. Ind. Math. 10(1), 136–144 (2016) DOI: 10.1134/S1990478916010154

[24] Zabudsky, G.G., Veremchuk, N.S.: Branch and Bound Method for the Weber Problem with Rectangular
Facilities on Lines in the Presence of Forbidden Gaps. Springer International Publishing AG, part
of Springer Nature 2018 A. Eremeev et al. (Eds.): OPTA 2018, CCIS 871, 29–41 (2018).
https://doi.org/10.1007/97833199380043

[25] Zabudsky, G., Veremchuk, N.: Weber problem for rectangles on lines with forbidden gaps. IEEE Conference
2016 Dynamics of Systems, Mechanisms and Machines (Omsk, 15-17 Nov. 2016) (2016)


