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Abstract. Queuing systems with an infinite variance of service time are considered. The 
average waiting time in such systems is equal to infinity at a stationary regime. We analyze the 
efficiency of introducing of absolute priorities with infinite number of priority classes 
determined by the special axis marking on intervals for possible values of service time. It is 
stated that queues in systems become normalized, i.e. the average queue length become finite, 
when using regular marking. Furthermore, request loss probabilities radically decrease when 
buffer size is finite. More efficient marking – exponential marking – is proposed for practical 
purposes in networks with fractal traffic. The optimization problems of regular and exponential 
markings are solved. 

1. Introduction 
In fractal traffic, increasing the buffer size of network devices is an inefficient tool for the loss 
probability reducing [1–6]. It is explained by infinite stationary average queue length in system 
GI/GI/1 when the variance Var(x) of request service time x equals infinity. Let us consider the M/Pa/1 
queueing system with Pareto distribution of service time, the system commonly used for modeling 
network devices. In truth, let us consider, for instance, the M/Pa/1 queueing system with Pareto 
distribution of service time 
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where K is the least value of the random variable x (scale parameter) and α > 0 is shape parameter.  
The mathematical expectation (m.e.) E(x) = b < ∞ when α > 1, and the variance Var(x) = ∞ at α ≤ 2. 
Therefore, the range 1 < α ≤ 2 of parameter α values, frequently used at network devices modeling, 
determines finite m.e. b and infinite variance of the service time x.  
Consequently, the second moment b(2) of time x is infinite as well. 
Applying the Pollaczek-Khinchine formula to the considered system with b(2) = ∞, average waiting 
time for the system is found to be 
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at any load coefficient ρ ∈ (0, 1) and any rate λ > 0 of arrival flow. In accordance with Little’s formula 
L= λW, the average queue length L in such system is also infinite. This very result was obtained in [6] 
by determination of the average queue length by means of moment generating function. 
We found that if the discipline of absolute priorities with afterservice and with the infinite number of 
priority classes determined by requests service time is introduced in such system M/Pa/1, then the 
average waiting time W becomes finite. At the same time, the priority classes are set by the following 
regular marking (RM) of the range of possible service time x: 

...,...,,,}{ 10 kk tttt = ,     (2) 

where t0 = K and 0const1 >=∆=− −kk tt  for any k = 1, 2, … . Such marking divides the range of 
possible service time into the intervals ),[ 1 kk tt −  with length ∆, therefore, the values tk can be 
calculated by the formula ∆+= kKtk . If request entering the original non-priority system M/Pa/1 has 
a service time belonging to the kth interval, it will be associated with the kth priority in descending 
order. As the number of priority classes is infinite one can assign negative priorities to requests. 

2. The queue normalization theorem in a system M/Pa/1 
with finite m.e. and infinite variance of service time  
Let us find average waiting time W in a system M/Pa/1 having arrival flow divided into priority 
components according to RM (2) of service time. Due to [7], average staying time kU  of the request 
with kth priority class in the system can be expressed as follows: 
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where kb  is average service time for requests of the kth priority class,  

iλ  is the arrival rate of requests with the ith priority class,  

)2(
ib  is the second service moment for the requests of the ith priority class,  

∑ = ρ=σ k
i ik 1  is the sum of system load coefficients due to the requests of priority classes from the 1st 

to the kth, iii bλ=ρ , kkk ρ−σ=σ −1 .  

Then average time U of requests staying in the system can be determined as the sum 

∑=
k

kkUpU ,     (4) 

where )(P 1 kkk txtp <≤= −  is the probability of arriving request classified as the kth priority class, and 
average waiting time is a difference 

bUxUW −=−= )(M .    (5) 

Indicators (4) and (5) of the considered system depend on the marking of ...,...,,,}{ 10 kk tttt =  service 
time axis. Let us find for the given marking }{ kt  the parameter values for the system M/Pa/1, included 
in the right side of the formula (3).  

Probability )(P 1 kkk txtp <≤= −  of interval ),[ 1 kk tt −  at distribution (1) of service time x equals 
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hence, providing that ),[ 1 kk ttx −∈  conditional distribution function for service time x has the form:  
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Therefore, for formula (3) we obtain: 
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(all priority components of the arrival flow are Poisson), 
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(when α = 2 the uncertainty of 0/0 type is disclosed by L'Hopital rule),  
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i ik b11 ,      

kkk ρ−σ=σ −1 ,       

kkk bλ=ρ .              (11) 

Theorem. Introducing into the system M/Pa/1 the discipline of absolute priorities with afterservice 
which are determined by the infinite RM with positive step ∆ makes the average waiting time finite 
Proof. With absolute priorities being introducing, the average staying time (4) is determined as 
follows: 
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Here the first sum on the right is finite due to the following relations: 
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where ρ < 1 is the system load coefficient. 

The second sum on the right (12) is limited above 
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Hence, only the finiteness of the sum ∑ ∑
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By inserting the corresponding expressions (6) and (10), we obtain: 
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Let us calculate the sum S4, considering that the coordinates of the regular marking ...),...,,,( 10 kttt  
have the form ...),...,,2,,( ∆+∆+∆+ kKKKK : 
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where ),( qsζ  – Hurwitz’s zeta function [8]. Series (16) meets integral Cauchy test for convergence, 
thus, sum S4, and, consequently, sums S3, S2, average staying time (12) and average waiting time W 
(5) are finite. 
The theorem is proved.  

3. Derivation of calculation formula for RM optimization  
Since the RM is uniquely determined by the parameter ∆ the optimization problem of RM is stated as 
follows: 

0
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When using any numerical methods to solve this problem, the main problem is calculation of values 
W(∆) at the given step ∆. And since the developed queue normalization method for systems with 
infinite variance of service time is targeted at its application by engineers who design data 
communication networks, numerical method for calculation of W(∆), available to engineers, had be 
developed. This problem will be solved in the next section. 
From (5) and (12) we have the following for the original M/Pa/1 system at RM (2) determining the 
priority classes  
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Taking into account (21), (6) and (8), the first sum in (18) we rewrite in the form:  
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where 
∆

=γ
K  is the dimensionless representation form of the step ∆.  

The second sum in (18) with regard to (6), (9) and (19)–(21) we transform in a similar way: 
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Then, in general, the dependence W(∆) defined by relation (18) can be rewritten in explicit form: 
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where the sum S2 at α = 2 after taking the limit is expressed as: 
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4. Simplification of the calculation formula with error control 
When calculating W(γ) by the formulae (24), (24 a), sufficiently large number of initial members of 
series have to be summed because these series converge very slowly. For instance, at values α far 
enough from unity (for example, at α ≥ 1.8), one can still calculate W(γ) with an accuracy of enough 
significant digits by summing up several million first members of the corresponding series belonging 
to (24), (24 a). But at values α close to unity (which sometimes come close to α = 1.2 and even to 
α = 1.1 while modeling actual traffic) these series converge so slowly that their calculation by means 
partial sums becomes unacceptably costly. 
Example 1. Calculating a part of the sum S1 (11) with λ = 1, α = 8/7, K = 0.0625, b = ρ = 0.5, ∆ = 0.2, 
γ = K/∆ = 0.3125 using large number of N first summands, we obtain the following partial sums 

)(1 NS  (rounded up to 6 significant digits): 576005.0)10( 6
1 =S , )10( 7
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1S  = 0.644327, )10( 10
1S  = 0.656177, )10( 11

1S  = 0.664792, 

)10( 12
1S  = 0.671039. Such powerful mathematical service as site wolframalpha.com cannot cope with 

calculation of sum )(11 ∞= SS . 
Therefore, for approximate calculation of W it is proposed to use partial sums )(1 NS , )(2 NS (for 
some sufficiently large N) along with integral estimates )1(1 +NI , )1(2 +NI  for the remainders of the 
series: 
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For improper integral I1 to be calculated by means of mathematical packages let us approximate the 
numerator of expression under integral sign applying to it a Taylor series expansion in powers of k: 
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Example 2. Performing a routine analysis of those errors in calculating the sum S1 that are caused by 
substituting part of the sum S1 with improper integral I1 and substituting the numerator of integral 
function with expression (25), we determine that sum )110()10( 8
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This example shows that partial sum )10( 12
1S  = 0.671039 calculated in Example 1 is a bad 

approximation of sum S1. 
Similarly, in the numerator of the second integral we substitute the difference 

])()1[( α−α− γ+−−γ+ kk  with value 1−α−αk . 
Moreover, in the numerator of the second integral we substitute the second multiplier by the first one 
since their difference is negligible: it is the difference of two power functions that can be easily 
estimated by expanding it into a Taylor series. 
Therefore, average waiting time can be calculated with controlled errors by the formula: 
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The simplest way to control errors obtained using formula (26) is the test calculations with gradual 
increase of the number N of summands in the partial sums S1 и S2 because these errors decrease quite 
quickly with the growth of N. 
When γ are large, i.e. at small values ∆ with respect to K, for W to be calculated one may use the exact 
formula of limit: 

( )
( )

( )
bdt

tKK

KttKdt
tKK

tKW
K K

−












−

−α
λα

−

−
α−

λα
+












−

−α
λα

−

α=∆ ∫ ∫
∞ ∞

α−α−
α

α−α−α−−α

α−α−
α

α−
α

→∆ 2
11

22122

110

1
1

)2(2
1

1
)(λim , (27) 

obtained from (5) and (12) taking the limit. 

5. Example of optimization problem solving for RM 
Table 1 shows the calculation of the dependence W(∆) according to formulae (26), (27) with 
parameters stated in Example 1 for the original system M/Pa/1. 

Table 1. The calculation of W(∆) by parts of sum (26). 

N ∆ γ S1(N) I1(N+1) S2(N) I2(N+1) W 
– 0 – – – – – 0.206297 

10 10 0.01 6.25 0.645499 0.047295 0.013239 2.29E-05 0.206056 
10 9 0.02 3.125 0.633278 0.059165 0.013379 3.58E-05 0.205858 

10 8 

0.05 1.25 0.619756 0.071669 0.013938 5.22E-05 0.205415 
0.1 0.625 0.624742 0.065127 0.015142 4.32E-05 0.205055 
0.15 0.416667 0.626916 0.061573 0.016432 3.87E-05 0.204960 
0.2 0.3125 0.628093 0.059165 0.017778 3.58E-05 0.205072 
0.3 0.208333 0.629215 0.055920 0.020566 3.20E-05 0.205733 
0.4 0.15625 0.629632 0.053734 0.023422 2.95E-05 0.206817 

10 6 

0.5 0.125 0.583584 0.098250 0.026030 9.73E-05 0.207961 
1 0.0625 0.586893 0.089389 0.040552 8.08E-05 0.216915 
1.5 0.041667 0.587976 0.084565 0.054862 7.24E-05 0.227475 
10 0.00625 0.586728 0.065127 26.41610 4.32E-05 26.56800 
100 0.000625 0.576914 0.047295 206.8180 2.29E-05 206.9422 
1000 6.25E-05 0.563815 0.034262 1604.210 1.21E-05 1604.308 
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The figure 1 depicts the part of the dependence W(∆) in a sufficiently small neighbourhood of the 
optimal step ∆opt. 
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Figure 1. Calculated dependence W(∆). 

As one can see in figure 1, ∆opt ≈ 0.15. In the neighbourhood of the optimum the line graph is slightly 
sloping, and if one overestimates or underestimates value ∆opt even twofold, the time W will not 
change significantly. 
Thus, introducing absolute priorities with infinite optimal RM in the system M/Pa/1 reduces the 
average waiting time and average queue length from infinity to 0.2 in considered example. 

6. Exponential marking 
Numerical experiment with a large number of other markings differing from a regular one showed that 
the most efficient marking is infinite exponential ...),...,,,( 10 kttt , in which points tk are distributed as 
follows: 

Kt =0 , ak
k ceKt += , ...),2,1( =k ,   (28) 

where c, a are coefficients that can be optimized to minimize the average waiting time W at given λ, 
K, α.  
In addition to this exponential marking (28) being able to reduce the time W to finite values, its 
advantage is that due to the rapid growth of the interval lengths between the points tk the partial sums 
in (18), which are calculated with only several tens of initial summands, coincide with corresponding 
sums of infinite series with an accuracy at enough significant digits. Because of this, the calculation of 
W according to formula (18) can be performed in a few rows of Excel spreadsheets, and at the same 
time it is possible to perform precise optimization of the marking parameters c, a with the gradient 
method built into add-in 'Solver'. 
For such optimization it is required several seconds of computer time. Experiments with optimal 
exponential markings conclude that optimal exponential markings are as good as optimal regular 
markings in terms of reducing W. 
A small number of practically realizable infinite exponential marking levels (28) are also distinguish 
beneficially it from RM for the practical implementation of the infinite markings method. 

7. The loss probabilities reducing at finite buffer  
The developed in the article normalization method of «fractal» queues allows a radical reduction of 
the loss probability in queueing systems with heavy tailed distributions and finite buffer. The 
developed method consists in introducing absolute priorities defined by infinite markings in systems 
with a finite buffer. It takes into account the results of previously published empirical studies of 
systems operating under fractal traffic [9–11] and achievements for the classical theory of priority 
disciplines optimization [6, 7, 12, 13]. However, the proposed method differs significantly from well-
known ones by considering of infinite markings. It is proposed to optimize the parameters of the used 
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markings by numerical methods based on the exact formulae of the queueing theory. We optimize the 
markings under condition that a system has an infinite buffer. And the subsequent buffer limit occurs 
under conditions where the unlimited queue becomes on average as short as possible, and therefore the 
loss probability should be reduced as much as possible. This heuristic justification of the developed 
method also explains the independence of the selected marking from the buffer length and, therefore, 
indirectly justifies the calculation of the rapid decrease in the loss probability with the increasing 
buffer size. 
Figure 2 shows the results of simulation experiments which were carried out to compare the efficiency 
of the proposed method and the usually recommended method of reducing the loss probability, 
consisting in a simple increase in the buffer size without introducing absolute priorities. Simulation 
experiments were carried out with the system M/Pa/1, in which α = 1.5, ρ = 0.5. The optimal value of 
∆ for the corresponding regular marking, determined up to two significant decimal digits, is 0.30. The 
optimal values of the exponential marking parameters are as follows: a = 1.055, с = 0.08424. The 
horizontal coordinate axis corresponds to the buffer size m, and the vertical axis corresponds to the 
loss probability P. In all experiments 10 million requests were passed through the system.  
A continuous, sharply downward, red line is the result of the buffer build-up, using absolute priorities 
due to optimal exponential marking. The line converges to a straight line that at the logarithmic scale 
of the ordinate axis indicates that the dependence P(m) represented by this line is asymptotically 
exponential.  
The continuous green line at the top of the diagram is calculated by simulating the initial system that 
does not use priorities. Since the corresponding dependence is power-law [6], here the line goes down 
with deceleration. In simulation experiments at the buffer size m = 100, the probability P decreases 
only to 0.029, at m = 1000 we get P = 0.00764, and at m = 10 000 we get P = 0.00125. As you can see 
from Figure 2, when using absolute priorities, such loss probability is achieved already at the buffer 
size m = 5. Moreover, using buffers designed to store 10,000 packets in real network devices is sure to 
make no sense because of the high cost of the corresponding equipment and the large delays occurring 
in the corresponding queues.  
The markers on the top line indicate the results obtained when using relative priorities (with the same 
set of priority classes as with absolute priorities).  
It is easy to explain such high efficiency of the absolute priorities introducing. At infinite variance of 
service time x, the system occasionally receives requests with very high, "catastrophic" service time. If 
such a request enters the system and occupies a channel in non-priority mode or relative priority mode, 
a long queue is created at the system input during its service, which leads to an overflow of even a 
very large buffer. In the mode of absolute priorities, incoming "non-catastrophic" requests with a 
higher priority "do not notice" a catastrophic request and simply push it out into the queue, 
consequently they are served as if there were no catastrophic request. As a result, long queues 
accumulating does not occur. 
This reasoning make us suppose that the proposed method will be as effective in any systems 
GI/GI/1/m, where service time x distribution is a heavy tailed distribution (HTD) with infinites (or 
simply large) variance. 
This assumption is confirmed by simulation experiments with a sufficiently large number of such 
systems. As an example figure 7 shows the results of modeling a system in which the arrival flow is 
set by the gamma distribution of the intervals of request arrivals and the service time x has a lognormal 
distribution. The gamma distribution has a m.e. 1 and a relatively high variance of 16 (the parameters 
β and α of the distribution are chosen to be 16 and 1/16, respectively). Lognormal distribution has the 
parameters µ = –10, σ = 4.3. At such parameters of the lognormal distribution, for the service time x 
we get M(x) = b = 0.47 M(x) = b = 0.47, 4210938.5)( ⋅=xD .  
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Figure 2. Dependences P(m) in non-priority 

 and priority modes of system M/Pa/1/m. 
Figure 3. Dependences P(m) in system 

Gamma/Logn/1/m. 
 
The upper almost horizontal line in figure 3 shows the dependence P(m) in non-priority mode: P 
decreases very slowly with the growth of m. At m = 10 000, the probability P = 0.25436 was obtained, 
at m = 100 000, the probability P = 0.234502. In figure 3 this sequence of probabilities begins with 
values of the order 0.5...0.4.  
The lower line in the diagram corresponds to the dependence P(m) obtained in the experiment when 
using absolute priorities with infinite marking of complexities, i.e. the method developed in this 
article.  
Note that to implement the proposed queue normalization method, it is not required additional 
hardware costs, a rather small modification of the network software is sufficient. 
In addition, it should be noted that in the packet switching networks, applying relative priorities to 
packets, which are defined by considered methods in accordance with a size of the file divided into 
packets, is almost equivalent to the absolute priorities introducing for files 

8. Conclusions 
To solve the problems, which in practice result from an infinite variance Var(x), the article develops a 
method based on introducing absolute priorities for requests with an infinite number of priority 
classes. 
In the course of the research carried out in the article, the following main results were obtained. 
1) The regular marking, in which all intervals ),[ 1 kk tt −  have the same length ∆, of semi-infinite range 
of service time values is investigated. The theorem is formulated and proved that if the absolute 
priorities determined by the regular marking are introduced into the system M/Pa/1/∞ with infinite 
average waiting time, its average waiting time W becomes finite. 
2) The problem of optimizing regular marking by criterion W → min is set and solved by numerical 
methods. In the framework of this problem, the calculation formula to determine the average waiting 
time W is obtained at ∆ → 0. 
3) Among a large number of irregular markings, the most effective one is found, i.e. the exponential 
marking, in which the length of successive intervals grows as an exponent with two constant 
coefficients. It is shown that by reducing the average waiting time W an exponential marking is not 
inferior to regular marking. At the same time, exponential marking is much more economical: at 
1 < α ≤ 2, when tens of millions of priority classes are implemented by the optimal regular marking, 
the optimal exponential marking requires the implementation no more than 50 priority levels. 
4). The efficiency of applying the developed method to the systems M/Pa/1/m with a finite buffer and 
Var(x) = ∞ is studied. It is established that the introduction of absolute priorities determined by the 
considered infinite markings drastically reduces the loss probability. In this case, the slow decrease 
(with power speed) of P(m) turns into a rapid one occurring at an exponential speed. 
5). We put the hypothesis and founded it at the level of physical sense, that the method will also be 
equally effective in other systems GI/GI/1/m with infinite or very large variance Var(x).  
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In order to verify this hypothesis, a series of experiments with such systems was carried out, and the 
experiments have convincingly confirmed the proposed hypothesis. 
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