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Abstract. The paper compares the performance of technologies for big data processing applied 
for anomaly detection in a database of a billing system. Experiments have been conducted to 
evaluate the performance for processing big data of two technologies such as Hadoop 
MapReduce and Apache Spark. The datasets and configuration of the applications used in the 
experiments are described. The experiment results are presented as a description of the relation 
between calculation time, data size and imbalance in datasets. Based on the obtained results, a 
decision making system for choosing a technology for processing data depending on the 
characteristics of the datasets is proposed. 

1. Introduction
In the modern world, big data technologies have been spreading across the various fields and the 
number of tasks may be solved by using these technologies increases. The examples of big data tasks 
analysis are: 

• Customer analytics
• Fraud prevention
• Social Media analysis
• Preventive support
• Campaign optimization
• Artificial Intelligence
• Detection of anomalies, etc.

This is not a full list of cases where big data can be applied. Each task requires a particular 
approach to achieve better performance. This approach depends on task features such as data size, 
network configuration, data properties, etc. Since we plan to consider implementation of segmented 
cluster computation in future research (i.e. a cluster is divided into segments and one segment stand 
for calculations based on a one technique), it is important to estimate the technique and their 
application to a particular data, conditions, etc. Thus, cluster resources can be employed more 
efficient. In this regard, we should develop a decision-making system for choosing the technologies 
based on the criteria.  

2. Overview of methods and tools for big data processing
Today there are many tools in the field of big data analysis, both open source and proprietary. The 
most famous of them is the Apache Hadoop ecosystem, which includes many frameworks, libraries 
and other solutions. Some companies have their own infrastructure for working with big data such as 
AWS (Amazon), GCP (Google), Azure (Microsoft), YT (Yandex). In this paper, we consider only 
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open source tools. Hadoop MapReduce [1, 2] (MR) and Apache Spark [3] are the most popular of 
them.  

2.1. Hadoop MapReduce 

The main advantages of MR-technology are high reliability and throughput, low resource utilization. 
The disadvantages of MR are the impossibility of processing streaming data, the complexity of the 
iterative operations [4].  

MR involves data processing using key-value pairs. Data is read from the Hadoop distributed file 
system (HDFS) and the nodes are assigned for processing blocks of input files. The stage called 
«Map» is intended for preliminary processing and allocation of keys that used to group data. Then data 
is stored in Hard Drive Disks (HDD) and the «Shuffle» stage is perform to transfer data between 
nodes according to the keys (data with the identical keys is delivered to the same node). The data 
grouped by the key is processed at the final «Reduce» stage. The result of the MR-job is saved in 
HDFS. 

Figure 1 shows the schematic diagram of the MR application with signed main stages. 

Figure 1. Schematic diagram of the MR application. 

2.2.Apache Spark 

The Spark advantages are high processing speed due to in-memory processing, good applicability for 
iterative algorithms, it has a set of different libraries (for working with graphs, machine learning, etc.), 
streaming processing. The disadvantages are high consumption of resources, increased requirements 
for network connection, lower reliability compared to MR, a strong performance decrease due to low 
RAM.  

The schematic diagram of the Spark application is presented in figure 2. The important difference 
between Spark and MR is that nodes are not separated for the «Map» and «Reduce» stages. All nodes 
of Spark application perform the operations of each of the stages. Also, unlike in Hadoop MR, this 
technology stores intermediate data in RAM of nodes, thereby iterative tasks can be performed 10-100 
times faster [5, 6]. If there is a shortage of RAM, some data can be written to the node’s HDD and 
read from it when data is needed again. During the execution of Spark application, some operations 
can cause data exchanging between nodes, similar to the «Shuffle» stage in MR. At the end of the job, 
results can be stored in HDFS, transferred to the master node or used for further calculations. 
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Figure 2. Schematic diagram of the Spark application. 

Since these two technologies are quite common, many researches of comparing their performance 
[5, 6, 7] have been conducted. However, in most cases, the performance has been compared in 
iterative algorithms (e.g. graph algorithms, PageRank, K-Means, etc.), so the results cannot be applied 
to the current task. In some papers, the resource limit (RAM, CPU) for the execution of the application 
has been not specified.  

Two features have been found during analysis of the database structure, existing process of 
delivering new data to database and development algorithms for detecting anomalies:  

1. Data processing for anomaly detection have batch type
2. Algorithms are not iterative.
Based on these results, it has been decided to conduct experiments to identify the technology that 

provides with the minimum execution time under the existing conditions of anomaly detection in the 
billing system (BS) database (DB). 

3. Task formalization
The technologies are chosen depending on their performance. The performance can be expressed as 
time to complete the task.  

We formalize choosing the technology for non-iterative batch processing task as follows: 

(1) 

Explaining of these parameters: 

•  – estimated time of execution duration. 

•  – decision system. 

•  – dataset size. 

•  – the coefficient of dataset imbalance (CoI). 

In machine learning, the term “imbalanced data” [8] is applied. The term stands for the data amount 
of one class exceeding the data amount of others classes. In “key-value” processing the similar term 
means than the value number of one key is significantly greater than the value number of other keys. 
Imbalanced datasets are known to cause increasing in execution time compared to balanced datasets 
[9]. 
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In this task, this coefficient shows how many times the value number of the key with the maximum 
value amount is greater than the key with the median number of values. CoI can be expressed as 
follows: 

(2) 

In (2) H – the maximum number of values among the keys. M – the median number of values 
among the keys. 

• - configuration of computer network. It can be presented as a vector:

(3) 

In (3) C – the number of CPU cores (per node); R – the number of RAM, Gb (per node); N – the 
number of nodes. 

•  – technology of processing. 

We consider the influence of the features on the performance for anomaly detection in DB of BS. 

4. Experiment #1
The influence of the non-synthetic dataset size on performance has been explored. MR and Spark 
applications have the same algorithms for searching anomalies of two types in datasets. MR 
application has been developed using Java 8 and the libraries of Hadoop 3.1.0. Spark application has 
been developed by using Python 3.5 and the library pyspark. 

For the experiment, 8 non-synthetic datasets varied in size have been chosen. Each dataset is 
represented by a set of database records and stored in 500 pieces of Sequence Files (SF) [10, 11] with 
block compression [11]. One record has a size equal to about 265 bytes. The properties of datasets are 
presented in table 1. 

Table 1. Datasets properties. 

№ of dataset Count of records (millions) SF size (Gb) Raw size (Gb) 
1 77.5 4 19.6 
2 97.7 5 24.8 
3 108.3 6 28.1 
4 124.5 7 32.4 
5 167.6 10 44.3 
6 331.3 15 83.7 
7 496 20 123.3 
8 1361.9 44.4 320.1 

These datasets contain information about services connected to the subscribers, connection 
parameters, service parameters and other technical information. 

Maximum available resources for application execution are 420 Gb RAM and 128 CPU cores. 
As the experiments have been conducted applying the productive cluster that already performs 

business tasks, the time with minimum cluster load has been chosen to carry out the experiments (load 
during experiments is less than 20%). Each application has been executed 5 times for each dataset. 
The result time is average of these 5 executions for the given dataset. 

Based on the resource limit several Spark applications have been configured to compare their 
performance. Table 2 shows the configurations of the MR and Spark applications. 
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Table 2. Configurations of applications. 

Hadoop MR Spark (1) Spark (2) Spark (3) 
RAM per node (Gb) 4 4 6 12 
CPU cores per node 1 1 2 4 

Node count 105 105 64 32 
Total RAM used (Gb) 420 420 384 384 
Total CPU cores used 105 105 128 128 

According to the experiment results, the dependence of execution time on data size (expressed in 
the record number) has been obtained. The dependence graph is shown in figure 3. 

Figure 3. Execution time. 

In addition, statistics on the shuffle data size (in Spark applications, values are the same) has been 
obtained. It is presented in table 3. 

Table 3. Shuffle data size (Gb). 

№ of dataset 1 2 3 4 5 6 7 8 
MR 1.2 1.5 1.9 2 3 4.4 5.9 15.3 

Spark 3.5 4.6 5.8 6.8 9.4 12.3 24.2 74.3 

5. Analysis of the results obtained in experiment #1
According to the experiment results, we can conclude that the execution time of Spark and MR 
applications increases as the amount of data is increasing too. Shown in figure 3, the performance of 
the Spark applications with the second and third configurations is approximately identical, while the 
first configuration has a slightly worse result. We may assume that the number of CPU cores has a 
greater affect than RAM size for this task. Compared to MR, Spark applications work much faster 



AMSD-2019

Journal of Physics: Conference Series 1441 (2020) 012049

IOP Publishing

doi:10.1088/1742-6596/1441/1/012049

6

with small datasets (less than 330 million records), but on for bigger datasets Spark shows a 
significant increase in processing time. For dataset №6 their performance is similar. 

Possible reasons for this decrease in the Spark performance: 
• A large amount of data arrives at the shuffle stage and as a result, this data is transmitted over

the network between the nodes. E.g., for a dataset №7, the amount of shuffle data is 24.2 GB, 
while MR has only 5.9 GB. The differences are presented in the table 3. This can be caused by 
MR compressing data more effectively with compression codes than Spark. Using the Kryo 
serializer [12] for Spark applications has not improved the result. 

• Using UDF (user defined functions). Recent research [13, 14] has revealed a significant
decrease in the Spark performance when using Python UDF (compared to Scala UDF). 

• Not full RAM of the node is allocated for data storage [15]. When there is a shortage of RAM,
data is written to the HDD and read again to RAM when it is necessary. It causes a decrease in 
performance. This can be explained by a fact that the fewer number of nodes with the larger 
amount of RAM per node performs the task faster. 

• Data imbalance. Some keys from datasets are known to have the large number of values. The
influence of this fact to execution time is explored and described in the next experiment. 

6. Experiment #2
In this experiment, the influence of imbalance data on the execution time of applications is studied. In 
order to eliminate influence of different configurations on execution time and to take into account 
resource limits, both MR and Spark applications are configured identically: 1 CPU core per node, 4 
Gb RAM per node, 105 nodes. 

In non-synthetic datasets, CoI can have any value, that is why we have decided to create synthetic 
datasets with CoI values: 1 (perfect balance), 100, 10.000, 40.000. The median number of the values is 
constant for all datasets. 

In addition, we have changed the number of records: 175 millions (Spark has better performance 
than MR according to the results of the previous experiment), 330 millions (performance of MR and 
Spark are the same), 750 millions (MR is more efficient). 

Data is stored as 500 pieces SF with Block compression (identical to non-synthetic datasets). 
Thus, 12 synthetic datasets have been generated. Table 4 contains properties of these datasets (note 

that datasets with the same count of records and different CoI have the same SF size and real size). 

Table 4. Properties of synthetic datasets. 

№ of dataset Count of records (millions) SF size (Gb) Raw size (Gb) 
1 175 7.1 43.4 
2 330 10.9 75.7 
3 750 23.5 174.3 

As in the previous experiment, each application has been executed 5 times and the result time is 
calculated as the average value of these execution durations. 

The experiment results are presented in figure 5 
Additionally, statistics (Δ MR and Δ Spark) on the growth rate (in percentage) of execution time 

with increasing CoI has been collected. It shows the amount of percentages by which execution time 
of imbalanced dataset is increased in compare with perfectly balanced dataset. Δ can be calculated as 
follows: 

(4) 

In (4)  – time of execution with CoI = 1,  – time of execution with CoI = N. 
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The statistics is presented in table 5. 

Table 5. Statistics of Δ MR and Δ Spark. 

CoI 
Δ (%) 

Dataset №1 Dataset №2 Dataset №3 
MR Spark MR Spark MR Spark 

100 1.31 6.8 1.4 6.72 1.36 4.22 
10000 5.25 16.35 4.89 14.16 5.8 9.1 
40000 8.6 44.37 8.8 44.96 11.96 19.25 

Figure 4. Influence of CoI on execution time 

7. Analysis of the results obtained in experiment #2
We can observe that the execution time grows as CoI is increasing. However, MR is more tolerant to 
imbalanced data since Δ for MR is much smaller than Δ of Spark. E.g., with CoI = 40.000 execution 
time of MR grows only by 8.6% in dataset №1 but execution time of Spark has been increased by 
more than 44%. Imbalance does not has a great affect on small datasets. The performance of Spark is 
better than MR. However, if dataset is medium-sized (e.g., 330 million records) imbalanced data may 
significantly decrease the Spark performance. Even if datasets are perfectly balanced, the performance 
of Spark is smaller than MR, when processing large datasets (more than 330 million records). 

8. Conclusion
Based on the conducted experiments, we can make following conclusions: 

1. The most important feature for choosing technology for batch processing is data size. CoI is
important for medium-sized datasets or if datasets are extremely imbalanced. 

2. MR is much more tolerant to imbalanced data than Spark.
3. Spark application inflates the amount of shuffle data in compare to MR. For this reason, Spark

more actively uses network resources.
We can classify dataset sizes into 3 categories: small (size is less than ~70 Gb), medium (70-100 

Gb), large (more than 100 Gb). This classification is valid for configurations of computer networks 
identical to the configuration used during the experiments. According to the results obtained and 
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analyzed during the experiments, we can develop a simple decision-making system. It is presented in 
table 6. 

Table 6. Decision making system for configuration used in experiments 
(1 CPU core, 4 Gb RAM, 105 nodes) 

CoI 

Estimated execution time, s 
MR Spark 

Dataset size Dataset size 
Small Medium Large Small Medium Large 

1 –100 123 – 146 125 – 154 211 – 233 88 – 104 112 – 124 392 – 429 
100 – 10000 128 – 153 141 – 158 216 – 242 96 – 116 118 – 134 411 – 454 

10000 – 
40000 135 – 157 146 – 161 226 – 254 102 – 147 126 – 168 432 – 505 

>40000 >136 >151 >239 >122 >158 >467 

By comparing of estimated execution time, we can select a technology with better performance. 
Since the database of BS has more than 22 billion records (very large dataset) and data is 

imbalanced, we have decided to use Hadoop MapReduce to solve a task of detecting anomalies. 
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