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Abstract. Methods of approximation for the distribution law of experimental data find wide
application in problems of reliability assessment in tests of both hardware and software of
software modules of information-measuring and control systems (SM IMCS). Thus, the main
task is to solve the problem of increasing the accuracy of the approximation and simplify
experimental data processing. In this paper various modification types of Pearson distribution
for data taking both positive and negative values, and for data taking only positive values are
considered. The described modifications allow one to solve a range of problems related to the
existing distributions, as well as to improve the simplicity of the approximation procedure.
Pearson logarithmic distributions are proposed for experimental data that take only positive
values.

1. Introduction

In modern classical mathematical statistics, the form of the distribution law is considered a priori
known and the main task is to estimate the key parameters of the law using experimental observational
data. But, in practice, the law of distribution is very difficult to identify, and theoretical assumptions
do not provide the necessary accuracy for its unambiguous definition. The process of experimental
data analysis, in turn, also does not improve the accuracy of calculation and determination of the true
distribution law. In real conditions it is necessary to resort to the approximation (approximate
description) of the desired law by another one, which is correlated with experimental data and which
has similar parameters to the unknown true law. In solving a wide range of applied problems (for
example, in assessing the reliability of technical systems [1]), the use of approximate identification of
the experimental distribution laws parameters is allowed [2, 3].

The purpose of the paper is to consider the approximation features of the distribution law of
experimental test data, both hardware and software of SM IMCS using modified Pearson distributions,
which can take:

— positive and negative values;

— only positive values.

2. Problem statement
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For experimental test data the problem of approximation is formulated in the following form: if there
is an initial sample of data (x;, x,,..., x,) in the volume of n, with a random variable (RV) X, it is

necessary to determine the parameters of the distribution law (type and parameters), which does not
contradict in the statistical sense the available initial experimental data. Existing restrictions are as
follows. The sample is representative; its volume n >10000 is sufficient to estimate the expectation m,

and the central moments 1, us, 14, ; the form of the probability distribution density (PDD) p(x) is

unimodal, J-shaped or U-shaped. The solution of the problem is based on the use of modified Pearson
distributions [4-6].

3. Theory
The expressions that will determine the skew coefficient and kurtosis of RV X are as follows:

b= ﬂs/ﬂ%s? b= ﬂ4/ﬂ22 1)

On the basis of [4, 6] we transform the modified Pearson differential equation for the system of
probability distribution densities p(x)
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The expression that describes the normalized joint skew coefficient and kurtosis A,in (2) is
presented below

p(x). (2
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It is worth noting that the range of possible values 3, lies within the limits0 < g, <1,5, in its upper
bound A, they correspond to the distribution as a set of two Delta functions, and in the lower bound

they correspond to the distribution having less than four moments. Depending on the values of the
coefficients £, and 3, , as well as the auxiliary coefficient

B,
Bor = (4)
4 f1-B,1(2-By)

as a solution of the differential equation (2), six modified types of distributions corresponding to
twelve types of Pearson classification distributions are obtained. Tablel shows the formulas
expressing the coefficients 2, B,, B, using the shape parameters of the modified Pearson
distributions; in table 2 expressions for the PDD and in table 3 expressions for the shape, scale and
shift x parameters of these PDD are shown.

Table 1. Numerical characteristics of modified pearson distributions.
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Table 2. Modified pearson distributions.

Type of distribution An analytical expression for PDD p(x)
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Table 3. Parameters of modified pearson distributions.
Type

of distribution

Analytical expressions for the parameters of PDD p(x)
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Using the diagram in the plane of variables g, and g,,shown in figure 1, it is convenient to make a
topographic classification of the modified Pearson distributions.
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sa / 5b
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Figure 1. Diagram of the modified Pearson distributions.

4. Experimental results

In the case of processing experimental data that take only positive values, the approximation problem
will be presented in the form where the true distribution law of RV X is often skew-symmetric and it
does not have positive power moments. In view of the above, for its approximation according to
available data, it is possible to use logarithmic moments (estimates of mathematical expectationl, and

central moments L, ,L; ,L,) instead of power moments. As a result of the functional transformation
z = exp(x) the distributions represented in table 2 after some transformations of parameters will take

the form shown in table 4. For simplicity, we call them Pearson logarithmic distributions. The
parameters of these distributions are related to the numerical characteristics |, L,, 8, f,and g, of
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RV Z with the use of the expressions presented in table 5. In this case, the skew coefficient and
kurtosis ( 5,and g, ) are determined by the formulas similar to (1):

ﬁl = (5)
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Table 4. Logarithmic pearson distribution.
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Table 5. Parameters of logarithmic pearson distributions.
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5. Results discussion
Thus, the task of determining the distribution law parameters of the initial experimental data, for
positive and negative values, using the modified Pearson distributions is reduced to the
implementation of four main steps:

1) using the sample to receive estimates of the mathematical expectation m, and the central power
moments s, , i3, 1, for RV X;

2) to calculate numerical characteristics 3, 8,, By, B 0f RV X by formulas (1), (3) and (4);

3) using table 1 and table 2 to determine types and analytical expressions for Pearson distribution
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on the obtained values of numerical characteristics 8, g, and 3,; of RV X;
4) to calculate the parameters of the shape, scale and shift of the PDD p(x) using the formulas

given in table 3 for this type of PDD.
Sometimes, for example in, the lower bound of the applicability of Pearson distributions to
approximate the distribution law is indicated, as is considered in. It is a line described by the equation:
88, -158,-36=0.
This limit is the normalized joint skew coefficient and kurtosis s, =0,8 .

6. Conclusion

When processing experimental test data of both hardware and software of SM IMCS, it is problematic
to determine the true distribution law of experimental test data. The paper presents one of the
approaches to approximating the distribution law of experimental test data on the basis of their
approximation. It is proposed to use approximate identification of parameters of experimental
distribution laws to solve the problems of reliability estimation of SM IMCS. The purpose of the work
was achieved by considering the features of approximation of the experimental test data distribution
law, these data taking positive and negative values, or only positive values using modified Pearson
distributions. Modification of the Pearson method with the use of coefficients 8, £, 8,; can

significantly simplify the procedure for approximation of experimental distributions. Pearson
logarithmic distributions for positive values of experimental test data are also presented. The proposed
parameters of the modified Pearson distributions are preferably used for the preliminary selection of
the experimental data distribution law for reliability tests of the IMCS.
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