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Abstract. The question of interpolation of a function of one variable with large gradients
in the boundary layer region is investigated. The problem is that applying of polynomial
interpolation formulas on a uniform grid to functions with large gradients can lead to
unacceptable errors. We study the interpolation formulas with an arbitrarily number of
interpolation nodes which are exact on the singular component. This component is responsible
for the main growth of the function in the boundary layer and can be found based on asymptotic
expansions. It is proved that error estimates don’t depend on the singular component and its
derivatives. In the case of an exponential boundary layer these estimates don’t depend on a
small parameter.

1. Introduction
Lagrange polynomials [1], [2] are widely used for interpolation of functions. However, according
to [3] in the case of functions with large gradients, the use of Lagrange polynomials can lead to
errors of the order O(1). Therefore, it is actual to construct interpolation formulas for functions
with large gradients in the boundary layer. The interpolation formula must be constructed
so that the error does not depend on large gradients of function in the boundary layer. To
construct such formulas, there are two approaches: application of Lagrange interpolation on a
mesh condensing in boundary layer areas and building of special interpolation formulas which
are adapted to the presence of a boundary layer.

Consider the first approach. The error of piecewise linear interpolation on Shishkin and
Bakhvalov meshes was estimated in [4]. In [5] it was proved that in the case of an exponential
boundary layer the Lagrange polynomial can be applied on Shishkin mesh [6]. For the Lagrange
polynomial with an arbitrarily specified number of interpolation nodes, error estimates are
obtained that are uniform in a small parameter. The question of using a cubic spline on a
Shishkin mesh to interpolate the function with large gradients was investigated in [7].

The second approach was applied in [8, 9]. In these works, it is assumed that the interpolated
function of one variable is decomposed as a sum of regular and singular components, the singular
component is known up to a factor. Such a decomposition can be constructed on the basis of
the asymptotic expansion of the solution of the singularly perturbed problem [6].

In [8, 9] are constructed interpolation formulas that are exact on the singular component of
the interpolated function. With this approach, the error of the interpolation formula becomes
uniform in the perturbing parameter ε. In [8], the error of the interpolation formulas with two
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and three interpolation nodes is estimated. In [9] an interpolation formula with an arbitrarily
given number of interpolation nodes was constructed , but the error estimates were not obtained.

In this paper we estimate the error of the interpolation formula from [9].
So, let for the interpolated function u(x) the decomposition holds

u(x) = p(x) + γΦ(x), x ∈ [a, b], (1)

where the function u(x) is sufficiently smooth, the boundary layer component Φ(x) is known
and has large gradients on the interval [a, b], the regular component p(x) is bounded together
with derivatives up to some order, the constant γ is not given.

In particular, the function Φ(x) can correspond to the cases when the function u(x) is a
solution of a singularly perturbed boundary value problem with exponential or power boundary
layer. The decomposition of the form (1) for the solution of a singularly perturbed problem was
constructed in [10].

For example, we set Φ(x) = e−αx/ε if there is the exponential boundary layer at the left
boundary of the interval [0, 1]. Here α > 0 and ε is a small parameter before highest derivative.
Derivatives of such function Φ(x) grow unlimitedly with decreasing parameter ε. In this case,
polynomial interpolation formulas on a uniform grid become unacceptable [3].

For a function of the form (1) we will study the interpolation formulas that are exact on the
component Φ(x).

2. Analysis of the interpolation formula
Let Ωh be the uniform grid of the interval [a, b] :

Ωh = {xn : xn = a + (n− 1)h, x1 = a, xk = b, n = 1, 2, . . . , k, k ≥ 2}.

Here [a, b] is the interval on which the interpolation formula will be constructed. This may be
a sub-interval of a grid with a large number of nodes.

We assume that the function u(x) of the form (1) is given at the nodes of the grid Ωh,
un = u(xn).

Let Ln(u, x) be the Lagrange polynomial for the function u(x) with interpolation nodes
x1, x2, . . . , xn. Let us show that applying the Lagrange polynomial to the function of the form
(1) can lead to errors of the order O(1). To do this, set u(x) = e−x/ε. Then for ε ≤ h the
following relation is satisfied: L2(u, h/2) − u(h/2) ≈ 1/2. So, the interpolation accuracy does
not increase with decreasing step h.

In [9] to interpolate a function u(x) of the form (1) the following interpolation formula is
constructed:

LΦ,k(u, x) = Lk−1(u, x) +
[x1, . . . , xk]u
[x1, . . . , xk]Φ

[
Φ(x)− Lk−1(Φ, x)

]
, (2)

where [x1, x2 . . . , xk]u is the divided difference for the function u(x) [1].
Transform the interpolation formula (2). According with [1] the following relation is true:

Lk(u, x) = Lk−1(u, x) + rk−1(x)[x1, x2, . . . , xk]u, (3)

where rk−1(x) = (x− x1)(x− x2) · · · (x− xk−1). Taking into account (3), we obtain from (2)

LΦ,k(u, x) = Lk(u, x) +
[x1, . . . , xk]u
[x1, . . . , xk]Φ

[
Φ(x)− Lk(Φ, x)

]
. (4)

Obviously, the formula (4) is interpolation with interpolation nodes x1,x2,. . . , xk.
Consequently, the formula (2) is interpolation too. It’s easy to show that the formula (2) is
exact on polynomials of degree k − 2 and on the function γΦ(x).
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The formula (2) is correct if

Φ(k−1)(x) 6= 0, x ∈ (a, b). (5)

Lemma 1 Let the condition (5) be satisfied and

Mk(Φ, x) =
Φ(x)− Lk−1(Φ, x)

Φ(xk)− Lk−1(Φ, xk)
. (6)

Then for any x ∈ [a, b]∣∣∣LΦ,k(u, x)− u(x)
∣∣∣ ≤ max

s
|p(k−1)(s)|

[
|Mk(Φ, x)|+ 1

]
hk−1, s ∈ [a, b]. (7)

Proof. The interpolation (2) is exact for the boundary layer component Φ(x), therefore,

LΦ,k(u, x)− u(x) = Lk−1(p, x)− p(x) +
[x1, x2, . . . , xk]p
[x1, x2, . . . , xk]Φ

[
Φ(x)− Lk−1(Φ, x)

]
.

According to [1]
Φ(x)− Lk−1(Φ, x) = rk−1(x)[x1, x2, . . . , xk−1, x]Φ. (8)

Now we have from (8)

[x1, x2, . . . , xk]Φ =
[
Φ(xk)− Lk−1(Φ, xk)

]/
rk−1(xk).

According to [1]

u(x)− Lk(u, x) =
u(k)(s)

k!
rk(x) (9)

for some s ∈ (a, b).
It follows from the relation (9) that for any x ∈ [a, b]∣∣∣Lk−1(p, x)− p(x)

∣∣∣ ≤ max
s

|p(k−1)(s)|hk−1,

where s ∈ [a, b]. Then we obtain∣∣∣LΦ,k(u, x)− u(x)
∣∣∣ ≤ max

s
|p(k−1)(s)|hk−1+

+
∣∣∣[x1, x2, . . . , xk]p

∣∣∣rk−1(xk)|Mk(Φ, x)|. (10)

According to [1, p. 45], for some s ∈ (a, b)

[x1, x2, . . . , xk]p = p(k−1)(s)/(k − 1)!.

Then we obtain (7) from (10). The lemma is proved.

Lemma 2 Let us
Φ(k−1)(x) 6= 0, Φ(k)(x) 6= 0, k ≥ 2, x ∈ (a, b).

Then
|LΦ,k(u, x)− u(x)| ≤ 2 max

s
|p(k−1)(s)|hk−1, x, s ∈ [a, b]. (11)
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Proof Consider the case when derivatives Φ(k−1)(x), Φ(k)(x) of the same sign:

Φ(k−1)(x) > 0, Φ(k)(x) > 0 x ∈ (a, b) (12)

or
Φ(k−1)(x) < 0, Φ(k)(x) < 0 x ∈ (a, b). (13)

Let us dwell on the case of conditions (12), conditions (13) can be treated similarly. Given
(8) and (6), we get

Mk(Φ, x) =
rk−1(x)[x1, x2, . . . , xk−1, x]Φ

rk−1(xk)[x1, x2, . . . , xk−1, xk]Φ
. (14)

For some s ∈ (a, b) the relation holds [1]

[x1, x2, . . . , xk−1, x]Φ = Φ(k−1)(s)/(k − 1)!. (15)

Given the condition Φ(k−1)(x) > 0, we get that z(x) = [x1, x2, . . . , xk−1, x]Φ > 0. According
to [1] for the derivative of the divided difference the following relation holds z′(x) =
[x1, x2, . . . , xk−1, x, x]Φ. Given the condition Φ(k)(x) > 0 and (15), we get z′(x) ≥ 0, x ∈ [a, b].
So, the function z(x) on the interval [a, b] is positive and increasing. Given the inequality
|rk−1(x)| ≤ rk−1(xk), we get from (14) |Mk(Φ, x)| ≤ 1. Now (7) implies (11).

Now we consider the case when the derivatives Φ(k−1)(x) and Φ(k)(x) of different signs. The
representation (1) can be written as:

u(a + b− x) = p(a + b− x) + γΦ(a + b− x), x ∈ [a, b], (16)

Define v(x) = u(a + b− x),Ψ(x) = Φ(a + b− x). Then (16) takes the form

v(x) = p(a + b− x) + γΨ(x), x ∈ [a, b]. (17)

Let k be even. Then the relations hold

Ψ(k−1)(x) = −Φ(k−1)(a + b− x), Ψ(k)(x) = Φ(k)(a + b− x).

Therefore, the derivatives Ψ(k−1)(x) and Ψ(k)(x) of one sign. So, we come to the case of
restrictions (12) or (13) for the function Ψ(x). We proved that in this case

|LΨ,k(v, x)− v(x)| ≤ 2 max
s

|p(k−1)(s)|hk−1, x, s ∈ [a, b].

Hence,
|LΨ,k(v, a + b− x)− v(a + b− x)| ≤ 2 max

s
|p(k−1)(s)|hk−1, x, s ∈ [a, b]. (18)

We take into account that v(a + b− x) = u(x),Ψ(x) = Φ(a + b− x) and from (18) obtain

|LΦ,k(u, x)− u(x)| ≤ 2 max
s

|p(k−1)(s)|hk−1, x, s ∈ [a, b].

This is consistent with the estimate (11).
The case of odd k is similar. The lemma is proved.
According to lemma 2, the interpolation error does not depend on large gradients of the

function u(x) in the boundary layer.
Let us dwell on the stability estimation for the constructed interpolant.
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Lemma 3 Let the function u(x) be given at the nodes of the grid with some error. Let
ũn = ũ(xn) is approximate value of u(x) at the node xn. Then

max
x

|LΦ,k(u, x)−LΦ,k(ũ, x)| ≤ max
n=1,2,...,k

|u(xn)− ũ(xn)|
[
2k−2 +(1+2k−2) max

x
|Mk(Φ, x)|

]
. (19)

Proof. Using (8), the interpolation formula (2) can be written as

LΦ,k(u, x) = Lk−1(u, x) +
[
u(xk)− Lk−1(u, xk)

]
Mk(Φ, x). (20)

In the case of a uniform grid for the Lagrange polynomial the following estimate of stability
holds [1]

max
x

|Lk(u, x)− Lk(ũ, x)| ≤ max
n=1,2,...,k

|u(xn)− ũ(xn)| 2k−1. (21)

We write a relation of the form (20) for the function ũ(x). Then, taking into account (21), we
obtain the required estimate (19). The lemma is proved.

In accordance with Lemma 2 if the conditions (12) or (13) are satisfied, then |Mk(Φ, x)| ≤ 1.
Therefore, under the conditions (12) or (13) a stability estimate from (19) followes

max
x

|LΦ,k(u, x)− LΦ,k(ũ, x)| ≤ max
n=1,2,...,k

|u(xn)− ũ(xn)|
[
2k−1 + 1

]
. (22)

According to (21), the resulting estimate (22) is the same as in the case of the Lagrange
polynomial.

3. Results of numerical experiments
Let us

u(x) = cos
πx

2
+ Φ(x), Φ(x) = e−ε−1(x+x2/2), x ∈ [0, 1], ε > 0.

The function u(x) has large gradients at the boundary x = 0 for small values of ε. Let us

Ωh
0 = {x0, x1, . . . , xN , xn = nh, n = 0, 1, . . . , N, h = 1/N}.

We divide the interval [0,1] into disjoint four-node sub-intervals:

[0, 1] = ∪N−2
n=1,3 [xn−1, xn+2].

Now we write out the formula (2) in the case of four interpolation nodes on an arbitrary
subinterval [xn−1, xn+2]

LΦ,4(x) = un−1 +
un − un−1

h
(x− xn−1) +

un+1 − 2un + un−1

2h2
(x− xn−1)(x− xn)+

+G
[
Φ(x)− Φn−1 −

Φn − Φn−1

h
(x− xn−1)−

Φn+1 − 2Φn + Φn−1

2h2
(x− xn−1)(x− xn)

]
, (23)

where un = u(xn),Φn = Φ(xn),

G =
un+2 − 3un+1 + 3un − un−1

Φn+2 − 3Φn+1 + 3Φn − Φn−1
.

Table 1 contains the error ∆ of piecewise Lagrange interpolation L4(u, x) applied in
subintervals [xn−1, xn+2], where

∆ = max
n

|L4(u, x̃n)− u(x̃n)|, x̃n = (xn−1 + xn)/2.
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Table 1. The error of piecewise-polynomial Lagrange interpolation at k = 4

ε N
24 48 96 192 384 768

1 4.43e− 7 2.89e− 8 1.84e− 9 1.16e− 10 7.31e− 12 4.58e− 13
10−1 4.04e− 4 2.85e− 5 1.88e− 6 1.21e− 7 7.64e− 9 4.80e− 10
10−2 2.03e− 1 7.14e− 2 1.28e− 2 1.44e− 3 1.23e− 4 8.99e− 6
10−3 3.12e− 1 3.12e− 1 3.07e− 1 2.44e− 1 1.08e− 1 2.41e− 2
10−4 3.12e− 1 3.12e− 1 3.12e− 1 3.12e− 1 3.12e− 1 3.11e− 1
10−5 3.12e− 1 3.12e− 1 3.12e− 1 3.12e− 1 3.12e− 1 3.12e− 1

Table 2. The error and the order of accuracy of interpolation formula (2) at k = 4

ε N
24 48 96 192 384 768

1 1.20e− 5 7.55e− 7 4.71e− 8 2.94e− 9 1.84e− 10 1.15e− 11
3.99 4.00 4.00 4.00 4.00 4.00

10−1 4.12e− 5 2.50e− 6 1.52e− 7 9.44e− 9 5.87e− 10 3.66e− 11
4.04 4.04 4.01 4.01 4.00 4.01

10−2 4.68e− 4 2.99e− 5 1.70e− 6 9.81e− 8 5.86e− 9 3.57e− 10
3.97 4.14 4.12 4.07 4.04 4.01

10−3 6.89e− 4 8.72e− 5 1.08e− 5 1.08e− 6 7.46e− 8 4.28e− 9
2.98 3.01 3.32 3.86 4.12 4.12

10−4 6.89e− 4 8.72e− 5 1.09e− 5 1.37e− 6 1.71e− 7 2.13e− 8
2.98 3.00 3.00 3.00 3.01 3.17

10−5 6.89e− 4 8.72e− 5 1.09e− 5 1.37e− 6 1.71e− 7 2.14e− 8
2.98 2.99 2.99 3.00 3.00 3.00

We see a loss of accuracy of the interpolation formula for small values of the parameter ε.
Table. 2 contains the interpolation error

∆ = max
n

|LΦ,4(u, x̃n)− u(x̃n)|

and the computed order of accuracy of the interpolation formula (23), which is used in
subintervals [xn−1, xn+2]. For small valus of ε the order of accuracy becomes third, which
corresponds to (11).

4. Conclusion
The question of the interpolation of a function having large gradients in the boundary layer
is investigated. The unacceptability of using the Lagrange polynomial for interpolating of a
function in the presence of a boundary layer is shown. The interpolation formula with k nodes
is investigated. This formula is exact on the boundary layer component responsible for the
large gradients of the function in the boundary layer. The estimate of interpolation error is
obtained that does not depend on the boundary layer component. The results of computational
experiments are consistent with the obtained estimates of the interpolation error.
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