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Abstract. the paper deals with the case when particles are evenly distributed in 

ravines, using the equilibrium coefficient to update the particle velocity. the method of 

optimizing a swarm of particles in the case of a "ravine" is one of the most effective 

approaches for multi-extremal optimization. however, in the existing methods of 

optimizing the swarm of particles with the "ravine" methods, the number of particles 

around the ravine is very different from each other, which makes it difficult to find 

high-quality algorithms in all the ravines. thus, the computational resources are 

distributed in the ravines in a more balanced way. 

1.Introduction  

Multi-extremal optimization, which requires finding all optimal (global or local) solutions in the 

search space, is an urgent task and has a number of real-world applications, such as solving clustering 

problems [1], wave propagation [2], imitations [3] and design [4]. Evolutionary algorithms (EA) are 

heuristic search algorithms based on population that were effective in solving complex optimization 

problems [5]. Because EAs contain a set of solutions, they have natural advantages in finding several 

optimal solutions in a single pass. 

The ravine method is one of the most effective ways to determine optimal solutions for multi-

extremal optimization problems. The main idea of the ravine is to maintain a high level of populations 

using such methods as fitness sharing [6], clustering [7], crowding [8] and limited tournament 

selection [9]. Although the ravine method proved to be effective for improving the ability of EA to 

find more optimal solutions with high accuracy, this often requires much more computational effort, 

since the ravine method usually slows down the speed of the algorithms. 

To combat the "ravines" was proposed a number of special techniques. One of them is as follows. 

From two close points make a gradient descent to the bottom of the "ravine". Then connect the found 

points to a line and make a large step along it. From the point found, they again descend to the bottom 

of the "ravine" and take the second ravine step. As a result, moving rather quickly along the "ravine", 

we approach the desired lowest value of the objective function (Fig. 1). Such a method is rather 

effective for functions of two variables, however, with a larger number of variables, difficulties may 

arise. 
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Figure 1. Search for the smallest value of the function in the case of the "ravine" 

In fig. 2 shows the function level lines with two local minima at the points 
1O  and 

2O . Such 

functions are called multi-extremal. 

If, without having before your eyes Fig.2 and not knowing about the multi-extremes of the 

function, start the search for the smallest value using the method of gradient descent from the point 
1A

, then the search will lead us to the point 
1O , which can be mistaken for the desired answer. On the 

other hand, if you start the search from the point 
2A , then we will be on the right path and quickly 

come to the point 
2O . 

 
Figure 2. Example of a function with two local minimum at points 

1O  and 
2O  

Particle Swarm Optimization (PSO) is a relatively new version of EA that uses people's experience 

and public information to find global optimization. It has been proven that PSO is efficient and reliable 

when facing complex optimization tasks [10]. 

In 1995, Kennedy and Eberhart [11] proposed for the first time an optimization of a swarm of 

particles. Although PSO is a global search algorithm based on a population that is similar to EA, it 

does not have evolutionary operators such as crossover and mutation. In PSO, each solution is 

represented by a particle that searches for multidimensional space, studying its own experience and 

past experience of other particles. Its position and speed are updated according to the following 

expressions: 

1

2

( 1) * ( ) c * 1 *( ( ) ( ))

c * 2 *( ( ) ( )),

d d d d d

i i i i i

d d d

i i

V t w V t random pbest t X t

random gbest t X t

    

 
 

( 1) ( ) V ( 1),d d d

i i iX t X t t     

where t  represents the current generation, refers to the size of the individual i  – particle index. 
1c  and 

2c  – acceleration constants. 1d

irandom  and 2d

irandom  – two random numbers from uniformly 

distributed within the range. Inertia weight w  used to balance global and local search performance. 

( )d

ipbest t  is the best suitability value for the ith particle, whereas ( )dgbest t  – the best position found 

throughout the population. 

After a sufficient number of iterations, the particles can unite around the optima, studying the 

experience of the entire population. 
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However, the existing PSO in the case of the ravine, faced with the problem of different, non-

uniform distribution of the number of particles in different ravines. The imbalance of the particles 

makes it difficult to accurately identify some of the Optima, which is not grouped with a sufficient 

number of particles, especially in complex multiextremal optimization task that contains multiple 

optimal solutions. 

To solve the above problem in this paper the equilibrium multiplier to improve the search process. 

The basic idea is to reduce the differences between the number of particles in different ravines. The 

equilibrium multiplier encourages the worst particle in the largest ravine to move to a small ravine, 

which can not only support the accuracy of the solution of the former ravine, but also to increase the 

probability of finding the best solution in the last ravine. By increasing the number of particles in the 

small ravine, the algorithm can maintain sufficient diversity in the ravine, which is useful for finding 

precise solutions. Reducing the number of particles in the largest ravine, the algorithm can drive the 

particles to explore more search space, which is useful for finding more optimal solutions. 

The existing PSO can be divided into two types. The first type focuses on the prevention of the 

movement of particles in a region of optimum, which were identified in the search process. To achieve 

this goal it is important to improve the population diversity, in the literature there have been proposed 

various methods [12]. The second type focuses on the methods of the ravine [13]. The basic idea is to 

identify multiple Optima using a group of ravines, and then to support the identified Optima until the 

end of the algorithm. 

In the first type of algorithms has been proposed a new PSO, called semiadaptive escape PSO, 

which uses a special operator-heat, to make the particles more effectively explore the search space 

[14]. Dynamically generated by a high speed depending on the speed variation that causes particles to 

simultaneously explore local and global Optima. 

In the second type of algorithms are methods of the ravine are used to improve performance. In 

[15] proposed the method of using a group of subarrays for determining a set of optimal solutions. 

2. Formulation of the problem 

Let X  – compact metric space (optimization set),   - bounded below function defined on X  

(objective function). The task of finding the minimum of the function   is to build a sequence of 

points (1) (2), ,...,x x  из X  converging in one of the points 
* argminx    global minimum of function 

 . Convergence types can be different: from convergence in the metric of space X  to convergence 

with some probability. 

Assumption of isolation X  together with the obligatory assumption about the continuity of the 

objective function in a neighborhood of the point *x  guarantees that *x X , i.e. global maximum   

in X is achieved. 

Thus, let it be necessary to determine such a vector. 
* * * *

1 2( , ,..., ) , 0 1, 1: ,T

n ix x x x x i n     

where the objective function 
*( )x  accepts the minimum value. We assume that additional 

restrictions on variable 1 2, ,..., nx x x   taken into account when building the objective function. We write 

the task in general: 

( ) min,
x X

x


        (1) 

where 
* * * *

1 2( , ,..., ) [0,1] .T n

nx x x x   

We will consider the following tasks: 

Statistical study of the global optimization algorithm and its modernization based on the logistic 

curve, comparison with the exponential law. 

Research results depending on the parameters of the logistic curve. 

Identification of the best parameter (set of the best parameters), universal for all classes of 

functions using decision-making methods. 
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The entire search is divided into a user-defined number of steps. stepn . At each step, according to a 

certain law, the values of the parameter vector are randomly selected. kx  (k is the step number), and 

the value of the objective function is calculated ( )k kx  . Further, according to the formula 

 1

min minmin ,k k k        (2) 

the smallest value obtained in k steps of the search process is determined. After each calculation using 

formula (1), the law according to which the values of variables are chosen ( [1: ])ix i n , changed so 

that the probability of hitting the   – the global minimum neighborhood specified by the user, based 

on the required accuracy of the problem solution, would increase. The information obtained in the 

previous steps of the search is used for this. 

Let us call the interval in which, at the previous steps, the optimal value with a high probability is 

obtained, the promising interval. 

The parameters of the particle swarm, which the user can vary, are: stepn  – number of steps, 

1
2




  – accuracy with which the minimum is sought, as well as parameters 
minp  and 

minr . 

Parameter 
minr  determines n  – dimensional area 

mins  such that throughout the search process, 

while 
minks s , simulation density outside the "promising" area 

kh  does not change. When 
ks  getting 

smaller 
mins , then 

kh  begins to tend to zero, i.e. search with increasing intensity is conducted inside 
kI . 

From value 
minp  the probability that the minimum in the search process will be inside 

kI  and 

height value 
kh . Thus, the parameters 

minp  and 
minr  in which sense they allow you to set the ratio of 

"local" and "global" steps to their total number and thereby determine the overall behavior of a swarm 

of particles. 

In the search process, there is an accumulation of information about the nature of the behavior of 

the function of the target, therefore the width of the “perspective” interval 
k

iI  logical with each step 

narrow down from 
1 1p   till min 1

mkp p  , which entails a decrease in the probability of hitting 
kp  

in 
kI . Since it is assumed that the search process converges to a global minimum, it is again logical to 

assume that 

lim 1, lim 0,k k
k k

p r
 

   

those it is believed that further starting from , function 
kp  increases to unity. 

3. Particle swarm procedure for solving the global optimization problem.  

The particle swarm procedure for solving the global optimization problem consists of four main 

stages: initialization, building a ravine, updating speed and position, and a local search procedure. At 

the third stage, the mechanism of the equilibrium coefficient is described. 

Stage 1 – Initialization. The first step is random particle generation NP  (population size) to form 

the initial population. All particles are first evenly distributed around the search space. The first step 

consists of two parts, that is, to initialize the positions of the particles and to initialize their velocities. 

Both positions and speeds are represented as a vector. 

In particular, the first step is performed in accordance with the following expressions: 

( , )d d d d

i i i iX random RangL RangR , 

maxd d d

iV RangR RangL  , 

((( 0,5)*Vmax ,0,5* max )d d d d

i iV random V  , 
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and [1, ]i NP  – particle index, [1, ]d D  dimension. d

iX  means d – th element i -th particles, d

iV

means d – th element of speed of i -th particles. ( , )d

irandom a b  returns a random number in the range 

[ , ]a b . Since if the speed is too high, then the particle can fly out of the search area, the parameter 

maxd

iV  used to determine the boundary of the d-th element in the particle velocity. d

iRangR  and 
d

iRangL  represent the upper and lower boundaries of the d-th dimension of the search space, 

respectively. 

A modification of the particle swarm algorithm based on the use of the logistic equation is 

considered: 

max max
1 max

dV V
V

dt V




 
  

 
, 

where maxV  – scope of the “promising” area of optimization problem definition, (2 ) ,nv q r  – its 

radius, n  dimension of the optimization problem, lim lim max( ) ,
t

V V t const 


  -Malthusian parameter 

characterizing in our case the rate of change of knowledge about the optimization problem being 

solved and thus affecting the adaptation of the particle swarm process to solve the global optimization 

problem. Search is carried out in a single n  – dimensional hypercube. 

We solve the equation, find: 

0

1
max ,

1 1 1 t

V

e
V V V



 


 

  
 

 

where 
0 max(0)V V . For small values, knowledge increases exponentially, for large values, they 

approach a certain limit V const  . In our problem, r varies from 0.5 to 0, so we put 

01, 0V V V    . Then 

0

1 1
1

2 1
1 1

step

step

k

n

r

e
V



 
 
 

 
  
    

  

, 

where stepk  – step number. 

Deduce 
0 0 0( , ), ( , )V V V       (under the assumption that the accuracy of the search coincides 

with the radius of the vicinity of the global minimum). In the last step 2r  , we get: 

0

1

1
1

V

e








, 0

0

ln
1 1

V

V






 
   

  
. 

Thus, the paper considers the exponential law of the change in the “perspective” interval, at which 

its size at each step decreases in 'k const  time ( ')r rk  and logistic rule with parameter   . 

Consider the search algorithm with extreme parameters of the logistic curve. 

Take the radius of a “promising” area r  almost unchanged, i.e. 2 ( 0)r const     . With each 

step, a uniform throwing of a point occurs within n  – dimensional ball of radius - a random choice of 

direction in which we move. Thus, a descent to a minimum occurs. The probability in this case is 

higher than in the case of a uniformly distributed search and depends on the type of function of the 

target. 

Take : 2 ( 0)r r const     . In this case, there will be practically no narrowing of the gap, and 

the search will be equivalent to a uniformly distributed search (where are the points at which the 
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objective function is calculated  , are independent implementations of a random element with a 

uniform distribution on X). 

Therefore, it is assumed that the probability depending on the parameter   increases from the (1) 

th case, then decreases to the (2) th case, and there is a parameter in which the probability takes its 

maximum value. We call it the optimal parameter. Next, this parameter is selected. 

It was noted that for some functions with different stepn  There are different optimal parameters. 

Stage 2 – Building a ravine. 

To solve the multi-extreme problem, the ravine method is used to identify and find several 

optimums. The best particle in each form is called a descendant. Species are created around 

descendants and are responsible for drawing closer around optimums. Species will be updated in each 

generation. 

In each generation, particles will be sorted in decreasing order of suitability function. Then all 

particles are checked in this order to determine if they are suitable for the offspring. One of the 

important parameters used in this procedure is the radius of the form r , which defines the ravines. The 

best particle will be selected as a descendant directly and will be included in the descendant set S. S 

defined as empty in every generation. Next, all descendants will be added to S. Other particles will be 

checked in order using the radius of the form r . If the distance between the particle and the 

descendant is less than (or equal to), then the particle is considered a member of the same species with 

the descendant. If the distance between the particle and the descendant in S more r, then the particle 

will be considered as a new descendant and placed in S. After sorting all the particles, each particle 

will belong to the species. 

Stage 3 – Updating speed and position.Each particle is controlled by particles 
ipbest  and 

inbest  

during each iteration. 

The best position detected by particle i is called personal best pbesti, and the current best position 

of the descendant of its species is called the neighboring best nbesti. These two types of leading 

particles participate in the velocity equation of the particle swarm method. The equation is similar to 

the PSO equation, and the only difference is gbest  replaced by 
inbest .  

During the search procedure, the number of particles in different gullies is checked gradually. To 

minimize the difference, an equilibrium factor mechanism (EF) is proposed in which the worst 

particles of a large ravine will be ejected from the view and move along some other ravines. 

The velocity vector (VV) is added to the velocity equation of these several particles so that they 

move towards the ravine, which has fewer particles. Upon implementation DV, the view will be sorted 

in descending order of size. The largest and smallest of them will be selected for calculation 
d d dDV seedS seedL  , 

where dseedS  – it is a descendant of the largest species, and dseedL  refers to the descendant of the 

smallest species. 

Meanwhile, all individuals from the largest species will be sorted according to their suitability 

values. Parameter DS , which is defined as the size of the deviation, is calculated to determine the 

number of particles that will take EF . DS  calculated by the formula: 

( ) / 2DS sizeL sizeS  , 

where sizeL  and sizeS  – the number of particles in the largest and smallest forms, respectively. The 

equilibrium coefficient mechanism determines DV  during each iteration and determines which 

particles will be affected by the vector at the same time. DV  then used to update particle velocity. 

After calculating the VS, the velocities and positions of the particles are updated in accordance 

with: 

1

2

( 1) * ( ) c * 1 *( ( ) ( ))

c * 2 *( ( ) ( )) DV,

d d d d d

i i i i i

d d d

i i

V t w V t random pbest t X t

random nbest t X t

    

  
 

( 1) ( ) V ( 1),d d d

i i iX t X t t     
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where expression (3) is for particles that are determined using equilibrium factor (EF). The positions 

of all particles are updated according to expression (4). 

Stage 4. Local search. 

In the fourth stage, every pbest  will be updated by the local search procedure. Each pbest  will 

generate a new particle around itself and the best particle will replace another to become new pbest . 

More specifically, for each pbest  in the population, the operator is finely tuned in accordance with 

the differences between the original pbest  with other pbest , which is closest to her 
nearestpbest . The 

local search method, apparently, improves the fine-tuning of the original algorithm, which has proved 

its effectiveness in many complex problems. 

4. Computational experiment. 

The proposed algorithm was evaluated on a number of test functions. which are often used to test the 

effectiveness of new evolutionary algorithms, in addition, complex multi-extremal functions of high 

dimensionality, practically unsolvable by classical methods, were used [16–19]. 

All test functions may have a different number of parameters (d). Therefore, it makes sense to run 

the algorithm to optimize some function first with a small d (for example, 10 or 20), and then with d = 

50, 100, 200, ... This will give an opportunity to check the scalability of the algorithm.  

Performance of the proposed algorithm is usually estimated by the number of calculations of the 

objective function. Less is better. The results of the objective function less than 0.001 were also 

counted as the global minimum found.Because particle swarm algorithms use stochasticity, in order to 

determine how effective the proposed algorithm is to run it on the same test function several times and 

only then analyze the result. 

1. Griewank function: 

 
2

1 1

( ) cos 1
4000

dd
i i

i i

x x
f x

i 

 
   

 
   

Domain: 

[ 600,600], i 1,...,ix d    
Global minimum: 

* *( ) 0, (0,...,0)f x x 
 

Particle swarm algorithm: 
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d = 10, the number of finds of the global minimum is 87%, the number of calculations of the 

objective function is no more than 1200, the maximum value is 0.007251.d = 30, the number of finds 

of the global minimum is 82%, the number of calculations of the objective function is no more than 

1240, the maximum value is 0.074383. 

d = 50, the number of finding the global minimum is 75%, the number of calculations of the 

objective function is no more than 2,700, the maximum value is 0.027492, 40% of the population was 

selected for crossing. 

2. Drop-Wave function: 

 
2 2

1 2

2 2

1 2

1 cos(12
( )

0.5( ) 2

x x
f x

x x

 
 

 
 

Domain: 

[ 5.12,5.12], i 1,2ix     
Global minimum: 

* *( ) 1, (0,0)f x x  
 

Particle swarm algorithm: 

d = 2, the number of finding the global minimum is 87%, the number of calculations of the 

objective function is no more than 1150, the maximum value is –1.003273. 

5.Conclusion 

This article proposes a way to increase diversity, called the equilibrium factor mechanism. The 

introduction of the equilibrium factor not only rebalances the distribution of particles in different 

ravines, but also has the ability to identify a large number of optima in the search space. This helps the 

algorithms to identify more optima with the necessary accuracy in a single pass and reduce the number 

of generations. The discussion of the influence of the method of creating parental pairs on the behavior 

of the proposed algorithm cannot be kept apart from the actual selection mechanism in the formation 

of a new generation. This method is based on the construction of a new population only of the best 

individuals of the reproduction group, combining parents and their descendants. The rapid 

convergence provided by elite selection may, when necessary, be successfully compensated by a 

suitable method of selecting parental pairs. 
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