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Abstract
We explore the hyperbolic geometry of squeezed states in the perspective of 
the non-compact Hopf map. Based on analogies between the squeeze operation 
and Sp(2,R) hyperbolic rotation, two types of the squeeze operators, the (usual) 
Dirac and the Schwinger types, are introduced. We clarify  the underlying 
hyperbolic geometry and SO(2, 1) representations of the squeezed states along 
the line of the first non-compact Hopf map. Following the geometric hierarchy 
of the non-compact Hopf maps, we extend the Sp(2;R) analysis to Sp(4;R)
—the isometry of a split-signature four-hyperboloid. We explicitly construct 
the Sp(4;R) squeeze operators in the Dirac and Schwinger types and investigate  
the physical meaning of the four-hyperboloid coordinates in the context of the 
Schwinger-type squeezed states. It is shown that the Schwinger-type Sp(4;R) 
squeezed one-photon state is equal to an entangled superposition state of 
two Sp(2;R) squeezed states and the corresponding concurrence has a clear 
geometric meaning. Taking advantage of the group theoretical formulation, 
basic properties of the Sp(4;R) squeezed coherent states are also investigated. 
In particular, we show that the Sp(4;R) squeezed vacuum naturally realizes a 
generalized squeezing in a 4D manner.

Keywords: squeezed states, quantum optics, hyperbolic geometry,  
geometry of quantum states, Hopf fibration

(Some figures may appear in colour only in the online journal)

1.  Introduction

A qubit is a most fundamental object in the study of quantum information and quantum optics. 
The polarization of the qubit is specified by a point of the Bloch sphere [1], and, in the Lie 
group language of Perelomov [2], the qubit is the SU(2) spin coherent state (of spin magnitude 
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1/2) [3]. It is well known that the geometry of the Bloch sphere is closely related to the Hopf 
map [4]: a qubit is a two-component normalized spinor geometrically representing S3 and its 
overall U(1) phase is not relevant to physics, so the physical space of the qubit is given by the 
projected space of the 1st Hopf map, S3/U(1) � S3/S1 � S2. It is also reported that the 2nd 
and 3rd Hopf maps that represent topological maps from spheres to spheres in different dimen-
sions [5]1 are sensitive to the entanglement of qubits [7–9]. Spherical geometries thus play 
important roles in describing the geometry of quantum states. Beyond spheres, one can find 
many applications of compact  manifolds in the geometry of quantum states [10]. Meanwhile, 
hyperboloids or more generally non-compact  manifolds have been elusive in applications of 
the study of geometry of quantum states, although a hyperbolic nature inherent to quantum 
mechanics is glimpsed at in the Bogoliubov canonical transformation that keeps the bosonic 
canonical commutation relations2. For n species of bosonic operators, the Bogoliubov trans-
formation is described by the symplectic group Sp(2n;R) [13–15]. The simplest symplectic 
group is Sp(2;R) � SU(1, 1), which is the double cover of the SO(2, 1) isometry group of a 
two-hyperboloid. Since SU(1, 1) is a non-compact counterpart of SU(2), one can mathemati-
cally develop an argument similar to SU(2): the SU(1, 1) hyperbolic ‘rotation’ gives rise to the 
pseudo-spin coherent state [2, 15–18], and the SU(1, 1) pseudo-spin coherent state is specified 
by a position on the Bloch two-hyperboloid, H2,0. What is interesting is that the hyperbolic 
rotation is not a purely mathematical concept but closely related to quantum optics as squeeze 
operation [19–21]. The squeeze operator or squeezed state has a more than 40-year history 
since its theoretical proposal in quantum optics [22–27]. There are a number of studies about 
the squeezed state. For instance, n-mode generalization of the squeezed state Sp(2n;R) was 
investigated in [19], [28–35], and fermionic and supersymmetric squeezed states were also 
investigated in [36–41]. Interested readers may consult [42] for a good review of the history 
of squeezed states and references therein. Here, we may encapsulate the above observation as

Qubit state → Point on the Bloch sphere → SU(2) spin coherent state,
↓

Squeezed state ← Point on the Bloch hyperboloid ← SU(1, 1) pseudo-spin coherent state.

Interestingly, the hyperbolic Berry phase associated with the squeezed state was pointed 
out in [43, 44], and subsequently the hyperbolic Berry phase was observed in experiments 
[45]. The geometry behind the hyperbolic Berry phase is the 1st non-compact Hopf map, 
H2,1/U(1) � H2,0.

About a decade ago, the author proposed a non-compact version of the Hopf maps based 
on the split algebras [46, 47]:

H2,1 H0,1=S1

−→ H2,0 (1st)
H4,3 −→ H2,2 (2nd)

H8,7 −→ H4,4 (3rd)

Just as in the original Hopf maps, the non-compact Hopf maps exhibit a dimensional hierar-
chy in a hyperbolic manner. Taking advantage of such a hierarchical structure, we extend the 
formulation of the squeezed states previously restricted to the Sp(2;R) group to the Sp(4;R) 
group based on the 2nd non-compact Hopf map. The base manifold of the 2nd Hopf map is 
a split-signature four-hyperboloid, H2,2, with isometry group SO(2, 3) whose double cover is 

1 For a review of the Hopf maps, see [6] for instance.
2 It is also recognized that the hyperbolic geometries naturally appear in the holographic interpretation of MERA 
[11, 12].
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Spin(2, 3) � Sp(4;R)—the next-simplest symplectic group of the Bogoliubov transforma-
tion for two bosonic operators [48, 49]. The main goal of the present work is to construct the 
Sp(4;R) squeezed state explicitly and clarify its basic properties. To begin with, we rewrite 
the single-mode and two-mode operators of Sp(2;R) in a perspective of the SO(2, 1) group 
representation theory. We then observe the following correspondences:

Sp(2;R) one-/two-mode squeezing ←→ SO(2, 1) Majorana/Dirac representation.

For two-mode squeezing, the Sp(4;R) background symmetry has been suggested in [19, 28–
34]. We will discuss that the Sp(4;R) symmetry is naturally realized in the context of the 
Majorana representation of SO(2, 3). In a similar manner to the Sp(2;R) case, we introduce a 
four-mode squeeze operator as the Dirac representation of SO(2; 3),

Sp(4;R) two-/four-mode squeezing ←→ SO(2, 3) Majorana/Dirac representation,

and investigate their particular properties. We introduce two types of squeeze operators, the 
(usual) Dirac and Schwinger types3. In the case of Sp(2;R) squeezing, the Dirac- and the 
Schwinger-type squeeze operators generate physically equivalent squeezed vacua, while in 
the case of Sp(4;R), two types of squeezing generate physically distinct squeezed vacua.

It may be worth mentioning the peculiar properties of hyperboloids not observed in 
spheres. We can simply switch from spherical geometry to hyperbolic geometry by flip-
ping several signatures of the metric, but hyperboloids have unique properties intrinsic to 
their non-compactness. First, the non-compact isometry groups, such as SO(2, 1) and 
SO(2, 3), accommodate Majorana representation, while their compact counterparts, SO(3) 
and SO(5), do not. Second, unitary representations of non-compact groups are infinite dimen-
sional and very distinct from finite unitary representations of compact groups. Third, non-
compact groups exhibit more involved topological structures than those of their compact 
counterparts. For instance, the compact USp(2) � Spin(3) � S3 is simply connected, while 
Sp(2;R) � Spin(2, 1) � H2,1 � R2 ⊗ S1 is not and leads to the projective representation called 
the metaplectic representation [50, 51]. A similar relation holds for Sp(4;R) � Spin(2, 3) and 
USp(4) � Spin(5).

This paper is organized as follows. We discuss the Sp(2;R) squeezing in the context of 
the 1st non-compact Hopf map and identify Sp(2;R) one- and two-mode operators with the 
SO(2, 1) Majorana and Dirac representations in section 2. Section 3 gives the Majorana and 
Dirac representations of the SO(2, 3) group and the factorization of the Sp(4;R) non-unitary 
coset matrix with emphasis on its relation to the non-compact 2nd Hopf map. In section 4, 
we explicitly construct the Sp(4;R) squeezed states and investigate their properties. We also 
extend the analysis to the Sp(4;R) squeezed coherent states in section 5. Section 6 is devoted 
to the summary and discussions.

2.  Sp(2;R) group and squeezing

The isomorphism Sp(2;R) � Spin(2, 1) suggests that the Sp(2;R) one- and two-mode oper-
ators are equivalent to the Majorana and the Dirac spinor operators of SO(2, 1). Based on the 
identification of the squeeze operator with the SU(1, 1) � Spin(2, 1) ‘rotation’ operator, we 
introduce two types of squeeze operators, the (usual) Dirac and Schwinger types. We discuss 
how the non-compact 1st Hopf map is embedded in the geometry of the Sp(2;R) squeezed 
state. We use the terminologies SU(1, 1) and Sp(2;R) interchangeably.

3 The ‘Dirac type’ of squeezing has nothing to do with the ‘Dirac representation’ of orthogonal group. The 
‘Schwinger type’ of squeezing has also nothing to do with the ‘Schwinger operator’.
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2.1.  sp(2;R) algebra

The su(1, 1) algebra is defined as

[Ti, T j] = −iεijkTk (i, j, k = 1, 2, 3)� (1)

with

gij = gij ≡ diag(−1,−1,+1), ε123 ≡ 1.� (2)

We adopt the finite-dimensional matrix representation of the su(1, 1) generators:

{1
2
τ 1,

1
2
τ 2,

1
2
τ 3} = {i

1
2
σx, i

1
2
σy,

1
2
σz},� (3)

which satisfy

[τ i, τ j] = −2iεijkτk, {τ i, τ j} = −2gij.� (4)

Note that τ 1 and τ 2 are chosen to be non-Hermitian. For later convenience, we introduce the 
split-quaternions qm (m = 1, 2, 3, 4)4 that are related to the su(1, 1) matrices as

qm = {qi, 1} = {−iτ i, 1} = {σx,σy,−iσz, 1},� (5)

and its quaternionic conjugate

q̄m = {−qi, 1} = {iτ i, 1}.� (6)

The Sp(2;R) is isomorphic to the split-quaternionic unitary group U(1;H′), and in gen-
eral the real symplectic group is isomorphic to the split-quaternionic unitary group, 
Sp(2n;R) � U(n;H′) (see appendix A.2).

The sp(2;R) � su(1, 1) finite-dimensional matrix generators (3) are pseudo-Hermitian 
matrices (appendix B): With

κ = σz,� (7)

we can construct the corresponding Hermitian matrices as

κi ≡ κτ i = {−σy,σx, 1}.� (8)

Since κi are Hermitian, one may immediately see that g = eiωi
1
2 τ

i
 satisfies

g† σz g = σz,� (9)

which is one of the relations that the SU(1, 1) group elements should satisfy. Following the 
general prescription in appendix B, we construct the su(1, 1) Hermitian operators. We intro-
duce the two-component Schwinger boson operator subject to the condition

[φ̂α, φ̂β ] = (σz)αβ .� (10)

(10) is readily satisfied when we choose

φ̂ =

(
φ̂1

φ̂2

)
=

(
a
b†

)
,� (11)

with a and b being two independent Schwinger operators:

[a, a†] = [b, b†] = 1, [a, b] = [a, b†] = 0.� (12)

4 See appendix A.1 for details.

K Hasebe﻿J. Phys. A: Math. Theor. 53 (2020) 055303



5

The Hermitian su(1, 1) operators are then constructed as

Ti =
1
2
φ̂† κi φ̂,� (13)

or

Tx = i
1
2
(−ab + a†b†), Ty =

1
2
(ab + a†b†), Tz =

1
2
(a†a + b†b) +

1
2

.
� (14)

In quantum optics, These operators are usually referred to as the two-mode su(1, 1) operators 
[52, 53]. We can easily derive the corresponding SU(1, 1) Casimir operator:

C = −(K1)2 − (K2)2 + (K3)2 =
1
4
(
¯̂
φφ̂) · ( ¯̂φφ̂+ 2).� (15)

φ̂ transforms as a spinor representation of SO(2, 1):

e−iωiTi
φ̂ eiωiTi

= eiωi
1
2 τ

i
φ̂.� (16)

Since φ̂ is a complex spinor, φ̂ realizes the Dirac (spinor) representation of SO(2, 1).
The SO(2, 1) group also accommodates the Majorana representation. For SO(2, 1), there 

exists a charge conjugation matrix

C = σx� (17)

that satisfies the relation

−(τ i)∗ = Cτ iC.� (18)

Imposing the Majorana condition on φ̂

φ̂∗ = C φ̂,� (19)

we obtain the identification

b = a.� (20)

The Majorana spinor operator is thus constructed as

ϕ̂ =

(
a
a†

)
,� (21)

which satisfies

[ϕ̂α, ϕ̂β ] = εαβ .� (22)

Note that the previous commutation relations (12) do not change under the identification (20) 
except for

[a, b†] = 0 → [a, a†] = 1.� (23)

From the Majorana operator (21), we can construct the corresponding su(1, 1) generators (13) 
as

Ti =
1
4
ϕ̂t mi ϕ̂,� (24)

where mi = mit are given by

mi = σxκ
i = −iσyτ

i = {−iσz, 12,σx}.� (25)

(24) are explicitly given by
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Tx = i
1
4
(−a2 + a†2

), Ty =
1
4
(a2 + a†2

), Tz =
1
2

a†a +
1
4

.� (26)

In quantum optics, such a Majorana spinor operator is referred to as the one-mode su(1, 1) 
operator [52, 53]. It is not difficult to verify that (24) satisfies the su(1, 1) algebra (1). ϕ̂ also 
transforms as the spinor representation of SO(2, 1):

e−iωiTi
ϕ̂ eiωiTi

= eiωi
1
2 τ

i
ϕ̂,� (27)

and the SU(1, 1) Casimir for the Majorana representation becomes a constant:

C = TiTi = −(Tx)2 − (Ty)2 + (Tz)2 = − 3
16

.� (28)

(26) realizes the generators of Mp(2;R). Indeed, the independent operators of (26) can be 
taken as all the possible symmetric combinations between a and a†, i.e. {a, a}, {a†, a†} and 
{a, a†}, which are the Mp(2;R) operators (see appendix A.4). Note that the factor 1/4 in the 
Majorana representation (24) is half of the coefficient 1/2 of the Dirac representation (13), 
which is needed to compensate for the change of the commutation relation (23). Given the 1/2 
change of the scale of the coefficients, the parameter range for the Mp(2;R) operators should 
be taken as twice of that for the Dirac operator, implying that Mp(2;R) is the double cover of 
the Sp(2;R):

Mp(2;R)/Z2 � Sp(2;R) � SU(1, 1) � Spin(2, 1) � H2,1 � R2 × S1.
� (29)

See also appendix C.

2.2. The squeeze operator and the 1st non-compact Hopf map

Using the su(1, 1) ladder operators

T± ≡ Ty ∓ iTx,� (30)

the squeeze operator is given by

S(ξ) = e−ξT++ξ∗T−
,� (31)

with an arbitrary complex parameter ξ:

ξ =
ρ

2
eiφ.� (32)

Here, ρ ∈ [0,∞) and φ = [−π,π). We will see that the two parameters of ρ  and φ are natu-
rally interpreted as the coordinates on the Bloch two-hyperboloid H2,0. For single-mode and 
two-mode operators, the ladder operators are respectively given by

T+ =
1
2

a†
2
, T− =

1
2

a2,� (33)

and

T+ = a†b†, T− = ab.� (34)

Recall that the squeeze operation acts on the two- and one-mode operators as

S† φ̂ S = M φ̂, S† ϕ̂ S = M ϕ̂.� (35)

K Hasebe﻿J. Phys. A: Math. Theor. 53 (2020) 055303
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It is not convenient to handle the su(1, 1) ladder operators directly to derive the factoriza-
tion form of the squeeze operator S. A wise way to do so is to utilize the non-unitary matrix M 
that has one-to-one correspondence to the squeeze operator. Based on simple Sp(2;R) matrix 
manipulations, it becomes feasible to obtain the factorization form of M, and once we were 
able to derive the factorization form, we could apply it to the squeeze operator according to the 
correspondence between the non-Hermitian matrix generators and operators. For the squeeze 
operator S(ξ), we introduce the non-unitary squeeze matrix:

M(ρ,φ) = e−ξt++ξ∗t− ,� (36)

where

t+ ≡ 1
2
(τ y − iτ x) =

(
0 1
0 0

)
, t− ≡ 1

2
(τ y + iτ x) = −

(
0 0
1 0

)
.� (37)

M is given by

M(ρ,φ) = e−i ρ2
∑

i=1,2 niτ
i
=

(
cosh ρ

2 − sinh ρ
2 eiφ

− sinh ρ
2 e−iφ cosh ρ

2

)
,� (38)

where

n1 = − cosφ, n2 = sinφ ∈ S1.� (39)

The first expression on the right-hand side of (38) gives an intuitive interpretation of 
the squeezing: M operators as a hyperbolic rotation by the ‘angle’ ρ  around the axis 
n = − cosφ ex + sinφ ey. For later convenience, we also mention the field theory technique 
to realize a matrix representation for the coset space associated with the symmetry breaking 
G → H. Say ti are the broken generators of the symmetry breaking, and the coset manifold 
G/H is represented by the matrix-valued quantity

e−iωiti
.� (40)

In the perspective of G/H, the squeeze matrix (38) corresponds to (40) when the original 
symmetry G = SU(1, 1) is spontaneously broken to H = U(1), and the broken generators are 
given by 12τ

1 and 12τ
2. The squeeze matrix M thus corresponds to the coset

SU(1, 1)/U(1) � H2,0.� (41)

Using hyperboloids, (41) can be expressed as

H2,1/S1 � H2,0,� (42)

which is exactly the 1st non-compact Hopf map. We now discuss the geometric meaning of 
the parameters ρ  and φ of (38). With the SU(1, 1) group element g satisfying g†σzg = σz and 
det(g) = 1, the non-compact 1st Hopf map is realized as

g ∈ SU(1, 1) � H2,1 → xi =
1
2

tr(σzg−1τ ig) =
1
2

tr(g†κig) ∈ H2,0.� (43)

xi are invariant under the U(1) transformation g → g ei χ2 τ
3
, and automatically satisfy the 

condition of H2,0:

xixi = −(x1)2 − (x2)2 + (x3)2 = 2(g†σzg)2 − (g†σzg)2 = 1.� (44)

In analogy to the Euler angle decomposition of SU(2), the SU(1, 1) group element may be 
expressed as

K Hasebe﻿J. Phys. A: Math. Theor. 53 (2020) 055303
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g(φ, ρ,χ) = ei φ2 τ
z
e−i ρ2 τ

x
ei χ2 τ

z
=

(
cosh ρ

2 ei 1
2 (φ+χ) sinh ρ

2 ei 1
2 (φ−χ)

sinh ρ
2 e−i 1

2 (φ−χ) cosh ρ
2 e−i 1

2 (φ+χ)

)
,

� (45)
where

ρ = [0,∞), φ = [0, 2π), χ = [0, 4π).� (46)

The coordinates on the two-hyperboloid (43) are explicitly derived as

x1 = sinh ρ sinφ, x2 = sinh ρ cosφ, x3 = cosh ρ (� 1).� (47)

The parameters ρ  and φ thus represent the coordinates of the upper-leaf of the ‘Bloch’ two-
hyperboloid (figure 1). Note that the squeeze matrix (38) is realized as a special case of g (45):

M(ρ,φ) =
(

cosh ρ
2 − sinh ρ

2 eiφ

− sinh ρ
2 e−iφ cosh ρ

2

)
= g(φ,−ρ,−φ).� (48)

In (45), the U(1) fibre part ei χ2 τ
3
 represents the gauge degrees of freedom. Following the ter-

minology of the SU(2) case [54, 55], we refer to the gauge χ = φ as the Dirac type and χ = 0 
as the Schwinger type. The Dirac-type SU(1, 1) element corresponds to the squeeze matrix as 
demonstrated by (48). Meanwhile for the Schwinger type, we introduce a new squeeze matrix

M(ρ,φ) ≡ g(φ,−ρ, 0) = ei φ2 τ
z
· ei ρ2 τ

x
=

(
cosh ρ

2 ei φ2 − sinh ρ
2 ei φ2

− sinh ρ
2 e−i φ2 cosh ρ

2 e−i φ2

)
.

� (49)
Using the non-compact Hopf spinors [46]

ψL =
1√

2(x3 + 1)

(
x3 + 1

x2 − ix1

)
, ψR = σxψL

∗ =
1√

2(x3 + 1)

(
x2 + ix1

x3 + 1

)
,

� (50)
which satisfy ψL

†κiψL = ψR
†κiψR = xi, the Dirac-type squeeze matrix (48) can be repre-

sented as

M =
(
ψL ψR

)
.� (51)

Both M and M are pseudo-unitary matrices:

M(ρ,φ)−1 = σz M(ρ,φ)† σz = M(−ρ,φ),� (52a)

M(ρ,φ)−1 = σz M(ρ,φ)† σz �= M(−ρ,φ).� (52b)

The replacement of the non-Hermitian matrices ti with the Hermitian operators Ti trans-
forms the squeeze matrix M into the (usual) Dirac-type squeeze operator [23–25]:

S(ξ) = e−ξT++ξ∗T−
= eiφT3

eiρT1
e−iφT3

,� (53)

which satisfies

S(ξ)† = S(−ξ) = S(ξ)−1.� (54)

K Hasebe﻿J. Phys. A: Math. Theor. 53 (2020) 055303
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In deriving a number state expansion of the squeezed state, the Gauss decomposition is quite 
useful [3]. The Gauss decomposition of the Sp(2;R) squeeze operator is given by5

S(ξ) = e−ηT+

eln(1−|η|2)T3
eη

∗T−
= e−ηT+

e−2 ln(cosh ρ
2 ) T3

eη
∗T−

.� (56)

Here, η is

η ≡ tanh |ξ| ξ

|ξ|
= tanh

ρ

2
eiφ =

x2 + ix1

1 + x3 ,� (57)

which also has a geometric meaning as the stereographic coordinates on the Poincaré disc 
from H2,0 (see figure 1).

Figure 1.  The upper-leaf of Bloch two-hyperboloid H2,0: −(x1)2 − (x2)2 + (x3)2 = 1. 
The regions of the parameters are ρ ∈ [0,∞) and φ ∈ [0, 2π) realizing H2,0 � R+ ⊗ S1. 
The blue shaded region stands for the Poincaré disc.

5 The faithful (i.e., one-to-one) matrix representation of the operator, eαT+

eβT3
eγT−

, is given by

eαt+eβt3
eγt− =

(
1 α

0 1

)(
e

β
2 0

0 e−
β
2

)(
1 0
−γ 1

)
=

(
−α γ e−

β
2 + e

β
2 α e−

β
2

−γ e−
β
2 e−

β
2

)
.� (55)

The Gauss UDL decompositions, (56) and (60), are obtained by comparing (5) with (48) and (49), respectively. As 
emphasized in [3, 56, 57], the faithful representation preserves the group product, so the obtained matrix decompo-
sitions for the faithful representation generally hold in other representations.
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2.3.  Squeezed states

We introduce the squeeze operator corresponding to the Schwinger-type squeeze matrix M 
(49):

S(ξ) = eiφT3
eiρT1

,� (58)

which is a unitary operator

S(ξ)† = S(ξ)−1 �= S(−ξ).� (59)

The Gauss decomposition is derived as

S(ξ) = e−ηT+

e(ln(1−|η|2)+iarg(η))T3
e|η|T

−
= e−ηT+

e−2 ln(cosh ρ
2 ) T3+iφ T3

e|η|T
−

.
� (60)

The two types of the squeeze operator, (53) and (58), are related as

S(ξ) = S(ξ) e−iφTz
.� (61)

In the literature, the Dirac-type squeeze operator S is usually adopted, but there may be no 
special reason not to adopt S , since at the level of a non-unitary squeeze matrix, both M and 
M denote the coset H2,0.

Since Tz is diagonalized for the number-basis states, the one-mode Dirac- and Schwinger-
type squeezed number states6

|ξ〉(n) ≡ S(ξ)|n〉, |ξ〉〉(n) ≡ S(ξ)|n〉� (63)

are merely different by a U(1) phase:

|ξ〉(n) = e−i φ4 e−i φ2 n · |ξ〉〉(n),� (64)

where |n〉 = 1√
n!

a†n|0〉. Similarly for two-mode, the squeezed number states are related as7

|ξ〉(na,nb) = e−i φ2 e−i φ2 (na+nb) · |ξ〉〉(na,nb),� (67)

where

|ξ〉(na,nb) ≡ S(ξ)|na, nb〉, |ξ〉〉(na,nb) ≡ S(ξ)|na, nb〉,� (68)

6 The number state expansions of the single-mode squeezed vacuum and squeezed one-photon state are respectively 
given by

|ξ〉(0) =
1√

cosh ρ
2

∞∑
n=0

(−η

2
)n

√
(2n)!
n!

|2n〉, |ξ〉(1) =
1√

cosh ρ
2

3

∞∑
n=0

(−η

2
)n

√
(2n + 1)!

n!
|2n + 1〉.

�

(62)

7 For two-modes, the squeezed number states are given by [16, 26, 27]

|ξ〉(n,0) =

(
1

cosh ρ
2

)n+1 ∞∑
m=0

(−η)m

√
(n + m)!

n! m!
|n + m, m〉, |ξ〉(0,n)

=

(
1

cosh ρ
2

)n+1 ∞∑
m=0

(−η)m

√
(n + m)!

n! m!
|m, n + m〉.

�

(65)

In particular for the squeezed vacuum state, we have

|ξ〉(0,0) =
1

cosh ρ
2

∞∑
m=0

(−η)m|m, m〉.� (66)
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with |na, nb〉 = 1√
na!nb!

a†
na b†

nb |0, 0〉. As the overall phase has nothing to do with the physics, 

the two types of squeezed number states are physically identical.
Next, we consider the squeezed coherent state [22–24]. Since the coherent state is a super-

position of number states

|α〉 = e
1
2 |α|

2
∞∑

n=0

1√
n!
αn|n〉,� (69)

the squeezed coherent state can be expressed by the superposition of the squeezed number 
states:

|ξ,α〉 ≡ S(ξ)|α〉 = e
1
2 |α|

2
∞∑

n=0

1√
n!
αn|ξ〉n, |ξ,α〉〉 ≡ S(ξ)|α〉 = e

1
2 |α|

2
∞∑

n=0

1√
n!
αn|ξ〉〉(n).� (70)

Recall that the Dirac-type and Schwinger-type squeezed number states only differ by the U(1) 
factor depending on the number n (64), so we obtain the relation between the squeezed coher-
ent states of the Dirac type and Schwinger type as

|ξ,αD〉 = e−i φ4 |ξ,αS〉〉� (71)

with

αD = αSe−i φ2 .� (72)

The Dirac- and Schwinger-type squeezed coherent states represent superficially different 
physical states except for the squeezed vacuum case αS = αD = 0. However as implied by 
(72), the difference between the two types of squeezed states can be absorbed in the phase 
part of the displacement parameter α. Since the displacement parameter indicates the position 
of the squeezed coherent state on the x1-x2 plane [26, 27], the elliptical uncertainty regions 
representing the two squeezed coherent states on the x1-x2 plane merely differ by the rotation 
φ
2 . This is also suggested by the U(1) part eiφT3

 of (53), which denotes the rotation around the 
x3-axis. Similarly for the two-modes, the Dirac- [26, 27] and Schwinger-type squeezed coher-
ent states

|ξ,α,β〉 ≡ S(ξ)|α,β〉 = e
1
2 (|α|

2+|β|2)
∑
na,nb

1√
na!nb!

αnaβnb |ξ〉(na,nb),

|ξ,α,β〉〉 ≡ S(ξ)|α,β〉 = e
1
2 (|α|

2+|β|2)
∑
na,nb

1√
na!nb!

αnaβnb |ξ〉〉(na,nb),
�

(73)

are related as

|ξ,αD,βD〉 = e−i φ2 |ξ,αS,βS〉〉� (74)

with

αD = αSe−i φ2 , βD = βSe−i φ2 .� (75)

3.  Sp(4;R) squeeze matrices and the non-compact 2nd Hopf map

The next-simple symplectic group is Sp(4;R). Among the real symplectic groups, only 
Sp(2;R) and Sp(4;R) are isomorphic to indefinite spin groups; 
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Sp(2;R) � Spin(2, 1), Sp(4;R) � Spin(2, 3).� (76)

Furthermore, the SO(2, 3) group is the isometry group of the four-hyperboloid with the split-
signature H2,2: the base manifold of the non-compact 2nd Hopf map. Encouraged by these 
mathematical analogies, we explore an Sp(4;R) extension of the previous Sp(2;R) analysis. 
For details of Sp(4;R) group, one may consult [58] for instance.

3.1.  sp(4;R) algebra

From the result of appendix C, we see

Mp(4;R)/Z2 � Sp(4;R) � Spin(2, 3) � S1 × S3 × R6.� (77)

The metaplectic group Mp(4,R) is the double cover of the symplectic group Sp(4,R). As 
the metaplectic representation of Sp(2;R) is constructed by the Majorana representation of 
SO(2, 1), the SO(2, 3) Majorana representation is expected to realize the Sp(4;R) metaplectic 
representation.

The sp(4;R) algebra is isomorphic to so(2, 3) algebra that consists of ten generators 
Tab = −Tba (a, b = 1, 2, · · · , 5):

[Tab, Tcd] = igacTbd − igadTbc + igbdTac − igbcTad,� (78)

where

gab = gab = diag(−1,−1,+1,+1,+1).� (79)

The quadratic SO(2, 3) Casimir operator is given by

C =

5∑
a<b=1

Tab Tab.� (80)

It is not difficult to construct non-Hermitian matrix realization of the so(2, 3) generators. For 
this purpose, we first introduce the SO(2, 3) gamma matrices γa  that satisfy

{γa, γb} = 2gab.� (81)

Placing the split-quaternion (5) and its conjugate (6) in the off-diagonal components of gamma 
matrices, we can construct the SO(2, 3) gamma matrices as

γa = {γm, γ5} = {
(

0 q̄m

qm 0

)
,
(

1 0
0 −1

)
}� (82)

or

γi =

(
0 iτ i

−iτ i 0

)
, γ4 =

(
0 1
1 0

)
, γ5 =

(
1 0
0 −1

)
.� (83)

Note that γa  are pseudo-Hermitian:

γa† = γa = kγak,� (84)

where

k ≡ iγ1γ2 =

(
σz 0
0 σz

)
.� (85)
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The corresponding so(2, 3) matrices, σab = −i 1
4 [γ

a, γb], are derived as

σmn = −1
2

(
η̄mniτi 0

0 ηmniτi

)
, σi5 = −1

2

(
0 τ i

τ i 0

)
, σ45 = i

1
2

(
0 1
−1 0

)
.

� (86)
Here, ηmni and η̄mni denote the ’t Hooft symbols with the split signature:

ηmni = εmni4 + gmign4 − gnigm4, η̄mni = εmni4 − gmign4 + gnigm4.� (87)

The so(2, 3) matrices are also pseudo-Hermitian:

(σab)† = σab = kσabk.� (88)

Obviously k is unitarily equivalent to K =

(
12 0
0 −12

)
 for Sp(4;R). From the general discus-

sion of appendix B, the corresponding Hermitian matrices are given by

ka ≡ kγa = ka†, kab ≡ kσab = kab†,� (89)

and the Hermitian operators are

Xa = ψ̂† ka ψ̂, Xab = ψ̂† kab ψ̂,� (90)

where ψ̂ denotes a four-component operator whose components satisfy

[ψ̂α, ψ̂†
β ] = kαβ . (α,β = 1, 2, 3, 4)..� (91)

We can explicitly realize ψ̂ as

ψ̂ =
(
a b† c d†)t

.� (92)

Here, a, b, c and d are independent Schwinger boson operators, i.e. 
[a, a†] = [b, b†] = [c, c†] = [d, d†] = 1 and [a, b†] = [a, c] = [c, d†] = · · · = 0. Xa and Xab (90) 
read as

X1 = −a†d† + bc − ad + b†c†, X2 = ia†d† + ibc − iad − ib†c†, X3 = ia†c + id†b − ic†a − ib†d,

X4 = a†c − d†b + c†a − b†d, X5 = a†a − bb† − c†c + dd† = a†a − b†b − c†c + d†d,
� (93)

and

X12 = −1
2
(a†a + bb† + c†c + dd†), X13 = −1

2
(a†b† + ab + c†d† + cd), X14 = i

1
2
(a†b† − ab − c†d† + cd),

X15 = i
1
2
(−a†d† + ad − b†c† + bc), X23 = i

1
2
(a†b† − ab + c†d† − cd), X24 =

1
2
(a†b† + ab − c†d† − cd),

X25 = −1
2
(a†d† + ad + b†c† + bc), X34 =

1
2
(a†a + bb† − c†c − dd†), X35 = −1

2
(a†c + c†a + d†b + b†d),

X45 = i
1
2
(a†c − c†a − d†b + b†d).

� (94)
With (93) and (94), we can show

5∑
a=1

XaXa = (
¯̂
ψψ̂ + 2)( ¯̂ψψ̂ − 2),

5∑
a>b=1

XabXab =
1
2
(
¯̂
ψψ̂)(

¯̂
ψψ̂ + 6) + 1,

� (95)
where

¯̂
ψψ̂ ≡ ψ̂†kψ̂ = a†a − b†b + c†c − d†d − 2.� (96)
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¯̂
ψψ̂ is a singlet under the SU(2, 2) transformation:

[Xa, ¯̂ψψ̂] = [Xab, ¯̂ψψ̂] = 0,� (97)

and the 16 operators, Xa, Xab and ψ̄ψ, constitute the u(2, 2) algebra.
As we shall see below, the Majorana representation of SO(2, 3) realizes the metaplectic 

representation of Sp(4;R). The SO(2, 3) group has the charge conjugation matrix satisfying 

−(σab)∗ = CσabC,� (98)

where

C =

(
σx 0
0 σx

)
.� (99)

The SO(2, 3) Majorana spinor operator subject to the Majorana condition

ψ̂∗ = Cψ̂� (100)

is given by

ψ̂M =
(
a a† b b†)t

,� (101)

whose components satisfy the commutation relations

[ψ̂Mα, ψ̂Mβ ] = Eαβ� (102)

with

E = kC = −Ck =

(
iσy 0
0 iσy

)
.� (103)

Just as in the case of SO(2, 1) (25), using E, we can introduce symmetric matrices

mab ≡ −Eσab, ((mab)t = mab)� (104)

to construct the so(2, 3) generators

Xab ≡ 1
2
ψ̂t

M mab ψ̂M,� (105)

which are8

X12 = −1
2
(a†a + bb†) = −1

2
(a†a + b†b + 1), X13 = −1

4
(a2 + a†

2
+ b2 + b†2

),

X14 = i
1
4
(−a2 + a†2

+ b2 − b†
2
), X15 = i

1
2
(ab − a†b†), X23 = i

1
4
(−a2 + a†2 − b2 + b†2

),

X24 =
1
4
(a2 + a†2 − b2 − b†2

), X25 = −1
2
(ab + a†b†), X34 =

1
2
(a†a − b†b),

X35 = −1
2
(a†b + b†a), X45 = i

1
2
(a†b − b†a).

� (107)

8 Note that the independent operators of (107) are simply given by the symmetric combination of the two-mode 
operators ai  =  a,b:

{ai, aj}, {a†i , a†j }, {ai, a†j },� (106)
which are known to realize the generators of Mp(4;R) (see appendix A.4).
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Comparing the Majorana representation generators (105) with the Dirac representation gen-
erators (90), one can find that the coefficient on the right-hand side of (105) is half of that of 
(90) just as in the case of the Sp(2;R) and Mp(2;R). This implies that (105) are the generators 
of the double covering group of Sp(4;R), which is Mp(4;R).

We also construct antisymmetric matrices as

ma ≡ Eγa.� (108)

One can easily check that the corresponding operators identically vanish:

Xa ≡ ψ̂t
M ma ψ̂M = 0.� (109)

The corresponding SO(2, 3) Casimir becomes a constant:

5∑
a>b=1

Xab Xab = −5
4

,� (110)

which should be compared with the previous SU(1, 1) result (28).

3.2.  Gauss decomposition

In the Sp(2;R) case, we used the coset representation of H2,0

H2,0 � SO(2, 1)/SO(2) � SU(1, 1)/U(1) � Sp(2,R)/U(1),� (111)

which is equivalent to the 1st non-compact Hopf map

H2,0 � H2,1/S1.� (112)

In the Sp(4;R) case, the corresponding coset is obviously given by

H2,2 � SO(2, 3)/SO(2, 2)
� SO(2, 3)/(SU(1, 1)L ⊗ SU(1, 1)R) � Sp(4,R)/(Sp(2;R)L ⊗ Sp(2;R)R),

� (113)

which is the base manifold of the 2nd non-compact Hopf map

H2,2 � H4,3/H2,1.� (114)

The coordinates xa (a = 1, 2, 3, 4, 5) on H2,2 should satisfy
∑
a,b

gabxaxb = −x1x1 − x2x2 + x3x3 + x4x4 + x5x5 = 1.� (115)

We parameterize xa as

xm = (x1, x2, x3, x4) = (sin θ cosχ sinh ρ, sin θ sinχ sinh ρ, sin θ cosφ cosh ρ, sin θ sinφ cosh ρ),

x5 = cos θ,
� (116)

where the ranges of the parameters are given by (see figure 2)

ρ, θ ∈ R+ × S1 � H1,1, χ,φ ∈ S1 × S1.� (117)

As we have called the H2,0 associated with the Sp(2;R) squeeze operator the Bloch two-
hyperboloid, we will refer to H2,2 as the Bloch four-hyperboloid in the following.

We also introduce ‘normalized’ coordinates

ym = (cosχ sinh ρ, sinχ sinh ρ, cosφ cosh ρ, sinφ cosh ρ),� (118)
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which satisfy ymym = −y1y1 − y2y2 + y3y3 + y4y4 = 1 and denote the H2,1-latitude of the 
Bloch four-hyperboloid with fixed θ.

Based on the G/H construction (113), we can easily derive a Sp(4;R) squeeze matrix rep-

resenting H2,2. We take σmn as the generators of SO(2, 2) group and σm5 =

(
0 −q̄m

qm 0

)
 as the 

four broken generators. The squeeze matrix for H2,2 is then given by

M = eiθ ymσ
m5
=

(
cos θ

2 12 − sin θ
2 ymq̄m

sin θ
2 ymqm cos θ

2 12

)
=

1√
2(1 + x5)

(
(1 + x5)12 −q̄mxm

qmxm (1 + x5)12

)
.

� (119)
In the polar coordinates, (119) is expressed as

M =




cos θ
2 0 −i sin θ

2 cosh ρ e−iφ − sin θ
2 sinh ρ e−iχ

0 cos θ
2 − sin θ

2 sinh ρ eiχ i sin θ
2 cosh ρ eiφ

−i sin θ
2 cosh ρ eiφ − sin θ

2 sinh ρ e−iχ cos θ
2 0

− sin θ
2 sinh ρ eiχ i sin θ

2 cosh ρ e−iφ 0 cos θ
2


 .

� (120)
It is also possible to derive the Sp(4;R) squeeze matrix (119) based on the 2nd non-compact 
Hopf map (114). This construction will be important in the Euler angle decomposition (sec-
tion 3.3). The 2nd non-compact Hopf map is explicitly given by [46]

ψ ∈ H4,3 → xa = ψ†kaψ ∈ H2,2,� (121)

where ψ is subject to

ψ†kψ = (ψ∗
1ψ1 + ψ∗

3ψ3)− (ψ∗
2ψ2 + ψ∗

4ψ4) = 1,� (122)

and xa (121) automatically satisfy the condition of H2,2:

Figure 2.  Bloch four-hyperboloid H2,2: −((x1)2 + (x2)2) + ((x3)2 + (x4)2) + (x5)2 = 1.   
The Bloch four-hyperboloid can be regarded as a one-sheet hyperboloid  
−Z2 + Y2 + X2 = 1 with Z = (x1, x2), Y = (x3, x4) and X  =  x5. Each of the dimensions 
Z and Y has an internal S1 structure. In the parametrization (116) the range of x5 is 
[−1, 1], meaning that the parameterization does not cover the whole surface of the Bloch 
four-hyperboloid.

K Hasebe﻿J. Phys. A: Math. Theor. 53 (2020) 055303



17

gabxaxb = (ψ†kψ)2 = 1.� (123)

We can express ψ as

ψ = ΨLh
(

1
0

)
= ΨLφ,� (124)

where ΨL denotes the following 4 × 2 matrix

ΨL ≡ 1√
2(1 + x5)

(
(1 + x5)12

qmxm

)
,� (125)

and h is an arbitrary SU(1, 1) group element representing an H2,1-fibre:

h =
(
φ σxφ

∗) =
(
φ1 φ∗

2

φ2 φ∗
1

)
� (126)

subject to

det h = |φ1|2 − |φ2|2 = φ†σzφ = 1.� (127)

ΨL is an eigenstate of the xaγa with positive chirality

xaγaΨL = +ΨL.� (128)

Similarly, a negative chirality matrix satisfying

xaγaΨR = −ΨR� (129)

is given by

ΨR =
1√

2(1 + x5)

(
−q̄mxm

(1 + x5)12

)
.� (130)

With these two opposite chirality matrices, M (119) can be simply expressed as

M =
(
ΨL ΨR

)
.� (131)

Here, we mention the Gauss decomposition of M. Following the general method of [57], 
we may in principle derive the normal ordering of M. However, for the Sp(4;R) group the ten 
generators are concerned, and the Gauss decomposition will be a formidable task. Therefore 
instead of attempting the general method, we resort to an intuitive geometric structure of the 
Hopf maps to derive the Gauss decomposition. The hierarchical geometry of the Hopf maps 
implies that the U(1) part of the 1st non-compact Hopf map will be replaced with the SU(1, 1) 
group in the 2nd. We then expect that the Gauss decomposition of M will be given by9

M = Exp
(
− tan

θ

2

(
0 ymq̄m

0 0

))
· Exp

(
− ln

(
cos

θ

2

) (
12 0
0 −12

))
· Exp

(
tan

θ

2

(
0 0

ymqm 0

))

= Exp
(
− tan

θ

2
ym · (1

2
γm − iσm5)

)
· Exp

(
− ln

(
cos

θ

2

)
γ5
)
· Exp

(
tan

θ

2
ym · (1

2
γm + iσm5)

)
.

� (132)
Substituting the matrices, we can demonstrate the validity of (132). Note that, unlike the 
Sp(2;R) case (56), the Gauss decomposition (132) cannot be expressed only within the 
ten generators of Sp(4;R), but we need to utilize the five SO(2, 3) gamma matrices as 
well. The 15 matrices made of the SO(2, 3) gamma matrices and generators amount to the 
so(2, 4) � su(2, 2) algebra.

9 The Gauss (UDL) decomposition is unique [59].
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3.3.  Euler angle decomposition

Here we derive Euler angle decomposition of the Sp(4;R) squeeze matrix based on the hier-
archical geometry of the non-compact Hopf maps. The Euler decomposition is crucial to per-
forming the number state expansion of Sp(4;R) squeezed states.

We first introduce a dimensionality reduction of the 2nd non-compact Hopf map, which we 
refer to as the non-compact chiral Hopf map:

H2,1
L ⊗ H2,1

R

H2,1
diag.−→ H2,1.� (133)

(133) is readily obtained by imposing one more constraint to the non-compact 2nd Hopf spinor:

ψ†k5ψ = 1,� (134)

in addition to the original constraint (122). When we denote the non-compact Hopf spinor as 
ψ = (ψL ψR)

t the two constraints, (122) and (134), are rephrased as ‘normalizations’ for each 
of the two-component chiral Hopf spinors,

ψL
†σzψL = 1, ψR

†σzψR = 1.� (135)

ψL and ψR are thus the coordinates on H2,1 ⊗ H2,1, and (133) is explicitly realized as

ψL, ψR → ym =
1
2
(ψL

†σzq̄mψR + ψR
†σzqmψL),� (136)

and so y m automatically satisfy

ymym = −(y1)2 − (y2)2 + (y3)2 + (y4)2 = (ψL
†σzψL)(ψR

†σzψR) = 1,� (137)

so y m stand for the coordinates on H2,1. The simultaneous SU(1, 1) transformation of ψL and 

ψR has nothing to do with y m and geometrically represents the H2,1
diag-fibre part which is pro-

jected out in (133).
We can express the chiral Hopf spinors as10

ψL = e−i φ2 σz

(
cosh ρ

2 e−i χ2

−i sinh ρ
2 ei χ2

)
, ψR = −i ei φ2 σz

(
cosh ρ

2 e−i χ2

−i sinh ρ
2 ei χ2

)
,� (138)

and the resultant y m from (136) are given by (118). Note that when φ = 0, ψL and ψL are 
reduced to the 1st non-compact Hopf spinor and y m (118) are also reduced to the coordinates 
on H2,0. In this sense, the non-compact chiral Hopf map incorporates the structure of the 1st 
non-compact Hopf map in a hierarchical manner of dimensions. The SU(1, 1) group elements 
corresponding to ψL and ψR are given by

HL ≡
(
ψL σxψL

∗) =
(

cosh ρ
2 e−i 1

2 (χ+φ) i sinh ρ
2 e−i 1

2 (χ+φ)

−i sinh ρ
2 ei 1

2 (χ+φ) cosh ρ
2 ei 1

2 (χ+φ)

)
= e−

ρ
2 σy e−i 1

2 (χ+φ)σz ,

HR ≡ i
(
ψR −σxψR

∗) =
(

cosh ρ
2 e−i 1

2 (χ−φ) i sinh ρ
2 e−i 1

2 (χ−φ)

−i sinh ρ
2 ei 1

2 (χ−φ) cosh ρ
2 ei 1

2 (χ−φ)

)
= e−

ρ
2 σy e−i 1

2 (χ−φ)σz .

� (139)
From the chiral Hopf spinors, we can reconstruct a non-compact 2nd Hopf spinor that satisfies 
the 2nd non-compact Hopf map (121) as

ψ′ =



√

1+x5

2 ψL√
1−x5

2 ψR


 .� (140)

10 Here, the imaginary unit i is added on the right-hand side of ψR for later convenience.
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(ψ (124) and ψ′ (140) are related by the SU(1, 1) gauge transformation as we shall see below.) 
One may find that the x5 coordinate on H2,2 determines the weights of the chiral Hopf spinors 
in ψ′. In particular at the ‘north pole’ (x5  =  1), ψ′ (140) is reduced to ψL, while at the ‘south 
pole’ (x5  =  −1) ψR. The hierarchical geometry of the Hopf maps is summarized as follows.

The 1st Hopf map for H2,0 → The chiral Hopf map for H2,1 → The 2nd Hopf map for H2,2.

From the chiral Hopf spinors, we construct the following two 4 × 2 matrices:

Ψ′
L ≡




√
1+x5

2

(
ψL σxψL

∗ )
√

1−x5

2

(
ψR σxψR

∗ )


 = H




√
1+x5

2 12

−i
√

1−x5

2 σz


 ,� (141)

and

Ψ′
R = −i




√
1−x5

2

(
ψL −σxψL

∗ )
√

1+x5

2

(
ψR −σxψR

∗ )


 = H


 −i

√
1−x5

2 σz√
1+x5

2 12


 ,� (142)

where

H ≡
(

HL 0
0 HR

)
=

(
e−i φ2 σz 0

0 ei φ2 σz

)(
e−i χ2 σz 0

0 e−i χ2 σz

)(
e−

ρ
2 σy 0

0 e−
ρ
2 σy

)
= e−iφσ34

eiχσ12
e−iρσ13

.

� (143)
σabare SO(2, 3) matrices (86). With Ψ′

L and Ψ′
R, we construct the 4 × 4 matrix M, which we 

will refer to as the Schwinger -type Sp(4;R) squeeze matrix:

M ≡
(
Ψ′

L Ψ′
R

)
= H




√
1+x5

2 12 −i
√

1−x5

2 σz

−i
√

1−x5

2 σz

√
1+x5

2 12


 = H · eiθσ35

.� (144)

In the last equation, we used



√
1+x5

2 12 −i
√

1−x5

2 σz

−i
√

1−x5

2 σz

√
1+x5

2 12


 =

(
cos θ

2 12 −i sin θ
2 σz

−i sin θ
2 σz cos θ

2 12

)
= Exp

(
−i

θ

2

(
0 σz

σz 0

))
= eiθσ35

.

� (145)
The expression of Ψ′

L (141) is distinct from that of ΨL (125), but this is not a problem 
because they are related by a SU(1, 1) gauge transformation. Indeed, the comparison between 
(125) and (141) implies

Ψ′
L = ΨLHL.� (146)

Similarly for (130) and (142), we have

Ψ′
R = ΨRHR.� (147)

As a result, we obtain the relation between M (119) and M (144) as

M =
(
Ψ′

L Ψ′
R

)
=

(
ΨL ΨR

)(HL 0
0 HR

)
= M · H.� (148)

(144) and (148) yield a factorized form of M:

M = M · H−1 = H · eiθσ35
· H−1.� (149)
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This is the Euler angle decomposition of the Sp(4;R) squeeze matrix we have sought. In 
(149), the off-diagonal block matrix eiθσ35

 is sandwiched by the diagonal block matrix H 
and its inverse. Recall that the Euler angle decomposition of the Sp(2;R) squeeze operator 
(53) exhibits the same structure, S = eiφTz · eiρTx · (eiφTz

)−1. The squeeze parameter ρ  in the 
Sp(2;R) case corresponds to θ in the Sp(4;R) case. Note that at θ = 0 (‘no squeeze’) the 
Sp(4;R) squeeze matrix (149) becomes trivial.

Using the squeeze matrix, the non-compact 2nd Hopf map (121) can be realized as

xa =
1
4

tr(k5M†kaM).� (150)

Since HL and HR are SU(1, 1) group elements and H (143) satisfies

H k5 H† = k5,� (151)

it is obvious that xa (150) are invariant under the SU(1, 1) transformation

M → MH′� (152)

with H′ subject to

det(H′) = 1, H′†kH′ = k.� (153)

At the level of matrix representation for the base manifold H2,2, M is no less legitimate than M, 
since their difference is only about the SU(1, 1)-fibre part which is projected out in the 2nd non-
compact Hopf map. However, as we shall see below, the Dirac- and Schwinger-type Sp(4;R) 
squeeze operators yield physically distinct squeezed vacua unlike the previous Sp(2;R) case.

4.  Sp(4;R) squeezed states and their basic properties

Replacement of the Sp(4;R) non-Hermitian matrices with the corresponding operators yields 
the Sp(4;R) squeeze operator:

M = eiθ
∑4

m=1 ymσ
m5

→ S = eiθ
∑4

m=1 ymXm5
.
�

(154)

With four-mode representation (94) and two-mode representation (107), (154) is respectively 
given by

S = exp

(
−i

θ

2
(ξ(ad + bc) + ξ∗(a†d† + b†c†) + η(ac† + b†d) + η∗(a†c + bd†))

)
,

�

(155a)

S = exp

(
−i

θ

2
(ξab + ξ∗a†b† + ηab† + η∗a†b)

)
,� (155b)

where

ξ ≡ sinh ρ ei(χ+π
2 ), η ≡ cosh ρ eiφ.

� (156)

We now discuss properties of the Sp(4;R) squeeze operators and Sp(4;R) squeezed states.

4.1.  Sp(4;R) squeeze operator

From the Gauss decomposition (132), we have

S = Exp
(
− tan

θ

2
ym · (1

2
Xm − iXm5)

)
· Exp

(
ln

(
cos

θ

2

)
· X5

)
· Exp

(
− tan

θ

2
ym · (1

2
Xm + iXm5)

)
.

� (157)
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The operators on the exponential of the most right component are 1
2 Xm + iXm5 that are given 

by a linear combinations of the operators ad, c†a, d†b and b†c† as found in (94). Because 
of the existence of b†c†, it is not easy to derive the number state basis expansion even for 
the squeezed vacuum state. The situation is even worse when we utilize the Euler angle 
decomposition:

S = e−iφX34
eiχX12

e−iρX13
eiθX35

eiρX13
e−iχX12

eiφX34
,� (158)

since X13 contains both a†b† and c†d†. Meanwhile the Schwinger-type squeeze operator

S = e−iφX34
eiχX12

e−iρX13
eiθX35� (159)

is much easier to handle. To obtain a better understanding of Sp(4;R) squeezed states, we will 
derive number state expansion for several Schwinger-type squeezed states.

4.2. Two-mode squeeze operator and Sp(4;R) two-mode squeeze vacuum

Representing X34 and X12 (107) by the number operators, n̂a = a†a and n̂b = b†b, we express 
the Schwinger-type squeeze operator (159) as

S = e−i 1
2 χe−i 1

2 (χ+φ)n̂a e−i 1
2 (χ−φ)n̂b e−iρX13

eiθX35
.� (160)

The operators of the last two terms, X35 = − 1
2 (a

†b + b†a) and X13 = − 1
2 (a

2 + a†
2
+ b2 + b†2

), 
are respectively made of the ladder operators of the su(2) and su(1, 1) algebra. We apply the 
Gauss decomposition formula [56, 57] to these terms to have

eiθX35
= e−i tan θ

2 ·a
†b

(
1

cos θ
2

)na−nb

e−i tan θ
2 ·b

†a = e−i tan θ
2 ·b

†a
(

1
cos θ

2

)−na+nb

e−i tan θ
2 ·a

†b,

� (161a)

e−iρX13
=

1
cosh ρ

2
ei 1

2 tanh ρ
2 ·(a†2

+b†2
)

(
1

cosh ρ
2

)na+nb

ei 1
2 tanh ρ

2 ·(a2+b2).� (161b)

Based on these decompositions, we investigate the Sp(4;R) squeezing of two-mode number 
states

|tm〉〉(na,nb) = S|na, nb〉.� (162)

We can derive the Sp(4;R) squeezed vacuum as

|tm〉〉(0,0) = e−i χ2 |ξ+〉(0) ⊗ |ξ−〉(0),� (163)

where |ξ±〉(0) denotes the Sp(2;R) single-mode squeezed vacuum (6) with

ξ± ≡ ρ

2
e−i(χ±φ+π

2 ).� (164)

The Schwinger-type squeezed vacuum does not depend on the parameter θ and is given by 
a direct product of the two Sp(2;R) single-mode squeezed vacua with a phase difference, 
arg(ξ+)− arg(ξ−) = −2φ. We then find the physical meanings of the three parameters of 
the four-hyperboloid as follows. The parameter ρ  signifies the squeezing parameter common 
to the two Sp(2;R) squeezed vacua and χ stands for their overall rotation, and φ denotes 
the relative rotation between them (see section 4.4 also). To see the physical meaning of the 
remaining parameter θ, let us consider the Sp(4;R) squeezed one-photon states. The squeezed 
one-photon states are similarly obtained as
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|tm〉〉(1,0) = e−iχ
(

e−i 1
2 φ cos

θ

2
|ξ+〉(1) ⊗ |ξ−〉(0) − iei 1

2 φ sin
θ

2
|ξ+〉(0) ⊗ |ξ−〉(1)

)
,

�

(165a)

|tm〉〉(0,1) = e−iχ
(

ei 1
2 φ cos

θ

2
|ξ+〉(1) ⊗ |ξ−〉(0) − ie−i 1

2 φ sin
θ

2
|ξ+〉(0) ⊗ |ξ−〉(1)

)
,

� (165b)
where |ξ±〉(1) denotes the Sp(2;R) single-mode squeezed one-photon state (6). Thus the 
Sp(4;R) squeeze of the one-photon state represents a superposition of the tensor products 
of the Sp(2;R) squeezed vacuum and squeezed one-photon state. Let us focus on the H2,1-
latitude at φ = 0 (x4  =  0) on H2,2. Both of (165) are reduced to the same state:

|tm〉〉|φ=0 = e−iχ
(
cos

θ

2
|ξ〉(1) ⊗ |ξ〉(0) − i sin

θ

2
|ξ〉(0) ⊗ |ξ〉(1)

)
� (166)

with ξ ≡ −iρ2 e−iχ. Interestingly, (166) represents an entangled state of two squeezed states. 
Indeed, when we assign qubit states |1〉 and |0〉 to the two squeezed states |ξ〉(1) and |ξ〉(0), (166) 
can be expressed as

|tm〉〉|φ=0 =
∑

i,j=1,0

Qij |i〉 ⊗ |j〉,
� (167)

where

Q = e−iχ
(

0 cos θ
2

−i sin θ
2 0

)
.� (168)

The concurrence for the entanglement of two qubits [60] is readily calculated as

c =
√

2(1 − tr((Q†Q)2)) = | sin θ| =
√

1 − (x5)2,� (169)

which is exactly equal to the ‘radius’ of the H2,0-latitude at θ on H2,1. Thus the concurrence 
associated with the Sp(4;R) squeezed state has a clear geometrical meaning as the radius of 
hyperbolic latitude on H2,1, and the azimuthal angle θ specifies the degree of the entangle-
ment. In particular, the two-mode squeezed state (167) is maximally entangled c  =  1 at the 
‘equator’ of H2,1 (θ = π/2), while it becomes a product state c  =  0 at the ‘north pole’ (θ = 0) 
or the ‘south pole’ (θ = π).

4.3.  Four-mode squeeze operator and Sp(4;R) squeezed vacuum

In a similar fashion to the two-mode case, we can discuss the four-mode squeezed states. From 
the four-mode Sp(4;R) operators (94), the Schwinger-type squeeze operator is represented as

S = e−iχe−i 1
2 (χ+φ)(n̂a+n̂b)e−i 1

2 (χ−φ)(n̂c+n̂d)e−iρX13
eiθX35

.� (170)

The Gaussian decompositions of the last two terms on the right-hand side of (170) are given 
by

eiθX35
= e−i tan θ

2 ·(a†c+b†d)
(

1
cos θ

2

)na−nb+nc−nd

e−i tan θ
2 ·(c†a+d†b),� (171a)

e−iρX13
=

1
cosh2 ρ

2

ei tanh ρ
2 ·(a†b†+c†d†)

(
1

cosh ρ
2

)na+nb+nc+nd

ei tanh ρ
2 ·(ab+cd).

� (171b)
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Using these formulas, we can derive the number state expansion of Sp(4;R) four-mode 
squeezed states:

|fm〉〉(na,nb,nc,nd) ≡ S|na, nb, nc, nd〉.� (172)

The Schwinger-type squeezed vacuum is derived as

|fm〉〉(0,0,0,0) = e−iχ|ξ+〉(0,0) ⊗ |ξ−〉(0,0),� (173)

where |ξ±〉(0,0) denotes the Sp(2;R) squeezed vacuum with

ξ± ≡ ρ

2
e−i(χ±φ+π

2 ).� (174)

Note that the two-mode (163) and the four-mode (173) have the same structure. The one-
photon squeezed states are similarly obtained as

|fm〉〉(1,0,0,0) = e−i 3
2 χ

(
e−i 1

2 φ cos
θ

2
|ξ+〉(1,0) ⊗ |ξ−〉(0,0) − iei 1

2 φ sin
θ

2
|ξ+〉(0,0) ⊗ |ξ−〉(1,0)

)
,� (175a)

|fm〉〉(0,1,0,0) = e−i 3
2 χ

(
e−i 1

2 φ cos
θ

2
|ξ+〉(0,1) ⊗ |ξ−〉(0,0) − iei 1

2 φ sin
θ

2
|ξ+〉(0,0) ⊗ |ξ−〉(0,1)

)
,� (175b)

|fm〉〉(0,0,1,0) = e−i 3
2 χ

(
ei 1

2 φ cos
θ

2
|ξ+〉(0,0) ⊗ |ξ−〉(1,0) − ie−i 1

2 φ sin
θ

2
|ξ+〉(1,0) ⊗ |ξ−〉(0,0)

)
,� (175c)

|fm〉〉(0,0,0,1) = e−i 3
2 χ

(
ei 1

2 φ cos
θ

2
|ξ+〉(0,0) ⊗ |ξ−〉(0,1) − ie−i 1

2 φ sin
θ

2
|ξ+〉(0,1) ⊗ |ξ−〉(0,0)

)
,� (175d)

where |ξ±〉(1,0), (0,1) are the Sp(2;R) two-mode one-photon squeezed states (7).

4.4.  Sp(4;R) uncertainty relation

Next, we investigate the uncertainty relation for the Sp(4;R) squeezed vacua. Unlike the deri-
vations of the number state expansion, what is needed to evaluate uncertainty relations is only 
the Sp(4;R) covariance of the spinor operators. The following derivation of Sp(4;R) uncer-
tainty relations is a straightforward generalization of the Sp(2;R) case [22].

For the Sp(4;R) two-mode with two kinds of annihilation operators, we introduce four 
operator coordinates:

X1 =
1
2
(a + a†), X2 = −i

1
2
(a − a†),� (176a)

X3 =
1
2
(b + b†), X4 = −i

1
2
(b − b†),� (176b)

which satisfy the 4D Heisenberg–Weyl algebra,

[X1, X2] = [X3, X4] = i
1
2

, [X1, X3] = [X1, X4] = [X2, X3] = · · · = 0.� (177)

We thus have two independent sets of 2D non-commutative coordinate spaces constituting 4D 
non-commutative space, in the terminology of non-commutative geometry, R2

NC ⊕ R2
NC = R4

NC. 
In a similar manner, in the case of the Sp(4;R) four-mode, four operator coordinates are intro-
duced as
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X1 =
1

2
√

2
(a + a† + b + b†), X2 = −i

1
2
√

2
(a − a† + b − b†),� (178a)

X3 =
1

2
√

2
(c + c† + d + d†), X4 = −i

1
2
√

2
(c − c† + d − d†),� (178b)

which satisfy (177) again. In the following we evaluate the deviations of these coordinates for 
the Sp(4;R) squeezed vacua.

Let us denote the Sp(4;R) squeezed vacuum as

|sq〉 ≡ S|0〉,� (179)

where |0〉 denotes the vacuum of the Schwinger boson operators:

a|0〉 = b|0〉 = c|0〉 = d|0〉 = 0.� (180)

Obviously, the squeezed vacuum is the vacuum of the squeezed annihilation operator

ã ≡ SaS†.� (181)

Since the operator ψ̂ (Dirac-type (92) and Majorana-type (101)) behaves as a spinor under 
the Sp(4;R) transformation (see appendix B for general discussions), the Schwinger operator 
transforms as

S† ψ̂ S = M ψ̂.� (182)

For the Dirac type, M is given by (120), while for the Schwinger type it is given by (144). 
Note that (182) implies that the product of the three operators on the left-hand side is simply 
equal to the linear combination of the components of ψ̂ on right-hand side. By this relation 
(182), it becomes feasible to evaluate the expectation values of operator O(ψ̂) for the squeezed 
vacuum:

〈O(ψ̂)〉sq ≡ 〈sq|O(ψ̂)|sq〉 = 〈0|S†O(ψ̂)S|0〉 = 〈0|O(S†ψ̂S)|0〉 = 〈0|O(Mψ̂)|0〉,
�

(183)

where we assumed that O(ψ̂) is a sum of polynomials of the components of ψ̂. Thus, the 
evaluation of the expectation values for the squeezed vacuum is boiled down to that for the 
usual vacuum.

Since only the covariance of the operator is concerned here, the following discussions can 
be applied to both two-mode and four-mode. According to (183), we can readily derive the 
squeezed vacuum expectation value of ψ̂ as

〈ψ̂〉sq = M〈0|ψ̂|0〉 = 0,� (184)

and, from (176) or (178), we have

〈X1〉sq = 〈X2〉sq = 〈X3〉sq = 〈X4〉sq = 0.� (185)

A bit of calculations shows

〈(∆X1/2)2〉sq =
1
4

(
cos2(

θ

2
) + sin2(

θ

2
)(cosh(2ρ) +/− sinh(2ρ) sin(χ+ φ))

)
,

�

(186a)

〈(∆X3/4)2〉sq =
1
4

(
cos2(

θ

2
) + sin2(

θ

2
)(cosh(2ρ) +/− sinh(2ρ) sin(χ− φ))

)
.

�

(186b)

Consequently, we have the uncertainty relations for the Sp(4;R) squeezed vacuum:
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〈(∆X1)2〉sq 〈(∆X2)2〉sq =
1

16
(1 + sin2 θ sinh2 ρ+ sin4(

θ

2
) sinh2(2ρ) cos2(χ+ φ)) �

1
16

,
� (187a)

〈(∆X3)2〉sq 〈(∆X4)2〉sq =
1

16
(1 + sin2 θ sinh2 ρ+ sin4(

θ

2
) sinh2(2ρ) cos2(χ− φ)) �

1
16

.
� (187b)

The uncertainty bound is saturated at (i) θ = 0 (the ‘north pole’ of the Bloch four-hyperbo-
loid) and (ii) θ = π (the ‘south pole’), at which, (186) becomes

〈(∆X1/2)2〉sq|θ=π =
1
4
(cosh(2ρ) +/− sinh(2ρ) sin(χ+ φ)),� (188a)

〈(∆X3/4)2〉sq|θ=π =
1
4
(cosh(2ρ) +/− sinh(2ρ) sin(χ− φ)).� (188b)

Note that (188) represents the uncertainty regions of two Sp(2;R) squeezed vacua [61]. (See 
figure 3 also.) Since θ represents the squeezing parameter of the Sp(4;R) squeeze operator, 
case (i) corresponds to the trivial vacuum and (186) is reduced to 〈(∆Xm)2〉sq = 1

4 (no sum for 
m = 1, 2, 3, 4), and so case (i) is rather trivial. Meanwhile for case (ii), at (χ,φ) = (π2 , 0) or 
(χ,φ) = (0, π

2 ), the deviations (186) become

〈(∆X1)2〉sq =
1
4

e2ρ, 〈(∆X2)2〉sq =
1
4

e−2ρ, 〈(∆X3)2〉sq =
1
4

e±2ρ, 〈(∆X4)2〉sq =
1
4

e∓2ρ,� (189)

and non-trivially saturate the uncertainty bound:

〈(∆X1)2〉sq 〈(∆X2)2〉sq = 〈(∆X3)2〉sq 〈(∆X4)2〉sq =
1

16
.� (190)

Performing similar calculations for the Schwinger-type squeezed vacuum, we obtain

Figure 3.  At θ = π, the 4D uncertainty region for the Sp(4;R) squeezed vacuum is 
exactly equal to the ‘direct sum’ of the two 2D uncertainty regions described by two 
Sp(2;R) squeezed vacua. The Sp(4;R) squeezed vacuum thus realizes the squeezing 
in a 4D manner. The parameter ρ  denotes the degree of squeezing of both Sp(2;R) 
squeezed vacua, χ stands for their overall rotation, and φ signifies the relative rotation 
between them. In particular at (χ,φ) = (π2 , 0), both of the squeezings are aligned in 
the ‘same’ direction (the squeezing on the X1 − X2 plane is in the X1 direction, and 
that on X3 − X4 is in the X3 direction), while at (χ,φ) = (0, π

2 ), the two squeezings are 
‘perpendicular’ to each other (the squeezing on X1 − X2 plane is in the X1 direction, 
while that on X3 − X4 plane is in the X4 direction).
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〈〈(∆X1/2)2〉〉sq =
1
4
(cosh ρ + /− sinh ρ sin(χ+ φ)) �

1
16

,� (191a)

〈〈(∆X3/4)2〉〉sq =
1
4
(cosh ρ + /− sinh ρ sin(χ− φ)) �

1
16

.� (191b)

Note that the deviations do not depend on the parameter θ unlike the Dirac type and are 
exactly equal to the Dirac type at θ = π (188) with half squeezing. Therefore, (191) is identi-
cal to the uncertainty regions of two Sp(2;R) squeezed vacua. This result is actually expected, 
since the Schwinger-type Sp(4;R) squeezed vacuum (163) does not depend on θ and is simply 
the direct product of the two Sp(2;R) squeezed vacua.

5.  Sp(4;R) squeezed coherent states

The Sp(4;R) squeezed coherent state is introduced as the Sp(4;R) squeezed vacuum dis-
placed on 4D plane and exhibits a 4D generalization of the properties of the original Sp(2;R) 
squeezed coherent state.

5.1.  Squeezed coherent state

With the displacement operator Da(α) = eαa†−α∗a, the two-mode and four-mode displace-
ment operators are respectively given by

D(α,β) = Da(α)Db(β), D(α,β) = Da(α)Db(β)Dc(α)Dd(β).� (192)

It is straightforward to introduce a Sp(4;R) version of the squeezed coherent state as

|α,β, sq〉 = D(α,β) S|0〉.� (193)

Each displacement operator acts on the two-mode ψ̂ = (ψ̂1 ψ̂2 ψ̂3 ψ̂4)
t = (a a† b b†)t and 

the four-mode ψ̂ = (ψ̂1 ψ̂2 ψ̂3 ψ̂4)
t = (a b† c d†)t  as

D(α,β) ψ̂ D(α,β)† = ψ̂ − ϕ,� (194)

where

ϕ =
(
α̃ α̃∗ β̃ β̃∗

)t
.� (195)

Relations

D S

(
ψ̂1

ψ̂3

)
S† D† |α,β, sq〉 =

(
0
0

)
,

D S

(
ψ̂†

2

ψ̂†
4

)
S† D† |α,β, sq〉 =

(
0
0

)
,

� (196)

immediately demonstrate that the squeezed coherent state satisfies the following operator 
eigenvalue equations:

ψ̂′
1|α,β, sq〉 = ϕ′

1|α,β, sq〉, ψ̂′
3|α,β, sq〉 = ϕ′

3|α,β, sq〉,

(ψ̂′
2)

†|α,β, sq〉 = ϕ′∗
2 |α,β, sq〉, (ψ̂′

4)
†|α,β, sq〉 = ϕ′∗

4 |α,β, sq〉,
� (197)

where

ψ̂′ ≡ Sψ̂S† = M−1ψ̂, ϕ′ ≡ M−1ϕ.� (198)
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For instance, the first equation of (197) for the two-mode Dirac-type squeezed coherent state 
reads as

(
cos

θ

2
a + i sin

θ

2
cosh ρ e−iφ b + sin

θ

2
sinh ρ e−iχ b†

)
|α,β; sq〉

=

(
cos

θ

2
α+ i sin

θ

2
cosh ρ e−iφ β + sin

θ

2
sinh ρ e−iχ β∗

)
|α,β; sq〉.

� (199)

5.2.  Several properties

	 •	� Two-mode Sp(4;R) squeezed coherent state:

For two-mode squeezed coherent state,

|α,β, sq〉 = Da(α)Db(β)S |0, 0〉,� (200)

the expectation values of Xs are derived as

〈X1〉(α,β,sq) = Re(α) = 〈X1〉α, 〈X2〉(α,β,sq) = Im(α) = 〈X2〉α,

〈X3〉(α,β,sq) = Re(β) = 〈X3〉β , 〈X4〉(α,β,sq) = Im(β) = 〈X4〉β .
� (201)

The expectation values (201) exactly coincide with those of the coherent states. Similarly, the 
deviations of Xs are obtained as

〈(∆Xm)2〉(α,β,sq) = 〈(∆Xm)2〉(α,sq) = 〈(Xm)2〉(α,sq) − 〈Xm〉2
(α,sq) = 〈(∆Xm)2〉sq. (no sum for m = 1, 2, 3, 4).

� (202)
The deviations (200) are equal to those of the squeezed vacuum, (186) and (191). Thus, the 
position of the squeezed coherent state is accounted for by its coherent state part, while the 
deviation is accounted for by its squeezed state part, implying that the Sp(4;R) squeezed coher-
ent vacuum is the squeezed vacuum displaced by (α,β) on the C2 � R4 plane. Obviously, this 
signifies a natural 4D generalization of the known properties of the original Sp(2;R) case [22].

	 •	� Four-mode Sp(4;R) squeezed coherent state:

From the four-mode generators of Sp(4;R), we can define two kinds of annihilation 
operators:

A = X1 + iX2 =
1√
2
(a + b), B = X3 + iX4 =

1√
2
(c + d),� (203)

which satisfy [A, A†] = [B, B†] = 1. We construct the displacement operator as

D(α,β) = DA(α) DB(β) = Da(
1√
2
α) Db(

1√
2
α) Dc(

1√
2
β) Dd(

1√
2
β),� (204)

and introduce four-mode squeezed coherent state as

|α,β, sq〉 = D(α,β)S|0, 0, 0, 0〉.� (205)

It is easy to see that the expectation values of the coordinates are given by

〈X1〉(α,β,sq) = Re(α) = 〈X1〉(α,β), 〈X2〉(α,β,sq) = Im(α) = 〈X2〉(α,β),

〈X3〉(α,β,sq) = Re(β) = 〈X3〉(α,β), 〈X4〉(α,β,sq) = Im(β) = 〈X4〉(α,β),
� (206)
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and the deviations are

〈(∆Xm)2〉(α,β,sq) = 〈(Xm)2〉(α,β,sq) − 〈Xm〉2
(α,β,sq) = 〈(∆Xm)2〉sq. (no sum for m = 1, 2, 3, 4).

� (207)
These results are equal to those of the two-mode case, (201) and (202). Hence, also for the 
four-mode, the Sp(4;R) squeezed coherent vacuum is intuitively interpreted as the squeezed 
vacuum displaced by (α,β) on C2 � R4 plane.

6.  Summary and discussions

We constructed the Sp(4;R) squeezed coherent states and investigated their characteristic 
properties. We clarified the underlying hyperbolic geometry of the Sp(2;R) squeezed states in 
the context of the 1st non-compact Hopf map. Taking advantage of the hierarchical geometry 
of the Hopf maps, we derived the Sp(4;R) squeeze operator with Bloch four-hyperboloid 
geometry. Unlike the Sp(2;R) case, the Sp(4;R) squeezed vacua of the Dirac and Schwinger 
types are physically distinct. Based on the Euler angle decomposition of the Sp(4;R) squeeze 
operator, we investigated the Schwinger-type Sp(4;R) squeezed states, and clarified the physi-
cal meaning of the four coordinates of the Bloch four-hyperboloid. In particular, the entangle-
ment concurrence of the Sp(4;R) squeezed one-photon state was shown to be a geometric 
quantity determined by the 5th axis of the Bloch four-hyperboloid. We evaluated the mean 
values and deviations of the 4D non-commutative coordinates for the Sp(4;R) squeezed 
(coherent) states and confirmed that they realize a natural 4D generalization of the original 
properties of the Sp(2;R) squeezed states. The next direction will be a construction of an 
anharmonic oscillator Hamiltonian for the Sp(4;R) squeezed state as in the Sp(2;R) case 
[21] and its experimental realizations. Interestingly in [62], though not exactly the same as 
the present case, Gerry and Benmoussa proposed an analogous SU(1, 1)⊗ SU(1, 1) entangled 
state of two squeezed states and suggested the possibility of generation in trapped ion experi-
ments [63]. Their indication about experimental realization may also hold for the present state. 
Besides, the SO(2, 3) pseudo-spin coherent state accompanies the SU(1, 1) Berry phase as 
the SU(1, 1) pseudo-spin coherent state the U(1) Berry phase. It is also interesting how such 
a non-Abelian phase appears in optical experiments and brings pseudo-spin dynamics [64] 
particular to its non-Abelian nature, which may be compared to the exotic geometric phase of 
SU(2) higher spins [65, 66].

Table 1.  Comparison between quantum information sector of Bloch sphere and quantum optics 
sector of Bloch hyperboloid.

Quantum information Quantum optics

Time-reversal symmetry T2  =  −1 (Fermion) T2  =  +1 (Boson)
Algebra Quaternion H Split-quaternion H′

Bogoliubov trans. SO(2n) Sp(2n;R) = U(n;H′)
Double covering group Spin(2n) Mp(2n;R)
Topological map Hopf map Non-compact Hopf map
Quantum manifold Bloch sphere Bloch hyperboloid
Fundamental quantum state Qubit state Squeezed state
Group coherent state SU(2) spin coherent state SU(1, 1) pseudo-spin coherent state
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The split quaternion was crucial in constructing the non-compact 2nd Hopf map. The  
split quaternion is closely related to the time-reversal operation for bosons by the following 
identification:

(q1, q2, q3) = (iT , T , i).� (208)

Here T stands for the time-reversal operator for boson, T2  =  +1, and i is the imaginary unit. 
Since the time-reversal operator is an anti-linear operator, T is anticommutative with the imag-
inary unit, Ti = −iT , and so the identification q1 = iT  gives q1

2 = +1. Therefore, the triplet 
(208) can be regarded as a realization of the imaginary split quaternions, q1

2 = q2
2 = +1, 

q3
2 = −1 and qiqj = −qjqi  (i �= j). In this way, the split quaternions naturally appear in the 

context of the time-reversal operation for bosons, just as the quaternions for fermions. Looking 
more in detail as indicated in table 1, there are intriguing correspondences between fermion 
and boson sectors starting from the quaternions and split quaternions. The list of the boson 
sector of table 1 may suggest that the non-compact (hyperbolic) geometry is no less important 
than the compact (spherical) geometry for the fermion sector already extensively used in quan-
tum information. As a concrete demonstration, we clarified the hyperbolic geometry of the 
squeezed states and applied it to construct a generalized Sp(4;R) formulation of the squeezed 
states in the present work. It is very tempting to excavate further hyperbolic structures in quan-
tum mechanics and quantum information theory. As a straightforward study along this line, 
one may think of applications of the non-compact 3rd Hopf map or more generally indefinite 
complex projective spaces. It should also be mentioned that the geometric structures of non-
compact manifolds are richer than those of the compact counterparts: non-compact manifolds 
generally accommodate compact manifolds as their submanifolds, which makes the geometry 
of non-compact manifolds more interesting than that of compact manifolds. It is expected that 
the study of non-compact geometry will spur the development of quantum information theory.

Though we focused on the squeezed states in this work, the non-compact Hopf map has 
begun to be applied in various fields, such as non-commutative geometry [47], twistorial 
quantum Hall effect [67], non-Hermitian topological insulator [68, 69], and indefinite signa-
ture matrix model of string theory [70–73]. Applications of the non-compact Hopf map may 
be ubiquitous. It may also be worthwhile to speculate on its further possible applications.
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Appendix A.  Split quaternions, symplectic algebra and metaplectic algebra

A.1.  Algebra of the split quaternions

We denote the split quaternions as

qm = {qi, q4} = {q1, q2, q3, 1},� (A.1)
which satisfy

(q1)2 = (q2)2 = −(q3)2 = 1,

q1q2 = −q2q1 = −q3, q3q1 = −q1q3 = −q2, q2q3 = −q3q2 = −q1.� (A.2)
The quaternionic conjugate of h = cm qm (cm : real parameters) is defined as
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h̄ = (cm qm) ≡ cm q̄m,� (A.3)

with

q̄m = {−qi, 1}.� (A.4)

The algebra of the split quaternions (A.2) is concisely expressed as

{qi, q j} = −2gij, [qi, q j] = −2εijkqk,� (A.5)

where

gij = gij = diag(−1,−1,+1), ε123 = 1.� (A.6)

The split quaternions satisfy

qmq̄n + qnq̄m = q̄mqn + q̄nqm = 2gmn,� (A.7a)

qmq̄n − qnq̄m = 2ηmniqi, q̄mqn − q̄nqm = 2η̄mniqi� (A.7b)

and

qiqm = −ηmniqn, qmqi = η̄mniqn,� (A.8a)

qiq̄m = −η̄mniq̄n, q̄mqi = ηmniq̄n.� (A.8b)

Here, gmn is

gmn = diag(−1,−1,+1,+1),� (A.9)

and ηmni and η̄mni are the ’t Hooft symbols:

ηmni = εmni4 + gmign4 − gnigm4, η̄mni = εmni4 − gmign4 + gnigm4.� (A.10)

They satisfy

1
2
εmnpqη

pqi = η i
mn,

1
2
εmnpqη̄

pqi = −η̄ i
mn,� (A.11a)

ηmniηmnj = 4δi
j, η̄mniη̄mnj = 4δi

j ηmniη̄mnj = 0.� (A.11b)

A.2. U(n;H′)

GL(n;H′) is a group of split-quaternions-valued n × n matrix

g =




g11 g12 · · · g1n

g21 g22 · · · g2n

...
...

. . .
...

gn1 gn2 · · · gnn


 ,� (A.12)

where gij are given by

gij = cm
ij qm� (A.13)
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with cm
ij  real numbers. The (split-)quaternionic Hermitian conjugate of g is defined as

g‡ ≡ (ḡ)t =




g11 g21 · · · gn1

g12 g22 · · · gn2
...

...
. . .

...
g1n g2n · · · gnn


 ,� (A.14)

where qij = cm
ij q̄m. The quaternionic conjugate and the quaternionic Hermitian conjugate have 

the following properties:

(h1 h2) = h2 h1,� (A.15a)

(g1 · g2)
‡ = g2

‡ · g1
‡.� (A.15b)

Here, we consider the GL(n;H′) transformation that keeps the inner product of split-quaternion 
vectors invariant,

g‡ g = 1,� (A.16)

and such a transformation is called the split-quaternionic unitary transformation denoted by 
U(n;H′)11. When we introduce u(n;H′) generator X as

g = eX ,� (A.18)

(A.16) imposes the following condition on X:

X‡ = −X.� (A.19)

The generators of U(n;H′) are simply split-quaternionic anti-Hermitian matrices. The dimen-
sion of u(n;H′) algebra is counted as

dimU(n;H′) = n × 3 +
n(n − 1)

2
× 4 = n(2n + 1).� (A.20)

We can realize the split quaternions by the su(1, 1) matrices12

{q1, q2, q3, 1} = {σx,σz, iσy, 12}� (A.21)

and demonstrate the isomorphism U(n;H′) � Sp(2n;R) as follows. Note that the matrices on 
the right-hand side of (A.21) are all real matrices, and so the U(n;H′) group elements can be 
expressed by real matrices, g*  =  g. In the matrix realization, the split-quaternionic conjugate 
is not equal to the usual Hermitian conjugate but given by

q̄m = {−σx,−σz,−iσy, 12} = εt qm
† ε = εt qm

t ε,� (A.22)

where

ε ≡ iσy.� (A.23)

Consequently for the matrix realization of U(n;H′), we have

g‡ = E t gt E ,� (A.24)

11 Since the inner product of the split-quaternion h =
∑4

m=1 hmqm is split signature, the overall signature of the inner 
product is not essential: −h̄h = (h1)2 + (h2)2 − (h3)2 − (h4)2 = +h̄′h′ with h′ =

∑4
m=1 h5−mqm. Hence, we find 

U(n − m, m;H′) = U(n;H).� (A.17)

12 (5) gives another matrix realization of the spilt quaternions.
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with

E =



ε 0 0

0
. . . 0

0 0 ε


 .� (A.25)

The U(n;H′) condition (A.16) can be expressed as

gt E g = E .� (A.26)

Under the following unitary transformation

g → U g Ut,� (A.27)

where

U =
(
e1 e3 · · · e2n−1 e2 e4 · · · e2n

)
� (A.28)

with (ea)b ≡ δab (a, b = 1, 2, · · · , 2n), (A.26) is transformed as

gt J g = J.� (A.29)

This is the very condition that defines the Sp(2n;R) group (A.31). We thus find

U(n;H′) � Sp(2n;R).� (A.30)

A.3.  Symplectic algebra sp(2n;R)

Elements of the Sp(2n;R) group are given by a real matrix g that satisfies the condition

gt J g = J,� (A.31)

where J is called the Sp(2n;R) invariant matrix:

J =

(
0 1n

−1n 0

)
.� (A.32)

With the generator X

g = eX ,� (A.33)

the relation (A.31) can be rewritten as

XtJ + JX = 0,� (A.34)

or equivalently

(JX)t = JX.� (A.35)

(A.35) determines the form of X as

X =

(
M S1

S2 −Mt

)
,� (A.36)

where M denotes an arbitrary n × n real matrix, and S1 and S2 are two arbitrary n × n symmet-
ric real matrices. The dimension of the symplectic algebra is readily obtained as

dim(sp(2n;R)) = (real degrees of M) + (real degrees of S) = n2 +
n(n + 1)

2
× 2 = n(2n + 1).

� (A.37)
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From (A.36), we can choose n(2n + 1) sp(2n;R) basis matrices as

(Xi
j)ab = δa,iδb,j − δn+i,bδn+j,a = (X j

i )ba,

(Xij)ab = δa,iδb,n+j + δa,jδb,n+j = (X ji)ab,
(Xij)ab = −δa,n+iδb,j − δa,n+jδb,j = (Xji)ab,

�

(A.38)

where i, j = 1, 2, · · · , n and a, b = 1, 2, · · · , 2n. They satisfy

[Xij, Xkl] = [Xij, Xkl] = 0, [Xij, Xkl] = Xl
iδ

k
j + Xl

jδ
k
i + Xk

i δ
l
j + Xk

j δ
l
i ,

[Xij, Xl
k] = Xikδ

l
j + Xjkδ

l
i , [Xij, Xl

k] = −Xilδ j
k − X jlδi

k, [Xi
j , Xl

k] = Xi
kδ

l
j − Xl

jδ
i
k.

� (A.39)
The Sp(2n,R) invariant matrix (A.32) is diagonalized by the following unitary 

transformation

Ω J Ω† = iK,� (A.40)

where K is a diagonal matrix with neutral components:

K ≡
(

1n 0n

0n −1n

)
, (K−1 = K† = K),� (A.41)

and Ω can be taken as

Ω =
1√
2

(
R −iR
R iR

)
, (Ω† = Ω−1)� (A.42)

with n × n matrix R

R =




0 0 · · · 0 1
0 0 · · · 1 0
0 0 1 0 0
0 1 · · · 0 0
1 0 · · · 0 0




.� (A.43)

The Sp(2n;R) group condition (A.31) can be expressed as

gtΩ† K Ωg = Ω† K Ω.� (A.44)

Since g is a real matrix, gt = g†, (A.44) is rewritten as

(Ω g Ω†)† K (Ω g Ω†) = K.� (A.45)

Therefore,

g′ ≡ Ω g Ω†� (A.46)

realizes another representation of the Sp(2n,R) group element that satisfies

g′† K g′ = K.� (A.47)

Note that g′ no longer denotes a real matrix unlike g. Since g is a 2n × 2n real matrix, g′ 
(A.46) with Ω (A.42) is parameterized as

g′ =
(

U V∗

V U∗

)
,� (A.48)
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where each U and V  is an n × n complex matrix. For g′ subject to (A.47), the blocks U and 
V  must satisfy

U†U − V†V = 1n, UtV − VtU = 0n.� (A.49)

The (real) number of constraints of (A.49) is (n2) + (n2 − n) = n(2n − 1), and then the real 
degrees of freedom g′ is obtained as

(2n)2 − n(2n − 1) = n(2n + 1),� (A.50)

which is indeed the dimension of the sp(2n;R) algebra (A.37). We can readily identify the 
form of the associated sp(2n;R) generator X′

(
U V∗

V U∗

)
= eiX′

� (A.51)

as

X′ =

(
H S∗

−S −H∗

)
,� (A.52)

where H is an arbitrary n × n Hermitian matrix and S is an arbitrary n × n symmetric complex 
matrix13. Obviously, the maximal Cartan sub-algebra is given by

(
H 0
0 −H∗

)
,� (A.53)

which is the generator of U(n). (−H* denotes the complex representation of H and satisfies the 
same algebra of H.) U(n) is the maximal Cartan group of the Cartan–Iwasawa decomposition 
of Sp(2n;R) (see (C.1)). (A.47) imposes the following condition on X′:

X′†K − KX′ = 0� (A.54)

or

X′† = KX′K,� (A.55)

and so the block matrices of X must satisfy

H† = H, St = S.� (A.56)

H is an n × n Hermitian matrix and S a complex symmetric matrix. Note that

KX′ =

(
H S∗

S H∗

)
� (A.57)

denotes a Hermitian matrix. By sandwiching KX by a Dirac spinor operator

ψ̂ =
(
a1 · · · an b†

1 · · · b†
N

)t
� (A.58)

and its conjugate, we can construct Hermitian operators that satisfy sp(2n;R) algebra. From 
the Hermitian operators, independent operators are extracted as

X j
i =

1
2
{ai, a†j }+

1
2
{bi, b†j } = Xi

j
†
, Xij = a†i b†

j + a†j b†i = X ji, Xij = aibj + ajbi = Xji.� (A.59)

13 The real degrees of freedom of X′ is then counted as n2  +  n(n  +  1)  =  n(2n  +  1).
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They indeed constitute non-Hermitian operators for the sp(2n;R) algebra (A.39). In particular

X j
i = a†

j ai + b†
j bi + δ j

i� (A.60)

satisfy the maximal Cartan u(n) sub-algebra. The Sp(2n;R) Casimir is derived as

C = XijXij + XijXij − 2Xi
jX

j
i = −2(a†i ai − b†bi + n)(a†i ai − b†

i bi − n).� (A.61)

A.4.  Metaplectic algebra

The metaplectic group Mp(2n;R) is the double cover of the symplectic group Sp(2n;R):

Mp(2n;R)/Z2 � Sp(2n;R).� (A.62)

Instead of the ‘complex’ operator ψ̂ (A.58), we here introduce a ‘real’ operator

φ̂ =
(
a1 · · · an a†1 · · · a†n

)t
,� (A.63)

what satisfies the real condition

φ̂∗ = Cφ̂ (C ≡
(

0 1n

1n 0

)
)� (A.64)

and

[φ̂α, φ̂β ] = Jαβ� (A.65)

with J (A.32). From (A.63), we can construct the following Hermitian operator

OM =
1
2
φ̂t CKX φ̂ = −1

2
φ̂t JX φ̂.� (A.66)

Here X is given by (A.52) and JX is

J X = −
(

S H∗

H S∗

)
= (JX)t.� (A.67)

From the original sp(2n;R) matrix X (A.36), we can also construct a symmetric matrix

JX =

(
S2 −Mt

−M −S1

)
= (JX)t� (A.68)

and associated non-Hermitian operator

X̂ = −1
2
φ̂t JX φ̂.� (A.69)

The basis matrices of (A.68) are given by

(JXi
j)a,b = (JXi

j)b,a = −δa,n+iδb,j − δa,jδb,n+i,

(JXij)a,b = (JX ji)a,b = −δa,n+iδb,n+j − δa,n+jδb,n+i,
(JXij)a,b = (JXji)a,b = δa,iδb,j + δa,jδb,i, (a, b = 1, 2, · · · , 2n)
�

(A.70)

where Xs are (A.38). It is not difficult to verify that the corresponding operators satisfy the 
sp(2n;R) algebra (A.39) using the relations, J2 = −12n and (JX)t  =  JX. The basis operators 
corresponding to (A.70) are obtained as
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X̂i
j =

1
2
{a†

i , aj} = a†i aj +
1
2
δij = (X̂ j

i )
†, X̂ij = a†i a†j =

1
2
{a†

i , a†j } = X̂ ji, X̂ij = aiaj =
1
2
{ai, aj} = X̂ji,

� (A.71)
which satisfy (A.39). These operators for metaplectic representation can also be obtained 
from (A.59) with the replacement of the operator b by a and by changing the overall scale 
factor by 1/2.

The Sp(2n;R) Casimir operator for the metaplectic representation becomes a constant:

C = X̂ijX̂ij + X̂ijX̂ij − 2X̂i
j X̂

j
i = n(n +

1
2
).� (A.72)

Appendix B.  Pseudo-Hermitian matrices

While unitary representations of non-compact groups are not finite dimensional, non-unitary 
representations are finite dimensional. Suppose that ta are non-Hermitian matrices that satisfy 
the algebra

[ta, tb] = if abctc,� (B.1)

where f abc denotes the structure constants of the non-compact algebra. In the following, we 
assume that there exists a matrix k that makes kta Hermitian,

(kta)† = kta� (B.2)

or

(ta)† = k ta (k†)−1.� (B.3)

Needless to say, the existence of such a matrix as k is not generally guaranteed. If there exists 
k satisfying (B.2), the matrices ta are referred to as the pseudo-Hermitian matrices [68, 74]. 
With the pseudo-Hermitian matrices, it is straightforward to construct Hermitian operators 
sandwiching the pseudo-Hermitian matrices by the Schwinger boson operator φ̂α and its 
conjugate:

Xa = φ̂†
α (kta)αβ φ̂β = φ̂† ktaφ̂ =

¯̂
φ taφ̂,� (B.4)

where

¯̂
φ ≡ φ̂†k.� (B.5)

We determine the commutation relations of the components φ̂α so that Xa satisfy the same 
algebra as (B.1):

[Xa, Xb] = if abcXc.� (B.6)

The commutation relations among φ̂α are thus determined as

[φ̂α, ¯̂φβ ] = δαβ ,� (B.7)

or

[φ̂α, φ̂†
β ] = (k−1)αβ .� (B.8)

Note that while ta are non-Hermitian matrices, Xa are Hermitian operators. With generators Xa, 
it is straightforward to construct elements of the non-compact group:
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S = e−iωaXa
,� (B.9)

with ωa being group parameters. Obviously, S is a unitary operator

S† = S−1.� (B.10)

From the non-Hermitian matrix ta, we can construct the non-unitary matrix element of the 
non-compact group as

M = e−iωata
,� (B.11)

which satisfies the pseudo-unitary condition:

M† = kM−1(k†)−1.� (B.12)

Xa act on φ̂ as

[Xa, φ̂α] = −(ta)αβφ̂β� (B.13)

or

[Xa, φ̄α] = φ̄β(ta)βα,� (B.14)

which means that φ̂ behaves as the spinor representation of the non-compact group generated 
by Xa. We then have

S† φ̂ S = Mφ̂,� (B.15)

and

S ¯̂
φ S† =

¯̂
φ M−1,� (B.16)

where

M−1 = eiωata
= k−1M†k†.� (B.17)

Note that while S is a unitary operator, M is a non-unitary matrix. Both of them are specified 
by the same parameters ωa, and so there exists one-to-one mapping between them. When S 
acts on a normalized state |n〉 (〈n|n〉 = 1), the magnitude does not change under the transfor-
mation of the non-compact group as shown by 〈n|S†S|n〉 = 1. In the matrix notation, however, 
the transformation does not preserve the magnitude of a normalized vector n (n†n = 1) as 
implied by n†M†Mn �= n†n. This does not occur in usual discussions of quantum mechan-
ics for compact Lie groups, since we can realize the group elements by a finite-dimensional 
unitary matrix. In non-compact Lie groups, finite-dimensional unitary representation does not 
exist; however, when we adopt the unitary operator S made by the Hermitian operators Xa, the 
probability conservation still holds, and so we do not need to worry about going beyond the 
usual probability interpretation of quantum mechanics.

The generators of Sp(2n;R) are represented by a 2n × 2n matrix of the following form 
(A.52):

X =

(
H S∗

−S −H∗

)
,� (B.18)

where H is an n × n Hermitian matrix and S an n × n symmetric complex matrix. Though X 
itself is non-Hermitian in general, there obviously exists a matrix

K =

(
1n 0
0 −1n

)
,� (B.19)
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which makes X be Hermitian:

KX =

(
H S∗

S H∗

)
.� (B.20)

In this sense, the sp(2n;R) matrix generators are pseudo-Hermitian, and we can construct the 
Hermitian sp(2n;R) operators by following the general method discussed above (see sections 
2.1 and 3.1).

Appendix C. Topology of the symplectic groups and ultra-hyperboloids

Here, we review geometric properties of the symplectic groups. The polar decomposition of 
Sp(2n;R) group is given by [75]

Sp(2n;R) � U(n)⊗ Rn(n+1) � U(1)⊗ SU(n)⊗ Rn(n+1),� (C.1)

where U(n) is the maximal Cartan subgroup of Sp(2n;R). In particular, we have14

Sp(2;R) � U(1)⊗ R2 � S1 ⊗ R2,� (C.2a)

Sp(4;R) � U(1)⊗ SU(2)⊗ R6 � S1 ⊗ S3 ⊗ R6.� (C.2b)

The decomposition (C.1) implies that the symplectic group is not simply connected:

π1(Sp(2n;R)) � π1(U(1)) � Z.� (C.3)

The double covering of the symplectic group is called the metaplectic group Mp(2n;R):

Mp(2n;R)/Z2 � Sp(2n;R),� (C.4)

and its representation is referred to as the metaplectic representation which is the projective 
representation of the symplectic group. Note that projective representation does not exist in 
the compact group counterparts of Sp(2n;R), i.e., USp(2n)15.

The coset spaces between the symplectic groups are given by

Sp(2n + 2;H′)/Sp(2n;H′) � H2n+2,2n+1,� (C.5)

where Hp ,q is referred to as the ultra-hyperboloid Hp ,q that is a ( p + d) dimensional manifold 
embedded in R p,q+1 as

p∑
i=1

xixi −
q+1∑
j=1

x p+jx p+j = −1.� (C.6)

(C.6) implies that as long as xp +j  ( j = 1, · · · , q + 1) is subject to the condition of q-dimensional 

sphere with radius 
√

1 +
∑ p

i=1 xixi , the remaining p  real coordinates xi (i = 1, · · · , p) can 

take any real values. Therefore, the topology of Hp ,q is identified with a bundle made of base 
manifold R p and fibre Sq:

H p,q � R p ⊗ Sq.� (C.7)

In low dimensions, (C.7) yields

H2,0 � R2 � R+ ⊗ S1, H1,1 � R⊗ S1, H0,2 � S2,� (C.8a)

14 The polar decomposition of Sp(2;R) is well investigated in [50, 51].
15 USp(2n) = U(n;H) and π1(USp(2n)) = 1. For instance, USp(2) = SU(2) = Spin(3), USp(4) = Spin(5).
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H4,0 � R4, H3,1 � R3 ⊗ S1, H2,2 � R2 ⊗ S2, H1,3 � R1 ⊗ S3, H0,4 � S4.
� (C.8b)

(C.6) also implies that Hp ,q can be given by a coset between indefinite orthogonal groups:

H p,q � SO( p, q + 1)/SO( p, q).� (C.9)
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