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Abstract. We give necessary and sufficient conditions for a tree semilattice to be weakly
equationally Noetherian (see [4] for more details).

1. Introduction
The current paper is the sequel of [4], where we obtained the necessary conditions for weakly
equationally Noetherian (WEN) property of a certain class of semilattices. The reader may seek
all definitions from [4].

The complete description of WEN semilattices seems a hard problem. It is just known WEN
linearly ordered semilattices [2] and WEN boolean algebras [3].

In the current paper we generalize the results of [2] and deal with WEN trees. Recall that a
semilattice is a tree if its Hasse diagram is a tree. In [4] we found the necessary conditions for
the WEN property of trees. Namely, it was proved the following theorem.

Theorem [4]. If a semilattice S is WEN, then

(i) S does not contain infinite anti-chains;

(ii) S is ∅-complete;

(iii) if S contains a chain unbounded above, then S is linearly ordered.

In the current paper we prove that the conditions from the theorem above are sufficient. The
statements of Lemmas 3.1–3.4 below may be found in [4].

2. Main results
To check that S is WEN we should check that any system is equivalent to a finite one. The
following lemmas allow us to check a more narrow class of systems.

Lemma 2.1. Let S = {t(X)ci = s(X)di | i ∈ I} be a system over a semilattice S in variables
X = {x1, x2, . . . , xn} (similarly,one can consider the systems of the form {t(X)ci = s(X) | i ∈
I}, {t(X)ci = di | i ∈ I}, {t(X) = di | i ∈ I}). Denote by S2 = {xci = ydi | i ∈ I} the systems
in two variables x, y which was obtained from S by the substitutions x 7→ t(X), y 7→ s(X). If S2

is equivalent over S to a finite system, so is S.

2 Present address: Sobolev Institute of Mathematics, Pevtsova 13, Omsk, 644099, Russia
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Proof. Suppose S2 is equivalent over S to a finite system S̄2 in variables x, y. Let us make the
inverse substitution t(X) 7→ x, s(X) 7→ y and obtain a system S̄ in variables X. Let us prove
that S̄ is equivalent to S over S.

Let P = (p1, p2, . . . , pn) /∈ VS(S), hence there exists an equation t(X)ci = s(X)di ∈ S
such that t(P )ci 6= s(P )di. Therefore, the point (t(P ), s(P )) does not satisfy the system
S2, and (t(P ), s(P )) /∈ VS(S̄2). Thus, there exists an equation τ(x, y) = σ(x, y) ∈ S̄2

with τ(t(P ), s(P )) 6= σ(t(P ), s(P )). By the definition, the system S̄ contains an equation
τ(t(X), s(X)) = σ(t(X), s(X)), and this equation does not satisfy the point P . Thus,
VS(S̄) ⊆ VS(S).

Let us prove the inverse inclusion. Let P = (p1, p2, . . . , pn) /∈ VS(S̄), and there exists an
equation τ(X) = σ(X) ∈ S̄ such that τ(P ) 6= σ(P ). By the construction of the system S̄, it
follows the existence of terms τ ′(x, y), σ′(x, y) with

τ(X) = τ ′(t(X), s(X)), σ(X) = σ′(t(X), s(X)), τ ′(t(X), s(X)) = σ′(t(X), s(X)) ∈ S̄2.

Hence, we have the inequality τ ′(t(P ), s(P )) 6= σ′(t(P ), s(P )). Since τ ′(x, y) = σ′(x, y) ∈ S̄2,
then (t(P ), s(P )) /∈ VS(S̄2) = VS(S2). In other words, there exists an equation xci = ydi ∈ S2

such that t(P )ci 6= s(P )di. Thus, P /∈ VS(S).

Lemma 2.2. If any system of one of the following forms S1 = {xci = ydi | i ∈ I},
S2 = {xci = y | i ∈ I} S3 = {xci = di | i ∈ I} is equivalent to a finite system over a
semilattice S, then S is WEN.

Proof. Let S be an arbitrary system over S in variables X = {x1, x2, . . . , xn}. Since there exists
at most finite number of different coefficient-free terms in variables X, then S is a finite union
of its subsystems

S =
⋃
t,s

{t(X)ci = s(X)di | i ∈ Its}
⋃
t,s

{t(X)ci = s(X) | i ∈ I ′ts}
⋃
t

{t(X)ci = di | i ∈ It}⋃
t

{t(X) = di | i ∈ I ′t},

where the indexes t, s belongs to the set of all coefficient-free terms in variables X.
The system S is equivalent to a finite system, if so are its subsystems

S1ts = {t(X)ci = s(X)di | i ∈ Its}, S2ts = {t(X)ci = s(X) | i ∈ I ′ts},

S3t = {t(X)ci = di | i ∈ It}, S4t = {t(X) = di | i ∈ I ′t}.

One can treat coefficient-free terms as new variables; hence the systems S1ts,S2ts,S3t,S4t are
equivalent to finite systems, if so are the following systems

S1 = {xci = ydi | i ∈ I}, S2 = {xci = y | i ∈ I},

S3 = {xci = di | i ∈ I}, S4 = {x = di | i ∈ I}

in at most two variables x, y (Lemma 2.1).
The system S4 is always equivalent to a finite system. Indeed, if S4 is infinite , then it is

inconsistent and S4 ∼ {c = d}, where c, d are different elements of the semilattice S. By the
condition, the systems S1,S2,S3 are equivalent to finite systems. Thus, S is also equivalent to
a finite system.
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The following lemma applies Lemma 2.2 to ∅-complete semilattices.

Lemma 2.3. If any system of one of the following forms S1 = {xci = ydi | i ∈ I},
S2 = {xci = y | i ∈ I} is equivalent to a finite system over ∅-complete semilattice S, then
S is WEN.

Proof. It is sufficient to show that a system S3 = {xci = di | i ∈ I} is reduced to systems of the
forms S1,S2 over any ∅-complete semilattice.

An equation xci = di is inconsistent, if either di > ci or di ‖ ci. Hence, if S3 contains such
equation, then S3 ∼ {c = d}, where c 6= d. Let di ≤ ci for all i ∈ I. We prove that the equation
xci = di is equivalent to the system {xci = xdi, xdi = di}.

Let a ∈ VS(xci = di), then

aci = di ⇒ a ≥ di ⇒ a ∈ VS(xdi = di),

aci = di | ·a⇒ aci = adi ⇒ a ∈ VS(xci = xdi).

On the other hand, if a ∈ VS({xci = xdi, xdi = di}), then

aci = adi, adi = di ⇒ aci = di ⇒ a ∈ VS(xci = di).

Thus, S3 is equivalent to the union of two systems {xci = xdi | i ∈ I} ∪ {xdi = di | i ∈ I}.
The first system is of the form S1, and, by the condition of the Lemma, {xci = xdi | i ∈ I} is
equivalent to a finite system.

Let us prove that the system S4 = {xdi = di | i ∈ I} with the solution set {s | s ≥ di, i ∈ I}
is equivalent to a finite system. Indeed, if a set {di | i ∈ I} has the supremum d, then S4 is
equivalent to the equation x ≥ d. Otherwise (when the chain {di} is unbounded above), the
system S4 is inconsistent and S4 ∼ {c = d}, for arbitrary c 6= d.

Lemma 2.4. Let S = {xci = ydi | i ∈ I} be a system over a ∅-complete semilattice S , where
{ci | i ∈ I}, {di | i ∈ I} are chains and ci < di for each i ∈ I. Then S is equivalent to the
system {xck = yd, xc = ydk} for c = inf{ci}, d = inf{di} and arbitrary k ∈ I. If one of the
chains {ci}, {di} is unbounded below, then S is inconsistent.

Proof. Suppose S has a solution (x0, y0). By Lemma 3.3 there exist sets of indexes I1(x0), I1(y0),
I2(x0), I2(y0) such that

x0ci = b (i ∈ I1(x0)), y0di = b′ (i ∈ I1(y0)),

x0ci = ci (i ∈ I2(x0)), y0di = di (i ∈ I2(y0)).

Since di 6= ci, it follows that the sets I2(x0), I2(y0) are empty and b = b′. Thus,

x0ci = y0di = b (i ∈ I). (1)

Hence, the chains {ci}, {di} are bounded above by the element b, and, by the ∅-compactness,
there exist elements c = inf{ci}, d = inf{di}. Finally, we proved the first statement of the
lemma.

Since b ≤ ci (i ∈ I), then b ≤ c. Since x0 ≥ b and x0 /∈↑ (b, c] (if x0 ∈↑ (b, c] it follows
x0ci > b), Lemma 3.1 provides x0c = b. Similarly, one can prove that y0d = b and hence

x0c = b = y0dk ⇒ (x0, y0) ∈ VS(xc = ydk).
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x0ck = b = y0d⇒ (x0, y0) ∈ VS(xck = yd).

Thus, we proved the inclusion

VS(S) ⊆ VS({xc = ydk, xck = yd}).

Let us prove the inverse inclusion. Suppose (x0, y0) ∈ VS({xck = yd, xc = ydk}), i.e. we have

x0ck = y0d, x0c = y0dk. (2)

We have exactly two cases.

(i) If (x0, y0) ∈ VS(xck = ydk) (i.e. x0ck = y0dk), then (2) gives x0ck = y0dk = x0c = y0d. By
Lemma 3.1, we have x0 /∈↑ (c, ck], y0 /∈↑ (d, dk]. According to the tree properties, we obtain
x0 /∈↑ (c, ci], y0 /∈↑ (d, di] for all i ∈ I. However, Lemma 3.1 implies x0c = x0ci, y0d = y0di
for all i ∈ I. Since x0c = y0d, then x0ci = y0di for all i ∈ I. The last expression provides
(x0, y0) ∈ VS(S).

(ii) If (x0, y0) /∈ VS(xck = ydk), then (2) gives y0d 6= y0dk, x0c 6= x0ck. By Lemma 3.1 we have
x0 ∈↑ (c, ck], y0 ∈↑ (d, dk]. Then the equalities (2) become

x0ck = d, c = y0dk. (3)

Since dk ≥ d and y0 ≥ d, then y0dk = c ≥ d. On the other hand, the inequalities ck ≥ c,
x0 ≥ c give d ≥ c. Thus, c = d, and (3) provides x0ck = y0dk that contradicts the condition
(x0, y0) /∈ VS(xck = ydk).

Thus, we proved the inverse inclusion

VS(S) ⊇ VS({xc = ydk, xck = yd}),

and we immediately obtain that S is equivalent to the system {xc = ydk, xck = yd}.

Lemma 2.5. Let S be a ∅-complete semilattice and consider a system S = {xci = ydi | i ∈ I},
where {ci | i ∈ I}, {di | i ∈ I} are chains and for each i ∈ I it holds ci ‖ di. The system S is
equivalent to the system {xck = yd, xc = ydk} for c = inf{ci}, d = inf{di} and arbitrary k ∈ I.
If one of the chains {ci}, {di} is unbounded below, the system S is inconsistent.

Proof. Actually, the proof of Lemma 2.4 did not use the condition ci < di. Thus, the proof of
the current lemma coincides with the proof of Lemma 2.4.

Lemma 2.6. Let S be a ∅-complete semilattice and consider a system S = {xci = y | i ∈ I},
where {ci | i ∈ I} is a chain. Then S is equivalent to the equation xc = y, where c = inf{ci}. If
the chain {ci} is unbounded below, then S is inconsistent.

Proof. If S has the solution (x0, y0), then the element y0 bound the chain {ci} below. Thus,we
proved the second statement of the lemma, and further we assume that the chain {ci} is bounded
below and, by the ∅-compactness, it has the infimum c.

Let (x0, y0) ∈ S, then y0 ≤ ci, y0 ≤ x0 and hence y0 ≤ c. By x0 /∈↑ (y0, c] (otherwise it holds
x0ci > y0) and Lemma 3.1, we obtain x0c = x0y0 = y0, i.e. (x0, y0) ∈ VS(xc = y).

Suppose now x0c = y0. By the tree properties, we have y0 ≤ c ≤ ci, y0 ≤ x0 and x0 /∈↑ (y0, ci]
for all i ∈ I. Then Lemma 3.1 gives x0ci = x0y0 = y0, i.e. (x0, y0) ∈ VS(S).
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Theorem 2.7. A semilattice S is WEN iff the following conditions holds:

(i) S does not contain infinite anti-chains;

(ii) S is ∅-complete;

(iii) if S contains a chain unbounded above, then S is linearly ordered.

Proof. The “only if” part of the theorem was proved in [4]. Let us prove the “if” part of the
theorem. By the Dilworth‘s theorem, there exists a finite set of chains L1, L2, . . . , Ll with

S =
l⋃

i=1

Li (4)

.
According to Lemma 2.3, it is sufficient to prove that any system of the following forms

S1 = {xci = ydi | i ∈ I}, S2 = {xci = y | i ∈ I} is equivalent to a finite system. The system S1

is a finite union of its subsystems

S1 =
l⋃

i,j=1

Sij , (5)

where
Sij = {xck = ydk | ck ∈ Li, dk ∈ Lj}

(remark that this union is not necessarily disjoint). By the definitions of the system Sij , it
follows that the sets {ci}, {di} are linearly ordered (i.e. {ci}, {di} are chains).

If Sij is inconsistent, it is obviously equivalent to an equation c = d for different c, d ∈ S.
Otherwise, Sij is a union of the subsystems

Sij = S< ∪ S> ∪ S= ∪ S‖,

where S< = {xck = ydk | ck < dk}, S> = {xck = ydk | ck > dk}, S= = {xck = ydk | ck = dk},
S‖ = {xck = ydk | ck ‖ dk}.

By Lemmas 3.4, 2.4, 2.5 all systems S<,S>,S=,S‖ are equivalent to finite subsystems.
Thus, each system Sij is equivalent to a finite system. Hence, so is S1.
The system S2 is also a finite union of its subsystems

S2 =
l⋃

i=1

S(i), (6)

where
S(i) = {xck = y | ck ∈ Li}

However Lemma 2.6, provides that each S(i) is equivalent to a finite system of equations.
Thus, so is S2.
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