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Abstract. The paper studies the dynamics of a classical non-relativistic charged particle
moving in a superposition of force-free and constant magnetic �elds. Using the �rst integrals
of the problem, a symplectic reduction of the corresponding Newton-Lorentz equations to an
auxiliary two-dimensional Hamiltonian system is performed. By the linearisation method, the
types of singular points of the reduced Hamiltonian system are classi�ed. The results obtained
are applied to the problem of studying the trajectories of the original Hamiltonian system that
are close to singular trajectories.

Introduction

One of the classical problems of modern theoretical physics is the problem of studying the
motion of a charged particle in an external magnetic �eld. This problem, for example, plays an
important role in considering the e�ects of bremsstrahlung and synchrotron radiation [1, 2].
Unfortunately, the cases of magnetic �elds that allow an explicit analytical solution of the
corresponding equations of motion (the Newton�Lorentz equations in the nonrelativistic case)
are extremely rare. That is why the vast majority of studies in this area is carried out using
approximate or numerical methods (see, for instance, [3, 4, 5]). Nevertheless, exactly integrable
models still do not lose their relevance. Playing the role of speci�c training grounds in analyzing
the correctness and accuracy of numerical algorithms, they also often act as initial approximations
in various perturbation theories (adiabatic approximation, averaging method, etc.).

In our previous work [6] we listed all constant electromagnetic �elds admitting the �rst-
order symmetry operator of the time-independent Schr�odinger equation. Among the classes of
the �elds found, only three �elds allowed the exact integration of the Schr�odinger equation: a
uniform magnetic �eld, a spherically symmetric electromagnetic �eld, and a magnetic �eld of
the form

B = (B0 cosx3, B0 sinx3, B3) , (1)

where B0 and B3 are some constants. It should be noted that in the case of B3 = 0 the �eld (1)
is a force�free magnetic �eld, that is, a �eld for which B · rotB = 0. This condition means
that the Lorentz force acting on the current, that generates the magnetic �eld, equals to zero.
The study of force-free magnetic �elds is of considerable interest in plasma physics [7, 8] and
astrophysics [9, 10].

Dynamics of a classical non-relativistic particle in the magnetic �eld (1) in case of B3 = 0 was
studied in the works [5, 11]. The main purpose of the present paper is to study the trajectories



AMSD-2019

Journal of Physics: Conference Series 1441 (2020) 012001

IOP Publishing

doi:10.1088/1742-6596/1441/1/012001

2

of a charged particle in the magnetic �eld (1) when B3 6= 0. Being of independent interest, the
solution of this problem also gives a lot of useful information about solutions of the corresponding
quantum problem and, in particular, about the spectrum of a quantum nonrelativistic particle
in the magnetic �eld (1).

The structure of the paper is as follows.
In the second section, the problem of the charged particle motion in the magnetic �eld (1) is

formulated. In the third section, we give the explicit form of the Newton�Lorentz equations for
a particle in the �eld (1). Using the symmetry of the problem associated with the �rst integrals
of motion, we perform the symplectic reduction of the original Hamiltonian system to a system
with a smaller number of phase variables. In the fourth section of the paper, we present the
classi�cation of singular points for the reduced Hamiltonian system and describe the types of
phase trajectories close to them. The �fth section of the paper discusses the dynamics of a
particle in the magnetic �eld (1) near singular trajectories, i.e., trajectories corresponding to
singular points of the reduced Hamiltonian system.

1. Problem statement

Let us consider a particle with mass and charge m = e = 1 moving in the external magnetic
�eld (1). Throughout the work we assume that B0 6= 0, because in the opposite case we have
the well-known problem of the charged particle motion in a uniform magnetic �eld. Also without
loss of generality we assume that B3 > 0. For further purposes, we choose the vector potential A
of the magnetic �eld (1) in the form

A1 = −B0 cosx3 −
1

2
B3x2, A2 = −B0 sinx3 +

1

2
B3x1, A3 = 0.

It is known that the Newton-Lorentz equation v̇ = v×B for a charged particle in the magnetic
�eld (1) can be rewritten in Hamilton's form

Ṗ = −∇rH, ṙ = ∇PH, (2)

where the Hamiltonian is

H =
1

2
(P−A)2 =

1

2

(
P1 +B0 cosx3 +

B3x2
2

)2

+
1

2

(
P2 +B0 sinx3 −

B3x1
2

)2

+
P 2
3

2
. (3)

Here P = v + A is the generalized particle momentum.
The aim of this work is to study the solutions of the Hamiltonian system (2) with the

Hamiltonian (3). First of all, we are interested in the possibility of reducing this problem to a
two-dimensional Hamiltonian system, which can be investigated by existing analytical methods.
In particular, we describe in detail the singular points of the reduced Hamiltonian system and
study the behaviour of the trajectories of system (2) corresponding to these singular points.

2. Theory

To reduce the Hamiltonian system (2) to a simpler form, we turn to the theory of symplectic
reduction [12, 13, 14]. It is appropriate to recall that the integrals of motion are functions
X = X(r,P) having identically zero Poisson bracket with the Hamiltonian:

{H,X} ≡ 5PH · 5rX −5rH · 5PX = 0. (4)

We will search for the motion integrals of our problem in the class of functions that are linear
in the momentums:

X(r,P) = ξ(r) ·P + χ(r). (5)
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Substituting (5) in (4) and solving the resulting system of di�erential equations for unknowns
ξ(r) and χ(r), we �nd four independent integrals of motion:

X0 = 1, X1 = P1 −
B3x2

2
, X2 = P2 +

B3x1
2

, X3 = −x2P1 + x1P2 + P3.

It is easy to verify that these functions form a four-dimensional Lie algebra with respect to the
Poisson bracket: {X1, X2} = B3X0, {X1, X3} = X2, {X2, X3} = −X1.

The algebra of integrals {Xi} admits a Poisson algebra of invariant functions, that is, functions
having a zero Poisson bracket with each function Xi: {Y,Xi} = 0. In our case, the generators of
this algebra can also be chosen as linear in the momentums (in the general case this is not the
case; see, for example, [15]):

Y1 =

(
P1 +

B3x2
2

)
sinx3 −

(
P2 −

B3x1
2

)
cosx3,

Y2 =

(
P2 −

B3x1
2

)
sinx3 +

(
P1 +

B3x2
2

)
cosx3, Y3 = P3, Y0 = −1.

Note that these functions obey the same commutation relations as the motion integrals Xi:
{Y1, Y2} = B3Y0, {Y1, Y3} = −Y2, {Y2, Y3} = Y1. This means that the Poisson algebras {Xi}
è {Yi} are isomorphic to the same Lie algebra; and we denote this Lie algebra by the symbol
L. It is essential that the Hamiltonian (3) functionally is expressed through invariant functions:
H(r,P) = H (Y (r,P)), where H(Y ) =

(
Y 2
1 + Y 2

2 + Y 2
3 +B2

0

)
/2 +B0Y2.

Let us realize the Lie algebra L by the functions

f1 =
√
B3q, f2 =

√
B3p, f3 =

1

2

(
p2 + q2

)
+ J,

that depend on the canonical variables p, q and are parametrized by a real parameter J . From
the system of equations

Xi(r,P) = fi(v, u; J), Yi(r,P) = fi(p, q; J), (6)

we express the variables P1, P2, P3, p, v and create a 1-form Θ = P · dr − pdq + vdu. It can be
veri�ed by direct calculation that this 1-form is closed and, therefore, locally exact: Θ = dS.
The explicit form of the function S, as the function of variables x1, x2, x3, q, u and J is written
out:

S(x, q, u, J) =
B3x1x2

2
+ Jx3 +

√
B3ux1 +

(
q2 + u2

2
+
√
B3ux2

)
tanx3 −

q(
√
B3x2 + u)

cosx3
. (7)

Let us consider (7) as the generating function of a canonical transformation from the variables
(Pi, x

i) to the new variables (p, q, u, v, J, τ):

P = ∇rS, p =
∂S

∂q
, v = −∂S

∂u
, τ =

∂S

∂J
. (8)

The system of equations (8) implicitly de�nes the desired canonical transformation. Expressing
from this system the original variables xi and Pi, we obtain

x1 =
1√
B3

(q cos τ − p sin τ + v) , x2 =
1√
B3

(p cos τ + q sin τ − u) , x3 = τ, (9)

P1 =

√
B3

2
(p cos τ + q sin τ + u) , P2 =

√
B3

2
(−q cos τ + p sin τ + v) , (10)

P3 =
1

2

(
p2 + q2

)
+ J. (11)
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Since the Hamiltonian (3) is expressed through the invariant functions Yi(r,P), it follows from
the equalities (6) that after the canonical transformation H will depend only on the variables p,
q and J : h(p, q, J) = H(f(p, q; J)),

h(p, q, J) =
p2

8
+
p2q2

4
+
q4

8
+
J +B3

2

(
p2 + q2

)
+B0

√
B3p+

J2 +B2
0

2
. (12)

It implies that the variables u, v and J are integrals of motion, and the dynamics of the problem
is completely determined by the reduced Hamiltonian system q̇ = ∂ph, ṗ = −∂qh

q̇ =
p3

2
+
pq2

2
+ (J +B3)p+B0

√
B3, ṗ = −q

3

2
− p2q

2
− (J +B3)q. (13)

In turn, the time dependence of the variable τ is determined by the solution of the system (13)
according to the following formula:

τ(t) =

t∫
t0

∂h

∂J
dt =

1

2

t∫
t0

[
p2(t) + q2(t)

]
dt+ J(t− t0) + τ0, (14)

where τ0 and t0 are some constants.
As can be seen from the above calculations, the study of the particle motion in the magnetic

�eld (1) is reduced to the study of solutions for the two-dimensional system of equations (13).
This system of equations is Hamiltonian with the Hamiltonian (12) and can be integrated by
quadratures. Indeed, using h(q, p, J) as an integral of motion, the following equality can be
considered

h(p, q, J) = E. (15)

Expressing from this equality the variable p, we obtain an equation for q: q̇ = ∂ph
∣∣
p=p(q)

. In this

equation, variables are easily separated and we obtain

t− t0 =

q∫
q0

dq

(∂h/∂p)

∣∣∣
p=p(q)

.

The problem, however, is that the equation (15) is a fourth-degree algebraic equation (with
respect to p), and in practical calculations it is cumbersome and unsuitable for �nding all its
roots in the explicit analytical form. In this regard, the behaviour of the trajectories of the
Hamiltonian system (13) was studied numerically in neighbourhoods of singular points. Despite
the qualitative character of such a study, it gave us a lot of useful information about the
trajectories of the Hamiltonian system (13), and, therefore, about the original dynamics of a
particle in the magnetic �eld (1).

3. Research results

Before proceeding to the consideration of the main results, we show the logic of their preparation.
Recall that the singular points of the Hamiltonian system are the points at which q̇ = ṗ = 0.
Equating the right-hand side of the equations (13) to zero, we �nd that the singular points of
the reduced Hamiltonian system are solutions of the algebraic system of equations

p3

2
+
pq2

2
+ (J +B3)p+B0

√
B3 = 0,

q3

2
+
p2q

2
+ (J +B3)q = 0.
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We consider the case B0B3 6= 0, and it follows that q = 0, while p is a root of the equation

g(p) ≡ p3 + 2(J +B3)p+ 2B0

√
B3 = 0. (16)

Depending on values of the parameter J the equation (16) has a di�erent number of real roots.
As a result, we have a di�erent number of singular points:

• J > Jcr (one singular point);

• J = Jcr (two singular points);

• J < Jcr (three singular points).

Here Jcr is the critical value of the parameter J de�ned as Jcr = −B3 − (3/2) 3
√
B3B2

0 .
As an illustration, a function graph J = J(p) implicitly de�ned by (16) is shown in Fig. 1

for the case B0 = 1.5 and B3 = 0.5. It is clear that the points of intersection on this graph with
the horizontal line corresponding to a �xed value J correspond to singular points. In this case,
the critical value of the parameter J equal to Jcr ≈ −2.06. As can be seen from the �gure, with
di�erent ratios between J and Jcr we will have a di�erent number of singular points.

J > Jcr

J Jcr

J < Jcr

p1

p2 p3

p4 p5 p6

-4 -2 0 2 4

-6

-4

-2

0

2

p

J

Figure 1. Roots of the equation (16) at B0 = 1.5 and B3 = 0.5 for di�erent meanings J : one
root p1 at J > Jcr, two roots p2 and p3 at J = Jcr, and three roots p4, p5 and p6 at J < Jcr.

Let p0 be a real root of the equation (16). In some neighbourhood of the singular point
O(p0, q0 = 0) the equations (13) can be linearized [16]

δq̇ = a δq + b δp, δṗ = c δq + d δp.

Here δq = q − q0, δp = p − p0, and a = −c = ∂q∂ph, b = ∂2ph, d = −∂2qh, and derivatives
are calculated at (p0, q0 = 0). It follows that the behaviour of the trajectories near the singular
point is completely determined by the eigenvalues of the matrix

A =

(
a b
c d

)
=

(
0

3p20
2 + J +B3

−p20
2 − J −B3 0

)
,
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These eigenvalues are equal to λ± = ±1
2

√
−∆(p0), where

∆(p) = [p2 + 2(J +B3)][3p
2 + 2(J +B3)]. (17)

Thus, depending on the sign of ∆(p0) eigenvalues of A can be either real or purely imaginary.
Note that the expression (17) via (16) can be rewritten in the alternative form

∆(p) = −4B0

√
B3

p2

(
p3 −B0

√
B3

)
. (18)

As a result, we obtain three following situations.

3.1. Case J > Jcr
In this situation, the cubic equation (16) has exactly one real root p0, i.e. the reduced Hamiltonian
system (13) has one singular point (p = p0, q = 0). In this case, the polynomial g(p) allows the
decomposition g(p) = (p− p0)(p2 + p0p + γ), where γ = p20 + 2(J + B3). Since this polynomial
has no real roots except p0, the discriminant D = p20− 4γ of the quadratic trinomial p2 +p0p+γ
is negative. From it we obtain the inequality

γ = p20 + 2(J +B3) >
p20
4
≥ 0,

which implies the positivity of ∆(p0) (see formula (17)). Therefore, the eigenvalues λ± of the
matrix A are purely imaginary: λ± = ±i

√
|∆(p0)|/2. Thus the point O(p = p0, q = 0) is a

singular point of the center type.

3.2. Case J = Jcr
In this case, the roots p0,1, p0,2 = p0,3 of the equation (16) can be calculated explicitly:

p0,1 = −2 sgn(B0)
(
|B0|

√
B3

)1/3
, p0,2 = p0,3 = sgn(B0)

(
|B0|

√
B3

)1/3
.

Substituting p0,1 into (17), we obtain ∆(p0,1) = 9|B0|4/3B2/3
3 > 0. From this we conclude that

the singular point O1 with the coordinates p = p0,1 and q = 0 is a singular point of the center

type.
For the root p0,2 we have ∆(p0,2) = 0, therefore, the linearisation method does not applicable

in this situation. The analysis of such singular points requires the use of more advanced methods;
however, it is beyond the scope of this work. Some information about the phase trajectories of
the reduced Hamiltonian system corresponding to energy values close to E0,2 = h(p0,2, 0, Jcr) is
given in �g. 2.

3.3. Case J < Jcr
Let us denote by p0,1, p0,2, p0,3 three di�erent real roots of the equation (16). These roots satisfy
the relations

p0,1 + p0,2 + p0,3 = 0, p0,1p0,2p0,3 = −2B0

√
B3.

From this we conclude that one of the roots (for de�niteness, let it be p0,1) has the opposite sign
B0, while the other two roots have the same signs with B0.

Since p0,1 and B0 have di�erent signs, using the equation (16) we can write p20,1 +2(J+B3) =

−2B0

√
B3/p0,1 > 0. But it means that ∆(p0,1) > 0, that is, the point O1(p0,1, 0) is a singular

point of the center type.
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O2

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.0

0.5

1.0

q

p

Figure 2. Level lines of the function h(p, q, Jcr) corresponding to the energy values Ek =
h(p0,2, 0, Jcr) + 0.05k, where k = −5 . . . 5. Here B0 = 0.25, B3 = 0.5.

Let us now analyze the two remaining singular points O2 and O3 corresponding to the roots
p0,2 and p0,3. Suppose that B0 > 0, and let 0 < p0,2 < p0,3. We introduce the notation

p̄ = (B0

√
B3)

1/3, and we have

g(p̄) = 2
(
B0

√
B3

)1/3(
J +B3 +

3

2
3

√
B2

0B3

)
< 0,

since J < Jcr. Moreover, g(0) = 2B0

√
B3 > 0. But it is possible if and only if 0 < p0,2 < p̄ < p0,3,

where p̄ = (B0

√
B3)

1/3 divides the roots p0,2 and p0,3. As a consequence, we have

p30,2 < B0

√
B3 < p30,3. (19)

Using for ∆(p) the expression (18) and taking into account inequalities (19), we obtain the
following estimates:

∆(p0,2) = −4B0

√
B3

p20,2

(
p30,2 −B0

√
B3

)
> 0, ∆(p0,3) = −4B0

√
B3

p20,3

(
p30,3 −B0

√
B3

)
< 0.

Suppose now that B0 < 0, and let p0,3 < p0,2 < 0. In this case, it can be shown by
the arguments similar to those made above that ∆(p0,2) > 0, ∆(p0,3) < 0. Thus the point
O2(p0,2, 0) is a singular point of the saddle type, and the point O3(p0,3, 0) is a singular point of
the center type.

Having considered the main results of the study, we turn to their analysis and interpretation.

4. Result discussion

Any singular point O(q0 = 0, p0) of the reduced Hamiltonian system (13) is its solution. From
(14) we see that the time dependence of the variable τ in this case is linear: τ(t) = ω(t− t0)+τ0,
where ω is the constant determined by the formula ω = p20/2 + J. It is appropriate to recall
that that after the canonical transformation from the original coordinates (Pi, xi) to the phase
coordinates (q, p, u, v, J, τ), the variables J , u and v are integrals of motion by construction.
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Thus, singular points of the reduced Hamiltonian system correspond to the phase trajectories of
a particle of the form (see (9) � (11)):

x1(t) = − p0√
B3

sin [ω(t− t0) + τ0] +
v√
B3
, x2(t) =

p0√
B3

cos [ω(t− t0) + τ0]−
u√
B3
,

x3(t) = ω(t− t0) + τ0,

P1(t) =
p0
√
B3

2
cos [ω(t− t0) + τ0] +

u
√
B3

2
, P2(t) =

p0
√
B3

2
sin [ω(t− t0) + τ0] +

v
√
B3

2
,

P3(t) = ω.

Such phase trajectories will be called singular.
It is clear that the projections of singular phase trajectories on the coordinate space have a

particularly simple form: the particle makes a helical motion about the axis x3 with the radius
R = |p0|/

√
B3. The value of ω, as can be seen from the above formulas, is the angular frequency

of a particle.

Figure 3. Trajectories of a particle in the magnetic �eld (1) with B0 = 1.5 and B3 = 0.5. On
the left �gure, the singular trajectory corresponding to a singular point of the center type is red,
a trajectory close to it is black. On the right �gure, the singular trajectory corresponding to a
saddle-type singular point is red, and the trajectory obtained by a small "wiggling" of the initial
conditions is black.

Depending on the type of a singular point (center or saddle), we have di�erent behaviour of
the trajectories of a charged particle in the magnetic �eld (1) near the corresponding singular
trajectory. In the case of a singular point O1(q0, p0) of the center type, the phase trajectories
of the reduced Hamiltonian system near O1 have the shape of an ellipse with the center at the
point O1. The function τ(t), de�ned by the formula (14), in addition to the linear trend also
acquires a rapidly oscillating character. The amplitudes of these oscillations are the smaller, the
closer the phase trajectory q = q(t), p = p(t) is to a singular point. In accordance with this, a
particle travels along a slightly deformed helical path: moving along the turns of the spiral, the
particle also performs an uneven rotation around them (see �g. 3).
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A di�erent picture takes place in the case of trajectories of a particle close to a singular
trajectory corresponding to a singular point of the saddle type. As is known, the phase curves
of Hamiltonian systems near a singular point of the saddle type have the form of hyperbole;
such curves can quite strongly move away from the singular point. As a result, we have unstable
particle dynamics near the corresponding singular trajectories: even with very small deviations
of the initial conditions over time, the trajectory can signi�cantly deviate from the spiral. Fig. 3
shows the behaviour of one such trajectory, initially being very little di�erent from a singular
one. This �gure also shows that a signi�cant departure of a particle from a singular trajectory is
periodic, that is, a disturbed motion will sometimes move away from a singular trajectory, and
then approach it.

Conclusions

In this paper, we studied for the �rst time the dynamics of a particle that is in a superposition of
force�free and uniform magnetic �elds. Using the existing symmetries of the problem associated
with the �rst integrals of motion, we performed a symplectic reduction of the original system
of equations to a reduced two-dimensional Hamiltonian system. Further analysis included the
study of the phase trajectories of the reduced Hamiltonian system near singular points. We
have shown that, depending on the initial conditions chosen, singular points can be of the center
or saddle type. In conclusion, we explicitly determine the original trajectories of the particles
corresponding to the singular points of the reduced system, and also qualitatively describe the
trajectories close to them.
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