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Abstract. The article investigates a multi-element disk sensor of the components of the low-
frequency electric field intensity vector, manufactured using new technologies. The sensor is 
suitable for measuring the intensity of electric fields adversely affecting a person. In this 
regard, the problem solved in the article is relevant. The results of the study made it possible to 
create such a sensor, evaluate its metrological characteristics and establish their dependence on 
the degree of homogeneity of the electric field. The established relationship between the sensor 
error and the degree of heterogeneity of the electric field makes it possible to determine the 
spatial range of measurement from a given error or to establish the sensor error from a given 
spatial range of measurement. For example, a sensor error of 3% corresponds to the spatial 
measurement range a, determined by the distance to the field source from 0 R to 5⋅R (a ≤ 0.2), 
where R is the radius of the disk of the base of the sensor. 

1.  Introduction 
To control the indicators of electric fields (EF), there are a number of measuring instruments [1-3], 
directly designed for these purposes. However, individual measuring instruments have significant 
mass-dimensional characteristics and at the right time are not at hand. In this regard, small-sized 
voltage sensors are required, manufactured using new technologies and able to be integrated into 
devices that are always at hand, such as smartphones, calculators and others. 

The development of measuring instruments for studying EF is carried out both in Russia [4–8] and 
abroad [9, 10]. This work is devoted to the study of a multi-electrode sensor of the components of the 
electric field of the electric field of tension, made in the form of a disk of conductive material, 
structurally and technologically suitable for manufacturing by nanotechnology methods, and with 
guaranteed metrological characteristics. 

2.  Formulation of the problem  
To research and consider the possibility of creating a flat multi-element sensor of the components of 
the electric field tension. To do this, it is necessary to solve the following tasks: 

1) justify the choice of the shape of the base of the sensor, ensuring its integration into known 
gadgets; 

2) to evaluate the error of the sensor in heterogeneous EF. 
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3.  Theory  
The construction of the sensor under study is based on the phenomenon of electrostatic induction and, 
formulated by the authors, the method of three secant mutually perpendicular planes. The essence of 
the method is reduced to conditionally dividing the body surface of a regular geometric shape by three 
mutually perpendicular secant planes into eight congruent surface sections. If each such surface part of 
the body is made of a conductive material (sprayed, glued, etched, etc.), then these areas can serve as 
sensitive elements of the sensor of the components of the electric field of the electric field. To ensure 
the symmetry of the sensor and the equality of sensitivities for each component of the electric field of 
the voltage vector, it is more expedient to use the body of the correct geometric shapes as the basis of 
the sensor (sphere [10, 11], cube [12, 13], cylinder [14], disk [15], square plate [sixteen]). For the first 
time, this method, without an application for its formulation, was used in [17] and further in [18]. 

According to the objectives, further research will be aimed at building and developing a sensor for 
the components of the electric field of the electric field of tension convenient for embedding into 
portable gadgets. In this regard, it is more expedient to put a conductive plate in the shape of a square 
as the basis for constructing the sensor. 

According to the method of three mutually perpendicular secant planes, we divide the square plate 
into eight parts, as shown in Fig. 1a. 

 

The plate lying at the base of the sensor can be either conductive or dielectric. The formation of the 
sensor's sensitive elements in the selected eight sections of the base of the plate (four sections on the 
upper base and four on the lower) can be performed by spraying, gluing, etching or other methods. If 
the plate is dielectric, then sensitive elements of a conductive material can be sprayed or glued onto it. 
If the dielectric plate with already applied conductive bases (foil fiberglass), then the sensitive 
elements can be etched. And finally, if the plate is conductive, then a thin dielectric layer with a 
thickness of about 10–20 μm is first deposited by spraying on its surface, and then a thin layer of 
conductive material. Thus formed, eight conducting sensors of the sensor are shown in Fig. 1b. As a 
result of the actions taken, a multi-element sensor of the components of the electric field of the electric 
field of tension is formed. The calculated constructive model of a multi-electrode sensor located in a 
homogeneous electric field with an indication of its geometric parameters is presented in Fig. 2. 

The sensor consists of a conductive plate 1 having a circle shape in cross section, four pairs of 
conductive sensitive elements, of which four elements 2–5 are located on one base and four elements 
6–9 are located on another base of the plate. Sensitive elements are distant from each other at a 

a)        b) 
 

Figure 1. The division of the body of the disk by three secant planes into eight congruent parts 
 

xoy 

xoz 

     z 
   o 
 y 
 

xoy 

xoz 

     z 
   o 
 y 
 



AMSD-2019

Journal of Physics: Conference Series 1441 (2020) 012037

IOP Publishing

doi:10.1088/1742-6596/1441/1/012037

3

 
 
 
 
 
 

distance of 2h and have no electrical connection between themselves and the base plate having a 

thickness of 2d. 
 
They are made of a conductive material of small thickness d, and have the form of a part of a 

quarter of a disk of radius R, the sides of which are parallel to the sides of the disk base with a radius. 
Thus, a double voltage sensor is formed, the middle point of which will be a conductive base plate. 

In EF, this plate will take the potential of the reference point [14], i.e. that point in space in which the 
sensor is placed. 

For further calculations, we accept the following assumptions. Sensitive elements 2–9 of the sensor 
(Fig. 2) are made in the form of a thin conductive layer with a thickness of d << d (d are from 
nanometers to microns), which has the same size and shape as a part of a quarter of a circle. Sensitive 
elements are isolated from the conducting surface of the plate by a dielectric layer with a thickness of ε 
<< d (ε is nanometers). 

When a conductive plate is introduced into the electric field, electric charges are induced on its 
surface, which are proportional to the electric field strength [9]. To remove these charges from the 
necessary parts of the conductive surface of the plate, sensitive elements are used, which should be 
nothing more than the surface of the plate. For this, it is necessary to ensure, firstly, the isolation of the 
sensitive elements from the conductive plate, and, secondly, the equality of the potentials of the 
sensitive elements and the conductive plate. This is possible if the assumptions d << h and ε << d are 
accepted. Under these conditions (and additional measures taken), the potentials of the sensitive 
elements 2–9 can be considered equal to the potential of the conductive plate 1, and the sensitive 
elements - the surface of the plate. Thus, the sensor, in the General case, is something other than a flat 
conductive plate with square bases. 

Consider the operation of the described multi-element sensor of the electric field tension in the 
boundary fields and evaluate its error. The boundary fields will be considered homogeneous and 
inhomogeneous EF. Conventionally, a homogeneous field is a field created between infinitely long 
conductive climbing plates, in which the sensor is located from the plates at distances much larger 
than its dimensions. We will consider this field as a reference and the sensor error in this field will be 
considered normalized. As an inhomogeneous field, we will consider a field created by a point source 
and having a high degree of heterogeneity. In this field, we estimate the error of the sensor caused by 
the heterogeneity of the EF. 

Multi-electrode sensor in a uniform field. The sensor’s work based on the consideration of a 
conducting disk of thickness d and radius R (d << R) placed in a homogeneous quasistatic EF with 

Figure 2. Calculation model of a multielectrode disk sensor in a homogeneous EF 
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intensity E = Em⋅sinωt was considered in [16]. Using the results of this work, we will conduct research 
on a multi-element sensor. 

When the sensor is introduced into the electric field on its conductive sensitive elements 2–9, 
electric charges are induced whose magnitude is proportional to the measured electric field voltage E. 

Electric charges on the sensing elements 2–9 of the sensor will be determined by the expression 
∫∫ ⋅σ=
σ

dSQ ,                                              (1) 

Where Оn EЕ ⋅−=−= 00 22 εεεεσ  is the surface charge density; EО is the intensity of a uniform electric 
field; S is the area of the sensing element. 

By alternately directing the vector of the electric field intensity to the coordinate axes of the sensor 
x, y, and z, we find the electric charges induced by the electric field on parts of the plate surface, 
limited by the sizes of the sensitive elements 2–9. 

If we direct the vector of the electric field voltage along the z axis of the sensor, then according to 
expression (1), the electric charges induced by the electric field on a diametrically located pair of 
sensitive elements 2 and 6 will be determined 

E
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where QО is the charge induced by a homogeneous electron beam. 
Denote the relation b

R
h
=  then expression (2) takes the form 

( ) EbRQО ⋅













 −−−±=

4
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06,2
πεε .                                (3) 

Changing the boundaries of integration in expression (2), we find electric charges on other pairs of 
sensitive elements, such as 3 and 7, 4 and 8, 5 and 9. They will also be determined by expressions (2) 
and (3). Since, under the action of EP, positive charges move in the direction, and negative charges 
against the direction of the field, the minus sign in expression (2) will correspond to the charges on the 
sensitive elements 2, 3, 4 and 5, and the plus sign will correspond to the charges on the sensitive 
elements 6, 7 , 8 and 9. 

In the direction of the electric field of the electric field along the x and y axes of the sensor, electric 
charges on diametrically arranged pairs of sensing elements, for the x axis: 2 and 5, 3 and 4, 6 and 9, 7 
and 8, and for the y axis: 5 and 4, 3 and 3, 8 and 8, 6 and 7 will also be defined by expressions (2) and 
(3). 

If we combine the sensitive elements of 2–9 multi-element sensors (Fig. 2) into opposite pairs of 
groups, each of which consists of four elements: along the X axis - 2, 3, 6, 7 and 4, 5, 8, 9; along the Y 
axis - 2, 5, 6, 9 and 3, 4, 7, 8; along the Z axis - 2, 3, 4, 5 and 6, 7, 8, 9, separated by the coordinate 
planes XOZ, YOZ and XOY, a double sensor is formed of the components of the electric field of the 
electric field of the electric field. With that said, the total charges on the groups of sensitive elements 
will be respectively equal to: 
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first sensor 

( ) yО EbRQ ⋅













 −−−−=

4
118 22

09,6,5,2
πεε ;                                   (6)  

second sensor 

( ) yО EbRQ ⋅













 −−−+=

4
118 22

08,7,4,3
πεε ;                                 (7) 
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If you use a dual sensor in differential switching, then for the differential charges of the sensor 
along the x, y, and z axes, we can write 

( ) xООx
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From the expressions (10-12) it follows that the sensitivities of the formed EF voltage sensor along 
the three coordinate axes x, y, and z in a homogeneous field are the same and depend only on the 
radius R of the conducting disk of the sensor base and parameter b 

( ) 













 −−−=

4
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Since the size of the sensor and its parameters are unchanged, the sensitivity of the sensor, when it 
works in a uniform field, remains constant. Consequently, charges induced on sensitive elements 
proportional to the electric field strength can be a measure of the intensity of this field. 

Multi-element sensor in an inhomogeneous field of a point source. The operation of the sensor in 
the electric field of a point source is based on the consideration of a conductive plate located in the 
field of a point positive electric charge q (Fig. 3) 
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We save all the geometric relationships of the sensor shown in Fig. 2 and used in considering its 
interaction with a uniform field. Using the above method, we find the electric charges induced on the 
sensitive elements of the sensor by the field of point charge q. The electric charges on the sensing 
elements 2–9 of the sensor will be determined by the expression (1), in which the surface charge 
density σ, is determined by the expression [16] 
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where ЕН is the inhomogeneous field strength. 
By alternately directing the vector of the electric field intensity to the coordinate axes of the sensor 

x, y, and z, we find the electric charges induced by the electric field on parts of the plate surface, 
limited by the sizes of the sensitive elements 2–9. 

When the point source is directed along the z axis, the electric charges induced by the electron 
beam on a diametrically located pair of sensitive elements 2 and 6 are determined by the expression 
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where QН is the charge induced by an inhomogeneous field; 
D
Ra = , 

R
hb = , 

D
hba =⋅  – accepted 

normalization. 
Similarly, we find electric charges on other pairs of sensitive elements, such as 3 and 7, 4 and 8, 5 

and 9. They will also be determined by expression (15). In expression (15), the minus sign 

Figure 3. Multi-electrode sensor in a homogeneous electric field 
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corresponds to charges on the sensitive elements 2, 3, 4, and 5, and the plus sign corresponds to 
charges on the sensitive elements 6, 7, 8, and 9. 

When the point charge is directed along the x and y axes of the sensor, electric charges on 
diametrically arranged pairs of sensing elements, for the x axis: 2 and 5, 3 and 4, 6 and 9, 7 and 8, and 
for the y axis: 5 and 4, 3 and 3, 8 and 8, 6 and 7 will also be determined by the expression (15). 

Combining the sensitive elements of 2–9 multi-element sensors in pairs in groups along the x, y, 
and z coordinate axes, and forming a double sensor, as was done when considering the sensor in a 
uniform field, the total charges on each pair of groups of sensitive elements will be respectively equal 
to: 
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If you use a dual sensor in differential switching, then for the differential charges of the sensor along 
the x, y, and z axes, we can write 
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From the expressions (22-24) it follows that the differential sensitivity of the double voltage sensor of 
the electric field along the three coordinate axes x, y and z is the same and is determined by the 
expression 
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According to (25), the differential sensitivity of the sensor located in an inhomogeneous field does not 
remain constant, but depends both on the design parameters R and b of the sensor itself, and on the 
parameters of the interacting medium, namely, on the distance to the field source a. 
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4.  Results 
Let us estimate the error of the sensor caused by the inhomogeneity of the field. To do this, we 
compare the sensitivity of the sensor located in uniform (13) and inhomogeneous (25) fields. We take 
the sensitivity of the sensor in a homogeneous field as a measure corresponding to a homogeneous 
field. Then, with respect to it, the desired error of the sensor is determined by the expression 
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        (26) 

We analyze and evaluate the error (26) of the sensor from the heterogeneity of the electron beam. 
To do this, we take into account the previously introduced normalizations a = R / D, b = h / R, where 
R is the radius of the disk of the base of the sensor; D is the distance from the center of the sensor to 
the source of the field. The normalizing parameter a determines the degree of field heterogeneity and 
characterizes the proximity of the sensor to the field source. Thus, with the distance of the sensor from 
the source of the electron beam (a  → 0), the field near the vicinity of the sensor approaches a uniform 
field. The most acceptable range of variation of the relative parameter a is from 0 to 1. In this case, the 
field varies from a uniform a = 0 to a field with 100% heterogeneity, a = 1. The normalizing parameter 
b is responsible for the design dimensions of the sensitive elements, the optimization of the sizes of 
which will allow to reduce the sensor error from field heterogeneity to the desired minimum. 

We calculate and plot the error graphs (26) against the field inhomogeneity depending on the 
parameters a and b. To do this, we will use the mathematical editor MathCAD 14. The graph of the 
error from the inhomogeneity of the electromagnetism for a sensor with sensitive elements in the form 
of parts of a circle spaced 2h apart from each other, depending on the relative distance a and various 
values of the parameter b = h / R, is presented in Fig. 4. 

Analysis Fig. 4 shows that the error of the multielectrode sensor in the entire spatial measurement 
range a = R / D is negative. Moreover, the error of the sensor is minimal in a given spatial range of 
measurement a, if its sensitive elements are made in the form of a quarter circle, that is, at h = 0. For 
this case, the error of the sensor from the heterogeneity of the electric field d = 3% limits the spatial 
range of the measurement to a ≤ 0.2. This corresponds to a distance from the source of the field D 
equal to approximately five radii R of the disk of the sensor base (D ≈ 5R) 

In comparison with the sensor used in [19], the sensor considered in the article has the best 
metrological characteristics. 
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5.  Conclusions 
The results of the study allow us to draw the following conclusions: 

1) the method of three secant mutually perpendicular planes is formulated, which allows to obtain 
sensors of the components of the electric field of the electric field; 

2) the possibility of creating a flat multi-element sensor of the components of the electric field of 
the electric field using the method of three secant mutually perpendicular planes is confirmed; 

3) it was found that a multi-element sensor of electric field tension has a smaller error from the 
heterogeneity of electric field at the maximum possible spatial range of measurement with sensitive 
elements made in the form of a quarter circle; 

4) it was found that the multi-element sensor of electric field tension has average metrological 
characteristics (error up to 3% with a spatial range of a≈0.2); 

5) a restriction was established on the spatial range a of the sensor measurement by the limiting 
distance D to the field source with the given sensor error d from the field inhomogeneity. For example, 
at d = 3%, the spatial range is a ≈ 0.2, then D≈ 5R, where R is the radius of the disk of the base of the 
sensor, and already at d = 10%, a ≈ 0.38, and D≈ 2.6⋅R. 

6) the sensor generates a signal proportional to the underestimated value of the charge induced by 
the inhomogeneous field, which will lead to a biased assessment of the effect of the electric field 
intensity on technical and biological objects. 

7) the sensor has a layered structure representing the alternation of dielectric and conductive layers, 
the thickness of which can be tens of nanometers. This allows the sensor to be manufactured using 
nanotechnology methods. 

In conclusion, it can be noted that the metrological characteristics of the sensor can be improved by 
solving the problem of optimizing the size of the sensitive elements of the sensor. Further research 
will be conducted in this direction. 
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Figure 4. The error of the sensor from field inhomogeneity depending 
from the relative distance a and various values of the parameter b = h/R 

 

 
а 

Comparative distance 

 b=0 
b=0.1 
b=0.2 
b=0.3 

 
 

 
П

ог
ре

ш
но

ст
ь 

да
тч

ик
а 

 d
, %

 
 

Se
ns

or
 e

rr
or

 



AMSD-2019

Journal of Physics: Conference Series 1441 (2020) 012037

IOP Publishing

doi:10.1088/1742-6596/1441/1/012037

11

 
 
 
 
 
 

[2] The meter of the electrostatic field parameters IPEP-1. Operation manual UShAI.411153.002 
OM. URL: http://www.priborelektro.ru/price/IPEP-1.php4?deviceid=854 (accessed date: 
01.03.2019). 

[3] Measuring instrument of parameters of electric and magnetic fields BE-meter-AT-003 - 3D. 
Operation manual BVEK43 1440.07 RE. URL: http://ciklon-pribor.ru (accessed date: 
01.03.2019). 

[4] Yurkevich V M and Kondratiev B L 1980 On the method of measuring the intensity and other 
characteristics of the electric field  (Measuring technique No 5)  pp 57–59 

[5] Chugunov S A and Yurkevich V M 1981 Extension of the zone of measurement of electric field 
parameters when applying the probe method (Measuring technique No 1)  pp 33–35 

[6] Klimashevsky I P, Kondratiev B L, Poletaev V A and Yurkevich V M 1983 Meter of the 
electric field vector of high-voltage equipment  (Measuring technique No 1) pp 48–49 

[7] Biryukov S V, Kaidanov F G, Kats R A and Lozhnikov V Ya 1986 Calculation and 
measurement of fields on EHV and UHV substations and near transmission lines (CIGRE-
86. International Conference on Large High Voltage Electric Systems, Report 36-06, Session 
27th August - 4th September, Paris)  p 5 

[8] Biryukov S V 2000 Theory and practice of constructing electric induction sensors of potential 
and electric field strength (Omsk Scientific Bulletin  Issue 11) p 89–93 

[9] Berent G N and Place I R 1971 Electric field sensor (Instruments for scientific research No 6) p. 
141–142. 

[10] Misakyan M, Kotter F R and Kaler R L 1978 Miniature electric field sensor (Instruments for 
scientific research No 7) pp 52–55. 

[11] Kamra A K 1983 Spherical field meter for measurement of the electric field vector (Review of 
Scientific Instruments vol 54(10) p 1401-1406. DOI: 10.1063 / 1.1137255 

[12] Pittman E P and Stanford R A 1972 Electric field sensor (US patent no. 3,641,427; filed 
September 24th, 1969; published February 08th) 

[13] Gatman S 1968 Dual electric field meter with protection (Instruments for scientific research No 
1) pp 45-49. 

[14] Shchiglovsky K B and Axelrod V S 1978 Devices for measuring the parameters of the 
electrostatic field and their calibration (Measuring technique No 5) pp 63-65. 

[15] Biryukov S V and Korolyova M A 2017 Electroinduction disk sensor of electric field strength 
(IOP Conf. Series: Journal of Physics: Conf Series vol 944) p 012017-1 – 012017-8. DOI: 
10.1088 / 1742-6596 / 944/1/012017 

[16] Biryukov S V and Shchapova L V 2017 The electric field intensity sensor in the form of a flat 
conductive plate in the form of a square (Omsk Scientific Bulletin No 5 (155) p 126-130. 

[17] Khakhamov I V 1982 A device for measuring the components of an electric field (USSR A. p. 
920569, MKI G 01R 29/08. / No. 2954934 / 18-21; declared 07/10/80; publ. 04/15/82. Bull. 
Number 14) 

[18] Yurkevich V M, Klimashevsky I L, Poletaev V A, Sidorov I A 1988 Sensor of electric field 
strength (USSR A. p. 1401407, MKI G 01 R 29/12 / No. 4114543 / 24-09; declared 
09/09/86; publ. 06/09/88, Bull. Number 21) 

[19] Mathieu BAICRY and Matthieu LE PRADO. 2016 Device for measuring an electric field in a 
conducting medium and method of calibrating such a device (United States Patent US 2016 / 
0238646A1; filed Feb. 17, 2016; published Aug. 18, 2016). 

 


