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Abstract. In this paper, we analyze the complex product design problem using the model of
the partial maximum satisfiability problem. In previous papers, estimates of the cardinality of
L-complexes of polyhedrons of the SAT and the MAX SAT problems were obtained. In this
paper, a relation of the cardinality of the L-complexes of the partial MAX SAT problem and the
corresponding SAT problem is obtained. Using this result, it is possible to obtain theoretical
estimates of the cardinality of the L-complex of the polyhedron of the complex product design
problem on the basis of similar estimates for the SAT and the MAX SAT problems.

1. Introduction
In many decision-making problems, related to design, planning, cryptanalysis etc., the logical
constraints are used [1, 2, 3, 4, 5]. These constraints are often described in the terms of
mathematical logic and lead to the satisfiability problem (SAT) and its generalizations. The
most known problems are the maximum satisfiability problem (MAX SAT) and the partial
maximum satisfiability problem. The latter problem includes two types of constraints that are
used: the ”hard” constraints (that should be satisfied anyway) and the ”soft” constraints (that
can be violated under certain conditions).

Problems with logical constraints devoted a significant number of publications in discrete
optimization. The main areas of research are the development and analysis of exact and
approximate algorithms, the study of the structure and complexity of problems, the allocation
of polynomially solvable subclasses of problems, the construction of families of difficult problems
for certain classes of algorithms.

To analyze and solve discrete optimization problems, A.A. Kolokolov proposed a method
of regular partitions [6]. On its basis, a number of theoretical results were obtained for many
practical problems using L-partition. Among these problems such as the knapsack problem, the
set packing problem, set covering problem, satisfiability problem and some other problems [7, 8].
In addition, algorithms to solve these problems were developed and investigated [2, 9].

In this paper, we consider the general formulation of the complex product design problem.
Many complex product design problems are solved with the help of different computer systems,
using which an expert searches through and compares a large number of combinations of
components and elements. Therefore, quite interesting and promising solutions may not be
considered. So it is rational to use the discrete optimization models and methods to find optimal
solutions.
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We consider an integer linear programming model for the complex product design problem
based on the partial MAX SAT problem. In previous papers, estimates of the cardinality of
L-complexes of polyhedrons of the SAT and the MAX SAT problems were obtained [7, 10]. In
this paper, a relation of the cardinality of the L-complexes of the partial MAX SAT problem and
the corresponding SAT problem is obtained. Using this result, it is possible to obtain theoretical
estimates of the cardinality of the L-complex of the polyhedron of the partial MAX SAT problem
on the basis of similar estimates for the SAT and the MAX SAT problems. Besides, it is possible
to construct and analyze algorithms to find the optimal variants of complex products.

In the next section, problem statements with logical conditions and the complex product
design problem are given. The formulation of the problem of finding the composition of fire-
resistant rubber is considered in more detail. Section 3 describes the basic concepts of the regular
partitions method, in particular, the properties of the L-partition. The last section contains the
analysis of the partial MAX SAT problem using an integer linear programming model and the
L-partition approach.

2. Problems formulation
We begin from introducing logical variables x1, . . . , xn that can take the value true or false.
Consider a logical formula F = D1 ∧ . . . ∧Dm where each clause Di is a disjunction of literals,
and each literal is either a variable xj or its negation x̄j . In the SAT problem it is necessary
to establish whether a set of variable values exists at which the formula F becomes true. The
k-SAT problem is a variation of this problem where every clause contains at most k literals.

One of the known approaches to solving and analyzing this problem is to use an integer linear
programming model [7, 11].

Denote by y1, . . . , yn the boolean variables such that yj corresponds to xj and 1 − yj
corresponds to x̄j . Satisfiability of the formula is equivalent to solvability of the system:∑

j∈D+
i

yj −
∑

j∈D−
i

yj ≥ 1− |D−i |, i = 1, . . . ,m; (1)

0 ≤ yj ≤ 1, j = 1, . . . , n; (2)

yj ∈ Z, j = 1, . . . , n, (3)

where D−i and D+
i are index sets of the negative and positive literals in clause Di, respectively.

An important generalization of the SAT problem is the MAX SAT problem. Consider a
logical formula F1 similar to the formula F , F1 = C1 ∧ . . . ∧ Cm. Suppose that every clause Ci

has a nonnegative weight ci. The MAX SAT is the problem of finding the set of variable values,
at which the total weight of the satisfied clauses will be maximum.

Consider a formulation of the MAX SAT problem as an integer linear programming (ILP)
problem:

y0 =
m∑
i=1

cizi → max (4)∑
j∈C−

i

yj −
∑
j∈C+

i

yj + zi ≤ |C−i |, i = 1, . . . ,m; (5)

0 ≤ yj , zi ≤ 1, j = 1, . . . , n, i = 1, . . . ,m; (6)

yj , zi ∈ Z, j = 1, . . . , n, i = 1, . . . ,m. (7)

If zi is equal to one in a feasible solution of problem (4)–(7), then clause Ci is satisfied. The
optimal value of the objective function is the total weight of satisfied clauses.
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The partial MAX SAT problem contains both (1) and (5) constraints. Let I is the set of
numbers of the logical formulae used in the problem, I ′ ⊆ I is the set of numbers of the logical
formulae that must be satisfied. The ILP model of this problem can be written as follows

m∑
i=1

cizi → max (8)∑
j∈C−

i

yj −
∑
j∈C+

i

yj + zi ≤ |C−i |, i ∈ I\I
′, (9)

∑
j∈D−

k

yj −
∑

j∈D+
k

yj ≤ |D−k | − 1, k ∈ I ′, (10)

0 ≤ yj ≤ 1, j = 1, . . . , n, (11)

0 ≤ zi ≤ 1, i ∈ I, (12)

yj , zi ∈ Z, j = 1, . . . , n, i ∈ I. (13)

In the [2, 5] were studied the complex product design problem. In the process of designing
various products, some restrictions can be described using logical conditions. The requirement
of their consistency is equivalent to the satisfiability of the corresponding logical formula. If
these restrictions are incompatible, then the designer may be tasked with designing a product
that best satisfies some of the parameters. Such a problem is an analogue of the MAX SAT
problem or the partial MAX SAT problem. In these papers, ILP models were proposed.

Any solution of such problem corresponds to some variant of a product satisfying specified
conditions. Note that the designer is able to correct formulated constraints. There may be
several optimal solutions in this problem, so the specialist can choose some of them based on
their preferences.

Using a similar model the problem of designing the chemical composition of flame retardant
rubber based on rubber compounds was solved [1]. Consider the statement of this problem. We
introduce the following notation:
J – the set of numbers of ingredients in the mix, J = {1, . . . , n};
J1 – the set of numbers of rubbers;
J2 – the set of numbers of flame retardants (J1 ∪ J2 = J);
vj – the ingredient of the mix with number j;
xj – the logical variable that takes the value true if vj is included in the mix and false

otherwise;
rj – weight of the ingredient vj , which characterizes its fire resistance, j ∈ J2;
I – the set of numbers of the logical formulae used in the problem;
I ′ ⊂ I – the set of numbers of the logical formulae that must be satisfied;
Dk – the clause corresponding to the k-th logical constraint which must be satisfied;
Ci – the clause corresponding to the i-th logical constraint which are not required to be

satisfied;
ci – the weight of formula Ci, i ∈ I\I ′;
The problem is to find the values of the logical variables which satisfy clausesDk with numbers

k ∈ I ′. The total number of the satisfied formulae Ci, i ∈ I\I ′ is maximized. In addition, it is
necessary that the total weight of the ingredients xj , j ∈ J2, included in the mixture, with the
property of fire resistance, be maximum.

All ingredients were divided into several groups depending on their properties. Logical
constraints are developed that reflect the inadmissibility or desirability of certain combinations
of components.
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The mathematical model of this problem is the system (8)–(13) with the added objective
function ∑

j∈J2
rjyj → max

which reflects the level of fire resistance.
Here is an example of one of the constraint used in the model. For chloroprene rubber (v1),

it is necessary to use zinc oxide (v10) and copper oxide (v11) as vulcanizing agents, chalk (v21)
as a filler, and rosin (v34) as a tackifier. This condition corresponds to the logical formula

x1 → x10 ∧ x11 ∧ x21 ∧ x34

which is equivalent to the following conjunction

(x̄1 ∨ x10)(x̄1 ∨ x11)(x̄1 ∨ x21)(x̄1 ∨ x34).

This restriction is ”hard” and generates four linear inequalities in system (10) which must be
satisfied.

In [1], we reduced the problem to a single criterion by replacing the last objective function
with a linear constraint ∑

j∈J2
rjyj ≥ R,

where R is the smallest possible value of the total fire resistance of the ingredients included in
the desired mixture (lower bound). Using the L-class enumeration method, an algorithm for
finding the composition of the mixture was proposed.

Similar ILP models were built in other works. Designing women’s clothing using the specified
components of the product was also carried out [2]. Besides, the articles [5, 10] describe the
algorithms that can be used for optimal product design based on the regular partition method.

3. L-partition Approach
In this section, we consider the regular partition method. The idea of this approach is to select a
family of special partitions of Rn, which generate partitions of the relaxation set of the problem.
The most studied partition is the L-partition, which can be defined as follows.

Let � be the symbol of the lexicographical order. We write that X � Y, X, Y ⊂ Rn if
x � y for all x ∈ X and y ∈ Y . Besides X � Y denotes that X � Y or X = Y . The points
x, y ∈ Rn (x � y) are called L-equivalent if there exists no z ∈ Zn such that x � z � y. This
equivalence relation induces the partition of Rn into disjoint L-classes. For any set X ⊂ Rn the
corresponding quotient set X/L is called L-partition of the set X.

In our research, we use the following important properties of L-partition:

(i) each point z ∈ Zn forms an isolated class of partition; the other classes containing non-
integer points are called fractional;

(ii) if X ⊆ Rn is bounded, then the quotient set X/L is finite;

(iii) any fractional class V ∈ X/L can be represented as

V = {x ∈ X : xj = aj , ar < xr < ar + 1, 1 ≤ j ≤ r − 1},

where aj , j = 1, . . . , r are integer; 1 ≤ r ≤ n;

(iv) the elements of L-partition can be lexicographically ordered, i.e., if X is a bounded set,
then X/L can be represented by

X/L = {V1, . . . , Vp},

where Vi � Vi+1, i = 1, . . . , p− 1.
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Consider the lexicographical formulation of ILP problem: to find the lexicographical maximum
of the set Ω ∩ Zn, i.e.

z∗ = lexmax(Ω ∩ Zn), (14)

where Ω is a polytope. Now we introduce the set

Ω∗ = {x ∈ Ω : x � (Ω ∩ Zn)}

which is called the fractional covering of the problem (14) and Ω∗/L is called the L-covering of
the problem. Note that in case Ω ∩ Zn = 0 holds Ω∗ = Ω.

A subset Q of fractional L-classes from Ω/L is called an L-complex if for any pair V, V ′ ∈ Q
there is no point z ∈ Ω ∩ Zn separating V and V ′, i.e., V � z � V ′. Previously studied
L-complexes of some discreet optimization problems. In particular, for knapsack problem
|Q/L| ≤ n for any L-complex Q, where n is number of variables. Similar result for the 2-
SAT problem: |Q/L| ≤ n− 1.

We shall say that the convex set Ω has an alternating L-structure if the following conditions
hold:

(i) the cardinality of every L-complex Q from Ω/L is at most 1;

(ii) the lexicographically maximal and minimal elements of Ω/L are integer (in case they exist).

The properties of the alternating L-structure are useful in research and development of
algorithms. Previously the alternating property has been proven for the polytopes of set packing
problem, set covering problem, MAX SAT problem and some other problems [6, 7]. It should
be noted that the L-structure of the polyhedron depends on the order of the variables. So,
there are examples when changing the order of variables leads to an increase in the power of L-
complexes. The reverse is also possible. In particular, the alternating property of the structure
of the polyhedron (5)-(6) is proved for the following order of variables (y1, . . . , yn, z1 . . . , zm).

4. Analisys of L-structure of polyhedron of the partial MAX SAT problem
In this section we analyze the partial MAX SAT problem using an L-partition approach. Let
constraints (10)-(11) define the set D ⊂ Rn. M is relaxation polyhedron of the (9)–(12).

Define functions ψ and ϕ. Let function ψ : c → P , c = (c1, . . . , cn) ∈ D ∩ Zn,
P = {(c1, . . . , cn, pn+1, . . . , pm) ∈ M : 0 ≤ pi ≤ 1, i = n+ 1, . . . ,m} is facet of the polyhedron
M . Let ϕ : V → V binds together L-classes

V = {(v1, . . . , vn) : 0 < vk < 1, 0 ≤ vj ≤ 1, j ≥ k + 1},

V = {(v1, . . . , vn+m) : 0 < vk < 1, 0 ≤ vj ≤ 1, j ≥ k + 1},

V ∈ D/L, V ∈M/L, k ≤ n.
Further, we say that the function f : X → Y preserves the lexicographical order, if for any

x1, x2 ∈ X rightly x1 ≺ x2 if and only if f(x1) ≺ f(x2).
We proved some properties of the polyhedrons M and D.
Lemma.

(i) Functions ψ and ϕ are one-to-one and preserve the lexicographical order.

(ii) Let ψ : c → P , c = (c1, . . . , cn) ∈ D ∩ Zn, P = {(c1, . . . , cn, pn+1, . . . , pm) ∈ M : 0 ≤ pi ≤
1, i = n+ 1, . . . ,m}. Then P has an alternating L-structure.

(iii) For any integer L-class V ∈ D/L and any fractional L-class W ∈ D/L such that V ≺ W
(V �W ) holds ψ(V ) ≺ ϕ(W ) (ψ(V ) � ϕ(W )).
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Proof. The proofs of the first and third properties are obvious. Consider the second
point of the lemma. Note that (c1, . . . , cn, 0, . . . , 0) ∈ M , hence the set P is not empty. Let
c = (c1, . . . , cn) ∈ D ∩ Z, P = ψ(c).

It’s obvious that lexmin(P ) = (c1, . . . , cn, 0, . . . , 0). Prove that lexmax(P ) is integer vector.
Suppose that lexmax(P ) = (c1, . . . , cn, vn+1, . . . , vn+m) is non-integer vector. It is easy to
show that vector (c1, . . . , cn, dvn+1e, . . . , dvn+me) ∈ P and it is lexicographically more than
(c1, . . . , cn, vn+1, . . . , vn+m). We got a contradiction.

Consider two different fractional L-classes which belong to the set P/L.

V = {(c1, . . . , cn, vn+1, . . . , vn+m) : 0 ≤ vi ≤ 1, i ≥ n+ 1},

W = {(c1, . . . , cn, wn+1, . . . , wn+m) : 0 ≤ wi ≤ 1, i ≥ n+ 1}.

We assume that V ≺ W . Let us prove that there is an integer point from P separating these
two L-classes.

a) If n < r(V ) < r(W ) then

(c1, . . . , cn, w1, . . . , wr(W )−1, bwr(W )c, . . . , bwn+mc)

is separating vector.
b) If n < r(W ) ≤ r(V ) then

(c1, . . . , cn, v1, . . . , vr(V )−1, dvr(V )e, . . . , dvn+me)

is separating vector.
Thus, since V and W are arbitrary, the set P has an alternating L-structure. Property 2 is

proved.
Using these properties we can prove the property of the polyhedron of the partial MAX SAT

problem, namely a relation of the cardinality of the L-complexes of the indicated problem and
the corresponding SAT problem.

Theorem. Let T be some positive quantity. The cardinality of any L-complex of the (10)–
(11) does not exceed T if and only if the cardinality of any L-complex of the (9)–(12) does not
exceed T .

Proof. First we prove that if the cardinality of any L-complex of the polyhedron D does not
exceed T then the cardinality of any L-complex of the polyhedron M does not exceed T .

Consider the L-complex Ω = {V1, . . . , Vk} of the polyhedron D, where V1, . . . , Vk /∈ Zn,
V1 ≺ . . . ≺ Vk, k ≤ t(n).

From property 1 of the lemma we obtain ϕ(V1) ≺ . . . ≺ ϕ(Vk). Suppose that exists V ∈M/L:
ϕ(Vi) ≺ V ≺ ϕ(Vi+1), 1 ≤ i ≤ k − 1. If r(V ) ≤ n, then Vi ≺ ϕ−1(V ) ≺ Vi+1. If r(V ) > n, then
Vi ≺ ψ−1(V ) ≺ Vi+1. We got a contradiction.

Let exists V0 ∈ D ∩ Zn : V0 ≺ V1 and there are no other L-classes between them. From
property 3 of the lemma it is known that ψ(V0) ≺ ϕ(V1). Suppose that exists V ∈ M/L:
ψ(V0) ≺ V ≺ ϕ(V1). If r(V ) ≤ n, then V0 ≺ ϕ−1(V ) ≺ V1. If r(V ) > n, then V0 ≺ ψ−1(V ) ≺ V1.
We got a contradiction.

Let exists Vk ≺ V0 and there are no other L-classes between them. We will carry out the
same reasoning. From property 3 of the lemma it is known that ϕ(Vk) ≺ ψ(V0). Suppose that
exists V ∈M/L: ϕ(Vk) ≺ V ≺ ψ(V0). If r(V ) ≤ n, then Vk ≺ ϕ−1(V ) ≺ V0). If r(V ) > n, then
Vk ≺ ψ−1(V ) ≺ V0. We got a contradiction again.

For the case when the L-class V0 does not exist, similar arguments are true.
Thus, for the L-complex Ω = {V1, . . . , Vk} of the polyhedron D there corresponds the L-

complex Ω = {ϕ(V1), . . . , ϕ(Vk)} of the polyhedron M . Moreover, these two complexes have the
same power.
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The set ϕ(V0), V0 ∈ D ∩ Zn, has an alternating L-structure by property 2 of the lemma.
Therefore, the power of any L-complex from ϕ(V0) does not exceed 1. Thus the power of any
L-complex from M does not exceed T .

Using similar reasoning, we can prove the following statement. If the polyhedron D contains
an L-complex with cardinality of at least T , then the polyhedron M also contains an L-complex
with cardinality of at least T . This implies the converse statement in the theorem.

Thus, the structure of the polyhedron D is decisive for the L-structure of the partial MAX
SAT problem. In some applied problems (for example, complex product design problem), the
set of logical constraints is a 2-SAT problem, which means this Theorem guarantees that the
polyhedron of the problem will contain L-complexes whose powers are limited by a polynomial
in the number of variables in the formula. Thus, the transition from one feasible solution to
the next, in lexicographical order, will be carried out fairly quickly. In this connection, it seems
appropriate to build algorithms that use the L-classes enumeration for considered applications
of complex product design problem.

5. Conclusion
This study continues to use the regular partitions method to analyze discrete optimization
problems. The complex product design problem is investigated using the partial maximum
satisfiability problem and integer linear programming model. The article establishes a connection
between a cardinality of the L-complexes of the partial MAX SAT problem and the corresponding
SAT problem. Using this result, it is possible to analyze complex product design problem solving
algorithms that are based on the L-class enumeration method.

Acknowledgments
The work was supported by the program of fundamental scientific researches of the SB RAS No.
I.5.1, project No. 0314-2019-0019.

References
[1] A.V. Adelshin and E.N. Zhovner, “Application of the SAT problems of logical formulas for the chemical

composition of rubber compounds design,” Herald of Omsk University, vol. 2, pp. 14–18, 2011 (in Russian).
[2] A. Kolokolov, A. Artemova, A. Adelshin, and I. Kan, “Discrete Optimization Models for Solving Complex

Products Design Problems,” Proceedings DOOR 2016 CEUR-WS, pp. 49–56, 2016.
[3] F. Massacci and L. Marraro, “Logical cryptanalysis as a SAT problem,” Journal of Automated Reasoning,

vol. 24, pp. 165–203, 2000.
[4] O.N. Guseletova, A.A. Kolokolov “Discrete optimization with logical constraints for design of complex

products,“ Automation and Remote Control, vol. 69, pp. 1808–1813, 2008.
[5] A.V. Adelshin, A.V. Artemova, I.E. Kan, and Zh.B. Suleimenova, “Design of Complex Products with Regard to

Coloristics Based on Discrete Optimization Problems,” Proceedings of the School-Seminar on Optimization
Problems and Their Applications (OPTA-SCL 2018) CEUR-WS, vol. 2098, pp. 6–16, 2018.

[6] A.A. Kolokolov, “Regular Partitions and Cuts in the Integer Programming,” Discrete Analysis and Operations
Research, vol. 2, pp. 18–39, 1994 (in Russian).

[7] A.V. Adelshin, “Investigation of Maximum and Minimum Satisfiability Problems Using L-partition,”
Automation and Remote Control, vol. 65(3), pp. 388–395, 2004.

[8] A.A. Kolokolov and E.V. Tsepkova, “Study the knapsack problem based on the L-partition approach,”
Kibernetika, vol. 2, pp. 38–43, 1991 (in Russian).

[9] A.V. Eremeev, A.A. Kolokolov, and L.A. Zaozerskaya, “A Hybrid Algorithm for the Set Covering Problem”
Proceedings of International Workshop ”Discrete Optimization Methods in Design”, pp. 123–129, 2000.

[10] A.A. Kolokolov, A.V. Adelshin, and D.I. Yagofarova, “Analysis and solving SAT and MAX-SAT problems
using an L-partition approach,” Journal of Mathematical Modeling and Algorithms, vol. 12(2), pp. 201–212,
2013.

[11] J. Cheriyan, W.H. Cunningham, L. Tuncel, and Y. Wang, “A Linear Programming and Rounding Approach
to max 2-sat,” DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 26, pp.
395–414, 1996.


