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Abstract. Cultural algorithm demonstrates incompetence in solving problems of 
multi-extremal optimization. This is due to the large dimensionality of the data and 
causes premature convergence. To solve this problem, a fuzzy cultural algorithm is 
proposed. 

1. Introduction 
The cultural algorithm (CA) is the improvement of population optimization algorithms by taking into 
account the experience gained in solving the problem. The founder of this algorithm is Reynolds [1, 
2]. 

In the process of social development, people accumulate information about the world around them. 
This information can be considered a knowledge base of society, which its members can exploit in 
order to optimize their behavior. In a cultural algorithm, this knowledge base is formalized in the form 
of a beliefspace and is used as another element of the evolutionary impact on the population. 

Any optimization problem without loss of generality can be defined as a global conditional 
minimization problem with inequality constraints. 
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Let the set D P∩  is convex, and everywhere in this set is the fitness function ( )f X  takes non-
negative values where the objective function should be optimized. The complexity of the optimization 
problem depends on the mathematical nature ( )f X , hich makes the use of traditional optimization 
methods impractical for such a task [3, 4]. 

Given these considerations, algorithms based on nature, which are known as evolutionary 
algorithms, were developed to solve such problems. The task of the evolutionary algorithm is to 
simulate the processes of the natural process, such as reproduction and selection, to find good 
solutions using their earlier success in the previous stages of the quest. For this, many evolutionary 
algorithms have been developed over the years, such as: genetic algorithm (GA) [5], particle swarm 
optimization (PSO) [6], bee colony algorithm (ABC) [7], differential evolution (DE) [8] and the 
cultural algorithm [9]. 

For any evolutionary algorithm, there is a population space that is initialized by a population set at 
the beginning of the quest, and later individuals evolve using replay operations. Any evolutionary 
algorithm has various replay operations that can be called mutational and crossover operations and the 
purpose of creating a new generation of better populations. Analyzing the above-mentioned 
evolutionary algorithms, we can conclude that the cultural algorithm is the only evolutionary 
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algorithm that uses various sources of knowledge, called the space of beliefs, to explicitly control the 
quest [10]. This space uses knowledge gathered over generations to help the population create new 
good solutions for optimal quest based on evolutionary algorithms. To coordinate the interaction 
between the population space and the space of beliefs, an algorithm is needed to connect these spaces.  
Evolutionary algorithms often demonstrate incompetence in solving a multi-extremal optimization 
problem, especially for large dimensions. Consequently, it causes stagnation and premature 
convergence [11]. 

Stagnation occurs when there is no improvement, and the solution to the best solution is repeated 
for successive generations, while premature convergence occurs when the population converges to the 
same solution, and the quality of this solution is not as expected [12]. 

To solve the above problems, which exist in almost every evolutionary algorithm, the researchers 
used three basic concepts to improve the efficiency of the cultural algorithm. The first of these is the 
use of hybridization methods in which a cultural evolutionary algorithm hybridizes with another 
method or local quest. Local quest algorithms are stochastic strategies based on population. Their main 
goal is to use existing knowledge in the field of quest.  The researchers from [13] have integrated the 
cultural algorithm with repeated local quest to help cultural quest generate better solutions and ease 
stagnation and premature convergence, especially in subsequent generations. The second concept is to 
use another evolutionary algorithm as a population space of a cultural algorithm. For this purpose, 
many soft computing algorithms were used [11, 13]. 

Hybridization primarily relates to combining the best two methods [14]. The goal is to form a new 
agent who is expected to surpass their ancestors compared to a common optimization standard or 
application-specific problems. In [15], the PSO and CA algorithms are used to form a hybrid algorithm 
for solving limited optimization problems.  They used a common population space, which consists of 
many swarms, and the belief space is used by collecting information about swarms.  The renewed 
belief space was then used to influence the population and influence their evolution in order to 
generate better decisions.  Another hybrid CA approach for solving problems with limited 
optimization is introduced in [16]. The authors used the differential evolution in the population space 
of a cultural algorithm with a well-designed influence function, which uses four sources of knowledge, 
normative, spatial, historical, and situational knowledge to help create new good quality solutions.  
Another well-balanced differential evolution algorithm was introduced in [17]. In this algorithm, a 
new influence function was introduced in order to use the recently updated knowledge to adjust the 
space of beliefs and to direct it to new promising regions. In [18] combined a local quest algorithm 
with CA to solve the traveling salesman problem. 

In [13], an iterative local quest method is combined with CA to solve a variety of multi-extremal 
optimization problems. The authors used three steps to create good quality solutions. At the first stage 
a repeated local quest was used.  Then the knowledge gained from the best people is used to update the 
space of beliefs. Finally, they performed a global quest to further improve the best generated solutions.  
All of these algorithms used the capabilities of SA, which use different knowledge sources to quest for 
regions of quest and collect additional information about the quest landscape. On the other hand, local 
quest methods are built in to increase the operational ability to customize the quest around newly 
located zones using CA.  However, a suitable and well-designed structure should be developed for 
such hybrid algorithms that can balance quest modes, behave smarter with stagnation and cases of 
premature convergence, and can better use the knowledge generated at different stages of the quest. 

Another multiplayer cultural algorithm was introduced in [19]. The algorithm was proposed to 
discover communities of agents on social networks by using different subgroups to extract knowledge 
in different ways, and then choosing the best knowledge to spread to the next generation. Three 
improved niche-based CAs were proposed in [20]. The population is divided into different niches in 
order to support different subgroups to determine the set of optimal options, where they were tested 
and compared to a number of problems with limited and engineering optimization. Consider a fuzzy 
cultural algorithm with a custom belief space. Based on the fuzzification operator, the relationship 
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between the population space and the influence space and the selection of a high-quality population 
that influence the creation of knowledge sources through an updated process are estimated. 

Cultural algorithms use cultural knowledge that is presented in the belief space component.  This 
component consists of different sources of knowledge, any of which is responsible for a particular 
kind of cultural knowledge.  

2. Problem Statement 
Main components of the cultural algorithm are population space and belief space. 

The space of a population and the space of beliefs interact through the function of acceptance and 
the influence function. With the help of the first of these functions, many best agents are identified 
who have the ability to correct the space of belief.  The second function sets the rights by which 
beliefs are capable of influencing the evolution of population agents. 

The pseudocode of the cultural algorithm is presented below. 
Begin 
g =0; 
Initialization of the population S (g); 
Initialization of the belief space B (g); 
Population estimation with the help of fitness function S (g); 
repeat 
Interaction between the population space and the space of belief through the adoption functions  
(S (g), B (g)); 
Correction of the space of belief B(g); 
The interaction between the population space and the space of persuasion through influence 
functions (B (g ) , S ( g ) ) ;  
g = g +  1; 
Population evolution at the current iteration S(g); 
Until (termination condition) 
End 

3. Correction of the space of belief 
Knowledge relates to maintaining the performance of individual agents. This will lead to the 
movement of other agents towards the elite (generally best in this context) among the populations. 

Knowledge is a set of interval information for any of N  – measurements. Any interval of any 
parameter jx  of task N  – dimension is represented as a set , ,j j jI SL SU< > , jI  is an interval of real 

numbers [ , ]j jpl pu , where the estimates are initialized using the specified values. jSL  and jSU  

represent lower bound estimates jpl  and upper bound jpu  for parameter jx , respectively. These 
performance metrics are initialized to a fairly large value. The exaggeration of this knowledge is 
progressive with the expansion of the interval and conservatism with the narrowing of the interval for 
any of the parameters. The parameter values for individuals taken by the fuzzy acceptance function 
will be used to calculate the allowable intervals for any of the parameters N . Spacing control is a way 
to control the speed of the evolution process during a quest. 

Two membership functions of a fuzzy set, ( )R x and ( )L x , will be used to update the upper and 
lower bounds, respectively, in the process of evolution. Performance evaluation will be the key to 
initiating a lower bound update and an upper bound of the intervals for any of the parameters N  
during the quest.  Upper bound jpu  ill be shifted from the right side towards the core. In addition, the 

lower bound jpu  will be shifted to the left in the direction of the core. This update is performed to 
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ensure that both boundaries fall within the core interval, which is defined as [ , ]j jl u  – center of 

parameter interval jx . 

Adjusted update process for belief space, individual g
bX , 1,2,...,b NB= , where NB  – the number 

of agents used to update the space of beliefs occurs according to the following algorithm: 
Initialization of the lower bound and upper bound for the parameter jx  using the by lower and 

upper bound estimates for this parameter, as indicated in the task: g
j jpl pLD= , g

j jpu pUD= , where 

jpLD  и jpUD  – specified lower and upper boundary of the area for the parameter jx . 
Calculation of the fuzzy functions L (x) and R (x) using the membership functions that were 

adopted from [19] will be used to update the lower bound and the upper bound of the interval. 

For Gaussian membership function 
2
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b

µ
 − = = = −     

 taking into 

account the values of partial derivatives 

 
* *

2

( ) ( )
,

( )
j j j j j

j j

x a x
a b
µ µ∂ − ⋅

=
∂

* 2 *

3

( ) ( )
( )

j j j j j

j j

x a x
b b
µ µ∂ − ⋅

=
∂

, 

parameter values on 1t +  are defined as follows: 
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For bell-shaped membership function 2
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For parabolic membership functions 
2
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the values of partial derivatives 
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parameter values on t+1 are defined as follows: 
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3. Calculation ( 1)g
j jpc a t= + . 

 
4. Updating the lower and upper bounds of the interval for the j-th agent, on generation g, is as 

follows: 
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4. Fuzzy acceptance function 
This method is implemented in terms of a new fuzzy modification as follows.  The formula is based on 
performance evaluation and is used to build fuzzy equivalence relations, and the generation number is 
used to determine the level of refinement. β . In the early stages of evolution, a smaller value is used 
to get more elites from a population of individuals.  Then gradually reducing the value β , fewer 
agents will be used at the end of the quest. 
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Basic adoption functions are to find a fuzzy similarity matrix. This matrix represents a fuzzy 
similarity between any pair of individuals with respect to their attributes. Such attributes can be 
indicators such as age or distance from elites as a set of binary relations. To create this matrix, an 
evaluation of the effectiveness of the agent is used. This matrix is used as an equivalence relation in a 
fuzzy classification process, since a fuzzy similarity matrix is an equivalence relation. 

Any element in this matrix is calculated by the following formula: 

 ,
( ) ( )

1
( )

r c
r c

k
k

f X f X
m

f X
−

= −
∑

,   1 , , .r c k NP≤ ≤  

Similarly, the original matrix definition ( )M β  is used to use the matrix of fuzzy similarity in order 
to classify the population into two categories of performers: elite and inferior personalities. The 
elements of the matrix are defined as follows: 
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m p
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m
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β
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where [0,1]mpβ ∈  is the value of the refinement.  In this notation,
,r cmβ =1 means both individuals iX  

and jX  are similar and, therefore, can be selected in the space of beliefs as an elite subset, and 
therefore, the elite agent will be used to update the space of beliefs. 

The main stages of fuzzy adoption in the cultural algorithm are shown below: 
1. Creating an equivalence relation M (matrix of fuzzy similarity) for the population space. 
2. Using the generation number to calculate the level ( β )refinement. 
Using the generation number to calculate the level () refinement. 
3. Use the value of refinement in M to perform a fuzzy classification. 
4. Classification of a new generation of individuals based on their performance indicators. If the 

completion condition is ranyed (with a certain accuracy), then the end of the work. Otherwise, go to 
the next step. 

 5. Using the linear reduction function to update the value. 

 
( ( ), ( )), ,

1 ( ) / , 0 ,

m

m m

random v v p

p g p
σββ  ε

β
ϕ ε ε
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where , ,mp ε ϕ  specified data. 
6. Calculate the number of elite agents (the number of agents that will be accepted) using the 

matrix M. 
During the initialization phase creating a refinement level ( β ) uses only for individuals with the 

current best performance from the elite set. For this purpose, linear reduction will be used. For this 
reduction function ( )v β  there is an average of the normal distribution at mp ε≥ , and in this context, 
the set value is the standard deviation from such a distribution.  The elite kit contains at least one agent 
in the first pass and will be used as a seed at the beginning of the optimization process. ( )vσ β  – 
amount of elements. These elements are those that will affect the population space. Any element in M 
is sorted in ascending order. The matrix M is symmetric. 

5. Fuzzy influence function 
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The source of uncertain knowledge is the control of the direction and size of the mutation step. The 
motivation for this function depends on the idea that a well-working agent is more likely to stay longer 
in the population than an individual with a lower level. 

This means that the probability of applying a mutation operator to an older agent is compared to a 
younger age. Accordingly, the upper bound of the fuzzy function is described as: 
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β will be used in the influence function as follows: 
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Knowledge in the space of belief will be used to regulate the direction and size of the step.  Using 
this approach, if the parameter value in the parent is in the allowable range, then a small perturbation 
in the random direction will be applied. Otherwise, the current range of beliefs will be used to perturb 
the right or left boundaries of the current range found in the space of beliefs. If value ,i jx  less than 

g
jpl , then the mutation operator will use the fuzzy adjustment coefficient to adjust in the negative 

direction. On the other hand, if the value ,i jx  is more than g
jpl , then the mutation operator will use the 

fuzzy adjustment factor to update only in the positive direction. If the disturbance of the offspring 
violates the restrictions, then the adjustment method will be used. 

The violation will be fixed by stochasticity values in the range of restrictions as follows: 
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To predict the occurrence of premature convergence, criteria are defined for such cases: 

 max min max min( ) / ( ( ) (X))g g g gv f X fmm = − − , 

where max ( )gf X , and min (X)gf  and also are the maximum and minimum values of the suitability of the 

g-th generation. max
gm  is the average fitness value, which is greater than the average fitness of the gth 

generation, min (X)gf  this is the average availability of values that are less than the average fitness of the 
gth generation and the average value of fitness is defined as max ( ) ( ) / , 1,2,..., NPi

i
f X f X NP i= =∑ .

v  is an indicator of the distribution of agents. When value v  s small, then the variety is acceptable. 
Otherwise, when the value v  is large, then diversity should be taken into account by increasing the 
mutation rate. The success rates of all component space-population strategies will differ, allowing 
another quest to avoid current local optima. v  defined in the range from 0 to 1 and v∈{ low medium 
high }.  

6. Computational experiment 
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The algorithm was tested on test problems for multi-extremal optimization. This test consists of 3 
complex optimization tasks: 

• Ackley function (Fig. 1), 
• Griewank function (Fig. 2), 
• Levy function (Fig. 3). 

Backley function: 

 2

1 1

1 1( ) exp exp cos( ) exp.
d d

i i
i i

f x a b x cx a
d d= =

   
= − − − + +       

∑ ∑  

Recommended Variables: a=20, b=0.2 и c=2π. 

 
Figure 1. Function Byckley 

Domain: [ ]32.768,32.768 , 1, ,i ix d∈ − = …   

Global minimum: * *( ) 0, (0,...,0).f x x= =  
Griewank function: 
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Figure 2. Griewank function 

 
2

1 1
( ) cos 1.

4000

dd
i i

i i

x xf x
i= =

 
= − + 

 
∑ ∏  

(A) Domain: [ ]600,  600 ,    1,  ,  .i ix d∈ − = …     

(B)  Global minimum: * *( ) 0, (0,...,0).f x x= =  

Function Levy: 

 
Figure 3. Function Levy 
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i i d d
i

f x w w w w wπ π π
−

=
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11 , 1,...,
4

i
i

xw i d−
= + =  

(C) Domain: xi∈ [-10, 10], i = 1, …, d.  

(D) Global minimum: * *( ) 0, (1,...,1).f x x= =  
parameters to which the proposed algorithm is sensitive are: the average value of the normal 

distribution, which is used to generate the value β as a function of fuzzy acceptance (Fig. 4) and the 
standard deviation of the normal distribution, which is used in the function of fuzzy acceptance (fig.  
5) for any probability of mutation. 

 
Figure  4. Average value of the normal distribution 

 
Figure  5. Standard deviation of the normal distribution 

 
algorithm gives the best overall performance when the optimal mutation probability is from 0.17 to 
0.22. 

7. Conclusion 
This paper presents a balanced fuzzy cultural algorithm with a customizable belief space. For the 
computational experiment, a new fuzzy communication algorithm was used between the population 
space and belief spaces using fuzzy acceptance and influence functions. The fuzzy acceptance function 
is responsible for selecting the best agents to create knowledge in a belief space, while the fuzzy 
influence function selects the best sources of knowledge to help agents in the population space. 

According to the results obtained during the experiments, we can conclude that with an increase in 
the number of variables, the quest time for the optimum increases and the number of iterations 
increases. With an increase in the number of variables on average, the difference between the obtained 
values of the optimum for each function changes only slightly. 
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