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Abstract. This article explores the accuracy of numerical solutions, and suggests methods for
analyzing accuracy depending on the properties of the problem. Numerical studies of complex
expensive objects of technology and physics require that the computational results be obtained
with guaranteed accuracy. It also depends on the fact that in the work of technical objects there
are large intervals of operation time not observed experimentally. Therefore, there is a need to
describe the location of the observed and calculated values, as well as the accuracy with which
they are calculated. The effect of strong growth in estimates of error bounds is manifested for
a large number of methods used to estimate the error of a numerical solution. This means the
lack of correctness of algorithms for evaluating the accuracy of numerical solutions due to the
failure of the stability conditions with respect to perturbations of the right-hand side. For many
problems, among all the algorithms, the backward analysis of errors turned out to be the most
effective method for assessing the accuracy of numerical solutions. The backward analysis of
errors consists in the fact that when assessing the accuracy (error) of a numerical solution, the
numerical solution is considered as an exact solution to a problem close to the original problem.
A backward error analysis was proposed and developed in the algorithms of J Wilkinson in the
context of the numerical solution of problems of linear algebra, and in the algorithms of V'V
Voevodin, who widely distributed it to many areas of numerical analysis. In the framework
of the backward error analysis, the regularization of the algorithm for estimating the error of
a numerical solution is reasonably applied. This article explores methods for the backward
analysis of errors of numerical solutions.

1. Introduction

In order to evaluate the accuracy of a numerical solution, the backward error analysis algorithm
considers the numerical solution as an exact solution of a problem close to the original problem.
This distinguishes the backward analysis from the direct error analysis, which estimates the
accuracy of the errors in the calculation of numerical solutions. It is known that in the methods
of direct error analysis, a large increase in the bounds of estimates is noted, which in most cases
greatly exceeds the values of the numerical errors themselves. In the monograph [1], Stetter
argued that ” direct error analysis is almost never applicable, except for the simplest applications
of the discretization method, and usually you have to rely heavily on the information obtained
in the process of computing numerical solutions.” This thesis is confirmed by the article [2],
in which it is written that some classics of computational mathematics (it seems Richtmayer)
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noticed around 1950 that all difference schemes are incorrect in a certain sense: as h — 0 it
necessary to increase the mesh dimension unlimitedly. In fact, for many numerical algorithms,
the boundary of the error of the numerical solution (which can be constructed) is growing
rapidly, although the error values themselves often turn out to be much smaller. This was
the basis for the development of backward analysis problems of the theory of errors: given the
error of the function, it is required to determine the errors of its arguments. An unknown-
dependent equation with many solutions is constructed. In order to single out one solution to
the problem, it is necessary to put an additional condition (or several conditions). Hence, when
assessing the accuracy of the obtained numerical solution, this solution is believed to be an
exact solution to a problem approximating the original problem [3], [4], [5]. Such a method was
developed by Wilkinson J. [3] in problems for the numerical solution of linear algebra problems,
and extended to other areas of numerical analysis. Using direct and backward error analysis
[4], [5] Voevodin V V effectively computed majorants of rounding errors in the most important
methods of linear algebra, and significantly developed the results. If we consider the rounding
errors of the results of intermediate calculations as functions that depend on random input data,
for direct problems it was proved that the rounding errors asymptotically behave as independent,
uniformly distributed random variables (in terms of the number of digits of the representation
of numbers). Studies were conducted on the influence of small perturbations of the input data
on the solution of many problems of linear algebra, including incorrectly posed ones. Using the
backward error analysis, fairly accurate error estimates were obtained for solutions of systems
of linear algebraic equations (SLAE) [6], [7], as well as for many other problems.

2. The global error estimation algorithm for ODE systems in the operator form
Let a system of ordinary differential equations (ODEs) with initial data

(gl +
)=y e ) S t<T M)

be solved. This system is written in the form of a nonlinear operator equation F(y) = 0, in
which all additional conditions are included in the operator that maps some function spaces.
The requirements are imposed to ensure the existence and uniqueness of the solution. We apply
the numerical method and obtain the approximate solution, which approximates the projection
of the exact solution onto the difference grid of the domain of the function argument. The
uniform grid constructed for the ODE system is given as t, = a+nh, n =0,...,. N N—is a
positive integer number. To compare the exact and approximate solutions, one has to project all
the solutions into one functional space (discrete or continuous). Definition 1. The global error
of the interpolant of the numerical solution of the ODE system (1) is the difference between the
exact solution of the system (1) and the interpolant of the numerical solution. In some cases,
the term global error is also used to denote the norm of the difference of these values.
Definition 2. A defect, or residual, is a quantity

5(0) 1= (1) f(t,u). )

The backward analysis of numerical solutions errors can be performed by applying a defect to
compute the bound of global error || y(t) — u(t) ||, where y(t)— is an exact solution of the ODE
system (1) and w(t) is an interpolant constructed by a numerical solution y,. Since this means
that 2 = f(t,u) + &(t), the defect is equal to the quantity measuring the extent to which
the numerical solution does not satisfy the differential equation (1). The concept of a defect
(residual) can also be compared with the difference between the original equation (1) and the
equation whose exact solution is a numerical solution. The global error norm ¢ := |jy, — Ayl]| .
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In the general case, for a sufficiently smooth operator F' | the error ¢ = O(h"), where h is the
grid step, r is a positive integer characterizing the accuracy order of the numerical solution [1],
[2].

In evaluating the global error, the deferred correction approach [8] is of great importance,
consisting in computing a more accurate numerical solution 7, obtained by adding the correction
term to the numerical solution found earlier. Computation 7 requires the use of some numerical
method ¢. As ¢, you can use the method by which a numerical solution y;, was obtained, which
can be done with cost savings. As a variant of the method ¢ , a more efficient method order
p > 1 can also be used. For example, let the Euler method be chosen for problem (1)

—Yhn,0 + a, 1= 07
w(yn)i = { _ Whi=Yni1) (3)

7 ) 4 fti—1, yni-1), i=1,..,N

To implement deferred correction, a local error A := ¢(Ay) is used, which characterizes the
quality of approximation by an exact solution of the problem of solving the difference equation

é(yn) -
For the Euler method

N 0, i=0
T ) i=1,.., N

in this formula, 7 is some intermediate point on the i— interval. Obviously, if the magnitude
of the local error A is known with a sufficient degree of accuracy, then it is easy to find the
exact solution at the grid nodes Ay by solving the equation ¢(Ay) = A The main idea of the
deferred correction method is to obtain an estimate of the local error using some operator 1,
an estimator of the local error of the numerical solution y,. Since we used n = Ay + O(h")
to estimate the magnitude of the order AP, it would seem that at best the estimate would
satisfy ¥(n) = XA + O(h"*P). The more precise solution 7 is found as a solution of system of
equations ¢(77) = 1(n); if ¥(n) = ¢(Ay) + O(h™P), it can be expected, for a stable method
¢, 1 = Ay + O(hP) which gives an estimate of the global error n — 77 accurate to O(h"P). So,
deferred correction reduces the global error estimation problem to the local error estimation
problem. It can be assumed that the operator 1) must satisfy the relation 1)(Ay) = A+ O(h"P)
However, this is not enough, since¢ it satisfies this condition precisely and one cannot be sure
what ¢(yp,) is a suitable estimate, especially if y, is found when solving the equation ¢(y;) = 0.

It is necessary to put the second condition on psi so that the error O(h") when calculating
yp, is reduced by O(hP). Many numerical experiments have shown that this condition is usually
satisfied if ¥(Az) = O(hP) for an arbitrary sufficiently smooth function z

As an example of the estimated function of the local error of the Euler method, we consider

0, i=0
Y(yn)i == { _ (%) ) (f(ti,yh,i)*ff(Ltifl7yh,z‘71)) _i=1,..,N. (4)

For an arbitrary function z

0(a2) = = (3 ) (A 20)) + £ 2(7,)2 () Oh)

and with z =y

2

As a result, delayed correction has three components: a numerical solution yp, an effective
numerical method ¢, and an estimated local error function @ An improved solution 7 is
calculated on the basis of the equation ¢(gn) = 1 (yp) and satisfies the relation 7, = Ay +
O(h™*P), provided that for an arbitrary function y;, = Ay + O(h"), ¥(Ay) = o(Ay) + O(h"TP)
and (Az) = O(hP)

0By =~ (5) 9520 = 2o+ 002).
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3. Regularization in constructing an estimate of an approximate solution using a
defect change
We define the operator equation

Az=u,z€ Z,u €U, (5)

where Z,U— are some metric spaces. Problem (5) is called correctly posed if the following
conditions are satisfied: 1) the operator equation (5) is solvable for any right-hand side u € U
2) the solution of the operator equation (4) is stable under perturbation of the right-hand side of
the equation (5), this means the continuity of the inverse operator A~!, defined over the entire
space U; 3) the solution of operator equation (5) is unique. If at least one of these conditions is
not fulfilled, then the problem is called incorrectly posed [9].

The class of ill-posed problems is very wide; these include the problems of summing Fourier
series with coefficients given with errors, some optimal control problems, some linear algebra
problems, and minimizing functionals. The experience of using direct and backward error
analysis methods gives reason to believe that these methods are also incorrect problems; for
the backward analysis, the use of regularization of the problem is justified.

Suppose that the operator equation (5) is being solved with the right-hand side @, having a
unique solution Z € Z. As a rule, the right-hand side of @ is unknown , we can use its approximate
value us € U, for which the inequality p(ugs,u) < d. holds in the metric of the space U . In this
inequality, the value J is called the error of the element us. For a regularized problem, we can

construct a family Ry of such operators depending on the parameter 4, such that z5 = Rsus 2=
at 6 — 0. The following approach is possible for constructing a regularizing algorithm for an
ill-posed problem. Suppose that there exists an a priori given compact correctness set M,. We
also assume that the map A onto the set A is one-to-one. In this case, the backward mapping
A~! defined on Ay, is continuous, then for the approximate solution we can take an arbitrary
element z5 € M, such that p(Azs,us) < 6.

It is known [9],[10] that the element zs € M, minimizing the defect p(Az, us) on the set M is
called the quasisolution of the equation (4):

p(Azs, ug) = Zlél]\% p(Az, ug). (6)

This scheme uses additional information about the desired solution, sometimes this is enough
to select a regularization parameter. The generalized defect principle is often used as the main
algorithm for choosing a regularization parameter.

Let us analyze the regularization of the error estimation operator for numerical solutions
of systems of differential equations (1), where y € R", t € R and f : R x R — R". The
first type of error analysis is defect analysis (2), which operates by modifying the equation
and imposing fixed conditions on the equation. This is the most natural form of backward
analysis for ODEs. A numerical method is used to solve an equation whose exact solution is
known, this equation differs from the original one by introducing a defect (2), considered as a
non-autonomous perturbation of ODEs (1) [11],[12], [13]. The defect can be considered as an
autonomous perturbation of the ODE due to an increase in the dimension of the system, the
standard method of converting a non-autonomous ODE system to an equivalent autonomous
system is used, we set y,11 = ¢, and a new equation of the system is introduced, respectively. A
defect is most often used in the context of defect management problems in which the value of the
defect norm for a suitable norm (most often, the maximum norm) is controlled by a numerical
method. Numerical methods that use defect control most often contain an interpolant formed
on the basis of a numerical solution of the numerical method for estimating or calculating a
defect, then it is used to control the step size of the numerical method. The differential equation
under study should be considered as an approximate equation in any case, and therefore we will
go on to a modified problem for which we can find the exact solution.
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Rewriting the defect equation as

du

= W) + = (t), (7

we see that provided that ||v(t)|| < 1 for some acceptable norm in the proposed problem, the

numerical method constructs the exact solution of the ¢ -close problem. Depending on the
problem, it may be more appropriate to consider the relative defect

%= It (14 20(),

or a defect related to u (in this case 6 = 0(t,u))
d
d—? = f(t,u) + ev(t)u.
For example, for a piecewise cubic Hermitian interpolant on each segment [t,,, ;1]
Un(t) = (0 —1)2 (20 + 1) yp + 0 (0 — 1) hn f(tn, yn) + 0% (0 — 1)* hyy f(tn1, Yns1),
in the local coordinates 6 = t;ﬁ’ﬂ it is possible to calculate the derivative of the interpolant.
Using this function, you can find a defect.

4. Results of numerical experiments

A) For the oscillation equation (written in the form of a system of two differential equations of the
first order) on the interval [0, 10000], the values of the numerical solution were calculated using
the one-step Runge- Kutta method of the fourth order and the multi-step Adams method of the
fourth order. Given that the exact solution to the system is known and does not necessitate the
use of numerical methods aimed at compensating for complex areas of solutions (for example,
singularities or stiffnesses), an error estimate (global error) was obtained for the system. We
used deferred difference correction and Richardson extrapolation [14], as well as a reverse error
analysis. Estimates calculated using reverse error analysis look like this:

err(10) = 0.456148217- 1075, err(100) = 0.6465776799 - 10~°
err(1000) = 0.78572562324 - 104, err(10000) = 0.187345329827 - 103

B) Let us solve the ODE system

dy;t(t) — dy;t(t) - dyst(t) (0 — 0520 + 1

with initial data y1(0) = 0, y2(0) = 0, y3(0) = 1 using the one-step Runge- Kutta method of
the fourth order and the multi-step Adams method of the fourth order.

Error estimates calculated using delayed difference correction or Richardson extrapolation
are equal at t =1

erry1 (1) = .617423026019743194 — .617423026020436306 ~ 10~ ¢,
errya(1) = .1.29539072722494274 — .1.29539072723032510 ~ 1019,
erry3(1) = 1.34603247053568098 — 1.34603247053760988 ~ 101

Error estimates calculated using delayed difference correction or Richardson extrapolation are
equal at t =7.5

erry1(7.5) = 1075, erry1 (7.5) & 1074, erry1 (7.5) ~ 1072,
Error estimates calculated using the backward error analysis are equal at t = 7.5

erry1(7.5) ~ 1075 erry; (7.5) = 107, err,1(7.5) ~ 107°.
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5. Conclusion

The experience of estimating errors in numerical solutions confirms that one of the advantages
of the inverse error analysis is that applying it to a well-defined problem with a small inverse
error leads to a small direct error (global error for numerical solutions to ODEs). Finding a
certain set of finite diameter to which the exact solution belongs (at least for sufficiently small
errors) and estimating the distance from the approximate solution to its boundary allows us
to reduce the influence of the incorrectness of the inverse error analysis, which manifests itself
in the absence of stability. We can characterize the analysis of errors in numerical solutions as
an incorrectly posed problem. The regularization of the operator of the problem to be solved,
which consists in replacing the original system with systems of a simpler form, helps to obtain
more accurate error estimates.
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