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Abstract.  The research of new materials and methods for water treatment is necessary. Two 

sets of materials were prepared. The one set is composed from CuO/ZnO oxides with variable 

content of CuO and the second set consists of its biochar impregnated counterparts. The structure 

and phase composition was determined using X-ray diffraction method and morphology of the 

materials was studied using scanning electron microscopy. The photodegradation activity and 

adsorption properties were tested on model pollutant – Methylene blue (MB) dye solution. The 

experimental kinetic of the data was analyzed using pseudo-first-order and pseudo-second-order 

kinetic models and the equilibrium data was evaluated using Langmuir, Freundlich and Dubinin-

Radushkievic models. It was found that optimal material for photodegradation of MB is 1% 

CuO/ZnO oxide and for the adsorption of MB is the best material raw corn cob biochar. 

1.  Introduction 

The rapid industrialization, urbanization and economic boom lead to increase their living standard and 

energetic consumption. The environmental pollution is a tax for the huge technological advance the 

human civilization made up to now. One of the most precious resources available to human is fresh 

water. The industry and households use it on daily basis in great quantities. The wastewater that it 

generates needs to be very thoroughly cleaned before it can be returned to the circulation. The 

wastewater contains a great mixture of pollutants. From heavy metals [1], phenolics [2], dyes [3], 

pesticides to PPCPs (pharmaceuticals and personal care products) and others [4, 5]. The waste water is 

treated by array of different methods. The common water treatment methods in use are filtration, 

adsorption, photodegradation, oxidation, flotation etc. and their combinations [6, 7]. 

The adsorption is a separation process. The pollutant comes in contact with the surface of the 

adsorbent and is attached to it. According to the nature of the bond between pollutant and adsorbent it 

is distinguished between physical adsorption and chemical adsorption. In the physical adsorption the 

attractive forces are Van der Waals forces, the pollutant-adsorbent bond is weak, the process is reversible 

and the pollutant can be attached in several layers to the surface. In chemical adsorption the pollutant is 

with adsorbent connected by chemical bond which is far stronger and adsorption is irreversible process 
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[8]. In the chemical adsorption the pollutant is attached to active sites (chemical groups) on the surface 

of the adsorbent and forms a monolayer on the adsorbent. The chemisorption is selective and by tailoring 

the active sites can target specific pollutant [9, 10]. The pollutant, can in some cases, be desorbed and 

the adsorbent reused otherwise the spent adsorbent with the pollutant has to be safely disposed of. 

The important parameters for the adsorbents are specific surface area, pore size distribution and 

chemical composition of the surface layer. The widely used adsorbents are activated carbon, zeolites, 

silica, polymeric resins, etc. The activated carbon materials can be prepared from variety of 

carbonaceous materials like coal or from agrowaste such as corn cob, coffee husk and cocoa pod husk 

[3]. The materials are pyrolyzed at high temperature (above 400 °C) without oxygen and subsequently 

activated by oxidizing agent which helps create and access pores. The adsorption properties may be 

further enhanced by impregnation and functionalization. The activated carbon adsorbents adsorb organic 

pollutants very well but adsorption of heavy metals and metalloids (Pb, Cr, As) can be improved by 

impregnation with ZnO [11, 12].  

Photodegradation is a process where the photoactive material is used for chemical degradation of 

pollutants. The photocatalyst materials are able to absorb photons of UV and visible light and utilize 

their energy to produce reactive chemical species such as 𝑂𝐻∗and 𝑂2
−∗ reactive radicals. These species 

cannot exist alone for a prolonged time and for the purposes of the photodegradation of pollutants need 

to be continually generated. The photodegradation does not necessarily lead to complete mineralization 

of the pollutant to complete degradation to H2O, CO2 and inorganic salts. The photodegradation process 

should be monitored and adjusted to prevent formation of products that are harmful or possibly even 

more toxic than the initial pollutant. The process is not selective and is sensitive to turbidity. The 

photocatalyst if properly anchored can be used repeatedly [13]. 

The biochar is carbonaceous material with significantly lower specific surface area than activated 

carbon but much easier and eco-friendly synthesis. It can be produced from agrowaste and its adsorption 

properties can be enhanced by impregnation. The agrowastes disposal is a problematic issue in many 

countries. Annually, tons of agrowastes are generated and burned or dumped over. The other problem 

plaguing developing countries is water pollution. The utilization of the agrowaste for the biochar 

production is trying to help solve both problems. This paper aims at demonstrating two different methods 

for water treatment and dealing with model pollutant - Methylene blue (MB). The Methylene blue is 

dye from phenothiazine family it is widely used in chemistry and medicine and in this work will serve 

as a model organic pollutant. The two chosen degradation/separation methods were demonstrated on 

two sets of samples: the set of mixed oxides 1% CuO/ZnO, 5% CuO/ZnO, 10% CuO/ZnO was used in 

photoactivity testing and the set of mixed oxides impregnated on biochar was used for adsorption tests. 

2.  Experimental 

Two sets of materials were prepared. The first set was supposed to compose of three different mixtures 

of CuO and ZnO with the CuO content varied from 1 mol% to 5 mol% and 10 mol% of CuO in ZnO.  

The second set is composed of three CuO and ZnO mixturers impregnated to biochar. The CuO and 

ZnO mixtures are of the same composition as in the first set.  

2.1.  Metal oxides 

The solution of NaOH (c=0.5 M) was heated to 60°C and dropwise was added Copper acetate (c=0.33 

M) and Zn(NO3)2 (c=0.5 M) from two separate burets. The temperature was raised to 80°C and kept for 

2 h. The suspension was then sonicated for 30 min, centrifugated and dried in oven for 24 h at 60 °C. 

The materials were marked as 1% CuO/ZnO, 5% CuO/ZnO, and 10% CuO/ZnO. 

2.2.  Metal oxide impregnated biochar 

The biochar was prepared by pyrolysis of agrowaste corn cob (particle size <0.5 mm) at 600 °C for 2 h 

under nitrogen flux (150 ml‧min-1). The biochar was subsequently washed with 0.5 M HCl, hot and cold 

distilled water. The washed biochar was then dried in oven for 24 h at 100°C. The biochar impregnation 

was done the same way as the synthesis of metal oxides above. The biochar was mixed with the sodium 
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hydroxide solution and the rest of the procedure was the same. The product was sonicated for 30 min, 

washed with distilled water, filtered and dried in oven for 24 h at 60 °C. The composites were marked 

as 1% CuO/ZnO/Biochar, 5% CuO/ZnO/Biochar, and 10% CuO/ZnO/Biochar. 

2.3.  Characterization 

The phase and crystallinity were studied by X-ray diffraction (XRD) using Bruker D8 Advance 

diffractometer operated at 40 kV and 40 mA, with CuKα (λ=1.5406 Å) radiation. The XRD patterns 

were collected in a 2Θ range from 5° to 80° and analyzed using software Match! 

The field emission scanning electron microscope (FSEM) Rigaku SU8230 was used for 

characterization of the morphology of the studied adsorbents. The absorbance of Methylene blue (MB) 

solution used in adsorption and photodegradation experiments was determined using UV-vis 

spectrometer Perkin Elmer Lambda 365 in 10 mm quartz glass cuvettes. The adsorption properties of 

the biochar composites were tested using equilibrium and kinetic adsorption tests with Methylene blue. 

The photoactivity of the oxide materials was tested with photodegradation test with Methylene blue. 

2.4.  Equilibrium adsorption tests 

The equilibrium experiments were performed using nine different initial solutions of Methylene blue 

(MB): 5, 10, 20, 50, 100, 150, 200, 300 and 400 mg‧L-1. The total solution volume was 50 ml and was 

added 0.1 g of the adsorbent into every solution. The time to reach the equilibrium stage was 24 h. The 

initial pH level was measured for every solution. The models of adsorption isotherm applied to the 

equilibrium data were Langmuir, Freundlich and Dubinnin-Raduskevich. The equilibrium adsorption 

uptake of MB on the adsorbents, qe (mg‧g-1) were calculated using the following equation: 

( )

BC

e
e

m

VCC
q

−
= 0        (1) 

where C0 (mg‧L-1) and Ce (mg‧L-1) are initial concentration and the concentration at equilibrium, 

respectively. V (L) is the volume of the solution and mBC (g) is the amount of biochar added. 

 

The Langmuir model: 

𝑞𝑒 =
𝑄0∙𝐾𝐿∙𝐶𝑒

1+𝐾𝐿∙𝐶𝑒
       (2) 

where Ce (mg‧L-1) is adsorbate concentration at equilibrium, qe (mg‧g-1) is the amount of adsorbate 

uptake at equilibrium. KL (L‧mg-1) is Langmuir equilibrium constant, Q0 (mg‧g-1) is saturated monolayer 

adsorption capacity of adsorbent. 

 

Freundlich model: 

𝑞𝑒 = 𝐾𝐹 ∙ 𝐶𝑒
𝑛       (3) 

where the KF (mg‧g-1)/(mg‧L-1)n is Freundlich constant. The n (dimensionless) is Freundlich intensity 

parameter.  

 

Dubinin-Radushkievic model: 

𝑞𝑒 = 𝑞𝐷𝑅 ∙ 𝑒𝑒
−𝐾𝐷𝑅∙𝜀

2

      (4) 

where qDR (mg‧g-1) and KDR (mol2‧kJ-2) are Dubinin-Radushkevic constants, ε is a Polanyii potential. 

 

 

 

2.5.  Kinetic adsorption tests 
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Kinetic experiments were conducted using initial MB concentration of 10 mg‧L-1 (150 mL of total 

solution) and biochar load of 0.5 g, the pH level was adjusted between 9 – 9.5. Aliquots (approx. 5 ml) 

were taken at the beginning, 2, 4, 6, 8, 10, 15, 20, 25, 30, 45, 60, 75, 90 and 120 min. Every aliquot was 

filtered through 0.45 µm filter and the concentration of MB determined using UV-vis spectrometer. The 

amount of MB adsorbed at time t was calculated by using the following mass balance equation: 

 
( )

BC

t
t

m

VCC
q

−
= 0        (5) 

where C0 is the initial concentration of MB and Ct is the MB concentration in solution at time t (mg L-

1). V is the total volume of solution (L) and mBC is the mass of biochar. 

The nonlinear pseudo-first-order rate equation (PFO): 

𝑞𝑡 = 𝑞𝑒 ∙ (1 − 𝑒−𝑘1∙𝑡)      (6) 

where qe (mg‧g-1) and qt (mg‧g-1) are the amounts of MB sorbed at equilibrium and at time t. The k1 (min-

1) is the rate constant of the PFO equation. 

 

The nonlinear pseudo-second-order rate equation (PSO): 

 

𝑞𝑡 =
𝑞𝑒
2∙𝑘2∙𝑡

1+𝑘2∙𝑞𝑒∙𝑡
      (7) 

where k2 (g‧mg-1‧min−1) is the rate constant of the PSO equation. 

2.6.  Photoactivity test 

Photocatalytic activity of prepared materials was assessed from the degradation of Methylene blue dye 

solution. The CuO/ZnO oxides under UV-vis light (Ultra-Vitalux OSRAM 220 V, 300 W) degraded 

Methylene blue dye (with absorption maximum at 664 nm) and decreased the concentration of the 

solution. This concentration was monitored from the absorption intensity of the solution. The 

measurement was performed on a UV-vis spectrometer in 10 mm quartz glass cuvettes.  

The layout of the experiment: The 0.05 g of the powder material was mixed with 150 mL of MB 

solution (c = 10 mg‧L-1). The suspension was stirred (400 rpm) for 30 min in dark. Aliquots (approx. 5 

mL) were taken at the beginning, 5, 10, 15, 20, 25, 30, 60, 90 and 120 min. Every aliquot was filtered 

through 0.45 µm filter. Two millilitres of the filtered solution were diluted with distilled water to 25 mL 

solution and the absorbance was measured on this dilute solution. 

Prior to the photodegradation experiments, the calibration curve was determined using different 

concentrations of MB solution (0.00, 0.10, 0.19, 0.38, 0.58, 0.77, 1.15 ppm). The regression curve from 

calibration data was used to determine the concentration of the dye from the measured absorbance (8). 

 

  0019.0186.0 += cA        (8) 

where A is an absorbance and c is a concentration (ppm). 

Evaluation of kinetic data (determination of rate constants): Photocatalytic activity of prepared 

material was expressed as conversion of MB (XMB) dependent on time according to equation (9):

  

 100
)(0

)()(0


−
=

MB

MBMB

MB
c

cc
X      (9) 

First-order rate-constant was obtained from the linear regression:  
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where c0 is initial concentration (mol‧L-1) and c (mol‧L-1) is concentration at the time t, k is a rate constant 

(min-1), t is a time (min). 

For the purpose of comparison of the adsorption and photoactivity the qpd (mg‧g-1) was devised and 

represents the weight of the MB dye photodegraded per weight of the photocatalyst. 

( ) ( )

)(

0
100

ystphotocatal

MBMB

pd
m

X
Vc

q



=       (11) 

Where c0 is the initial concentration (mg‧L-1), VMB is the volume of the solution (L), X is a conversion 

(%) and m(photocatalyst) is the weight of the photocatalyst material (g). 

3.  Results and discussion 

The structure of the materials was analyzed using XRD. The diffractograms are shown in Figure 1. The 

phase composition is in both materials very similar. The three major phases are Garhardtite (Cu2H3NO6, 

Match! Refpattern_96-901-2716), Zincite (ZnO, Match! Refpattern_96-900-4180) and CuO (Match! 

Refpattern_96-410-5686). The two large peaks in Figure 1 b) at positions from 18 to 30° and from 40 

to 50° are typical for carbonaceous materials such as biochar. The oxides in diffractogram 1 a) show 

better crystallinity.  

 
 

 

 

   
Figure 1. The XRD diffractograms of a) CuO/ZnO oxides and b) CuO/ZnO/Biochars. 

 

The morphology of the materials was examined by SEM as shown in Figure 2. The biochar particles 

shown in Figure 2 a) are 10 to 20 µm large. The Figure 2 b, c, d) show anchored oxides on the biochar 

particles. The oxide particles in Figure 2 b-f) are sponge-like agglomerates of very small crystallites. 

The thin platelet/sheet particles found in 2 c, d) suggest the biochar was during the impregnation process 

exfoliated or delaminated. 
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Figure 2. The SEM images of a) Biochar, b) 1% CuO/ZnO/Biochar, c, d) 10% CuO/ZnO/Biochar, e, f) 

1% CuO/ZnO. 

 

The kinetic adsorption test (Fig. 3) showed good affinity of MB to the biochar composite materials, 

the equilibrium in the kinetic test is established in less than two minutes. The highest sorption capacity 

qt in the kinetic test is recorded for the raw biochar (Fig. 3 a)). From the comparison of coefficients of 

determination R2 and chi-square statistic χ2, the MB kinetic test data were best fitted with Pseudo first 

order model (R2 = 0.87-0.97 and χ2 = 0.00-0.05). 

 

Table 1. The kinetic test. 

 

Kinetic rate equation Material 
Qe  

(mg‧g-1) 

k1  

(min-1) 
χ 2

 
R2 

PFO 

Biochar 1.91 39016.39 0.05 0.87 

1% CuO/ZnO/Biochar 1.55 988.23 0.01 0.97 

5% CuO/ZnO/Biochar 1.24 6083.13 0.01 0.95 

10% CuO/ZnO/Biochar 1.32 21.69 0.00 0.97 

 

The PSO parameters were negative and are not shown in the table as the model proved to be 

unsuitable for this data. 
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Figure 3. MB kinetic data by CuO/ZnO/Biochar materials. 

 

In the equilibrium adsorption test the highest adsorption capacity for MB showed raw biochar (Fig. 

4a)). The adsorption capacity of the raw biochar surpassed all of the biochar composite materials. The 

equilibrium was achieved only with 5% CuO/ZnO/Biochar material (qe = 5.08 mg‧L-1, Ce = 153.38 mg‧g-

1). Although the equilibrium concentration was not reached in the case of raw biochar it can be said it 

surpassed all other tested materials in MB equilibrium adsorption test. From the comparison of 

coefficients of determination R2 and chi-square statistic χ2, the MB equilibrium test data (Table 2) were 

best fitted with Langmuir model (R2 = 0.92-0.98 and χ2 =0.08-0.92).  

 

Table 2. The equilibrium test. 

 

Model Material 
Q0 

(mg‧g-1) 

KL 

(L‧mg-1) 
 χ 2

 
R2 

Langmuir 

Biochar 12.91 0.05  0.72 0.96 

1% CuO/ZnO/Biochar 9.62 0.04  0.92 0.92 

5% CuO/ZnO/Biochar 5.62 0.04  0.08 0.97 

10% CuO/ZnO/Biochar 7.38 0.04  0.14 0.98 

  
  

KF 

(mg‧g-1)/(mg‧L-1)n 

n 

(-) 
 χ 2

 
R2 

Freundlich 

Biochar 2.26 0.29  1.44 0.93 

1% CuO/ZnO/Biochar 1.63 0.30  1.05 0.90 

5% CuO/ZnO/Biochar 0.94 0.31  0.42 0.86 

10% CuO/ZnO/Biochar 1.24 0.31  0.80 0.86 

  
  

qDR 

(mg‧g-1) 

kDR 

(mol2‧kJ-2) 
 χ 2

 
R2 

Dubinin-Raduskevic 

Biochar 10.91 15.42  3.67 0.82 

1% CuO/ZnO/Biochar 8.12 18.62  2.54 0.77 

5% CuO/ZnO/Biochar 4.82 42.59  0.44 0.86 

10% CuO/ZnO/Biochar 6.02 19.29  0.95 0.83 
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Figure 4. MB adsorption isotherms by CuO/ZnO/Biochar materials. 

 

 

 
Figure 5. The comparison of conversions achieved in photoactivity test with MB and CuO/ZnO 

materials. 
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Table 3. The photoactivity test results. 

 

Material 
k‧102 

(min-1) 

XMB 

(%)a 

qpd 

(mg.g-1) 

ZnO 3.02±0.17 85 25.50 

1% CuO/ZnO/Biochar 7.36±0.28 90 27.00 

5 % CuO/ZnO/Biochar 3.52±0.28 96 28.80 

10 % CuO/ZnO/Biochar 3.51±0.26 98 29.40 
aMaximum conversion achieved in 90 minutes.  

  

The biochar composites showed increased conversion of MB (Figure 5) in comparison to the ZnO. 

The kinetic equation of photocatalytic degradation of Methylene blue with CuO/ZnO oxide materials is 

of pseudofirst order. Although the increased content of CuO hindred the photoactivity performance, the 

1% CuO/ZnO shows improvement in comparison to pure ZnO. The 1% CuO in ZnO proportion appears 

to be optimal.  

The metal oxide synthesis and impregnation process affects the morphology of the biochar. The 

particles of the impregnated biochar were significantly smaller compared to the raw/untreated biochar 

and the prevailing shape among them was of thin platelets or sheets. The most probable cause is 

exfoliation of biochar due to exposition to the NaOH or the ultrasonication during the impregnation.  

Although the equilibrium in the equilibrium adsorption test was achieved only with one material, it 

provides enough data for comparison of the materials.  

In the photodegradation test, the best conversion was achieved by 98 % after 90 min, but with the 

1 % CuO/ZnO was achieved conversion 90 % in just 30 min, which is only 8 % lower but 3 times 

quicker.  

If we want to compare the degradation/separation of MB by adsorption and photodegradation we 

need to consider the adsorbed/degraded amount of MB per gram of the material and take into account 

the time. The photodegradation test and kinetic adsorption test both used the MB concentration of 

10 mg‧L-1 and lasted 90 min. If we focus on the best materials in both sets (raw biochar and 1% 

CuO/ZnO) and take a look at qpd and Qe (PFO) we see that the qpd is more than 12 times higher than Qe 

(PFO). The same amount of 1% CuO/ZnO photodegradaded more than 12 times the amount of MB that 

was adsorbed on raw biochar in 90 mins. If we consider that 1% CuO/ZnO achieved 90% conversion in 

just 30 min it is a significant difference. It is important to note that the metal oxide impregnation of 

biochar is usually used to improve adsorption of metal ions (such as Pb, As, Cd) from the water 

environment and in the case of MB it probably screens the active sites and pores at the surface and 

hinders the adsorption. With a different pollutant the results could be diametrically different. The 

purpose of this paper is only to illustrate different methods of water treatment not to compare them.  

4.  Conclusions 

The photodegradation and adsorption of MB on the prepared materials demonstrated two methods for 

combating pollution and illustrated the need to study and tailor the water treatment methods to the type 

of pollutants. The optimal material for photodegradation of MB was 1% CuO/ZnO oxide material. The 

impregnation of corn cob biochar with CuO/ZnO did not lead to improvement in the adsorption of MB. 

Further tests with the corn cob biochar adsorption should use different pollutants. To compare the two 

methods the tests should be run on the same set of materials and more pollutants should be tested. 

Acknowledgement 

This work is supported by the National University of Tumbes (CANON-Project RN°0169-2017/UNT-

R). The authors would also like to thank the Peruvian National Council for Science and Technology 

(CONCYTEC) Contract N 024-2016-FONDECYT. One of us (JL) is supported by the ESF in “Science 

without borders” project, reg. NR. CZ.02.2.69/0.0./0.0./16_027/0008463 within the Operational 

Programme Research, Development and Education. 



Peruvian Workshop on Solar Energy (JOPES 2019)

Journal of Physics: Conference Series 1433 (2020) 012010

IOP Publishing

doi:10.1088/1742-6596/1433/1/012010

10

 

 

 

 

 

 

References 

[1] Alkurdi S S A, Herath I, Bundschuh J, Al-Juboori R A, Vithanage M, Mohan D 2019 Biochar 

versus bone char for a sustainable inorganic arsenic mitigation in water: What needs to be done 

in future research? Environ Int 127 52-69 

[2] Ryu J, Kim W, Kim J, Ju J, Kim J 2017 Is surface fluorination of TiO2 effective for water 

purification? The degradation vs. mineralization of phenolic pollutants. Catalysis Today 282 

24-30 

[3] Nethaji S, Sivasamy A, Mandal A B 2013 Adsorption isotherms, kinetics and mechanism for the 

adsorption of cationic and anionic dyes onto carbonaceous particles prepared from Juglans 

regia shell biomass. International Journal of Environmental Science and Technology 10 231-

42 

[4] Couto C F, Lange L C, Amaral M C S 2019 Occurrence, fate and removal of pharmaceutically 

active compounds (PhACs) in water and wastewater treatment plants—A review. Journal of 

Water Process Engineering 32 100927 

[5] Quesada H B, Baptista A T A, Cusioli L F, Seibert D, de Oliveira Bezerra C, Bergamasco R 2019 

Surface water pollution by pharmaceuticals and an alternative of removal by low-cost 

adsorbents: A review. Chemosphere 222 766-80 

[6] Al-Ghouti M A, Al-Kaabi M A, Ashfaq M Y, Da’na D A 2019 Produced water characteristics, 

treatment and reuse: A review. Journal of Water Process Engineering 28 222-39 

[7] Pichel N, Vivar M, Fuentes M 2019 The problem of drinking water access: A review of 

disinfection technologies with an emphasis on solar treatment methods. Chemosphere 218 

1014-30 

[8] Tran H N, You S-J, Chao H-P 2016 Thermodynamic parameters of cadmium adsorption onto 

orange peel calculated from various methods: A comparison study. Journal of Environmental 

Chemical Engineering 4(3) 2671-82 

[9] Aljeboree A M, Alshirifi A N, Alkaim A F 2017 Kinetics and equilibrium study for the adsorption 

of textile dyes on coconut shell activated carbon. Arabian Journal of Chemistry 10 3381-93 

[10] Saruchi, Kumar V 2019 Adsorption kinetics and isotherms for the removal of rhodamine B dye 

and Pb+2 ions from aqueous solutions by a hybrid ion-exchanger. Arabian Journal of 

Chemistry 12(3) 316-29 

[11] Li C, Zhang L, Gao Y, Li A 2018 Facile synthesis of nano ZnO/ZnS modified biochar by directly 

pyrolyzing of zinc contaminated corn stover for Pb(II), Cu(II) and Cr(VI) removals. Waste 

Manag 79 625-37 

[12] Chen M, Bao C, Hu D, Jin X, Huang Q 2019 Facile and low-cost fabrication of ZnO/biochar 

nanocomposites from jute fibers for efficient and stable photodegradation of methylene blue 

dye. Journal of Analytical and Applied Pyrolysis 139 319-32 

[13] Khataee A R, Kasiri M B 2010 Photocatalytic degradation of organic dyes in the presence of 

nanostructured titanium dioxide: Influence of the chemical structure of dyes. Journal of 

Molecular Catalysis A: Chemical 328(1-2) 8-26 

 


