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Abstract. The mathematical modelling of a vibrating stamp interaction with a flexible 
restrained end wall (bellows) of a narrow channel via a viscous incompressible fluid is carried 
out. The narrow channel formed by two parallel walls and filled with a viscous liquid is 
investigated. The liquid motion in the channel is considered as a laminar one. The bottom 
channel wall is absolutely rigid, and the top one is the absolutely rigid vibrating stamp. At the 
right edge of the channel, the end wall with flexible restraint (bellows) is installed, and at the 
left one, there is a free liquid flow. The problem of longitudinal hydroelastic vibrations of the 
channel end wall is formulated and solved analytically. The distribution laws of velocities and 
pressure in the fluid layer along the channel are found. The motion law of the channel end wall 
is determined. The amplitude frequency and phase frequency responses of the end wall for 
steady-state harmonic oscillations are constructed. The mathematical modelling has shown the 
possibility of damping the channel end wall (bellows) vibrations by changing the distance 
between the channel walls or by changing the liquid viscosity in the channel. 
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1. Introduction 
Nowadays, investigation of the dynamic interaction of the liquid with flexible structural components is 
an actual problem for modern mechanical engineering, technology and production processes [1]. One 
of the first works in this field is [2], in which the free oscillations of a circular plate interacting with an 
ideal liquid were considered. The hydroelasticity model of a beam filled with an ideal fluid for the 
study of a pipeline transverse vibration was considered in [3]. In reference [4], a hydroelastic 
oscillations model of a cylinder liner of an internal combustion engine with water cooling was 
proposed. The nonlinear behaviour of an elastic pipe conveying fluid and supported at both ends was 
investigated in [5]. In reference [6], the analogous problem was studied for the case the pipe possesses 
flexibly supported ends. The dynamic behaviour of an annular channel conveying ideal fluid and 
formed by two cylindrical shells for the case it subjects to the external gas flow was considered in [7]. 
In reference [8], the walls hydroelastic vibrations of an annular channel filled with pulsating viscous 
incompressible fluid were considered. The study on the outer wall oscillations of an annular channel 
filled with a viscous liquid under the inner channel wall vibration for the case this channel is 
surrounded by elastic medium was carried out in [9]. Oscillations of a circular plate surrounded by an 
ideal fluid located in a rigid cylinder were studied in [10]. The dynamics and stability of a plate, which 
is part of the wall separating two viscous liquids, were considered in [11]. The vibration damping of a 
beam lying on a viscous liquid layer was studied in [12]. The bending vibrations problem of a 
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cantilever beam surrounded by an unlimited volume of a viscous fluid was solved in [13]. A similar 
problem for a piezoelectric beam in a viscous incompressible flow was considered in [14]. In reference 
[15], a mathematical model was developed for the study of plate streamwise vibrations in parallel-
walled channel conveying a viscous fluid due to forced transverse vibrations of this plate. 
Longitudinal and transverse vibrations of a flexibly restrained wall of a narrow tapered channel with a 
viscous fluid were studied in [16, 17]. The influence simulation of the end seal presence and the end 
discharge features of the viscous fluid on the disturbing moments in the float gyroscope was carried 
out in [18]. However, the parallel-walled channel possessing flexibly restrained end wall (bellows) 
was not considered in the above-mention papers. 

2. Statement of the Problem 
Let us consider a narrow channel formed by two rigid parallel walls in accordance with the scheme 
shown in Fig. 1. We associate the Cartesian coordinate system сenter with the bottom motionless wall 
of the channel. The upper channel wall is a stamp oscillating along the z-axis. The sizes in the plan 
view of the bottom and upper channel walls are 2ℓ×b, let us assume that b >> 2ℓ and consider the 
plane problem. The distance between the channel walls is δ0 and 2ℓ >> δ0. The channel is filled with a 
viscous incompressible fluid. The oscillation amplitude of the stamp is zm << δ0. At the channel left 
end, the viscous fluid discharges into the same fluid possessing constant pressure p0. At the right one, 
there is an end wall with flexible restraint (bellows), i.e. this end wall can move along the x-axis with 
the amplitude of xm. Further, we will take into account that the pressure in cross section at the channel 
left end coincides with the constant one p0. At the channel right end, the volume flow rate coincides 
with one due to the end wall vibration (volume flow rate in the bellows).  

 
Figure 1. The narrow channel possessing the flexibly restrained wall at the right end. 

 
According to [19], for the plane problem, the motion equations of a viscous fluid are 
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where Vx, Vz are the liquid velocity components along the coordinates axes, p is the pressure, ρ is 
the liquid density, ν is the kinematic viscosity coefficient of the liquid, t is the time. 

The fluid motion equations (1) are complemented by boundary conditions, i.e. no-slip conditions at 
the bottom and upper channel walls 

 0=xV , 0=zV  at 0=z , (2) 

 0=xV , 
t

dzVz ∂
= *  at *zz = .  
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In addition, we formulate the conditions at the ends of the channel. These conditions represent the 
pressure coincidence at the channel left end with the pressure of the surrounding liquid, as well as the 
volumetric flow rates equality at the channel right end and at the right cavity, i.e. equality of 
volumetric flow rates at the channel end and the bellows 

 0pp =  at −=x , (3) 

 ∫ =
*

0

*
0

z

x dt
dxdzu d  at *xx = ,  

Here *z  is the stamp motion law, *x  is the law of channel end wall motion (bellows), p0 is the 
static pressure in the liquid. Note, in Eqs. (2), (3) we assume the stamp displacements and end wall 
one along the x and z axes are presented in the form of )(* tfxx xm ω+=   and )(0* tfzz zm ωδ += . 

3. Determining of the End Wall Response 
Let us introduce dimensionless variables and small parameters of the problem 
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where ψ, λ are small parameters characterizing the problem. 
By substituting variables (4) into fluid motion equations (1) and neglecting the small terms [20], we 

obtain the system 
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Carrying out a similar substitution in the boundary conditions (2), (3) we obtain 
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The motion equation of the end wall with flexible restraint has the form 

 ( )
1

12
0002

2

)(
=

−+=+
ξ

ψδωρνδ Pzpbnξ
δt

ξδm m , (7) 

where m is the end wall mass, n is the stiffness coefficient of the end wall flexible restraint. 
Solving (5), (6) using the iteration method we find that 
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According to (8) the pressure in the channel cross section at the right end is 
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Taking into account (9) Eq. (7) we write as 
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coefficients due to the influence of a viscous fluid. 
Note that equation (10) is true both for an arbitrary law of stamp vibration and for a harmonic one. 

Next, we consider the harmonic law of stamp vibration, i.e. )sin()(),(0 ttftfzz zzm ωωωδ =+= . In this 
case, the solution to equation (10) is written as 
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Using this solution, we construct the amplitude and phase responses of the end wall, i.e. we write 
(11) in the form 
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4. Calculation results 
We carried out calculations of the channel end wall amplitude responses using the developed 
mathematical model. The following data were used in the simulation ℓ = 0,1 m, δ0/ℓ = 1/10 b/ℓ = 5, 
m = 0,5 kg, n = 300 kg/sec2. Two liquids with different physical properties are considered. The thirst 
one is hydraulic oil (AMG-10) with the following parameters ρ = 840 kg/m3, ν = 2·10–5 m2/sec, and 
the second one is water for which ρ = 1000 kg/m3, ν = 10–6 m2/sec. In the course of modelling, the 
dimensionless frequency was introduced as the ratio of the current frequency ω to the eigenfrequency 
one for the system without damping mn , i.e. nm2ωη = . Thus, the dimensionless amplitude 
responses were considered 
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The calculation results of A(η) for hydraulic oil (AMG-10) with decreasing dimensionless channel 
width δ0/ℓ are shown in Fig. 2. Similar calculations of A(η) for water are shown in Fig. 3. 

The calculation results showed the occurrence of significant vibration amplitudes of the channel 
end wall near the eigenfrequencies of the system without damping. In addition, the possibility of 
damping these oscillations due to decreasing the liquid layer thickness or increasing the kinematic 
viscosity is shown. 
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Figure 2. Charts of A(η) for hydraulic oil (AMG-10): (a) δ0/ℓ = 10–1,  

(b) δ0/ℓ = 15–1, (c) δ0/ℓ = 20–1, (d) δ0/ℓ = 25–1, (e) δ0/ℓ = 30–1
. 

 
 

 
Figure 3. Charts of A(η) for water: (a) δ0/ℓ = 10–1, (b) δ0/ℓ = 15–1,  

(c) δ0/ℓ = 20–1, (d) δ0/ℓ = 25–1, (e) δ0/ℓ = 30–1
. 

5. Summary and Conclusion 
Thus, the mathematical model has been developed for the study of longitudinal vibrations of the end 
wall with flexible restraint (bellows) due to vibrations of the stamp (the channel upper wall). The 
elaborated mathematical model can be used both for the harmonic law of stamp vibration and for 
arbitrary one. In the latter case, if the stamp motion law is given non-linearly, the motion equation of 
the end wall with flexible restraint must be solved by appropriate methods, for example, numerically. 
The obtained results can be used in practice to predict the resonant frequencies of bellows vibrations 
and calculate the amplitudes of bellows vibrations at resonance, as well as to study the fluid pressure 
distribution along the channel in lubrication systems, hydraulic drive, cooling, etc. 
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