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Abstract. The paper proposes a method of forming a numerical projection-grid algorithm on a 
regular triangulation network for the calculation of three-dimensional models of the magnetic 
field of synchronous magnetoelectric generators with excitation from permanent magnets, 
using recurrent expressions obtained for the "regular element". The use of the" regular element 
"allows to automate the process of formation of a global system of linear algebraic equations in 
the projection-grid Galerkin method in combination with the finite element method, bypassing 
the stage of construction of" element " systems of equations.  

1. Introduction
The development of low-speed synchronous magnetoelectric machines with permanent magnets, 
taking into account the requirements of the technical task, provides for the calculation of its magnetic 
field [1-5]. As an example of a magnetic system for which it is necessary to apply methods for 
calculating the electromagnetic field, the basic design of a low-speed synchronous generator with 
permanent magnets (SGPM) is selected, presented in Fig. 1. 

1 2 3 4

Figure 1. Magnetic system SGPM 

Magnetic system SGPM is a magneto-electric machine, having 6 pairs of poles, each pole is split and 
implemented two permanent magnets 1 arranged on the rotor 2 of the generator winding three-phase 
sgpm 3, distributed in 36 stator slots 4. Thus, the mathematical model describing the magnetic system 
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should combine the equations for the individual components of the magnetic system: areas occupied 
by the volume of permanent magnets, winding with current, active parts of soft magnetic materials.  
 

2. Problem Statement  
In this paper, the boundary value problem for sgpm is the distribution of a quasi-static magnetic field 
over the simulation volume V [1-5]. The system of magnetic field equations in a magnetic system, 
where along with permanent magnets there are conduction currents, has the form: 

                                       
=

=

= + 0 0

rot H J ,
divB 0,
B H M ,µ µ

                                          (1) 

where J – conductivity current density;; = 0 rµ µ µ – absolute magnetic permeability;  B , H  – 
magnetic induction and magnetic field strength vectors; 0M  – residual magnetization vector; 0µ  – 
magnetic constant; rµ  – relative magnetic permeability. 
Introduce a vector magnetic potential satisfying the equations 

                                                      
=

=

rot A B
div A 0

     (2)  

then (1): 
                                        = + 0 0rot ( rot A ) rot H rot Mµ µ                  (3)    
For the calculation model of a synchronous low-speed magnetoelectric machine, we assume the 
following assumptions: 

•  relative and absolute magnetic permeability of steel structural elements of the magnetic circuit 
at fixed positions of the moving part is constant; 

• when describing a permanent magnet, only surface currents are taken into account, due to the 
presence of a linear section on the demagnetization curve and a high value of the magnetic 
hardness of magnets from rare-earth permanent magnets 

The latter assumption holds for high-energy permanent magnets. The magnetization of such magnets 
can be considered constant throughout the volume.  
Surface magnetization currents determine the abrupt change in the tangential components of the 
magnetic field strength at the boundary of the permanent magnet and the air environment. The average 
density of surface magnetization currents is recorded as: 
                
                                     = = −м 0 02 01i rot M [ n ,M M ] ,                 (4) 
where n  -  normal (unit vector) to the interface of two media with different magnetic properties; 

01 02M , M  - accordingly, the magnetization vectors of volume. 
For the air environment the magnetization vector, so the expression is true  
 
          = − = =     m 01 01 0i n M M ,n M ,n .    (5)  
The average density of surface magnetization currents can also be recorded through the residual 

magnetization vector   0M . By analogy with the recording of the expression of the volume density of 
the magnetization current 

                                                      = 0 0
М

MJ rot µ
µ

                     (6) 

magnetization surface current density mi    

      = 0 0
m

Mi rot m
m

.                                       (7) 
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For magnetic systems with high-energy permanent magnets having axial symmetry, the density of the 
surface magnetization current mi  has one component. In the radial direction of magnetization of a 
permanent magnet, the surface current density mi  in a cylindrical coordinate system is directed along 
the angle θ . If the magnetization vector 0M   coincides with the r axis, expression (7) can be 
converted to the form: 
                                                 m 0i M cos( n ^ r )=              (8)       
Also, one component will have a vector of electric current density J i J rot Hφ φ= =   and vector 

magnetic potential A i Aφ φ= . 

 

3. Equations and mathematics 
The Poisson equation for a three-dimensional magnetic field in a cylindrical coordinate system has the 
form 

   
     ∂ ∂ ∂ ∂ ∂ ∂

+ + − = − −     ∂ ∂ ∂ ∂ ∂ ∂     
m2

1 1 A 1 1 A 1 A 1 Ar r J i
r r r r z z rmm  θ m θ m

  (9) 

In the transition to the magnetic flux function 

     ( ) ( )= =
Фr, ,z rA r, ,z
2

Ψ θ θ
π

    (10) 

z

i

kj



θ

x

y

 
Figure 2. Three-dimensional finite element 

 
The condition ( )r, , z constΨ θ =  determines the equation of the force line of the three-dimensional 
magnetic field. For the case of magnetic induction vector components can be written [1, 3] 

    ∂ = − ∂ 
r

1B
r z

Ψ , ∂ = − ∂ 
z

1B
r r

Ψ , ∂ = − ∂ 

1B
rθ

Ψ
θ

  (11) 

The Poisson equation in a homogeneous separate volume V has the form 

    
     ∂ ∂ ∂ ∂ ∂ ∂

+ + = − −     ∂ ∂ ∂ ∂ ∂ ∂     
m

1 1 1 1 1 1 J i
r r r z r z r

Ψ Ψ Ψ
mm  θ m θ

  (12) 

Zero boundary conditions are given on the outer face of the calculated volume V. On the axis of the 
model, the functional is equal to zero, and on the outer faces of the rectangular volume, the equation 
also holds = 0Ψ . 
For the design of magnetic systems of synchronous magnetoelectric machines are characterized by 
homogeneous elements-volume, which are part of the individual components: steel magnetic circuit, 
coil, permanent magnets 
For each of these homogeneous elements, the Laplace-Poisson equation can be written: 
for steel magnetic core 
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     ∂ ∂ ∂ ∂ ∂ ∂

+ + =     ∂ ∂ ∂ ∂ ∂ ∂     c c c

1 1 1 1 1 1 0
r r r z r z r

Ψ Ψ Ψ
µ µ θ µ θ

  (13) 

for the volume occupied by the winding with current, the magnetization current density of DC =J 0 , 
the magnetic permeability is 0µ : 

    
     ∂ ∂ ∂ ∂ ∂ ∂

+ + = −     ∂ ∂ ∂ ∂ ∂ ∂     
0

1 1 1 J
r r r z r z r

Ψ Ψ Ψ µ
θ θ

  (14) 

where =
w z

IWJ
V k

; = + + +vol vol1 vol 2 vol iV V V ... V – total volume of windings per pair of poles. 

for a permanent magnet and air space, the Poisson equation can be written as 

    
     ∂ ∂ ∂ ∂ ∂ ∂

+ + = −     ∂ ∂ ∂ ∂ ∂ ∂     
0 m

1 1 1 i
r r r z r z r

Ψ Ψ Ψ m
θ θ

,  (15) 

moreover, the magnetization current density мi 0≠  is only at the boundary of the permanent magnet. 
In other cases =mi 0 . 
Equations (13-15) are supplemented by external zero boundary conditions (on the faces of N-magnetic 
flux function = 0Ψ ) and conjugation conditions on the inner faces of the calculated volume V. 
Using equations (15) the Poisson equation can be represented as: 

   

�( ) �( ) �( )
[ ] [ ] [ ]

[ ] ( )

 + + −  

 ∂ ∂ ∂∂ ∂ ∂ − + + +
∂ ∂ ∂ ∂ ∂ ∂  

+ + =

∫

∫

∫

r z
S r

T T T
m m mr r r

S r

T
m 0 mr

S

12 F cos nr F cos n F cos nz rdM

N N N1 1 1 12 rdS
r r r r r z z

2 N J i rdS 0

θπ θ
m

ψ ψ ψπ
m θ θ

π m

�

  (16) 

Since zero boundary conditions are given on the outer face S of the simulated volume V, the value of 
the first integral is zero. 
Then 

    

[ ] [ ] [ ]

[ ] ( )

 ∂ ∂ ∂∂ ∂ ∂ + + −
∂ ∂ ∂ ∂ ∂ ∂  

+ + =

∫

∫

T T T
m m mr r r

S r

T
m 0 mr

S

N N N1 dS
r r z z

N J i rdS 0

ψ ψ ψ
m θ θ

m

  (17) 

In accordance with the finite element method (FEM) [6-11] we use a three-dimensional simplex 
element that contains a constant and linear terms. The number of coefficients in such a polynomial is 
one greater than the dimension of the coordinate space. The interpolation polynomial for a tetrahedron 
in a Cartesian coordinate system is: 
     = + + +1 2 3 4x y zϕ α α α α     (18) 
In the cylindrical coordinate system, equation (18) has the form: 
      = + + +1 2 3 4r zΨ λ λ λ λ θ    (19) 
 
Two properties are characteristic of a simplex element: 

• the function Ψ  changes linearly between any two nodes; 
• any line along which Ψ   the values are the same is a straight line that intersects two sides of the 

element 
The coefficients 1λ , 2λ , 3λ , 4λ  are determined by the coordinates of the vertices of the tetrahedron i, j, 
k,  . 
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    
    

    =                

1i i i i

2j j j j

3k k k k

4

1 r z
1 r z
1 r z
1 r z

λΨ θ
λΨ θ
λΨ θ
λΨ θ   

 (20) 

In short notation 
{ } [ ]{ }= AΨ λ ,  (21) 

Perform the calculation of the inverse matrix [ ]−1A , then we get
−

     
     
    =               

1
1 i i i i i

2 j j j j j

3 k k k k ke

4

a b c d
a b c d1
a b c d6V
a b c d

λ ψ
λ ψ
λ ψ
λ ψ    

. (22) 

In the formulation of a global system of linear algebraic equations (SLAE) 
[ ]{ } { }=U FΨ (23) 

Recurrence relations for the formation of global SLAE from elemental equations  (22): 
( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )

= + + +

′+ + + +

 
′ = + + + 

 

r1 r1 r1 r1 r1 r1
ms m s m s m s

r1

r 2 r 2 r 2 r 2 r 2 r 2
m s m s m s ms

r 2

( r1 ) ( r1 ) ( r 2 ) ( r 2 )
ms m s m s

r1 r 2

1u b b c c d d

1 b b c c d d u

1 1u h c c c c cos nz

m

m

mm

 при m s≠ (24) 

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( )( )

=

=

′= + + +

′ = +

∑

∑

20
r r r r r r

mm m m m s m s mm
r 1 r1

20
r r

mm m m
r 1

1u b b c c d d u

u h c c cos( nz )

m  при m s= (25) 

where  r1, r2 - numbers of finite elements with nodes m and s  (Fig.3), h – edge length. 
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Figure 3. Regular-element on 3D-grid 

As an example to explain the structure of a global SLAE, consider a "regular element" on a uniform 
triangulation network.  
The equation for the 11 node of the "regular element" [6, 7] (Fig. 3): 
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ψ ψ ψ ψ ψ ψ ψ ψ
ψ ψ ψ ψ ψ ψ
ψ ψ ψ ψ ψ ψ ψ

+ + + + + + + +

+ + + + + + +

+ + + + + + + =

11,10 10 11,11 11 11,8 8 11,9 9 11,12 12 11,13 13 11,14 14 11,16 16

11,18 18 11,15 15 11,19 19 11,21 21 11,20 20 11,17 17

11,3 3 11,4 4 11,6 6 11,7 7 11,5 5 11,2 2 11,1 1 11

u u u u u u u u
u u u u u u
u u u u u u u F

(26) 

4. Calculation Result
The solution to the test example for permanent Magnet Solution is shown in Fig. 4. 

a)                  b) 
Figure 4. The result compare: a – developed method, b – Ansys model 

Conclusion 

From equation (28) it can be seen that the solution of the global SLAE under given boundary and initial 
conditions are the values of the magnetic flux function in the nodes of the triangulation network of the magnetic 
system SGPM, presented in Fig. 1. Direct and iterative methods can be used to solve the global SLAE. 
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