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Abstract. A partially commutative structures are widely used in concurrent

computations, robotics and pure algebra. This paper is a short survey of free partially

commutative groups and RAAGs.

1. Introduction

Many classes of algebraic structures are defined with help of the category of simple

graphs. One of these is the class of so-called partially commutative algebraic structures

(pc-structures for short). These structures have well known applications both in

mathematics and computer science and robotics. Let M be an arbitrary variety of

algebraic structures of a language L, where L contains an associative binary operation

denoted · (dot). Let Γ be a simple graph with vertex set X = {x1, . . . , xn} and edge set

E(Γ). We define a graph M -algebra AΓ, in the following way:

AΓ = 〈x1, . . . , xn|xi · xj = xj · xi {xi, xj} ∈ E(Γ)〉M, (1)

where the dot denotes the binary operation.

Let us briefly explain relation of partially commutative structures with the theory

of concurrent computations. Let we have a set X of operations. The word of the

alphabet X denotes a process which is consequence of operations from X. It is essential

that some of operations may be rearranged (or simply commutes) and another ones

are not. Therefore the set X defines a commutation graph and all possible processes

are the words of partially commutative monoid generated by X. In the case when for

any operation from X there exists an inverse operation, then the notion of partially

commutative group arise. Hence it is important to know normal forms, centralizers of

pc-structures and other related questions up to complexity of algorithms.

The general correspondence (1) allows many results from graph theory to be used in

the theory of related algebraic systems and indeed the methods of graph theory serve as

powerful tools in the study of such structures. For example, in papers [1, 2, 3, 4, 5, 6, 7]
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universal classes, automorphisms and centraliser dimension of graph structures, in

different classes of groups and algebras, were investigated using graph machinery.

Specialising to the case where M is the variety of groups, the free partially

commutative group with (commutation) graph Γ is the group AΓ with group presentation

(1), which we denote G(Γ) (or simply G if the meaning is clear). To simplify notation,

we set R = {{[x, y] : {x, y} ∈ E(Γ)}, where [x, y] denotes the commutator x−1y−1xy

in the free group on X (so G has presentation 〈X | R〉.) We shall refer to arbitrary

free partially commutative groups as partially commutative (pc) groups and to finitely

generated pc groups as right-angled Artin groups (RAAGs).

The class of partially commutative groups contains free, and free Abelian groups;

has provided several crucial examples which have shaped the theory of finitely presented

groups; notably Bestvina and Brady’s example of a group which is homologically finite

(of type FP ) but not geometrically finite (in fact not of type F2); and Mihailova’s

example of a group with unsolvable subgroup membership problem. More recently,

from the work of Sageev, Haglund, Wise, Agol and others, it emerges that many well-

known families of groups virtually embed into partially commutative groups: among

these are Coxeter groups, certain one-relator groups with torsion, limit groups, and

fundamental groups of closed 3-manifold groups (see for example [8]).

2. Basic properties

We shall confine attention to finitely generated pc groups; that is RAAGs, to for the

sake of simplicity. Basic properties of RAAGs were established by Baudisch [9, 10],

using combinatorial methods. Call an element w in the free monoid (X ∪X−1)∗ which

is a minimal length representative of an element of G a minimal word. The Cancellation

Lemma, [9, Lemma 4], asserts that if w is a non-minimal word in (X∪X−1)∗ then w has

a subword xux−1, where x ∈ X∪X−1, and x commutes with every letter occurring in u.

Then the Transformation Lemma, [9, Lemma 5.5.1] (see also [11, Lemma 2.3]) asserts

that, if u and v are minimal and u = v in G, then the word u may be transformed

into the word v using only commutation relations from R (that is, without insertion or

deletion of any subwords of the form xex−e, x ∈ A). It follows that, given g ∈ G, there is

a unique subset Y ⊆ X such that all minimal words representing g belong to (Y ∪Y −1)∗.

The set Y is called the support of g, denoted supp(g). Moreover, an element g of G
has a well defined length l(g) equal to the length of a minimal word w ∈ (X ∪ X−1)∗

representing g.

We say that w ∈ (X ∪ X−1)∗ is cyclically minimal if the word ww is minimal.

From the Cancellation Lemma it follows that if w is cyclically minimal, then so is wn

for all non-zero integers n. It turns out [9, Lemma 7]that every element g of G may be

represented by a minimal word of the form q−1pq, where p is cyclically minimal; from

which it follows that l(gn) = 2l(q)+nl(p), for all n > 0. Therefore partially commutative

groups are torsion free.

An non-trivial element g of a group G is said to have a unique root if there exists an
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element r ∈ G and a positive integer d such that g = rd and, whenever sn = g, then n|d
and s = rd/n. From [9, Korollar 1] it follows that elements of RAAGs all have unique

roots.

2.1. Parabolic subgroups and centralisers of elements

Given a subset Y of X the full subgraph ΓY of Γ induced by Y is the maximal subgraph

of Γ with vertex set Y . Given a subset Y of X the subgroup 〈Y 〉 of G is called a

parabolic subgroup. It is not hard to show that the parabolic subgroup 〈Y 〉 is the

RAAG G(ΓY ). In order to describe centralisers of elements we shall write elements in a

particular normal form, for which it is convenient to use the complement ∆ of the graph

Γ: that is the graph with vertex set X, which has and edge {x, y} if and only if {x, y}
is not an edge of Γ. Given an element g of G, which we regard as a minimal word, the

dependence graph ∆(g) of g is the full subgraph of ∆ on the vertex set supp(g). If ∆(w)

has components ∆1, . . . ,∆m then we may write g = g1 · · · gm, where ∆(gi) = ∆i and

[gi, gj] = 1, for all i, j. We call the gi the blocks of g. As elements of G, the blocks of g

are uniquely determined. Fix g ∈ G and suppose g = q−1pq, written as a minimal word,

where p is cyclically minimal. Let p = p1 · · · pm, where the pi are the blocks of p. Then

the block normal form of g is q−1(p1 · · · pm)q (so is uniquely determined up to ordering

of pi’s and minimal forms of q and the pi’s). We shall use block normal form to describe

the centraliser of g; in conjunction with a parabolic subgroup determined by supp(g) as

follows. For a vertex x of Γ define the link xo of x to be the set {y ∈ X : [y, x] ∈ R}
(that is the set of vertices joined to x by an edge). As Γ is simple x /∈ xo and we define

the star x⊥ of x to be xo ∪ {x}. For a subset Y ⊂ X define Y o = ∩y∈Y yo. Now, for

g ∈ G we define go = supp(g)o. As supp(g) ∩ go = ∅ and [x, y] = 1 for all x ∈ supp(g)

and y ∈ go, we have G(supp(g)∪ go) = G(supp(g))×G(go); so certainly G(go) ⊆ CG(g)

and Baudisch shows the following.

Proposition 1 ([9, Theorem 2]) Let g ∈ G have block normal form g =

q−1(p1 · · · pm)q as above, let ri be the root of pi and let Y = (r1 · · · rm)o. Then

CG(g) = q−1 [〈r1〉 × · · · × 〈rm〉 ×G(Y )] q.

Thus centralisers of elements of RAAGs are themselves RAAGs. This is far from true

of arbitrary subgroups, and the question of which subgroups of RAAGs are RAAGs, or

which finitely generated subgroups are finitely presented is still open.

In [10] Baudisch proves that the subgroup of a RAAG generated by two elements

is either free Abelian of rank 1 or 2, or free of rank 2. This means that all two generator

subgroups of an arbitrary RAAG embed in the RAAG A2 × F2, where A2 and F2 are

free Abelian and free, respectively, of rank 2. This brings up the question of existence

of a RAAG Gn into which any n-generator subgroup, of any RAAG, embeds. Minasyan

[12] has shown that no such Gn exists for n ≥ 3.



AMSD-2019

Journal of Physics: Conference Series 1441 (2020) 012136

IOP Publishing

doi:10.1088/1742-6596/1441/1/012136

4

A survey of Free Partially Commutative Groups

2.2. Algorithmic properties

Many algorithmic properties of free groups and free Abelian groups are exhibited by all

RAAGs. Indeed Dehn’s main algorithmic problems, namely the word, conjugacy and

isomorphism problems are decidable in RAAGs. Droms [15] showed that two RAAGs

G(Γ1) and G(Γ2) are isomorphic if and only if the graphs Γ1 and Γ2 are isomorphic.

Combined with Babai’s theorem on graph isomorphism (see [16]) this gives a quasi-

polynomial time algorithm for the isomorphism problem for RAAGs. Wrathall [13,

THEOREM 2] proved, using rewriting system techniques, that for any given RAAG G,

there is a linear-time algorithm to find a shortest word equivalent to a given word in

free monoid (X∪X−1)∗, and a linear-time algorithm for the word problem in the group.

Subsequently Liu, Wrathall and Zeger [14] constructed a linear time algorithm (with

respect to a fixed presentation) for the conjugacy problem in a RAAG by reducing

to the problem of solving the equation ux = xv in a certain monoid (where u, v are

elements of the monoid and x is a variable). The monoid in question is the free partially

commutative monoid M corresponding to the RAAG G: in the notation of Section 1

the the monoid M = M(Γ) has presentation 〈X±|R±〉, where X± = X ∪ X−1 and

R± = {[ae, bδ] | {a, b} ∈ E, e, δ = ±1}. In fact M is a monoid with involution: given by

x→ x−1, x−1 → x, for x ∈ X and x−1 ∈ X−1, respectively, and extending to all words

in M in the obvious way (which turns out to give a well-defined map). Thus G is the

quotient of M by the set of all relations xx1 = 1, x−1x = 1, x ∈ X.

Wicks showed that, in a non-Abelian finitely generated free group F, an element

is a commutator if and only if it is conjugate to a cyclically reduced word which has a

reduced factorisation as abca−1b−1c−1. Such words are called Wicks forms. Put another

way, the equation [x, y] = g, where g is an element of F, has a solution in F if and only if

g is conjugate to a Wicks form. Shestakov [33], using arguments involving van Kampen

diagrams, generalised this result of Wicks, showing that the equation [x, y] = g has a

solution in the RAAG G if and only if g is conjugate to a cyclically reduced word which

factorises as

a1a2 · · · ama−1
1 a−1

2 · · · a−1
m ,

where for all integers α, β, γ, δ such that 1 ≤ α < β < γ < δ ≤ m, either

[supp(aα), supp(aγ)] = 1 or [supp(aβ), supp(aδ)] = 1. (For sets S and T , if [s, t] = 1, for

all s ∈ S and t ∈ T , we write [S, T ] = 1.) Since the words ai may be assumed to be

non-trivial, m is bounded and this gives an algorithm for deciding if an element g in G
is a commutator. Moreover, Wicks proved an analogous result for the equation x2y2 = g

in the free group F, which has also been generalised by Shestakov [34] to all RAAGs;

resulting in an algorithm to decide if an element of G is a product of two squares and

a description of all such elements. Continuing in this vein, Lyndon showed that if a, b, c

are elements of the free group F then a2b2c2 = 1 implies [a, b] = [b, c] = [b, c] = 1.

Crisp and Weist [28] generalised Lyndon’s result, showing that this statement holds in

all RAAGs; using arguments based on duals of van Kampen diagrams.

In the case of free groups and monoids, a breakthrough in the theory of equations
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came with Makanin’s algorithm for existential problem for equations in a free monoid:

that is the problem of finding solution of an arbitrary systems of equations. Makanin

later extended his results to prove the decidability of the existential problem in free

groups, and this result was in turn extended by Razborov to give a description of

all solutions of equations in a free group. Makanin’s algorithm for the existence of a

solution of a system of equations is not primitive recursive, however a different approach

by Plandowski making use of compression techniques gave a PSPACE algorithm for the

existential problem for equations in a free monoid. Building the results Plandowski and

of Schulz, it was shown, by Diekert, Gutiérrez and Hagenah, that the existential problem

for systems of equations with rational constraints in the free group is PSPACE-complete.

If a group (or monoid) G is generated by X (or X±) and φ is the canonical map from the

free monoid X±∗ to G, then a rational language is a subset L of G such that L = φ(R),

for some regular language R (a subset accepted by a finite state automaton) in the

free monoid X±∗. A rational constraint is an expression of the form x ∈ Lx, where

x is a variable and Lx is a rational language. (A solution to a system of equations

with constraints must satisfy the constraints.) Rational constraints, first introduced by

Schulz, allow reduction of systems of equations over an algebraic structure to systems of

equations with constraints, over a simpler structure. For example, the result of Diekert,

Gutiérrez and Hagenah for free groups, above, is achieved by reducing, with the help of

rational constraints, to the analogous problem over free monoids with involution, which

can be dealt with by the methods of Plandowski. Finally, Diekert, Jez and Plandowski

[29] have found a PSPACE algorithm that, on input a system of equations with rational

constraints §, in a given free monoid with involution or free group, outputs a finite graph

of exponential size, which describes the set of all solutions to §.
Returning to RAAGs, Diekert and Muscholl [17] showed that there are finite

systems of equations with rational constraints over RAAGs which are undecidable. To

overcome this difficulty a refinement of the notion of rational constraint is introduced,

with definition as follows. As above the group G(Γ) is a quotient of the monoid M(Γ)

which itself is the image of the free monoid X±∗, under the canonical quotient map π.

Consequently every element g of G is represented by a unique reduced element ρ(g)

in M (an element which has no representative in X±∗ containing a subword xx−1). A

subset L of G is then defined to be normalised rational if ρ(L) ⊆ M is a recognisable

language: that is the inverse image π−1(ρ(L)) is a regular language in X±∗. A normalised

rational constraint is an expression of the form x ∈ Lx, where x is a variable and Lx
is a normalised rational language. In [17] it is proved that “ETMI”, the existential

problem for finite systems of equations with recognisable constraints in a partially

commutative monoid with involution, is decidable. It is then shown that there is a

polynomial time reduction from “ETGG”, the existential problem for finite systems of

equations with rational constraints over a RAAG, to ETMI, so the former is decidable.

In fact if the presentation 〈X|R〉 is fixed then the problem ETGG is PSPACE-complete.

Furthermore, in [25] Casals-Ruiz and Kazachkov have succeeded in generalising the

machinery of Makanin-Razborov, to give a description of all solutions of a system of
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equations over a RAAG, and have characterised the class of groups arising as the major

constituent of the construction; that is limit groups over partially commutative groups

in [26].

All the above results suggest that RAAGs have algorithmic properties similar to

free or free Abelian groups. However, a well-known example of Mihailova [18] gives an

explicit subgroup of F2×F2 with unsolvable membership problem. As F2×F2 is G(C4),

where C4 is the cycle graph on four vertices, it is clear that the algorithmic landscape

of RAAGs is far from simple; and the same may be said of the subgroup structure of

groups in this class.

3. Subgroups

As we have seen, element-centralisers in RAAGs are themselves RAAGs. In the extreme

cases, when Γ is either a complete graph or a null graph, all subgroups of G(Γ)

are RAAGs (not necessarily finitely generated, but essentially of the same type as

G(Γ)). Droms [19] pin-pointed the graphs for which this holds; showing that all finitely

generated subgroups of G(Γ) are again RAAGs if and only if Γ is what is called a starred

graph. A subset Y of the vertex set X of a connected graph Γ is a separating set if

Γ\sX has at least two connected components. A vertex v of a graph with vertex set X

is central if st(v) = X. Every non-complete connected graph has a separating set and

a connected graph is said to be starred if either

• it is complete, or

• if every minimal separating subset Y is central.

In general a graph is starred if it is a disjoint union of starred subgraphs. To prove that

finitely generated subgroups of G(Γ) are RAAGs Droms uses the fact that subgraphs

of starred graphs are again starred to deduce that the problem for disconnected graphs

reduces to that for connected graphs. A connected starred graph has a central vertex z

so the group G(Γ) is the direct product G(z)×G(ΓY ), where ΓY is the full subgraph on

Y = X\{z}. This decomposition is exploited to reduce the problem to that in G(ΓY ),

and so on. The converse is then proved using the fact that a graph is starred if and

only if it has no full subgraph equal to the cycle graph C4 or the path graph P4 on 4

vertices. Then a direct sequence construction due to Dicks [20] is used to show that if

a graph has an induced C4 or P4 subgraph then the corresponding group has subgroups

which are not RAAGs.

A weaker condition on the graph Γ is that it’s chordal ; that is, has no full subgraph

isomorphic to a cycle graph of 4 or more vertices. Droms [21] shows that G(Γ) is coherent

(every finitely generated subgroup is finitely presented) if and only if Γ is chordal. A

chordal graph Γ has a vertex u such that st(u) is a clique. If Γ is not complete then, for

such a vertex u, the set Y = lk(u) is a separating subset of X and is also a clique, and we

may write X = A∪ Y ∪B, as a disjoint union where A = {u} and B = X\ st(u). Then

G(Γ) has a decomposition as a free product with amalgamation G(Γ) = G(A)∗G

(Y )

G(B)
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with G(Y ) free Abelian. From [22, Theorem 8] it follows that G(Γ) is coherent. For the

converse, it is shown that if Γ is a cycle graph of 4 or more vertices, then G(Γ) has a

finitely generated subgroup which is not finitely presented.

Given these results it seems reasonable to ask if there is a natural graph theoretic

condition which determines when one partially commutative group embeds in another.

Significant progress in this direction has been made by Kim and Koberda [23], exploiting

the notion of the extension of a graph. The extension graph Γe of a graph Γ is the graph

with vertex set V e = {g−1xg ∈ G(Γ) |x ∈ V (Γ), g ∈ G(Γ)} and an edge joining u to v if

and only if [u, v] = 1 in G(Γ). In [23] it is shown that if Λ is a subgraph of Γe then G(Λ)

embeds in G(Γ). However, the converse is shown to hold only if Γ is triangle-free (C3

free): in which case if G(Λ) embeds in G(Γ), then Λ is a subgraph of Γe ([23, Theorem

10]). In [24] this result is also shown to hold when Γ is a starred graph. This then gives

rise to the hope that if Γ1 and Γ2 are finite graphs then G(Γ1) < G(Γ2) if and only if

Γ1 < Γe2. However, in [24] an example of graphs Γ1 and Γ2 are given, such that G(Γ1)

embeds in G(G2) but Γ1 is not a subgraph of Γe2, and moreover Γ2 is chordal.

As mentioned above, although 2-generator subgroups of RAAGs all embed in Z×F2,

there is no such “universal” container RAAG for n-generator subgroups when n ≥ 3.

However, if we restrict to starred RAAGs, from the above, all n-generator subgroups

are subgroups of the direct product of the set of all n-generator RAAGs. As the

counterexamples of [12] all involve RAAGs with non-chordal commutation graphs, the

question of existence of a container RAAG for all n-generator subgroups of chordal

graphs is still open.

More generally one may ask which groups arise as subgroups of pc groups.

Refining the question; which surface subgroups have non-trivial homomorphic images

or embeddings in a particular pc group? To motivate this question note that Hempel

[31] and Stallings [35] observed that the 3-dimensional Poincaré conjecture is equivalent

to the statement that for every closed, compact surface Sg of genus g ≥ 2, the kernel

of every homomorphism π1(Sg) → G(Kg,g) contains a non-trivial element represented

by a simple loop. (Kg,g is the complete bipartite graph on 2g vertices partitioned into

2 sets of equal size.) Also, homomorphisms from π1(Sg) to a group are closely related

to solutions of quadratic equations, and play a key role in construction of Makanin-

Razborov diagrams.

Some answers to such questions were given by Droms, Servatius and Servatius [32]

who showed that if a finite graph Γ contains an induced subgraph isomorphic to the cycle

graph Cn, for n ≥ 4, then π1(Sg) embeds into the commutator subgroup of G(Γ), for

g = 1+(n−4)2n−3
. Crisp, Sageev and Sapir later showed that if Γ is a chordal graph then

π1(Sg) does not embed in G(Γ), for any n ≥ 2 (the so called hyperbolic surface groups).

In this paper reduction moves are described which allow the embedding question to be

answered by passing to simpler graphs. The method gives a complete classification of

graphs on at most 8 vertices into which hyperbolic surface groups embed. However, the

question of which RAAGs contain hyperbolic surface groups in general is still open.
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4. The Salvetti complex

To construct a cubical complex on which the RAAG G(Γ) acts properly and cocompactly

by isometries, we begin by forming a finite dimensional CW-complex SΓ as follows. The

complex SΓ has one 0-cell and has one directed 1-cell labelled x corresponding to each

element of x ∈ X. For each edge {x, y} of Γ a 2-cell, with boundary label [x, y], is

attached by identifying its boundary edges to the correspondingly labelled 1-cells of

SΓ. Continuing this way, having added all n − 1 cells, for each n-clique in Γ an n + 1-

simplex is attached by identifying faces to the correspondingly labelled n − 1-cells of

§Γ. Once all cliques have been covered, we have a complex SΓ with π1(SΓ) = G(G).

The universal cover S̃Γ is called the Salvetti complex of G(Γ). The Salvetti complex

is a cube complex: all its cells are cubes. It also turns out to be a CAT(0)-complex:

every triangle with geodesic sides, has sides which are no further apart than a Euclidean

triangle of the same side lengths. As S̃Γ is contractible the complex SΓ is aspherical,

which is to say that it is a K(G, 1) space [27]. Also, the Salvetti complex is “special”

in the terminology of Haglund and Wise [30]. From these facts it follows (for example)

that the cohomology groups Hk(G) may be computed; they are free Abelian with one

generator corresponding to each k − 1-simplex of SΓ; that G is torsion free, linear and

so biautomatic.

5. Lattice of closed subsets

In this section we present some results from [2, 6, 11] on the lattice of closed subsets of

a finite simple graph and notion of the compression Γc of a graph Γ.

Let Γ be a simple graph with vertex set X = {x1, . . .}. For vertices x, y belonging

to a connected component of Γ we define d(x, y) to be the minimum of the lengths of

paths connecting x to y. For a subset Y ⊆ X, using the notation of Section 2.1, we

define orthogonal complement of Y by:

Y ⊥ =
⋂
y∈Y

y⊥

(and so the orthogonal complement of a (set containing a single) vertex x is its star).

We put ∅⊥ = X. Define the closure of a subset Y of X to be cl(Y ) = (Y ⊥)⊥. It is

not hard to check that cl(Y ) ⊇ Y and hence cl is a closure operator. Thus we have the

following definition.

Definition 1 A set Y ⊆ X is called closed set if cl(Y ) = Y . The set of all closed

subsets of X is denoted L(Γ).

The set of all closed sets L(Γ), partially ordered by inclusion, is lattice and we may

define the height h(L(Γ)) of the L(Γ) as a length of a maximal length path in the lattice.

The following theorem appears in [6] (see also [7]). By a centraliser in a group G

we mean a subgroup of the form C(S) = {g ∈ G : gs = sg, for all s ∈ S}, where S is a
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subset of G. A centraliser chain of length k in G is a sequence C0, . . . , Ck of centralisers

such that Ci < Ci+1, for 0 ≤ i ≤ k − 1. The centraliser dimension of a group G is the

maximum of lengths of centraliser chains in G, or ∞, if no such maximum exists.

Theorem 1 ([6]) Let G(Γ) be a RAAG and let L(Γ) be the lattice of closed sets of

V (Γ). Then the centraliser dimension of G is equal to h(L(Γ)).

The operators ⊥ and o above may be used to define several equivalence relations on

the vertex set X of a graph Γ. The ∼⊥ and the ∼◦ relations are defined, for x, y ∈ X,

by x ∼⊥ y, x, y ∈ X and x ∼◦ y if and only if x◦ = y◦. Denote by [x]⊥ and [x]◦ the

⊥-equivalence class and o-equivalence class of x, respectively.

The following Lemma establishes some basic properties of these equivalences.

Lemma 1 ([2]) (i) [x]⊥ is clique for any x ∈ X.

(ii) [x]⊥ ∩ [x]◦ = {x} for any x ∈ X.

(iii) If |[x]⊥| ≥ 2 then |[x]◦| = 1.

(iv) If |[x]◦| ≥ 2, then |[x]⊥| = 1.

Define the ∼ relation on X by x ∼ y if and only if x ∼⊥ y or x ∼◦ y. From lemma

1 follows that ∼ is equivalence relation and we denote by [x] the ∼-equivalence class of

x ∈ X. Let [x1], . . . , [xm], . . . be the set of all equivalence classes of vertices from X.

Definition 2 The compression of the graph Γ is the graph Γc with vertices Xc =

{[x]|x ∈ X} and and edge joining vertices [x] and [y] if and only if x and y are incident

in Γ.

Directly from the definitions we see that Γc is a graph and we obtain the following

facts.

Proposition 2 The mapping c : X → Xc given by c(x) = [x], x ∈ X induces a

surjective graph homomorphism c : Γ → Γc. The mapping c : Γ → Γc induces a lattice

isomorphism c : L(Γ)→ L(Γc).

We will consider the graph Γc in the category of labelled graphs. To do so, partition

X into the following subsets:

X1 = {x ∈ X|[x] = [x]◦ = [x]⊥},

X⊥ = {x ∈ X||[x]⊥| = rx ≥ 2},

X◦ = {x ∈ X||[x]◦| = lx ≥ 2}.

If x ∈ X1, then the label of x is µ(x) = {1}. If x ∈ X⊥, then the label of x is

µ(x) = {⊥, rx} and if x ∈ X◦ then the label of x is µ(x) = {◦, lx}.
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