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Abstract. The boundary value problem on a semi-infinite interval for a system of ordinary
differential equations of the diffusion-reaction type is considered. To apply a difference scheme
for the numerical solution of such a problem, it is necessary to reduce it to a problem for a
finite interval. For this perpose we offer to use well-known method of construction of the stable
variety of solutions that satisfy the limit condition at infinity. The estimates of the error arising
when the problem is reduced to a finite interval are obtained.

1. Introduction
Various convective-diffusion processes are modeled on the basis of differential equations and
of systems with a small parameter before higher derivatives. Solutions of such problems have
large gradients in the boundary layer. This must be considered when building computational
algorithms [1]. In mathematical modeling of a number of physical processes, for example, the
transfer of impurities or chemical reactions, the limiting boundary conditions are set at infinity.
To solve numerically such problem, it is necessary to reduce this problem to a finite domain. In
this paper, we consider the problem of reducing the problem to a finite interval in the case of a
linear system of ordinary differential equations with a limit boundary condition at infinity.

We consider a boundary value problem for a linear system of differential equations of diffusion-
reaction type on a semi-infinite interval. We use the method of reducing a problem to a finite
interval on the basis of extracting a variety of solutions satisfying a given condition at infinity.
The method of transferring conditions from a singular point was proposed by A.A. Abramov [2]
and developed in a number of works by A.A. Abramov, N.B. Konyukhova and their co-authors
in [3], [4] and in other works. It is shown how the developed approach can be applied in the
case of a parabolic equation on the half-line.

Now we introduce the notation. The Euclidean norm for vectors and the spectral norm for
matrices are used. It is assumed that a matrix is nonnegative if its eigenvalues do not lie in the
left half-plane. By C and Ci, we mean positive constants that independent of the parameter ε
and grid steps.
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2. A boundary value problem for a system of equations on a semi-infinite interval
Consider the boundary problem for the system of equations reaction-diffusion type on a semi-
infinite interval

ε2U′′(x)− P (x)U(x) = F(x), (1)

U(0) = A, lim
x→∞

U(x) = 0. (2)

We assume that the vector function F(x) of order n and the matrix P (x) of order n× n are
sufficiently smooth in the variable x. Let the matrix P (x) be positive definite,

ε ∈ (0, 1], P (x) ≥ αI, α > 0, lim
x→∞

P (x) = P∞, lim
x→∞

F(x) = 0.

In part, the problem (1)-(2) was investigated in [5], where the following stability estimate is
proved

max
x
||U(x)|| ≤

√
1
α2

max
x

||F(x)||2 + ||A||2, x ≥ 0, ||U|| =
{ n∑

k=1

U2
k

}1/2
. (3)

We investigate the method of reduction of the problem (1)-(2) to finite interval based on the
extraction of the variety of solutions satisfying the limit condition at infinity [4].

So, we define the desired variety as the set of solutions of a system of equations of the first
order:

εW′(x) + G(x)W(x) = β(x), (4)

where the matrix G(x) is the solution of the singular Cauchy problem for the matrix Riccati
equation:

εG′(x)−G2(x) + P (x) = 0, lim
x→∞

G(x) =
√

P∞, (5)

and the vector function β(x) is a solution of singular Cauchy problem

εβ′(x)−G(x)β(x) = F(x), lim
x→∞

β(x) = 0. (6)

The equations (5), (6) are defined so that the solution of equation (4) is a solution to the original
equation (1).

Let us dwell on the properties of the solution of the problem (5). In accordance with [5]
G(x) ≥

√
αI if x ≥ 0.

In accordance with [6], the following lemma is true.

Lemma 1 Let U(x) be a symmetric matrix with x ≤ r,

LU = εU ′(x)−Q(x)U(x)− U(x)S(x).

Then from the conditions:
U(r) ≥ 0, LU(x) ≤ 0, x < r

it follows that U(x) ≥ 0 for all x < r.

Here, under the inequality U(x) ≥ 0 it is assumed that all the eigenvalues of this matrix are not
negative.

Lemma 2 Let U(x) be a solution of matrix problem

εU ′(x)−Q(x)U(x)− U(x)S(x) = F (x), U(r) = U0,

U(x) is symmetric matrix, Q(x) ≥ βI, S(x) ≥ ωI, β > 0, ω > 0. Then for all x ≤ r

||U(x)|| ≤ ||U0||+
1

β + ω
max

x
||F (x)||.
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The proof of this lemma is based on the use of the maximum principle, which takes a place in
accordance with lemma 1.

Now we investigate the stability of the solution of the problem (5) to perturbation of the
matrix P (x).

Lemma 3 Let P (x) and P̃ (x) are symmetric matrices, G̃(x) is the solution of the problem (5)
in the case of the matrix P̃ (x), where P̃ (x) ≥ α̃. Then for all x ≥ 0

||G(x)− G̃(x)|| ≤ ||
√

P∞ −
√

P̃∞||+
1

√
α +

√
α̃

max
x
||P (x)− P̃ (x)||.

Proof. Putting U(x) = G(x)− G̃(x), we get

LU(x) = εU ′(x)−G(x)U(x)− U(x)G̃(x) = P̃ (x)− P (x),

lim
x→∞

U(x) =
√

P∞ −
√

P̃∞.

The matrix U(x), as the difference of two symmetric matrices, is symmetric. Lemma 2 implies
the assertion of the lemma.

Thus, in the case of a symmetric matrix P (x), the problem (5) has the only solution that is
stable to perturbation of the matrix P (x), which leaves the matrix symmetric.

Using G̃(x) = 0, P̃ (x) = 0, from lemma 3 we get

||G(x)|| ≤ ||
√

P∞||+
1√
α

max
x
||P (x)||.

Lemma 4 For the solution of the problem (6) the following estimate is true

max
x≥L

||β(x)|| ≤ 2√
α

max
x≥L

||F(x)||

for any L ≥ 0.

Proof. Multiply the equation (6) scalarly by β(x) :

ε(β′(x), β(x))− (G(x)β(x), β(x)) = (F(x), β(x)).

Let us w(x) = (β(x), β(x)). Then

ε

2
w′ −

√
αw ≥ (F, β).

We account the inequality 2|(F, β)| ≤ σ||β||2 + σ−1||F||2, ∀σ > 0, and for σ =
√

α/2 we get

−εw′ +
√

αw ≤ 4√
α
||F||2, w(x) → 0, x →∞.

Reasoning from the contrary, we obtain that if for some continuously differentiable function
Ψ(x) following conditions are satisfied

εΨ′ −
√

αΨ(x) ≤ 0, x ≥ L, lim
x→∞

Ψ(x) ≥ 0, (7)

then Ψ(x) ≥ 0 for all x ≥ L.
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For x ≥ L we define

Ψ(x) =
4
α

max
x≥L

||F(x)||2 − w(x).

Then the conditions (7) are satisfied and therefore Ψ(x) ≥ 0, x ≥ L, which proves the lemma.
Now we define the Cauchy problem with respect to the extracted variety (4):

εW′(x) + G(x)W(x) = β(x), W(0) = A. (8)

By analogy with lemma 4, we can prove the following lemma.

Lemma 5 The following estimate of stability is true

max
x
||W(x)|| ≤

√
1
α2

max
x
||β(x)||2 + ||A||2. (9)

Let us prove that the equation (4) extracts the variety of solutions of the equation (1) tending
to zero at infinity.

Lemma 6 Let W(x) be the solution of the problem (8), G(x) ≥
√

αI, β(x) → 0, x →∞. Then
W(x) → 0, x →∞.

Proof. Consider the problem

εV′(x) + αV(x) = β(x), V(0) = A.

For each component Vi(x) we get

Vi(x) = Aie
−αε−1x +

1
ε

x∫
0

e−αε−1(s−x)βi(s)d s.

Considering that βi(s) → 0, s → ∞, from the last relation it is easy to get that Vi(x) → 0 if
x →∞, for any i. Therefore, V(x) → 0, for x →∞. Let Z(x) = V(x)−W(x). Then Z(x) is
the solution of the problem

εZ′(x) + αZ(x) = (G(x)− αI)W(x), Z(0) = 0.

Let w = (Z,Z). We multiply each term of the last equation by Z(x) and get
ε

2
w′ + αw = ((G− αI)W,V)− ((G− αI)W,W) ≤ ||(G− αI)W|| ||V||.

Let Υ(x) = ||(G− αI)W(x)|| ||V(x)||. Then we come to the inequality
ε

2
w′(x) + αw(x) ≤ Υ(x). (10)

We account that W(x) is bounded and V(x) → 0, x →∞. Then we obtain Υ(x) → 0, x →∞.
Transforming inequality (10) and integrating from 0 up x, we obtain

w(x) ≤ 2
ε

x∫
0

Υ(s)e2αε−1(s−x) d s.

It is easy to conclude that w(x) → 0, x → ∞. Therefore, Z(x) → 0 if x → ∞. This proves
the lemma.

Using (4), we transform the problem (1)-(2) to the problem for a finite interval [0, L] :

ε2V′′(x)− P (x)V(x) = F(x), 0 < x < L, (11)

V(0) = A, εV′(L) + G(L)V(L) = β(L). (12)
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Lemma 7 For the solution of the problem (11) - (12) the following estimate is true

max
0≤x≤L

||V(x)|| ≤
√

1
α2

max{max
x

||F(x)||2, ||β(L)||2}+ ||A||2. (13)

Lemma 8 Solutions of the problems (1)-(2) and (11) -(12) coincide on the interval [0, L].

Proof. For each of the considered problems the estimates of stability (3), (9), (13) are true,
respectively. The stability estimates correspond to the uniqueness of the solution of the problems
under consideration.

Let W(x) be the solution of the problem (8). Now we prove that W(x) is a solution of the
problem (1)-(2). In accordance with lemma 6, the limit boundary condition (2) is satisfied for
the function W(x). The equation (1) is satisfied by W(x) according to the choice of the matrix
G(x) and the vector function β(x). So, W(x) is a solution of the problem (1)-(2). Similarly, we
can verify that W(x) is solution of the problem (11)-(12) with x ≤ L. It proves the lemma.

In accordance with lemma 8, the problem (1)-(2) can be exactly transformed to the problem
on a finite interval:

ε2U′′(x)− P (x)U(x) = F(x), 0 < x < L, (14)

U(0) = A, εU′(L) + G(L)U(L) = β(L). (15)

Now we investigate the stability of the problem (14)-(15) to perturbation of the coefficients G(L)
and β(L), which can be calculated only approximately.

Theorem 1 Let Ũ(x) be the solution of the problem (14)-(15) in the case when G(L), β(L) are
replaced by G̃(L), β̃(L). Suppose that

||G(L)− G̃(L)|| ≤ ∆, ||β(L)− β̃(L)|| ≤ ∆.

Then for some constant C

max
x
||U(x)− Ũ(x)|| ≤ C∆ exp

[√
α(2ε)−1(x− L)

]
. (16)

Proof. Let Z(x) = U(x)− Ũ(x). Then Z(x) is the solution of the problem:

ε2Z′′(x)− P (x)Z(x) = 0, Z(0) = 0, εZ′(L) + G(L)Z(L) = R(L),

where R(L) = [G̃(L)−G(L)]Ũ(L)+β(L)− β̃(L). Multiplying this equations by Z and assuming
w(x) = ||Z(x)||2, we obtain

ε2

2
w′′(x)− αw(x) ≥ 0, w(0) = 0, εw′(L) +

√
αw(L) ≤ 1√

α
||R(L)||2.

Define
Ψ(x) =

1
2α
||R(L)||2 exp

[√
αε−1(x− L)

]
− w(x).

Then
ε2

2
Ψ′′(x)− αΨ(x) ≤ 0, x ∈ (0, L), Ψ(0) ≥ 0, εΨ′(L) +

√
αΨ(L) ≥ 0.

From the fulfillment of these relations it follows that Ψ(x) ≥ 0 for all x. This proves (16) with
C = (||Ũ(L)||+ 1)/

√
2α. The theorem is proven.

So, by (14)-(15) the problem (1)-(2) is precisely transformed to a finite interval. It remains
to find the coefficients G(L) and β(L) from corresponding singular Cauchy problems. We’ll find
these coefficients by the expansion in the series [3], [4].
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Expansions in powers of ε. Let

Gm(x) =
m∑

k=0

Gk(x)εk, βm(x) =
m∑

k=0

βk(x)εk. (17)

Substituting Gm(x), βm(x) into the equations (5), (6), we get recurrent formulas

G0(x)Gk(x) + Gk(x)G0(x) = G′k−1(x)−
k−1∑
i=1

Gi(x)Gk−i(x), G0(x) =
√

P (x);

G0(x)βk(x) = β′k−1(x)−
k∑

i=1

Gi(x)βk−i(x), k ≥ 1, G0(x)β0(x) = −F (x).

It is easy to verify that the asymptotic approximation of G(x) in (17) is the solution of the
problem (5) with the perturbed matrix P̃ (x), similarly βm(x) is the solution of problem (6) with
the perturbed vector function F̃(x), with the error of order O(εm+1).

Expansions in powers of x−1. Applying such approach, we don’t require the smallness of
ε. May be ε = 1. Suppose that in (1) for x ≥ L the following decomposition is valid

Pm(x) =
m∑

k=0

Pk

xk
, Fm(x) =

m∑
k=1

Fk

xk
.

Functions G(x) and β(x) will be searched as

Gm(x) =
m∑

k=0

Gk

xk
, βm(x) =

m∑
k=0

βk

xk
.

Substituting these expansion into the matrix equation (5) and equating the coefficients with the
same powers x, we get the recurrence formula:

G0Gk + GkG0 = Pk − (k − 1)εGk−1 −
k−1∑
i=1

GiGk−i, G0 =
√

P0.

Let us construct the solution of the problem (6). Using the decomposition for G(x), we get
the recurrence formula

−G0βk = (k − 1)εβk−1 +
k−1∑
i=1

Giβk−i + Fk, m ≥ k ≥ 1, β0 = 0.

Then valid error estimates are

||Gm(x)−G(x)|| ≤ CL−(m+1), ||βm(x)− β(x)|| ≤ CL−(m+1), x ≥ L.

To find G(x) based on asymptotic expansions it is required to solve the matrix equation
AX + XB = F. Such methods were investigated in [7] and in other works.

So, the coefficients G(L) and β(L) for the problem (14)-(15) can be found with some given
accuracy. In accordance with theorem 1, the solution of reduced problem is stable to arising
errors.
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3. Error estimation of classical artificial boundary condition
In a number of papers, the boundary condition is transferred from infinity to the point L in the
form U(L) = 0 . Let us estimate the error of such a transfer.

Let us move from the problem (1)-(2) to the problem:

ε2Ũ′′(x)− P (x)Ũ(x) = F(x), Ũ(0) = A, Ũ(L) = 0. (18)

Lemma 9 For all x ≤ L

||Ũ(x)−U(x)|| ≤ ||U(L)|| exp
[
(α/2)1/2ε−1(x− L)

]
.

Proof. Let us Z = U− Ũ. Then Z(x) is the solution to the problem

ε2Z′′(x)− P (x)Z(x) = 0, Z(0) = 0, Z(L) = U(L).

Multiplying the equation and the boundary conditions scalarly by Z(x), we obtain relations for
the scalar function w(x) = (Z(x),Z(x)) :

ε2

2
w′′(x)− αw(x) ≥ 0, w(0) = 0, w(L) = ||U(L)||2.

Now we define
Ψ(x) = ||U(L)||2 exp

[
(2α)1/2ε−1(x− L)

]
− w(x).

Then
ε2

2
Ψ′′(x)− αΨ(x) ≤ 0,Ψ(0) ≥ 0, Ψ(L) ≥ 0.

It follows from the fulfillment of these conditions that Ψ(x) ≥ 0 for all x ∈ [0, L]. This proves
the lemma.

According to the lemma, the error decreases exponentially with decreasing x.

4. Parabolic equation on the half-axis
Consider the problem for a parabolic equation

−∂u

∂t
+ ε2 ∂2u

∂x2
− b(x, t)u = f(x, t), (19)

u(0, t) = φ1(t), u(x, 0) = φ2(x), lim
x→+∞

u(x, t) = 0 (20)

in unbounded domain G = {0 ≤ x < ∞, 0 ≤ t ≤ T}. Functions b, f, φ1, φ2, are smooth enough
and consistent so that the solution u(x, t) is a twice continuously differentiable function in all
interior points of the area G. We suppose that

ε > 0, b(x, t) ≥ γ > 0, lim
x→+∞

φ2(x) = 0, lim
x→+∞

f(x, t) = 0. (21)

Then the estimate max |u(x, t)| ≤ max |f(x, t)|/γ + max |φ1(t)|+ max |φ2(x)| is true.
We approximate the equation (19) with the step τ in time

−ui(x)− ui−1(x)
τ

+ ε2 d2 ui

d x2
− b(x, ti)ui = f(x, ti) (22)

ui(0) = φ1(ti), u0(x) = φ2(x), lim
x→∞

ui(x) = 0, (23)
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where ti = τi, i = 1, 2, . . . ,M, tM = T. We have the estimate of accuracy

max
i,x

|u(x, ti)− ui(x)| ≤ Cτ. (24)

The problem (22)-(23) can be written in the form (1)-(2), while

Ui(x) = ui(x), Ai = φ1(ti), 1 ≤ i ≤ M, F1(x) = f(x, t1) +
φ2(x)

τ
,

Fi(x) = f(x, ti), 2 ≤ i ≤ M , matrix P (x) is following

P (x) =


b(x, t1) + 1

τ 0 . . . 0
− 1

τ b(x, t2) + 1
τ . . . 0

. . .
0 . . . − 1

τ b(x, tM ) + 1
τ

 . (25)

Further, on the basis of the developed approach the problem (22)-(23) can be reduced to a
problem of the form (14)-(15) for a finite interval.

The reduced problem can be written as

−ui(x)− ui−1(x)
τ

+ ε2 d2 ui

d x2
− b(x, ti)ui = f(x, ti), u0(x) = φ2(x), 1 ≤ i ≤ M,

ui(0) = φ1(ti), ε
d

d x
ui(L) + Gi,iu

i(L) = βi(L)−
i−1∑
j=1

Gi,j(L)uj(L). (26)

According to (24) by (26) the problem (19)-(20) reduced to a finite interval with the error of
order O(τ).

The matrix P (x) from (25) is a diagonally dominant M-matrix, and therefore is positive-
definite. Consequently, the obtained estimates of the errors that arise when the problem is set
on a finite interval are also valid in the case of the problem (26).

In the problem (26) it remains to replace the derivative (ui)′′(x) using a finite-difference
relation and on each i-th level in time to solve the system of linear equations.

From the analysis of the problem (5) with P (x) from (25) it follows that the matrix G(x) is
lower triangular. In this case the matrix equation AX + XB = F, arising in the construction of
an asymptotic solution, can be solved explicitly:

Xi,i−p =

Fi,i−p −
i−1∑

k=i−p

Ai,kXk,i−p −
i∑

k=i+1−p

Xi,kBk,i−p

 /[Ai,i + Bi−p,i−p], (27)

where p = 0, 1, 2, . . . , i− 1 and i = 1, 2, . . . , n.
To use recurrent formulas for decomposition (17) we need to calculate the matrix root

G0(x) =
√

P (x). Such methods were investigated, for example, in [8], [9]. Taking into account
that matrix P (x) is lower triangular, we can write an exact formula to find X =

√
P . For an

arbitrary element Pi,i−p, with p = 0, 1, 2, . . . , i− 1 can be written

i∑
k=i−p

Xi,kXk,i−p = Pi,i−p.

Then we get

Xi,i−p =

Pi,i−p −
i−1∑

k=i+1−p

Xi,kXk,i−p

 [Xi,i + Xi−p,i−p]
−1 , (28)
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where
p = 1, 2, . . . , i− 1, xi,i =

√
Pi,i, 1 ≤ i ≤ M.

Note that the dimension of the matrix P (x) increases with decreasing step τ.. Therefore, explicit
formulas (27) and (28) are useful for solving the matrix equation and calculating the root of
the matrix. In the future, it is intended to conduct computational experiments to verify the
effectiveness of the approach under study.

Solutions of problems (1)-(2) and (19)-(20) have large gradients in the boundary layers near
the point x = 0 if ε � 1. To achieve ε-uniform convergence of the difference scheme, one can
use the mesh that condenses in the boundary layer, for example, Shishkin mesh [1].

5. Conclusion
In the work is investigated the method to transform a system of diffusion-reaction equations with
a limit boundary condition at infinity to a problem for a finite interval. The reduced problem
can be solved numerically by the application of a difference scheme. The method uses the well
known approach based on the extraction of a stable variety of solutions that satisfy the limit
condition at infinity. It is proposed to apply asymptotic expansions in a small parameter or x−1

to solve auxiliary Cauchy problems. The accuracy of such approach is estimated. It is shown
how the approach can be applied to the numerical solution of a parabolic equation with the
limit condition at infinity.
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