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Abstract. In this work, special methods for studying nonlinear parabolic equations 
were developed that allow a fairly detailed study of nonlinear problems based on self-
similar and approximately self-similar solutions and the construction of an analogue 
Zeldovych-Kompanees type solution for a cross system, since the study of self-similar 
equations is relatively simpler in comparison with equations in private derivatives. 
Studied the properties of solutions to the problem of a biological population of the 
Fisher-Kolmogorov type in the case of cross-diffusion with the dual nonlinearity and 
the convective transfer. An estimate of the solutions is obtained, and on the basis of it 
the problem of choosing the initial approximation for the numerical solution of the 
Cauchy problem is solved. 

1. Introduction 
Terms of cross-diffusion are widely used in the equations of reaction diffusion which are found in 
models from mathematical biology and in various engineering applications now.  

In recent years considerably the theoretical analysis of mathematical models of reactionary and 
diffusive type in the presence of cross diffusion extended [1–3]. They began to pay special attention to 
unlimited solutions that are the cause of the presence of energy release, a chemical reaction, etc. They 
are solutions that arise in many physical processes (for example, combustion).  In this regard, in recent 
years, theory of blow up solutions strongly developed in many works by A.A. Samarsky, 
S.P.Kurdyumov, A.P. Mikhailov, V.A. Galaktionova, S.Nimova and many others have been devoted 
to this issue.  Blow up solutions called aggravated solutions.  Special methods were developed for the 
study of nonlinear parabolic equations, which allow for a sufficiently detailed study of the blow up 
solutions of the heat equation with a source [1, 2, 3].  In order to study nonlinear problems, it has 
become intensive to engage in self-similar and approximately self-similar solutions, since the study of 
self-similar equations is relatively simpler compared to partial differential equations.  Therefore, it is 
possible to study qualitative properties of the solutions of the original partial differential equations by 
constructing various self-similar equations.  Using them on the example of nonlinear heat conduction, 
filtration and diffusion, new nonlinear effects were established. 

In [2] for the case of fast diffusion   established a two-way estimation of solution and [3] 
investigated quasilinear degenerate parabolic equation with inhomogeneous density. Cross diffusion is 
a process in which the gradient of concentration or density of one chemical or a species induces a 
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stream, linear or nonlinear, other look. In molecular biology cross-diffusive processes arise in the 
multicomponent systems containing at least two dissolved components [4,5]. Modern biotechnology is 
a very high-tech industry that cannot be imagined without achieving not only biochemistry, 
microbiology, molecular biology, genetics, but also a number of other sciences, such as physics, 
chemistry, computer science. Mathematics is the indisputable basis and tool for research that has 
found application in biotechnology. The close interweaving of many branches of scientific knowledge 
allows a person to create amazing things and study them. In modern biotechnology, mathematical 
models are necessary, since they can be used to describe the most complex technological processes in 
biology and suggest their further development. Also, no production using living organisms can do 
without such calculations. 

Multicomponent systems containing nanoparticles, surfactants, polymers and other 
macromolecules in solution play an important role in industrial applications and biological functions 
[4].  In developmental biology, the latest experimental results show that cross-diffusion can be very 
significant in creating a spatial structure [6].  The effect of cross-diffusion on pattern formation models 
has been studied in many theoretical papers, for example, see [7].  In addition to patterning in biology, 
there are other areas of application of reaction-cross-diffusion systems, which include cancer motility 
[8], finance [9], and biofilm [10]. It has been shown that the introduction of cross-diffusion in standard 
reaction-diffusion models prevents an explosion. 

In this paper, we consider a model of a biological population consisting of parabolic systems of two 
quasilinear reaction-diffusion equations. Biological populations are a very attractive object for 
evolutionary research, since they have a high reproduction rate, biomass growth, and 
microevolutionary processes. One method for obtaining a self-similar system for solving the cross-
diffusion problem with double nonlinearity and convective transfer is described. Numerical 
calculations are performed that preserve the properties of the finite velocity and spatial localization of 
the flare. 

2. Problem definition. 
Let's consider in Q={(t,x): 0< t < ∞, x∈ NR } parabolic system of reaction diffusion 

( ) ( )

( ) ( )

1 1

2 2

211
1 2 1 1 1 1 1

212
2 1 1 2 2 2 2

( ( ) ) 1 ,

( ( ) ) 1 ,

pm k

pm k

u D u u u div c t u k u u
t
u D u u u div c t u k u u
t

β

β

−−

−−

∂ = ∇ ∇ ∇ + + − ∂
∂ = ∇ ∇ ∇ + + −
 ∂

   (1) 

1 0 10 ( )tu u x= = , 2 0 20 ( )tu u x= = ,    (2) 

which coefficients of mutual diffusion are respectively equal 1
21

1 2 1 1

pm kD u u u
−− ∇ ∇ , 2

21
2 1 2 2

pm kD u u u
−− ∇ ∇  

and convective transfer with a speed ( )c t . 1 2 1 2, , , , ,m m n p β β , 1D , 2D – positive real numbers, 

(.) (.)xgrad∇ − , 1 2, 1β β ≥ , Nx R∈  0l > ; 1 1( , ) 0u u t x= ≥ , 2 2 ( , ) 0u u t x= ≥  – required solutions. 

Let's notice that replacement in 

1
1 1( , ) ( ( ), )k tu t x e v tt x= , 2

2 2( , ) ( ( ), )k tu t x e v tt x= , 
0

( )
t

x c dx η η= − ∫  

will lead it to a look: 
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( ) [ ]

( ) [ ]

1 1 1 1 21 1

2 2 2 2 12 2

2 ( 2) ( 1)1 11
1 2 1 1 1 1

2 ( 2) ( 1)1 12
2 1 2 2 2 2

,

,

p k p kk m k tm k

p k p kk m k tm k

v D v v v k e v

v D v v v k e v

β β

β β

t

t

− − − − −− +

− − − − −− +

∂ = ∇ ∇ ∇ + ∂
∂ = ∇ ∇ ∇ +
 ∂

  (3) 

1 0 10 ( )tv v x= = , 2 0 20 ( ).tv v x= =    (4) 

If 1 1 2 2[( 2) ( 1)] [( 2) ( 1)]k p k m k p k m− − + = − − + , choosing that 

1 2 1 2 1 2[( 1) ( 2) ] [( 1) ( 2) ]

1 2 1 2 1 2

( )
( 1) ( 2) ( 1) ( 2)

m k p kk t m k p kk te et
m k p kk m k p kk

t
− + − − + −

= =
− + − − + − , 

receive the following system of the equations: 

( )
( )

1 1

2 2

21 11
1 2 1 1 1 1

21 12
2 1 2 2 2 2

( ) ,

( ) ,

pm k

pm k

v D v v v a t v

v D v v v a t v

β

β

t

t

−− +

−− +

∂ = ∇ ∇ ∇ + ∂
∂ = ∇ ∇ ∇ +
 ∂

    (5) 

where ( ) 1

1 1 1 1 2( 2) ( 1) ba k p kk m k= − + − , 1 1 1 2
1

1 1 2

( ( 2) ) ( 1) ,
( 2) ( 1)

p k k m kb
p kk m k

b − − − −
=

− + −
  

( ) 2

2 2 2 1 2( 1) ( 2) ba k m k p kk= − + − , 2 2 2 1
2

2 1 2

( ( 2) ) ( 1) .
( 1) ( 2)

p k k m kb
m k p kk

b − − − −
=

− + −
 

When 0ib = , and ( )ia t const= , 1,2i = , then the system has an appearance: 

( )
( )

1 1

2 2

21 11
1 2 1 1 1 1

21 12
2 1 2 2 2 2

,

,

pm k

pm k

v D v v v a v

v D v v v a v

β

β

τ

τ

−− +

−− +

∂ = ∇ ∇ ∇ − ∂
∂ = ∇ ∇ ∇ −
 ∂

    (6) 

Below we describe one way to obtain a self-similar system for (5). First we find a solution to the 
following systems of equations 

1

2

11
1 11

12
2 22

,

,

dv a v
d
dv a v
d

β

β

τ

τ

+

+

 = −

 = −


 

in the form 

1
1 1

1

1( ) ( ( )) ,v t γt t γ
β

−= = , 2
2 2

2

1( ) ( ( )) ,v t γt t γ
β

−= = , 

for a case 0ib = , and  ( )ia t const= , 1,2i = . And in the case 0ib ≠ , and ( )ia t const= , 1,2i =  find a 
solution to the system of ordinary differential equations 

1 1

2 2

11
1 11

12
2 22

,

,

b

b

dv a v
d
dv a v
d

b

b

τ
τ

τ
τ

+

+

 = −

 = −

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look 
1 1

2 1
1

1( ) ( ( )) , bv t γt t γ
b

− +
= = , 2 2

2 2
2

1( ) ( ( )) , bv t γt t γ
b

− +
= =  . 

then the solution of a system (5) is looked in the form 

1 1 1
0

2 2 2

( , ) ( ) ( ( ), ), ( )

( , ) ( ) ( ( ), ),

t

v t x v w t c y dy x

v t x v w t

t t x x

t t x

= = −

=

∫    (7)  

and ( )tt t=  is chosen so 

1 1( 1) ( 1)( 2) ( 2)
1 2 2 1

0 0

( ) ( ) ( ) ( ) ( )m mp k p kv t v t dt v t v t dt
t t

t t − −− −= =∫ ∫
 

Calculation of this integral gives 

1 2 11 [ ( 2) ( 1)]

1 2 1
1 2 1

1 2 1

1

( ) , 1 [ ( 2) ( 1)] 0,
1 [ ( 2) ( 1)]

( ) ln( ), 1 [ ( 2) ( 1)] 0,
( ), 2 1,

p k mT if p k m
p k m

T if p k m
T if p and m

γ γτ γ γ
γ γ

τττ   γ γ
τ

− − + − +
− − + − ≠ − − + −= + − − + − =

 + = =


 

if 1 2 1 2 1 2( 2) ( 1) ( 2) ( 1)p m p mγ γ γ γ− + − = − + − . 
Then for ( , ), 1,2iw x iτ =  receive system of equations: 

( )
( )

1 1

2 2

21 11
1 2 1 1 1 1 1

21 12
2 1 2 2 2 2 2

( ),

( ),

pm k

pm k

w D w w w w w

w D w w w w w

β
ξξξ 

β
ξξξ 

ψ
τ

ψ
τ

−− +

−− +

∂ = ∇ ∇ ∇ + − ∂
∂ = ∇ ∇ ∇ + −
 ∂

   (8) 

where 

1 [ ( 2) ( 1)]1 2 1

1 2 1
1 2 11

( )
1 1 1 2 1

1 , 1 [ ( 2) ( 1) 0,
(1 [ ( 2) ( 1)])

, 1 [ ( 2) ( 1) 0,
p k m

if p k m
p k m

с if p k m
γ γ

γ γ
γ γ τψ

γ γ γ
− − + −−

 − − + − > − − + −= 
 − − + − =

 

2 1 2

2 1 2
2 1 22

(1 [ ( 2) ( 1)])
2 1 2 1 2

1 , 1 [ ( 2) ( 1)] 0,
(1 [ ( 2) ( 1)])

, 1 [ ( 2) ( 1)] 0.p m

if p m
p m

с if p mγ γ

γ γ
γ γ τψ

γ γ γ− − − + −

 − − + − > − − + −= 
 − − + − =

 

If 1 2 11 [ ( 2) ( 1) 0p k mγ γ− − + − = ,   self-similar solution of a system (8) has an appearance 

( ( ), ) ( ), 1,2i iw t x f it x= = ,     (9) 

1

0

( ( ) ) /
t

pc y dy xx t= −∫ . 

Then substituting (9) in (8) relatively to ( )if ξ  receive the system of the self-similar equations 
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1 1

2 2

2
11 1 1 1 1

2 1 1 1

2
11 1 2 2 2

1 2 2 2

( ) (1 ) 0,

( ) (1 ) 0.

pk
mN N

pk
mN N

df df dfd f f f
d d d p d

df df dfd f f f
d d d p d

β

β

ξξξ  m
ξξξξ  

ξξξ  m
ξξξξ  

−

−− −

−

−− −


 + + − =




+ + − =


   (10) 

where 1
1 2 1

1
(1 [ ( 2) ( 1)])k p m

m
γ γ

=
− − + −

 and 2
2 1 2

1
(1 [ ( 2) ( 1)])k p m

m
γ γ

=
− − + −

. 

System (10) has approximate solution of a look 
1

1 ( ) , / ( 1)nf A a p pγξ γ+= − = − , 
2

2 ( ) nf B a γξ += − , 

where A and B are constant and 

[ ]
1

1 2
1 2

( 1)[ ( 2) ( 1)]
( 2) ( 1)( 1)
p k p mn

k p m m
− − − −

=
− − − − , [ ]

2
2 2

1 2

( 1)[ ( 2) ( 1)]
( 2) ( 1)( 1)
p k p mn

k p m m
− − − −

=
− − − − . 

In this paper, we used the asymptotic representation of the solution that we found as an initial 
approximation. 

3. Construction of the upper solution 
Let's be engaged in creation of the upper solution for system (10) 1 2( ), ( )f fξξ   possess properties 

( )

( )

1 1

2 2

2
( 2)1 1( 2) 11 1

2 1 1 1

2
( 2)1 1 ( 2) 12 2

1 2 2 2

(0, )

(0, )

pk
pm mk p

pk
pm m k p

df dff A B n k n f C
d d

df dff A B n k n f C
d d

γ γ ξ
ξξ

γ γ ξ
ξξ

−
−− −− +

−
−− − − +

= − ∈ ∞

= − ∈ ∞

 

that ( 1)( 1) 1,pγ − − =  ,
1

p
p

γ =
−

 

and 

( )

( )

1 1

2 2

2
( 2)1 11 1 ( 2) 11 1 1

2 1 1 1

2
( 2)1 11 1 ( 2) 12 2 2

1 2 2 2

pk
pm mN N k p

pk
pm mN N k p

df df dfd f A B n k n Nf
d d d d

df df dfd f A B n k n Nf
d d d d

ξξ  γ γ ξ
ξξξξ  

ξξ  γ γ ξ
ξξξξ  

−
−− −− − − +

−
−− −− − − +

       = − +      


   
  = − +       

 

 
Let's choose A and B from the system of the nonlinear algebraic equations  

( )
( )

1

2

( 2)1( 2) 1
1 1

( 2)1 ( 2) 1
2 2

1 /

1 /

pmk p

pm k p

A B n k n p

A B n k n p

γ γ

γ γ

−−− +

−− − +

 =


=
 

i.e. 

2
1 2

(p 1)( ( 2) 1)
( ( 2) 1) ( 1)( 1)

1

2

k p
k p m mnA

n

− − +
− + − − − 

=  
 

, 

1
11

2

2
1 2

(p 1)( ( 2) 1)
( ( 2) 1) ( 1)( 1)

2 1
1 1

1

( ( )

m
k p

k p m m
p nB p n k n

n
γ γ

−
−

− − +
− + − − −

−

 
  =   
   

. 
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Then the functions 1 2,f f  are solution profile like Zeldovich-Kompanees for a system (1) and in 
the area ( 1)/( ) p paξ −<  they satisfy the system of equations 

1

2

2
11 1 1 1 1

2 1

2
11 1 2 2 2

1 2

0

0

pk
mN N

pk
mN N

df df dfd Nf f
d d d p d p

df df dfd Nf f
d d d p d p

ξξξ
ξξξξ  

ξξξ
ξξξξ  

−

−− −

−

−− −

  
   + + =

   


 
  + + =    

   (11) 

in classical sense. 
Theorem 1. Let (0, ) (0, ), .i iu x u x x R±≤ ∈  Then for the solution of a task (1) in area Q takes place 

assessment 
1

2

1 1 1

2 2 2

( , ) ( , ) ( ),

( , ) ( , ) ( ),

k t

k t

u t x u t x e f
u t x u t x e f

x

x
+

+

≤ =

≤ =
1// [ ( )] px tx t=  

where 1 2( ), ( ) ( )f f и tξξ  t – functions defined above. 
Proof. Upper  solution of a task (1), (2) we will look for in the form of (7) 
It is possible to be convinced by immediate check that functions 

1
1 ( ) , / ( 1)nf A a p pγξ γ+= − = − , 2

2 ( ) nf B a γξ += − , 

are the generalized solution of the equation (11) 
The proof of the theorem is based on a comparison theorem of solutions [14,15]. 
That 

( )

( )

1 1

2 2

2
( 2)1 11 ( 2) 11 1

2 1 1 1

2
( 2)1 11 ( 2) 12 2

1 2 2 2

pk
pm mN k p N

pk
pm mN k p N

df dff A B n k n f
d d

df dff A B n k n f
d d

ξ γ γ ξ
ξξ

ξ γ γ ξ
ξξ

−
−− −− − +

−
−− −− − +


 = −




= −


 

function 1 2( ), ( )f fξξ   and streams possess the following tangential property 

( ) ( )1 1

2
( 2)1 11 ( 2) 11 1

1 2 1 1 10 ( ), 0, ,
pk

pm mN k p Ndf dff f A B n k n f C
d d

ξξ  γ γ ξ
ξξ

−
−− −− − +≤ = − ∈ ∞  

( ) ( )2 2

2
( 2)1 11 ( 2) 12 2

2 1 2 2 20 ( ), 0,
pk

pm mN k p Ndf dff f A B n k n f C
d d

ξξ  γ γ ξ
ξξ

−
−− −− − +≤ = − ∈ ∞ . 

Let's choose A and B those that inequalities were carried out 

( )
( )

1

2

( 2)1( 2) 1
1 1

( 2)1 ( 2) 1
2 2

1 / ,

1 / .

pmk p

pm k p

A B n k n p

A B n k n p

γ γ

γ γ

−−− +

−− − +

≥

≥
   (12) 

Then that (11) 
1 20, 0 (0, )f f в С> > ∈ ∞ , 

from (12) we have 
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1

1

2
11 1 1 1 1

2

2
11 1 2 2 2

1

0,

0,

(0, ).

pk
mN N

pk
mN N

df df dfd f
d d d p d

df df dfd f
d d d p d

ξξξ
ξξξξ  

ξξξ
ξξξξ  

ξ

−

−− − −

−

−− −

 
  + ≤
 
 
 
  + ≤
 
 

∈ ∞

    (13) 

It follows that ( , )iu t x is bounded for all t> 0 and thus the global solvability of problem (1), (2) is 
established. 

Theorem 1 is proved. 
Research of qualitative properties of a system (1) allowed, to execute a numerical experiment 

depending on values, the logging-in numerical parameters. For this purpose as an initial approximation 
an asymptotics of solution was used. 

Case 1 20, 0, 0n n q> > >  (slow diffusion).  Using the method [1] to solve equation (10), we obtain 
the following functions 

1 2/( 1) /( 1)
1 2( ) ( ) , ( ) ( ) ,n np p p pA a B aθ ξξ  θ ξξ − −

+ += − = −  

Finite solution of a system (10) at aξ −→  has asymptotics ( )( )~i if ξ ϑ ξ . 
Case 1 20, 0, 0n n q> > <  (fast diffusion).  For (10) we have 

1 2/( 1) /( 1)
1 1 2 1( ) ( ) , ( ) ( ) ,n np p p pA a B aχ ξξ  χ ξξ − −= + = +  

where 0a > , [ ]2
1 2( 2) ( 1)( 1)q k p m m= − − − − . 

At ξ →+∞  the tasks (10) disappearing on infinity solution has an asymptotics 
( ), 1,2( )~i i if χ ξξ = . 

4. Computing experiment. 
In the domain {( , ) : [0, ],    [ , ]}Q t x t T x a b= ∈ ∈  system of the quasilinear equations of parabolic type is 
considered 

( )

( )

1 1

2 2

2
11 1 1 1

1 2 1 1 1

2
12 2 2 2

2 1 2 2 2

( ) ( ) 1 ,

( ) ( ) 1 ,

pk
m

pk
m

u u u uD u c t k t u u
t x x x x

u u u uD u c t k t u u
t x x x x

β

β

−

−

−

−

  ∂ ∂ ∂ ∂∂  = + + −
 ∂ ∂ ∂ ∂ ∂  


 ∂ ∂ ∂ ∂∂  = + + −  ∂ ∂ ∂ ∂ ∂  

   (14) 

with initial 

1 10

2 20

(0, ) ( ) 0,    [ , ],
(0, ) ( ) 0,    [ , ],

u x u x x a b
u x u x x a b

= ≥ ∈
= ≥ ∈

   (15) 

and boundary conditions 
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1 1

1 2

2 1

2 2

( , ) ( ) 0,    [0, ],
( , ) ( ) 0,    [0, ],
( , ) ( ) 0,    [0, ],
( , ) ( ) 0,    [0, ].

u t a t t T
u t b t t T
u t a t t T
u t b t t T

ϕ
ϕ
ψ
ψ

= ≥ ∈
= ≥ ∈
= ≥ ∈
= ≥ ∈

     (16) 

Here 1 2 1 2,   ,   ,   ,   m m pβ β  – positive constants, 10 ( )u x  and 20 ( )u x – initial distribution respectively for 
the first and second component, 1( )tφ  – value of the first component on the left-hand border, 2 ( )tφ  – 
value of the first component on the right border, 1( )tψ and 2 ( )tψ  – respectively for the second 
component. 

Problem (14)-(16) describes many physical processes, for example, of diffusion, heat conductivity 
of the bipropellant environment: temperature and pressure, salt and moisture etc.  

Let's construct the uniform grid on t and x  

{ , 0,1,..., , ; , 0,1,..., , }h j i
b at j j m m T x a ih i n h

ntω t t −
= = = = = + = =  approximate a task (14)-(16) 

method of balance (the integro-interpolation method) 

( )( )

( )( )

1

2

1 1 1 1 1
1 1

1

1 1
1 1 11 1

1

1 1 1 1 1
1 1

1

1 1
1 1 1 11 1

2

1

1
2

1

1
2

j j j j j j
i i i i i i

i i

j j
j j j ji i

i i i i

j j j j j j
i i i i i i

i i

j j
j j j ji i

i i i i

y y y y y ya a
h h h

y yc k y y
h

w w w w w wb b
h h h

w wc k w w
h

b

b

τ

τ

+ + + + +
+ −

+

+ +
+ + ++ −

+ + + + +
+ −

+

+ +
+ + + ++ −

  − − −
= − +  

 
−

+ + −


 − − −
= − + 

 
−

+ + −












,   (17) 

where ia and ib  calculated in ways 

1) ( ) ( ) ( ) ( ) ( ) ( )1 1

2 21 1 1 1
1 11 1

1 1( ) 0.5

p pj j j jk k k k
m mj ji i i i

i i i

y y y y
a y D w w

h h

− −+ + + +

− −+ −
+

 − − = + 
  

 and 

( ) ( ) ( ) ( ) ( ) ( )2 2

2 21 1 1 1
1 11 11 1

2 1( ) 0.5

p pj j j jk k k k
m mj ji i i i

i i i

w w w w
b w D y y

h h

− −+ + + +

− −+ ++ −
+

 − − = + 
  

, 

System of schemes (17) is non-linear concerning function 1jy +  and 1jw + . For finding of its solution 
the method of iterations is used. We build a repetitive process as follows: 
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( )( )1

1 1 1 1 1 1 11 1 1 1 1 1 1

11 1 1 1
1

11
1

1

1 1 1 1 11 1 1 1 1

1 1
1

1
2

1

1

j j j j j j js s s s s s s
j s s

jii i i i i i i
i i i

js
j j
i ii

j j j j js s s s s
j s si i i i ii

i i

y y y y y y y ya a c
h h h h

k y y

w w w w w wb b
h h h

b

τ

τ

+ + + + + + ++ + + + + + +

++ − + −
+

++
+

+ + + + ++ + + + +

+ −
+

 
− − − − = − + +  

 

+ −

 
− − − = −

 

( )( )2

1 11 1

1 11

11
1 1

2

2

1

j js s

i ij
i

js
j j

ii i

w wc
h

k w w
b

+ ++ +

+ −+

++
+ +









 − + + 


+ −


 (18) 

Concerning function 
1( 1) js

y
++

 and   
1( 1) js

w
++

 difference schemes (18) it appears the linear. As initial 

iteration functions y and w of the previous step on time undertake: 
1(0) j

jy y
+

=  and 
1(0) j

jw w
+

= . For 
convergence of iteration demand realization of a condition 

( 1) ( )

max
s s

i ii
y y ε
+

− ≤  and 
( 1) ( )

max
s s

i ii
w w ε
+

− ≤ . 

For the solution of the linear scheme (18), with conditions (15)-(16) on a grid, the sweep method is 
used.  

Now we will give results of numerical experiments. Repetitive process is under construction by 
Picard's method, Newton and express. Results of computing experiments show that all iterative 
methods are suitable for the constructed scheme. For achievement of identical accuracy Newton's 
method (with square convergence) demands less iterations, than Picard's (Table 1-4) method. 

 
Table 1 

 
Fast diffusion. Values of parameters has to be  

1 20, 0, 0n n q> > < , 1 2 11 [ ( 2) ( 1)] 0p k mγ γ− − + − ≠ :
1 2 11 [ ( 2) ( 1)]

1 2 1

( )( )
1 [ ( 2) ( 1)]

p k mTt
p k m

γ γtt
γ γ

− − + −+
=

− − + −
. 
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Table 2 
 

Fast diffusion.  Parameter values should be  
1 20, 0, 0n n q> > < 1 2 11 [ ( 2) ( 1)] 0p k mγ γ− − + − = : ( ) ln( )t t Tt = + , Т>0. 

 
Table 3 

 
Slow diffusion.  Parameter values should be 

1 20, 0, 0n n q> > > , 1 2 11 [ ( 2) ( 1)] 0p k mγ γ− − + − ≠ : 
1 2 11 [ ( 2) ( 1)]

1 2 1

( )( )
1 [ ( 2) ( 1)]

p k mTt
p k m

γ γtt
γ γ

− − + −+
=

− − + −
. 
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Table 4 
Slow diffusion.  Parameter values should be  

1 20, 0, 0n n q> > > , 1 2 11 [ ( 2) ( 1)] 0p k mγ γ− − + − = : ( ) ln( )t t Tt = + , T>0. 

 

Conclusion 
Based on the obtained estimates of the solutions, it was established that the proposed nonlinear 
mathematical model of the biological population with double nonlinearity correctly reflects the 
physics of the flare of the process under study. 

Using the presented model, it is possible to estimate the time required for a complete recovery of a 
population after exposure to an unfavorable factor. Using several similar models, competitiveness of 
competing populations is assessed. An analysis of the experimental data obtained using such models 
allows us to conclude that the combined action of populations. Based on this, the following conclusion 
is made: when several populations compete, the population that can better tolerate adverse factors will 
dominate. 
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