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Abstract. In this paper we define a series of B-graphs. A powerset of the limit

graph of this series is a universal object in the category of finite simple graphs. The

constructed graph is countable and has several pleasant model theoretic properties as

well as famous Rado graph.

1. Introduction

An algebraic structure of a category is called a universal structure if it contains all the

algebraic structures of this category as its substructures. Another important concept

in the model theory is the concept of ultrahomogeneity: an algebraic system is called

ultrahomogeneous if and only if any isomorphism between two its subsystems extends

to an automorphism of the system itself. Ultrahomogeneous objects are convenient

for research and applications because they have a number of good model theoretic

properties.

In the category of simple (without loops and multiple edges) graphs, the famous

Rado graph is a unique up to isomorphism ultrahomogeneous universal graph such that

the graph extension property is holds for. The Rado graph and its properties play a

significant role in the study of big graphs, social interactions and finite combinatorics.

See [5, 6] for references and introduction to this area.

In the paper we will introduce two series of graphs, and the first one we call B-

graphs. These graphs have a simple definition and the series can be axiomatized by one

∀∃-sentence of the graph theory language. The second series obtained from the series

above with help of graph powerset operation.

The main aim of the article is to prove the powerset PB of the countable infinite

B-graph is universal for the category of simple graphs as well as Rado graph. At the end

we discuss briefly that despite PB is not ultrahomogeneous, and therefore the Extension

Property doesn’t hold for PB, a weakened version of the extension property holds on

this graph. Using the Weak Extension Property we can show that in several ways PB

is similar to the Rado graph. The mentioned properties of PB allow us to consider it as

some kind of approximation of the Rado graph.
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2. B-graphs and Graph powersets

In this section we will give a definition of B-graphs. The term B-graph was inspired by

papers [1, 4] where the notion of a closed subset of a vertex set of an arbitrary graph

was introduced. By this notion any subset of the vertex set of a B-graph is closed and

the lattice of all closed subsets of a B-graph is a Boolean algebra.

Let B1 be the graph consisting of two disjoint vertices. We will define the series of

graphs B1, B2, . . . , Bl, . . . by induction starting from B1. We will call them B-graphs.

Let Bk already defined for some k. Then V (Bk+1) = V (Bk) ∪ {u, v} and both u, v are

connected with all vertices of Bk and u isn’t connected with v. Bellow B3 graph is

drawn:

u3 v3

u2 v2

u1 v1

Note that all constructed graphs are (k − 2)-regular where k is the number of

vertices of considered B-graph. It follows by definition that any finite B-graph can be

divided into pairs of disjoint vertices and any pairs are connected to each other. Using

the observation above we can define a countable infinite B-graph B as the graph with

the infinite number of pairs of disjoint vertices such that all vertices from different pairs

are connected to each other. The easiest way to imagine B is to look on its complement:

uk vk

u2 v2

u1 v1

. . .

. . .

In the set theory a powerset of an arbitrary set A is the set of all subsets of A noted

as P (A). We will extend this definition for simple graphs. For our purposes we will use

finite subsets only so that we will mean that P (A) is the set of all finite subsets of a

set A. Let Γ be a simple graph (not necessary finite) with a vertex set V (Γ) and edges

E(Γ). Then a powerset of the graph Γ is the graph P (Γ) such that V (P (Γ)) = P (V (Γ)).

Let u and v are vertices of P (Γ) and U , V are vertex subsets of Γ corresponded to u
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and v respectively. Then the vertices u and v are joint if and only if for any s ∈ U s is

joined with all vertices V \ s and for any t ∈ V t is connected with U \ t.
The graph powerset operation can be applied to any simple graph. In the article

we will deal with the series of graphs which are obtained from the series of B-graph

with the help of the defined graph powerset operation. We will call them PB-graphs.

Denote by PB a powerset of infinite countable B-graph B.

In the model theory there exists a general notion of a Boolean power of an algebraic

structure [2]. Despite on similarity Boolean power for graphs with our notion of a

graph powerset these notions are different since the graph powerset of a graph Γ is not

necessarily embeds into a direct power of the graph Γ.

3. Graph powersets of B-graphs

In this section we will prove results about a universality of PB for the class of all finite

simple graphs. Before the mentioned theorem we will give a definition of a vertex shift

of a graph powerset.

Definition 1 Let Γ be a simple finite graph and u ∈ V (Γ). Let X = {A1, . . . , Ak}, Ai ⊆
V (Γ), i = 1, . . . , k be an arbitrary subset of V (P (Γ)). Then we call Xu ⊆ V (P (Γ)) as a

shift of X by u if Xu = {A1 ∪ {u}, . . . , Ak ∪ {u}}.
Theorem 1 Let Γ be a simple finite graph and |V (Γ)| = k. Then Γ is a full subgraph

of P (Bk).

Proof.If Γ consists of single vertex then Γ embeds to B1. Let we have already

embedded a graph Γ to Bk−1 and now we need to prove that Γ ∪ {x} embeds into
Bk. Let X1, X2 ⊆ V (Γ) are two disjoint sets which new vertex x is joined and disjoint

respectively. Denote by u and v vertices of k-th level of Bk.

By definition of B-graphs, u and v are connected with all vertices from Bk−1
therefore the vertex u as a vertex of P (Bk) is connected with the sets X1 and X2

in the graph P (Bk). Let X
′
2 be the shift of X2 by v. Since v is connected to all vertices

of Bk−1 then the induced subgraph Γ′ generated by the set X1 ∪X ′
2 is isomorphic to Γ.

On the other hand the vertex u as a vertex of P (Bk) isn’t connected with the set X
′
2.

Therefore u is connected with X1, u isn’t connected with X ′
2 and Γ∪ {x} → Γ′ ∪ {u} is

an desired embedding. Q.E.D.

The following corollary states that PB graph is universal in the category of finite

simple graphs

Corollary 1 Let Γ be a finite simple graph. There is an embedding of the graph Γ to

PB graph.

4. Weak Extension Property

Good model theoretic properties of the Rado graph are follows from the Extension

Property for graphs. It can be formulated in the following way:
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Extension Property. For every two disjoint finite sets of vertices U and V , there

exists a vertex x outside both sets that is connected to all vertices in U , but has no

neighbors in V . See figure bellow.

U
V

x

The Rado graph is, up to graph isomorphism, the only countable graph that satisfies

the extension property. A ultrahomogeneity and a universality are easily follows from the

Extension Property [3]. Moreover the Extension Property can be expressed as infinite

series of graph theoretic sentences. Hence the Extension property gives a convenient

approach for an axiomatisation of the Rado graph.

It is not hard to invent an example to show the Extension property doesn’t hold

for PB graph. Let us formulate a weakened version of the Extension Property:

Weak Extension Property (shortly WEP) For every two disjoint finite sets of

vertices U and V , there exists a vertex x outside both sets and a set V ′ that the induced
subgraph on U ∪V is isomorphic to the induced subgraph on U ∪V ′ and x is connected

to all vertices in U , but has no neighbors in V ′. See figure bellow.

U
V

V ′

x

From the proof of the theorem 1 follows that PB graph satisfies the Weak Extension

Property and WEP helps to prove an universality of PB graph in the category of finite

simple graphs. Clearly WEP also holds for the Rado graph and a universality of the

Rado graph could be proved using WEP. Also WEP may be used to show that PB is

connected and the diameter of PB graph equals to 2 as well as the Rado graph.

Let TR be a first order theory of the Rado graph. It is well known that the Rado

graph is the unique countable model of TR. By analogy with EP we can write down a

series of sentences of the graph language that reflect WEP. Constructed axioms define

a theory and both PB and the Rado graph are models of this theory.
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5. Conclusion

In this paper we have constructed countable simple graph PB such that any finite simple

graph can be embedded into PB. This fact and simple properties described above briefly

allow us to consider PB as well-constructive approximation of the Rado graph.
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