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Abstract. In the present paper an algorithm of determination and trimming of non-working 
segments of offset curves generated for an area and a number of islands within it is considered. 
The algorithm is based on cyclographic method of spatial formation of offset curves given 
curvilinear boundary contours of an area and islands within it. Methods of analysis and 
corresponding algorithms of trimming of non-working segments of offset curves are 
considered for the cases of self-intersection of offset curves. The analysis and trimming 
operations form the basis of the proposed algorithm of spatial formation of offset curves. The 
calculations that accompany every stage of formation process are exact and not based on 
iteration algorithms. The acquired analytical solution to the problem of generation of a family 
of offset curves significantly facilitates cutting tool trajectory calculation and control 
programming in pocket machining on NC units.  

1. Introduction 
Pocket machining in production of body parts in machine-building is one of the leading technologies 
at the current stage of mechanical treatment development. Pocket surfaces are generally machined 
along contour-parallel trajectories, their family calculated as a multitude of offset curves (OCs) of the 
given contour. Calculation of a family of OCs invokes the problem of calculation of the curve 
trimming the non-working OC segments. Various approaches are proposed in order to trim the 
undesirable segments generated upon intersection and self-intersection of the offset curves. Papers 
[1,2,3] consider the solutions to this problem through application of the Voronoi diagram. The 
solutions proposed in these papers are based on approach involving complex mathematical apparatus, 
which results in time-consuming and often numerically unstable calculations [4,5]. Papers [4,6,7] 
consider the algorithm of pairwise offset for closed two-dimensional point-sequence curves (PS-
curves). The main feature of this approach is that all the local undesirable loops are trimmed through 
pairwise obstacle detection testing. This algorithm also features linear-time complexity. However, in 
the proposed algorithm the internal island contours (further referred to as “island contours”) are 
connected to the external area contour (further referred to as “area contour”) manually. In paper [8] an 
algorithm capable of automatically connecting island contours with the external contour in close 
proximity is proposed. However, total calculation time of minimal distance between two curves 
depends on total number of curves including the external contour and the island contours. In paper [9] 
OCs of all of the islands and OCs of the internal contour are joined into a single connected PS-curve 
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through Delaunay triangulation. Even though the proposed algorithms are linear with time, the result 
of the calculation constitutes point data. Currently methods based on application of polynomial 
Pythagorean-Hodograph curves (PH-curves) in the context of creation of precise OC calculation 
algorithms for NC units are object of numerous discussions [10, 11]. It is worth noting that research in 
this field has perspectives, however, medial axis (MA) formation and trimming of non-working 
segments of OCs is performed approximately and, in general, involving algorithms based on iteration. 
OC calculation can be simplified through calculation of medial axis transformation (MAT) of an area 
with a boundary contour [12,13]. However, MAT calculation is not a simple task [14-20]. 

2. Problem Definition   
Let us set the general problem of spatial formation of a family of OCs given an area with curvilinear 
boundary contour defined on plane (z = 0), where the area includes a number of islands with 
curvilinear boundary contours. The solution to the general problem is based on consideration of the 
following particular tasks: 
- analysis and trimming of self-intersection loops of OCs; 
- analysis and trimming of non-working segments of  OCs of the area contour and the opposing island 
contours.  
The analytic solutions to the mentioned tasks proposed in the present paper are exact, i.e. do not 
require application of approximation techniques.  

3. Theory 
In the present paper formation of a family of OCs of multiply connected areas modeling pocket 
surfaces is performed through the known cyclographic method of representation of space E3 and its 
objects on a plane. According to this method, a point in space is put into bijective correspondence with 
a cycle on a plane (z = 0) [21, 22]. The process of generation of MAT and a family of OCs on the basis 
of cyclographic representation is thoroughly described by the authors in papers [23, 24]. 
The contour of the area and the contours of the islands are defined by segments of parametric curves 
connected in sequence with order of smoothness no lower than C2. Each segment ai of the contour is 
defined by an equation of the following general form: 

:  ( ( ), ( ));   ,    [0,1]i i i i i ia r x t y t t t= ∈ ∈R .                                                        (1) 
Accepting the segments as evolvents, it is possible to put down the equations of the respective 
evolutes: 

:    ( ) ( ( ), ( ))i e i e i e i i i ie r t x t y t r R n= = + ,                                                      (2) 
where iR  represents curvature radius, in  represents normal unit vector. Let us construct spatial lines 
mi for evolutes ei considering that applicate z is of negative value in case of convex island contour 
curves and concave area contour curves:  

2 2:   ( ) ( , , ( ) ( ) )i m i e e e i e i em r t x y z x x y y= = ± − + − .                                    (3) 
Lines ai and mi generate α-surfaces iP , for which these curves serve as generatrices: 

: ( , ) ( ) ( ( ) ( ))
ii P i i m i i i m iP r t l r t l r t r t= + − .                                                   (4) 

Any convenient parametric curves providing connection with order of smoothness no lower than 
C2 are applicable as elementary segments of curvilinear contours. This includes segments of second-
order curves, segments of Bezier splines, segments of fractionally rational Bezier curves, etc. [23,24]. 
Equations of α-surfaces, generatrices of which are inclined to area plane on angle α = 45°, generally 
constitute algebraic equations of high orders. In order to acquire MAT as a curve of intersection of α-
surfaces, it is required to solve these equations. Therefore, the MAT curve is the result of interpolation 
of a discrete multitude of points of intersection [24]. The MAT curve serves as an instrument of 
trimming of non-working OC segments. In case we consider complex area boundary contours, their 
geometry serving as initial data for formation of α-surfaces of high orders, then the MAT curve can 
only be found approximately, through numerical methods. In order to avoid application of numerical 
methods, an alternative approach is proposed in the present paper. Hereby it is not required to acquire 
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MAT in order to form a family of OCs. It is proposed instead to acquire a family of OCs directly, 
without acquiring the MAT curve first. For this, in order to achieve more precise analysis and trimming 
of non-working segments of OCs, possible intersections of OCs of the same level, further referred to 
as level offset curves (LOC), are considered. These curves are generated along the contours of the area 
and the islands belonging to the same horizontal level plane. A family of LOCs is generated upon 
intersection of α-surfaces with a multitude of horizontal planes. Projections of LOCs on plane (z = 0) 
constitute a family of OCs (figure 1). Non-working segments are trimmed in points Aj of intersection 
between LOCs, at that, Aj∈MAT. In order to distinguish between working and non-working segments, 
it is proposed to apply testing ray. Due to paper size restrictions, algorithm and method of trimming of 
non-working segments of the opposing LOCs of area contour and LOCs of island contours will be 
thoroughly considered in the subsequent papers by the authors.  

 

 
 

a) 

 
 

 
 

b) 
 

c) 
Figure 1. a) intersection between LOCs of area contour and island contours;  

b) working LOC segments; b) aggregate result - a family of OCs. 

3.1 . Analysis and trimming of LOC self-intersection loops and intersection of LOCs of the same 
contour 

OCs of area contour can have loops of self-intersection varying with their offset. The loops of self-
intersection are generated in case the evolute generating α-surfaces has a critical point. In order to 
eliminate non-working LOC segments, it is required to determine corresponding points jA MAT∈ . 
Points jA MAT∈  are the points where non-working LOC segments are trimmed. Determining these 
points comes down to determining the points of intersection and self-intersection of curves LOCi,j, 
where j is the number of the level plane described by the equation j jz h= , where jh j δ= ⋅ ,  j = 0, 1, 2, 
..., n, δ is the step between level planes, n is the number of secant planes assigned on the basis of 
structural and technological conditions; i represents index of combined curvilinear contour segment 
(1). Segments of LOCi, j with loops are formed as segments of level line generated upon intersection of 
three neighbouring α-surfaces iP , 1iP− , and 1iP+  with a horizontal plane. The specified segments are 
formed upon self-intersection of α-surface iP , upon intersection of α-surfaces 1i iP P+1 , and upon 
intersection of α-surfaces 1i iP P−1 (figure 2). Points  minA , 0A , and 1A  are boundary points: in these 
points pairs of α-surfaces generating intersection segments change: min 0( ) i iA A P P MAT= ∈ ; 

0 1 1( ) i iA A P P MAT−= ∈1 , and 1 1 1( )j i iA A P P MAT− += ∈1  (figure 2). Let us consider the process of 
determining of these points. 
3.1.1. Determining point minA  – initial point of MAT and points min 0( )jA A A∈ . minA matches the 
critical point of spatial evolute. The critical point is acquired as the point of minimal evolute applicate 

minz . From the equation (3), through the known method of search of minimal value of function, the 
coordinate of critical point min( ) min( )ez A z=  is acquired. The parameter mint  of curve im  in the 
critical point is found from coordinate min( )z A . Since segment ia  of the area contour, α-surface iP , 
and spatial evolute im  share the same parameterization [0,1]t∈ , the generatrix min min:   ( , )

iP iL r t l  of α-
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surface iP  is found. The generatrix minL  intersects the α-surface iP  in point minA MAT∈ . Points of 
self-intersection , ,j i j i jA LOC LOC=   within segment min 0( )A A  are calculated through the equation:

1( ) ( )i ir t r t= , where [0,1]t∈  and 1 [0,1]t ∈ . 

 
 

 

 
Figure 2. MAT points formation. 

 

Figure 3. Loop trimming:  
a) self-intersection , ,i j i jLOC LOC ,  
b) intersection , 1,i j i jLOC LOC −1 ,  
c) intersection 1, 1,i j i jLOC LOC+ −1 ,  
d) aggregate result. 

 
3.1.2. Determining points 0A MAT∈  and points 0 1( )jA A A∈ . The boundary between α-surfaces iP  

and 1iP−  is represented by generatrix 0 1 1:   ( 0, )Pi iL r t l− −= . Generatrix 0L  trims a point 

0 0 1iA MAT L P−∈ = 1  on α-surface 1iP+ . Points of intersection , 1,j i j i jA LOC LOC −= 1  within segment 

0 1( )A A  are calculated through the equation 1 1( ) ( )i i i ir t r t− −= , where 1 [0,1]it + ∈  and 1 [0,1]it − ∈ . 
 
3.1.3. Determining points 1A MAT∈  and points 1( )j jA A A∈ . The boundary between α-surfaces iP  
and 1iP+ is represented by a curve 

11 1:   ( 1, )
iP iL r t l
+ += . Generatrix L1 trims a point 1 1 1iA MAT L P−∈ = 1  

on α-surface 1iP− . Points of intersection 1, 1,j i j i jA LOC LOC+ −= 1  within segment 1( )jA A  are 

calculated through the equation 1 1 1 1( ) ( )i i i ir t r t+ + − −= , where 1 [0,1]it + ∈  and 1 [0,1]it − ∈ . The calculations 
of points jA MAT∈ requires consideration for the value of parameter min [0,1]t ∈ . In case min 0.5t > , 
the calculation is performed using the algorithm (paragraphs 3.1.1 – 3.1.3). In case min 0.5t = , then 

0 1A A= and it is not required to determine points within this MAT segment. In case min 0.5t < , then 

0 0 1iA MAT L P+∈ = 1 , and 1 1 1iA MAT L P−∈ = 1 . Within segment 0 1( )A A  points of intersection 

, 1,j i j i jA LOC LOC += 1  are calculated through the equation 1 1( ) ( )i i ir t r t+ += , where [0,1]t∈  and 

1 [0,1]it + ∈  (figures 2 and 3). 

3.2. General algorithm of OC family generation 
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The initial data for the algorithm of generation is represented by discrete multitudes of points defining 
contours of an area and islands. General algorithm of OC family generation for an area with islands 
can be represented in the form of the following subsequently realized modules. 
3.2.1. Module 1. The initial discrete multitude of points is interpolated with closed curves in order to 
acquire area and island contours. The acquired contours are analyzed to determine concave and convex 
segments [26]. Through cyclographic representation and given the acquired geometric information, the 
α-surfaces are generated. Structured lists of parametric equations of form (4) defining the α-surfaces of 
area contour and island contours are formed. 
 
3.2.2. Module 2. The acquired α-surfaces are cut by a bundle of horizontal planes with step 

iz constδ = ∆ =  along the z axis. Structured lists of parametric equations defining level offset curves 
are formed: a list of parametric equations of LOCs of area contour and lists of parametric equations of 
LOCs of island contours. 
 
3.2.3. Module 3. Loops of self-intersection of LOCs and intersection of LOCs of the same contour are 
analyzed and trimmed. Parametric equations of curves with only working segments (without loops of 
self-intersection) take place of parametric equations of curves with loops of self-intersection in 
structured lists of parametric equations of level curves ,i jLOC . 
 
3.2.4. Module 4. Elementary segments of LOCs of area contour and island contours are combined into 
united level offset curves further referred to as ULOCs [24, 25] in each level plane. ULOCs constitute 
closed curves bounding areas in level plane ∆zj. 
 
3.2.5. Module 5. Analysis and trimming of non-working segments of ULOCs of the given objects (area 
and islands) is performed. The first step is to consider intersections of ULOCs of the area contour with 
ULOCs of the first contour. This should result in parametric equations of ULOCs of the area contour 
without intersections and parametric equations of ULOCs of the first island contour without 
intersections. These results are further applied when we consider intersections between the acquired 
ULOCs and ULOCs of the second island and so forth. Each stage of consideration of intersections is 
updating the lists of parametric equations of ULOCs taking part in intersection of objects acquired at 
the previous stage.  
 
3.2.6. Module 6. Projection of working ULOCs on plane z = 0 is performed. The acquired working 
OCs of the area contour and working OCs of the island contours are described by analytic equations.  

4. An example of offset curves generation 
Let us consider for example an experimental construction of a family of OC of an area with islands 
bounded by curvilinear contours. The solution to this example is performed according to the proposed 
algorithm and consists of subsequently executed steps. 
 
4.1. Initial data input and formation.  
The area contour is defined by an array of points (knots) { }7

1iA : {(0, 0), (20, 25), (50, 40), (80, 30), 

(90,-1 0), (10, -60), (-10, -40)}.  The island contours are defined by arrays of points: { }4

1iB : {(10, -20), 

(20, 0), (30, -20) ), (20, -40), } и { }4

1iС : {(60, 0), (70, 10), (80, 0), (70, -10), }. The interpolation of the 
given arrays of knots is performed trough smooth closed planar curves. These curves are Ext 
representing the external area contour, Int1 representing the first internal island contour and Int2 
representing the second internal island contour. The curves are constructed in the form of splines 
combined of cubical Bezier curves [27] (figure 4).  

4.2. Formation of α-surfaces and lists of structured equations. 
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Given the contours of the area and the islands, the formation of the α-surfaces is performed through 
equations (1 – 4). The α-surfaces are cut with a bundle of horizontal planes with step jz constδ = ∆ = . 

The planes are defined by the equation j jz h= , where jh j δ= ⋅ , j=0, 1, 2,…, n; n represents the 
amount of cutting planes appointed with consideration for design and technological conditions. LOCs 
are formed upon section of α-surfaces. Structured lists of parametric equations of LOC are formed:  
listLOCext defining the area contour, listLOCint1 defining the first island contour and listLOCint2 
defining the second island contour. 
 
4.3 Optimization of structured lists of parametric equations. 
Loops of self-intersection and non-working segments of LOCs occurring upon intersection of curves 
of the same contour are trimmed (figure 5). Parametric equations of LOCs with only working 
segments (without loops of self-intersection) take place of parametric equations of LOCs with loops of 
self-intersection in the structured list listLOCext. 
 

 

   
Figure 4. Contours of the 

area and the islands 
Figure 5. ULOCext without loops of self-intersection 

 

4.4. Formation of ULOCs and respective structured parametric equations. 
Combination of elementary segments of LOCs of each contour in each level plane into united level 
offset curves (ULOCs) is performed with generation of respective parametric equations. Respective 
lists of parametric equations are formed: the list defining area contour (ULOCext1, ULOCext2, …, 
ULOCextj)∈listULOCext; the list defining the first island contour (ULOCint1,1, ULOCint1,2, …, 
ULOCint1,j)∈listULOCint1; and the list defining the second island contour (ULOCint2,1, ULOCint2,2, 
…, ULOCint2,j)∈listULOCint2. 

 
4.5. Formation of working segments of ULOCs and optimization of structured lists of respective 
parametric equations. 
Non-working ULOC segments are trimmed (figure 6). The selected direction of traversal is clockwise. 
First, intersections of curves ULOCextj∩ULOCint1,j is considered. In the structured lists listULOCext 
and listULOCint1 parametric equations of curves with non-working segments are replaced by 
parametric equations of curves without such segments. Then intersections of curves 
ULOCextj∩ULOCint2,j are considered. In the lists listULOCext and listULOCint2 parametric 
equations of curves with non-working segments are replaced by parametric equations of curves 
without such segments. Finally intersections of curves ULOCint1,j ∩ULOCint2,j are considered. In the 
lists listULOCint1 and listULOCint2 parametric equations of curves with non-working segments are 
also replaced by parametric equations of curves without such segments. 

 
4.6. Acquiring the aggregate result.  
Orthogonal projection of curves ULOCextj, ULOCint1,j, ULOCint2,j on plane (z=0) is performed. The 
output data of algorithm 3.2 constitutes parametric equations of a family of OCs:  

OCint1(k,j):  1( , ) 1( , ) 1( , ) 1( , )( ( , ), ( , ), ( , ))int k j int k j k j int k j k j int k j k jr x t h y t h z t h= , 

Ext 

Int1 

Int2 
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OCint2(m,j):  2( , ) 2( , ) 2( , ) 2( , )( ( , ), ( , ), ( , ))int m j int m j m j int i u m j int m j m jr x t h y t h z t h= , 
OCext(u,j):  , ( , ) ( , ) ( , )( ( , ), ( , ), ( , ))ext u j ext u j u j ext u j u j ext u j u jr x t h y t h z t h=( ) , 

where zPj=hj, j represents cutting plane index; tk, tm, and tu represent parameters of shape of curves 
OCext(u,j), OCint1(k,j), and OCint2(m,j).  

 

 

 

 

Figure 6. Sequence of generation of three families of OCs 

5. Consideration of the results 
The computational experiment of generation of a family of OCs has confirmed functionality of the 
proposed algorithm. The proposed algorithm is linear with time. Interference of islands and area 
contours is automatically considered upon OCs generation. The calculations that accompany every 
stage of OCs family generation process are analytical, i.e. have exact results. The main focus of the 
present paper is analysis and trimming of self-intersection loops. The problem of analysis and 
trimming of opposing OCs is not considered in detail. This is also a major problem. The authors plan 
to consider this problem in one of the subsequent papers. 

6. Conclusion 
An algorithm of OC generation based on cyclographic representation of Euclidean space is proposed 
for the purpose of construction of families of OCs of areas and islands modeling pocket surfaces of 
machine-building products. The algorithm does not utilize approximate calculations, which facilitates 
cutting tool trajectory calculation and control programming in pocket machining on NC units. 

7. References 
[1] Persson H 1978 NC machining of arbitrary shaped pockets Comp.-Aided Des. 3 10 pp 169–74 
[2] Kim H, Lee S and Yang M. 2006 A new offset algorithm foreclosed 2D lines with islands Int. J 

Adv. Manuf. Tech. 29 pp 11-2 
[3] Held M, Lukács G and Andor L 1994Pocket machining based on contour-parallel tool paths 

generated by means of proximity maps Comp.-Aided Des 26 pp 189–203 
[4] Kim H C Tool path generation for contour parallel milling with incomplete mesh model 2010. 

Int. J Adv. Manuf. Tech. 48 pp 443–454 
[5] Choi B K and Park S C 1999 A pair-wise offset algorithm for 2D point-sequence curve Comp.-

Aided Des.  31 pp735–745 
[6] Park S C and Choi B K 2001Uncut free pocketing tool-paths generation using pair-wise offset 

algorithm Comp.-Aided Des 33 pp739–746 
[7] Park S C and Chung Y C 2002 Offset tool-path linking for pocket machining Comp.-Aided Des 

34 pp 299–308 
[8] Wong T N and Wong K W 1996 NC toolpath generation for arbitrary pockets with islands. Int.J 

Adv. Manuf. Tech 12 pp 174–179 
[9] Zhiwei L, Jianzhong F and Wenfeng G 2013 A robust 2D point-sequence curve offset algorithm 

with multiple islands for contour-parallel tool path Comp.-Aided Des. 45 3 pp 657–670 
[10] Farouki R T and Nittler K M 2016 Efficient high-speed cornering motions based on 

continuously-variable feedrates. I. Real-time interpolator algorithms Int. J Adv. Manuf. Tech. 87 
pp 3557–3568 



AMSD-2019

Journal of Physics: Conference Series 1441 (2020) 012069

IOP Publishing

doi:10.1088/1742-6596/1441/1/012069

8

 
 
 
 
 
 

[11] Burak  S, Kocuke I and Eiji S A curvature optimal sharp corner smoothing algorithm for high-
speed feed motion generation of NC systems along linear tool paths 2014 Int. J Adv. Manuf. 
Tech. 76 pp 1977-1992 

[12] Chou J J 1989 Numerical control milling machine toolpath generation for regions bounded by 
free form curves and surfaces PhD Thesis University of Utah (Utah: University of Utah Press) 

[13]  Held M 1991 On the computational geometry of pocket machining Lect. Notes in Comp. Sci. p 
184 

[14]  Pottmann H and Wallner J 2001 Computational Line Geometry (Berlin: Heidelberg Springer 
Verlag) p 565 

[15]  Lee D 1982 Medial axis transformation of a planar shape IEEE Trans. Pat. Anal. Mach. Int. 4 4 
pp 363-9 

[16]  Choi H I, Han C Y, Moon H P, Roh K H and Wee N S 1999 Medial axis transform and offset 
curves by Minkowski Pythagorean hodograph curves Comp.-Aided Des. 31 pp 9–72 

[17]  Choi H I, Choi S W and Moon H P 1997 Mathematical theory of medial axis transform Pacific 
J. Math. 181 pp 56–88 

[18]  Zezhong C and Qiang F 2014 An efficient, accurate approach to medial axis transforms of 
pockets with clOCed free-form boundaries Eng. Comp. 30 pp. 111–23 

[19]  Degen W L F 2004 Exploiting curvatures to compute the medial axis for domains with smooth 
boundary Comput. Comp.-Aided Des 21 pp 641–660. 

[20]  Ramamurthy R and Farouki R T 1999 Voronoi diagram and medial axis algorithm for planar 
domains with curved boundaries I. Theoretical foundations & II. Detailed algorithm description, 
J. Comput. Appl. Math. 102 pp 119–141  

[21] Fiedler W 1882 Cyklographie oder Construction der Aufgabenüber Kreise und Kugeln und 
Elementare Geometrie der Kreis- und Kugelsysteme (Leipzig: Druckund Verlag von B G 
Teubner) p 284 

[22] Panchuk K L and Kaygorodtseva N V 2017 Cyclographic Descriptive Geometry (Omsk: 
OmGTU) p 232  

[23] Myasoedova T M and Panchuk K L 2018 Geometric model of generation of family of contour-
parallel trajectories (equidistant family) of a machine tool Dyn. Sys., Mech. Mach. XII IEEE Intl. 
Sci-Tech. Conf. Omsk St. Tech. Un. 6 2 pp 262-9 

[24] Myasoedova T M and Panchuk K L 2019 Generation of contour-parallel curves for cloced  
curvilinear multiply connected areas on the basis of cyclographic mapping Mech. Sc. and 
Technology Update III IEEE Intl. Sci-Tech. Conf. Omsk St. Tech. Un. 2 pp 310-317 

[25] Dolya  P G 2005 Simulation of piecewise smooth continuous functions and curves Math Mod. 
Inf. Tech.  Autom. Contr. Sys. 4 661 pp 97-103 

[26] Andreeva E V and Egorov Yu V 2002 Computational geometry in the plane Informatics 44 pp 
37-39 

[27] Borisenko V V 2016 Construction of optimal B´ezier splines Fundamentalnaya i prikladnaya 
matematika  21 3 pp 57-72 

 
 
 


