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Abstract. In work approach for numerical realization of definition of difficult borders with a 
current of a thin layer of ideal liquid on the surface of the working blade of the water-wheel is 
considered. The technique of creation of firm borders in two-dimensional and three-
dimensional cases for streams of such layer of liquid with application of power optimization is 
presented. Test calculation of an optimum surface of blades of the water-wheel at the 
maximum return of kinetic and potential energy by liquid on the basis of use of the principle of 
a maximum was considered. 
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1. Introduction 
For determination of structure of blades of various turbines the set of techniques both with application 
of the simplified formulas [1], and with application of full calculation of the equations of 
hydrodynamics and gas dynamics is used. Definition of optimum surfaces of working blades of the 
water-wheel with return of the maximum kinetic and potential energy can be received from liquid 
within model of ideal liquid with attraction of a problem of optimum control on the basis of the 
interfaced differential equations of the movement. 
In work [2] results of application of an algorithm of optimum control in the field of inclination with 
minimization of various functionalities were presented. This algorithm was applied to settling of an 
optimum surface of blades of the water-wheel with the movement of a thin layer of ideal liquid with 
free border where for these purposes the mathematical apparatus with the principle of a maximum of 
Pontryagin L. S. is used [3]. 

2. Problem definition  
Let's consider on the rotating turbine one of blades with an uncertain surface. Let's define geometry of 
this surface in sense of optimum power return of a stream of the liquid sliding a thin layer on the 
surface moving to the field of inclination and causing rotation of the turbine with the set angular 
speed. For definition of such optimum surface of the separate blade of the water-wheel we will 
consider a number of trajectories of the movement on a neyzhidkost with an entrance at distance r = R 
from an axis of rotation of the turbine and with the set components of speeds Vx0, Vr0,  Vs0 along a 
rotation axis, in the radial and tangensalny directions, respectively. Let's consider that the turbine 
rotates with a constant angular speed ω0 (see Fig. 1), and the movement of liquid will be considered in 
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the accompanying mobile system of coordinates (x, r, s), tied to the blade in a point of a start of 
motion of liquid on a surface with coordinates of x0=0, r0=R, s0=0, with the further movement to 
edge of the blade down with xk coordinate. Inclination we will consider the field on Ox axis with 
continuous acceleration of g0. 

 
Figure 1. The image of the blade of the turbine and a separate trajectory of the movement of a drop of liquid 
(initial and final points are noted by speed vector components 

At such problem definition in the chosen system of coordinates of the equation of the movement 
will have the following appearance: 

    𝑑𝑑𝑉𝑉𝑥𝑥
𝑑𝑑𝑡𝑡

= 𝑔𝑔0𝐶𝐶𝐶𝐶𝐶𝐶(𝜓𝜓)𝐶𝐶𝐶𝐶𝐶𝐶(𝜓𝜓) + 𝑓𝑓1,                                                               (1) 

   𝑑𝑑𝑉𝑉𝑠𝑠
𝑑𝑑𝑡𝑡

= 𝑔𝑔0𝐶𝐶𝐶𝐶𝐶𝐶(𝜓𝜓)𝑆𝑆𝑆𝑆𝑆𝑆(𝜓𝜓) − 𝑉𝑉𝑠𝑠𝑉𝑉𝑟𝑟
𝑟𝑟
− 2𝑉𝑉𝑟𝑟𝜔𝜔 + 𝑓𝑓2,                                         (2) 

   𝑑𝑑𝑉𝑉𝑟𝑟
𝑑𝑑𝑡𝑡

= 𝑔𝑔0𝐶𝐶𝐶𝐶𝐶𝐶(𝜑𝜑)𝑆𝑆𝑆𝑆𝑆𝑆(𝜑𝜑) +  (𝜔𝜔𝜔𝜔−𝑉𝑉𝑠𝑠 )2

𝑟𝑟
+𝑓𝑓3,                                                (3) 

      𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= 𝑉𝑉𝑥𝑥 ,                                                                                                (4) 

      𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= 𝑉𝑉𝑠𝑠 ,                                                                                                 (5) 

      𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= 𝑉𝑉𝑟𝑟 ,                                                                                                 (6) 
where ψ,φ – corners of a trajectory of the movement to Ox axis in the tangensalny and radial 
directions, or ψ= arctg(Vs/Vx) ,φ=  arctg(Vr/Vx), and sizes f1, f2, f3  – are accelerations from curvature 
of a trajectory of the movement ρs, ρr: 

f1 = -(Vx
2+Vs

2)Sin(ψ)/ρs -(Vx
2+Vr

2)Sin(φ)/ρr , f2 = (Vx
2+Vs

2)Cos(ψ)/ρs , f3 = (Vx
2+Vr

2)Cos(φ)/ρr , 
ρs = (1+(∂s/∂x)2)3/2/∂2s/∂x2, ρr =(1+(∂r/∂x)2)3/2/∂2r/∂x2.  
For the system of the equations (1)-(6) all entry conditions of Vx0, Vr0, Vs0 , x0, r0, s0  at initial value of 
time of movement are set t0 = 0. At the same time the unknown value of final time of the 
movement of tк liquid is determined by the known size xк after integration of the equation (4).  
For creation of an optimum profile of the blade for which liquid will give as much as possible the 
kinetic energy composed from the set kinetic energy and the acquired potential energy in the direction 
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of travel in the field of inclination on axis x from x0 to xk, , to rotary motion of the turbine will decide 
from the joint solution of a system of the equations (1)-(6) and the systems of the interfaced equations 
at use of the principle of a maximum of Pontryagin for separate trajectories on initial values of 
coordinate r from R0 to R (see Fig. 1). Sharing of systems is given in paragraphs 3 and 4. 
Currents of incompressible liquid with mobile borders are peculiar to various technological processes. 
The analysis of earlier obtained experimental and theoretical data on the movement of a layer of 
viscous liquid between the rotating cylinders and its splitting at transfer from one cylinder on another 
showed that the problem is insufficiently studied. At the solution of such tasks it is labor-consuming 
that is caused, first, by nonlinearity and complexity of the mathematical equations, secondly, need to 
define a free surface at the solution of a system of the equations in private derivatives that is 
characteristic of currents in layers and films. 
The solution of a problem of quantitative assessment of indicators of transfer of viscous 
incompressible liquid at change of width of a zone of the contacted cylinders in our opinion represents 
both practical, and scientific interest. 

3. Optimization of trajectories of the movement  
For carrying out optimization of separate trajectories we will enter functionalities from the principle of 
the maximum transition of kinetic energy of liquid to energy of rotation of the turbine. Taking into 
account minimization of kinetic energy we will consider function 

   fH = (Vx
2+(Vs - ω0R) 

2+Vr
2)/2,                                                                      (7) 

applied in Hamilton functionality by its optimization, here kinetic energy is considered from full speed 
in the motionless system of coordinates. Taking into account creation of the interfaced system of the 
differential equations the total them with the initial equations (1)-(6) will reach twelve. Let's consider 
some simplified option with creation of an expanded system of the equations for a task optimization at 
the assumption that radius at the movement on one trajectory does not change, and for this 
optimization perhaps practical application. 
At such assumption the system of the equations (1)-(6) passes into following (here functions with 
points are derivatives on time): 

    ,)()( 10 fCosCosgV x +=
•

ψψ                                                                                  (8) 

    ,)()( 20 fSinCosgV s +=
•

ψψ                                                                                 (9) 

    ,xVx =
•

                                                                                                                     (10) 

    ,sVs =
•

                                                                                                                     (11) 
for which regional conditions are set: 

t0 = 0: Vx = Vx0, Vs = Vs0, x = x0, s = s0; x = xk (t = tk).                                                   (12) 
With introduction of the interfaced functions λ1, λ2, λ3, λ4  and functions Hamilton functionality (7) will 
take a form: 

Hsx fVVfSinCosgfCosCosgH −+++++= 43202101 ))()(())()(( λλψψλψψλ .   (13) 
The interfaced system of the equations to (8)-(11) will have an appearance: 

,

)/)(/)(2)/))(()((

)/)(-/)(2)/)(()(2(

3

ss
222

02

ss
2
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sxs
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+-
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++-=
•

λ

ρψρψψψλ

ρψρψψψλλ
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                  (15) 

,03 =
•

λ                                                                                                                                         (16) 

,04 =
•

λ                                                                                                                                         (17) 

where 2/122 )( sx VVV += . 
For the equations (14)-(17) initial data λ10, λ20, λ30, λ40  are unknown, at the same time final values 

Vxk,  Vsk , sk , tk, are not set , and for short circuit of boundary conditions it is possible to use 
transversality conditions at unknown t = tk, when xk is set. As variations from functionality  𝐽𝐽(𝐻𝐻) =
∫ 𝐻𝐻𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡
𝑡𝑡0   on t, 𝑉𝑉𝑥𝑥 ,𝑉𝑉𝑠𝑠, 𝑠𝑠 are not zero, for the requirement 𝛿𝛿𝛿𝛿(𝐻𝐻)=0 conditions have to be satisfied: 

𝐻𝐻 = 0,
𝜕𝜕𝜕𝜕
𝜕𝜕𝑉𝑉𝑥̇𝑥

= 0,
𝜕𝜕𝜕𝜕
𝜕𝜕𝑉𝑉𝑠̇𝑠

= 0,
𝜕𝜕𝜕𝜕
𝜕𝜕𝑠̇𝑠

=
𝜕𝜕𝜕𝜕
𝜕𝜕𝑉𝑉𝑠𝑠

= 0. 

These conditions take a form: 
               𝐻𝐻 = 𝜆𝜆1

𝑑𝑑𝑉𝑉𝑥𝑥
𝑑𝑑𝑡𝑡

+ 𝜆𝜆2
𝑑𝑑𝑉𝑉𝑠𝑠
𝑑𝑑𝑡𝑡

+ �𝜆𝜆3 −
𝑉𝑉𝑥𝑥
2
�𝑉𝑉𝑥𝑥 + �𝜆𝜆4 −

𝑉𝑉𝑠𝑠
2

+ 𝜔𝜔𝜔𝜔�𝑉𝑉𝑠𝑠 − (𝜔𝜔𝜔𝜔)2/2 = 0, 
𝜆𝜆1 = 0, 𝜆𝜆2 = 0,  𝜆𝜆4 − 𝑉𝑉𝑠𝑠 +𝜔𝜔𝜔𝜔 = 0, 

also four missing conditions for functions 𝜆𝜆𝑖𝑖 at t are defined by t = tk :  
𝜆𝜆1 = 0, 𝜆𝜆2 = 0, �𝜆𝜆3 −

𝑉𝑉𝑥𝑥
2
�𝑉𝑉𝑥𝑥 + (𝑉𝑉𝑠𝑠)2

2
− (𝜔𝜔𝜔𝜔)2

2
= 0,  𝜆𝜆4 − 𝑉𝑉𝑠𝑠 + 𝜔𝜔𝜔𝜔 = 0.              (18) 

In addition to conditions (12) it is possible to set value sV at t = tk:  

sV =ω0R,                                                                                        (19) 

what is equivalent at which the transversality condition 𝜆𝜆2 = 0  on function  𝑉𝑉𝑠𝑠  in (18) will be 
superfluous. This case corresponds to loss by a stream circular speed components that has to 
correspond to the maximum return of kinetic energy on tangensalny a speed component on the water-

wheel blade. At the same time the value xV will remain uncertain with a necessary condition 0>xV  
for a liquid descent from the blade down a vertical for removal of liquid. 

4. The problem solution and results 
For numerical calculations of a system of the equations (8)-(11),(14)-(17) the final and differential 
algorithm with the Runge-Kutta method of the fourth order applied to a similar task of definition of a 
trajectory with optimum control [2] is used. Conditions (18) which performance is reached by separate 
iterative process are added to boundary conditions (12). 
On the basis of the carried-out calculations optimum forms of blades at the set initial radius from R0 
 to Rk turn out and the assigned altitude of a working part of the turbine  xk. The surfaces of blades with 
optimum characteristics of power return change depending on the assigned speed of rotation of the 
turbine ω0, the axial and radial size of the blade (R0, Rk, xk), the directions and sizes of speed of the 
arriving liquid (Vx0, Vs0) and also existence of the field of inclination of g0. Comparative calculations 
were carried out.  
For test calculation the following introduction data were taken: ω0 = 10 radian/s ÷ 20 radian/s, V0 
=50 m/s ÷100 m/s, R0=1 m, Rk = 2 m, xk = 2 m. The initial vector of speed (Vx0, Vs0) in the 
accompanying system of coordinates was coordinated from the tangensalny komponenty speed of the 

turbine at the radius of R equal ω0 R, i.e. .))(( 2/12
00

2
00 RVVV sx ω−+= So, at ω0 = 20 radian/s, R 

= 1.5 m, V0 = 50 m/s can put Vx0 = 40 m/s and Vs0 = 0 m/s, further for R = 2 m Vs0  = 10 m/s and 
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for R = 1 m - Vs0  =-10 m/s turns out. For these data with xk = 2 m and other sizes R (1 and 2 m) are 
carried out calculations with a step for time τ = 0.001 s. For them s(x) values for optimum trajectories 
of liquid for which at the exit the minimum absolute speeds of the movement turn out are given in 
table 1 at values of acceleration of gravity of g0 =0 and 9.81 sq.m/s, as provides a maximum of 
transformation of kinetic energy of liquid to energy of rotation of the water-wheel at the set angular 
speed ω0. 
On the discrete values of size s(x,r) given in table 1 in the radial and axial directions it is possible to 
restore the optimum surface of the blade  giving for the water-wheel the maximum return of kinetic 
and potential energy from currents of thin layers of liquid at rotation with the set angular speed which 
in this test example  ω0 = 20 radian/s. 

 
Table 1. Results of calculation of an optimum surface of the blade of the turbine (size s(x), x from 0 to 
2 m) at values of radius of R = 1 m, 1.5 m, 2 m,  angular speed ω0  = 20 radian/s, entrance speed to the 

turbine V0 = 50 m/s for two cases with acceleration of gravity (g0 = 9.81 sq.m/s and 0 sq.m/s). 

value x, м 

ω0 = 20 radian/s, V0 = 50 m/s,  
g0 = 9.81 sq.m/s 

ω0 = 20 radian/s, V0 = 50 m/s,  
g0 =0  sq.m/s 

dependence of s(x,r), 
m on  r, m 

V, m/s 
at 

R=1.5
m 

dependence of s(x,r), 
m on  r, m 

V, m/s 
at 

R=1.5
m 

1.0 1.5 2.0 1.0 1.5 2.0 

0.25 -
0.11 

0.0
5 

0.0
9 50.12 -

0.09 
0.0

7 
0.1

4 49.21 

0.50 0.0
4 

0.1
5 

0.2
2 49.37 0.0

6 
0.1

7 
0.2

6 47.53 

0.75 0.2
1 

0.3
2 

0.4
6 47.89 0.1

9 
0.3

0 
0.4

5 45.61 

1.00 0.3
5 

0.4
9 

0.7
6 45.17 0.3

3 
0.4

8 
0.7

4 43.09 

1.25 0.5
4 

0,7
3 

1.1
7 41.85 0.5

1 
0,7

1 
1.1

4 
40.38 

1.50 0.6
9 

1.1
3 

1.5
5 38.75 0.6

7 
1.1

0 
1.5

1 
37.63 

1.75 1.0
2 

1.5
8 

2.2
8 

34.27 0.9
9 

1.5
4 

2.2
3 

33.85 

2.00 1.5
0 

2.3
5 

3.2
4 30.64 1.4

5 
2.2

9 
3.1

7 30.48 

   tk, с :  
.080 

0.0
94 

0.1
19  - 0.0

84 
0.0

98 
0.1

24 - 

 
5. Conclusions 
Approach is developed for numerical definition of a difficult surface of the working blade of the 
water-wheel for a current of a thin layer of ideal liquid on the basis of power optimization by the 
principle of a maximum of Pontryagin L. S. 
Problem definition in two-dimensional and three-dimensional cases for currents of a thin layer of 
liquid on the water-wheel blade with carrying out test calculation of an optimum surface of blades of 
the water-wheel is considered. Thus, possibilities of numerical optimization at design of water-wheels 
with the improved characteristics when the maximum return of kinetic and potential energy liquid is 
possible at an economic expense in the form of thin layers of its current are shown.  
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