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Abstract. The problem of comparing two diffeomorphic images is presenting  in the paper To 
solve the problem, a functional is formed that characterizes the evolution of image 
transformation from the initial to the terminal, and a penalty for deviating the trajectory from 
the required one. The problem of comparing two images using the construction of a functional 
with the optimal image metamorphosis is considered. The metamorphosis of images of objects 
from initial to terminal using functional forms is considered. 

1. Introduction 
The paper presents the problem of comparing two diffeomorphic images, which are curves defined by 
a set of points. To solve the problem, a functional is formed that characterizes the evolution of image 
transformation from the initial to the terminal, and a penalty for deviating the trajectory from the 
required one. The problem is reduced to the Euler – Poincaré system of equations. A learning 
algorithm for solving the problem of a diffeomorphic transformation is developed. The problem of 
comparing two images is used for the case of metamorphosis of images when there is no exact 
correspondence between the images. The metamorphosis of images of objects from initial to terminal 
using functional forms is considered. The algorithms presented can be used in biometric systems, 
when classifying images and recognizing images. 

2. Diffeomorphic mappings and metamorphoses  
A differentiable map :f →M N  is called a diffeomorphism ,M N  for manifolds if it is one-to-one 
and the map 1 :f − →N M  is differentiable. The diffeomorphism group of a differentiable manifold 
M  is a diffeomorphism group ( )Diff : →M M M . 

If two objects are given by sets of points , ; 1, ,i ix y i N=  , then the Euclidean metric can be used to 

form the metric space 2L : ( )
0,5

2

1

N

i i
i

d x y
=

 
= − 
 
∑ . There is an infinite set of trajectories of 

diffeomorphisms i ix y→ , so it is necessary to choose the characteristic of each trajectory and 
minimize this characteristic. 

Diffeomorphic mapping of images: 0 1n n→ , where 0n  is the source image template and 1n  is the 
target image, can be represented by a trajectory of diffeomorphisms ( ) [ ]; 0, ,1tg g t t= ∈  , in which 
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( )0 Idg =  and ( )1 01n g n=  . The group of diffeomorphisms consists of elements ( )Difftg G =∈ M  

that generate orbits of images { }g n g G= ⋅ ∈M � ; these orbits can be considered as a smooth 
Riemannian manifold, since for each n∈M  there exists a scalar product that induces a norm.  

In the LDDMM method (large deformation diffeomorphic metric mapping) [1, 2], the minimum of 
the length of the trajectory of transformations in the space of diffeomorphisms is used as a metric. To 
do this, the authors determine the Lagrangian whose integral on the trajectory of this map must be 
minimal. 

Let M  be a differentiable variety of visualized objects on which a Lie diffeomorphism group 
( )DiffG = M  with an algebra g  acts. Suppose that g  is a Hilbert space with a norm ⋅

g
. The 

Riemannian metric can be determined from the scalar product of vector fields 

2

*, , ; , ;
L

v w v w v w v= ∈ ∈g gg
g gL L , where gL  is a linear invertible operator. 

Let us call metamorphosis – a binary differentiable operation that transforms the initial image 
(template) to the terminal (target) image with obtaining a set of intermediate forms. Consider the 
operation of metamorphosis for a pair of visualized objects [2]: ( ),t tg Gη ∈ ×M , parameterized 

[ ]0, ,1t∈  . tg  is a deformation – an element of the diffeomorphism group 0, idtg G g∈ = . We will 
use symbols ,t tnη ∈M  where t t tn g η= ⋅ ∈M  is associated with the evolution of an image of an 
object: in the case consttη = , the metamorphosis is a diffeomorphism; tη  – the residual part of the 
metamorphosis, which cannot be represented by a diffeomorphic image evolution. 

In the case of metamorphosis for a pair of visualized objects, the estimation of the dynamics of 
changes in the image and the vectorial velocity field is decomposed to a diffeomorphic mapping and 
the residual part of the metamorphosis. Metamorphosis allows the disturbance of a diffeomorphic 
constraint to be resolved: the correspondence in the topology between the template and the target 
image. In this case, the exact diffeomorphic matching between the template and the target image is 
replaced by an inexact image evolution matching. The choice of the residual part of the 
metamorphosis is not unambiguous and the problem is considered to be incorrect, for the solution of 
which the regularization method is applied. 

The choice of the residual part of the metamorphosis tη  is not unambiguous, that is, the problem is 
incorrect. To solve ill-posed problems, the regularization method is applied; the functional  is 

minimized: ( )
1

2 22 1

0

,t t t t t t tE u n u n dt u g gσ − −= + − =∫  
g

, on a trajectory with conditions 0 0 0tn n η= = =  

and 1 1tn n= = ; here is the regularization coefficient 2σ − . Note that in the absence of the inclusion of a 

diffeomorphism ( 1 0t t tu g g −= = ), the functional is reduced to the form: 
1

2

0

; 1tn dt σ =∫  . 

3. Euler – Poincaré equation 
We find the optimal deformation that transform one image to another, and form a minimized 

functional: ( )
1

0

, , ,L g g dtη η∫  , with the Lagrange function ( ), , ,L g g η η  and with the boundary 

conditions 0 0n η= ∈M , 1 1 1n gη= ∈M . Suppose that ( ), , ,L g g η η  is invariant under the right action 

of an element of a group h G∈ : ( ) ( )1, ,g h gh hhh −= . For metamorphosis ( ),g η , we introduce the rate 

of change of an element of the diffeomorphism group g : 1u gg −= ∈ g , where g  is the corresponding 
Lie algebra. With this: n gη= , g= ν η , from where n unn = − . Then the Lagrangian can be reduced 
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to the form: ( ) ( ), , , , ,L g g l u nη η n= . The proposed method for comparing images is based on solving 

a variation problem: ( ), , 0l u n dtd n =∫ . 

From the condition for optimizing the action: ( )
1

0

, ,S l u n dtn= ∫  with respect to the variation uδ  

and ( )n gω δδ  η= =  for fixed 0 1,n n , we define the Euler – Poincaré equations. We find the time 
derivative ω : u unω δn ω δ= + + . The condition of variational optimization: 0Sδ =  leads to the 
relation:  

  ( )( )
1

0

, , , 0.l l lu u u n dtu n v
d d dd ω ω ω dd d d+ + − − =∫    (1) 

where one can get the system of equations: 
    0l l nu

δδ
δδn + ◊ = ,    (2) 

   ( ) 0l l lut n
δδδ 
δnδnδ 

∂ + − =∂ е ,    (3) 

here the operator ◊  is determined from the relation: , ,v a a vξ ξ◊ = , ξ∀ ∈g ; operator е  is 

determined from the relation: , ,l lu uδδ ω ωδν δν=е . To build a complete system of equations, 

we add a relation for the evolution of the image in metamorphosis: 
    n unn= + .     (4) 

The elements of the group of diffeomorphisms ( )g x G∈ , x∈M  can be represented in the form of 
flows of ordinary differential equations that evolve in time [ ]0,1t∈  with a vectorial field of speeds 

( )u ⋅ :  ( ) ( ) ( )0; t

dg x
u g x g x x

dt == = . 

We write the scalar product in space in the form corresponding to the metric of S. Sobolev: 

( )2

*
, , ; ; , ,

L
u v u v u vdx x u u u= = ∈ =∫g gg g g

M

L L M  where gL  is a linear operator mapping 

elements of a Lie algebra g  onto elements of a Lie coalgebra: *g : *: →g g gL . In the case of a 
mechanical interpretation, the quantity ugL  has the meaning of the momentum vector, u  – the 

velocity vector, and  gL  – the inertia tensor. The presence of a norm ⋅
g
 in space g  allows us to 

consider this space as metric. We introduce the inverse operator K , which we formally present in the 
form: 1−= gK L . 

For elements of the group [ ]; 0,...,1tg G t∈ ∈  there are rates of change tg : 1t
t

dgu g
dt

−= ∈g that 

minimize the functional: ( )
1

0

,S l u dtν= ∫  with Lagrangian: 

    ( ) 2 22,l u u vν σ −= +
g

,    (5) 

where, in accordance with (4): n unn = − , on the trajectory connecting the elements of the group 

0 10 1
,

t t
g g g g

= =
= = ; here, the first term 2u

g
 corresponds to the regularization energy of a 

diffeomorphism, similar to A. Tikhonov’s regularization when solving ill-posed problems; the second 
term 22 vσ −  imposes a penalty for deviation n unn = −  inversely proportional to the value 2σ . 
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The expression for the momentum can be formally written as p u= gL ; then the inverse 

expression:, 1u p p−= =gL K  which is representable using an approximating scalar function ( ),K x y : 

( ) ( ) ( ),u x K x y p y dy
Ω

= ∫ . For an operator: 2id α= − ∇gL  in space 2R , the inverse operator is 

formally the operator: 1L−= gK , which can be approximated by a Gaussian scalar function: 

    ( )
21

, x yK x y e αβ
−− −= .    (6) 

The evolution equations of the Euler – Poincaré diffeomorphisms can be obtained by solving the 
equations of the variational problem with Lagrangian (5): 
  ( ) ( ) ( )1, , ,Tg u g u p p p Dp u p u Du p−= = = = − − ∇ − gL K    (7) 

where i

j

fDf x
 ∂=  ∂ 

. 

4. Metamorphosis of point sets  
Let two sets ( ) ( )0 1 1 1, , , , ,N Nn x x n y y= =   of labeled points be given in M . We pose the problem 

of finding such a minimal diffeomorphism: :g →M M  that ( ) ; 1, ,i ig x y i N=�   (inexact 

correspondence). Set of diffeomorphisms ( )Diff M  determine the structure of a group. 
For point sets, one can write: 

    ( ) ( )
1

N

i i
i

p y p y qδ
=

= ⋅ −∑ ,    (8) 

from where: 

    ( ) ( )
1

,
N

i i
i

u x K x q p
=

=∑ .    (9) 

Let the space M  contains N  objects (points) that are subject to deformation. Consider the action 
S  with Lagrangian: 

   ( ) 2 22

1
,

N

k
k

l u uν σ ν−

=

= + ∑g .     (10) 

From equations (2, 4, 7) and notation ( )1,.., Nn q q= , we obtain the relation for point sets in the 
form [3, 4]: 

  
( ) ( ) ( )

( )

2

1

1
1

; 1,.., , , ,

, 0,

N

k k k k k
k

N
T

k k l k l
l

q u q p k N u q K q q p

p K q q p p

σ
=

=

= + = =

+ ∇ =

∑

∑





    (11) 

where 2
k kp σ ν−= . Using inexact metamorphosis in (11) allows you to map the initial images in the 

target, even in case of a mismatch of their topologies. 

5. Initial values learning 
For a system of differential equations: ( ) ( )( ),x t u t x t= , where ( ),u t x  is a function continuous on t  

and x  with the condition ( )
0

0 0t t
x t x x

=
= = , there is a continuously differentiable solution 

( ) ( )0 0, ,x t t t x= ψ : on an interval [ ]0 0,t t t∈ − ε + ε  for some 0ε > . The right-hand sides of differential 

equations (11) are continuously differentiable with respect to the arguments ( ), ; 1, ,k kq p k N=  , so 
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solutions (11), considered as functions ( )( ) ( )
0 0

0, , ,k k k kt t t t
q p t t q p

= =
= ψ , will be continuously 

differentiable with respect to the arguments ( )
0 0

0 , , ; 1, ,k kt t t t
t q p k N

= =
=  . 

Consider the method of learning in the problem of finding metamorphosis ( ) ( )0 1k kq q→  while 

minimizing the functional ( ) ( ) 2

1
1 min

N

i i
i

J q t q
=

=  −  → ∑ , where ( ) ( ) ( )( )1 ,.., Nq target q t q t=   – the 

required set of points. Since the initial conditions ( )0q  for q  are given in equations (11) and ( )1p  
the terminal conditions for the vector p , we obtain a two-point boundary value problem. Find the 
required vector of initial values: ( ) ( ) ( )( )10 0 ,.., 0Np p p=  by iterative method for determining the 
initial conditions for the system of differential equations (11): 

( ) ( ) ( )
1 0 0 μ

0
k k Jp p

p
+ ∂

= + ⋅
∂

, 

where μ  is the learning coefficient; 
( ) ( ) ( )1

, ,
0 0 0N

J J J
p p p

 ∂ ∂ ∂
=  

∂ ∂ ∂  
  – gradient of functional  by vector 

( )0p ; k  – iteration number. To find the components of the gradient 

( ) ( )

( )
( )0 0

lim , 1, ,
0 0ip

i i

J J JJ i N
p pδ

δ
δ→

+ −∂
= =

∂
 , the functional J  is determined by numerically solving a 

system of differential equations (11) with a vector of initial conditions ( ) ( ) ( )( )10 0 ,.., 0Np p p=  and a 
functional J J+ δ  by numerical solving a system of differential equations (11) with a vector of initial 
conditions: 

( ) ( ) ( ) ( ) ( ) ( )( )1 1 10 0 ,.., 0 , 0 , 0 ,.., 0i i i i Np p p p p p pδ− += + . 

6. Metamorphosis of images  
Consider the case when M   –  the space of smooth functions (images) Ω→ R  with an action 
( ) 1,g n n g −→ ⋅ . We denote the coordinates of the image element by the symbol dq∈Ω∈R . For the 

case of metamorphosis of images with Lagrangian: ( ) 2 22,l u uν σ ν−= +
g

, we rewrite the equations of 
evolution (2, 7) in the form [3, 4]: 

    

( )
( ) 2

0,

,

0,

T

z zu

n n u z

u z n

σ

+∇ =

+ ∇ ⋅ =

+ ∇ =





gL

    (12) 

where 2z σ ν−= . 
For the discrete two-dimensional case, we assume: ( ),

T

ij i jq x y= ; 2;x y dq∆ = ∆ = ∆ = ∆ . We write 

the expression for u  in the form: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2, , ; , .
N N

ij ij ij ij
j i

u q K q q z q n q dq K q q z q n q q q
Ω

= − ∇ ≈ − ∇ ∆ ∈Ω∈∑∑∫         R  (13) 

The operator 1−= gK L  is approximated by a Gaussian scalar function: 

   ( ) ( )2 2121 1 2 1 21 2
1 2,

x x y yq qK q q e e
ααβ β
−− − − + −− −= = .   (14) 
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7. Functional forms  
Consider a pair ( ),X f  that is a functional form [5] of regularity s  in nR , if X  is a bounded sC -
submanifold in a manifold nS∈R  and a function :f X → R . We assume that the function f  
belongs to ( )sH X  – the set of Sobolev functions of order s  on X . When 0s = : ( )0H X  is the 

space ( )2L X  of square integrable functions on X . If 1s ≥  Sobolev space ( )sH X  on a submanifold 

X  is a Hilbert space with an inner product: ( ) ( )2

2

1 2 1 2
0

, ,s

s
k k

H X L X
k

f f f f
=

= ∇ ∇∑ . 

We define metamorphosis on ( ),X f  as a pair tv ∈g  and a signal [ ] ( )( )2 0,1 , s
th L H X∈ . The time 

integration ( ),t tv h  parameterizes the form transformation path ( ) ( ), , ,v v v v s
t t t V tG H Xφ V φ V∈ ∈  through 

dynamic equations: 0 0, , Id, 0v v h v v
t t t t tv hφ φ ς φ ς= = = =  . We define the following path energy: ( ),v v

t tφ ς : 

( ) ( )
( )

1 1 212

0 0

,
2 2 s

t

f vV
t t t

H X
E v h v dt h dt

γγ
f

−
= +∫ ∫ 

γ
 with ( )v

t tX Xφ= , where ,V fγ γ  the weight 

parameters. The distance between two given forms ( ),X f  and ( ),X f′ ′  can be determined from the 

relation: ( ) ( )( ) ( ) ( ) ( ) ( ){ }1 1, , , inf , | , , ,v vd X f X f E v h X f X ffς ′ ′ ′ ′= ⋅ = . 

In the context of functional forms with a metamorphosis parameter, taking into account the 
parameterized template ( )0 0,q f  and target ( ),tar tarq f , we consider the variational problem in the 
form: 
 ( ) ( ) ( ){ }0

* *
1 1, arg inf , , ; ;

tq t t t q t t tv h E v h q f q v q v f hξ= + ∆ = = =  ,   (15) 

where ( )1 1,q f∆  is the member that defines the discrepancy between the transformed form ( )1 1,q f  and 
the target form. 

The characteristics of the solution can be found using optimal control methods, in which there are 
two state variables ( )sf H M∈  and ( ),s nq C M∈ R  and two time-dependent controls tv V∈  and 

( )s
th H M∈ . We introduce two adjoint state variables ( )*

,s np C M∈ R  and ( )s
fp H M∈  for the 

formation of the Hamiltonian [5]: 

  ( ) ( ) ( ) 2 2, , , , , | |
2 2 s

q

ff f V
t t q t t t tV H

H q f p p v h p v p h v h
γγ

ξ= + − − .  (16) 

The continuous d -dimensional form ( ),X f  embedded in can nR  be represented by a finite set of 

P  points with an attached signal. We present the discrete form as an array ( ), ,x f C , where 

( ) 1,...,k k Px x
=

=  is a matrix P n×  of P  coordinates of the vertices n
kx ∈R , ( ) 1

1,...,
P

k k P
f f ×

=
= ∈R  –  

vector of signal values associated to each vertex, { } ( )11, , t dC P × +∈   is a connectivity matrix. From the 

triplet ( ), ,x f C  we define a region nT ∈R  consisting of d -dimensional simplexes whose vertices are 

determined by x  and C . Consider a function :f T → R  satisfying ( )k kf x f= . sH -norm of function 

f  on T  is denoted ( )sH x
f  and can be written as ( ) P P

sD x ×∈R , where ( ) P P
sD x ×∈R  is a symmetric 

positive definite matrix. To calculate 0H  we define we define ( )0
P PD x ×∈R  – the matrix of a 
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quadratic form: ( ) ( )2

2
0

T
L x

f f D x f f→ = . To calculate 1H  we define ( )1
P PD x ×∈R  – the matrix of 

the quadratic form: ( ) ( ) ( )2 2

2 2
1

T
L x L x

f f D x f f f→ = + ∇ . 

State variables in the discrete case are vectors ,x f , and the metamorphosis is determined by a pair  
of ( ),t tv h  with ( ) 1

,
P

t k th h ×= ∈R , so that we have finite-dimensional evolution equations: 

( ), , , ,,k t t k t k t k tx v x f h= = . 

Energy takes the form: ( ) ( )
1 1

2

0 0

,
2 2

f TV
t t s t tE v h v dt h D x h dt

γγ
= +∫ ∫γ

. The Hamiltonian corresponding 

to the minimization problem with this energy (compare with (16)): 

 ( ) ( )( ) ( ),
2

,, , , , , ,,
2 2

f TV
t t t t V l t t t t s t t

f T T f
t l t t tH x f p p v h p K x v h v Dp h x h

γγ
= +⋅ − −

γ γ
, (17) 

where P np ×∈R  and 1f Pp ×∈R  are discrete variables of the adjoint state. 
Denoting K  the vector core associated with the RKHS of the space of vector fields tv , we obtain 

the optimality conditions along the geodesics ( ) ( ), , , , , , , , , , 0f f
t t t t t t t t t t t tH x f p p v h H x f p p v h

v h
∂ ∂

= =
∂ ∂

, 

from which: ( ), ,
1

1 ,
P

t l t l t
lV

v K x p
γ =

= ⋅∑ , ( )11 f
t s t t

f

h D x p
γ

−= . The optimal velocity fields tv  are 

parameterized by the momentum vectors ,k tp , which leads to the following discrete Hamiltonian: 

  ( ) ( ) ( )1
,

1 1, , ,
2 2t t

Tf T f f
r t t t t x x t t s t t

V f

H x f p p p K p p D x p
γ γ

−= + ,  (18) 

where ( ), , , , ,
, 1

,
t t

P
T T
t x x t k t k t l t l t

k l
p K p p K x x p

=

= ∑ . 

Discrete analog of Hamiltonian equations: 

( )

( ) ( ) ( ) ( ), , , , , , , , , , , , .

Tf
t t t t

T
f f f f

r t t r t t r t t r t tf

x f p p

H x f p p H x f p p H x f p p H x f p p
p p x f

=

 ∂ ∂ ∂ ∂
= − − ∂ ∂ ∂ ∂ 

  

 

Consider the comparison of the shapes of objects with currents [6]. One of the interpretations of the 
problem of comparison is that for each point on the sampled surface of the template there is a 
corresponding point on the terminal image. However, a point on one surface may not have a 
homologous point on another. The approach of generalized distributions, called currents, makes it 
possible to move away from strict point matching of surfaces. Consider differential 2-forms on 
surfaces embedded in 3R . Differential 2-form in 3R  is such a mapping ( )x xω→  that ( ) 3,x xω ∀ ∈R  
is an skew-symmetric bilinear function on. 2-form is an object that can be integrated over an oriented 
surface S . Let 1 2, ,x xu u x S∀ ∈  be an orthonormal basis of the tangent plane at a point x . Associate with 
the function: ( ) ( )( ) ( )1 21,x x

S

S x u u d xω ω σ= ∫ , where dσ  is the element of the surface area. The space 

of two-dimensional currents is defined as the dual space with respect to 2-forms ( )xω . Let B  be the 
skew-symmetric bilinear function on 3R ; then its representative 3B∈R  satisfies the relation: 
( ) ( ),B Bη ν η ν= ⋅ × .  
Let G  - group of diffeomorphisms is defined together with a group action that acts on a set of 

objects M  (hypersurfaces in 3R ). For two elements 1 2,S S ∈M , it is required to find the optimal 
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transformation Gφ ∈ , that: 1 2S Sφ = . Consider transformations [ ], 0,1t G tφ ∈ ∈  connecting the two 
elements in G . We define the optimal correspondence *φ  between S  and T  how *

* 1
vφ φ= , where *v :  

( ) *

1 22* 2
1

0

arg inf v
t RV W

v v dt S Tσ f−  = + − 
  
∫ . 

 Let S  be the triangular mesh in 3R  [6]. For a given face f  from S , let 1 2 3, ,f f f  denote its 

vertices, 1 2 3 2 3 1 3 1 2, ,e f f e f f e f f= − = − = −  its edges, ( ) ( )1 2 31
3c f f f f= + +  its center, and 

( ) ( )2 31
2N f e e= ×  the normal vector with a length equal to its area. We denote by tS  a triangular 

grid at a time t  with faces tf  having vertices ( ) , 1,2,3i i
t tf f if= = . 

Surface mesh S  is represented as a current approximated as follows: 
( )( ) ( ) ( ) ( )1 2

x x f
f f

S x u u d xω ω σ= ⋅ ×∑∫C , where fσ  is the surface measure on f . We approximate ω  

on the verge of its value in the center. Thus, we have an approximation ( ) ( )( ) ( )
f

S c f N fω ω≈ ⋅∑ . 

Let ,f g  index the faces of the surface 1S  and ,q r  index the faces of the surface 2S ; The metric 

( ) ( ) *

2
1 2 W

E S S= −C C  between these two surfaces in the second approximation is: 

  
( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )
, ,

,

, 2 ,

   ,

T T

f g f q

T

q r

E N f K c g c f N g N f K c q c f N q

N q K c q c r N r

= − +

+

∑ ∑

∑
, (19) 

where ( ),K ⋅ ⋅  Gauss approximation function (6). 

Let find the distance between the functional forms in space ( ),E M , where M  - the domain of 

values of the signal functions [7]. The functional p -form on ( ),E M  is an element ( )0 ,p E MΩ  of the 

space of continuous p -dimensional differential forms ( )*
0 , pC E M E× Λ . A functional p -current is 

defined as a continuous linear form on ( )0 ,p E MΩ ; the space of functional p -currents is denoted as 

( )0 ,p E M ′Ω . Functional currents supplement ordinary currents with signals in domain M . The 

functional p -form and can be written in the coordinate system ( )1,..., nx x E∈ : 

( ) 1

1

1

,...,
1 ..

, ... p

p

p

ii
i i

i i n
a x m dx dxω

≤ < < ≤

= ∧ ∧∑ . Let X  be an orientable submanifold of the dimension d  of 

the form ( ),X f  and f  – a measurable function :f X M→ . Differential form 

( )( ) ( )0, , ,d
x f x E Mω ω∈Ω  can be integrated in X : ( ) ( ) ( )( ) ( ) ( )0, ,, ; ,d

X f X fx f x
X

C C E Mω ω ′= ∈∫ Ω . 

The metric between two currents is a combination of a coordinates matching of local elements and 
the proximity of signals estimated by the kernel fk . Let ( ),X f  and ( ),Y g  be functional discrete 

forms with which the representations of their functional currents are associated: ( ) ( ), ,
1

X
i

i i

n

X f x f
i

С xδ
=

=∑  and 

( ) ( ), ,
1

Y
k

k k

m

Y g y g
k

С ξδ
=

=∑ . Then the distance between the functional forms: 
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2

, ,
1 1 1 1

1 1

 , , , 2 , , ,

, , , .

n n n m
X X X Y

f i j g i j i j f i k g i k i kX f Y g W i j i k

m m
Y Y

f k l g k l k l
k l

С С k f f K x x k f g K x y

k g g K y y

xxxx  

xx

′
= = = =

= =

− = ⋅ − ⋅ +

+ ⋅

∑∑ ∑∑

∑∑
 (20) 

The kernels fk  and gK  can be approximated by Gaussian functions: ( )
2

1 2
2

1 2, f

f f

fk f f e σ

−
−

= , 

( )
2

1 2
2

1 2 1 2 1 2, , ,g

x x

gK x x e σxxxx  
−

−

= , where 1 2, p Eξ ξ ∈Λ , gσ , fσ  are the scales of the kernels in the 
geometrical and signal domains, respectively. 

8. Conclusion 
The paper presents the problem of comparing two diffeomorphic images. To solve the problem, a 
functional is formed that characterizes the evolution of image transformation from the initial to the 
terminal, and a penalty for deviating the trajectory from the required one. A learning algorithm for 
solving the problem of a diffeomorphic transformation is developed. 

The considered problem of comparing two images can be used in the optimal metamorphosis of 
images. The evolution of the image from the initial template to the target image is decomposed to 
evolution due to the diffeomorphic mapping and residual deformations of the metamorphosis. The 
metamorphosis of images of objects from initial to terminal using functional forms is considered. 
Metamorphosis methods can be used in cases when there is no exact correspondence between the 
target image and the terminal image of the diffeomorphism or when the topologies of the source 
template and the target image are different. 
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