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Abstract. In this paper, qualitative properties of the reaction-diffusion equation with double
nonlinearity investigated. Research carried out based on a self-similar analysis of solutions.
Population models of two competing populations with double nonlinear diffusion, which
described by a nonlinear system of competing individuals, are proposed.

1.Introduction

Study of nonlinear mathematical models of physical processes always attracts both mathematicians,
theoreticians, and applied scientists, since real physical processes are nonlinear, and mathematical
methods for establishing qualitative properties still not well developed.

Nonlinear models of mathematical physics, describing phenomena and processes in a wider range of
changes in physical parameters, have a significantly greater capacity for information about these
phenomena and processes. Such types of nonlinearities often found in problems of the theory of
filtration, diffusion, thermal conductivity, magnetic hydrodynamics, biological population, oil V C
industry, etc. Such models more accurately describe the physics of the process and therefore their
studies show that new effects are associated with the nonlinearity of the process under study. Thus, the
effects of a finite propagation velocity of perturbations, localization of a solution, and various modes
of processes found.

One of the universal research methods for solving nonlinear problems is the solution comparison
apparatus, which expands the possibilities of studying the properties of solutions of nonlinear
parabolic equations. In this case, finding a suitable solution to the differential inequality is simpler
than any exact solution to the parabolic equation that describes nonlinear processes in biology,
chemistry, physics, mechanics, and sociology.

Noting the presence of sufficiently fundamental results in the field of research under consideration,
problems of a theoretical, methodological and applied nature in this new direction are still far from
their full solution. This explains the ongoing research on the development of non-linear mathematical
models in the developed countries of the world, including the USA, Japan, Spain, Germany, Great
Britain, France, Russia and Uzbekistan.

Reaction-diffusion models are usually used to represent systems whose components move
differently and whose interaction events described by the reaction members can be represented by
non-linear expressions. Common examples are aggregation [1], precipitation [2], chemical reactions
[3], flame burning [4], impulse propagation in nerves [5] and population dynamics [6,7]. In the recent
past, the possibilities of expanding studies of the reaction to convective transport [8.9], non-diffusion
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transport [10.11], and spatially nonlocal interactions [12.13] studied. Here we tighten our attention to
the diffusion reaction equation in its simplest form, i.e.

ou(x,t) o*u(x,t)
=D
ot ox?

+af (u),

where u(x,t) represents the density of species, expressed here as a dimensionless quantity, D is the

diffusion constant, and the growth rate and f (u) are nonlinearity. Further, we will assume that
f(0) = f (1) =0, which is a nonlinearity property in many systems of interest.

Equations such as (1) often lead to the propagation of wave fronts. The class of reaction members
that allows this feature is quite wide, but three general types of nonlinearity can be distinguished [14].
One type, hereinafter referred to as the first type, corresponds to a positive value f (u) for O<u <1 with
fw=u for u= 0. A well-known example is given by Fisher-Kolmogorov-Petrovsky-Piskunov equation
[15, 16], the reaction term of which is f(u)=u(1- u). Another type, hereinafter referred to as the second
type, corresponds to negative f (u) for 0 <u <b and positive f (u) for b<u<1, such as the Zel'dovich -
Frank — Kamenetsky equation [17], also referred to in the literature as the reduced Nagumo equation
[7], for which f (u)=u(u—b (1 —u) with 0 <b <1. This change in sign to nonlinearity is responsible for
what called the Allee effect in population dynamics [18]; there is a density threshold below which the
initial population is dying out. Recent work on patterning in the presence of the Allee effect can be
found in reference [13]. The third type of nonlinearity f(u) is positive for O<u<1, but non-linear in u
for small u. The reaction equations with these types of reaction terms were used, for example, in the
study of thermal combustion waves [4.19], some autocatalytic chemical reactions [20], and calcium
deposition in bone formation [21]. During thermal combustion, nonlinear growth can represent the
temperature profile [4], as well as the concentration of reacting particles [19]; in chemical reactions, it
represents the order of autocatalysis [20] during the precipitation of calcium. Crystalline clusters
growing over the entire mass of the bone in proportion to the square of its mass [21].

2. Statement of the task.
Lets consider in the domain Q={(t,x): 0<t< o, xe R }

% =V ( D™ ‘Vulk ‘p_z Vul) +kuy (1-uft),

1)
%:V(Dzulmz—l‘vljlk‘ﬂ Vu2)+ k,u, (l—uzﬂz ),

ul|t:O: Uyo (X) U2|t:0= Uy (X) 2
which describes the process of a biological population of Kolmogorov-Fisher type. The mutual
diffusion coefficients of which are respectively equal Dlug‘l‘l‘vulk‘p_szl , Dzu{”Z‘l‘Vuzk‘p_z vu,

Numerical parameters m,m,,n, p,A,/,, D,, D, — positive real numbers, V(.)—grad(.), g,5, =1,

xeR" 1>0; u, =u,(t,x)>0, u, =u,(t,x) >0 — sought solutions.
Note that the replacement in (1)
u, (t,X) =e v, (z(t),X) , U, (t,x)=e"v,(z(t),X)
will bring it to the form:

vy
ot
v

or

_ p-2 (p—2)kk (1 —
V(Dlv;nl 1‘Vv1k‘ Vv1)+ kle[ﬁlkl (p=2)k~(m, 1)k?]tvf”l,
3)

( D,y ‘Wzk ‘ p-2 v, ) + kze[ﬂzkz—( P—Z)kkz‘(mz‘l)kl]tvzﬂfrl,
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V1|1:0= 10 (%), V2|t:0:V20 (x). (4)
Ifk[(p—2)k —(m +1)]=k,[(p—2)k —(m, +1)], then by choosing
Qllm—k; +(p-2)kk It pl(m: Dk +(p-2)kk, I
z(t)

T (m —D)k, +(p—2)kk, (M, —Dk, +(p—2)kk,

we obtain the following system of equations:

M _ V(Dlvg‘l‘1 ‘Vvlk ‘ i Vvl) +a, (HvA,
o ©)
P _ v(Dzvl'“f1 ‘va ‘p_z Vv, ) +a, (v,
or
where a, =k, ((p—2)kk, + (m, ~ D)k, )", b = PP~ 200k (M “Dk,
(p - 2)kk1 + (ml _1)k2
a, =K, ((m, =Dk, + (p - 2)kk, )", b, = (P~ (p =2k, — (m, D)k,
(mz _1)k1 + (p - 2)kk2
If b, =0, and a(t)=const,i=12, then:
N _ V( DV (Vv ‘p_z Vvl) +aVv/i,
o ©
6_2 - V( D,V | Vv ‘ Vv, ) +a,vit,
T

First, we find a solution to the system of ordinary differential equations

dv;

_ T A+l
—L——av ,
dr a,Vy

dv, —
—d; =-a,7,»".

In the form
(D) = (), 7y =, G(0) = (O, 7y =
B B
For the caseb, =0, and a,(t) =const,i=1,2. And in the case b. =0, and a (t) =const,i=12 we find
a solution to the system of ordinary differential equations
dv;

dT =—a11-b1\71ﬂ1+1,
% =—a, %V~
T
In the form
_ _ +1 _ _ b, +1
V,(7)=(z(1))", 71=b17, V() =), y, =—4—.
1 2

Then the solution of system (5) is sought as

Vi (6, X) =V (2)w, (2 (1), ),

o (7)
Vo (6, X) =V, (2)w, (7 (), X),
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and 7 =z(t) is choosen as

T + 1-[71 (p=2)k+7, (M -1)] ]
(L) , Af 1-[y,(p—2)k +y,(m, —1)] =0,
1-[r.(p—2)k +y,(m, -1)]

() = [T QT Ot = | In(T +1), it 1-[1,(p—2)k +7,(m, ~1)] =0,
0 (T +17), if p=2u m =1

if 7 (p=2)+7,(M -1 =7y,(p-2)+,(m,-1).
Then for w, (7, (|x]), i=1,2 get the system of equations:

% = V( Dw ‘lek ‘p_z le) +y, (W, — WA,
avi (8)
(D W Vg ‘ vw )+¢//2(w — w2z,
or
where
1 .
v If 1-[n(p-2)k+y,(m -1) >0,
y, =1 U= (p=2)k+y,(m -1z ' o
ylc{(y[n(p—z)k+7z(m71)]) , lf 1_ [7/1 (p _ 2)k n ]/2 (ml _1) _ 0’
1 .
v i 1-[y(p-2)+ (M, -1)]>0,
=1 A-0.(p=2)+y,(m, -D])z i o
7o B, if 1-172(p =2+ 13(m, ~1)] =0.
If 1-[y.(p—-2)k +y,(m, —1) =0, self-similar solution of system (8)
W (z(t).X) = f,(&), =12, E=x/[r(®)]"". )

Then substituting (9) into (8) with respect to f (&) get a system of self-similar equations

p-

o d o em |dEE &df,
N _(§N lfzm1 H= ) /Lﬁfl(l_ flﬁi):O,
d d d pd
d(f dfé a 5 df o
1-N Y N1 mz—l_zk é: _fhy—
5 dg(é f; E dg) 0de +u, 1,(1-1,2)=0.
where
1 1

= d u, =

k(P -2+ 7 m DD 2T Wk (p—2) + 71(m, D)

System (10) has an approxir_nate solution of the form B
fi=A@-¢&")." y=p/(p-1), f,=B@@-¢&").",
where A and B are constant and
__(p-Dik(p—-2)—(m, —1)] n = (p—Dik(p-2)—(m, -]
[k(p-2)] ~(m,-D(m, -1~ [k(p-2)]" ~(m, ~1)(m, 1)

3. Build an upper solution
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Let's build the upper solution for the system (10)
Note that function f,(&), f,(&) possess properties

g7 o aagn (k)" yn,g T e C(0,0),
2 dg d§ 1
. dfk df e . =
f,™ ! E d.f —A™1gk(P-2) 1(;/n k) 7n2§f2 € C(0,),
due to the fact that (y -1)(p-1) =1, y:ﬁ’
and
_ 2 _
1-N d N-1¢ m-1 dflk " d k(p-2)+lpm -1 (p— 2) 3 df
= fmt—L | L =A™ (0 Nf, + &=L |,
£ dé(é " ae | (rmd)™ ym| N+ 12
_2 —
1-N d N-1Fm,-1 dfzk " dfz m, -1 k(p-2)+1 (p-2) 3 df
— £t =2 22 =AM IBKP A (yn k n,| Nf, + £—2|.
g df[§ 1 de de (7 > ) yh, 2 §d§

Choose A and B from the system of nonlinear algebraic equations
Ak(p72)+lei’1 (7n1k)(p*2) 7/nl :1/ p,
_Amz—lBk(p—2)+1 (}/nzk)(piz) n, -1/ D,

(p-1)(K(p-2)+1)
( n, ) k(p-2)+D?~(my-1)(m, 1) 1

! 1

(p-1)(k(p-2)+1)®
[n (k(p-2)+1)? ~(m, ~1)(m, 1)
1

(p(ynk)"?yn

Then function f_1 f_2 are Zeldovich-Kompaneets-type solutions for system (1) and in the field of
& < (a)®™' they satisfy the system of equations

é:lfN i{lef_zml

51,[\] d LgN lflmz—l

df;*
dg

dff

p- —
p

(11)

dg

in the classical sense.
Theorem 1. Let u,(0,x) <u,, (0,x), xe R. Then,

ul(t! X) Su, (t’ X) = ekltf_l(f)a
U, (t,x) <uy, (t,x) = e f_z (),
where f,(&), f,(£) and z(t) — functions defined above.

Proof. The top solution to problem (1), (2) will be sought in the form (7)
By direct verification, you can verify that

&=x/[r®O"



AMSD-2019 IOP Publishing
Journal of Physics: Conference Series 1441 (2020) 012151  doi:10.1088/1742-6596/1441/1/012151

fi=A@-&")." y=p/(p-1, f,=B(a-¢"),",
are a generalized solution of equation (11)
The proof of the theorem is based on the decision comparison theorem [14,15].
Due to the fact that

e |dE ] dF, am : -
fN 1 ) 11 i d_(;:_Ak(p 2) 1Bm1 1(yn1k)(p 2) 7/n1«fN fl,
A Em,— df_kp_zdf_ m, — _2)+ (p-2) —
lelzlé d_éz_AZlBk(p 2)1(7n2k)p27n2§Nf2,
function f,(&), f,(£) and threads have the following smoothness property
—x p-2 —
0< f_l(f)’ gN-lf_Zml—l dfl %:_Ak(p—2)+1Bm1—1(ynlk)(p—Z) 7n1§N f_l eC(0,00),
dg| d¢
— -2 —
0< T N-1Fm,-1 dfzk ' %__AmrlBk(p-z)ﬂ k (p-2) NF eC(0
<f,(&), &1 de dgg— (7”2 ) g f, e (’OO)-

Choose A and B to satisfy the inequalities
Ak(p*2)+lelfl (}/nlk)(p_Z) ynl > 1/ p1 (12)
AMe-1gk(p-2)41 (}/nzk)(pi) n, >1/ p.

Then due to the fact that (11)
f,>0, f,>06 Ce(0,),

from (12) we have

dg

dé

dé] pdé

P2 — -
&}ﬂw

P2 - =
g i{g“‘lf_zmrl £J+£ﬂ<o

d —
N Y N Fmel <
o ool ) £

& €(0,).

It follows that u, (t,x) limited to all t>0 and thereby established the global solvability of problem (1),
().

Theorem 1 proved.

Case n,>0,n, >0, q>0 (slow diffusion). Applying the method [1] to solve equation (10) we obtain
the following functions

6,()=@-%).", 6,(&)=@-¢),"

4. Numerical experiment
In the domain Q ={(t,x):t<[0,T], xe[a,b]} system of quasilinear parabolic equations is considered

ou, 0 L leuk " au

8t1 zéx[[)lu?1 1 6; 6)(1]+k1(t)u1(1_ulﬂl)’

ou, 0 aut|” au &
_atz =—8X[Dzulm - _6)(2 —a)fJ+ k, (t)u, (1—U52 )
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with initial

u,(0,x) =u,(x)>0, xela,b], (14)

u,(0,x) =u,,(x)=0, xela,b],
and boundary condition

u(t,a)=¢ (t)=0, te[0,T],

u (t,b)=¢,(t)>0, te[0,T],

()=, 20, te[0T] (15)

u,(t,a)=w,(t)=0, te[0,T],
u,(t,b)=w,(t)>0, te[0,T].

Here m, m,, B, B,, p — positive constans, u,,(x) andu,,(x)— initial distribution for the first
and second components respectively, ¢ (t)— value of the first component on the left border, ¢, (t) -
value of the first component on the right border, w,(t) and y,(t) — respectively for the second

component.
We construct a uniform grid in t and x

o, ={t; = jr, j=01..,mrm=T;x =a+ih,i=01..,nh =%}

and approximate problem (13) - (15) by the balance method (integro-interpolation method)

j+ _j _j+1 _ _j+l _j+l _ _j+l ) . B
yi r yl zﬁ[ah-l yHl h yl _ai yl h yl_l ]-’- I(lJiJrlyiH:L (]‘_(yiJ )ﬁ )'

j+l j j+l j+l j+l j+l
Wt —w, 1( whit—wt W —wl
i+1 i

(16)
i i+1 - —b, - i j+k2ji+lwij+l(l_(wij+l)ﬁz

T h

~—

where a; and b, calculated in ways

o) (1)

a,(y)=0.5D, | (w,) ‘ -

p-2

)

p-2

+ ( YijJrl )mz—l

j+l j+l p-2
(W), = ("),
i i-1

"

1 (Wk )ij:ll B (Wk )ihl

h

b, (W) =0.5D, | (/)™

i+1

The system of circuits (16) is nonlinear with respect to the function y'** and w'**. To find its
solution, the iteration method is used. The iterative process constructed as follows:

s+1i+1 i s+l g1t s+l sp1iHl

Yi _Yij_l S Yia— Y S Y =Y j+15+1j+1 iV
—T _F di+1 h —di h +k1i yi (1_(y| ) )’
s+1d+l i s+l sqal+l s+1d+l spad+l i1 (17)
i =W s i1 — Wi S Wi — Wi jag SHLI is1\2
Wi —W :i bi Wia = W —bi W Wi +k21i+1 Wi (1_(Wi“l)ﬂ )
T h h h
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(s+1) 141 (s+1)1+L
Regarding the function y and w  difference schemes (17) turns out to be linear. The functions
(OTACH (0)i+ :
y and w of the previous time step are taken as the initial iteration: y =y’ and w =w’. For the
convergence of the iteration, require the condition
(s+1) (s)
Yi =i

(s+1)  (s)

max Wo—W[<e.
1

<¢ and max
I

To solve the linear circuit (17), with conditions (14) - (15) on the grid, the sweep method is used.
The iterative process constructed according to Newton's method. (Table 1).

Below are the results of numerical experiments for various values of the parameters included in the
equation in the two-dimensional case:

te [Oitmax]’ X € [_leax’ximax]; X, e[_XZmax'XZmax] .

In all cases considered, with the proposed approach, the number of iterations on average did not
exceed six for a given accuracy eps.

Table 1 shows the number of iterations for various values of the parameters included in the
equation.

Table 1
eps m, m, p B, B, k ,IAverage
t
107 4,1 4,0 4.4 1 1 0,5 3
107 5,7 5,4 3 2 2 3 4
107 3,7 33 4 2 0,5 0,1 3
108 2,5 2,4 3,1 2 0,5 0,5 4
1072 51 53 3,5 3 0,333 |15 3
10°° 3 3,2 3 3 3 1 6
1073 5 5,2 3 10 5 2 2
107 2,7 2,5 54 3 2 2 6
102 3,7 35 7,4 2 3 3 3
102 3 3,5 7 14 7 2 5
Created program allows visually monitoring the evolution of the process for various values of
parameters and data (Table 2-5).
Table 2
Fast diffusion. As an initial approximation, we must take:
- n — n 1 1
UG =(T+7O) 7 (@+ &), L) =T +e@) " @+&)" , ==, =, r=—tr,
ﬁl ﬂz p -1
= (p—Dlk(p-2)—(m 1] ,i=12, q=k’(p-2)*—-(m, —1)(m, 1) . Parameter values should be

q
n >0,n,>0,q<0,
(T + 7) L (p-2keers(m2)

1-[n(p-2)k+y,(m -]’

1-[n(p—2)k +y,(m -1)]=0: T(t) =
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Parameter values

t_ =05 X, =1.229,
X, =1.229

t . =10, x,, =2972,
Xy = 2.972

trax =15, X ey = 3.488,
Xomax = 3488

m=41,m,=4.0, p=44
eps =10"°

n, =0.822>0
n,=0.779>0
q=-7.86<0 B =1 S, =1
k=05

m =5.7,m,=54, p=3
eps =10"°

n, =0.291>0
n,=0.24>0
q=-11.68<0

B=2 B,=2

k=3

m =37,m,=33, p=4
eps =10"°

n,=1.216>0

n, =1.021>0
g=-6.17<0

B=2 p,=05
k=0.1

m=25m,=24p=31
eps =10"°

n=111>0 n,=0.993>0
q=-1.797<0

B=2 p,=05
k=05

m =51m,=53, p=35
eps =107

n, =0.368>0

n, =0.408> 0
q=-12.567<0

B,=3, ,=0333k=15
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Table 3

Fast diffusion. As an initial approximation, we must take:

00 = (T +20) @+ &), n ) =T +(0) * @+ &) f==, =, =P
B B, p-1

(p—Dik(p —q2) —(m; —1)] ,i=12, q=k*(p-2)°-(m,—1)(m,-1) . Parameter values

should be n, >0,n,>0,q<0,

1-[,(p -2k + 7, (m, D] =0: z(t) =In(t).

n. =

Parameter values to =0.5, X =1.229,

to =15, Xiax = 3.488,
X =3.488

2 max

Xy max =1.229

2max

m=3m,=32 p=3
eps =107

n, =0.588>0

n, =0.706 >0
q=-3.4<0

B=3 p=3

k=1

m=5m,=52, p=3
eps =10"°
n,=0.313>0

n, =0.344 >0
q=-12.8<0

B =10, B, =5

k=2

Table 4

Slow diffusion. As an initial approximation should be:
_ _ n 1 1
L) =T +2) 7 @-&).%, L, =T +e®) “@-&)." p=—, ==, y=—t—,
,31 :32 p_l
- (EDCBM 12, q-k(p-2 ~(m ~2(m, D).
Parameter values should be n, >0,n, >0,q>0,
(T +T)1f[y1(p72)k+7z(ﬂhfl)]

1-[n(p—2)k +y,(m -1)] '

1-[r(p=-2)k +y,(m -1)]=0: r(t)=
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Parameter Values oo = 0.5, Xy =1.229, toax =10, X =2.972, o =15, X e = 3-488,
Xomax =1.229 Xmax = 2.972 Xy = 3.488

m=27,m,=25, p=54
eps =107

n, =0.514>0
n,=0.534>0
q=43.69>0

B =3 p,=2

k=2

m=37,m,=35 p=74
eps =10"°

n,=0.338>0

n, =0.343>0
q=255.69>0

B=2 p,=3

k=3

Table 5

Slow diffusion. As an initial approximation should be:
1 1 p

U (x, ) = (T +7() " (@=&").", u(xt)=(T +7(t) " (@-£")." W= T TR

n = (p_l)[k(p_z)_(m| _1)] , i :1,2' q =k2(p—2)2 —(ml—l)(mz _1) .
q
Parameter values should be n, >0,n, >0,9>0,

1-[n(p=2)k+y,(m —-1)]=0: z(t) =In(t) .

Parameter t,. =05, X, =1.229,t =10, X, =2.977 t =15, X, =3.488,
Values Xoprae =1.229 Xy = 2.972 Xopra = 3488

2max

m=3,m,=35 p=5

eps =107
n=1>0
n,=0.5>0
g=4>0

B =5 p,=5
k=1
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m=3m,=35 p=7

eps =10

n, =0.505>0

n,=0.474>0

g=95>0

B =14, p, =17
k=2

5. Conclusion

Methods developed for obtaining self-similar and approximately self-similar solutions for a non-
linear model of multicomponent competing biological population systems based on the non-linear
splitting algorithm. Methods developed for constructing upper solutions necessary for the computer
calculation of the problems of multicomponent competing problems of the biological population,
corresponding initial approximations are proposed that provide calculations with the necessary
accuracy, depending on the values of the numerical parameters using iterative methods for the fast and
accurate numerical solution of the considered nonlinear problems of Kolmogorov-Fisher type
biological population. Computational schemes, algorithms, and a software package developed that
perform numerical modeling of nonlinear mathematical models; the results of a computational
experiment have shown the effectiveness of the proposed methods.
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