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Abstract
With this paper we start a programme aiming at connecting two vast scientific 
areas: Jordan algebras and representation theory. Within representation 
theory, we focus on non-compact, real forms of semisimple Lie algebras and 
groups as well as on the modern theory of their induced representations, in 
which a central role is played by the parabolic subalgebras and subgroups. 
The aim of the present paper and its sequels is to present a Jordan algebraic 
interpretations of maximal parabolic subalgebras; in this first paper, we 
confine ourselves to maximal parabolic subalgebras of the non-compact real 
forms of finite-dimensional exceptional Lie algebras, in particular focussing 
on Jordan algebras of rank 2 and 3.
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1.  Introduction

The aim of this paper is to relate two vast scientific areas: Jordan algebras and representa-
tion theory. Jordan algebras are beautiful mathematical structures that arose together with the 
advent of quantum mechanics [1–30]. They are widely used in theoretical and mathematical 
physics, in particular in supergravity and superstring theory, see e.g. [31–51]; we will review 
their role in such frameworks in section 4. Intriguingly, recent developments related the stan-
dard model of particle physics with the Albert algebra, namely with the exceptional rank-3 
simple Jordan algebra over the octonions [52–56].

Within the area of representation theory, we focus on non-compact semisimple Lie 
algebras and groups starting from the treatment of Gelfand [57, 58] and Harish-Chandra  
[59, 60] (see also [61]), up to the advanced approach of Langlands [62], later refined in [63] 
(see also [64, 65]). The main building block of the modern theory of induced representations 
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of non-compact semisimple Lie algebras and groups are the parabolic subalgebras and sub-
groups, see e.g. [66–71].

We aim at presenting Jordan algebraic interpretations of maximal parabolic subalgebras of 
non-compact real forms of semisimple Lie algebras, focussing on rank-3 and rank-2 (simple 
and semisimple) Jordan algebras. This is a rather lengthy and far reaching project, whose 
proper treatment deserves to be developed in a series of papers. In the present paper, which 
inits the series, we confine ourselves to maximal parabolic subalgebras of the non-compact real 
forms of finite-dimensional exceptional Lie algebras, building over the results and treatment 
of [72–74]. The choice of starting and focussing on the five finite-dimensional exceptional Lie 
algebras G2, F4, E6, E7 and E8 is motivated by the key role that they have played within the 
various attempts towards the formulation of a Grand Unified Theory of elementary particles 
[75]. Remarkably, non-compact real forms of all exceptional Lie algebras occur as electric-
magnetic duality (U-duality4) algebras in Maxwell–Einstein-scalar theories with a certain 
amout of local supersymmetry; moreover, their relation to the Freudenthal–Rozenfeld–Tits 
Magic Square [23–28] was discovered in [36].

The smallest exceptional Lie algebra, G2, can be characterized as the algebra of the deriva-
tions of the largest Hurwitz division algebra, the octonions O; on the other hand, G2 appears 
in other frameworks, such as the deconfinement phase transitions [78], random matrix models 
[79], matrix models related to D-brane physics [80], and Montecarlo analysis [81].

The next largest exceptional Lie algebra, F4, can be characterized as the algebra of the deri-
vations of Albert algebra [82]. After the formulation of M-theory by Witten [83], the hidden 
F4 symmetry of the supermultiplet in D  =  11 space-time dimensions was observed Ramond 
et al [84], and then further investigated by Sati [85, 86]. Moreover, the split real form F4(4) has 
been conjectured to be the global symmetry of an exotic ten-dimensional theory in the context 
of the study of ‘Magic Pyramids’ [87, 88].

In recent years, E7 and Lie algebras ‘of type E7’ [89] have been investigated in some detail, 
since they determine the minimal coupling of vectors and scalars in cosmology and supergrav-
ity [90, 91], as well as the gauge and global symmetries in Freudenthal gauge theory [92], and, 
by virtue of the black-hole/qubit correspondence (see [93] for reviews and list of Refs.), they 
relate black hole entropic aspects of gravity theories to the entanglement of quantum bits in 
quantum information theory.

E8, the largest exceptional Lie algebra, is known to have a key role as symmetry of heterotic 
string theory [94], and the E8 ⊕ E8 even self-dual lattice determines 16 of the 26 dimensions 
of the bosonic string. Quite recently, E8 has been found to be relevant in a number of other 
frameworks, from mathematics (computation of the Kazhdan–Lusztig–Vogan polynomials 
[95]) to experimental physics (namely, in the cobalt niobate experiment, which intriguingly is 
the first experiment to detect a phenomenon that could be modeled using E8 [96]). In recent 
years, Truini introduced a special star-shaped projection—named Magic Star projection—of 
the E8 root lattice on a plane defined by an A2 subalgebra [97], yielding to a unified construc-
tion and characterization of all exceptional Lie algebras, as they fill the fourth row of the 
Freudenthal–Rozenfeld–Tits Magic Square [23–28]. It was later realized that the Magic Star 
projection had been actually envisaged almost ten years before by Mukai, which called it 
‘G2 decomposition’ [98] and stressed its relation to Legendre varieties. Truini’s formulation 
is based on pairs of Jordan algebras of degree three (endowed with an inner product and 
named Jordan pairs [14]) [97]; related algebraic structures were subsequently investigated in 
[99–105]. Also, the Magic Star projection and Jordan Pairs were exploited into a mathematical 

4 Here U-duality is referred to as the ‘continuous’ symmetries of [76]. Their discrete versions are the U-duality non-
perturbative string theory symmetries introduced in [77].
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description of the fundamental interactions of elementary particles, as well as for an axiomatic 
formulation of a consistent theory of quantum gravity, firstly in [97], and then in [106] and 
in [103]; more recently, this led to the formulation of a quantum model for the Universe at 
its early stages, starting from an initial quantum state and driven by E8 interactions [107]. 
Finally, applications within superstring and M-theory, as well as to super Yang–Mills theories 
in higher dimensions, have been discussed in [108–110].

The paper is organized as follows.
In section 2 we present a concise treatment of the general theory of parabolic subalgebras 

[72, 74]. Then, section 3 recalls the classification of maximal parabolic subalgebras of all 
non-compact real forms of finite-dimensional exceptional simple Lie algebras; moreover, in 
section 3.13 we reconsider the definition of parabolically related non-compact semisimple 
Lie algebras, and in table 1 we present the classification of maximally parabolically related 
exceptional Lie algebras, slightly extending the results of [73]. An overview of the general 
theory of rank-3 and rank-2 Jordan algebras and their symmetries and related structures, 
along with a résumé of their relevance for Maxwell–Einstein (super)gravity theories in vari-
ous space-time dimensions, is provided in section 4. Such section also contains table 6, in 
which the Jordan algebraic interpretation of table 1 is provided. The content of table 6 is 
derived in a detailed way in the long section 5, in which the maximal parabolic subalgebras 
of non-compact real forms of exceptional Lie algebras are analyzed and obtained through 
sequences of maximal embeddings of Lie algebras, which in turn allow for a natural inter-
pretation in terms of symmetries of Jordan algebras. A brief summary and outlook to future 
developments is given in section 6, and an appendix on division algebras and their split 
forms concludes the paper.

2.  Parabolic subalgebras

This section follows [72]. Let G be a noncompact semisimple Lie group. Let G  be the Lie 
algebra of G, θ be a Cartan involution in G , and G = K ⊕ P  be a Cartan decomposition of 
G , so that θX = X, X ∈ K, θX = −X, X ∈ P; K is a maximal compact subalgebra of G ; in 
general, P  fits in a (reducible) representation of the algebra K.

Let A0 be a maximal subspace of P  which is an abelian subalgebra of G ; r = dim A0 is the 
split (or real) rank of G , 1 � r � � = rankG. The subalgebra A0 is called a Cartan subspace 
of P .

Let ∆A0  be the root system of the pair (G,A0):

∆A0

.
= {λ ∈ A∗

0 | λ �= 0, Gλ
A0

�= 0}, Gλ
A0

.
= {X ∈ G | [Y , X] = λ(Y)X, ∀Y ∈ A0}.� (2.1)

The elements of ∆A0  are called A0 - restricted roots. For λ ∈ ∆A0  , Gλ
A0

 are called A0 - 
restricted root spaces, dimR Gλ

A0
� 1. In a standard way, the A0 - restricted roots are split 

into positive and negative restricted roots: ∆A0 = ∆+
A0

∪∆−
A0

 . Then we introduce the corre
sponding nilpotent subalgebras:

N± .
= ⊕

λ∈∆±
A0

Gλ
A0

.� (2.2)

Next let M0 be the centralizer of A0 in K, i.e. M0
.
= {X ∈ K | [X, Y] = 0, ∀Y ∈ A0}. 

In general M0 is a compact reductive Lie algebra.
For the Bruhat decomposition, it holds that [61]:

G = N+ ⊕M0 ⊕A0 ⊕N−,� (2.3)
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and the subalgebra P0
.
= M0 ⊕A0 ⊕N− called a minimal parabolic subalgebra of G . (Note 

that we may take equivalently N+ instead of N− .)
A standard parabolic subalgebra is any subalgebra P ′ of G  containing P0 . The number of 

standard parabolic subalgebras, including P0 and G , is 2r.
Thus, if r  =  1 the only nontrivial parabolic subalgebra is P0 .
Thus, further in this section r  >  1.
Any standard parabolic subalgebra is of the form:

P ′ = M′ ⊕A′ ⊕N ′−,� (2.4)

so that M′ ⊇ M0, A′ ⊆ A0, N ′− ⊆ N−; M′ is the centralizer of A′ in G  (mod A′); N ′− 
is comprised from the negative root spaces of the restricted root system ∆A′ of (G,A′). The 
decomposition (2.4) is called the Langlands decomposition of P ′ . One also has the Bruhat 
decomposition (2.3) for this general situation:

Table 1.  Maximally parabolically related non-compact real forms of finite-dimensional 
exceptional Lie algebras; the corresponding interpretation in terms of symmetries of 
rank-2 and rank-3 Jordan algebras is given in table 6.

M
G dimN G′ M′

1 : E6(−14) su(5, 1) E6(6) sl(6,R)
21 E6(2) su(3, 3)

2 : E6(−14) so(7, 1)⊕ so(2) E6(2) so(5, 3)⊕ u(1)
24

3 : E6(−26) so(9, 1) E6(6) so(5, 5)
16

4 : E6(6) sl(3,R)⊕ sl(3,R)⊕ sl(2,R) E6(2) sl(3,C)R ⊕ sl(2,R)
29

5 : E7(−25) E6(−26) E7(7) E6(6)

27
6 : E7(−25) so(9, 1)⊕ sl(2,R) E7(7) so(5, 5)⊕ sl(2,R)

42 E7(−5) so(7, 3)⊕ su(2)
7 : E7(−25) so(10, 2) E7(7) so(6, 6)

33 E7(−5) so*(12)
8 : E7(7) sl(4,R)⊕ sl(2,R)⊕ sl(3,R) E7(−5) su∗(4)⊕ su(2)⊕ sl(3,R)

53
9 : E7(−5) su∗(6)⊕ sl(2,R) E7(7) sl(6,R)⊕ sl(2,R)

47 E7(−25) su∗(6)⊕ su(2)
10 : E8(−24) E7(−25) E8(8) E7(7)

57
11 : E8(−24) so(11, 3) E8(8) so(7, 7)

78
12 : E8(−24) E6(−26) ⊕ sl(2,R) E8(8) E6(6) ⊕ sl(2,R)

83
13 : E8(−24) so(9, 1)⊕ sl(3,R) E8(8) so(5, 5)⊕ sl(3,R)

97
14 : F4(−20) so(7) F4(4) so(4, 3)

15
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G = N ′+ ⊕A′ ⊕M′ ⊕N ′−,� (2.5)

where N ′+ = θN ′−.
The standard parabolic subalgebras may be described explicitly using the restricted simple 

root system which is denoted by ∆S
A0

 , and is defined standardly by the following. If λ ∈ ∆+
A0

, 
(resp. λ ∈ ∆−

A0
), then one has:

λ =

r∑
i=1

ni λi, λi ∈ ∆S
A0

, all ni � 0, (resp. all ni � 0) .� (2.6)

We shall follow Warner [64], where one may find all references to the original mathemati-
cal work on parabolic subalgebras. For a short formulation one may say that the parabolic 
subalgebras correspond to the various subsets of ∆S

A0
—hence their number 2r. To formalize 

this let us denote: Sr = {1, 2, . . . , r}, and let Θ denote any subset of Sr . Let ∆±
Θ ∈ ∆A0 denote 

all positive/negative restricted roots which are linear combinations of the simple restricted 
roots λi, ∀ i ∈ Θ. Then a standard parabolic subalgebra corresponding to Θ will be denoted by 
PΘ and is given explicitly as:

PΘ = P0 ⊕ N+(Θ), N+(Θ)
.
= ⊕

λ∈∆+
Θ

Gλ
A0

.� (2.7)

Clearly, P∅ = P0 , PSr = G , since N+(∅) = 0 , N+(Sr) = N+ . Further, we need to 
bring (2.7) in the form (2.4). First, define G(Θ) as the algebra generated by N+(Θ) and 
N−(Θ)

.
= θN+(Θ) . Next, define A(Θ)

.
= G(Θ) ∩ A0, and AΘ as the orthogonal comple-

ment (relative to the Euclidean structure of A0) of A(Θ) in A0. Then A0 = A(Θ)⊕AΘ . Note 
that dimA(Θ) = |Θ|, dimAΘ = r − |Θ|. Next, define:

N+
Θ

.
= ⊕

λ∈∆+
A0

−∆+
Θ

Gλ
A0

, N−
Θ

.
= θN+

Θ .� (2.8)

Then N± = N±(Θ)⊕N±
Θ  . Next, define MΘ

.
= M0 ⊕A(Θ)⊕N+(Θ)⊕N−(Θ). Then 

MΘ is the centralizer of AΘ in G  (mod AΘ). Finally, we can derive:

PΘ = P0 ⊕N+(Θ) = M0 ⊕A0 ⊕N− ⊕N+(Θ)

= M0 ⊕A(Θ)⊕AΘ ⊕N−(Θ)⊕N−
Θ ⊕N+(Θ)

=
(
M0 ⊕A(Θ)⊕N−(Θ)⊕N+(Θ)

)
⊕AΘ ⊕N−

Θ

= MΘ ⊕AΘ ⊕N−
Θ .

�

(2.9)

Thus, we have rewritten explicitly the standard parabolic PΘ in the desired form (2.4). The 
associated (generalized) Bruhat decomposition (2.5) is given now explicitly as:

G = N+ ⊕ P0 = N+
Θ ⊕N+(Θ)⊕ P0 = N+

Θ ⊕ PΘ

= N+
Θ ⊕MΘ ⊕AΘ ⊕N−

Θ .
� (2.10)

In this paper we concentrate on the maximal parabolic subalgebras which correspond to Θ 
of the form:

Θmax
j = Sr\{ j}, 1 � j � r .� (2.11)

dimA(Θmax
j ) = r − 1, dimAΘmax

j
= 1.
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3.  Maximal parabolic subalgebras of the exceptional Lie algebras

The material of this section is taken from [72]. Here we list the real forms of the exceptional 
simple Lie algebras and their maximal parabolic subalgebras.

First we mention a class of real forms, the maximally non-compact, or split, real forms, 
which exist for every complex simple algebra. A split real form GR  of a complex simple Lie 
algebra GC is defined [64] by the property that for GR  we use the same basis as for GC, but over 
R5. Restricting C −→ R one obtains the Bruhat decomposition of G  (with M0 = 0) from the 
triangular decomposition of GC = G+ ⊕HC ⊕ G−, and obtains the minimal parabolic subal-
gebras P0 from the Borel subalgebra B = HC ⊕ G+, (or G− instead of G+). Furthermore, in 
this case dimR K = dimR N±.

For the real forms in general we need to use the Satake diagrams [64, 66]. A Satake dia-
gram has as a starting point the Dynkin diagram of the corresponding complex form. For a 
split real form it remains the same [64]. In the other cases some dots of the Dynkin diagram 
are painted in black—-these considered by themselves are Dynkin diagrams of the compact 
semisimple factors M0 of the minimal parabolic subalgebras. Further, there are braces con-
necting some nodes which use the Z2 symmetry of some Dynkin diagrams. Then the reduced 
root systems are described by Dynkin–Satake diagrams which are obtained from the Satake 
diagrams by dropping the black nodes, identifying the arrow-related nodes, and adjoining 
all nodes in a connected Dynkin-like diagram, but in addition noting the multiplicity of the 
reduced roots (which is in general different from 1).

Below all dimensions of vector spaces are real.
Note that from now on we shall omit the superscript max in order to simplify the notation. 

Instead we include specification for each maximal parabolics.

3.1.  EI: E6(6)

The split real form of E6 is denoted as E6(6) or E′
6 . The maximal compact subgroup is 

K ∼= sp(4), P = ∧4
08, dimP = 42, dimN± = dimK = 36. This real form does not have dis-

crete series representations6.
Since E6(6) is split the Satake diagram coincides with the Dynkin diagram:

◦
α1

−−− ◦
α2

−−− ◦
α3

|
◦α6

−−− ◦
α4

−−− ◦
α5

.
� (3.1)

Taking into account the above enumeration of simple roots and (2.11) the maximal para-
bolic subalgebras are determined by [72]:

P6(6)
i = M6(6)

i ⊕ so(1, 1) ⊕ N 6(6)
i , i = 1, · · · , 6;

M6(6)
1

∼= M6(6)
5 = so(5, 5), dimN 6(6)±

1 = 16

M6(6)
2

∼= M6(6)
4 = sl(5,R)⊕ sl(2,R), dimN 6(6)±

3 = 25

M6(6)
3 = sl(3,R)⊕ sl(3,R)⊕ sl(2,R), dimN 6(6)±

4 = 29

M6(6)
6 = sl(6,R), dimN 6(6)±

2 = 21.

�

(3.2)

5 For example, sl(n,R) is the split real form of sl(n,C), sp(n,R) is the split real form of sp(n,C), so( p, p) is the split 
real form of so(2p,C), so( p + 1, p) is the split real form of so(2p + 1,C).
6 We recall [60] that a real Lie algebra GR  has discrete series representations iff rankGR = rankK, where K is the 
maximal compact subgroup of GR  .
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There are essentially four maximal cases (instead of six) due to the symmetry of the Satake 
diagram. The two isomorphic occurrences are distinguished by the fact which node we delete 
to obtain a maximal parabolic.
Derivation of (3.2): The procedure to obtain a maximal parabolic involves deletion of one 
node from the Satake diagram. Suppose we delete from (3.1) the node with α1. Then we are 
left with the diagram:

◦
α2

−−− ◦
α3

|
◦α6

−−− ◦
α4

−−− ◦
α5

.
� (3.3)

which is the Satake diagram of so(5, 5) as used in M6(6)
1 . The same would result if we delete 

the node with α5 as used for M6(6)
5 .

Next we delete from (3.1) the node with α2. Then we are left with the diagram:

◦
α1

◦
α3

|
◦α6

−−− ◦
α4

−−− ◦
α5

.
� (3.4)

which is the Satake diagram of sl(2,R)⊕ sl(5,R) as used in M6(6)
2 . The same would result if 

we delete the node with α4 as used for M6(6)
4 .

Next we delete from (3.1) the node with α3. Then we are left with the diagram:

◦
α1

−−− ◦
α2

◦α6

◦
α4

−−− ◦
α5

.
� (3.5)

which is the Satake diagram of sl(3,R)⊕ sl(2,R)⊕ sl(3,R) as used in M6(6)
3 .

Next we delete from (3.1) the node with α6. Then we are left with the diagram:

◦
α1

−−− ◦
α2

−−− ◦
α3

−−− ◦
α4

−−− ◦
α5

.� (3.6)

which is the Satake diagram of sl(6,R) as used in M6(6)
6 . ♦

Clearly, no maximal parabolic subalgebra is cuspidal7.

3.2.  EII: E6(2)

Another real form of E6 is denoted as E6(2) or E′′
6  . The maximal compact subgroup 

is K ∼= su(6)⊕ su(2), P = (20, 2), where 20 = ∧36, dimP = 40, dimN± = 36, 
M0 ∼= u(1)⊕ u(1). This real form has discrete series representations.

The Satake diagram is:

◦
α1

−−− ◦
α2

−−− ◦
α3

|
◦α6

−−− ◦
α4︸ ︷︷ ︸

−−− ◦
α5

︸ ︷︷ ︸
.� (3.7)

7 We recall [64] that a parabolic subalgebra as given in (2.4) is called cuspidal if the subalgebra M′ has discrete 
series representations (see previous footnote).
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The split rank is four and thus there are four maximal parabolic subalgebras given by [72]:

P6(2)
i = M6(2)

i ⊕ so(1, 1) ⊕ N 6(2)
i , i = 1, 2, 3, 4;

M6(2)
1 = so(5, 3)⊕ u(1), dimN 6(2)±

1 = 24

M6(2)
2 = sl(3,R)⊕ sl(2,C)R ⊕ u(1), dimN 6(2)±

2 = 31

M6(2)
3 = sl(3,C)R ⊕ sl(2,R), dimN 6(2)±

3 = 29

M6(2)
4 = su(3, 3), dimN 6(2)±

4 = 21.

� (3.8)

Only the last case in (3.8) is cuspidal, and it has highest/lowest weight representations.

3.3.  EIII: E6(−14)

Another real form of E6 is denoted as E6(−14) or E′′′
6  . The maximal compact subgroup is 

K ∼= so(10)⊕ so(2), P = 16−3 ⊕ 163, dimP = 32, dimN± = 30, M0 ∼= so(6)⊕ so(2). 
This real form has discrete series representations (and highest/lowest weight representations).

The Satake diagram is:

◦
α1

−−− •
α2

−−− •
α3

|
◦α6

−−− •
α4

−−− ◦
α5︸ ︷︷ ︸

.� (3.9)

The split rank is two and thus there are two maximal parabolic subalgebras given by [72]:

P6(−14)
i = M6(−14)

i ⊕ so(1, 1) ⊕ N 6(−14)
i , i = 1, 2;

M6(−14)
1 = so(7, 1)⊕ so(2), dimN 6(−14)±

1 = 24

M6(−14)
2 = su(5, 1), dimN 6(−14)±

2 = 21.

�
(3.10)

The 2nd is cuspidal and it has highest/lowest weight representations.

3.4.  EIV: E6(−26)

Another real form of E6 is denoted as E6(−26) or Eiv
6  . This the minimally non-compact real 

form of E6. The maximal compact subgroup is K ∼= f4, P = 26, dimP = 26, dimN± = 24, 
M ∼= so(8). This real form does not have discrete series representations.

The Satake diagram is:

◦
α1

−−− •
α2

−−− •
α3

|
•α6

−−− •
α4

−−− ◦
α5

.
� (3.11)

The split rank is equal to 2, thus we have [72]:

P6(−26)
i = M6(−26)

i ⊕ so(1, 1) ⊕ N 6(−26)
i i = 1, 2;

M6(−26)
1

∼= M6(−26)
2 = so(9, 1), dimN 6(−26)±

i = 16 i = 1, 2.
� (3.12)

We distinguish the two isomorphic maximal parabolic subalgebras by the fact which noncom-

pact node on the Satake diagram we delete—the first—for M6(−26)
1 , or the last, for M6(−26)

2 . 
This case is not cuspidal.
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3.5.  EV: E7(7)

The split real form of E7 is denoted as E7(7) or E′
7 . The maximal compact subgroup is 

K ∼= su(8), P = ∧48, dimP = 70, dimN± = dimK = 63. This real form has discrete series 
representations.

The Dynkin–Satake diagram is:

◦
α1

−−− ◦
α2

−−− ◦
α3

|
◦α7

−−− ◦
α4

−−− ◦
α5

−−− ◦
α6

.
� (3.13)

Taking into account the above enumeration of simple roots and (2.11) the maximal para-
bolic subalgebras are determined by (only the first case is cuspidal):

P7(7)
i = M7(7)

i ⊕ so(1, 1) ⊕ N 7(7)
i , i = 1, . . . , 7;

M7(7)
1 = so(6, 6), dimN 7(7)±

1 = 33

M7(7)
2 = sl(6,R)⊕ sl(2,R), dimN 7(7)±

2 = 47

M7(7)
3 = sl(4,R)⊕ sl(3,R)⊕ sl(2,R), dimN 7(7)±

3 = 53

M7(7)
4 = sl(5,R)⊕ sl(3,R), dimN 7(7)±

4 = 50

M7(7)
5 = so(5, 5)⊕ sl(2,R), dimN 7(7)±

5 = 42

M7(7)
6 = E6(6), dimN 7(7)±

6 = 27

M7(7)
7 = sl(7,R), dimN 7(7)±

7 = 42.

�
(3.14)

3.6.  EVI: E7(−5)

Another real form of E7 is denoted as E7(−5) or E′′
7  . The maximal compact subgroup is 

K ∼= so(12)⊕ su(2), P = (32, 2), where 32 is the semispinor irrepr. of so(12), dimP = 64, 
dimN± = 60, M ∼= su(2)⊕ su(2)⊕ su(2). This real form has discrete series representations.

The Satake diagram is:

◦
α1

−−− ◦
α2

−−− ◦
α3

|
•α7

−−− •
α4

−−− ◦
α5

−−− •
α6

.
� (3.15)

The split rank is equal to 4, thus, there are four maximal parabolic subalgebras given by 
[72]:

P7(−5)
i = M7(−5)

i ⊕ so(1, 1) ⊕ N 7(−5)
i , i = 1, . . . , 4;

M7(−5)
1 = so∗(12), dimN 7(−5)±

1 = 33

M7(−5)
2 = so(7, 3)⊕ su(2), dimN 7(−5)±

2 = 42

M7(−5)
3 = su∗(6)⊕ sl(2,R), dimN 7(−5)±

3 = 47

M7(−5)
4 = so(5, 1)⊕ sl(3,R)⊕ su(2), dimN 7(−5)

4 = 53

�

(3.16)

the first case being cuspidal and having highest/lowest weight representations.
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3.7.  EVII: E7(−25)

Another real form, the minimally non-compact one, of E7 is denoted as E7(−25) or E′′′
7  . 

The maximal compact subgroup is K ∼= e6 ⊕ so(2), P = 272 ⊕ 27−2, dimP = 54, 
dimN± = 51, M ∼= so(8). This real form has discrete series representations (and highest/
lowest weight representations).

The Satake diagram is:

◦
α1

−−− •
α2

−−− •
α3

|
•α7

−−− •
α4

−−− ◦
α5

−−− ◦
α6

.� (3.17)

The split rank is equal to 3, thus, there are three maximal parabolic subalgebras given by 
[72]:

P7(−25)
i = M7(−25)

i ⊕ so(1, 1) ⊕ N 7(−25)
i , i = 1, 2, 3;

M7(−25)
1 = so(10, 2), dimN 7(−25)±

3 = 33

M7(−25)
2 = so(9, 1)⊕ sl(2,R), dimN 7(−25)±

2 = 42

M7(−25)
3 = E6(−26), dimN 7(−25)±

1 = 27

�

(3.18)

the first case being cuspidal and having highest/lowest weight representations.

3.8.  EVIII: E8(8)

The split real form of E8 is denoted as E8(8) or E′
8 . The maximal compact subgroup K ∼= so(16), 

P = 128 is the semispinor irrepr. of so(16), dimP = 128, dimN± = dimK = 120. This real 
form has discrete series representations.

The Dynkin–Satake diagram is:

◦
α1

−−− ◦
α2

−−− ◦
α3

|
◦α8

−−− ◦
α4

−−− ◦
α5

−−− ◦
α6

−−− ◦
α7

.
� (3.19)

Taking into account the above enumeration of simple roots and (2.11) the maximal para-
bolic subalgebras are determined by:

P8(8)
i = M8(8)

i ⊕ so(1, 1) ⊕ N 8(8)
i , i = 1, . . . , 8;

M8(8)
1 = so(7, 7), dimN 8(8)±

1 = 78

M8(8)
2 = sl(7,R)⊕ sl(2,R), dimN 8(8)±

2 = 98

M8(8)
3 = sl(5,R)⊕ sl(3,R)⊕ sl(2,R), dimN 8(8)±

3 = 106

M8(8)
4 = sl(5,R)⊕ sl(4,R), dimN 8(8)±

4 = 104

M8(8)
5 = so(5, 5)⊕ sl(3,R), dimN 8(8)±

5 = 97

M8(8)
6 = E6(6) ⊕ sl(2,R), dimN 8(8)±

6 = 83

M8(8)
7 = E7(7), dimN 8(8)±

7 = 57

M8(8)
8 = sl(8,R), dimN 8(8)±

8 = 92.

�
(3.20)

Only the seventh case is cuspidal.

V Dobrev and A Marrani﻿J. Phys. A: Math. Theor. 53 (2020) 055203



13

3.9.  EIX: E8(−24)

Another real form of E8 is denoted as E8(−24) or E′′
8  . The maximal compact subgroup is 

K ∼= e7 ⊕ su(2), P = (56, 2), dimP = 112, dimN± = 108, M ∼= so(8). This real form has 
discrete series representations.

The Satake diagram

◦
α1

−−− •
α2

−−− •
α3

|
•α8

−−− •
α4

−−− ◦
α5

−−− ◦
α6

−−− ◦
α7

.� (3.21)

The split rank is equal to 4, thus, there are four maximal parabolic subalgebras given by 
[72]:

P8(−24)
i = M8(−24)

i ⊕ so(1, 1) ⊕ N 8(−24)
i , i = 1, . . . , 4;

M8(−24)
1 = so(11, 3), dimN 8(−24)±

1 = 78

M8(−24)
2 = so(9, 1)⊕ sl(3,R), dimN 8(−24)±

2 = 97

M8(−24)
3 = E6(−26) ⊕ sl(2,R), dimN 8(−24)±

3 = 83

M8(−24)
4 = E7(−25), dimN 8(−24)±

4 = 57

� (3.22)

the last case being cuspidal and having highest/lowest weight representations.

3.10.FI: F4(4)

The split real form of F4 is denoted as F4(4) or F′
4 . The maximal compact subgroup 

K ∼= sp(3)⊕ su(2), P = (14′, 2), where 14′ = ∧3
06, dimP = 28, dimN± = dimK = 24. 

This real form has discrete series representations.
The Dynkin–Satake diagram is:

◦
α1

−−− ◦
α2

=⇒ ◦
α3

−−− ◦
α4

.� (3.23)

The maximal parabolic subalgebras are given by [72] (being F4 non-simply laced, we 
denote the short/long nature of the roots):

P4(4)
i = M4(4)

i ⊕ so(1, 1) ⊕ N 4(4)
i , i = 1, 2, 3, 4;

M4(4)
1 = sl(3,R)S ⊕ sl(2,R)L, dimN 4(4)±

1 = 20,
(11 long roots, 9 short roots),

M4(4)
2 = sl(3,R)L ⊕ sl(2,R)S, dimN 4(4)±

2 = 20,
(9 long roots, 11 short roots),

M4(4)
3 = sp(3,R), dimN 4(4)±

3 = 15
(9 long roots, 6 short roots),

M4(4)
4 = so(4, 3), dimN 4(4)±

4 = 15
(6 long roots, 9 short roots).

� (3.24)

Note that the last two cases of (3.24) are cuspidal and have highest/lowest weight representations.
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Not that P4(4)
1  and P4(4)

2  seem isomorphic, however, they are distinguished by the fact what 
roots generate the sl(3,R) and sl(2,R) subalgebras of M4(4)

1,2  - long or short. Also the algebras 

N 4(4)±
1  and N 4(4)±

2  differ by the number of long and short roots, as indicated.

3.11.  FII: F4(−20)

The other real form of F4 is denoted as F4(−20) or F′′
4  . The maximal compact subgroup 

K ∼= so(9), P = 16, dimP = 16, dimN± = 15, M0 ∼= so(7). This real form has discrete 
series representations.

The Satake diagram is:

•
α1

−−− •
α2

=⇒ •
α3

−−− ◦
α4

.� (3.25)

The split rank is equal to 1, thus, the minimal and maximal parabolics coincide, the M-fac-
tor and N -factor are the same as in the Bruhat decomposition:

P4(−20) = M4(−20) ⊕ so(1, 1) ⊕ N 4(−20);

M4(−20) = so(7), dimN 4(−20)± = 15.
� (3.26)

3.12.  G: G2(2)

The unique non-compact real form of G2 is the split form, denoted as G2(2) or G′
2 . The 

maximal compact subgroup K ∼= su(2)⊕ su(2), P = (4, 2), where 4 = S32, dimP = 8, 
dimN± = dimK = 6. This real form has discrete series representations.

The Dynkin–Satake diagram is:

◦
α1

≡≡≡≡≡>◦
α2

.� (3.27)

The maximal parabolic subalgebras are given by (being G2 non-simply laced, we denote 
the short/long nature of the roots):

P2(2)
L
S

= M2(2)
L
S

⊕ so(1, 1) ⊕ N 2(2)
L
S

;

M2(2)
L = sl(2,R)L, dimN 2(2)±

L = 5
(2 long roots, 3 short roots),

M2(2)
S = sl(2,R)S, dimN 2(2)±

S = 5
(3 long roots, 2 short roots).

�
(3.28)

They are cuspidal and have highest/lowest weight representations.

Not that P2(2)
L  and P2(2)

S  seem isomorphic, however, they are distinguished by the fact what 
root generate the M2(2) = sl(2,R) subalgebras—long or short. Also the algebras N 2(2)±

L  and 
N 2(2)±

S  differ by the number of long and short roots, as indicated.

3.13.  Parabolically related non-compact semisimple Lie algebras

Next, let us introduce the notion of ‘parabolically related non-compact semisimple Lie alge-
bras’ [73] which is also very useful in the study of the structure of real forms.
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Definition: Let G,G′ be two non-compact semisimple Lie algebras with the same complexi-
fication GC ∼= G′C. We call them parabolically related if they have parabolic subalgebras 
P = M⊕A⊕N , P ′ = M′ ⊕A′ ⊕N ′, such that: MC ∼= M′C (⇒ PC ∼= P ′C).

Certainly, there may be more than one parabolic relationship for an algebra G . Furthermore, 
two algebras G,G′ may be parabolically related with different parabolic subalgebras. In the 
case the parabolic subalgebras determining the relation are maximal, the two corresponding 
algebras are said to be maximally parabolically related.

We summarize the maximally parabolically related exceptional Lie algebras in the follow-
ing table, which slightly extends the results of [73]:

4.  Jordan algebras, freudenthal triple systems, their symmetries  
and embeddings

4.1.  Jordan algebras

A Jordan algebra J [1–5] is vector space defined over a ground field F equipped with a bilin-
ear product (named Jordan product) satisfying

X ◦ Y = Y ◦ X,

X2 ◦ (X ◦ Y) = X ◦ (X2 ◦ Y), ∀ X, Y ∈ J.
� (4.1)

For the treatment given in the present investigation, the relevant Jordan algebras are examples 
of the class of cubic Jordan algebras over F = R [6–8, 83]. A cubic Jordan algebra is endowed 
with a cubic form N : J → R, such that N(λX) = λ3N(X), ∀ λ ∈ R, X ∈ J. Moreover, an 
element c ∈ J exists, satisfying N(c) = 1 (usually named base point). A general procedure 
for constructing cubic Jordan algebras, due to Freudenthal, Springer and Tits [11, 12, 23, 
25–28, 84], exists, in which all properties of the Jordan algebra are determined by the cubic 
form itself.

Let V  be a vector space equipped with a cubic norm N : V → R such that 
N(λX) = λ3N(X), ∀ λ ∈ R, X ∈ V , and with a base point c ∈ V  satisfying N(c) = 1. Then, 
if the full linearization of the cubic norm, denoted by N(X, Y , Z) and defined as

6N(X, Y , Z) .
= N (X + Y + Z)− N(X + Y)− N(Y + Z)− N(X + Z) + N(X) + N(Y) + N(Z),

� (4.2)
is trilinear, the following four maps can be introduced:

	 1.	�The trace

Tr(X) .
= 3N(c, c, X);� (4.3)

	 2.	�A quadratic map

S(X) .
= 3N(X, X, c),� (4.4)

	 3.	�A bilinear map

S(X, Y) .
= 6N(X, Y , c),� (4.5)

	 4.	�A trace bilinear form

Tr(X, Y) .
= Tr(X)Tr(Y)− S(X, Y).� (4.6)

A cubic Jordan algebra J with multiplicative identity Id  =  c can be obtained starting from 
the vector space V  above iff N is Jordan cubic, namely iff: [I] The trace bilinear form 
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(4.6) is non-degenerate, and [II] the quadratic adjoint map, � : J → J, uniquely defined by 
Tr(X�, Y) := 3N(X, X, Y), satisfies

(X�)� = N(X)X, ∀X ∈ J.� (4.7)

In a cubic Jordan algebra, the so-called Jordan product can be introduced in the following 
way:

X ◦ Y .
=

1
2
(X × Y + Tr(X)Y + Tr(Y)X − S(X, Y)Id) ,� (4.8)

where X × Y  denotes the linearization of the quadratic adjoint map:

X × Y .
= (X + Y)� − X� − Y�.� (4.9)

Another related map is the Jordan triple product:

{X, Y , Z} .
= (X ◦ Y) ◦ Z + X ◦ (Y ◦ Z)− (X ◦ Z) ◦ Y .� (4.10)

Jordan algebras were introduced and completely classified in [3] in an attempt to generalize 
quantum mechanics beyond the complex numbers C. Below, we list all allowed possibilities 
of cubic Jordan algebras [4, 5, 11, 13, 83]:

	 1.	�the simplest case: J = R, N(X) .
= X3; 

	 2.	�the infinite sequence of semi-simple Jordan algebras given by J = R⊕ Γm,n (named 
pseudo-Euclidean spin factors), where Γm,n is an (m + n)-dimensional vector space over 
R , namely the Clifford algebra of O(m, n), with N(X = ξ ⊕ γ)

.
= ξγaγbηab; 

	 3.	�Four exceptional, simple and Euclidean8 cases, given by J = JA3  or J = JAs
3 , the algebra of 

3 × 3 Hermitian matrices over the four division algebras A = R (real numbers),C (com-
plex numbers),H (quaternions),O (octonions), or their split versions9 As = Cs,Hs,Os:

X =



α1 x3 x2

x3 α2 x1

x2 x1 α3


 , α1,α2,α3 ∈ R, x1, x2, x3 ∈ A(or As),� (4.11)

		 with conjugation (denoted by bar) pertaining to the relevant (division or split) algebra. In 
these cases, the cubic norm is given by

N (X) .
= α1α2α3 − α1x1x1 − α2x2x2 − α3x3x3 + 2Re (x1x2x3) .� (4.12)

		 This reproduces the usual determinant10 for A = R and C. In these cases, the Jordan 
product simply reads

X ◦ Y .
=

1
2
(XY + YX),� (4.13)

		 where XY is just the conventional 3 × 3 matrix product; see e.g. [5] for a comprehensive 
account.

8 The Lorentzian version of the exceptional, simple, Lorentzian cubic Jordan algebras can also be defined; for its 
definition and symmetries, see [37], and for its use in supergravity see [126].
9 See the appendix for details.
10 For explicit constructions of N(X), see e.g. [31] and [32].
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4.2.  Jordan pairs

Jordan algebras have traveled a long journey, since their appearance in the 30’s [3]. The 
modern formulation [111] involves a quadratic map Uxy  (like xyx for associative algebras) 
instead of the original symmetric product (4.13). The quadratic map and its linearization 
Vx,yz = (Ux+z − Ux − Uz)y (like xyz  +  zyx in the associative case) reveal the mathematical 
structure of Jordan algebras much more clearly, through the notion of inverse, inner ideal, 
generic norm, etc. The axioms are:

U1 = Id , UxVy,x = Vx,yUx , UUxy = UxUyUx.� (4.14)

The quadratic formulation led to the concept of Jordan triple systems [112], an example of 
which is a pair of modules represented by rectangular matrices. There is no way of multiply-
ing two matrices x and y , say n × m and m × n respectively, by means of a bilinear product. 
But one can do it using a product like xyx, quadratic in x and linear in y . Notice that, like in 
the case of rectangular matrices, there needs not be a unity in these structures. The axioms are 
in this case:

UxVy,x = Vx,yUx , VUxy,y = Vx,Uyx , UUxy = UxUyUx.� (4.15)

Finally, a Jordan pair [14] is just a pair of modules (V+, V−) acting on each other (but not 
on themselves) like a Jordan triple:

UxσVy−σ ,xσ = Vxσ ,y−σUxσ

VUxσ y−σ ,y−σ = Vxσ ,Uy−σ xσ

UUxσ y−σ = UxσUy−σUxσ

� (4.16)

where σ = ± and xσ ∈ V+σ , y−σ ∈ V−σ.
Jordan pairs [14] (V+, V−)

.
= (J, J′) (whose recent mathematical and physical treatment 

can be found e.g. in [33, 97, 99]; also see [12] for a review) are strictly related to the Tits–
Kantor–Koecher construction of 3-graded Lie Algebras L [15–17] (see also the interesting 
relation to Hopf algebras [18]):

L = J′ ⊕ str(J)⊕ J,� (4.17)

where J is a Jordan algebra, str(J) = L(J)⊕ der(J) is the structure Lie algebra of J [12], 
L (J) is the left multiplication in J, and der(J) = [L(J),L(J)] is the algebra of derivations 
of J (i.e. the algebra of the automorphism group of J) [19, 20]. As we will see in the next 
subsection (see (4.21)), L can be identified with the conformal Lie algebra conf(J) of J itself.

4.3.  Symmetries of Jordan algebras

To each cubic Jordan algebra, a number of symmetry groups can be associated:

	 •	�Aut(J), the group of automorphisms of J, which leaves invariant the structure constants 
of the Jordan product (the Lie algebra of Aut(J) is given by the derivations der(J) of J).

	 •	�Str(J), the structure group, with Lie algebra str(J), which leaves the cubic norm N 
invariant up to a rescaling:

N(g(X)) = λN(X), λ ∈ R, ∀ g ∈ Str(J);� (4.18)

		 the reduced structure group Str0(J), with Lie algebra str0(J), is obtained from Str(J) by 
modding it out by its center [5, 19, 89]:

N(g(X)) = N(X), ∀ g ∈ Str0(J).� (4.19)
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		 It should be here remarked that the structure group of J is the automorphism group of the 
Jordan pair (J, J′):

Str(J) ∼= Aut (J, J′) .� (4.20)

	 •	�Conf(J), the conformal group, whose Lie algebra conf(J) can be given a 3-graded struc-
ture with respect to str(J):

conf(J) = g−1 ⊕ str (J)⊕ g1.� (4.21)

		 The Tits–Kantor–Koecher construction [15–17] (4.17) of conf(J) ≡ L establishes a one-
to-one mapping between the grade  +1 subspace g1 of conf(J) and the corresponding 
Jordan algebra J: g1 ⇔ J. Every Lie algebra L (4.17) admits a conjugation (involutive 
automorphism) under which the elements of the grade  +1 subspace get mapped into the 
elements of the grade  −1 subspace, and vice versa (grade-reversing nature of the involu-
tion); see e.g. [42]. Remarkably, Conf(J) is isomorphic to the automorphism group of the 
(reduced) Freudenthal triple system defined over J; see below.

	 •	�QConf(J), the quasi-conformal group, with Lie algebra qconf(J), which can be defined 
by introducing Freudenthal triple systems and their further extension named extended 
Freudenthal triple system [34]; see below.

All symmetry groups of (simple and semi-simple) cubic Jordan algebras over R  are listed11 
in table 2.

Remarkably, the symmetries of cubic Jordan algebras over JA3  and JAs
3  respectively arrange 

as entries of the single-split and doubly-split Magic Squares of order three (reported in tables 3 
and 4), which are non-compact, real forms of the Freudenthal–Rozenfeld–Tits Magic Square 
of Lie algebras itself [23–28] (reported in table 5); generally, aut, str0, conf  and qconf  Lie 
algebras enter the first, second, third and fourth rows of the 4 × 4 array of algebras constitut-
ing the Magic Square (see [37] for a comprehensive review).

4.4.  Freudenthal triple systems

Starting from a cubic Jordan algebra J, a (reduced [89]) Freudenthal triple system (FTS) is 
defined as the vector space

F(J) .
= R⊕ R⊕ J⊕ J.� (4.22)

An element x ∈ F(J) can thus formally be written as a ‘2 × 2 matrix’:

x =

(
x X
Y y

)
, x, y ∈ R, X, Y ∈ J.� (4.23)

An FTS is endowed12 with a non-degenerate bilinear antisymmetric quadratic form, a quartic 
form and a trilinear triple product [9, 23, 29, 30, 89]:

11 Besides cubic Jordan algebras and their symmetries, in the subsequent treatment we will also consider another 
remarkable Hermitian Jordan triple system, namely given by 2-dimensional octonionic vectors, and denoted by 
M2,1 (O). Its relevant symmetries are conf (M2,1 (O)) ∼= E6(−14), and str0 (M2,1 (O)) ∼= so(8, 2) (see [21, 22, 35, 42] 
and [36]).
12 It is worth remarking that all the other necessary definitions, such as the cubic and trace bilinear forms, are inher-
ited from the underlying Jordan algebra J.
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	 1.	�Quadratic form {•, •}: F(J)× F(J) → R, defined as

{x, y} .
= αδ − βγ + Tr (A, D)− Tr (B, C) ,� (4.24a)

		 where

x =

(
α A
B β

)
, y =

(
γ C
D δ

)
.� (4.25)

Table 2.  Lie algebras associated to cubic (i.e. rank-3) Euclidean Jordan algebras. The 
notation g(C)R means the algebra g(C) seen as a real algebra.

J aut(J) str0(J) conf(J) qconf(J)

R ∅ ∅ sl(2,R) G2(2)

R⊕Γm,n so(m)⊕ so(n) so(m, n) sl(2,R)⊕ so(m + 1, n + 1) so(m + 3, n + 3)
JR3 so(3) sl(3,R) sp(3,R) F4(4)

JC3 su(3) sl(3,C)R su(3, 3) E6(2)

JCs
3

sl(3,R) sl(3,R)⊕ sl(3,R) sl(6,R) E6(6)

JH3 usp(3) su∗(6) so∗(12) E7(−5)

JHs
3

sp(3,R) sl(6,R) so(6, 6) E7(7)

JO3 F4(−52) E6(−26) E7(−25) E8(−24)

JOs
3

F4(4) E6(6) E7(7) E8(8)

Table 3.  The single-split (non-symmetric) real form of the Magic Square L3(As,B) 
[36].

R C H O

R so(3) su(3) usp(3) F4(−52)

Cs sl(3,R) sl(3,C)R su∗(6) E6(−26)

Hs sp(3,R) su(3, 3) so∗(12) E7(−25)

Os F4(4) E6(2) E7(−5) E8(−24)

Table 4.  The double-split (symmetric) real form of the Magic Square L3(As,Bs) [38].

R Cs Hs Os

R so(3) sl(3,R) sp(3,R) F4(4)

Cs sl(3,R) sl(3,R)⊕ sl(3,R) sl(6,R) E6(6)

Hs sp(3,R) sl(6,R) so(6, 6) E7(7)

Os F4(4) E6(6) E7(7) E8(8)

Table 5.  The compact, real form of the Freudenthal–Rozenfeld–Tits symmetric Magic 
Square L3(A,B) [23–28].

R C H O

R so(3) su(3) usp(3) F4(−52)

C su(3) su(3)⊕ su(3) su(6) E6(−78)

H usp(3) su(6) so(12) E7(−133)

O F4(−52) E6(−78) E7(−133) E8(−248)
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	 2.	�Quartic form ∆ : F(J) → R, defined as

∆(x) .
= −4

(
αN(A) + βN(B) + κ(x)2 − Tr(A�, B�)

)
,� (4.26a)

		 where

κ(x) .
=

1
2
(αβ − Tr(A, B)).� (4.27)

	 3.	�Triple product T : F(J)× F(J)× F(J) → F(J), defined as

{T(x, y, w), z} = 2∆(x, y, w, z),� (4.28)

		 where ∆(x, y, w, z) is the full linearization of ∆(x), such that ∆(x, x, x, x) = ∆(x).
The automorphism group Aut(F(J)), with Lie algebra aut(F(J)), is defined as the set of all 
invertible R-linear transformations which leave both {x, y} and ∆(x, y, w, z) invariant [89].

It can be proved [40–42] that, as anticipated above:

Aut(F(J)) ∼= Conf (J) .� (4.29)

4.5.  Extended freudenthal triple systems

Every simple Lie algebra g can be endowed with a 5-grading, determined by one of its genera-
tors G ≡ so(1, 1), with one-dimensional ±2-graded subspaces:

g = g−2 ⊕ g−1 ⊕ g0 ⊕ g+1 ⊕ g+2� (4.30)

where

g0 = conf (J)⊕ G;� (4.31)

[G, t] = mt ∀t ∈ gm , m = 0,±1,±2.� (4.32)

As firstly discussed in [34], a 5-graded13 Lie algebra g can geometrically be constructed 
as the quasi-conformal Lie algebra qconf (J) over a vector space EF (J), named extended 
Freudenthal triple system (EFTS), which is coordinatized by X := (x,Φ) ∈ EF (J), where 
x ∈ F (J), and Φ is an extra real variable [34, 43]:

EF (J) := F (J)⊕ R.

Remarkably, a norm N : EF(J) → R can be defined by using the quartic form ∆ previ-
ously introduced in F (J), as follows14:

N (X ) := ∆(x)− Φ2.� (4.33)

Furthermore, a ‘quartic distance’ d4 : EF(J)×EF(J) → R between any two points X = (x,Φ) 
and Y := (y,Ψ) in EF (J) can be defined as

d4(X ,Y) := ∆(x − y)− (Φ−Ψ+ {x, y})2 ,� (4.34)

such that N (X ) = d4(X ,Y = 0).

13 For sl(2), the 5-grading degenerates into a 3-grading.
14 Since the image of ∆ in F (J) extends over the whole R , for ∆(x) < 0 the light-like condition N (X ) = 0 in 
EF (J) does not yield real solutions for Φ. However, as discussed in [34], this problem can be solved by complexi-
fying the whole EF (J) (i.e. by considering F = C as ground field), thus obtaining a realization of the complexified 
Lie algebra g (C) over [EF (J)]C.
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Then, the quasi-conformal group QConf (J) over EF (J), with Lie algebra qconf (J), is 
defined as the set of all invertible R-linear transformations which leave invariant the ‘quartic 
light-cone’, namely, the geometrical locus defined by [34]

d4(X ,Y) = 0, ∀ (X ,Y) ∈ (EF (J))
2 .� (4.35)

Thus, every 5-graded Lie algebra g, geometrically realized as the quasi-conformal Lie 
algebra qconf (J) over a vector space EF (J), admits a conformal invariant given by the norm 
N  (4.33); see also [43].

4.6.  Embeddings

In this Subsection we will present some general structures of embeddings involving the sym-
metry algebras of cubic Jordan algebras introduced above, along with some comments on 
their physical meaning and relevance.

We start and remark that str0, conf  and qconf  Lie algebras can be interpreted as global, 
electric-magnetic duality (U-duality15) symmetries of suitable theories of gravity (possi-
bly with local supersymmetry) coupled to scalar fields and Abelian vectors, respectively in 
D = 5, 4, 3 (Lorenzian-signed) space-time dimensions (see e.g. [44], and Refs. therein). Such 
symmetries are non-linearly realized on the scalars, while vectors do sit in some linear repre-
sentations of them (in D  =  3, they are completely dualized into scalar fields, as well).

As mentioned above, aut, str0, conf  and qconf  Lie algebras of cubic (i.e. rank-3) Jordan 
algebras over JA3  and JAs

3  respectively enter the first, second, third and fourth rows of the 
single-split and doubly-split Magic Squares of order three (see related tables). In general, such 
algebras are embedded maximally into the algebras of the row above, along the same column, 
possibly with a commuting summand; namely, the following maximal embeddings hold (see 
e.g. [37], and Refs. therein):

str0 ⊃ aut;� (4.36)

conf ⊃ str0 ⊕ so(1, 1);� (4.37)

qconf ⊃ conf ⊕ sl(2,R),� (4.38)

and these actually hold for any of the (simple and semi-simple) cubic Jordan algebras intro-
duced above.

Within the physical interpretation of U-dualities, the so(1, 1) in (4.37) can be regarded as 
corresponding to the Kaluza–Klein (KK) compactification radius of the S1-reduction from 
D  =  5 to D  =  4; alternatively, such an so(1, 1) can also be conceived as the Lie algebra associ-
ated to the pseudo-Kähler connection of the pseudo-special Kähler (and pseudo-Riemannian) 

symmetric coset Conf
Str0×SO(1,1) , obtained from16 Str0

mcs(Str0)
 by applying the inverse R∗-map per-

taining to a timelike compactification from D  =  5 Lorentzian dimensions to D  =  4 spacelike 
dimensions [113, 114]. On the other hand, the sl(2,R) in (4.38) can be identified as corre
sponding to the Ehlers symmetry sl(2,R)Ehlers arising from the S1-reduction from D  =  4 to 
D  =  3; such an sl(2,R) can also be regarded as the Lie algebra associated to the connection of 

the para-quaternionic (and pseudo-Riemannian) symmetric coset QConf
Conf×SL(2,R), obtained from 

15 Here U-duality is referred to as the ‘continuous’ symmetries of [76]. Their discrete versions are the U-duality 
non-perturbative string theory symmetries introduced in [77].
16 ‘mcs’ denotes the maximal compact subalgebra/subgroup throughout. Note that mcs (str0) = aut  for J = JA3 , R  
and R⊕ Γm,n.
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Conf
mcs(Conf) by applying the inverse c∗-map pertaining to a timelike compactification from D  =  4 
Lorentzian dimensions to D  =  3 spacelike dimensions17 [114–116].

A generalization of the embedding (4.38) is provided by the so-called super-Ehlers embed-
dings, recently discussed in [45]:

g3 ⊃ gD ⊕ sl(D − 2,R)Ehlers,� (4.39)

where g3 is the D  =  3 U-duality Lie algebra (namely, qconf  in the cases treated above), gD 
is the U-duality Lie algebra in 3 < D � 11 dimensions, and sl(D − 2,R)Ehlers is the Ehlers 
algebra in D dimensions. These embeddings, discussed and generally proven in [45] (see also 
[46]) have different features, depending on D; they can be maximal or non-maximal, sym-
metric or non-symmetric, etc. The (symmetric and maximal) case D  =  4 of (4.39), matching 
(4.38), is usually simply named Ehlers embedding. Morever, the (non-symmetric but maxi-
mal) case D  =  5 of (4.39) pertains to the Jordan pairs introduced above, and it is therefore 
usually dubbed Jordan-Pairs’ embedding.

As the embeddings (4.36)–(4.38) are obtained by moving along the columns of the rel-
evant Magic Square (for a fixed row entry), another class of embeddings can be obtained by 
moving along the rows of the relevant Magic Square (for a fixed column entry). In symmetric 
Magic Squares, as the non-split L3(A,B) and the double-split L3(As,Bs) (respectively given 
in tables 5 and 4), these embeddings formally match (4.36)–(4.38), but their intepretation cor-
responds to the restriction from one (division A  or split As) algebra to the next smaller (divi-
sion A  or split As) algebra. For the single-split Magic Square L3(As,B) (reported in table 3), 
this class presents different embeddings (at the level of non-compact, real forms) with respect 
to the ones given in (4.36)–(4.38). In general, it holds that (recall autB = derB):

B ⊂ C ⇔





autB ⊕AB ⊂ AutC;
str0B ⊕AB ⊂ Str0C;
confB ⊕AB ⊂ ConfC;
qconfB ⊕AB ⊂ QConfC,

� (4.40)

where

AB
.
= tri (B)� so(B),� (4.41)

with tri and so respectively denote the triality and orthogonal (norm-preserving) Lie algebras 
(see e.g. [47, 48], and Refs. therein). More explicitly:

AB ≡ Aq=̇tri (B)� so(B) = ∅, so(3), so(2),∅ for q := dimRB = 8, 4, 2, 1 (i.e. for B = O,H,C,R);
� (4.42)

ABs ≡ Ãq=̇tri (Bs)� so(Bs) = ∅, sl(2,R), so(1, 1) for q := dimRBs = 8, 4, 2 (i.e. for Bs = Os,Hs,Cs).
� (4.43)

In [47], the appearance of Aq was observed within the study of the charge orbits of asymptoti-
cally flat 0- (black holes) and 1- (black strings) branes in minimal ‘magical’ Maxwell–Einstein 
supergravity theories in D  =  5 space-time dimensions. Moreover, it is worth noticing that Aq 
also occurs in the treatment of supergravity billiards and timelike Kaluza–Klein reductions 
(for recent treatment and set of related Refs., see e.g. [48]).

All in all, the right-hand side of (4.40) expresses the consequences of the algebraic embed-
ding on its left-hand side at the level of aut, str0, conf  and qconf  symmetries pertaining to 
the (division or split) algebras (as denoted by the subscripts). Clearly, one may consider non-
maximal algebraic embeddings B ⊂ C, as well.

17 Note that the Conf
mcs(Conf)  is (special) Kähler only in certain cases.
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Another remarkable class of embedding involves the relation between simple cubic Jordan 
algebras JA3  or JAs

3  and some elements of the (bi-parametric) infinite sequence of semi-simple 
Jordan algebras R⊕ Γm,n introduced above, exploiting the Jordan-algebraic isomorphisms

JA2 ∼= Γ1,q+1 (∼= Γq+1,1) ;� (4.44)

JAs
2

∼= Γq+2+1,q/2+1,� (4.45)

where q :=dimRA = 8, 4, 2, 1 for A = O,H,C,R, and q :=dimRAs = 8, 4, 2 for 
As = Os,Hs,Cs (see e.g. appendix A of [44]—and Refs. therein—for an introduction to divi-
sion and split algebras). Indeed, the following (maximal, rank-preserving) Jordan-algebraic 
embeddings hold:

JA3 ⊃ R⊕ JA2 ∼= R⊕ Γ1,q+1;� (4.46)

JAs
3 ⊃ R⊕ JAs

2
∼= R⊕ Γq/2+1,q/2+1.� (4.47)

Thus, one can consider their consequences at the level of symmetries of cubic Jordan algebras 
defined over the corresponding algebras, obtaining:

aut
(
JA3

)
⊃ aut

(
R⊕ JA2

)
⊕Aq; aut

(
JAs

3

)
⊃ aut

(
R⊕ JAs

2

)
⊕ Ãq;

str0
(
JA3

)
⊃ str0

(
R⊕ JA2

)
⊕Aq; str0

(
JAs

3

)
⊃ str0

(
R⊕ JAs

2

)
⊕ Ãq;

conf
(
JA3

)
⊃ conf

(
R⊕ JA2

)
⊕Aq; conf

(
JAs

3

)
⊃ conf

(
R⊕ JAs

2

)
⊕ Ãq;

qconf
(
JA3

)
⊃ qconf

(
R⊕ JA2

)
⊕Aq; qconf

(
JAs

3

)
⊃ qconf

(
R⊕ JAs

2

)
⊕ Ãq.

�

(4.48)

It is here worth noticing the maximal nature of the embeddings (4.48), as well as the presence 
of the algebras Aq and Ãq. Within the physical (U-duality) interpretation, Aq and Ãq are con-
sistent with the properties of spinors in q  +  2 dimensions, with Lorentzian signature (1, q + 1) 
resp. Kleinian signature (q/2 + 1, q/2 + 1); indeed, the electric-magnetic (U-duality) 
symmetry algebra in D  =  6 (Lorentzian) space-time dimensions is so (1, q + 1)⊕Aq  
for A-based theories (which are endowed with minimal, chiral (1, 0) supersymmetry) and 
so (q/2 + 1, q/2 + 1)⊕ Ãq for As-based theories (which are non-supersymmetric for q = 2, 4
—see [117] for a recent treatment—and endowed with maximal, non-chiral (2, 2) supersym-
metry for q  =  8); see e.g. [49, 50] (and Refs. therein) and [51] for further discussion.

In light of the above treatment, the table of page 10 enjoys a rather simple Jordan algebraic 
interpretation, given in the table 1 page 18, which thus characterizes the (maximal) paraboli-
cal relation among non-compact real forms of exceptional Lie algebras in terms of relations 
among Lie symmetries of rank-2 (i.e. quadratic) and rank-3 (i.e. cubic) Jordan algebras.

Some comments are in order (for further details, see section 5).

	 1.	�The maximal parabolical relation 1. hints for a quasi-conformal interpretation of E6(−14), 
despite it is characterized as conformal symmetry algebra of the Hermitian Jordan triple 
system M2,1(O) [42]. In fact, E6(−14) is the U-duality symmetry of N = 10, D  =  3 super-
gravity (after complete dualization of 1-forms), obtained as the dimensional reduction of 
N = 5, D  =  4 supergravity, which does not admit matter coupling, and whose U-duality 
algebra is su(5, 1). Usually, U-duality symmetries in D  =  4 and D  =  3 can be character-
ized as conformal resp. quasi-conformal symmetries of Jordan triple systems. Essentially, 
a quasi-conformal realization of E6(−14) would concern an EFTS of non-reduced type (i.e. 
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whose corresponding FTS is not constructed in terms of cubic Jordan algebras). Work is 
in progress to investigate this possibility, which would render the maximal parabolical 
relation 1. simply the restriction from qconf  to conf  symmetries of M2,1(O), JC3  and JCs

3 .
	 2.	�In the maximal parabolical relation 2., str0 (Γ5,3) can be enhanced to str0 (Γ6,4) =  

qconf
(
R⊕ JC2

)
, thus allowing for the commuting algebra u(1) to be interpreted as A2; 

thus, the parabolic relation between E6(2) and so(5, 3)⊕ u(1) can be interpreted as a con-
sequence of the restriction, at qconf  level, of the simple cubic Jordan algebra JC3  to its 
maximal semi-simple Jordan subalgebra R⊕ JC2 � R⊕ Γ3,1. Again, this would hint for 
a qconf  interpretation of E6(−14), despite the fact that str0 (Γ7,1) cannot be characterized 
as qconf  symmetry.

	 3.	�The maximal parabolical relation 3. can be simply explained as the realization, at str0 
level, of the Jordan algebraic restriction JO3 ⊃ R⊕ JO2  and JOs

3 ⊃ R⊕ JOs
2 , noting that 

str0 (R⊕ Γm,n) = so(1, 1)⊕ str0 (Γm,n).
	 4.	�The maximal parabolical relation 4. can be simply explained as the realization, for JCs

3  
and JC3 , of the embedding qconf ⊃ str0 ⊕ sl(3,R) (Jordan pairs’ embedding, or D  =  5 
Ehlers embedding), with the sl(3,R) Ehlers symmetry further branched to gl(2,R) in 
order to give rise to the grading so(1, 1) algebra.

	 5.	�The maximal parabolical relation 5. can be simply explained as the realization, for JO3  and 
JOs

3 , of the embedding conf ⊃ str0 ⊕ so(1, 1).
	 6.	�The maximal parabolical relation 6. is based on the two-fold characterization of E7(7) as 

conf
(

JOs
3

)
 (thus allowing a parabolical relation to conf

(
JO3

)
), as well as qconf

(
JHs

3

)
 (thus 

allowing a relation to qconf
(
JH3

)
). Concerning the conf -part of the parabolical relation, we 

note that str0

(
JO2

)
⊕ sl(2,R) can be enhanced to conf

(
JO2

)
⊕ sl(2,R) � conf

(
R⊕ JO2

)
, 

and thus it can be traced back to the Jordan algebraic restriction JO3 ⊃ R⊕ JO2  at conf  
level. On the other hand, concerning the qconf -part of the parabolical relation, we note 

that str0

(
JOs

2

)
⊕ sl(2,R) can be enhanced to qconf

(
JHs

2

)
⊕ sl(2,R), and thus it can be 

traced back to the non-maximal Jordan algebraic restriction JHs
3 ⊃ JHs

2  at qconf  level, with 
the algebra sl(2,R) interpreted as Ã4. Analogously, str0 (Γ7,3)⊕ su(2) can be enhanced to 
qconf

(
JH2

)
⊕ su(2), and thus it can be traced back to the non-maximal Jordan algebraic 

restriction JH3 ⊃ JH2  at qconf  level, with the algebra su(2) interpreted as A4.

	 7.	�Also the maximal parabolical relation 7. is based on the two-fold characterization of E7(7) as 

conf
(

JOs
3

)
 (thus allowing a parabolical relation to conf

(
JO3

)
), as well as qconf

(
JHs

3

)
 (thus 

allowing a relation to qconf
(
JH3

)
). Concerning the conf -part of the parabolical relation, we 

note that conf
(

JO2
)
 can be enhanced to conf

(
JO2

)
⊕ sl(2,R) � conf

(
R⊕ JO2

)
, and thus it 

can be traced back to the Jordan algebraic restriction JO3 ⊃ R⊕ JO2  at conf  level. Analogously, 

we note that conf
(

JOs
2

)
 can be enhanced to conf

(
JOs

2

)
⊕ sl(2,R) � conf

(
R⊕ JOs

2

)
, and 

thus it can be traced back to the Jordan algebraic restriction JOs
3 ⊃ R⊕ JOs

2  at conf  level. On 
the other hand, concerning the qconf -part of the parabolical relation, it can be interpreted 
as the realization, for JHs

3  and JH3 , of the embedding restriction qconf ⊃ conf ⊕ sl(2,R) 
(D  =  4 Ehlers embedding), with the sl(2,R) Ehlers symmetry further branched to the 
grading so(1, 1) algebra.
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	 8.	�The maximal parabolical relation 8. can be explained as the realization, for JHs
3  and 

JH3 , of the embedding qconf ⊃ str0 ⊕ sl(3,R) (Jordan pairs’ embedding, or D  =  5 Ehlers 
embedding). Indeed, sl(4,R)⊕ Ã4 and su∗(4)⊕A4 can respectively be enhanced to 

str0

(
JHs

3

)
 and str0

(
JHs

3

)
.

	 9.	�The maximal parabolical relation 9. is based on the two-fold characterization of E7(7) as 

conf
(

JOs
3

)
 (thus allowing a parabolical relation to conf

(
JO3

)
), as well as qconf

(
JHs

3

)
 (thus 

allowing a relation to qconf
(
JH3

)
). Concerning the qconf -part of the parabolical relation, 

we note that str0
(
JH3

)
⊕ sl(2,R) can be enhanced to str0

(
JH3

)
⊕ sl(3,R) (Jordan pairs’ 

embedding). Analogously, str0

(
JHs

3

)
⊕ sl(2,R) can be enhanced to str0

(
JHs

3

)
⊕ sl(3,R). 

On the other hand, concerning the conf -part of the parabolical relation, we note that the 
relation between E7(7) and sl(6,R)⊕ sl(2,R) can be interpreted as the realization, at conf  
level, of the non-maximal algebraic restriction Os ⊃ Cs; indeed, sl(6,R) enjoys a twofold 

characterization: as str0

(
JHs

3

)
 and as conf

(
JCs

3

)
. Finally, the relation between E7(−25) and 

su∗(6)⊕ su(2) is less direct, in the sense that it moves before horizontally along the 3rd 
row of the single-split (non-symmetric) Magic Square L3(As,B), from the slot O to the 
slot H, and then it moves vertically along the 3rd column, from the slot Hs to Cs (note that 
E7(−25) does not have a qconf  interpretation).

	10.	�The maximal parabolical relation 10. can be simply explained as the realization, for JO3  
and JOs

3 , of the embedding qconf ⊃ conf ⊕ sl(2,R) (D  =  4 Ehlers embedding).
	11.	�The maximal parabolical relation 11. can be explained as the realization, at 

qconf  level, of the maximal Jordan algebraic embeddings JO3 ⊃ R⊕ JO2  and 
JOs

3 ⊃ R⊕ JOs
2 . Indeed, qconf (R⊕ Γ8,0) and qconf (R⊕ Γ4,4) can respectively be 

enhanced to qconf
(
R⊕ Γ9,1 � R⊕ JO2

)
= and qconf

(
R⊕ Γ5,5 � R⊕ JOs

2

)
.

	12.	�The maximal parabolical relation 12. can be explained as the realization, for JO3  and 
JOs

3 , of the embedding qconf ⊃ str0 ⊕ sl(3,R) (Jordan pairs’ embedding, or D  =  5 Ehlers 
embedding). Indeed, str0 (J3)⊕ sl(2,R) can be enhanced to str0 (J3)⊕ gl(2,R), which is 
maximal in str0(J3)⊕ sl(3,R).

	13.	�The maximal parabolical relation 13. can also be explained as the realization, for JO3  and 
JOs

3 , of the embedding qconf ⊃ str0 ⊕ sl(3,R) (Jordan pairs’ embedding, or D  =  5 Ehlers 
embedding). Indeed, str0(J2)⊕ sl(3,R) can be enhanced to str0(J3)⊕ sl(3,R).

	14.	�The maximal parabolical relation 14. can be explained as the realization, for JO1,2 and JOs
1,2 

(i.e. for q  =  8), respectively of the maximal (symmetric) embeddings

der
(
JA1,2

)
⊃ str0 (Γq,1) ;� (4.49)

der
(

JAs
1,2

)
⊃ str0

(
Γq/2+1,q/2

)
.� (4.50)

		 Indeed, str0 (Γq−1,0) and str0
(
Γq/2,q/2−1

)
 can trivially be enhanced to str0 (Γq,1) resp.  

str0
(
Γq/2+1,q/2

)
, which in turn are maximal in str0

(
Γq+1,1 � JA2

)
 and in 

str0

(
Γq/2+1,q/2+1 � JAs

2

)
, respectively.
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5.  Jordan structures in maximal parabolics of exceptional Lie algebras: 
analysis

In this section, we will analyze all maximal parabolic subalgebras (shortened as parabolics) 
of all non-compact, real forms of finite-dimensional exceptional Lie algebras, determining 
them by means of (chains of) maximal embeddings, and providing Jordan algebraic interpre-
tations for them, in light of the treatment given in previous section. We will also provide an 
Mmax-covariant decomposition of the (generally reducible) vector spaces Nmax’s, occurring 
in the Bruhat branchings giving rise to the maximal parabolics. The numbering of maximal 
parabolics refers to the listing of section 3.

5.1.  E6(6)

This is the maximally non-compact (split) real form of E6. Its Jordan interpretation is essen-
tially twofold (due to the symmetry of the double-split Magic Square L3(As,Bs) [38], reported 
in table 4):

E6(6)
∼= qconf

(
JCs

3

)
� (5.1)

∼= str0

(
JOs

3

)
∼= der

(
JOs

3 , JOs′
3

)
� so(1, 1).� (5.2)

5.1.1.  P6(6)
1

∼= P6(6)
5 .  The maximal parabolics P6(6)

1
∼= P6(6)

5  from (3.2) corresponds to the 
Bruhat decomposition (2.5):

E6(6) = N 6(6)−
1 ⊕ so(5, 5)⊕ so(1, 1)⊕N 6(6)+

1 ,� (5.3)

78 = 16−3 ⊕ 450 ⊕ 10 ⊕ 16′3,� (5.4)

yielding a 3-grading18. Since so(5, 5) ∼= str0

(
JOs

2

)
, at least two Jordan algebraic interpreta-

tions (denoted by I and II) of (5.3) and (5.4) can be given:

	 1.	�the first one is

str0

(
JOs

3

)
⊃ str0

(
JOs

2

)
⊕ so(1, 1),� (5.5)

		 where the so(1, 1) generating the 3-grading is the Kaluza–Klein (KK) so(1, 1) of the 
S1-reduction D = 6 → 5.

	 2.	�the second one stems from the Jordan algebraic embedding JOs
3 ⊃ R⊕ JOs

2 , at the level of 
str0 :

str0

(
JOs

3

)
⊃ str0

(
R⊕ JOs

2

)
× Ã8,� (5.6)

		 where the so(1, 1) generating the 3-grading is the dilatonic so(1, 1) in D  =  5.

18 The subscripts denote so(1, 1)-weights throughout. Unless otherwise indicated, all embeddings are symmetric; 
non-symmetric embeddings will be denoted by a ‘ns’ upperscript. Only (chains of) maximal embeddings are con-
sidered throughout.
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5.1.2.  P6(6)
2 .  The maximal parabolics P6(6)

2  from (3.2) corresponds to the Bruhat decomposi-
tion (2.5):

E6(6) = N 6(6)−
2 ⊕ sl(6,R)⊕ so(1, 1)⊕N 6(6)+

2 ,� (5.7)

which can be obtained by the following chain of embeddings:

E6(6) ⊃ sl(6,R)⊕ sl(2,R) ⊃ sl(6,R)⊕ so(1, 1);� (5.8)

78 = (35, 1)⊕ (1, 3)⊕ (20, 2) = 1−2 ⊕ 20−1 ⊕ 350 ⊕ 10 ⊕ 201 ⊕ 12,� (5.9)

exhibiting a 5-grading of contact, with N 6(6)±
2 = 1±2 + 20±1 .

Since sl(6,R) has a two-fold Jordan algebraic interpretation:

sl(6,R) ∼= str0

(
JHs

3

)
∼= der

(
JHs

3 , JHs′
3

)
� so(1, 1)� (5.10)

∼= conf
(

JCs
3

)
,� (5.11)

the first step of the above chain can be interpreted in two ways:

	 1.	�

qconf
(

JCs
3

)
⊃ conf

(
JCs

3

)
⊕ sl(2,R),

		 namely the D  =  4 Ehlers embedding for JCs
3 .

	 2.	�as a consequence of the split algebraic embedding Os ⊃ Hs ⇒ JOs
3 ⊃ JHs

3 , at the level of 
str0 it holds that:

str0

(
JOs

3

)
⊃ Str0

(
JHs

3

)
× Ã4.� (5.12)

5.1.3.  P6(6)
3

∼= P6(6)
6 .  The maximal parabolics P6(6)

3
∼= P6(6)

6  from (3.2) corresponds to the 
Bruhat decomposition (2.5):

E6(6) = (N−)
6(6)
3 ⊕ sl(5,R)⊕ sl(2,R)⊕ so(1, 1)⊕ (N+)

6(6)
3 ,� (5.13)

78 = (5′, 1)−6 ⊕ (10, 2)−3 ⊕ (24, 1)0 ⊕ (1, 3)0 ⊕ (1, 1)0 ⊕ (10′, 2)3 ⊕ (5, 1)6,
� (5.14)

thus yielding a 5-grading (recall that dimN 6(6)±
3 = 25), which can be obtained by the follow-

ing chain of embeddings:

E6(6) ⊃ sl(6,R)⊕ sl(2,R) ⊃ sl(5,R)⊕ sl(2,R)⊕ so(1, 1).� (5.15)

The first embedding is the very same of the chain (5.8); here the sl(6,R) is branched to gener-
ate the so(1, 1) producing the parabolic 5-grading, whereas in (5.8) it is the branching of the 
sl(2,R) algebra to produce the relevant so(1, 1).

5.1.4.  P6(6)
4 .  The maximal parabolics P6(6)

4  from (3.2) corresponds to the Bruhat decomposi-
tion (2.5):

E6(6) = N 6(6)−
4 ⊕ sl(3,R)⊕ sl(3,R)⊕ sl(2,R)⊕ so(1, 1)⊕N 6(6)+

4 ,� (5.16)
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which can be obtained at least in two different ways, associated to two embedding chains19, 
respectively denoted by 1 and 2:

1 : E6(6) ⊃ns sl(3,R)1 ⊕ sl(3,R)2 ⊕ sl(3,R)3 ⊃ sl(3,R)⊕ sl(3,R)⊕ sl(2,R)⊕ so(1, 1);� (5.17)

78 = (8, 1, 1)⊕ (1, 8, 1)⊕ (1, 1, 8)⊕
(
3, 3, 3′

)
⊕
(
3′, 3′, 3

)

= (8, 1, 1)0 ⊕ (1, 8, 1)0 ⊕ (1, 1, 3)0 ⊕ (1, 1, 1)0 ⊕ (1, 1, 2)3 ⊕ (1, 1, 2)−3

⊕ (3, 3, 1)2 ⊕
(
3′, 3′, 1

)
−2 ⊕ (3, 3, 2)−1 ⊕

(
3′, 3′, 2

)
1 ;

�
(5.18)

2 : E6(6) ⊃ sl(6,R)⊕ sl(2,R) ⊃ sl(3,R)⊕ sl(3,R)⊕ sl(2,R)⊕ so(1, 1);
� (5.19)

78 = (35, 1)⊕ (1, 3)⊕ (20, 2)
= (8, 1, 1)0 ⊕ (1, 8, 1)0 ⊕ (1, 1, 3)0 ⊕ (1, 1, 1)0 ⊕ (1, 1, 2)3 ⊕ (1, 1, 2)−3

⊕
(
3, 3′, 1

)
2 ⊕ (3′, 3, 1)−2 ⊕

(
3, 3′, 2

)
−1 ⊕ (3′, 3, 2)1 .

�
(5.20)

(5.17), (5.18) and (5.19), (5.20) both yield a 7-grading with the same M6(6)
4  but with different 

N ’s:

	 1.	�(5.17), (5.18) implies N 6(6)+
4 = (1, 1, 2)3 + (3, 3, 1)2 +

(
3′, 3′, 2

)
1; 

	 2.	�(5.19), (5.20) yields N 6(6)+
4 = (1, 1, 2)3 +

(
3, 3′, 1

)
2 + (3′, 3, 2)1.

Namely, 1 ↔ 2 iff 3′ ↔ 3 in the second sl(3,R) algebra of M6(6)
4 .

The Jordan-algebraic interpretation of the first step of chains (5.17), (5.18) and (5.19), 
(5.20) is at least twofold. Indeed, it holds that:

sl(3,R)⊕ sl(3,R) ∼= str0

(
JCs

3

)
∼= der

(
JCs

3 , JCs′
3

)
� so(1, 1).� (5.21)

A first interpretation (denoted by I) is provided by the Jordan pairs’ (JP) embedding for the 
Cs-based gravity theories [117]:

I : qconf
(

JOs
3

)
⊃ str0

(
JCs

3

)
⊕ sl(3,R),� (5.22)

where the sl(3,R) commuting factor is the Ehlers group in D  =  5 (Lorentzian-signed) space-
time dimensions. A second interpretation (denoted by II) is based on the non-maximal split 
algebraic embedding Os ⊃ Cs ⇒ JOs

3 ⊃ JCs
3 , at the level of str0:

II : str0

(
JOs

3

)
⊃ str0

(
JCs

3

)
⊕ sl(3,R).� (5.23)

5.2.  E6(2)

The Jordan algebraic interpretation of E6(2) is

E6(2)
∼= qconf

(
JC3

)
.� (5.24)

19 For a recent quantum informational interpretation of the first step of the chain, see e.g. [118].
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5.2.1.  P6(2)
1 .  The maximal parabolics P6(2)

1  from (3.8) corresponds to the Bruhat decomposition:

E6(2) = N 6(2)−
1 ⊕ so(5, 3)⊕ so(2)⊕ so(1, 1)⊕N 6(2)+

1 ,� (5.25)

which can be obtained through the following embedding chain:

E6(2) ⊃ so(6, 4)⊕ so(2) ⊃ so(5, 3)⊕ so(2)⊕ so(1, 1);� (5.26)

78 = 280,0 ⊕ 10,0 ⊕ 10,0 ⊕ 8v,0,2 ⊕ 8v,0,−2 ⊕ 8c,−3,1 ⊕ 8s,−3,−1 ⊕ 8s,3,1 ⊕ 8c,3,−1,
� (5.27)

and accounting the action of M6(2)
1  we obtain a 5-grading20, with N 6(2)±

1 = 8v,0,±2 +  
8c,−3,±1 + 8s,3,±1.

The Jordan algebraic interpretation of the first embedding of (5.26) and (5.27) stems from 
the Jordan algebraic embedding JC3 ⊃ R⊕ JC2 , at the qconf  level:

qconf
(
JC3

)
⊃ qconf

(
R⊕ JC2

)
⊕A2.� (5.28)

5.2.2.  P6(2)
2 .  The maximal parabolics P6(2)

2  from (3.8) corresponds to the Bruhat decomposition:

E6(2) = N 6(2)−
2 ⊕ sl(3,R)⊕ sl(2,C)R ⊕ so(2)⊕ so(1, 1)⊕N 6(2)

2 ,� (5.29)

which can be obtained by the following embedding chain:

E6(2) ⊃ns sl(3,R)⊕ sl(3,C)R ⊃ sl(3,R)⊕ sl(2,C)R ⊕ so(2)⊕ so(1, 1);
� (5.30)

78 = (8, 1, 1)⊕ (1, 8, 1)⊕ (1, 1, 8)⊕
(
3, 3,3

)
⊕
(
3′,3, 3

)

= (8, 1, 1)0,0 ⊕ (1, 3, 1)0,0 ⊕ (1, 1, 1)0,0 ⊕ (1, 1, 3)0,0 ⊕ (1, 1, 1)0,0

⊕ (1, 2, 1)3,−3 ⊕ (1, 2, 1)−3,3 ⊕ (1, 1, 2)3,−3 ⊕ (1, 1, 2)−3,3

⊕ (3, 2, 2)0,−2 ⊕ (3, 2, 1)3,1 ⊕ (3, 1, 2)−3,1 ⊕ (3, 1, 1)0,4

⊕ (3′, 2, 2)0,2 ⊕ (3′, 2, 1)−3,−1 ⊕ (3′, 1, 2)3,−1 ⊕ (3′, 1, 1)0,−4 ,

�

(5.31)

thus yielding 9-grading, noting that N 6(2)⊕
2 = (1, 2, 1)−3,3 ⊕ (1, 1, 2)−3,3 ⊕ (3, 2, 1)3,1 ⊕

(3, 1, 2)−3,1 ⊕ (3, 1, 1)0,4 ⊕ (3′, 2, 2)0,2 . It holds that:

sl(3,C)R ∼= Str0
(
JC3

) ∼= Aut
(
JC3 , JC3

)
/so(1, 1),� (5.32)

and a possible interpretation of the first step of the chain (5.30) and (5.31) is provided by the 
JP embedding for the C-based gravity theories:

QConf
(
JC3

)
⊃ Str0

(
JC3

)
⊕ sl(3,R),� (5.33)

where, once again, the sl(3,R) commuting factor is the Ehlers group in D  =  5 (Lorentzian-
signed) space-time dimensions. Also the second step of the chain (5.30) and (5.31) can be 
given a Jordan-algebraic interpretation; this latter stems from the same embedding of (5.28), 
but here considered at the level of the reduced structure symmetries:

20 The first subscripts denote so(2) charges. Note that we use Slansky’s conventions on the triality of so(8) [119].
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Str0
(
JC3

)
⊃ Str0

(
R⊕ JC2

)
⊕A2.� (5.34)

5.2.3.  P6(2)
3 .  The maximal parabolics P6(2)

3  from (3.8) corresponds to the Bruhat decomposition:

E6(2) = N 6(2)−
3 ⊕ sl(3,C)R ⊕ sl(2,R)⊕ so(1, 1)⊕N 6(2)+

3 ,� (5.35)

which can be realized by at least two chains of embeddings, respectively denoted by 1 and 2:

1 : E6(2) ⊃ su(3, 3)⊕ sl(2,R) ⊃ sl(3,C)R ⊕ sl(2,R)⊕ so(1, 1);� (5.36)

78 = (35, 1)⊕ (1, 3)⊕ (20, 2) =




(8, 1, 1)0 ⊕ (1, 8, 1)0 ⊕ (1, 1, 3)0 ⊕ (1, 1, 1)0
⊕ (3, 3′, 1)2 ⊕ (3′, 3, 1)−2 ⊕ (1, 1, 2)3

⊕ (1, 1, 2)−3 ⊕ (3, 3′, 2)−1 ⊕ (3′, 3, 2)1 ;
�

(5.37)

2 : E6(2) ⊃ns sl(3,C)R ⊕ sl(3,R) ⊃ sl(3,C)R ⊕ sl(2,R)⊕ so(1, 1);� (5.38)

78 = (8, 1, 1)⊕ (1, 8, 1)⊕ (1, 1, 8)⊕
(
3, 3′, 3

)
⊕
(
3′, 3, 3′

)

=



(8, 1, 1)0 ⊕ (1, 8, 1)0 ⊕ (1, 1, 3)0 ⊕ (1, 1, 1)0
⊕ (3, 3′, 1)−2 ⊕ (3′, 3, 1)2 ⊕ (1, 1, 2)3

⊕ (1, 1, 2)−3 ⊕ (3, 3′, 2)1 ⊕ (3′, 3, 2)−1 .

� (5.39)

(5.36), (5.37) and (5.38), (5.39) both yield a 7-grading, but with different N ’s (both of real 
dimension 29):

	 1.	�(5.36) and (5.37) implies N 6(2)+
3 = (1, 1, 2)3 + (3, 3′, 1)2 + (3′, 3, 2)1; 

	 2.	�(5.38) and (5.39) yields N 6(2)+
3 = (1, 1, 2)3 + (3′, 3, 1)2 + (3, 3′, 2)1.

Namely, 1 ↔ 2 iff 3′ ↔ 3 in the sl(3,C)R algebra of M6(2)
3 .

Both steps of each of the chains 1 and 2 admits at least one Jordan algebraic interpreta-
tion, as follows: the chain 1 (5.36) and (5.37) starts with the so-called Ehlers embedding for 
C-based magic supergravity theories, and then proceeds with an inverse R∗-map (generating 
an so(1, 1)KK, determining the 7-grading):

1 : qconf
(
JC3

)
⊃ conf

(
JC3

)
⊕ sl(2,R)Ehlers ⊃ str0

(
JC3

)
⊕ sl(2,R)Ehlers ⊕ so(1, 1)KK.� (5.40)

On the other hand, the chain 2 (5.38) and (5.39) starts with the JP embedding for the C-based 
magic supergravity theories (generating the21 D  =  5 Ehlers sl(3,R)Ehlers), and then proceeds 
with a further branching of this latter symmetry into sl(2,R)Ehlers (D  =  4 Ehlers) ⊕ so(1, 1)KK:

2 : qconf
(
JC3

)
⊃ str0

(
JC3

)
⊕ sl(3,R)Ehlers ⊃ str0

(
JC3

)
⊕ sl(2,R)Ehlers ⊕ so(1, 1)KK.� (5.41)

5.2.4.  P6(2)
4 .  The maximal parabolics P6(2)

4  from (3.8) corresponds to the Bruhat 
decomposition:

E6(2) = N 6(2)−
4 ⊕ su(3, 3)⊕ so(1, 1)⊕N6(2)+4,� (5.42)

21 The D  =  5 Ehlers sl(3,R)Ehlers can also be regarded as the enhancement of sl(2,R)Ehlers ⊕ so(1, 1)KK , obtained by 
a composition of an inverse c∗-map and of an inverse R∗-map.
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which can be obtained by the following embedding chain:

E6(2) ⊃ su(3, 3)⊕ sl(2,R) ⊃ su(3, 3)⊕ so(1, 1);� (5.43)

78 = (35, 1)⊕ (1, 3)⊕ (20, 2) = 350 ⊕ 10 ⊕ 12 ⊕ 1−2 ⊕ 201 ⊕ 20−1,� (5.44)

exhibiting a 5-grading with N 6(2)±
4 = 1±2 + 20±1 .

The Jordan algebraic interpretation starts with the Ehlers embedding for C-based theories, 
and then proceeds by further branching this latter symmetry, in order to generate the so(1, 1) 
responsible for the 5-grading:

qconf
(
JC3

)
⊃ conf

(
JC3

)
⊕ sl(2,R)Ehlers ⊃ conf

(
JC3

)
⊕ so(1, 1).� (5.45)

Notice that in this case the so(1, 1) has not a KK interpretation, but it is rather the non-compact 
Cartan of sl(2,R)Ehlers.

5.3.  E6(−14)

The Jordan interpretation of E6(−14) is twofold:

E6(−14)
∼= conf (M1,2 (O))� (5.46)

∼= K
(

JO3
)

,� (5.47)

where, as mentioned in the previous section, M1,2 (O) denotes an Hermitian Jordan triple 

system formed by octonionic 2-vectors (see [21, 22, 35] and [36]). On the other hand, K
(

JO3
)
 

stands for the stabilizer of the rank-4 orbit of the action of Conf
(

JO3
)
∼= Aut

(
F
(

JO3
))

 on 

its (fundamental) irrep. 56 with positive quartic invariant I4  >  0 and representative ‘+  +−  −’ 
(for further detail, see e.g. [120–122]).

5.3.1.  P6(−14)
1 .  The maximal parabolics P6(−14)

1  from (3.10) corresponds to the Bruhat 
decomposition:

E6(−14) = N 6(−14)−
1 ⊕ so(7, 1)⊕ so(2)⊕ so(1, 1)⊕N 6(−14)+

1 ,� (5.48)

which can be obtained by the following embedding chain:

E6(−14) ⊃ so(8, 2)⊕ so(2) ⊃ so(7, 1)⊕ so(2)⊕ so(1, 1);� (5.49)

78 = 280,0 ⊕ 10,0 ⊕ 10,0 ⊕ 8v,0,2 ⊕ 8v,0,−2 ⊕ 8c,−3,1 ⊕ 8s,−3,−1 ⊕ 8s,3,1 ⊕ 8c,3,−1,
� (5.50)

thus yielding a 5-grading with N 6(−14)+
1 = 8v,0,2 + 8c,−3,1 + 8s,3,1 .

A Jordan algebraic interpretation (of the first step) of the chain (5.49) and (5.50) is a con-
sequence of the Jordan algebraic embedding JO3 ⊃ R⊕ JO2  at the level of the K-symmetry, 
namely:

K
(

JO3
)
⊃ K

(
R⊕ JO2

)
⊕A8,� (5.51)
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where K
(
R⊕ JO2

)
 denotes stabilizer of the rank-4 orbit of the action of Conf

(
R⊕ JO2

)
 

∼= Aut
(

F
(
R⊕ JO2

))
 on its (bi-fundamental) rep. (2, 10) with positive quartic invariant 

I4  >  0 and representative ‘+  +−  −’ [120–122]). Indeed, it holds that (see e.g. case 4b with 
n  =  10 in table VIII of [122])

so(8, 2)⊕ so(2) ∼= K
(
R⊕ JO2

)
,� (5.52)

which is nothing but the q  =  8 case of the general relation:

so(q, 2)⊕ so(2) ∼= K
(
R⊕ JA2

)
.� (5.53)

5.3.2.  P6(−14)
2 .  The maximal parabolics P6(−14)

2  from (3.10) corresponds to the Bruhat 
decomposition:

E6(−14) = N 6(−14)−
2 ⊕ su(5, 1)⊕ so(1, 1)⊕N 6(−14)+

2 ,� (5.54)

which can be obtained through the following embedding chain:

E6(−14) ⊃ su(5, 1)⊕ sl(2,R) ⊃ su(5, 1)⊕ so(1, 1);� (5.55)

78 = (35, 1)⊕ (1, 3)⊕ (20, 2) = 350 + 10 + 12 + 1−2 + 201 + 20−1,� (5.56)

exhibiting a 5-grading with N 6(−14)±
2 = 1±2 + 20±1 .

A possible Jordan algebraic interpretation (of the first step) of the chain (5.55) and (5.56) 
would be based on the characterization of su(5, 1), which, at the moment, we can characterize 
as a maximal subalgebra (with commutant sl(2,R)) of E6(−14), only. As mentioned above,work 
is in progress for a sharper interpretation of su(5, 1).

5.4.  E6(−26)

This is the minimally non-compact, real form of E6. Its Jordan interpretation reads:

E6(−26)
∼= str0

(
JO3

)
∼= der

(
JO3 , JO′

3

)
� so(1, 1).� (5.57)

There is only one maximal parabolics P6(−26) from (3.12) corresponding to the Bruhat 
decomposition:

E6(−26) = N 6(−26)− ⊕ so(9, 1)⊕ so(1, 1)⊕N 6(−26)+,� (5.58)

thus yielding a 3-grading. Since

so(9, 1) ∼= str0

(
JO2

)
,� (5.59)

at least two Jordan algebraic interpretations (denoted by 1 and 2) of (5.58) can be given:

	 1.	�

1 : str0

(
JO3

)
⊃ str0

(
JO2

)
⊕ so(1, 1),� (5.60)

		 where the so(1, 1) generating the 3-grading is the KK so(1, 1) of the S1-reduction 
D = 6 → 5.
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	 2.	�The second interpretation stems from the embedding JO3 ⊃ R⊕ JO2 , evaluated at str0 
level:

2 : str0

(
JO3

)
⊃ str0

(
R⊕ JO2

)
⊕A8,� (5.61)

		 where the so(1, 1) generating the 3-grading is the dilatonic so(1, 1) in D  =  5.

5.5.  E7(7)

This is the split real form of E7. Its Jordan interpretation is essentially twofold (due to the sym-
metry of the double-split Magic Square L3(As,Bs) [38], reported in table 4):

E7(7)
∼= qconf

(
JHs

3

)
� (5.62)

∼= conf
(

JOs
3

)
∼= der

(
F
(

JOs
3

))
.� (5.63)

5.5.1.  P7(7)
1 .  The maximal parabolics P7(7)

1  from (3.14) corresponds to the Bruhat 
decomposition:

E7(7) = N 7(7)−
1 ⊕ so(6, 6)⊕ so(1, 1)⊕N 7(7)+

1 ,� (5.64)

which can be obtained through the following embedding chain:

E7(7) ⊃ so(6, 6)⊕ sl(2,R) ⊃ so(6, 6)⊕ so(1, 1);� (5.65)

133 = (66, 1)⊕ (1, 3)⊕
(
32′, 2

)
= 660 ⊕ 10 ⊕ 12 ⊕ 1−2 ⊕ 32′1 ⊕ 32′

−1,
� (5.66)

thus yielding a 5-grading as N 7(7)+
1 = 12 + 32′1.

The Jordan algebraic interpretation of (the first step of) (5.65) and (5.66) is at least three-
fold, and it is based on the following identifications:

so(6, 6)⊕ sl(2,R) ∼= conf
(
R⊕ JOs

2

)
∼= der

(
F
(
R⊕ JOs

2

))
;� (5.67)

so(6, 6) ∼= conf
(

JHs
3

)
∼= der

(
F
(

JHs
3

))
� (5.68)

∼= qconf
(
R⊕ JHs

2

)
.� (5.69)

	 1.	�The first interpretation stems from the embedding Os ⊃ Hs, at conf  level:

conf
(

JOs
3

)
⊃ conf

(
JHs

3

)
⊕ Ã4;� (5.70)

	 2.	�the second one stems from the embedding JOs
3 ⊃ R⊕ JOs

2  at the conf  level:

conf
(

JOs
3

)
⊃ conf

(
R⊕ JOs

2

)
⊕ Ã8;� (5.71)
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	 3.	�the third interpretation stems from JHs
3 ⊃ R⊕ JHs

2 , at the qconf  level:

qconf
(

JHs
3

)
⊃ qconf

(
R⊕ JHs

2

)
⊕ Ã4.� (5.72)

5.5.2.  P7(7)
2 .  The maximal parabolics P7(7)

2  from (3.14) corresponds to the Bruhat 
decomposition:

E7(7) = N 7(7)−
2 ⊕ (sl(6,R)⊕ sl(2,R))⊕ so(1, 1)⊕N 7(7)+

2 ,� (5.73)

which can be obtained through at least two embedding chains, respectively denoted by I and 
II:

I : E7(7) ⊃ so(6, 6)⊕ sl(2,R) ⊃ii sl(6,R)⊕ sl(2,R)⊕ so(1, 1);� (5.74)

133 = (66, 1)⊕ (1, 3)⊕
(
32′, 2

)
=

{
(35, 1)0 ⊕ (1, 3)0 ⊕ (1, 1)0 ⊕ (1, 2)3 ⊕ (1, 2)−3

⊕ (15, 2)−1 ⊕
(
15′, 2

)
1 ⊕ (15, 1)2 ⊕

(
15′, 1

)
−2 .� (5.75)

II : E7(7) ⊃ns sl(6,R)⊕ sl(3,R) ⊃ sl(6,R)⊕ sl(2,R)⊕ so(1, 1);� (5.76)

133 =(35, 1)⊕ (1, 8)⊕
(
15, 3′

)
⊕
(
15′, 3

)

=

{
(35, 1)0 ⊕ (1, 3)0 ⊕ (1, 1)0 ⊕ (1, 2)3 ⊕ (1, 2)−3

⊕ (15, 2)−1 ⊕
(
15′, 2

)
1 ⊕ (15, 1)2 ⊕

(
15′, 1

)
−2 .

�

(5.77)

The chains of embeddings I and II give rise to a 7-grading with N 7(7)+
2 =

(1, 2)3 + (15, 1)2 +
(
15′, 2

)
1
 . It is here worth remarking that the second steps of the chain 

I do pertain to two different, inequivalent (maximal, symmetric) embeddings of gl(6,R) into 
so(6, 6), respectively denoted by i and ii; such two embeddings can e.g. be discriminated by 
the branching of the chiral spinor irreps. 32 and 32′ of so(6, 6), namely22:

i : so(6, 6) ⊃ sl(6,R)⊕ so(1, 1) :
{

32 = 200 ⊕ 6−2 ⊕ 6′2,
32′ = 15−1 ⊕ 15′1 ⊕ 13 ⊕ 1−3;� (5.78)

ii : so(6, 6) ⊃ sl(6,R)⊕ so(1, 1) :
{

32 = 15−1 ⊕ 15′
1 ⊕ 13 ⊕ 1−3,

32′ = 200 ⊕ 6−2 ⊕ 6′
2.

� (5.79)

Let us now consider the Jordan algebraic interpretation of the various chains. We start by 
observing that

gl(6,R) ∼= str
(

JHs
3

)
∼= conf

(
JCs

3

)
⊕ so(1, 1).� (5.80)

By also recalling (5.67), (5.69) and (5.2), possible interpretations read as follows:

I : conf
(

JOs
3

) JOs
3 ⊃R⊕JOs

2⊃ ⊃conf
(
R⊕ JOs

2

)
⊕ Ã8 ⊃i,ii conf

(
JCs

3

)
⊕ Ã2 ⊕ sl (2,R) ;� (5.81)

22 It is amusing to note that the branching ii is overlooked in the otherwise fairly comprehensive treatment e.g. of 
[119] and [123]; it is however considered e.g. in [124].
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II : qconf
(

JHs
3

)
⊃ns str0

(
JHs

3

)
⊕ slEhlers(3,R) ⊃ str

(
JHs

3

)
⊕ sl(2,R)⊕ so(1, 1).

�

(5.82)

5.5.3.  P7(7)
3 .  The maximal parabolics P7(7)

3  from (3.14) corresponds to the Bruhat 
decomposition:

E7(7) = N 7(7)−
3 ⊕ (sl(4,R)⊕ sl(3,R)⊕ sl(2,R)) ⊕ so(1, 1)⊕N 7(7)+

3 ,
� (5.83)

which can be obtained by at least two chains of embeddings23, respectively denoted by 1 and24 
2 (recall that so(3, 3) ∼= sl(4,R)):

1 : E7(7) ⊃ns sl(6,R)⊕ sl(3,R) ⊃ sl(4,R)⊕ sl(3,R)⊕ sl(2,R)⊕ so(1, 1);
� (5.84)

133 = (35, 1)⊕ (1, 8)⊕
(
15, 3′

)
⊕

(
15′, 3

)

= (15, 1, 1)0 ⊕ (1, 1, 3)0 ⊕ (1, 1, 1)0 ⊕ (4, 1, 2)3 ⊕ (4′, 1, 2)−3

⊕ (1, 8, 1)0 ⊕
(
1, 3′, 1

)
−4 ⊕

(
4, 3′, 2

)
−1 ⊕

(
6, 3′, 1

)
2

⊕ (1, 3, 1)4 ⊕ (4′, 3, 2)1 ⊕ (6, 3, 1)−2 ;

�

(5.85)

2 : E7(7) ⊃ so(6, 6)⊕ sl(2,R) ⊃ so(3, 3)I ⊕ so(3, 3)II ⊕ sl(2,R)
⊃ sl(4,R)⊕ sl(3,R)⊕ sl(2,R)⊕ so(1, 1);

� (5.86)

133 = (66, 1)⊕ (1, 3)⊕
(
32′, 2

)
= (15, 1, 1)⊕ (1, 15, 1)⊕ (6, 6, 1)⊕ (1, 1, 3)⊕

(
4, 4′, 2

)
⊕ (4′, 4, 2)

= (15, 1, 1)0 ⊕ (1, 8, 1)0 ⊕ (1, 1, 1)0 ⊕ (1, 3, 1)4 ⊕
(
1, 3′, 1

)
−4

⊕ (6, 3, 1)−2 ⊕
(
6, 3′, 1

)
2 ⊕ (1, 1, 3)0

⊕
(
4, 3′, 2

)
−1 ⊕ (4, 1, 2)3 ⊕ (4′, 3, 2)1 ⊕ (4′, 1, 2)−3 .
�

(5.87)

These chains of embeddings give rise to a 9-grading, with N 7(7)+
3; a)

∼= N 7(7)+
3; b) =

(1, 3, 1)4 ⊕ (4, 1, 2)3 ⊕
(
6, 3′, 1

)
2 ⊕ (4′, 3, 2)1 .

A Jordan algebraic interpretation of the chains 1 and 2 is based on the following 
identification:

gl(4,R) ∼= so(3, 3)⊕ so(1, 1) ∼= str0

(
R⊕JHs

2

)
,� (5.88)

and it reads

1 :

qconf
(

JHs
3

)
⊃ns str0

(
JHs

3

)
⊕ sl(3,R)Ehlers

or

conf
(

JOs
3

)
⊃ns conf

(
JCs

3

)
⊕ sl(3,R)




⊃ str0(R⊕JHs
2 )⊕ sl(3,R)Ehlers ⊕ Ã4;� (5.89)

23 We use the conventions of [125].
24 In the second step of chain 2 there is complete symmetry between the two so(3, 3) factors, thus the choice of 
which one is branched in the third step is immaterial.
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2 : qconf
(

JHs
3

)
⊃ qconf

(
R⊕JHs

2

)
⊕ Ãq=4

⊃ so(3, 3)I ⊕ so(3, 3)II ⊕ sl(2,R) ⊃ str0

(
R⊕JHs

2

)
⊕ sl(3,R)Ehlers ⊕ Ã4.

�

(5.90)

The second step of the Jordan algebraic interpretation (5.90) of the chain 2 is intentionally left 
explicit: intriguingly, it provides an enhancement of the symmetry obtained by the JP embed-

ding for the 
(
R⊕JHs

2

)
-based theory: indeed, this latter reads

qconf
(

JHs
3

)
⊃ str0

(
R⊕JHs

2

)
⊕ sl(3,R)Ehlers ∼= str0

(
JHs

2

)
⊕ sl(3,R)Ehlers × so(1, 1),� (5.91)

and then the following enhancement takes place:

sl(3,R)Ehlers ⊕ so(1, 1) → sl(4,R) ∼= so(3, 3),� (5.92)

where the so(3, 3) on the right-hand side is one of the two summands in the second step 
of the chain 2. The enhancement (5.92) actually hints for another interpretation of the non-
symmetric embedding

qconf
(

JHs
3

)
⊃ns

nm so(3, 3)I ⊕ so(3, 3)II ⊕ sl(2,R),� (5.93)

where the subscript ‘nm’ denotes its next-to-maximal nature (i.e. the fact that it is realized by 
two subsequent maximal embeddings, namely the first two steps of chain 2). In fact, (5.93) 
can be interpreted as the D  =  6 case of the Ehlers embedding for the non-supersymmetric 
Hs-based gravity theory (see [117] and Refs. therein), and its next-to-maximal nature is con-
sistent with the treatment of [45]; in other words, (5.93) can be interpreted as follows:

qconf
(

JHs
3

)
⊃ns

nm str0

(
JHs

2

)
⊕ Ã4 ⊕ sl(4,R)Ehlers,� (5.94)

where therefore one of the two so(3, 3) factors (say, so(3, 3)I) is conceived as str0

(
JHs

2

)
, while 

the other one (say, so(3, 3)II) is nothing but the D  =  6 Ehlers symmetry, and the commuting 
sl(2,R) factor is seen as Ã4. As a consequence of this interpretation, (5.90) can concisely be 
rewritten as:

2 : qconf
(

JHs
3

)
⊃ qconf

(
R⊕JHs

2

)
⊕ Ã4

⊃ str0

(
JHs

2

)
⊕ Ã4 ⊕ sl(4,R)Ehlers

⊃ str0

(
R⊕JHs

2

)
⊕ sl(3,R)Ehlers ⊕ Ã4,

�

(5.95)

where

str0

(
R⊕JHs

2

)
∼= so(1, 1)⊕ str0

(
JHs

2

)
.� (5.96)

5.5.4.  P7(7)
4 .  The maximal parabolics P7(7)

4  from (3.14) corresponds to the Bruhat 
decomposition:

E7(7) =
(
N−

4

)
⊕ (sl(5,R)⊕ sl(3,R)) ⊕ so(1, 1)⊕

(
N+

4

)
,� (5.97)
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which can be obtained through at least two chains of embeddings, respectively denoted by 1 
and 2:

1 : E7(7) ⊃ns sl(6,R)⊕ sl(3,R) ⊃ sl(5,R)⊕ sl(3,R)⊕ so(1, 1);� (5.98)

133 = (35, 1)⊕ (1, 8)⊕
(
15, 3′

)
⊕

(
15′, 3

)

= (24, 1)0 ⊕ (1, 1)⊕ (5, 1)6 ⊕ (5′, 1)−6 ⊕ (1, 8)0

⊕
(
5, 3′

)
−4 ⊕

(
10, 3′

)
2 ⊕ (5′, 3)4 ⊕

(
10′, 3

)
−2 ;

� (5.99)

2 : E7(7) ⊃ sl(8,R) ⊃ sl(5,R)⊕ sl(3,R)⊕ so(1, 1);� (5.100)

133 = 63 ⊕ 70 = (24, 1)0 ⊕ (1, 8)0 ⊕ (1, 1)0 ⊕ (5, 3′)8 ⊕ (5′, 3)−8

⊕ (5, 1)−12 ⊕ (5′, 1)12 ⊕ (10, 3′)−4 ⊕ (10′, 3)4.
� (5.101)

Both chains 1 and 2 give rise to a 7-grading, with N 7(7)+
4; a) = (5, 1)6 ⊕ (5′, 3)4 ⊕

(
10, 3′

)
2 and 

N 7(7)+
4; b) = (5′, 1)12 ⊕ (5, 3′)8 ⊕ (10′, 3)4 (both of real dimension 50). Note that 1 ↔ 2) iff the 

weights of the parabolic so(1,1)1 gets doubled, and iff 5 ↔ 5′ (yielding 10 ↔ 10′) and 3 ↔ 3′ 
in sl(5,R) and sl(3,R), respectively. A Jordan algebraic interpretation of the first step of chains 

1 and 2 coincides with the one of chain 1 of P7(7)
3 , and of chain 1 of case P7(7)

2 , respectively.

5.5.5.  P7(7)
5 .  The maximal parabolics P7(7)

5  from (3.14) corresponds to the Bruhat 
decomposition:

E7(7) = N 7(7)−
5 ⊕ so(5, 5)⊕ sl(2,R) ⊕ so(1, 1)⊕N 7(7)

5 ,� (5.102)

which can be obtained through the embedding chain:

E7(7) ⊃ so(6, 6)⊕ sl(2,R) ⊃ so(5, 5)⊕ sl(2,R)⊕ so(1, 1);� (5.103)

133 = (66, 1)⊕ (1, 3)⊕
(
32′, 2

)

= (45, 1)0 ⊕ (1, 1)0 ⊕ (10, 1)2 ⊕ (10, 1)−2 ⊕ (1, 3)0 ⊕ (16, 2)−1 ⊕
(
16′, 2

)
1 ,

� (5.104)

giving rise to a 5-grading, with N 7(7)
5 = (10, 1)2 ⊕

(
16′, 2

)
1 . Since

so(5, 5)⊕ so(1, 1) ∼= str0

(
R⊕ JOs

2

)
∼= str

(
JOs

2

)
,� (5.105)

at least two Jordan algebraic interpretations (denoted by I and II) of the chain above can be 
given, namely:

I : JOs
3 ⊃ R⊕ JOs

2 ⇒ conf
(

JOs
3

)
⊃ conf

(
R⊕ JOs

2

)
⊕ Ã8 ⊃ str

(
JOs

2

)
⊕ sl(2,R)⊕ Ã8;� (5.106)

II : qconf
(

JHs
3

)
⊃ conf

(
JHs

3

)
⊕ sl(2,R)Ehlers ⊃ str

(
JOs

2

)
⊕ sl(2,R)Ehlers.

� (5.107)

5.5.6.  P7(7)
6 .  The maximal parabolics P7(7)

6  from (3.14) corresponds to the Bruhat 
decomposition:
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E7(7) = N 7(7)−
6 ⊕ E6(6) ⊕ so(1, 1)⊕N 7(7)+

6 ,� (5.108)

giving rise to a 3-grading. At least two Jordan algebraic interpretations (denoted by I and II) 
of the chain above can be given:

I : Hs ⊃ Cs ⇒ qconf
(

JHs
3

)
⊃ qconf

(
JCs

3

)
⊕ Ã2;� (5.109)

II : conf
(

JOs
3

)
⊃ str

(
JOs

3

)
∼= str0

(
JOs

3

)
⊕ so(1, 1)KK.� (5.110)

It is worth remarking the different interpretation of the parabolic so(1, 1) (giving rise to the 
3-grading) in I and II: in I, it is identified with Ã2, whereas in II it is the so(1, 1)KK of the S1-
reduction D = 5 → 4.

5.5.7.  P7(7)
7 .  The maximal parabolics P7(7)

7  from (3.14) corresponds to the Bruhat 
decomposition:

E7(7) = N 7(7)−
7 ⊕ sl(7,R)⊕ so(1, 1)⊕N 7(7)+

7 ,� (5.111)

which can be obtained through the embedding chain

E7(7) ⊃ sl (8,R) ⊃ sl (7,R)⊕ so(1, 1);� (5.112)

133 = 63 ⊕ 70 = 480 ⊕ 10 ⊕ 78 ⊕ 7′
−8 ⊕ 35−4 ⊕ 35′4.� (5.113)

Thus, it gives rise to a 5-grading, with N 7(7)+
7 = 35′4 ⊕ 78 .

At least two Jordan algebraic interpretations (denoted by I and II) of the first step of the 
chain above can be given, respectively pertaining to Hs and Os:

I : qconf
(

JHs
3

)
⊃ sl (q + 4,R)|q=4 ;� (5.114)

II : conf
(

JOs
3

)
⊃ sl (q,R)|q=8 .� (5.115)

5.6.  E7(−5)

The Jordan interpretation of E7(−5) reads:

E7(−5)
∼= qconf

(
JH3

)
.� (5.116)

5.6.1.  P7(−5)
1 .  The maximal parabolics P7(−5)

1  from (3.16) corresponds to the Bruhat 
decomposition:

E7(−5) = N 7(−5)−
1 ⊕ so∗(12)⊕ so(1, 1)⊕N 7(−5)

1 ,� (5.117)

which can be obtained through the embedding chain

E7(−5) ⊃ so∗(12)⊕ sl(2,R) ⊃ so∗(12)⊕ so(1, 1);� (5.118)

133 = (66, 1)⊕ (1, 3)⊕
(
32′, 2

)
= 660 ⊕ 10 ⊕ 12 ⊕ 1−2 ⊕ 32′1 ⊕ 32′

−1,
� (5.119)
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thus giving rise to a 5-grading of contact type, with N 7(−5)+
1 = 12 ⊕ 32′1. By observing that

so∗(12) ∼= conf
(
JH3

) ∼= der
(
F
(
JH3

))
,� (5.120)

a Jordan algebraic interpretation (of the first step) of the chain above is given by the Ehlers 
embedding for the H-based magic supergravity theory:

qconf
(
JH3

)
⊃ conf

(
JH3

)
⊕ sl(2,R)Ehlers;� (5.121)

thus, the parabolic so(1, 1) (determining the 5-grading) is the non-compact Cartan of the 
D  =  4 Ehlers sl(2,R)Ehlers.

5.6.2.  P7(−5)
2 .  The maximal parabolics P7(−5)

2  from (3.16) corresponds to the Bruhat 
decomposition:

E7(−5) = N 7(−5)−
2 ⊕ so(7, 3)⊕ su(2)⊕ so(1, 1)⊕N 7(−5)+

2 ,� (5.122)

which can be obtained through the embedding chain

E7(−5) ⊃ so(8, 4)⊕ su(2) ⊃ so(7, 3)⊕ su(2)⊕ so(1, 1);� (5.123)

133 = (66, 1)⊕ (1, 3)⊕
(
32′, 2

)

= (45, 1)0 ⊕ (1, 1)0 ⊕ (10, 1)2 ⊕ (10, 1)−2 ⊕ (1, 3)0 ⊕ (16, 2)−1 ⊕
(
16′, 2

)
1 .

� (5.124)

Thus, it gives rise to a 5-grading (see (5.103)–(5.104)), with N 7(−5)+
5 = (10, 1)2 ⊕

(
16′, 2

)
1 . 

Since

so(8, 4) ∼= qconf
(
R⊕ JH2

)
,� (5.125)

a Jordan algebraic interpretation (of the first step) of the chain above is given by the embed-
ding JH3 ⊃ R⊕ JH2  considered at qconf  level :

qconf
(
JH3

)
⊃ conf

(
R⊕ JH2

)
⊕A4.� (5.126)

5.6.3.  P7(−5)
3 .  The maximal parabolics P7(−5)

3  from (3.16) corresponds to the Bruhat 
decomposition:

E7(−5) = N 7(−5)−
3 ⊕ su∗(6)⊕ sl(2,R) ⊕ so(1, 1)⊕N 7(−5)+

3 ,� (5.127)

which can be obtained at least through two chains of embeddings, respectively denoted by 1 
and 2:

1 : E7(−5) ⊃ns su∗(6)⊕ sl(3,R) ⊃ su∗(6)⊕ sl(2,R)⊕ so(1, 1);� (5.128)

133 = (35, 1)⊕ (1, 8)⊕
(
15, 3′)⊕ (

15′, 3
)

=

{
(35, 1)0 ⊕ (1, 3)0 ⊕ (1, 1)0 ⊕ (1, 2)3 ⊕ (1, 2)−3

⊕ (15, 2)−1 ⊕
(
15′, 2

)
1 ⊕ (15, 1)2 ⊕

(
15′, 1

)
−2 ;

�
(5.129)

2 : E7(−5) ⊃ so∗(12)⊕ sl(2,R) ⊃ii su∗(6)⊕ sl(2,R)⊕ so(1, 1);� (5.130)
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133 = (66, 1)⊕ (1, 3)⊕
(
32′, 2

)

=

{
(35, 1)0 ⊕ (1, 3)0 ⊕ (1, 1)0 ⊕ (1, 2)3 ⊕ (1, 2)−3

⊕ (15, 2)−1 ⊕
(
15′, 2

)
1 ⊕ (15, 1)2 ⊕

(
15′, 1

)
−2 .

�

(5.131)

Both chains 1 and 2 give rise to a 7-grading, with and N 7(−5)+
3 = (1, 2)3 ⊕ (15, 1)2 ⊕

(
15′, 2

)
1 . 

Once again, it is here worth remarking that the second step of the chain 2 do pertain to two dif-
ferent, inequivalent (maximal, symmetric) embeddings of su∗(6,R)× so(1, 1) into so∗(12), 
respectively denoted by i and ii; such two embeddings can e.g. be discriminated by (a different 
non-compact, real form of) the branching of the chiral spinor irreps. 32 and 32′ of so∗(12), 
see (5.78)–(5.79).

Let us now consider the Jordan algebraic interpretation of the various chains. We observe 
that

su∗(6) ∼= str0
(
JH3

) ∼= der
(
JH3 , JH′

3

)
� so(1, 1).� (5.132)

Thus, Jordan interpretations can be given as follows:

1 : qconf
(
JH3

)
⊃ns str

(
JH3

)
⊕ slEhlers(3,R) ⊃ str

(
JH3

)
⊕ sl(2,R)⊕ so(1, 1).

�

(5.133)

2 : qconf
(
JH3

)
⊃ conf

(
JH3

)
⊕ slEhlers(2,R) ⊃i,ii str0

(
JH3

)
⊕ sl(2,R)Ehlers ⊕ so(1, 1)KK.� (5.134)

It is here worth commenting that the first step of the interpretation of 1 is the JP embedding 
for the H-based theory (determining the D  =  5 Ehlers sl(3,R)Ehlers), and the resulting para-
bolic so(1, 1) (generating the 7-grading) is the so(1, 1) commuting factor in the right-hand 
side of the maximal, symmetric embedding slEhlers(3,R) ⊃ sl(2,R)⊕ so(1, 1). On the other 
hand, the first step of the interpretation of 2 is the Ehlers embedding for the H-based theory 
(determining the D  =  4 Ehlers sl(2,R)Ehlers through the inverse c∗-map [115, 116]), and the 
second step consists in an inverse R∗-map [113], which thus introduces the so(1, 1)KK of the 
S1-reduction D = 5 → 4; in this case, this latter is the parabolic so(1, 1) (which generates the 
7-grading in c).

5.6.4.  P7(−5)
4 .  The maximal parabolics P7(−5)

4  from (3.16) corresponds to the Bruhat 
decomposition:

E7(−5) = N 7(−5)−
4 ⊕ so(5, 1)⊕ sl(3,R)⊕ su(2)⊕ so(1, 1)⊕N 7(−5)+

4 ,
� (5.135)

which can be obtained through at least two chains of embeddings, respectively denoted by 1 
and 2 (recall that su∗(4) ∼= so(5, 1), su∗(2) ∼= su(2)):

1 : E7(−5) ⊃ns su∗(6)⊕ sl(3,R) ⊃ so(5, 1)⊕ su(2)⊕ sl(3,R)⊕ so(1, 1)
� (5.136)

133 = (35, 1)⊕ (1, 8)⊕
(
15, 3′

)
⊕
(
15′, 3

)

= (15, 1, 1)0 ⊕ (1, 3, 1)0 ⊕ (1, 1, 1)0 ⊕ (4, 2, 1)3 ⊕ (4′, 2, 1)−3

⊕ (1, 1, 8)0 ⊕ (1, 1, 3′)−4 ⊕ (4, 2, 3′)−1 ⊕ (6, 1, 3′)2

⊕ (1, 1, 3)4 ⊕ (4′, 2, 3)1 ⊕ (6, 1, 3)−2 ;

�

(5.137)
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2 : E7(−5) ⊃ so(8, 4)⊕ su(2)
⊃ so(5, 1)⊕ su(2)⊕ sl(4,R) ⊃ so(5, 1)⊕ su(2)⊕ sl(3,R)⊕ so(1, 1);

� (5.138)

133 = (66, 1)⊕ (1, 3)⊕
(
32′, 2

)

= (15, 1, 1)⊕ (1, 15, 1)⊕ (6, 6, 1)⊕ (1, 1, 3)⊕
(
4, 4′, 2

)
⊕ (4′, 4, 2)

= (15, 1, 1)0 ⊕ (1, 3, 1)0 ⊕ (1, 1, 1)0 ⊕ (4, 2, 1)3 ⊕ (4′, 2, 1)−3

⊕ (1, 1, 8)0 ⊕ (1, 1, 3′)−4 ⊕ (4, 2, 3′)−1 ⊕ (6, 1, 3′)2 ⊕ (1, 1, 3)4 ⊕ (4′, 2, 3)1 ⊕ (6, 1, 3)−2 .
� (5.139)

Note that 1 and 2 are different non-compact real forms of the chains 1 and 2 pertaining to P7(7)
3  

(and the same holds for the maximal parabolics under consideration). The chains of embeddings 

1 and 2 give rise to a 7-grading, with N 7(−5)+
4 = (1, 1, 3)4 ⊕ (4, 2, 1)3 ⊕ (6, 1, 3′)2 ⊕ (4′, 2, 3)1 .

A Jordan algebraic interpretation of the chains 1 and 2 is based on the following 
identification:

so(5, 1)⊕ so(1, 1) ∼= str0
(
R⊕JH2

)
,� (5.140)

and it reads as follows:

1 : qconf
(
JH3

)
⊃ns str0

(
JH3

)
⊕ sl(3,R)Ehlers ⊃ str0(R⊕JH2 )⊕A4 ⊕ sl(3,R)Ehlers;

� (5.141)

2 : qconf
(
JH3

)
⊃ qconf

(
R⊕JH2

)
⊕A4

⊃ so(5, 1)⊕ so(3, 3)⊕ sl(2,R) ⊃ str0
(
R⊕JH2

)
⊕ sl(3,R)Ehlers ⊕Aq=4.

� (5.142)
The second step of the Jordan-algebraic interpretation (5.142) of the chain 2 is intention-
ally left explicit: intriguingly, it constitutes an enhancement of the symmetry obtained by the 
D  =  5 case of the Ehlers embedding for the 

(
R⊕JH2

)
-based theory. In fact, this latter reads

qconf
(
JH3

)
⊃ str0

(
R⊕JH2

)
⊕ sl(3,R)Ehlers ∼= str0

(
JH2

)
⊕ sl(3,R)Ehlers ⊕ so(1, 1),

�
(5.143)

and then the following enhancement takes place:

sl(3,R)Ehlers ⊕ so(1, 1) → sl(4,R) ∼= so(3, 3).� (5.144)

The enhancement (5.144) actually hints for another interpretation of the non-symmetric and 
next-to-maximal embedding

qconf
(

JHs
3

)
⊃ns

nm so(5, 1)⊕ so(3, 3)⊕ sl(2,R).� (5.145)

In fact, (5.145) can be interpreted as the D  =  6 case of the Ehlers embedding for the H-based 
magic supergravity theory (which also enjoys a twin N = 6 fermionic completion), and its 
next-to-maximal nature is consistent with the treatment of [45]; in other words, (5.145) can 
be interpreted as follows:

qconf
(
JH3

)
⊃ns

nm str0
(
JH2

)
⊕A4 ⊕ sl(4,R)Ehlers,� (5.146)

where therefore one of the so(5, 1) factor is conceived as str0
(
JH2

)
, while so(3, 3) is nothing 

but the D  =  4 Ehlers symmetry, and the commuting su(2) factor is seen as A4. As a conse-
quence of this interpretation, (5.142) can concisely be rewritten as:
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2 : qconf
(
JH3

)
⊃ qconf

(
R⊕JH2

)
⊕Aq=4

⊃ str0
(
JH2

)
⊕A4 ⊕ sl(4,R)Ehlers

⊃ str0
(
R⊕JH2

)
⊕ sl(3,R)Ehlers ⊕A4,

�

(5.147)

where

str0
(
R⊕JH2

) ∼= so(1, 1)⊕ str0
(
JH2

)
.� (5.148)

5.7.  E7(−25)

This is the minimally non-compact real form of E7. Its Jordan interpretation reads:

E7(−25)
∼= conf

(
JO3

)
∼= der

(
F
(

JO3
))

.� (5.149)

5.7.1.  P7(−25)
1 .  The maximal parabolics P7(−25)

1  from (3.18) corresponds to the Bruhat 
decomposition:

E7(−25) = N 7(−25)−
1 ⊕ so(10, 2)⊕ so(1, 1)⊕N 7(−25)+

1 ,� (5.150)

which can be obtained through the embedding chain

E7(−25) ⊃ so(2, 10)⊕ sl(2,R) ⊃ so(2, 10)⊕ so(1, 1);� (5.151)

133 = (66, 1)⊕ (1, 3)⊕
(
32′, 2

)
= 660 ⊕ 10 ⊕ 12 ⊕ 1−2 ⊕ 32′1 ⊕ 32′

−1,
� (5.152)

which gives rise to a 5-grading with N 7(−25)+
1 = 12 ⊕ 32′1 .

A Jordan algebraic interpretation (of the first step) of the chain above is given by:

conf
(

JO3
) JO3 ⊃R⊕JO2⊃ ⊃conf

(
R⊕ JO2

)
⊕A8.� (5.153)

In this case,, the parabolic so(1, 1) (giving rise to the 5-grading) is the non-compact Cartan of 
the sl(2,R) factor in the first step of (5.151), namely of the axio-dilatonic (S-duality) factor of 

conf
(
R⊕ JO2

)
.

5.7.2.  P7(−25)
2 .  The maximal parabolics P7(−25)

2  from (3.18) corresponds to the Bruhat 
decomposition:

E7(−25) = N 7(−25)−
2 ⊕ (so(9, 1)⊕ sl(2,R)) ⊕ so(1, 1)⊕N 7(−25)+

2 ,� (5.154)

which can be obtained through the embedding chain

E7(−25) ⊃ so(2, 10)⊕ sl(2,R) ⊃ so(1, 9)⊕ sl(2,R)⊕ so(1, 1);� (5.155)

133 = (66, 1)⊕ (1, 3)⊕
(
32′, 2

)

= (45, 1)0 ⊕ (1, 1)0 ⊕ (10, 1)2 ⊕ (10, 1)−2 ⊕ (1, 3)0 ⊕ (16, 2)−1 ⊕
(
16′, 2

)
1 .

�
(5.156)

Thus, it gives rise to a 5-grading (see (5.103)–(5.104), as well as (5.123) and (5.124)), with 

N 7(−25)+
2 = (10, 1)2 ⊕

(
16′, 2

)
1 . Since
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so(2, 10)⊕ sl(2,R) ∼= conf
(
R⊕ JO2

)
∼= der

(
F
(
R⊕ JO2

))
;� (5.157)

so(1, 9) ∼= str0

(
JO2

)

∼= str
(

JO2
)
� so(1, 1) ∼= str0

(
R⊕ JO2

)
� so(1, 1),

� (5.158)

a Jordan algebraic interpretation of the chain above is given by

conf
(
JO3

) JO3 ⊃R⊕JO2⊃ ⊃conf
(
R⊕ JO2

)
⊕A8 ⊃ str0

(
R⊕ JO2

)
⊕ sl(2,R)⊕A8.

� (5.159)

5.7.3.  P7(−25)
3 .  The maximal parabolics P7(−25)

3  from (3.18) corresponds to the Bruhat 
decomposition:

E7(−25) = N 7(−25)−
3 ⊕ E6(−26) ⊕ so(1, 1)⊕N 7(−25)

3 ,� (5.160)

giving rise to a 3-grading with N 7(−25)+
3 = 27′

2 . A Jordan algebraic interpretation of the chain 
above reads

conf
(

JO3
)
⊃ str

(
JO3

)
∼= str0

(
JO3

)
⊕ so(1, 1)KK;� (5.161)

therefore, the parabolic so(1, 1) (generating the 3-grading) is the so(1, 1)KK of the S1-reduction 
D = 5 → 4.

5.8.  E8(8)

This is the split real form of E8. Its Jordan interpretation reads:

E8(8)
∼= qconf

(
JOs

3

)
.� (5.162)

5.8.1.  P8(8)
1 .  The maximal parabolics P8(8)

1  from (3.20) corresponds to the Bruhat 
decomposition:

E8(8) = N 8(8)−
1 ⊕ so(7, 7)⊕ so(1, 1)⊕N 8(8)+

1 ,� (5.163)

which can be obtained through embedding chain:

E8(8) ⊃ so(8, 8) ⊃ so(7, 7)⊕ so(1, 1);� (5.164)

248 = 120 ⊕ 128 = 910 ⊕ 10 + 142 ⊕ 14−2 ⊕ 64−1 ⊕ 64′1.� (5.165)

It gives rise to a 5-grading, with N 8(8)+
1 = 142 ⊕ 64′1 . By observing that

so(8, 8) ∼= qconf
(
R⊕ JOs

2

)
,� (5.166)

a Jordan algebraic interpretation (of the first step) of the chain above is given by the embed-
ding JOs

3 ⊃ R⊕ JOs
2  considered at the qconf  level:

qconf
(

JOs
3

)
⊃ qconf

(
R⊕ JOs

2

)
⊕ Ã8.� (5.167)
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5.8.2.  P8(8)
2 .  The maximal parabolics P8(8)

2  from (3.20) corresponds to the Bruhat 
decomposition:

E8(8) = N 8(8)−
2 ⊕ sl(7,R)⊕ sl(2,R)⊕ so(1, 1)⊕N 8(8)+

2 ,� (5.168)

which can be obtained through the embedding chain

E8(8) ⊃ns sl(9,R) ⊃ sl(7,R)⊕ sl(2,R)⊕ so(1, 1);� (5.169)

248 = 80 ⊕ 84 ⊕ 84′ =





(48, 1)0 ⊕ (1, 3)0 ⊕ (1, 1)0 ⊕ (7, 2)9 ⊕ (7′, 2)−9

⊕ (7, 1)12 ⊕ (7′, 1)−12

⊕ (21, 2)−3 ⊕
(
21′, 2

)
3 ⊕ (35, 1)6 ⊕

(
35′, 1

)
−6 .

�
(5.170)

Thus, it gives rise to a 9-grading, with N 8(8)+
2 = (7, 1)12 ⊕ (7, 2)9 ⊕ (35, 1)6 ⊕

(
21′, 2

)
3 . 

The interpretation of the first step of the chain above is provided by the D  =  11 case of the 
Ehlers embedding, which is actually relevant for M-theory (whose gD=11 = ∅) (see [45], and 
Refs. therein):

qconf
(
JOs

3

)
⊃ns gD=11 ⊕ sl(D − 2,R)|D=11 .� (5.171)

5.8.3.  P8(8)
3 .  The maximal parabolics P8(8)

3  from (3.20) corresponds to the Bruhat 
decomposition:

E8(8) = N 8(8)−
3 ⊕ sl(5,R)⊕ sl(3,R)⊕ sl(2,R)⊕ so(1, 1)⊕N 8(8)+

3 ,� (5.172)

which can be obtained by at least four chains of embeddings25, respectively denoted by 1, 2, 
3 and 4:

1 : E8(8) ⊃ns sl(5,R)I ⊕ sl(5,R)II

⊃ sl(5,R)⊕ sl(3,R)⊕ sl(2,R)⊕ so(1, 1);
� (5.173)

248 = (24, 1)⊕ (1, 24)⊕ (10, 5)⊕ (10′, 5′)⊕
(
5, 10′

)
⊕ (5′, 10)

= (24, 1, 1)0 ⊕ (1, 8, 1)0 ⊕ (1, 1, 3)0 ⊕ (1, 1, 1)0 ⊕ (1, 3, 2)5 ⊕ (1, 3′, 2)−5

⊕ (10, 1, 2)−3 ⊕ (10, 3, 1)2 ⊕ (10′, 1, 2)3 ⊕ (10′, 3′, 1)−2

⊕ (5′, 1, 1)−6 ⊕ (5′, 3′, 1)4 ⊕ (5′, 3, 2)−1 ⊕ (5, 1, 1)6 ⊕ (5, 3, 1)−4 ⊕ (5, 3′, 2)1;

�

(5.174)

2 : E8(8) ⊃ E7(7) ⊕ sl(2,R)
⊃ sl(8,R)⊕ sl(2,R) ⊃ sl(5,R)⊕ sl(3,R)⊕ sl(2,R)⊕ so(1, 1);

� (5.175)

248 = (133, 1)⊕ (1, 3)⊕ (56, 2) = (63, 1)⊕ (70, 1)⊕ (1, 3)⊕ (28, 2)⊕ (28′, 2)
= (24, 1, 1)0 ⊕ (1, 8, 1)0 ⊕ (1, 1, 1)0 ⊕ (5, 3′, 1)8 ⊕ (5′, 3, 1)−8

⊕ (5, 1, 1)−12 ⊕ (5′, 1, 1)12 ⊕ (10, 3′, 1)−4 ⊕ (10′, 3, 1)4 ⊕ (1, 1, 3)0

⊕ (1, 3′, 2)−10 ⊕ (5, 3, 2)−2 ⊕ (10, 1, 2)6 ⊕ (1, 3, 2)10 ⊕ (5′, 3′, 2)2 ⊕ (10′, 1, 2)−6;

� (5.176)

25 Once again, we use the conventions of [125].
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3 : E8(8) ⊃ E7(7) ⊕ sl(2,R)
⊃ns sl(6,R)⊕ sl(3,R)⊕ sl(2,R) ⊃ sl(5,R)⊕ sl(3,R)⊕ sl(2,R)⊕ so(1, 1);

� (5.177)

248 = (133, 1)⊕ (1, 3)⊕ (56, 2)
= (35, 1, 1)⊕ (1, 8, 1)⊕

(
15, 3′, 1

)
⊕

(
15′, 3, 1

)
⊕ (1, 1, 3)⊕ (6, 3, 2)⊕ (6′, 3′, 2)⊕ (20, 1, 2)

= (24, 1, 1)0 ⊕ (1, 1, 1)0 ⊕ (5, 1, 1)6 ⊕ (5′, 1, 1)−6 ⊕ (1, 8, 1)0

⊕
(
5, 3′, 1

)
−4 ⊕

(
10, 3′, 1

)
2 ⊕ (5′, 3, 1)4 ⊕

(
10′, 3, 1

)
−2

⊕ (1, 1, 3)0 ⊕ (1, 3, 2)−5 ⊕ (5, 3, 2)1 ⊕ (1, 3′, 2)5 ⊕ (5′, 3′, 2)−1 ⊕ (10, 1, 2)−3 ⊕ (10′, 1, 2)3;
�

(5.178)

4 : E8(8) ⊃ns E6(6) ⊕ sl(3,R)
⊃ sl(6,R)⊕ sl(3,R)⊕ sl(2,R) ⊃ sl(5,R)⊕ sl(3,R)⊕ sl(2,R)⊕ so(1, 1);

�

(5.179)

248 = (78, 1)⊕ (1, 8)⊕ (27, 3)⊕ (27′, 3′)
= (35, 1, 1)⊕ (1, 1, 3)⊕ (20, 1, 2)⊕ (1, 8, 1)
⊕ (6, 3, 2)⊕ (15′, 3, 1)⊕ (6′, 3′, 2)⊕ (15, 3′, 1)

= (24, 1, 1)0 ⊕ (1, 1, 1)0 ⊕ (5, 1, 1)6 ⊕ (5′, 1, 1)−6 ⊕ (1, 1, 3)0 ⊕ (10, 1, 2)−3 ⊕ (10′, 1, 2)3

⊕ (1, 8, 1)0 ⊕ (1, 3, 2)−5 ⊕ (5, 3, 2)1 ⊕ (5, 3′, 1)−4 ⊕ (10, 3′, 1)2

⊕ (5′, 3, 1)4 ⊕ (10′, 3, 1)−2 ⊕ (1, 3′, 2)5 ⊕ (5′, 3′, 2)−1 .
�

(5.180)

The chains of embeddings 1, 2, 3 and 4 give rise to a 13-grading, with

N 8(8)+
3; 1 = (5, 1, 1)6 ⊕ (1, 3, 2)5 ⊕ (5′, 3′, 1)4 ⊕ (10′, 1, 2)3 ⊕ (10, 3, 1)2 ⊕ (5, 3′, 2)1;� (5.181)

N 8(8)+
3; 2 = (5′, 1, 1)12 ⊕ (1, 3, 2)10 ⊕ (5, 3′, 1)8 ⊕ (10, 1, 2)6 ⊕ (10′, 3, 1)4 ⊕ (5′, 3′, 2)2;� (5.182)

N 8(8)+
3; 3

∼= N 8(8)⊕
3; 4 = (5, 1, 1)6 ⊕ (1, 3′, 2)5 ⊕ (5′, 3, 1)4 ⊕ (10′, 1, 2)3 ⊕ (10, 3′, 1)2 ⊕ (5, 3, 2)1,

� (5.183)
all of real dimension 106. Note that 1 ↔ 3 ≡ d) iff 3 ↔ 3′ in sl(3,R), and 2 ↔ 3 ≡ 4 iff the 
weights of the parabolic so(1, 1) of 2  are multiplied by 1/2, and iff 5 ↔ 5′ and 3 ↔ 3′ in 
sl(5,R) and in sl(3,R), respectively.

The Jordan algebraic interpretation of the chains 1, 2, 3 and 4 goes as follows. The first 
(non-symmetric) embedding in chain 1 can be interpreted as the D  =  7 case of the Ehlers 
embedding for the Os-based theory (maximal supergravity) [45], thus determining the 
D  =  7 Ehlers sl(5,R)Ehlers; then, the subsequent embedding enjoys a(n at least) twofold 
interpretation: it can be conceived as the uplift to D  =  8, where the U-duality Lie algebra is 
gD=8 (Os) = sl(3,R)⊕ sl(2,R) (as such, the parabolic so(1, 1) in this chain is nothing but the 
KK so(1, 1)KK in the S1-reduction D = 8 → 7 of maximal supergravity), or it can be seen as 
a further decomposition of sl(5,R)Ehlers into sl(3,R)⊕ sl(2,R)⊕ so(1, 1):

1 : qconf
(

JOs
3

)
⊃ns gD=7 (Os)⊕ sl(5,R)Ehlers ⊃




gD=8 (Os)⊕ sl(5,R)Ehlers ⊕ so(1, 1)KK;
or
gD=7 (Os)⊕ sl(3,R)⊕ sl(2,R)⊕ so(1, 1).

� (5.184)
On the other hand, the first embedding in chain 2 enjoys a(n at least) twofold interpretation, 
by virtue of the twofold characterization of E7(7) given by (5.62) and (5.63) (ultimately due 
to the symmetry of the double-split Magic Square L3 (As,Bs) [38]): it can be interpreted as 
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the Ehlers embedding for the Os-based theory (corresponding to the uplift D = 3 → 4 of 
maximal supergravity, and giving rise to the D  =  4 Ehlers symmetry sl(2,R)Ehlers), or it can 
be conceived as a consequence of the embedding Os ⊃ Hs, evaluated at the qconf  level. The 
second step also has an at least twofold interpretation, given by (5.114) and (5.115):

2 : qconf
(

JOs
3

)
⊃




conf
(

JOs
3

)
⊕ sl(2,R)Ehlers

or

qconf
(

JHs
3

)
⊕ Ã4

⊃





sl(q,R)|q=8 ⊕ sl(2,R)Ehlers

or
sl(q + 4,R)|q=4 ⊕ Ã4

⊃




gD=8 (Os)⊕ sl(5,R)Ehlers ⊕ so(1, 1)KK;
or
gD=7 (Os)⊕ sl(3,R)⊕ sl(2,R)⊕ so(1, 1).

�

(5.185)

The first embedding in chain 3 is the same as the first embedding of chain 2. The second step 
consists of a maximal, non-symmetric embedding, and it has a(n at least) twofold interpreta-
tion, by virtue of the twofold characterization of sl(6,R) given by (5.80) (once again due to 
the symmetry of L3 (As,Bs) [38]): it can be interpreted as the JP embedding for the Hs-based 
theory (thus introducing the D  =  5 Ehlers sl(3,R)Ehlers), or as the consequence of the (non-
maximal) embedding Os ⊃ Cs , evaluated at the level of conformal symmetries:

3 : qconf
(

JOs
3

)
⊃




conf
(

JOs
3

)
⊕ sl(2,R)Ehlers

or

QConf
(
JHs

3

)
× Ãq=4

⊃ns




conf
(

JCs
3

)
⊕ sl(3,R)⊕ sl(2,R)Ehlers

or

str0

(
JHs

3

)
⊕ sl(3,R)Ehlers ⊕ Ã4

⊃




gD=8 (Os)⊕ sl(5,R)Ehlers ⊕ so(1, 1)KK;
or
gD=7 (Os)⊕ sl(3,R)⊕ sl(2,R)⊕ so(1, 1).

�

(5.186)

Finally, each of the steps of the chain 4 has an at least twofold interpretation. As a conse-
quence of the twofold characterization of E6(6) given by (5.1) and (5.2) (once again, due to 
the symmetry of L3 (As,Bs) [38]), a first line of interpretation (the upper one in (5.186)) 
conceives the first embedding as the JP embedding for the Os-based theory (corresponding to 
the uplift D = 3 → 5 of maximal supergravity, and thus giving rise to the D  =  5 Ehlers sym-
metry sl(3,R)Ehlers), followed by the consequence of the embedding Os ⊃ Hs at the level of 
reduced structure symmetry. A second line of interpretation (the lower one in (5.186)) sees the 
first embedding as a consequence of the non-maximal embedding Os ⊃ Cs , evaluated at the 
qconf  level, and then followed an Ehlers embedding, corresponding to an uplift D = 3 → 4, 
and therefore introducing the D  =  4 sl(2,R)Ehlers group. Note that the first two steps of chain 4 
realize the D  =  8 case of the Ehlers embedding for the Os-based theory [45]; thus, in this view 
the sl(6,R) occurring in the second step is nothing but the D  =  8 Ehlers group:
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4 :




qconf
(

JOs
3

)
⊃ns str0

(
JOs

3

)
⊕ sl(3,R)Ehlers ⊃ str0

(
JHs

3

)
⊕ sl(3,R)Ehlers ⊕ Ã4

or

qconf
(

JOs
3

)
⊃ns qconf

(
JCs

3

)
⊕ sl(3,R) ⊃ conf

(
JCs

3

)
⊕ sl(3,R)⊕ sl(2,R)Ehlers

⊃




gD=8 (Os)⊕ sl(5,R)Ehlers ⊕ so(1, 1)KK;
or

gD=7 (Os)⊕ sl(3,R)⊕ sl(2,R)⊕ so(1, 1).

� (5.187)

5.8.4.  P8(8)
4 .  The maximal parabolics P8(8)

4  from (3.20) corresponds to the Bruhat 
decomposition:

E8(8) = N 8(8)−
4 ⊕ sl(5,R)⊕ sl(4,R)⊕ so(1, 1)⊕N 8(8)+

4 ,� (5.188)

which can be obtained by at least two chains of embeddings, respectively denoted by 1 and 2:

1 : E8(8) ⊃ns sl(5,R)I ⊕ sl(5,R)II ⊃ sl(5,R)⊕ sl(4,R)⊕ so(1, 1);� (5.189)

248 = (24, 1)⊕ (1, 24)⊕ (10, 5)⊕ (10′, 5′)⊕
(
5, 10′

)
⊕ (5′, 10)

= (24, 1)0 ⊕ (1, 15)0 ⊕ (1, 1)0 ⊕ (1, 4)5 ⊕ (1, 4′)−5

⊕ (10, 1)−4 ⊕ (10, 4)1 ⊕ (10′, 1)4 ⊕ (10′, 4′)−1

⊕ (5′, 4)−3 ⊕ (5′, 6)2 ⊕ (5, 4′)3 ⊕ (5, 6)−2;

�

(5.190)

2 : E8(8) ⊃ns sl(9,R) ⊃ sl(5,R)⊕ sl(4,R)⊕ so(1, 1);� (5.191)

248 = 80 ⊕ 84 ⊕ 84′ = (24, 1)0 ⊕ (1, 15)0 ⊕ (1, 1)0 ⊕ (5, 4′)9 ⊕ (5′, 4)−9

⊕ (1, 4′)−15 ⊕ (5, 6)−6 ⊕ (10′, 1)12 ⊕ (10, 4)3

⊕ (1, 4)15 ⊕ (5′, 6)6 ⊕ (10, 1)−12 ⊕ (10′, 4′)−3.
�

(5.192)

The chains of embeddings 1 and 2 give rise to an 11-grading, with N 8(8)+
4; a) = (1, 4)5⊕ 

10′, 1)4 ⊕ (5, 4′)3 ⊕ (5′, 6)2 ⊕ (10, 4)1 , N
8(8)+

4; b) = (1, 4)15 ⊕ (10′, 1)12 ⊕ (5, 4′)9 ⊕ (5′, 6)6 ⊕ (10, 4)3, 

both of real dimension 104. Note that 1 ↔ 2 iff the weights of the parabolic so(1, 1) of 1 are 
multiplied by 3. The first steps of chains 1 and 2 are the same as the first steps of chains 1 of 
section 5.8.3 and of section 5.8.2 above, respectively, and thus they correspondingly enjoy the 
same Jordan algebraic interpretation (in particular, (5.171) for the latter).

5.8.5.  P8(8)
5 .  The maximal parabolics P8(8)

5  from (3.20) corresponds to the Bruhat 
decomposition:

E8(8) = N 8(8)−
5 ⊕ so(5, 5)⊕ sl(3,R)⊕ so(1, 1)⊕N 8(8)+

5 ,� (5.193)

which can be obtained through at least two embedding chains, respectively denoted by 1 and 
2 (recall that so(3, 3) ∼= sl(4,R)):

1 : E8(8) ⊃ so(8, 8) ⊃ so(5, 5)⊕ so(3, 3) ⊃ so(5, 5)⊕ sl(3,R)⊕ so(1, 1);
� (5.194)
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248 = 120 ⊕ 128 = (45, 1)⊕ (1, 15)⊕ (10, 6)⊕ (16, 4)⊕ (16′, 4′)
= (45, 1)0 ⊕ (1, 1)0 ⊕ (1, 3)4 ⊕ (1, 3′)−4 ⊕ (1, 8)0

⊕ (10, 3)−2 ⊕ (10, 3′)2 ⊕ (16, 1)−3 ⊕ (16, 3)1 ⊕ (16′, 1)3 ⊕ (16′, 3′)−1;
�

(5.195)
2 : E8(8) ⊃ns E6(6) ⊕ sl(3,R) ⊃ so(5, 5)⊕ sl(3,R)⊕ so(1, 1);� (5.196)

248 = (78, 1)⊕ (1, 8)⊕ (27, 3)⊕ (27′, 3′)
= (45, 1)0 ⊕ (1, 1)0 ⊕ (16, 1)3 ⊕ (16′, 1)−3 ⊕ (1, 1, 8)0

⊕ (1, 3)−4 ⊕ (10, 3)2 ⊕ (16, 3)−1 ⊕ (1, 3′)4 ⊕ (10, 3′)−2 ⊕ (16′, 3′)1.
� (5.197)

The chains of embeddings 1 and 2 give rise to a 9-grading, with N 8(8)+
3; a) = (1, 3)4 ⊕ 

(16′, 1)3 ⊕ (10, 3′)2 ⊕ (16, 3)1, N 8(8)+
3; b) = (1, 3′)4 ⊕ (16, 1)3 ⊕ (10, 3)2 ⊕ (16′, 3′)1, both of real 

dimension 97. Note that 1 ↔ 2 iff the weights of the parabolic so(1, 1)’s gets flipped (or, 
equivalently, iff all M8(8)

5 -irreps. get conjugated). The Jordan-algebraic interpretation of 
chains 1 and 2 is based on the characterization (5.166) and on

so(5, 5) ∼= str0(J
Os
2 ) ∼= str0(R⊕ JO2 )� so(1, 1)� (5.198)

∼= qconf
(
R⊕ JCs

2

)
.� (5.199)

The first step of chain 1 is a consequence of the embedding JOs
3 ⊃ R⊕ JOs

2 , considered at 
the qconf  level; then, by virtue of the quasi-conformal interpretation (5.199) of so(5, 5), the 
second step is a consequence (for cubic semi-simple Jordan algebras) of the non-maximal 
embedding Os ⊃ Cs  (note the commuting factor sl(4,R)). Note also that the next-to-maximal 
(non-symmetric) embedding

E8(8) ⊃ so(5, 5)⊕ so(3, 3) ∼= so(5, 5)⊕ sl(4,R)� (5.200)

is the D  =  6 case of the Ehlers embedding [45] for the Os-based theory (maximal super-
gravity), thus characterizing sl(4,R) as the D  =  6 Ehlers symmetry (see (5.201) below). 
Concerning the chain 2, it has (at least) twofold interpretation: in the first interpretation, its 
first step is the JP embedding for the Os-based theory (maximal supergravity), thus giving 
rise to the D  =  5 Ehlers sl(3,R)Ehlers; then, in the second step a further uplift to D  =  6 is per-
formed, introducing the KK so(1, 1)KK of the S1-reduction D = 6 → 5, which is the parabolic 
so(1, 1) in this chain. In the second interpretation, the first step is a consequence (for cubic 
simple Jordan algebras) of the non-maximal embedding Os ⊃ Cs  (note the commuting factor 
sl(3,R)), while the second step is a consequence of the embedding JCs

3 ⊃ R⊕ JCs
2 , considered 

for quasi-conformal symmetries.

1 : qconf
(

JOs
3

)
⊃ qconf

(
R⊕ JOs

2

)
⊕ Ã8 ⊃ qconf

(
R⊕ JCs

2

)
⊕ Ã8 ⊕ sl(4,R)Ehlers

⊃ qconf
(
R⊕ JCs

2

)
⊕ Ã8 ⊕ sl(3,R)⊕ so(1, 1);

�
(5.201)

2 :




qconf(JOs
3 ) ⊃ns str0(J

Os
3 )⊕ sl(3,R)Ehlers ⊃ str0(J

Os
2 )⊕ Ã8 ⊕ sl(3,R)Ehlers ⊕ so(1, 1)KK .

or

qconf
(

JOs
3

)
⊃ns qconf

(
JCs

3

)
⊕ sl(3,R) ⊃ qconf

(
R⊕ JCs

2

)
⊕ sl(3,R)⊕ Ã2 .

�

(5.202)
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5.8.6.  P8(8)
6 .  The maximal parabolics P8(8)

6  from (3.20) corresponds to the Bruhat 
decomposition:

E8(8) = N 8(8)−
6 ⊕ E6(6) ⊕ sl(2,R)⊕ so(1, 1)⊕N 8(8)+

6 ,� (5.203)

which can be obtained through at least two chains of embeddings, respectively denoted by 1 
and 2:

1 : E8(8) ⊃ E7(7) ⊕ sl(2,R) ⊃ E6(6) ⊕ sl(2,R)⊕ so(1, 1);� (5.204)

248 = (133, 1)⊕ (1, 3)⊕ (56, 2)
= (78, 1)0 ⊕ (1, 1)0 ⊕ (27, 1)−2 ⊕

(
27′, 1

)
2 ⊕ (1, 3)0

⊕ (27, 2)1 ⊕ (27′, 2)−1 ⊕ (1, 2)3 ⊕ (1, 2)−3;

�
(5.205)

2 : E8(8) ⊃ns E6(6) ⊕ sl(3,R) ⊃ E6(6) ⊕ sl(2,R)⊕ so(1, 1);� (5.206)

248 = (78, 1)⊕ (1, 8)⊕ (27, 3)⊕ (27′, 3′)
= (78, 1)0 ⊕ (1, 3)0 ⊕ (1, 1)0 ⊕ (1, 2)3 ⊕ (1, 2)−3

⊕ (27, 1)−2 ⊕ (27, 2)1 ⊕ (27′, 1)2 ⊕ (27′, 2)1.
�

(5.207)

Both chains of embeddings 1 and 2 give rise to a 7-grading, with 

N 8(8)+
3; a)

∼= N 8(8)+
3; b) = (1, 2)3 ⊕

(
27′, 1

)
2 ⊕ (27, 2)1, with real dimension 83. By recalling e.g. 

(5.185), the Jordan-algebraic interpretation of the chains 1 and 2 goes as follows:

1 :




qconf
(

JOs
3

)
⊃ conf

(
JOs

3

)
⊕ sl(2,R)Ehlers ⊃ str0

(
JOs

3

)
⊕ sl(2,R)Ehlers ⊕ so(1, 1)KK;

or

qconf
(

JOs
3

)
⊃ qconf

(
JHs

3

)
⊕ Ãq=4 ⊃ qconf

(
JCs

3

)
⊕ Ã4 ⊕ Ã2;

�

(5.208)

2 :




qconf
(

JOs
3

)
⊃ns str0

(
JOs

3

)
⊕ sl(3,R)Ehlers ⊃ str0

(
JOs

3

)
⊕ sl(2,R)⊕ so(1, 1);

or

qconf
(

JOs
3

)
⊃ns qconf

(
JCs

3

)
⊕ sl(3,R) ⊃ qconf

(
JCs

3

)
⊕ sl(2,R)⊕ so(1, 1).

�

(5.209)

5.8.7.  P8(8)
7 .  The maximal parabolics P8(8)

7  from (3.20) corresponds to the Bruhat decomposition:

E8(8) = N 8(8)−
7 ⊕ E7(7) ⊕ so(1, 1)⊕N 8(8)+

7 ,� (5.210)

which can be obtained through the embedding chain

E8(8) ⊃ E7(7) ⊕ sl(2,R) ⊃ E7(7) ⊕ so(1, 1);� (5.211)

248 = (133, 1)⊕ (1, 3)⊕ (56, 2) = 1330 ⊕ 10 ⊕ 12 ⊕ 1−2 ⊕ 561 ⊕ 56−1,
� (5.212)

giving rise to a 3-grading, with N 8(8)+
7 = 12 ⊕ 561, with real dimension 57. The Jordan alge-

braic interpretation of the first step is the same as the chain 1 of case section 5.8.6 above.
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5.8.8.  P8(8)
8 .  The maximal parabolics P8(8)

8  from (3.20) corresponds to the Bruhat 
decomposition:

E8(8) = N 8(8)−
8 sl(8,R)⊕ so(1, 1)⊕⊕N 8(8)+

8 ,� (5.213)

which can be obtained through the embedding chain

E8(8) ⊃ns sl(9,R) ⊃ sl(8,R)⊕ so(1, 1);
248 = 80 ⊕ 84 ⊕ 84′ = 630 ⊕ 10 ⊕ 89 ⊕ 8′

−9 ⊕ 28−6 ⊕ 563 ⊕ 28′6 ⊕ 56′−3,
� (5.214)

giving rise to a 7-grading, with N 8(8)+
8 = 89 ⊕ 28′6 ⊕ 563, with real dimension 92.

The Jordan algebraic interpretation of the chain goes as follows (recall (5.171))

qconf
(

JOs
3

)
⊃ns gD=11 ⊕ sl(D − 2,R)|D=11

⊃ gD=11 ⊕ sl(D − 2,R)|D=10 ⊕ so(1, 1)
∼= gD=10,IIA ⊕ sl(D − 2,R)|D=10 .

�

(5.215)

5.9.  E8(−24)

This is the minimally non-compact real form of E8. Its Jordan interpretation reads:

E8(−24)
∼= qconf

(
JO3

)
.� (5.216)

5.9.1.  P8(−24)
1 .  The maximal parabolics P8(−24)

1  from (3.22) corresponds to the Bruhat 
decomposition:

E8(−24) = N 8(−24)−
1 ⊕ so(11, 3)⊕ so(1, 1)⊕N 8(−24)+

1 ,� (5.217)

which can be obtained through the embedding chain

E8(−24) ⊃ so(12, 4) ⊃ so(11, 3)⊕ so(1, 1);� (5.218)

248 = 120 ⊕ 128 = 910 ⊕ 10 ⊕ 142 ⊕ 14−2 ⊕ 64−1 ⊕ 64′1,� (5.219)

giving rise to a 5-grading, with N 8(−24)+
8 = 142 ⊕ 64′

1. Since

so(12, 4) ∼= qconf
(
R⊕ JO2

)
,� (5.220)

a Jordan algebraic interpretation (of the first step) of the chain above is given by the embed-
ding JO3 ⊃ R⊕ JO2  considered at the qconf  level:

qconf
(

JO3
)
⊃ qconf

(
R⊕ JO2

)
⊕A8.� (5.221)

5.9.2.  P8(−24)
2 .  The maximal parabolics P8(−24)

2  from (3.22) corresponds to the Bruhat 
decomposition:

E8(8) = N 8(−24)−
2 ⊕ so(9, 1)⊕ sl(3,R)⊕ so(1, 1)⊕N 8(−24)+

2 ,� (5.222)
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which can be obtained through at least two chains of embeddings, respectively denoted by 1 
and 2 (recall that so(3, 3) ∼= sl(4,R)):

1 : E8(−24) ⊃ so(12, 4)
⊃ so(9, 1)⊕ so(3, 3) ⊃ so(9, 1)⊕ sl(3,R)⊕ so(1, 1);

� (5.223)

248 = 120 ⊕ 128 = (45, 1)⊕ (1, 15)⊕ (10, 6)⊕ (16, 4)⊕ (16′, 4′)
= (45, 1)0 ⊕ (1, 1)0 ⊕ (1, 3)4 ⊕ (1, 3′)−4 ⊕ (1, 8)0

⊕ (10, 3)−2 ⊕ (10, 3′)2 ⊕ (16, 1)−3 ⊕ (16, 3)1 ⊕ (16′, 1)3 ⊕ (16′, 3′)−1;
�

(5.224)

2 : E8(−24) ⊃ns E6(−26) ⊕ sl(3,R) ⊃ so(9, 1)⊕ sl(3,R)⊕ so(1, 1);� (5.225)

248 = (78, 1)⊕ (1, 8)⊕ (27, 3)⊕ (27′, 3′)
= (45, 1)0 ⊕ (1, 1)0 ⊕ (16, 1)3 ⊕ (16′, 1)−3 ⊕ (1, 1, 8)0

⊕ (1, 3)−4 ⊕ (10, 3)2 ⊕ (16, 3)−1 ⊕ (1, 3′)4 ⊕ (10, 3′)−2 ⊕ (16′, 3′)1.
�

(5.226)

Both chains 1 and 2 give rise to a 9-grading, with N 8(−24)+
2; a) = (1, 3)4⊕ 

16′, 1)3 ⊕ (10, 3′)2 ⊕ (16, 3)1, N 8(−24)+
2; b) = (1, 3′)4 ⊕ (16, 1)3 ⊕ (10, 3)2 ⊕ (16′, 3′)1, both 

of real dimension 97. Note that 1 ↔ 2 iff the weights of the parabolic so(1, 1)’s gets flipped 
(or, equivalently, iff all M8(8)

5 -irreps. get conjugated). The Jordan-algebraic interpretation of 
chains 1 and 2 is based on the identification (5.220) and on

so(9, 1) ∼= str0(J
O
2 )

∼= str0(R⊕ JO2 )� so(1, 1).� (5.227)

Note that so(9, 1), differently from the split form so(5, 5) (see (5.199)), does not admit a quasi-
conformal interpretation. The first step of chain 1 is then a consequence of the embedding 
JO3 ⊃ R⊕ JO2 , considered at the qconf  level. Note that the next-to-maximal (non-symmetric) 
embedding

E8(−24) ⊃ so(9, 1)⊕ so(3, 3) ∼= so(9, 1)⊕ sl(4,R)� (5.228)

is the D  =  6 case of the Ehlers embedding [45] for the O-based theory, thus characteriz-
ing sl(4,R) as the D  =  6 Ehlers symmetry (see (5.229) below). Concerning the chain 2, its 
first step is the JP embedding for the O-based theory, thus giving rise to the D  =  5 Ehlers 
sl(3,R)Ehlers; then, in the second step a further uplift to D  =  6 is performed, introducing the 
KK so(1, 1)KK of the S1-reduction D = 6 → 5, which is the parabolic so(1, 1) in this chain:

1 : qconf
(

JO3
)
⊃ qconf

(
R⊕ JO2

)
⊕A8 ⊃ str0(J

O
2 )⊕A8 ⊕ sl(4,R)Ehlers

⊃ str0(J
O
2 )⊕A8 ⊕ sl(3,R)⊕ so(1, 1);

�

(5.229)

2 : qconf(JO3 ) ⊃
ns str0(J

O
3 )⊕ sl(3,R)Ehlers ⊃ str0(J

O
2 )⊕A8 ⊕ sl(3,R)Ehlers ⊕ so(1, 1)KK.� (5.230)

5.9.3.  P8(−24)
3 .  The maximal parabolics P8(−24)

3  from (3.22) corresponds to the Bruhat 
decomposition:

E8(8) = N 8(−24)−
3 ⊕ E6(−26) ⊕ sl(2,R)⊕ so(1, 1)⊕N 8(−24)+

3 ,� (5.231)
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which can be obtained through at least two chains of embeddings, respectively denoted by 1 
and 2:

1 : E8(−24) ⊃ E7(−25) ⊕ sl(2,R) ⊃ E6(−26) ⊕ sl(2,R)⊕ so(1, 1);� (5.232)

248 = (133, 1)⊕ (1, 3)⊕ (56, 2)
= (78, 1)0 ⊕ (1, 1)0 ⊕ (27, 1)−2 ⊕

(
27′, 1

)
2 ⊕ (1, 3)0

⊕ (27, 2)1 ⊕ (27′, 2)−1 ⊕ (1, 2)3 ⊕ (1, 2)−3;

�

(5.233)

2 : E8(−24) ⊃ns E6(−26) ⊕ sl(3,R) ⊃ E6(−26) ⊕ sl(2,R)⊕ so(1, 1);� (5.234)

248 = (78, 1)⊕ (1, 8)⊕ (27, 3)⊕ (27′, 3′)
= (78, 1)0 ⊕ (1, 3)0 ⊕ (1, 1)0 ⊕ (1, 2)3 ⊕ (1, 2)−3

⊕ (27, 1)−2 ⊕ (27, 2)1 ⊕ (27′, 1)2 ⊕ (27′, 2)1.
�

(5.235)

Both chains 1 and 2 give rise to a 7-grading, with N 8(−24)+
2; 1

∼= N 8(−24)+
2; 1 =  

(1, 2)3 ⊕ (27′, 1)2 ⊕ (27′, 2)1, with real dimension 83.
The Jordan algebraic interpretation of the chains 1 and 2 goes as follows:

1 : qconf
(

JO3
)
⊃ conf

(
JO3

)
⊕ sl(2,R)Ehlers ⊃ str0

(
JO3

)
⊕ sl(2,R)Ehlers ⊕ so(1, 1)KK;� (5.236)

2 : qconf
(

JO3
)
⊃ns str0

(
JO3

)
⊕ sl(3,R)Ehlers ⊃ str0

(
JO3

)
⊕ sl(2,R)⊕ so(1, 1).

� (5.237)

5.9.4.  P8(−24)
4 .  The maximal parabolics P8(−24)

4  from (3.22) corresponds to the Bruhat 
decomposition:

E8(8) = N 8(−24)−
4 ⊕ E7(−25) ⊕ so(1, 1)⊕N 8(−24)+

4 ,� (5.238)

which can be obtained through the embedding chain

E8(−24) ⊃ E7(−25) ⊕ sl(2,R) ⊃ E7(−25) ⊕ so(1, 1);� (5.239)

248 = (133, 1)⊕ (1, 3)⊕ (56, 2) = 1330 ⊕ 10 ⊕ 12 ⊕ 1−2 ⊕ 561 ⊕ 56−1,
� (5.240)

giving rise to a 5-grading, with N 8(−24)+
4 = 12 ⊕ 561, with real dimension 57.

The Jordan algebraic interpretation of the first step is the same as the chain 1 of section 5.9.3, 

and it is analogous to the chain from the parabolically related case P8(8)
7  , section 5.8.7.

5.10.F4(4)

This is the split real form of F4. Its Jordan interpretation is twofold (due to the symmetry of 
the double-split Magic Square L3(As,Bs) [38], reported in table 4):

F4(4)
∼= qconf

(
JR3

)
� (5.241)

∼= der
(

JOs
3

)
.� (5.242)

V Dobrev and A Marrani﻿J. Phys. A: Math. Theor. 53 (2020) 055203



53

5.10.1.P4(4)
1 .  The maximal parabolics P4(4)

1  from (3.24) corresponds to the Bruhat 
decomposition:

F4(4) = N 4(4)−
1 ⊕ sl(3,R)S ⊕ sl(2,R)L ⊕ so(1, 1)⊕N 4(4)+

1 ,� (5.243)

which can be obtained through at least two chains of embeddings respectively denoted by 1 
and 2:

1 : F4(4) ⊃ so(5, 4)
⊃ so(3, 3)⊕ so(2, 1) ∼= sl(4,R)⊕ sl(2,R) ⊃ sl(3,R)S ⊕ sl(2,R)L ⊕ so(1, 1);

� (5.244)

52 = 36 ⊕ 16 = (15, 1)⊕ (1, 3)⊕ (6, 3)⊕ (4, 2)⊕ (4′, 2)
= (8, 1)0 ⊕ (1, 3)0 ⊕ (1, 1)0 ⊕ (3′, 1)−4 ⊕ (1, 2)−3⊕
⊕ (3, 3)−2 ⊕ (3′, 2)−1 ⊕ (3, 1)4 ⊕ (1, 2)3 ⊕ (3′, 3)2 ⊕ (3, 2)1;

�
(5.245)

2 : F4(4) ⊃ns sl(3,R)L ⊕ sl(3,R)S ⊃ sl(3,R)S ⊕ sl(2,R)R ⊕ so(1, 1);

52 = (8, 1)⊕ (1, 8)⊕ (6, 3′)⊕ (6′, 3) =
(8, 1)0 ⊕ (1, 3)0 ⊕ (1, 1)0 ⊕ (3′, 1)−4 ⊕
⊕(1, 2)−3 ⊕ (3, 3)−2 ⊕ (3′, 2)−1 ⊕ (3, 1)4 ⊕
⊕(1, 2)3 ⊕ (3′, 3)2 ⊕ (3, 2)1.

Both chains 1 and 2 give rise to a 9-grading, with M4(4)
1

∼= sl(3,R)S ⊕ sl(2,R)L  and 
N 4(4)+

1; 1
∼= N 4(4)+

1; 2 = (3, 1)4 ⊕ (1, 2)3 ⊕ (3′, 3)2 ⊕ (3, 2)1, of real dimension 20.
Since

so(5, 4) ∼= qconf
(
R⊕ JR2

)
,� (5.246)

a Jordan algebraic interpretation (of the first step) of the chain 1 is given by the embedding 
JR3 ⊃ R⊕ JR2  considered at the qconf  level:

1 : qconf
(
JR3

)
⊃ qconf

(
R⊕ JR2

)
⊕A1.� (5.247)

The second step realizes (with respect to F4(4)) the D  =  6 case of the Ehlers embedding for the 
R-based theory, thus giving rise to the D  =  6 Ehlers symmetry sl(4,R)Ehlers (which then gets 
further branched in order to generate the parabolic so(1, 1)).

Finally, the first step of the chain 2 can be interpreted as the JP embedding for the 
R-based theory, where sl(3,R)L ∼= str0

(
JR3

)
, and sl(3,R)S ∼= sl(3,R)Ehlers is the D  =  5  

Ehlers symmetry. Furthermore, sl(3,R)L ∼= str0
(
JR3

)
 branches into sl(2,R)L ∼= so(2, 1) ∼=  

str0
(
JR2

) ∼= str0
(
R⊕ JR

2

)
� so(1, 1), thus allowing for the identification of the parabolic 

so(1, 1) with the so(1, 1)KK of the D = 6 → 5 S1-reduction.

5.10.2.P4(4)
2 .  The maximal parabolics P4(4)

2  from (3.24) corresponds to the Bruhat 
decomposition:

F4(4) = N 4(4)−
2 ⊕ sl(3,R)L ⊕ sl(2,R)S ⊕ so(1, 1)⊕N 4(4)+

2 ,� (5.248)

which can be obtained through at least two chains of embeddings, respectively denoted by 1 
and 2:

1 : F4(4) ⊃ sp(3,R)⊕ sl(2,R) ⊃ sl(3,R)L ⊕ sl(2,R)S ⊕ so(1, 1);� (5.249)
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52 = (21, 1)⊕ (1, 3)⊕ (14′, 2)
= (8, 1)0 ⊕ (1, 3)0 ⊕ (1, 1)0 ⊕ (1, 2)−3 ⊕ (6′, 1)−2⊕
⊕ (6, 2)−1 ⊕ (1, 2)3 ⊕ (6, 1)2 ⊕ (6′, 2)1;

�
(5.250)

2 : F4(4) ⊃ns sl(3,R)L ⊕ sl(3,R)S ⊃ sl(3,R)L ⊕ sl(2,R)S ⊕ so(1, 1);

52 = (8, 1)⊕ (1, 8)⊕ (6, 3′)⊕ (6′, 3) =
(8, 1)0 ⊕ (1, 3)0 ⊕ (1, 1)0 ⊕ (1, 2)−3 ⊕
⊕(6′, 1)−2 ⊕ (6, 2)−1 ⊕ (1, 2)3 ⊕
⊕(6, 1)2 ⊕ (6′, 2)1.

Both chains of embeddings 1 and 2 give rise to a 7-grading, with M4(4)
2

∼= sl(3,R)L ⊕ sl(2,R)S  

and N 4(4)+
2; b)

∼= N 4(4)+
2; c.1) = (1, 2)3 ⊕ (6, 1)2 ⊕ (6′, 2)1, of real dimension 20.

Since

sp(3,R) ∼= conf
(
JR3

) ∼= der
(
F
(
JR3

))
;� (5.251)

sl(3,R) ∼= str0
(
JR3

)
,� (5.252)

the Jordan algebraic interpretation of the chain 1 reads:

1 : qconf
(
JR3

)
⊃ conf

(
JR3

)
⊕ sl(2,R)Ehlers ⊃ str0

(
JR3

)
⊕ sl(2,R)Ehlers ⊕ so(1, 1),

� (5.253)
where sl(2,R)Ehlers is the D  =  4 Ehlers symmetry.

Finally, the first step of the chain 2 can be interpreted as the JP embedding for the R-based 
theory, where sl(3,R)L ∼= str0

(
JR3

)
, and sl(3,R)S ∼= sl(3,R)Ehlers is the D  =  5 Ehlers sym-

metry. (This is the same as in section  5.10.1.) Then, sl(3,R)S = sl(3,R)Ehlers branches to 
sl(2,R)S  to generate the parabolic so(1, 1).

5.10.3.P4(4)
3 .  The maximal parabolics P4(4)

3  from (3.24) corresponds to the Bruhat 
decomposition:

F4(4) = N 4(4)−
3 ⊕ sp(3,R)⊕ so(1, 1)⊕N 4(4)+

3 ,� (5.254)

which can be obtained through the embedding chain

F4(4) ⊃ sp(3,R)⊕ sl(2,R) ⊃ sp(3,R)⊕ so(1, 1);� (5.255)

52 = (21, 1)⊕ (1, 3)⊕ (14′, 2)
= 210 ⊕ 10 ⊕ 12 ⊕ 1−2 ⊕ 14′1 ⊕ 14′−1,

� (5.256)

giving rise to a 5-grading, with N 4(4)+
3 = 12 ⊕ 14′

1, with real dimension 15.
The Jordan algebraic interpretation of the first step is the same as the chain 1 of sec-

tion 5.10.2 above. Thus, the parabolic so(1, 1) can here be interpreted as the non-compact 
Cartan generator of the D  =  4 Ehlers symmetry sl(2,R)Ehlers.

5.10.4.P4(4)
4 .  The maximal parabolics P4(4)

4  from (3.24) corresponds to the Bruhat 
decomposition:

F4(4) = N 4(4)−
4 ⊕ so(4, 3)⊕ so(1, 1)⊕N 4(4)+

4 ,� (5.257)
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which can be obtained through the embedding chain

F4(4) ⊃ so(5, 4) ⊃ so(4, 3)⊕ so(1, 1);� (5.258)

52 = 36 ⊕ 16 = 210 ⊕ 10 ⊕ 72 ⊕ 7−2 ⊕ 81 ⊕ 8−1,� (5.259)

giving rise to a 5-grading, with N 4(4)+
4 = 72 ⊕ 81, with real dimension 15.

The Jordan algebraic interpretation of the first step is the same as the chain 1 of sec-
tion 5.10.1 above. Moreover, by observing that

so(4, 3) ∼= qconf (R⊕ R) ,� (5.260)

the second step can be interpreted as the consequence, at the qconf  level, of the embedding 
R⊕ JR2 ⊃ R⊕ R, corresponding to the embedding of the c-map [116] of the so-called ST2 
model of N = 2, D  =  4 supergravity into the c-map of the 

(
R⊕ JR2 ∼= R⊕ Γ1,2

)
-based model 

of N = 2, D  =  4 supergravity.

5.11.  F4(−20)

The Jordan interpretation of F4(−20) reads:

F4(−20)
∼= der

(
JO2,1

)
∼= S

(
JO3

)
,� (5.261)

where JO2,1
∼= JO1,2 denotes the rank-3 Lorentzian Jordan algebra over O (see e.g. [37, 126], and 

Refs. therein); indeed, the non-Euclidean nature of JO2,1 generally implies the non-compact-
ness of its automorphism group (differently from the automorphism symmetry of Euclidean 

Jordan algebras over division algebras, which is always compact). Moreover, S
(

JO3
)
 denotes 

the stabilizer group of the rank-3 orbit of the action of Str0

(
JO3

)
 on its (fundamental) irrep. 27 

with non-vanishing cubic invariant I3 �= 0 and representative ‘+  +−’ (for further detail, see 
e.g. [122, 127]; the relation between S  and K is investigated in [121]).

The maximal parabolics P4(−20)
2  from (3.26) corresponds to the Bruhat decomposition 

(which is both maximal and minimal):

F4(−20) = N 4(−20)− ⊕ so(7)⊕ so(1, 1)⊕N 4(−20)+,� (5.262)

which can be obtained through the embedding chain

F4(−20) ⊃ so(8, 1) ⊃ so(7)⊕ so(1, 1);� (5.263)

52 = 36 ⊕ 16 = 210 ⊕ 10 ⊕ 72 ⊕ 7−2 ⊕ 81 ⊕ 8−1,� (5.264)

giving rise to a 5-grading, with N 4(−20)+ = 72 ⊕ 81, with real dimension 15. Note that 
so(8, 1) does not have a quasi-conformal interpretation. However, we observe that

so(8, 1) ∼= S
(
R⊕ JO2

)
,� (5.265)

which is the q  =  8 case of the general result

so(q, 1) ∼= S
(
R⊕ JA2

)
.� (5.266)

Therefore, the first step of the chain can be interpreted as the consequence, at the level of the 
S-symmetry, of the embedding JR3 ⊃ R⊕ JR2 :
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S
(

JO3
)
⊃ S

(
R⊕ JO2

)
∼= so(1, q)|q=8 ⊃ so(q − 1)|q=8 ⊕ so(1, 1).� (5.267)

5.12.  G2(2)

The Jordan interpretation of G2(2), split real form of G2, reads:

G2(2)
∼= qconf (R) ,� (5.268)

where R  here denotes the real numbers, conceived as the simplest example of cubic simple 
Jordan algebra with cubic norm (the parameter q for this case has the effective value q  =  −2/3; 
see e.g. [128, 129], and Refs. therein).

The maximal parabolics P2(2)
LS  from (3.28) corresponds to the Bruhat decomposition:

G2(2) = N 2(2)−
LS ⊕ sl(2,R)LS ⊕ so(1, 1)⊕N 2(2)+

LS ,� (5.269)

which can be obtained through at least two chains of embeddings, respectively denoted by 1 
and 2:

1 : G2(2) ⊃ns sl(3,R)S ⊃ sl(2,R)S ⊕ so(1, 1);� (5.270)

14 = 8 ⊕ 3 ⊕ 3′ = 30 ⊕ 10 ⊕ 2−3 ⊕ 1−2 ⊕ 2−1 ⊕ 23 ⊕ 12 ⊕ 21;� (5.271)

2 : G2(2) ⊃ sl(2,R)L ⊕ sl(2,R)S ⊃




2.1 : sl(2,R)L ⊕ so(1, 1);
or

2.2 : sl(2,R)S ⊕ so(1, 1).
� (5.272)

14 = (3, 1)⊕ (1, 3)⊕ (4, 2) =




2.1 : 30 ⊕ 10 ⊕ 1−2 ⊕ 4−1 ⊕ 12 ⊕ 41;
or
2.2 : 30 ⊕ 10 ⊕ 2−3 ⊕ 1−2 ⊕ 2−1 ⊕ 23 ⊕ 12 ⊕ 21.

� (5.273)

The chains of embeddings 1 and 2.2 give rise to a 7-grading, with M2(2)
S = sl(2,R)S  

and N 2(2)+
1)

∼= N 2(2)+
2.2)

∼= N 2(2)+
S = 23 ⊕ 12 ⊕ 21 , with real dimension 5. On the other 

hand, the chain of embeddings 2.1 gives rise to a 5-grading, with M2(2)
L = sl(2,R)L and 

N 2(2)+
2.1)

∼= N 2(2)+
L = 12 ⊕ 41 , once again with real dimension 5.

The Jordan algebraic interpretation of the first step of chain 1 is provided by the JP embed-
ding for the R-based theory under consideration, recalling that str0 (R) ∼= ∅. On the other 
hand, by observing that

sl(2,R) ∼= conf (R) ∼= der (F (R)) ,� (5.274)

the first step of chain 2 can be conceived as the Ehlers embedding for the R-based theory 
under consideration, followed by two possible second steps: in 2.1 the D  =  4 Ehlers group 
sl(2,R)L ∼= sl(2,R)Ehlers is branched, and thus the parabolic so(1, 1) can be interpreted as its 
non-compact Cartan; in 2.2 sl(2,R)S ∼= conf (R) gets branched, and therefore the parabolic 
so(1, 1) is the KK so(1, 1) of the S1-reduction D = 5 → 4 for the theory at stake (which is the 
so-called T3 model of N = 2, D  =  4 supergravity [130]).

1 : qconf (R) ⊃ns str0 (R)⊕ sl(3,R)Ehlers ⊃ str0 (R)⊕ sl(2,R)⊕ so(1, 1);
�

(5.275)
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2 : qconf (R) ⊃ conf (R)⊕ sl(2,R)Ehlers ⊃




2.1 : conf (R)⊕ so(1, 1);
or

2.2 : sl(2,R)Ehlers ⊕ str0 (R)⊕ so(1, 1)KK.
� (5.276)

6.  Outlook

In the present paper we initiated the investigation of the relations between representation 
theory and Jordan algebras, focussing on non-compact real forms of finite-dimensional 

Table 6.  Jordan algebraic interpretation of maximally parabolically related non-
compact real forms of finite-dimensional exceptional Lie algebras.

M
G dimN G′ M′

1 : conf (M2,1 (O)) su(5, 1) qconf
(

JCs
3

)
conf

(
JCs

3

)

21 qconf
(
JC3

)
conf

(
JC3

)
2 : conf (M2,1 (O)) str0 (Γ7,1)⊕ u(1) qconf

(
JC3

)
str0 (Γ5,3)⊕ u(1)

24

3 : str0

(
JO3

)
str0

(
JO2

)
str0

(
JOs

3

)
str0

(
JOs

2

)

16

4 : qconf
(

JCs
3

)
str0

(
JCs

3

)
⊕ sl(2,R) qconf

(
JC3

)
str0

(
JC3

)
⊕ sl(2,R)

29

5 : conf
(

JO3
)

str0

(
JO3

)
conf

(
JOs

3

)
str0

(
JOs

3

)

27

6 : conf
(

JO3
)

str0

(
JO2

)
⊕ sl(2,R) conf

(
JOs

3

)
= qconf

(
JHs

3

)
str0

(
JOs

2

)
⊕ sl(2,R)

42 qconf
(
JH3

)
str0 (Γ7,3)⊕ su(2)

7 : conf
(

JO3
)

conf
(

JO2
)

conf
(

JOs
3

)
= qconf

(
JHs

3

)
conf

(
JOs

2

)
= conf

(
JHs

3

)

33 qconf
(
JH3

)
conf

(
JH3

)

8 : qconf
(

JHs
3

)
sl(4,R)⊕ Ã4 ⊕ sl(3,R) qconf

(
JH3

)
su∗(4)⊕A4 ⊕ sl(3,R)

53

9 : qconf
(
JH3

)
str0

(
JH3

)
⊕ sl(2,R) qconf

(
JHs

3

)
= conf

(
JOs

3

)
str0

(
JHs

3

)
⊕ sl(2,R)

47 conf
(

JO3
)

str0
(
JH3

)
⊕ su(2)

10 : qconf
(

JO3
)

conf
(

JO3
)

qconf
(

JOs
3

)
conf

(
JOs

3

)

57

11 : qconf
(

JO3
)

qconf (R⊕ Γ8,0) qconf
(

JOs
3

)
qconf (R⊕ Γ4,4)

78

12 : qconf
(

JO3
)

str0

(
JO3

)
⊕ sl(2,R) qconf

(
JOs

3

)
str0

(
JOs

3

)
⊕ sl(2,R)

83

13 : qconf
(

JO3
)

str0

(
JO2

)
⊕ sl(3,R) qconf

(
JOs

3

)
str0

(
JOs

2

)
⊕ sl(3,R)

97

14 : der
(

JO1,2

)
str0 (Γ7,0) der

(
JOs

1,2

)
str0 (Γ4,3)

15
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exceptional Lie algebras. We provided a derivation of the maximal parabolic subalgebras in 
terms of chains of maximal (symmetric or non-symmetric) embeddings of Lie algebras, which 
were then interpreted in terms of symmetries of Jordan algebras (in particular, we focussed on 
the rank-2 and rank-3 classes). This also allowed to provide a complete Jordan algebraic char-
acterization (classified in table 6) of the maximally parabolical relations between exceptional 
Lie algebras (classified in table 1).

There is a number of possible venues for further future research. For instance, in light of 
the Jordan algebraic interpretation provided in this paper, the relevance of maximal parabolic 
subalgebras to the theory of induced representations might have interesting consequences 
in Maxwell–Einstein (super)gravity N -extended theories in various space-time dimensions. 
Moreover, the present analysis might be extended to classical Lie algebras (and to higher-rank 
Jordan algebras), and slight generalizations of the definition of maximal parabolic subalgebras 
are possible within the Borel-de Siebenthal theory. We plan to deal with such issues in future 
works [131].
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Appendix.  On division algebras and their split forms

For a complex number c ∈ C, it holds that

c = c0 + jc1,� (A.1)

c=̇c0 − jc1,� (A.2)

|c|2 =̇cc = c2
0 + c2

1,� (A.3)

where the imaginary unit j  is such that j 2  =  −1. So, the norm has an SO(2) invariance. In split 
complex numbers Cs, the imaginary unit j s is such that ( js)2

= +1, and for a split complex 
number cs ∈ Cs it holds that

cs = (cs)0 + (cs)1 js,� (A.4)

cs=̇ (cs)0 − (cs)1 js,� (A.5)

|cs|2 =̇cscs = (cs)
2
0 − (cs)

2
1 ,� (A.6)

and thus the norm has an SO(1, 1)-invariance.
For a real quaternion h ∈ H, it holds that

h = h0 + h1j1 + h2j2 + h3j3,� (A.7)

h=̇h0 − h1j1 − h2j2 − h3j3,� (A.8)

|h|2 =̇hh = h2
0 + h2

1 + h2
2 + h2

3,� (A.9)

where the three imaginary units j i (i = 1, 2, 3) satisfy

jijj = −δij + εijkjk.� (A.10)

V Dobrev and A Marrani﻿J. Phys. A: Math. Theor. 53 (2020) 055203



59

So, the norm has an SO(4)-invariance. In split quaternions Hs, two of the three imaginary units 
j i square to  +1. Splitting the index i into 1, m with m = 2, 3, and therefore ji = j1, jsm , where jsm 
denote the two split imaginary units, for a split quaternion hs ∈ Hs it holds that

hs = (hs)0 + (hs)1 j1 + (hs)2 js2 + (hs)3 js3,� (A.11)

hs=̇ (hs)0 + (hs)1 j1 − (hs)2 js2 − (hs)3 js3,� (A.12)

|hs|2 =̇hshs = (hs)
2
0 + (hs)

2
1 − (hs)

2
2 − (hs)

2
3 ,� (A.13)

where

jsmjsn = δmn − εmnkjk,� (A.14)

( j1)
2
= −1,� (A.15)

j1jsm = ε1mnjsn.� (A.16)

Thus, the norm has an SO(2, 2)-invariance.
Finally, for a real octonion o ∈ O, it holds that

o = o0 + o1j1 + o2j2 + o3j3 + o4j4 + o5j5 + o6j6 + o7j7,� (A.17)

o=̇o0 − o1j1 − o2j2 − o3j3 − o4j4 − o5j5 − o6j6 − o7j7,� (A.18)

|o|2 =̇oo = o2
0 + o2

1 + o2
2 + o2

3 + o2
4 + o2

5 + o2
6 + o2

7,� (A.19)

where the seven imaginary units j A (A = 1, · · · , 7) satisfy

jAjB = −δAB + ηABCjC,� (A.20)

where ηABC = η[ABC], and e.g. in the conventions of [132], it holds that

ηABC = 1 ⇔ (ABC) = (123) , (471) , (572) , (673) , (624) , (435) , (516) .
� (A.21)

So, the norm has an SO(8)-invariance. In split octonions Os, four of the seven imaginary units 
j A square to  +1. Splitting the index A into i,µ with i = 1, 2, 3 and µ = 4, 5, 6, 7, and therefore 
jA = ji, jsµ, where jsµ denote the split imaginary units, for a split octonion os ∈ Os it holds that

os = (os)0 + (os)1 j1 + (os)2 j2 + (os)3 j3 + (os)4 js4 + (os)5 js5 + (os)6 js6 + (os)7 js7,
� (A.22)

os=̇ (os)0 + (os)1 j1 + (os)2 j2 + (os)3 j3 − (os)4 js4 − (os)5 js5 − (os)6 js6 − (os)7 js7,
� (A.23)

|os|2 =̇osos = (os)
2
0 + (os)

2
1 + (os)

2
2 + (os)

2
3 − (os)

2
4 − (os)

2
5 − (os)

2
6 − (os)

2
7

� (A.24)
where

jsµjsν = δµν − ηµνiji,� (A.25)

jijj = −δij + εijkjk,� (A.26)

jijsµ = ηiµν jsν .� (A.27)

Thus, the norm has an SO(4, 4)-invariance.
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