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Abstract. Generic-case approach to algorithmic problems was suggested by Miasnikov,
Kapovich, Schupp and Shpilrain in 2003. This approach studies behavior of an algorithm on
typical (almost all) inputs and ignores the rest of inputs. In this paper, we study the generic
complexity of the problem of clustering graphs. In this problem the structure of relations of
objects is presented as a graph: vertices correspond to objects, and edges connect similar objects.
It is required to divide a set of objects into disjoint groups (clusters) to minimize the number
of connections between clusters and the number of missing links within clusters. We prove that
the graph clustering problem is NP-hard with respect to generic analog of polynomial Turing
reduction. Supported by Russian Science Foundation, grant 18-71-10028.

1. Introduction
Kapovich, Miasnikov, Schupp and Shpilrain introdused [4] the genric approach to algorithmic
problems in algebra. Within this approach, the algorithmic problem is not considered on the
whole set of inputs, but on some subset of almost all inputs. Such inputs form the so-called
generic set. The concept of almost all can be formalized by the introduction of a natural measure
on the set of input data. In terms of practice, the algorithms that solve fast the problem on the
generic set is as good as the fast algorithms for all inputs. A classic example of such an algorithm
is Simplex method – it solves the linear problem in polynomial time programming for most input
but has an exponential complexity at worst. Moreover, it may be that the problem intractable
or generally undecidable in the classical sense, but easily resolvable on generic set. Note that a
similar approach to studying problems of optimization was proposed earlier by Gimadi, Glebov
and Perepelitsa [3].

One of the important problems of machine learning is the problem of graph clustering. In this
problem, the structure of the relationship of objects is defined using the graph vertices of which
correspond to objects, and edges connect similar objects. It is required to divide a set of objects
into pairwise disjoint groups (clusters), so to minimize the number of links between clusters
and the number of missing links inside clusters. In the works of Krivanek and Moravec [5],
Bansala, Blum and Chaul [2], Shamir, Sharan and Tzur [8], Ageev, Iliev, Iliev, Iljeva, Kononov
and Talevnin [1, 6, 7, 9] the NP-hardness of this problems for various formulations was proved.
Thus, under the condition of P 6= NP, there is no polynomial algorithm to solve this problem.

1 Supported by Russian Science Foundation, grant 18-71-10028.
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This article is devoted to the study of the generic complexity of the problem of graph
clustering. We prove that the graph clustering problem is NP-hard with respect to generic
analog of polynomial Turing reduction.

2. Generic algorithms
Let I be a set of inputs and In be the set of all inputs of size n. For a subset S ⊆ I we define
the following sequence

ρn(S) =
|Sn|
|In|

, n = 1, 2, 3, . . . ,

where Sn = S ∩ In is the set of inputs from S of size n. Asymptotic density of S is the following
limit

ρ(S) = lim
n→∞

ρn(S).

A set S is called negligible, if ρ(S) = 0, and strongly negligible, if sequence ρn(S) converges to 0
exponentialy fast i.e. there are constants σ, 0 < σ < 1, and C > 0 such that for every n it holds
ρn(S) < Cσn.

Algorithm A : I → J ∪ {?} (? /∈ J) is called (strongly) generic, if

(i) A halts on all inputs from I;

(ii) set {x ∈ I : A(x) = ?} is (strongly) negligible.

Generic algorithm A computes a function f : I → J , if for all x ∈ I

(A(x) = y ∈ J)⇒ (f(x) = y).

The equation A(x) = ? means that algorithm A can not compute function f on x. But the
condition 2 guarantees that A correctly calculates f on almost all inputes.

There is a significant difference between generically decidable problems and strongly
generically decidable problems. Suppose the problem S is decidable on some polynomially
decidable generic set G such that

|G ∩ In|
|In|

=
n− 1

n

for any n. Thus G is generic but not strongly generic set. Now although the problem S is
decidable for almost all inputs, nevertheless, there is an efficient method to get ¡¡bad¿¿ inputs,
on which the generic algorithm does not work. A polynomial algorithm for generation of bad
inputs is the following.

(i) To generate randomly and uniformly an input x of size n.

(ii) If x ∈ G, repeat step 1, otherwise finish.

Indeed, the probability of getting only good inputs for all n2 rounds is(
n− 1

n

)n2

=

((
1− 1

n

)n)n
→ e−n.

Therefore, with a probability very close to 1, a bad input will be obtained. On the other hand,
it is easy to see that if the problem is solvable on a strongly generic set, such simple generation
algorithm will require exponential number of rounds and will be ineffective. For cryptographic
applications, this means that just generic decidability of a problem does not make this problem
worthless for creation of a cryptosystem based on it, since for it exists efficient procedure for
generating difficult inputs. At the same time, strongly generically easily solvable problems in
this sense are useless for cryptography.
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A problem A is generically polynomial Turing reducible to a problem B if there is a polynomial
probabilistic algorithmA with call of any strongly generic algorithm deciding B as a subprogram,
which is an algorithm for the problem A. We will denote this as A ≤gpt B. A problem A is
generically NP-hard, if S ≤gpt A for every problem S ∈ NP .

3. Graph clustering problem
Hereinafter, we will consider non-oriented graphs without loops and multiple edges. A graph is
called cluster if each of its connected components is complete graph. Denote by M(V ) the set
of all cluster graphs on vertices V . If G1 = (V,E1) and G2 = (V,E2) are graphs on vertices V ,
then the distance ρ(G1, G2) between them are the number of mismatched edges in graphs G1

and G2, i.e
ρ(G1, G2) = |E14E2| = |E1 \ E2|+ |E2 \ E1|.

The problem of graph clustering is the following. We have a G = (V,E). Find a graph
M∗ ∈M(V ) such that

ρ(G,M∗) = min
M∈M(V )

ρ(G,M).

Lemma 1. Let G1 and G2 be graphs with disjoint sets of vertices and M∗ is a cluster graph,
which is a solution of the problem of graph clustering for graph G1 ∪G2. Then

M∗ = M∗1 ∪M∗2 ,

where M∗i is a solution of the problem of graph clustering for graph Gi, i = 1, 2.

Proof. Let G1 = (V1, E1) and G2 = (V2, E2). Suppose, there is a cluster graph M , which is a
solution of the problem of graph clustering for graph G1 ∪G2 such that

M = C1 ∪ C2 ∪ . . . ∪ Cm,

where Ci, i = 1, . . . ,m – disjoint complete connected components, and among them there is a
component Ck = K(Vc), which has non-empty intersection with graph G1 and with graph G2.
Replace in cluster graph M its component Ck by two complete graphs

Ck,i = K(Vc ∩ Vi), i = 1, 2.

Vertices of the first graph belong to graph G1, and the second to G2. Denote by M ′ this new
cluster graph. Now note that

ρ(G1 ∪G2,M
′) < ρ(G1 ∪G2,M)

since in the new components Ck,i, i = 1, 2 there are all edges of old component Ck, for which or
both vertices belong to G1, either both vertices belong to G2, and there are no all edges of old
component Ck, for which one vertex belongs to G1 and second – to G2. And the last edges are
not in the graph G1 ∪G2.

The resulting contradiction shows, that for the cluster graph M∗, which is a solution of the
problem of graph clustering for graph G1∪G2, we have M∗ = M∗1 ∪M∗2 , and M∗i is a solution of
the problem of graph clustering for graph Gi, i = 1, 2, so how else we can replace cluster graph
M∗i by better graph, thereby reducing the distance ρ(G1 ∪G2,M

∗).
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4. Main result
To study the generic complexity of the problem of graph clustering, we will use graph
representation using adjacency matrices. Moreover, since the graphs are undirected, for encoding
a graph with n vertices, we will use only the upper part of such a matrix, consisting of n(n−1)/2
bits. Thus, we will assume that the size of a graph with n vertices is equal to n(n− 1)/2.

Theorem 1. The problem of graph clustering is generically NP-hard.

Proof. Let S be an arbitrary problem in the class NP. Since the problem of graph clustering is
NP-hard in the classical sence, there is a classical polynomial reduction f , which for any input x
of S gets an input f(x) (a graph) for the graph clustering problem. Let A be a strongly generic
algorithm deciding the problem of graph clustering. A polynomial probabilistic algorithm B
with call of A as a subprogram, which will be an algorithm for the problem S works on input x
in the following way.

(i) Computes f(x) = G – a graph with n vertices (of size n(n− 1)/2).

(ii) Generates a random graph H with n2 − n vertices.

(iii) Run algorithm A on graph G ∪H.

(iv) If A(G ∪H) 6=?, then by Lemma 1 clustering of G ∪H gives a clustering of graph G and
right solution for the problem S.

(v) If A(G ∪H) =?, then outputs Kn.

Note that polynomial probabilistic algorithm B outputs correct answer on the step 3, but
incorrect answer on step 4. We need to prove that the probability of answer on step 4 is
less than 1/2.

Graph G ∪ H has n2 vertices, so its size is m = (n4 − n2)/2. The probability that for a
random graph G ∪H it holds A(G ∪H) =? is not greater than

|{G ∈ G : A(G) 6= ?}m|
|{G ∪H : H ∈ G}m|

=
|{G ∈ G : A(G) 6= ?}m|

|Gm|
× |Gm|
|{G ∪H : H ∈ G}m|

.

Since the set {G ∈ G : A(G) 6= ?} is strongly negligible, then there is a constant α > 0 such that

|{G ∈ G : A(G) 6= ?}m|
|Gm|

<
1

2αm
=

1

2α(n4−n2)/2

for any n.
On the other hand, graph H has n2 − n vertices, thus

|{G ∪H : H ∈ G}m| = |{H : H ∈ G}((n2−n)2−(n2−n))/2| = 2(n
4−2n3+n)/2.

Hence
|Gm|

|{G ∪H : H ∈ G}m|
=

2(n
4−n2)/2

2(n4−2n3+n)/2
= 2(2n

3−n2+n)/2.

Therefore, the need probability is not greater

2(2n
3−n2+n)/2

2α(n4−n2)/2
<

1

2

for large enough n.
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