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Abstract
A description of the embedding of a centrally extended Askey–Wilson algebra, 
AW(3), in Uq(sl2)

⊗3 is given in terms of the universal R-matrix of Uq(sl2). 
The generators of the centralizer of Uq(sl2) in its three-fold tensor product are 
naturally expressed through conjugations of Casimir elements with R. They 
are seen as the images of the generators of AW(3) under the embedding map 
by showing that they obey the AW(3) relations. This is achieved by introducing 
a natural coaction also constructed with the help of the R-matrix.
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1.  Introduction

This letter addresses a long-standing question regarding the intrinsic description of the gen-
erators of a centrally extended Askey–Wilson algebra in its embedding into Uq(sl2)

⊗3. The 
answer will be shown to involve Casimir elements and the universal R-matrix of Uq(sl2).

The Askey–Wilson algebra can be defined with three generators and relations. It has first 
been introduced [19] as the algebra realized by the recurrence and q-difference operators 
intervening in the bispectral problem associated to the Askey–Wilson polynomials [13]. This 
explains the name. Since the structure relations are not affected by truncations, this alge-
bra also encodes the properties of the q-Racah polynomials. Owing to the connection with 
these 6j  or Racah coefficients for Uq(sl2) [11], a centrally extended Askey–Wilson algebra 
AW(3) can be realized as the centralizer of the diagonal action of this quantum algebra in 
its three-fold tensor product. Related are the [12, 14, 15, 17]. In this context, two generators 
of AW(3) are naturally mapped under the coproduct onto the intermediate Casimir elements 
corresponding respectively to the recouplings of the first and last two factors in Uq(sl2)
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natural algebraic interpretation of the image of the third generator has however been lacking. 
This was circumvented so far by using one of the relations which gives the third generator 
as the q-commutator of the other two; while this allows the homomorphism from AW(3) into 
Uq(sl2)

⊗3 to be defined, the resulting expression for this third generator is far from illumi-
nating. Note that all three generators are needed to provide a PBW basis for AW(3). Besides 
the fact that this leaves a picture which is not fully satisfactory, this is a serious shortcom-
ing in attempts to generalize AW(3) to algebras of higher ranks. The natural approach—in 
fact the only one that has been conceived—is to define AW(n) as the centralizer of Uq(sl2) 
in Uq(sl2)

⊗n. Proceeding with such an extension calls for an algebraic understanding of all 
centralizing elements in the tensor product. Significant progress towards describing the alge-
bras AW(n) have been made nevertheless. The algebra AW(4) has been explored in [16] by 
including generators defined through the q-commutators of coproduct images of the Casimir 
element, as done for AW(3), and obtaining from there various structure relations. Meaningful 
results have thus been found. The identification of the general AW(n) has been attacked and 
largely advanced in [6, 8]. Much has been achieved in this case by cleverly designing a coac-
tion map that has been used to define the generators, starting from the Casimir element of 
Uq(sl2), so as to ensure that these generators obey a q-deformation of natural structure rela-
tions (i.e. those of the generalized Bannai–Ito algebra BI(n) [7]) and by proving that this is so 
in many (but not all) cases. Still, in spite of this progress, an a priori algebraic description of 
the generators remained much desired.

We shall here settle this issue for AW(3) by providing a simple expression for the image of its 
third generator in Uq(sl2)

⊗3. The formula will involve conjugation with the universal R-matrix 
of Uq(sl2) and will be seen to explain the origin of the coaction introduced in [6]. Basic facts 
about Uq(sl2) and its universal R-matrix are collected in section 2. Section 3 focuses on the 
centralizer of Uq(sl2) in Uq(sl2)

⊗3; it provides the algebraic description that was missing. 
An additional centralizing element, conjugated to the usual third generator of AW(3) is also 
identified; this will be related to observations made in [16]. The universal R-matrix and the 
Yang–Baxter equation are central here. With the expressions for the generators (in Uq(sl2)

⊗3) 
in hand, section 4 looks at their products and recovers the AW(3) relations. To that end, a map 
from Uq(sl2) in Uq(sl2)

⊗3 defined in terms of the R-matrix is introduced. It is pointed out that 
this map, once spelled out, coincides with the coaction used in [6]. The letter concludes with 
final remarks stressing the advantages of bringing the universal R-matrix in the description 
of the algebras AW(n). As an illustration it is shown that a computation in AW(4) can be per-
formed with these tools in a comparatively much simpler way than otherwise.

2. Uq(sl2) and its universal R-matrix

In this section, we recall the definitions of the quantum algebra Uq(sl2) and of its universal 
R-matrix as well as some of their properties. This allows to fix the notations and to make this 
letter more self-contained.

The associative algebra Uq(sl2) is generated by E, F and qH with the defining relations

qHE = qEqH , qHF = q−1FqH and [E, F] = [2H]q,� (1)

where [X]q = qX−q−X

q−q−1  and q �= ±1,±i. The center of this algebra is generated by the following 

Casimir element

C = − (q − q−1)2

q + q−1

(
FE +

qq2H + q−1q−2H

(q − q−1)2

)
.� (2)
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The normalization of the Casimir element C is irrelevant but chosen to yield computational 
simplifications. There exists a homomorphism ∆ : Uq(sl2) → Uq(sl2)⊗ Uq(sl2), called 
comultiplication, defined by

∆(E) = E ⊗ q−H + qH ⊗ E , ∆(F) = F ⊗ q−H + qH ⊗ F and ∆(qH) = qH ⊗ qH .
� (3)

We recall that this comultiplication is coassociative

(∆⊗ id)∆ = (id ⊗∆)∆ .� (4)

The quantum algebra Uq(sl2) is quasi-triangular because there exists a universal R-matrix 
R ∈ Uq(sl2)⊗ Uq(sl2) which is invertible and satisfies

∆(x)R = R∆op(x), for x ∈ Uq(sl2),� (5)

where the opposite comultiplication ∆op(x) = x(2) ⊗ x(1) if ∆(x) = x(1) ⊗ x(2) in the Sweedler 
notation, and

(id ⊗∆)R = R12R13 and (∆⊗ id)R = R23R13 .� (6)

In the previous relation (6), we have used the usual notations R12 = Rα ⊗Rα ⊗ 1, 
R23 = 1 ⊗Rα ⊗Rα and R13 = Rα ⊗ 1 ⊗Rα where R = Rα ⊗Rα (the sum w.r.t. α is 
understood). We will also use the following element

R̃ = R21 = Rα ⊗Rα,� (7)

satisfying

∆op(x)R̃ = R̃∆(x), for x ∈ Uq(sl2) .� (8)

The universal R-matrix also satisfies the Yang–Baxter equation

R12R13R23 = R23R13R12,� (9)

and takes the following explicit form [9]

R = q2(H⊗H)
∞∑

n=0

(q − q−1)n

[n]q!
qn(n−1)/2(EqH ⊗ q−HF)n,� (10)

where [n]q! = [n]q[n − 1]q . . . [2]q[1]q  and, by convention, [0]q!  =  1. For future convenience, 
by using the commutation relations of Uq(sl2), we rewrite R̃ as follows

R̃ =

∞∑
n=0

(q − q−1)n

[n]q!
qn(n−1)/2(FqH ⊗ q−HE)n q2(H⊗H) = Θ q2(H⊗H) .� (11)

3.  Centralizer of Uq(sl2) in Uq(sl2)
⊗3

In this section, we want to describe the centralizer C3 of the diagonal action of Uq(sl2) in 
Uq(sl2)

⊗3:

C3 = {X ∈ Uq(sl2)
⊗3

∣∣ [(∆⊗ id)∆(x), X] = 0, ∀x ∈ Uq(sl2)}.� (12)

Let us define the so-called intermediate Casimir elements (in Sweedler’s notation)

C12 = ∆(C)⊗ 1 = C(1) ⊗ C(2) ⊗ 1 and C23 = 1 ⊗∆(C) = 1 ⊗ C(1) ⊗ C(2),� (13)
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and the total Casimir element

C123 = (∆⊗ id)∆(C) .� (14)
We define also C1 = C ⊗ 1 ⊗ 1, C2 = 1 ⊗ C ⊗ 1 and C3 = 1 ⊗ 1 ⊗ C . By using that the 
Casimir element C is central in Uq(sl2), we deduce for example that

[(∆⊗ id)∆(x), C12] = 0 and [(id ⊗∆)∆(x), C23] = 0, ∀x ∈ Uq(sl2) .
� (15)

By definition (12), C1, C2, C3, C12, C23 and C123 belong to the centralizer C3 with C1, C2, 
C3 and C123 belonging to the center of C3. It is well-known that these elements generate the 
Askey–Wilson algebra [19]. We will come back to this point in section 4. Let us also remark 
that the connection between the Schur–Weyl duality and the Askey–Wilson algebra in the 
limit q → 1 has been discussed in [2]. The crucial point is the knowledge of the minimal poly-
nomials satisfied by these intermediate Casimir elements in some representations of sl2. The 
case with q generic will be discussed in a forthcoming work [4].

In the case of U(sl2) (i.e. the limit q → 1 of the case studied here), one can also prove that 
the intermediate Casimir C13 = C(1) ⊗ 1 ⊗ C(2) belongs to the centralizer. For q �= 1, it is not 
the case and the main objective of this letter is to provide a definition of this element for the 
quantum algebra.

Theorem 3.1.  The following elements of Uq(sl2)
⊗3

C(0)
13 = R̃−1

23 C13R̃23 = R12C13R−1
12 ,� (16)

C(1)
13 = R̃−1

12 C13R̃12 = R23C13R−1
23� (17)

are in the centralizer C3, where R and R̃ are defined in (10) and (11) and C13 = C(1) ⊗ 1 ⊗ C(2).

Proof.  By using the coassociativity of the comultiplication (4) and by conjugating with R23, 
the first relation in (15) reads

[(id ⊗∆op)∆(x),R−1
23 C12R23] = 0 .� (18)

Finally, by exchanging the spaces 2 and 3, one gets that C(0)
13  is in the centralizer

[(id ⊗∆)∆(x), R̃−1
23 C13R̃23︸ ︷︷ ︸
=C(0)

13

] = 0 .
� (19)

One proves similarly that R12C13R−1
12 , R̃−1

12 C13R̃12  and R23C13R−1
23  are in the centralizer C3.

We must prove also the equality between R̃−1
23 C13R̃23 and R12C13R−1

12 . One gets

C(0)
13 = R̃−1

23 C13R̃23 = R̃−1
23

(
C(1) ⊗ 1 ⊗ C(2)

)
R̃23 = R̃−1

23 R13
(
C(2) ⊗ 1 ⊗ C(1)

)
R−1

13 R̃23,� (20)

where we have used property (5). The Yang–Baxter equation (9) implies that

C(0)
13 = R12R13R̃−1

23 R−1
12

(
C(2) ⊗ 1 ⊗ C(1)

)
R12R̃23R−1

13 R−1
12 .� (21)

Now, from (6), one deduces that [∆(C)⊗ 1, (∆⊗ id)(R)] = [∆(C)⊗ 1,R23R13] = 0 and 
that [

(
C(2) ⊗ 1 ⊗ C(1)

)
,R12R̃23] = 0. Then, one obtains

C(0)
13 = R12R13

(
C(2) ⊗ 1 ⊗ C(1)

)
R−1

13 R−1
12 = R12C13R−1

12 .� (22)
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The equality between R̃−1
12 C13R̃12 and R23C13R−1

23  is proven similarly.� □ 

From relations (16) and (17), one deduces that C(0)
13  and C(1)

13  are conjugated:

C(1)
13 = R23R̃23C(0)

13 (R23R̃23)
−1 = (R12R̃12)

−1C(0)
13 R12R̃12 .� (23)

4. The Askey–Wilson algebra AW (3)

In this section, we study the algebra satisfied by the intermediate Casimir elements introduced 
in the previous section and connect it with the central extension AW(3) of the Askey–Wilson 
algebra introduced in [19]. We start by proving the following lemma.

Lemma 4.1.  The map defined by

τ : Uq(sl2) → Uq(sl2)⊗ Uq(sl2)

x �→ R̃−1(1 ⊗ x)R̃
� (24)

yields the following explicit expressions when acting on the different elements of Uq(sl2) listed 
below:

τ(C) = 1 ⊗ C,� (25)

τ(q−HE) = q−2H ⊗ q−HE,� (26)

τ(q−2H) = 1 ⊗ q−2H − (q − q−1)2q−HF ⊗ q−HE,� (27)

τ(Fq−H) = q2H ⊗ Fq−H + q−1(q + q−1)FqH ⊗ (C + q−2H)− (q − q−1)2F2 ⊗ q−HE .� (28)

Proof.  We must prove that the map given in the theorem reproduces relations (25)–(28). 
For relation (25), it is direct, knowing that C commutes with any element of Uq(sl2). To prove 
relation (26), one computes (using the explicit form (11) of R̃)

τ(q−HE) = R̃−1(1 ⊗ q−HE)Θ q2(H⊗H) = R̃−1Θ (1 ⊗ q−HE)q2(H⊗H) = q−2H ⊗ q−HE,� (29)

which reproduces (26).
We want now to compute τ(q−2H):

τ(q−2H) = R̃−1(1 ⊗ q−2H)R̃ = R̃−1(1 ⊗ q−2H)q2(H⊗H)
∞∑

n=0

an(q−HF ⊗ EqH)n

� (30)

= R̃−1q2(H⊗H)
∞∑

n=0

anq−2n(q−HF ⊗ EqH)n (1 ⊗ q−2H),�

where we have introduced the parameters

an =
(q − q−1)n

[n]q!
qn(n−1)/2 .� (31)
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Remarking that

anq−2n = an − an[n]qq−n(q − q−1),� (32)

one gets

τ(q−2H) = R̃−1

(
R̃ − q2(H⊗H)

∞∑
n=0

an+1[n + 1]qq−(n+1)(q − q−1)(q−HF ⊗ EqH)n+1

)
(1 ⊗ q−2H) .

� (33)

It is easy to show that the parameters an satisfy an+1[n + 1]q = qn(q − q−1)an, which allows 
to recover (27).

Similarly, to prove (28), one computes

τ(Fq−H) = R̃−1(1 ⊗ Fq−H)R̃ = R̃−1(1 ⊗ Fq−H)q2(H⊗H)
∞∑

n=0

an(q−HF ⊗ EqH)n

� (34)

= R̃−1q2(H⊗H)(q2H ⊗ Fq−H)

∞∑
n=0

an(q−HF ⊗ EqH)n .�

Then, the identity

[F, En] =
[n]q

q − q−1 (q
n−1q−2H − q−(n−1)q2H)En−1� (35)

can be used to write

τ(Fq−H) = R̃−1q2(H⊗H)
∞∑

n=0

an(q−HF ⊗ EqH)n (q−2nq2H ⊗ Fq−H + q−2FqH ⊗ (q−2nq−2H − q2H)
)

.

� (36)

Using again relation (32), one finds

τ(Fq−H) = q2H ⊗ Fq−H − q−1(q − q−1)2FqH ⊗ FE − FqH ⊗ (q2H − q−2H)− (q − q−1)2F2 ⊗ q−HE .
� (37)

Finally, expressing FE in terms of C from definition (2), one recovers (28).� □ 

Using lemma 4.1, we can rewrite C(0)
13  (16) as follows

C(0)
13 = (1 ⊗ τ)∆(C)� (38)

= (q2H + C)⊗ τ(q−2H) + q2H ⊗ τ(C)− (q − q−1)2

q + q−1

(
qHE ⊗ τ(Fq−H) + FqH ⊗ τ(q−HE)

)
.

�

Proposition 4.1.  The following relation

1
q − q−1 [C12, C23]q = C(0)

13 + C1C3 + C2C123� (39)

holds in Uq(sl2)
⊗3.
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Proof.  Using the expressions for the maps under τ  given in lemma 4.1, we obtain C(0)
13  in 

terms of the generators of Uq(sl2). A direct computation using the commutation relations of 
Uq(sl2) proves the relation of the proposition.� □ 

One of the advantages of the construction with the universal R-matrix is that we can deduce 
all the other defining relations of AW(3) from (39) and some other relations.

Corollary 4.1.  The following relations

1
q − q−1 [C

(0)
13 , C12]q = C23 + C2C3 + C1C123,� (40)

1
q − q−1 [C23, C(0)

13 ]q = C12 + C1C2 + C3C123,� (41)

1
q − q−1 [C23, C12]q = C(1)

13 + C1C3 + C2C123,� (42)

1
q − q−1 [C12, C(1)

13 ]q = C23 + C2C3 + C1C123,� (43)

1
q − q−1 [C

(1)
13 , C23]q = C12 + C1C2 + C3C123,� (44)

hold in Uq(sl2)
⊗3.

Proof.  We use the second relation in (16) as well as the definitions (14) to write relation 
(39) as follows

1
q − q−1 [∆(C)⊗ 1, C23]q = R12C13R−1

12 + C1C3 + C2(∆⊗ id)∆(C) .� (45)

Exchanging the spaces 1 and 2, the previous relation becomes

1
q − q−1 [∆

op(C)⊗ 1, C13]q = R̃12C23R̃−1
12 + C2C3 + C1(∆

op ⊗ id)∆(C),

� (46)

which leads to (43) after conjugating by R̃12 (using property (8)).
Then, one starts from the relation (43) we have just proven, uses the second relation in (17) 

to express C(1)
13  and exchanges spaces 2 and 3 to write

1
q − q−1 [C13, R̃23C12R̃−1

23 ]q = 1 ⊗∆op(C) + C2C3 + C1(id ⊗∆op)∆(C) .

� (47)

Conjugating with R̃23, one proves relation (40). Performing the same two steps starting from 
(40), one proves (42) and (41). Finally, the two same steps prove (44) and give again the equa-
tion (39).� □ 
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We now have a number of remarks regarding the merits of the R-matrix approach devel-
oped above.

Remark 1.  Relations (39)–(41) are the defining relations of central extension AW(3) of 
the Askey–Wilson algebra introduced in [19]. Therefore, the results presented in this letter 
offer another proof that the intermediate Casimir elements of Uq(sl2) provide a realization of 

AW(3). In previous works [5, 6, 16, 17, 19], C(0)
13  was defined by relation (39) whereas in our 

approach, it is defined independently of the commutation relations via relation (16).

Remark 2.  The map τ  with images given by (25)–(28) has in fact been introduced in [5, 

6] so as to obtain C(0)
13  as in relation (38). Our definition (24) gives a nice and powerful inter

pretation of this map. Let us remark that the comultiplication used in this letter is slightly 
different from the ones used in [5, 6]. In order to establish exactly the correspondence, the fol-
lowing transformation on our generators and Casimir element must be performed: q2H → K , 
E → EK−1/2, F → K1/2F , q → Q and C → −Λ/(Q + Q−1).

Remark 3.  To illustrate the appropriateness and advantages of definition (24) of the map 
τ , we here prove its coaction property in a much simpler way than the direct calculation de-
scribed in [5, 6]. Using relation (6), it is easy to compute, for x ∈ Uq(sl2),

(∆⊗ id)τ(x) = (∆⊗ id)
(
R̃−1(1 ⊗ x)R̃

)
= R̃−1

23 R̃−1
13 (1 ⊗ 1 ⊗ x)R̃13R̃23,

� (48)

and

(id ⊗ τ)τ(x) = (id ⊗ τ)
(
R̃−1(1 ⊗ x)R̃

)
= R̃−1

23 R̃−1
13 (1 ⊗ 1 ⊗ x)R̃13R̃23 .

� (49)

This proves that (∆⊗ id)τ(x) = (id ⊗ τ)τ(x) and thus that τ  is a left coaction.

Remark 4.  We can define also a right coaction τ̌  given by

τ̌ : Uq(sl(2)) → Uq(sl(2))⊗ Uq(sl(2))

x �→ R(x ⊗ 1)R−1,
� (50)

satisfying

(τ̌ ⊗ id)τ̌ = (id ⊗∆)τ̌ .� (51)

We can show following steps similar to those of the proof of lemma 4.1 that this right co-
action coincides with the one introduced recently in [8] with the identifications: q2H → K , 
E → EK−1/2, F → K1/2F  and C → −Λ/(q + q−1).

Remark 5.  The element C(1)
13  has been introduced previously in [16] (where it is called 

IQ(13)) and defined by relation (42). Our definition (17) gives a new interpretation of this ele-
ment.
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5.  Conclusion and perspective

In this letter, we study the centralizer of the diagonal action of Uq(sl2) and its connection 
with the Askey–Wilson algebra AW(3). In comparison with the previous approaches, we have 
emphasized the relevance of the universal R-matrix of Uq(sl2). We believe that its use offers 
a deeper understanding of the realization of the Askey–Wilson algebra in terms of the inter-
mediate Casimir elements. It should moreover simplify the computations for further invest
igations. To illustrate this point, let us show how one computation can be simplified with this 
approach in the higher rank generalization AW(4) of AW(3) examined in [16]. The algebra 
AW(4) can be embedded in Uq(sl2)

⊗4 and, in particular, one defines

C(0)
13 = R̃−1

23 C13R̃23 = R12C13R−1
12 ,� (52)

C(1)
24 = R̃−1

23 C24R̃23 = R34C24R−1
34 .� (53)

Looking at the commutation relations, we can prove that these elements correspond to Q(13) 
and IQ(24) of [16]. In the formalism introduced here, we see immediately that

[C(0)
13 , C(1)

24 ] = 0,� (54)

whereas the proof without the use of the R-matrix presented in [16] is quite cumbersome. We 
believe that the R-matrix approach we have elaborated will prove quite helpful in the study of 
the higher rank generalizations of AW(3). In a related series of papers [1, 2], the Temperley–
Lieb algebra with q  =  1, the Brauer algebra (and others) over 3 strands have been identified as 
quotients of the Racah [10] and Bannai–Ito [18] algebras of rank 1. The results reported here 
pave the way to the pursuit of this program for AW(3) as well as in situations of higher ranks 
with an arbitrary number of strands. It is our intent to actively continue this research. Let us 
mention finally that, in a companion letter [3], we have provided a parallel description of the 
Bannai–Ito algebras using the universal R-matrix of the Lie superalgebra osp(1|2).
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