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Abstract. For most technological processes, low humidity air is used, obtained in various 
ways. The possibility of using the vortex effect for drying compressed air used in industrial 
plants and providing savings in operating costs is shown. A mathematical model of the process 
for reducing moisture content is developed. A method for calculating the optimal geometric 
dimensions of the drying device is established. The main goal is to develop an effective device 
for air drying and calculate its optimal parameters. The developed method of calculation allows 
one to determine the optimal geometric dimensions of the vortex device for drying compressed 
air, which is more cost-effective, based on the minimum moisture content under the condition 
of low hydraulic losses. 

1.  Introduction 
In the modern economy, one of the most important efficiency factors is energy and resource saving, on 
which the effectiveness of production processes depends. In reducing operating costs on the basis of 
energy and resource saving, the possibility of using the vortex effect for drying compressed air is 
considered. 

In many production machines compressed air of high, intermediate and low pressure is used as a 
working medium. The air received such widespread use due to its undeniable advantages: 
accessibility, ease of use and storage, environmental and fire and explosion safety, sufficient 
environmental stability (temperature). However, it has a number of significant disadvantages. First of 
all, it is the presence of moisture (liquid and vapor), which makes it difficult to transport and use air 
for technical purposes, reduces the reliability of the pneumatic elements. Since water is a good solvent, 
the solution of impurities (oil, corrosive gases and gas mixtures) in the water causes a corrosive 
environment in the closed cavities. This results in rapid mechanism wear, failure of the automation 
and control units, lubrication deterioration of the wearing surfaces of the pneumatic drive elements. In 
addition, at low temperatures the condensate can freeze and cause failures, equipment downtime, 
emergencies [1]-[2]. Another disadvantage of compressed air is the presence of dust and other solid 
contaminants in it, which can cause abrasive wear of parts and elastic seals and, then, an increase in 
leaks. Thus, drying and cleaning of compressed air reduces the operating costs of production 
processes. 

To avoid negative influence of moisture on various technological processes, it is necessary to 
exclude the possibility of forming liquid and solid water phases. At present for drying compressed air 
the following methods are used [3]: 

• mechanical; 



AMSD-2019

Journal of Physics: Conference Series 1441 (2020) 012128

IOP Publishing

doi:10.1088/1742-6596/1441/1/012128

2

 
 
 
 
 
 

• adsorptive; 
• physical. 

Each of the methods is with disadvantages, but has tangible advantages over others. For example, 
the adsorptive method is very effective, because it is based on the property of silica gel filter to absorb 
water and water vapor. However, the use of filters causes a large loss of total pressure, resulting in an 
increase in energy consumption. Also a significant disadvantage of this method is the high cost of 
filters and the need for their timely replacement. The mechanical method is simple, environment 
friendly, productive and low-cost, but falls short of adsorption in efficiency. It is in increasing the 
efficiency of the mechanical method that some authors [4] see the direction of further development of 
methods for drying compressed air. 

2.  Problem statement 
In this regard, the main goal is to develop an effective device for air drying and calculate its optimal 
parameters. 

The use of vortex chambers for drying air and gases [5]-[6], based on the mechanical method, has 
become widespread in practice. However, the use of swirling flow does not require additional costs 
and time for maintenance, element replacement and has no moving parts. It is also characterized by 
small pressure losses. 

It is proposed to use a vortex chamber (Figure 1) with tangential inlet nozzle 1 of rectangular cross 
section with h height and b width. The length and diameter of the cylindrical chamber part are Lch and 
Dch, respectively. The following initial data are taken for calculation: the volume flow rate of gas Q, 
its temperature Tinl and pressure rinl, geometrical specifications of the chamber (length Lch and 
diameter Dch) and the pressure pa of the medium in which the leak occurs. 

 

 

Figure 1. Scheme of the vortex chamber. 

3.  Theory 
In leaking two-phase mixture flowing from the chamber tangential nozzle, a vortex flow, consisting of 
a liquid film condensing on the chamber wall and the gas core, is formed. Part of the liquid can flow 
down the end wall of the chamber into its axial area. The formation and retention of this film is due to 
the strong field of centrifugal forces. Under its acting the condensate injected into the chamber is 
transferred to its periphery and deposited on the wall. In this case, in the axial flow moisture content 
will be significantly reduced. 

Since the maximum values of the tangential component of the flow rate are achieved in the 
chamber nozzle section, the peripheral liquid film is formed mainly in the sections of the chamber 
close to the nozzle ones. In the end chamber sections in the direction of liquid motion, the destruction 
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of the film, the breakdown of drops and their transfer to the axial area are possible. In the vortex 
chamber, two flows with opposite axial motion, exchanging energy and mass, are formed. In doing so, 
the axial layers are cooled, and the peripheral ones are heated. The presence of such a radial 
temperature gradient causes condensation of the liquid phase in the axial flow. The heat released in 
this case increases the temperature of the axial flow. In addition, part of the fine liquid does not have 
time to leave the axial flow and leaves the separation chamber through the diaphragm along with the 
axial flow. The remaining drops fall into the peripheral flow, where they partially or completely 
evaporate. This causes a decrease in the temperature of the peripheral flow. 

Simultaneous processes of condensation and evaporation reduce the radial temperature gradient in 
the separation chamber. The process of phase separation is carried out mainly by separating the liquid 
phase on the wall of the chamber. The influence of each process on the total effect of phase separation 
depends on the parameters of the gas-liquid mixture, as well as the basic geometric dimensions and 
ratios of the vortex device. 

Thus, the presence of a radial temperature gradient in the separation chamber (the Ranque effect), 
evaporation and condensation processes, disruption and destruction of the liquid film away from the 
nozzle section, the flow of liquid down the end wall into the axial area will reduce the effect of 
dehumidification. 

Since the efficiency of liquid phase separation in the vortex chamber depends on the ratio of the 
tangential Vϕ and axial Vr components of the flow rate, the drying effect will be a function of the 
relative axial flow rate µ. At small values of µ, when the centrifugal forces are large and the axial Vz 
component of the rate is small, the major part of liquid will concentrate on the walls of the chamber 
and be carried away with the peripheral flow. With the growth µ (axial flow rate) the liquid 
entrainment with axial flow is likely to increase. 

For calculating one adopted axisymmetric model of the viscous compressible fluid flow in the 
vortex chamber (Figure 2) for tangential and radial rate components depending only on the radius, i.e. 
Vϕ = Vϕ(r) and Vr = Vr(r), the axial component (linear in z) and the axial pressure gradient 
independent of the radius. In the vortex chamber the pressure change at altitude can be neglected, so p 
= p(r). For simplification we consider the isothermal case, i.e. with a constant value of viscosity ν. 

 

 

Figure 2. Computational model for vortex chamber. 
 
The problem is solved outside the boundary layer of the end walls for the formed flow, independent 

of the input structure and having initial values of the rate components at r = R2; Vϕ = Vϕ2; Vr = Vr2; 
Vz = Vz2. 

In this formulation, the continuity and Navier-Stokes equations should be supplemented with the 
missing boundary conditions: 
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• there is no axial movement of the liquid on the bottom end cover, i.e. at z = 0 Vz = 0; 
• liquid leaves the chamber through a central hole of radius R1 in the upper end cover, i.e. at 

z = Lch  R1≤r≤R2 and Vz = 0; 
• the symmetry condition of the problem implies the axis at r = 0  Vr = Vϕ = 0. 

4.  Experimental results 
On the basis of this mathematical model the method for calculating optimum geometrical parameters 
of the drying device was created. The solution of the equations system is cumbersome [7], so the 
method for calculating the compressed flow is based on the combination of theoretical and 
experimental results. On the basis of the constructed mathematical model methods for calculating gas-
dynamic parameters and optimal sizes of the vortex device were developed, the computer calculating 
program was developed. 

Based on the calculation results, in the case of moist air intake to the vortex chamber (moisture 
content d = ρc/ρв where ρc is the density of dry gas, ρв is the density of water vapor), with parameters 
Q = 10 m3/min, Tinl = 293 K, pinl = 0.6 MPa, dinl = 0.64, the following optimum dimensions of the 
chamber were obtained, with the air moisture content at outlet d1 = 0.004: 

Lch = 0.943 m, Dch = 0.093 m, h = 0.037 m, b = 0.018 m. 
The initial option variation in the field of optimal value (the other parameters are unchanged) has 

led to the dependence of moisture content on the outlet of the device d1 and the pressure losses ∆p on 
the following options: pressure at the inlet to the vortex device chamber (Figure 3), the air flow at the 
inlet of the device (Figure 4), chamber diameter (Figure 5) and the length of the chamber (Figure 6). 

 

 

Figure 3. Dependence of the air moisture content d1 (graph 1) and 
pressure losses ∆p (graph 2) on the inlet pressure pinl. 
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Figure 4. Dependence of the air moisture content d1 (graph 1) and 
pressure losses ∆p (graph 2) on the inlet flow Q. 

 

 

Figure 5. Dependence of the air moisture content d1 (graph 1) and 
pressure losses ∆p (graph 2) on the chamber diameter Dch. 

 

 

Figure 6. Dependence of the air moisture content d1 (graph 1) and 
pressure losses ∆p (graph 2) of the chamber length Lch. 

 

5.  Discussion of experimental results 
As shown in Figures 3-6, moisture content reduces with increasing flow rate and inlet pressure, as well 
as decreasing chamber diameter. This is due to the intensification of swirling processes, an increase in 
the tangential component of the flow rate. However, the pressure loss increases. In decreasing the 
length of the chamber from the optimal value, the moisture content increases sharply, since moisture 
does not have time to condense on the walls. In increasing the length of the chamber from the 
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optimum value, the process of destruction of the liquid film and the breakdown of droplets in the axial 
region begins, resulting in an increase in moisture content. 

6.  Conclusion 
Thus, the developed method of calculation allows one to determine the optimal geometric dimensions 
of the vortex device for drying compressed air, which is more cost-effective, based on the minimum 
moisture content under the condition of low hydraulic losses (∆p ≤ 10%). 
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