
1

Journal of Physics A: Mathematical and Theoretical

Braiding properties of paired spin-singlet 
and non-Abelian hierarchy states

Yoran Tournois  and Eddy Ardonne1

Department of Physics, Stockholm University, SE-106 91 Stockholm, Sweden

E-mail: ardonne@fysik.su.se

Received 13 June 2019, revised 2 December 2019
Accepted for publication 9 December 2019
Published 13 January 2020

Abstract
We study explicit model wave functions describing the fundamental quasiholes 
in a class of non-Abelian fractional quantum Hall states. This class is a family of 
paired spin-singlet states with n � 1 internal degrees of freedom. We determine 
the braid statistics of the quasiholes by determining the monodromy of the 
explicit quasihole wave functions, that is how they transform under exchanges 
of quasihole coordinates. The statistics is shown to be the same as that of 
the quasiholes in the Read–Rezayi states, up to a phase. We also discuss the 
application of this result to a class of non-Abelian hierarchy wave functions.

Keywords: quantum Hall effect, conformal field theory, non-Abelian states, 
hierarchical states

1.  Introduction

The discovery of the fractional quantum Hall effect [1] has led to the prediction of fractionally 
charged quasiparticle excitations [2], quasiholes and quasielectrons, obeying fractional statis-
tics [3, 4]. For most quantum Hall states the quasiparticle statistics is expected to be Abelian, 
i.e. the many-quasiparticle wave function picks up a fractional phase under the exchange of 
the quasiparticle coordinates. However, certain states are thought to host non-Abelian excita-
tions [5], in which case the many-quasiparticle wave function has multiple components which 
transform according to a unitary braid matrix Uij when quasiparticles at positions wi and wj  
are exchanged.

One way in which the theoretical understanding of the fractional quantum Hall effect has 
progressed is by proposing trial wave functions for ground states and excited states, with the 
goal of capturing topological properties such as the fractional charges and braiding statistics 
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of the quasiparticle excitations. Examples of Abelian trial wave functions are the Laughlin 
wave function [2], the hierarchy wave functions [6, 7] and the composite fermion (CF) wave 
functions [8]; examples of non-Abelian wave functions include the Moore–Read [5] and, 
more generally, the Read–Rezayi [9] series. The Moore–Read state, or rather its particle-hole 
conjugate, the ‘anti-pfaffian’ [10, 11], are leading candidates for describing the plateau at 
ν = 5

2 based on numerical studies, see for instance [12].
A powerful tool in proposing and analyzing such model wave functions has been confor-

mal field theory (CFT). Various trial wave functions can be expressed as conformal blocks 
and it was conjectured that this description makes the topological properties, in particular the 
braiding properties, of the wave function manifest [5]. The braiding statistics of quasiholes is 
represented by the Berry holonomy which has contributions from Berry phase accumulated 
during the exchange as well as the explicit transformation—the monodromy—of the wave 
function [13]. For the Laughlin [14, 15] as well as the Moore–Read case [16] (among other 
‘Ising type’ states, see also [17, 18]) it was shown that the CFT description is one in which 
the statistics is given by the monodromy, with a trivial Berry phase. This was verified numer
ically in the Laughlin case [19], and in the Moore–Read and Z3 Read–Rezayi [20] cases using 
the matrix product state formulation of [21]. In those cases, therefore, the braid statistics of 
quasiholes can be inferred from the manifest transformation of the quasihole wave function.

In this paper, we study the braiding properties of quasiholes in a one-parameter family of 
non-Abelian model wave functions denoted Ψ(n+1,2), with n � 1. Referred to as paired spin-
singlet states, this family is a generalization of the spin polarized Moore–Read wave function 
(n  =  1) and the non-Abelian spin-singlet (NASS) [22] wave function (n  =  2), to particles 
carrying n quantum numbers determining the charge and (pseudo-) spin. Such model wave 
functions have been considered in the context of rotating spin-1 bosons for n  =  3 [23, 24], gra-
phene [25], as well as fractional Chern insulators [26, 27] with Chern number C  >  1. Related 
wave functions were studied in [13, 28, 29] using a parton construction. Recently, progress 
was made on the Landau–Ginzburg theories describing these states [30].

According to the ‘Moore–Read conjecture’ [5] (see [31] for a review) the CFT representa-
tion of the paired spin-singlet states should make the braiding properties manifest in the mon-
odromy. By finding explicit quasihole wave functions, the braid matrices for the Moore–Read 
wave functions were found in [32], and those for the Read–Rezayi and NASS cases were 
determined in [33]. We study the manifest transformation properties of the paired spin-singlet 
states by obtaining explicit expressions for four-quasihole wave functions using conformal 
field theory techniques. This calculation relies on explicit four-point functions in certain 
Wess–Zumino–Witten (WZW) models which were obtained in [34], as well as the properties 
of the closely related parafermion CFTs [35] which are presented in appendix B. We show 
that the braiding properties of the quasiholes for Ψ(n+1,2) are, up to a phase, the same as those 
of the quasiholes in the Zn+1 Read–Rezayi states [9], which reflects the rank-level duality 
between their CFT descriptions.

The paired spin-singlet states are also closely related to a set of non-Abelian hierarchy 
wave functions proposed in [36] based on a picture of successive condensation of non-Abelian 
quasiparticles. This set of trial wave functions, which we refer to as Hermanns hierarchy wave 
functions, can be thought of as bilayer composite fermion wave functions where one per-
forms a symmetrization (or antisymmetrization) over the layer index. These have been studied 
numerically in [37], showing that they are promising candidates for the second Landau level. 
The simplest (non-trivial) Hermanns hierarchy state was shown to be closely related to the 
non-Abelian spin-singlet state [36]; in [38] it was shown that the other Hermanns hierarchy 
states are similarly related to the paired spin-singlet states. Using this relation, we argue that 
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the braiding properties of quasiholes in the Hermanns hierarchy states should be the same as 
those in the paired spin-singlet states.

The paper is organized as follows. In section 2, we briefly review the connection between 
trial wave functions in the fractional quantum Hall effect and conformal field theory. In sec-
tion 3 we discuss the paired spin-singlet states in detail and introduce ‘master formulas’ that 
relate two representations of the paired spin-singlet states, which allows us to find explicit 
wave functions for four quasiholes. In section 4, we present the calculation of the braiding 
properties in the paired spin-singlet state Ψ(4,2) after which we present the calculation for a 
general paired spin-singlet state in section 5. Finally, in section 6, we comment on the relation 
between the paired spin-singlet states and the Hermanns hierarchy states. In the appendices, 
we provide details on the WZW CFTs, the associated parafermion CFTs and the consequences 
of rank-level duality for the braid matrices studied in this paper.

2.  Model wave functions and conformal field theory

We consider model wave functions for fractional quantum Hall states of the form

ΨM (z1, . . . , zN) = Φ (z1, . . . , zN)
∏
i<j

(zi − zj)
M e−

1
4

∑
i|zi|2 ,� (1)

where M � 0 and the magnetic length lB has been set to 1. In equation (1), Φ is a symmet-
ric holomorphic function of the particle coordinates zj = xj + iyj, obeying certain vanishing 

conditions. In this paper we only consider paired states, for which Φ (z1, . . . , zN)
∣∣
zi=zj

�= 0, 
but Φ (z1, . . . , zN)

∣∣
zi=zj=zk

= 0 for any distinct zi, zj, zk . The wave function ΨM=0 is bosonic 
and has the same pairing property, while the simplest fermionic wave function corresponds to 

M  =  1. The power M of the Vandermonde determinant 
∏

i<j (zi − zj)
M is chosen maximally, 

that is Φ (z1, . . . , zN) is the polynomial of lowest degree with the pairing property as described 
above. To simplify the discussion we set M  =  0 from here on, denoting ΨM=0 by Ψ. We 
will consider the general wave functions with M  >  0 at a later stage. We also suppress the 
Gaussian factors.

In the following we make extensive use of the connection between CFT and the fractional 
quantum Hall effect [5, 39], by means of which trial wave functions are expressed as (chiral) 
conformal blocks in a certain CFT. In particular, the wave function is represented by a vacuum 
expectation value of (radially ordered) operators in the CFT which describe the constituent 
(quasi)particles. The trial wave function for the ground state reads

Ψ(z1, . . . , zN) = 〈ObgV(z1) · · ·V(zN)〉.� (2)

Here the operator V  represents an electron2 and the operator Obg is a background charge oper-
ator which is needed to ensure a nonzero result: it can chosen in such a way that the Gaussian 
factors are reproduced [5]. By a simple change of the operators V , the wave function ΨM for 
general M can also be represented in this way. Similarly, model wave functions for quasiholes 
can be obtained by including appropriate operators H at positions w = wx + iwy.

Not all CFTs give appropriate trial wave functions: there are certain conditions to be satis-
fied [39, 40], most notably the existence of appropriate operators to represent the electrons 
and quasiholes. For the quasihole operators H a requirement is that of mutual locality with 
respect to the electrons, which means that the braiding of quasiholes and electrons is trivial. 

2 Although the particles described by V  are bosons for M  =  0, we refer to them as electrons.
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This requirement implies that the operator product expansion (OPE) of the fields H and V  is 
of the form

V (z)H (w) ∼ (z − w)� H̃ (w)� (3)

where � is a non-negative integer and H̃  denotes the field resulting from the fusion of H with 
V . This condition places a constraint on the possible types of quasiholes.

A well-known example of a model wave function—that is, a trial wave function with a 
known parent Hamiltonian—is the Moore–Read wave function [5], which we denote by Ψ(2,2). 
Here, the notation Ψ(n+1,k) refers to a wave function with n internal degrees of freedom and a 
k-clustering property which we refer to as a pairing property for k  =  2. For M  =  0, Ψ(n+1,k) has 
an su (n + 1)k symmetry, while for M  >  0, this is broken down to su (n)k. The relevant CFT 
for the Moore–Read model wave function is the product of the Ising CFT and the u (1) chiral 
boson CFT, where the correlator of the boson field φ is given by 〈φ (z)φ (w)〉 = − log (z − w). 
The electron and quasihole operators read

V (z) = ψ (z) eiφ(z)

H (w) = σ (w) e
i
2 φ(w)

� (4)

where the Majorana fermion ψ and the ‘spin field’ σ are the primary fields of the Ising CFT 
and the vertex operator eiαφ is a primary field of the free boson CFT. Writing {z} for the col-
lection z1, . . . , zN , the model wave function for the ground state is

Ψ(2,2) ({z}) = 〈ψ (z1) · · ·ψ (zN)〉〈Obgeiφ(z1) · · · eiφ(zN)〉

= Pf
(

1
zi − zj

)∏
i<j

(zi − zj) .�
(5)

Because of the fusion rule σ × σ = 1 + ψ  of the spin field σ, the many-quasihole wave 
‘function’ has different components labeled by a fusion channel index p , i.e. the specific way 
in which the spin fields fuse to the identity. The wave function with 2m quasiholes has 2m−1 
components [32], or (chiral) conformal blocks, given by

Ψ
( p)
(2,2) ({w}, {z}) = 〈σ (w1) · · ·σ (w2m)X〉( p)

∏
i<j

(zi − zj)
∏

i,j

(zi − wj)
1
2
∏
i<j

w
1
4
ij .

� (6)
Here wij = wi − wj , the wi are assumed to be radially ordered, i.e. |w1| < ... < |w2m| and we 
have adopted the notation

〈σ(w1) · · ·σ(w2m)X〉( p) = 〈σ(w1) · · ·σ(w2m)ψ(z1) · · ·ψ(zN)〉( p)� (7)

with X denoting a string of Majorana fermions ψ. The explicit wave functions involving arbi-
trarily many quasiholes and electrons for the Moore–Read wave function were found in [16, 
41]. The implementation of the (four-) quasi-hole states as topological protected q-bits was 
studied [42, 43].

The conformal blocks Ψ( p)
(2,2) transform non-trivially amongst themselves when the quasi-

particle coordinates are exchanged. That is, exchanging wi and wj  and analytically continuing 

the wave function, Ψ( p)
(2,2) →

∑
p′

(
U(2,2)

ij

)
p
p′Ψ

( p′)
(2,2) with U(2,2)

ij  a unitary braid matrix. The col-

lection of braid matrices, which were found in [32], forms a unitary representation of the braid 
group on 2m strands.
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3.  Paired spin-singlet states

3.1.  Model wave functions

The Moore–Read wave function Ψ(2,2) is the simplest example of a paired ‘spin-singlet’ state, 
denoted Ψ(n+1,2), which are studied in this paper. The pairing property of Ψ(2,2) may be veri-
fied by inspection of equation (5), or by considering the OPE

V (z)V (z′) ∼ (z − z′)0 e2iφ(z)� (8)

between the electron operators, using ψ (z)ψ (z′) ∼ 1/(z − z′). In fact, the Moore–Read wave 
function is the unique, densest zero-energy eigenstate of a certain three-body Hamiltonian 
[44, 45]. Consequently, the Moore–Read wave function may also be obtained by symmetriz-
ing two bosonic Laughlin wave functions as observed by Cappelli et al [46]. Denoting the 
Laughlin wave functions by Ψ(2,1),

Ψ(2,2)({z}) = 1
N

∑
S1,S2

∏
z∈S1

∏
i<j

(zi − zj)
2
∏
z∈S2

∏
i<j

(zi − zj)
2

=
1
N

∑
S1,S2

Ψ(2,1)(S1)Ψ(2,1)(S2)

�
(9)

as equation (9) obeys the same vanishing properties and has the same degree. Here, the coor-
dinates {z} are partitioned into two ‘layers’ S1, S2 of equal size3, and the sum is over all 
inequivalent partitions. We consider two partitions to be equivalent if they are related by a 
layer permutation S1 ↔ S2.

The paired spin-singlet state Ψ(n+1,2) can be viewed as a generalization of the Moore–Read 
wave function to particles having n internal quantum numbers. These wave functions have an 
underlying su (n + 1)2 symmetry. Additionally, they are also non-zero when two particles are 
at the same position, and vanish when three particles are brought together (quadratically when 
the three particles are identical, linearly otherwise).

Generalizing equation (4) there are n electron operators Vα which factor into a ‘parafer-
mion’ [47] ψα generalizing the Majorana fermion ψ, and a vertex operator of n independent 
chiral bosons φ = (φ1, . . . ,φn):

Vα (z) = ψα (z) eivα·φ(z)/
√

2.� (10)

Here α = 1, . . . , n and vα is a vector: to avoid clutter in the notation, we do not write vec-
tor-superscripts. The factor 

√
2 in the vertex operator is included so that the vectors vα are 

simple in terms of the roots of su (n + 1), see appendix B.3. In particular, they should obey 
vα · vβ = 1 + δαβ, so that the OPE of two electron operators reads

Vα (z)Vβ (z′) ∼ (z − z′)0 ei(vα+vβ)·φ(z)/
√

2� (11)

in accordance with the pairing property of Ψ(n+1,2). The paired spin-singlet states are the 
unique densest, zero-energy eigenstates of the same three-body Hamiltonian that has the 
Moore–Read state as its ground state (it is understood that the Hamiltonian treats all particle 
types equally). Generalizing equation (9), Ψ(n+1,2) can be obtained by symmetrizing the fol-
lowing generalized Halperin wave functions

3 The number of ‘electrons’ in the ground state must be even in order for the fields ψ to fuse to the identity.
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Ψ(n+1,1) ({z}) =
n∏

α=1

Nα∏
i<j

(
zαi − zαj

)2
n∏

α<α′

∏
i,j

(
zαi − zα

′

j

)
.� (12)

Here Nα denotes the number of particles with index α, with coordinates zαi . Hence, the model 
wave functions Ψ(n+1,2) can be expressed as

Ψ(n+1,2) ({z}) = 〈
n∏

α=1

Nα∏
i=1

ψα (zαi )〉
[
Ψ(n+1,1) ({z})

] 1
2

=
1
N

∑
S1,S2

Ψ(n+1,1) (S1)Ψ(n+1,1) (S2) .
�

(13)

In the symmetrized representation, each layer Sa = {S1
a, S2

a, . . . , Sn
a} with a = 1, 2 contains 

half the coordinates with a given index α.
The relevant CFT that describes the paired spin-singlet states is the su (n + 1)2 WZW CFT 

(see [48] for an introduction). These CFTs can be written as a product of a parafermion theory 
su (n + 1)2 /u (1)n and n free boson CFTs [47], which leads to the expression equations (10) 
and (4) for n  =  1 in which case the parafermion CFT is the Ising CFT. The more general 
parafermion CFTs are described in appendix B. The electron operators Vα are currents of the 
su (n + 1)2 WZW model, as described in appendix A.

The fundamental quasiholes are represented by primary fields Hµ of the WZW model, where 
µ = 0, 1, . . . , n labels the different types: a quasihole with a pseudospin index (µ = 1, . . . , n) 
or a ‘spinless’ quasihole (µ = 0). These operators read

Hµ (w) = σµ (w) eiqµ·φ/
√

2,� (14)

where σµ is a spin field of the parafermion theory. In order that the operators Hµ have the correct 
OPEs with the electron operators, equation (3) with � = 0, the inner products have to satisfy

vα · vβ = 1 + δαβ q0 · vα = 1 qα · vβ = δαβ

q0 · q0 =
n

n + 1
q0 · qα =

1
n + 1

qα · qβ = δαβ − 1
n + 1

.
�

(15)

The quasihole wave function can be expressed as a correlator of operators Hµ and Vα, or in 
terms of two copies of Ψ(n+1,1) with quasiholes inserted in the layers S1, S2. In particular, the 
operator Hµ is equivalent to the insertion a quasihole in one of the layers, which becomes a 
non-Abelian quasihole after the symmetrization procedure.

We are mainly interested in four-quasihole wave functions. For the simplest case, where all 
quasiholes carry the index µ = 1, the two conformal blocks ( p = 0, 1) read

Ψ
( p)
(n+1,2) ({w}, {z}) = 〈σ1 (w1)σ1 (w2)σ1 (w3)σ1 (w4)X〉( p) [Ψ(n+1,1)

] 1
2

×
N1∏

i=1

4∏
j=1

(
z1

i − wj
) 1

2
∏
i<j

w
n

2(n+1)
ij .

�

(16)

Here, X denotes a string of parafermions X =
∏

α,i ψα (zαi ). To express the conformal blocks 
in a symmetrized representation, we first define the wave functions

Ψab;cd({z}) = 1
2N

∑
S1,S2

∏
z∈S1

1

(z − wa)(z − wb)Ψ(n+1,1)(S1)
∏
z∈S1

2

(z − wc)(z − wd)Ψ(n+1,1)(S2)� (17)
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where S1
a denotes the coordinates with index µ = 1 in layer a. Only two of the three possible 

symmetrized wave functions Ψ12;34,Ψ13;24, and Ψ14;23 are linearly independent, as was seen in 
[32] for the case n  =  1. In particular, the wave functions Ψab;cd are related by

(1 − x)Ψ14;23 = Ψ13;24 − xΨ12;34� (18)

in terms of the following anharmonic ratio

x =
w12w34

w13w24
, 1 − x =

w14w23

w13w24
.� (19)

We note that the convention for the anharmonic ratio used here differs from the one used in for 
instance [33, 34], but agrees with the convention in [32]. The reason for picking the current 
convention is that the wi are properly radially ordered, namely, after an appropriate conformal 
transformation, we have w1  =  0, w2  =  x, w3  =  1 and w4 = ∞.

The Ψab;cd obey the same vanishing properties as the conformal blocks equation (16), when 
either electrons or electrons and quasiholes are taken to the same point. As a result, and by 
virtue of equation (18), each conformal block may be expanded in the basis Ψ12;34,Ψ13;24 as

Ψ
( p)
(n+1,2) ({w}, {z}) = A( p) ({w})Ψ12;34 ({z}) + B( p) ({w})Ψ13;24 ({z})� (20)

where the expansion coefficients A( p), B( p) depend only on the wi and ensure the correct 
behavior when quasiholes are brought to the same position.

3.2.  Master formulas and braiding

Following [33], relations like equation (20) which relate the conformal blocks to symmetrized 
wave functions open up the possibility of finding explicit expressions for two-quasihole and 
four-quasihole wave functions. In turn, this allows us to study the braiding properties of the 
quasiholes by finding the monodromies of the four-quasihole wave functions, i.e. the trans-
formation properties of the conformal blocks under exchanges of quasihole positions. Such 
equations are therefore referred to as ‘master formulas’.

In the following, we obtain various master formulas for different types of quasiholes. By 
taking limits of the master formulas, letting the electron positions coincide with each other 
or with the quasihole positions, the expansion coefficients A( p), B( p) are determined [33]. In 
particular, we employ operator product expansions of the parafermions ψα and spin fields 
σµ, found in appendix B, to reduce the correlator to a four-point function of spin fields. The 
latter can be determined using the results obtained in [34], where closely related four point 
functions of primary fields in the su (n + 1)2 WZW CFT were found explicitly by solving 
the Knizhnik–Zamolodchikov equation. The spin field four point functions are presented in 
appendix C.

Using the solutions of the coefficients A( p), B( p) in terms of the wi we find the manifest 

transformation of the conformal block Ψ( p)
(n+1,2) under wi � wj:

Ψ
( p)
(n+1,2) → A′( p)Ψ′

12;34 + B′( p)Ψ′
13;24

=
∑

p′

(
U(n+1,2)

ij

) p

p′
Ψ

( p′)
(n+1,2).

�
(21)

Here, 
(

U(n+1,2)
ij

)
p
p′ is the 2 × 2 braid matrix corresponding to the given transformation. In 

particular, we determine the matrices corresponding to the transformations
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	 1.	�w1 � w2, or x → −x
1−x

	 2.	�w1 � w3, or x → 1 − x
	 3.	�w2 � w3, or x → 1

x

in terms of the anharmonic ratio x defined in equation (19). The braid matrices for the more 
general wave functions ΨM (see equation  (1)) are obtained afterwards and differ from the 
bosonic (M  =  0) braid matrices by a global phase only.

This analysis hinges on the explicit form of the four point functions of spin fields. 
Unfortunately the explicit form of correlators involving more than four spin fields is much 
harder to obtain. Therefore, although the conformal blocks and symmetrized wave functions 
can be written down, the expansion coefficients A( p), B( p), . . . can not be determined easily in 
the same way. Additionally we assume that the braiding statistics is determined by the mani-
fest transformation of the wave function alone (holonomy  =  monodromy), i.e. that there is no 
additional contribution to the statistics coming from the Berry phase.

4.  Braiding for the paired su (4)2 spin-singlet state

4.1. The paired su (4)2 spin-singlet state

The (bosonic) model wave function Ψ(4,2) has the two equivalent representations

Ψ(4,2)({z}) = 〈
N1∏

i=1

ψ1(z1
i )

N2∏
i=1

ψ2(z2
i )

N3∏
i=1

ψ3(z3
i )〉[Ψ(4,1) ({z})] 1

2

=
1
N

∑
S1,S2

Ψ(4,1)(S1)Ψ(4,1)(S2).
�

(22)

An explicit representation of the vectors vα and qµ that satisfy the correct inner products in 
this case are given in equation (46). The number of electrons of each pseudospin type must be 
even—this ensures the parafermions fuse to the identity, or that the sets of coordinates can be 
partitioned into two equal sized sets in the symmetrized representation.

The prefactor N  may be fixed by taking pairs of parafermions to the same point, i.e. letting 
zα2j → zα2j−1 for j = 1, . . . , Nα/2 and α = 1, 2, 3. Using the OPEs of the parafermions (see 
appendix B.3)

ψα(z)ψα(z′) ∼
1

z − z′
� (23)

and taking the aforementioned limit of equation (22), one finds N = 2
1
2 (N1+N2+N3)−1.

There are four quasihole operators: a spinless quasihole H0, as well spinful quasiholes 
H1, H2, H3. The simplest two-quasihole wave function is obtained by inserting two identical 
quasiholes Hµ; the wave function reads

Ψ(4,2)(w1, w2, {z}) = 〈σµ(w1)σµ(w2)X〉[Ψ(4,1)]
1
2

∏
i

(zµi − w1)
1
2 (zµi − w2)

1
2 w

3
8
12

=
A({w})

2N
∑
S1,S2

∏
z∈Sµ1

(z − w1)Ψ(4,1)(S1)
∏

z∈Sµ2

(z − w2)Ψ(4,1)(S2).
�

(24)

Here Sµ
a  denotes all coordinates with pseudospin index µ, where we adopt the convention 

S0
a = Sa. Indeed, the spinless quasiholes ‘couple’ to all types of electrons. In equation (24), 
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the additional factor A depending on w1, w2 is fixed by requiring that both sides are equal in 

the limit w2 → w1. Using the OPEs of the spin fields, this yields A = w
1
8
12.

In the following sections, we present the relevant master formulas for the four-quasihole 
wave functions. We insert two pairs of identical quasiholes for simplicity, which leaves the 
cases

	 (I)	�mµ = 4, corresponding to the insertions 〈σµσµσµσµX〉 where µ = 0, 1, 2, 3; 
	(II)	�mµ = mµ′ = 2, for µ′ �= µ, where we consider two orderings of quasiholes corresponding 

to the insertions 〈σµσµσµ′σµ′X〉 and 〈σµσµ′σµσµ′X〉.

For the bosonic wave function the different quasihole types are related by a symmetry so that 
their braid matrices are identical. In particular, it is enough to consider the above cases for 
(I) µ = 1 and (II) µ = 1,µ′ = 2. The symmetry relating quasihole types is broken for M  >  0, 
and the braid matrices differ by an overall (global) phase from the bosonic braid matrices. The 
braid matrices for the wave functions with M  >  0 are presented in section 4.6.

4.2. The case m1  =  4

We consider the quasihole wave function with m1  =  4 and take N1  =  2 and N2 = N3 = 6. 
We label the coordinates z1, z2, z3, . . . , z14, omitting the pseudospin index. Then, the master 
formula reads:

Ψ
( p)
(4,2)({w}, {z}) = 〈σ1(w1)σ1(w2)σ1(w3)σ1(w4)X〉( p)[Ψ(4,1)]

1
2

×
2∏

i=1

4∏
j=1

(zi − wj)
1
2

∏
i<j

w
3
8
ij

= A( p)({w})Ψ12,34 + B( p)({w})Ψ13,24.

�

(25)

We then take the following three limits of equation (25):

(i) : z2 → z1, z4 → z3, z6 → z5, . . . , z14 → z13

(ii) : z3 → z1, z4 → z2, z6 → z5, . . . , z14 → z13; z1 → w3, z2 → w4

(iii) : z3 → z1, z4 → z2, z6 → z5, . . . , z14 → z13; z1 → w2, z2 → w4.
�

(26)

To obtain expressions for A( p) and B( p), only two limits are strictly necessary. The third limit 
is taken to fix the phases of the four-point function of spin fields: this is explained in more 
detail in appendix C. These limits reduce the full correlators to four-point functions, namely

〈σ1σ1σ1σ1X〉( p) (i)→ 〈σ1σ1σ1σ1〉( p)

〈σ1σ1σ1σ1X〉( p) (ii)→ 〈σ1σ1σ2σ2〉( p)

〈σ1σ1σ1σ1X〉( p) (iii)→ 〈σ1σ2σ1σ2〉( p).

�

(27)

Taking the limits of the symmetrized wave functions Ψ12;34 and Ψ13;24 as well, one finds the 
equations

A( p)({w}) + B( p)({w}) = 〈σ1(w1)σ1(w2)σ1(w3)σ1(w4)〉( p)w
3
8
12w

3
8
13w

3
8
14w

3
8
23w

3
8
24w

3
8
34

� (28)

B( p)({w}) = 〈σ1(w1)σ1(w2)σ2(w3)σ2(w4)〉( p)w
3
8
12w

7
8
13w− 1

8
14 w− 1

8
23 w

7
8
24w

3
8
34� (29)
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A( p)({w}) = 〈σ1(w1)σ2(w2)σ1(w3)σ2(w4)〉( p)w
7
8
12w

3
8
13w− 1

8
14 w− 1

8
23 w

3
8
24w

7
8
34.� (30)

By using the four point functions of spin fields, which are determined in appendix C, we find

A( p)({w}) = (−1) p
[w12w34]

7
8 x−

1
8 (1 − x)

3
4 h

p
2
[
F p

2 (x)− x
1 − x

F p
1 (x)

]

B( p)({w}) = (−1) p
[w12w34]

7
8 x−

1
8 (1 − x)−

1
4 h

p
2 F p

1 (x) .
�

(31)

In equation  (31), 
√

h = 1
4 2− 1

6 (see appendix C) and the functions F p
1 ,F p

2  are given in 
equation (C.5).

4.3. The case m1 = m2 = 2

We consider the four quasihole wave function with m1 = m2 = 2, taking N1 = N2 = 2 and 
N3  =  4. As in the previous section, we label the coordinates z1, z2, . . . , z8, omitting the pseudo
spin indices. We consider two possible orderings of the four operators, corresponding to 
〈σ1σ1σ2σ2X〉( p) and 〈σ1σ2σ1σ2X〉( p).

Note that in this case, there are only two natural ways of dividing the quasiholes over the 
two layers in the Cappelli representation. For the first case, the symmetrized wave functions 
are Ψ13;24 and Ψ14;23. For the second case, they are Ψ12;34 and Ψ14;23.

4.3.1.  First case.  For the first case, we write

Ψ
( p)
(4,2)({w}, {z}) = 〈σ1(w1)σ1(w2)σ2(w3)σ2(w4)X〉( p)[Ψ(4,1)]

1
2

×
2∏

i,j=1

(zi − wj)
1
2

4∏
i,j=3

(zi − wj)
1
2 w

3
8
12w− 1

8
13 w− 1

8
14 w− 1

8
23 w− 1

8
24 w

3
8
34

= A( p)
1 ({w})Ψ13;24 + B( p)

1 ({w})Ψ14;23.
�

(32)

We then consider the limits

(i) : z2 → z1, z4 → z3, z6 → z5, z8 → z7

(ii) : z3 → z1, z4 → z2, z6 → z5, z8 → z7; z1 → w3, z2 → w4,
� (33)

which give the equations

A( p)
1 ({w}) + B p

1 ({w}) = (−1) p
[w12w34]

− 1
8 x

7
8 (1 − x)−

1
4 h

p
2 F p

1 (x)

A( p)
1 ({w}) + (1 − x)B p

1 ({w}) = (−1) p
[w12w34]

− 1
8 x

7
8 (1 − x)

3
4 h

p
2 [F p

1 (x) + F p
2 (x)] .

� (34)

As in the previous section, we use the four point functions of the spin fields to find

A( p)
1 ({w}) = (−1) p

[w12w34]
− 1

8 x−
1
8 (1 − x)

3
4 h

p
2 F p

2 (x)

B( p)
1 ({w}) = (−1) p

[w12w34]
− 1

8 x−
1
8 (1 − x)−

1
4 h

p
2 [xF p

1 (x)− (1 − x)F p
2 (x)] .

� (35)
4.3.2.  Second case.  For the second case, the master formula reads

Ψ
( p)
(4,2)({w}, {z}) = 〈σ1(w1)σ2(w2)σ1(w3)σ2(w4)X〉( p)[Ψ(4,1)

] 1
2
∏

i=1,2

(zi − w1)
1
2 (zi − w3)

1
2

×
∏

j=3,4

(zj − w2)
1
2 (zj − w4)

1
2 w− 1

8
12 w

3
8
13w− 1

8
14 w− 1

8
23 w

3
8
24w− 1

8
34

= A( p)
2 ({w})Ψ12;34 + B( p)

2 ({w})Ψ14;32.

�

(36)
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In this case, we take the limits

(iii) : z2 → z1, z4 → z3, z6 → z5, z8 → z7

(iv) : z3 → z1, z4 → z2, z6 → z5, z8 → z7; z1 → w2, z2 → w4
� (37)

which give the solutions

A( p)
2 ({w}) = (−1) p

[w12w34]
− 1

8 x−
1
8 (1 − x)

3
4 h

p
2 F p

2 (x)

B( p)
2 ({w}) = − (−1) p

[w12w34]
− 1

8 x
7
8 (1 − x)−

1
4 h

p
2 F p

1 (x) .
�

(38)

4.4. The case m0  =  4

We take m0  =  4 and N1 = N2 = N3 = 2. The conformal blocks have the expressions

Ψ
( p)
(4,2)({w}, {z}) = 〈σ0(w1)σ0(w2)σ0(w3)σ0(w4)X〉( p)[Ψ(4,1)]

1
2

∏
i,j

(zi − wj)
1
2

∏
i<j

w
3
8
ij

= A( p)({w})Ψ12;34 + B( p)({w})Ψ13;24.

�

(39)

We take the limits

(i) : z2 → z1, z4 → z3, z6 → z5

(ii) : z4 → z3, z6 → z5; z1 → w3, z2 → w4
� (40)

which reduce the four point functions to 〈σ0σ0σ0σ0X〉( p) → 〈σ0σ0σ0σ0〉( p) for (i) and 
〈σ0σ0σ0σ0X〉( p) → 〈σ0σ0σ1σ1〉( p) for limit (ii). This yields the same equations as in equa-
tion (31), i.e. the braid matrices for spinless quasiholes in the bosonic case are be the same as 
the braid matrices for the spinful quasiholes. This result was to be expected: it follows from 
the su (4) symmetry which is unbroken in the case M  =  0.

4.5.  Braiding transformations

By keeping track of how the coefficients A( p), B( p) and the symmetrized quasihole wave func-

tions Ψab;cd transform, we find the manifest transformation of the conformal blocks Ψ( p)
(4,2). The 

transformations of the Ψab;cd are obtained straightforwardly, using equation (18). The trans-
formations of the coefficients A( p), B( p) follow from the transformations of the anharmonic 
ratios and the transformations of the functions F p

i  which are presented in appendix D. The 
combined transformation yields

Ψ
( p)
(4,2) →

∑
p′

(
U(4,2)

ij

) p

p′
Ψ

( p′)
(4,2),� (41)

where (U(4,2)
ij ) p

p′ is the 2 × 2 braid matrix corresponding to the transformation wi � wj . 

We now present the matrices corresponding to the transformations w1 � w2, w1 � w3 and 
w2 � w3, found from the solutions of the master formulas in sections  4.2–4.4. The braid 
matrices read

U(4,2)
12 = (−1)

1
8

(
1 0

0 (−1)
2
3

)
� (42)
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U(4,2)
23 =

(−1)
5
8

√
3

(
1 − (−1)

1
3
√

2

− (−1)
1
3
√

2 (−1)−
1
3

)
� (43)

U(4,2)
13 =

(−1)
7
8

√
3

(
1

√
2√

2 −1

)
.� (44)

All of the matrices are found for the case m1  =  4, while the case m1 = m2 = 2 yields only 

the matrices U(4,2)
12  and U(4,2)

13 , one for each ordering. As was mentioned before, the symmetry 
between the quasiholes in the bosonic case means these are the correct braid matrices in the 
general cases mµ = 4 and mµ = mµ′ = 2 as well.

The matrices Uij constitute a two-dimensional representation of the braid group, as they are 
unitary and satisfy the ‘Yang–Baxter’ relation U13 = U12U23U12 = U23U12U23. Moreover, the 
braid matrices are closely related to the braid matrices associated with quasiholes in the k  =  4 
Read–Rezayi wave function [9], which we write Ψ(2,4). The braid matrices for the Read–
Rezayi states are given in [33, 49]. The close relation is due to the rank-level duality between 
the WZW CFTs su (4)2 for the paired spin-singlet and su (2)4 for the Read–Rezayi state [50]. 

Denoting the braid matrices for Ψ(n+1,k) by U(n+1,k)
ij , the matrices satisfy

U(4,2)
12 = (−1)1/24 U

(2,4)
12

U(4,2)
23 = (−1)1/24 U

(2,4)
23

U(4,2)
13 = (−1)1/8 U

(2,4)
13 ,

�
(45)

where the overline indicates that the rows and columns (i.e. the order of the fusion channels) 
of the matrix are swapped. This is explained in more detail in appendix E.

4.6.  Wave functions for general M

To obtain the braid matrices for the M  >  0 wave functions ΨM
(4,2), we modify the electron and 

quasihole operators for the M  =  0 case. First, we adopt the following representation [38] of 
the vectors v and q

v1 =

(
2√
3

, 0,− 2√
6

)
, v2 =

(
2√
3

,
1√
2

,
1√
6

)
, v3 =

(
2√
3

,− 1√
2

,
1√
6

)

q1 =

(
1

2
√

3
, 0,− 2√

6

)
, q2 =

(
1

2
√

3
,

1√
2

,
1√
6

)
, q3 =

(
1

2
√

3
,− 1√

2
,

1√
6

)
, q0 =

(
3

2
√

3
, 0, 0

)

� (46)
which satisfy the inner products equation (15). These vectors ensure charge neutrality in all 
sectors except the first, so that Obg depends on the field φ1 only, which describes charge. To 

obtain the model wave function ΨM
(4,2) without quasiholes, we change the first components to

v1
α → v1

α,M =

√
4 + 6M

3
� (47)

which yields the appropriate modification to the wave function as in equation (1). Introducing 
quasiholes, the appropriate change to q1

µ follows from the requirement of mutual locality, so 
that the inner products between the vectors qµ and vα is unchanged for M  >  0. For the vectors 
q, this yields
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qα,M · qα′,M = qα · qα′ − M
2(4 + 6M)

q0,M · qα,M = q0 · qα − 3M
2(4 + 6M)

q0,M · q0,M = q0 · q0 −
9M

2(4 + 6M)
.

�

(48)

The new conformal blocks ΨM ( p)
(4,2)  then differ from their bosonic M  =  0 counterparts by the 

full Jastrow factor 
∏

i<j (zi − zj)
M and similar factors of the quasihole coordinates which we 

denote by Ξ:

Ψ
M( p)
(4,2) ({w}, {z}) = Ξ({w})Ψ( p)

(4,2) ({w}, {z})
∏
i<j

(zi − zj)
M .� (49)

The factors Ξ for the different cases are

	 •	�mα = 4 and mα = mα′ = 2: Ξ =
∏

i<j w
− M

4(4+6M)

ij

	 •	�m0  =  4: Ξ =
∏

i<j w
− 9M

4(4+6M)

ij

The factor Ξ leads to additional, global phases of the braid matrices, while the Jastrow factor 
has no effect. In particular, they break the symmetry between the braiding behavior of the dif-
ferent quasiholes. The resulting braid matrices for the quasiholes with spin are

U(4,2),M
12 = (−1)−

M
4(4+6M) U(4,2)

12

U(4,2),M
23 = (−1)−

M
4(4+6M) U(4,2)

23

U(4,2),M
13 = (−1)−

3M
4(4+6M) U(4,2)

13 .

�

(50)

The updated braid matrices for the spinless quasiholes read

U(4,2),M
12 = (−1)−

9M
4(4+6M) U(4,2)

12

U(4,2),M
23 = (−1)−

9M
4(4+6M) U(4,2)

23

U(4,2),M
13 = (−1)−

27M
4(4+6M) U(4,2)

13 .

�

(51)

5.  Braiding for the paired su (n + 1)2 spin-singlet states

We turn to the braiding of the fundamental quasiholes in the paired su (n + 1)2 spin-singlet 
state equation (52). There are n electron operators and n  +  1 quasihole operators Hµ, given 
by equation (14), in terms of parafermions ψα and spin fields σµ of the parafermion theory 
su (n + 1)2 /u (1)n. The model wave function for the ground state reads

Ψ(n+1,2)({z}) = 〈
n∏

α=1

Nα∏
i=1

ψα(zαi )〉
[
Ψ(n+1,1)

] 1
2

=
1
N

∑
S1,S2

Ψ(n+1,1)(S1)Ψ(n+1,1)(S2),
�

(52)
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where the OPE of the parafermion fields fixes the normalization N = 2
1
2 (
∑

α Nα)−1. We con-
sider the master formula for the case m1  =  4, equation (20), since it yields all braid matrices. 
The master formula is:

Ψ
( p)
(n+1,2)({w}, {z}) = 〈σ1(w1)σ1(w2)σ1(w3)σ1(w4)X〉( p)[Ψ(n+1,1)

] 1
2
∏

i,j

(z1
i − wj)

1
2

∏
i<j

w
n

2(n+1)
ij

= A p({w})Ψ12;34 + B p({w})Ψ13;24.
� (53)

We consider the simplest case where N1  =  2 and Ni�2 = 6, taking the three limits

(i) : z2k → z2k−1 for k � 1
(ii) : z3 → z1, z4 → z2, z2k → z2k−1 for k � 3; z1 → w3, z2 → w4

(iii) : z3 → z1, z4 → z2, z2k → z2k−1 for k � 3; z1 → w2, z2 → w4.
�

(54)

The four-point functions of spin fields are presented in appendix C, and yield the solutions

A p({w}) = (−1) p
[w12w34]

2n
n+1 −2∆x2∆− n

n+1 (1 − x)
n

n+1 h
p
2 [F p

2 (x)− x
1 − x

F p
1 (x)]

B p({w}) = (−1) p
[w12w34]

2n
n+1 −2∆x2∆− n

n+1 (1 − x)−
1

n+1 h
p
2 F p

1 (x) .
� (55)

Here 2∆ = n(n+2)
(n+1)(n+3). Further, 

√
h and the functions F p

i  are given in appendix B.3. Using the 

transformations of the functions F p
i  presented in appendix D, it is straightforward to obtain 

the braid matrices

U(n+1,2)
12 = (−1)

n
(n+1)(n+3)

(
1 0

0 (−1)
n+1
n+3

)
� (56)

U(n+1,2)
23 =

(−1)2∆

dn

(
1 − (−1)

2
n+3

√
d2

n − 1

− (−1)
2

n+3
√

d2
n − 1 − (−1)

4
n+3

)
� (57)

U(n+1,2)
13 =

(−1)
n(n+4)

(n+1)(n+3)

dn

(
1

√
d2

n − 1√
d2

n − 1 −1

)
.� (58)

In these expressions, dn = 2 cos
(

π
n+3

)
, see appendix D. For n  =  3, they reduce to the matri-

ces in equations (42)–(44). For n  =  2, these braid matrices agree with the results obtained in 

[33] for the NASS case4, while for n  =  1 they agree with the braid matrices for the Moore–
Read wave function [32]. Again, the matrices Uij constitute a unitary representation of the 
braid group, i.e. they satisfy U13 = U12U23U12 = U23U12U23. Finally, the matrices are closely 
related to the braid matrices (see [33]) of the Read–Rezayi Ψ(2,n+1) states, see appendix E for 
more detail.

Generalizing the discussion in section 4.6, the braid matrices for the wave functions for 
general M read

4 In comparing the matrices in equations (56) and (57) for n  =  2 to the braid matrices obtained for the NASS case, 
one should be aware that the anharmonic ratios differ. The braid matrices for n  =  2 and the matrices listed in [33] 
are related by a similarity transformation determined by U12 = U34.
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U(n+1,2),M
12 = (−1)

−M
(n+1)(n+1+2nM) U(n+1,2)

12

U(n+1,2),M
23 = (−1)

−M
(n+1)(n+1+2nM) U(n+1,2)

23

U(n+1,2),M
13 = (−1)

−3M
(n+1)(n+1+2nM) U(n+1,2)

13

� (59)

for the spinful quasiholes, and

U(n+1,2),M
12 = (−1)

−n2M
(n+1)(n+1+2nM) U(n+1,2)

12

U(n+1,2),M
23 = (−1)

−n2M
(n+1)(n+1+2nM) U(n+1,2)

23

U(n+1,2),M
13 = (−1)

−3n2M
(n+1)(n+1+2nM) U(n+1,2)

13

�

(60)

for the spinless quasiholes.

6.  Application to Hermanns hierarchy states

We apply the results obtained to a series of recently introduced trial wave functions [36] which 
are obtained from a hierarchy picture of successive condensation of non-Abelian quasiparti-
cles. We refer to these wave functions as Hermanns hierarchy states. They can be thought of as 
symmetrized copies of composite fermion (CF) [8] wave functions and were studied numer
ically in [37]. In [38], the Hermanns hierarchy states were given a CFT description by using 
their close relation to the paired spin-singlet states. Referring to [36, 38] for more details, the 
(bosonic) Hermanns hierarchy wave functions read

ΨHer;n ({z}) = 1
N

∑
S1,S2

ΨCF;n (S1)ΨCF;n (S2) ,� (61)

where the symmetrization is similar to that in the paired spin-singlet case except one now 
symmetrizes over two (bosonic) CF wave functions instead of the Ψ(n+1,1), with

ΨCF;n({z}) = S[
n∏

λ=1

∂λ−1
λ

n∏
λ=1

∏
i<j

(zλi − zλj )
2

n∏
λ<λ′

∏
i,j

(zλi − zλ
′

j )].� (62)

Here λ labels the effective Λ-levels, λ = 1, . . . , n, and ∂m
λ ≡

∏
i

∂m

(∂zλi )m is a product over deriv-

atives of coordinates in level λ. The ΨCF;n have ν = n
n+1 , and their fermionic counterparts 

constitute the positive Jain series with ν = n
2n+1. Therefore, the bosonic Hermanns hierar-

chy wave function has ν = 2n
n+1  and the corresponding fermionic wave function has filling 

fraction ν = 2n
3n+1. The case n  =  1 corresponds to the Moore–Read state, while for n = 2, 3, 

the Hermanns hierarchy wave functions are, after particle-hole conjugation, candidates for 
ν = 2 + 3

7 and ν = 2 + 2
5, respectively.

To see the relation between the Hermanns hierarchy wave functions and the paired spin-
singlet states we recognize equation (62) as a pseudospin symmetrization of the generalized 
Halperin state Ψ(n+1,1), i.e. ΨCF;n({z}) = S[

∏n
α=1 ∂

α−1
α Ψ(n+1,1) ({z})], identifying the inter-

nal quantum numbers α with the λ levels. Therefore equation (61) can be rewritten by doing 
the symmetrization over the layer first, so that

ΨHer;n ({z}) = S[
n∏

α=1

∂α−1
α Ψ(n+1,2)({z})]� (63)
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in terms of the paired spin-singlet states. In equation (63), the particles have definite pseudo-
spin indices in the paired spin-singlet state Ψ(n+1,2) and the symmetrization is a sum over the 
ways of assigning pseudospin to the particles.

Similarly, the quasihole model wave functions in the Hermanns hierarchy are obtained 
by symmetrizing paired spin-singlet states with quasiholes. The latter have n  +  1 distinct 
fundamental quasiholes, i.e. quasiholes with a definite pseudospin index µ = 1, . . . , n or the 
spinless quasihole with µ = 0. Although we perform a symmetrization, effectively removing 
internal quantum numbers, the Hermanns hierarchy wave function still has n  +  1 distinct 
fundamental quasiholes, discernible by the short distance behavior of the many-quasihole 
wave function. Considering a single quasihole for simplicity5, a model wave function for a 
quasihole with the smallest charge is

ΨHer;n (w, {z}) = S[
∏
α

∂α−1
α Ψ(n+1,2)

(
w(1), {z}

)
],� (64)

where w(1) denotes a quasihole with pseudospin µ = 1. The model wave functions for differ-
ent choices of µ = 1, . . . , n are expected to differ slightly because of the derivatives, but to 
have the same topological properties. The other type of fundamental quasihole corresponds to 
the spinless µ = 0 quasihole in the paired spin-singlet state. It is straightforward to generalize 
this to several quasiholes.

With the quasihole wave functions in place, we now argue that the braid properties of the 
quasiholes in the Hermanns hierarchy are the same as those of the paired spin-singlet states 
studied in this paper. In writing the Hermanns hierarchy wave functions one has to perform 
two symmetrizations: one over identical layers as in equation (61), and one over pseudospin 
as in the CF wave functions.

The symmetrization over identical layers changes the statistics of the quasiholes in the indi-
vidual layers: the most famous example is the Cappelli et al construction [46] of the Moore–Read 
state, via the symmetrization of two Laughlin states. This symmetrization reduces the dimension 
of the Hilbert space of quasihole states, which effectively renders the quasiholes of the Laughlin 
layers non-Abelian. Likewise, this symmetrization procedure renders the quasiholes in the gen-
eralized Halperin states non-Abelian, resulting in the braiding properties of the state Ψ(n+1,2).

Contrarily, it has been argued that the pseudospin symmetrization does not change the statistics 
of the quasiholes [51], in accordance with the result that one can determine the statistics for the 
quasiholes of the CF wave functions from the K-matrix formalism [52, 53]. In symmetrizing over 
the pseudospin, a reduction of the dimension of the Hilbert space is expected not to occur. The dif-
ference with the layer case is that the parts of the wave functions associated with different pseudo
spin are not identical. Although this is not a proof, it is likely that even for the Hermanns hierarchy 
wave functions the symmetrization over pseudospin does not alter the statistics of the quasiholes. 
Assuming this argument to be correct, the fundamental quasiholes in the Hermanns hierarchy 
come in two types, whose braid matrices are given by equations (59) and (60) respectively.

In particular, the (non-Abelian) braid behavior of the fundamental quasiholes in the 

Hermanns hierarchy wave functions at ν = 2n
3n+1 is the same, up to an overall phase, as that of 

the quasiholes in the Zn+1 Read–Rezayi wave functions at ν = n+1
n+3 . For n  =  2, the Hermanns 

hierarchy wave function is a trial wave function for ν = 2 + 3
7 (after particle-hole conjuga-

tion), and one expects the quasiholes to obey Z3 statistics. For n  =  3, the Hermanns hierar-
chy wave function has the same filling factor as the Z3 Read–Rezayi wave function: both 
are wave functions for ν = 2 + 2

5 (after particle-hole conjugation). Interestingly, one expects 

5 To ensure charge neutrality we assume another quasihole is placed at infinity.
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Z4-type braiding in the Hermanns hierarchy case, which is non-universal for topological 
quantum computing [54], as opposed to the Z3 braiding expected in the Read–Rezayi case. 
Additionally, this differs from the Ising (Moore–Read) statistics expected for quasiholes in the 
Bonderson–Slingerland [55] hierarchy state at ν = 2 + 2

5.

7.  Conclusion

In this paper we have studied the braiding properties of the fundamental quasiholes in the 
paired spin-singlet states by finding explicit expressions of the quasihole wave functions and 
obtaining their monodromies. As expected on the basis of rank-level duality, we have shown 
that the non-Abelian braiding properties of the quasiholes in the paired spin-singlet states 
are closely related to the quasiholes in the Read–Rezayi series, with the only difference an 
overall phase. The extension to clustered spin-singlet states Ψ(n+1,k) with k  >  2 is straight-
forward, although additional subtleties such as fusion multiplicities will arise, and is left to 
future work. Additionally, we have argued that the braid behavior of quasiholes in certain 
(spin polarized) non-Abelian hierarchy states should agree with that of the quasiholes in the 
paired spin-singlet states, and have observed that if the former are the appropriate model 
wave functions, the expected braid properties are Z3-type braiding for ν = 2 + 3

7 and Z4-type 
braiding for ν = 2 + 2

5. The latter is to be contrasted with the Z3-type braiding based on the 
Read–Rezayi wave function and Ising statistics (Z2-type braiding) based on the state in the 
Bonderson–Slingerland hierarchy.

In finding the quasihole braiding properties from the CFT wave functions, we have assumed 
that ‘holonomy  =  monodromy’, i.e. that no additional Berry phase contributes to the braid 
statistics. Additionally, we have argued that the braiding properties of the paired spin-singlet 
states are unchanged by a symmetrization procedure. A promising method to address these 
matters is the matrix product state implementation of [21], by means of which the full Berry 
holonomy may be calculated numerically for large system sizes.
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Appendix A.  WZW models and current algebra

We provide details on the WZW models that underpin the paired spin-singlet states. We dis-
cuss the current algebra as well as the WZW primary fields with respect to this current algebra. 
Introducing a vertex representation of the currents as well as the WZW primary fields, we 
explicitly identify the electron and quasihole operators used to write down the model wave 
functions. We refer to [34, 48, 56] for more information.

A.1.  Current algebra

The su (n + 1)k WZW model is characterized by its current algebra, a set of OPEs of currents 
Ja corresponding to the generators ta of su (n + 1)
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Ja (z) Jb (w) ∼
k
2δ

ab

(z − w)2 +
if abcJc (w)

z − w
,� (A.1)

with f abc the structure constants, i.e. [ta, tb] = if abctc.
As a simple example, we consider n  =  1. The currents J1, J2 and J3 obey the above OPEs 

with f abc = εabc . Alternatively one may introduce raising and lowering operators through 
J± = J1 ± iJ2, so that

J+ (z) J− (w) ∼ k

(z − w)2 +
2J3 (w)
z − w

J3 (z) J± (w) ∼ ±J± (w)
z − w

J3 (z) J3 (w) ∼
k
2

(z − w)2 .

�

(A.2)

The current algebra of the su (n + 1)k model is generated by J±α  with α = 1, . . . , n which form 
su (2) subalgebras with J3

α.
Following Gepner [47], the vertex representation of the su (n + 1)k current algebra is 

an explicit representation of the currents Ja in terms of free bosons φ = (φ1, . . . ,φn) and 
parafermions:

J+α (z) =
√

kψ†
α (z) eivα·φ/

√
k

J−α (z) =
√

kψα (z) e−ivα·φ/
√

k

J3
α (z) =

i
√

k
2

vα · ∂φ (z) .

�

(A.3)

The vectors vα obey vα · vα = 2 and vα · vβ = 1 if α �= β; they correspond to specific roots 
in the root lattice of su (n + 1). It is straightforward to show that these currents generate the 
su (n + 1)k current algebra, by using the OPEs

∂φi (z) ∂φj (w) ∼
−δij

(z − w)2

ψ†
α (z)ψα (w) ∼ (z − w)−2+ 2

k ,

�

(A.4)

as well as the OPE between vertex operators

eivα·φ(z)/
√

keivβ ·φ(w)/
√

k ∼ (z − w)vα·vβ/k eivα·φ(z)/
√

k+ivβ ·φ(w)/
√

k.� (A.5)

For k  =  1 the parafermions ψα are trivial, while for k  =  2 they satisfy ψ†
α = ψα. The parafer-

mions are discussed in more detail in appendix B. The connection to the paired spin-singlet 
states is the identification of the electron operators with the raising operators:

Vα (z) = J+α (z) =
√

2ψα (z) eivα·φ/
√

2.� (A.6)

A.2.  WZW primary fields

The primary fields in the WZW model are fields that correspond to a specific representation of 
the algebra su (n + 1)k. The number of irreducible representations is finite, as opposed to the 
algebras su (n + 1). In particular, the representations Λ̂ of su (n + 1)k are denoted
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Λ̂ = (Λ0;Λ1, . . . ,Λn) ,� (A.7)

where 
∑

µ Λµ = k and the Λµ are positive integers. Each representation Λ̂ corresponds to 
a representation Λ = (Λ1, . . . ,Λn) =

∑
i Λiωi of su (n + 1) (here ωi  are the fundamental 

weights). Therefore, the possible representations Λ̂ of su (n + 1)k can be represented by the Λ 
labels alone. We adopt this convention in the following, but it should be kept in mind that the 
proper labels carry an additional label Λ0 = k −

∑
i Λi � 0.

To each representation Λ (strictly speaking Λ̂) of su (n + 1)k corresponds a collection of 
fields GΛ. The ‘components’ correspond to the weights λ in the representation Λ, and are 
denoted GΛ

λ . Thus, the field GΛ can be thought of as a vector of size dimΛ (note that we only 
consider one chiral half of the theory). The field GΛ satisfies the OPE

Ja (z)GΛ (w) ∼ −ta
ΛGΛ (w)
z − w

� (A.8)

with respect to the currents Ja, where ta
Λ is the generator ta in the representation Λ.

As a simple example, the representations of su (2)2 are (2; 0) , (1; 1) and (0; 2). The associ-
ated Λ labels correspond to the trivial representation Λ = 0, the fundamental representation 
Λ = 1, and the adjoint representation Λ = 2 of su (2). The primary fields corresponding to 
these representations are G0 =

(
G0

0

)
, G1 =

(
G1

1, G1
−1

)
, and G2 =

(
G2

2, G2
0, G2

−2

)
.

In the general case, the weights λ = (λ1, . . . ,λn) in the representation Λ are obtained by 
subtracting simple roots

α1 = (2,−1, 0, . . . , 0) ,α2 = (−1, 2,−1, 0 . . . , 0) , . . . ,αn = (0, 0, . . . ,−1, 2)
� (A.9)

from Λ (see e.g. [48, 56]).
The WZW primary fields GΛ

λ  can also be represented in terms of primary fields ΦΛ
λ  in the 

corresponding parafermion CFT:

GΛ
λ (w) = ΦΛ

λ (w) eiλ·φ(w)/
√

k.� (A.10)

The parafermion CFTs are discussed in appendix B. The quasihole operators may be identified 
with particular WZW primary fields; the corresponding primary fields are the spin fields σµ.

Appendix B. The su (n + 1)2 /u (1)n  parafermion CFT

We provide the details on the su (n + 1)2 /u (1)n parafermion CFTs, see [47] for more infor-
mation. For the case n  =  3 we explicitly list all primary fields and their conformal dimensions, 
as well as the fusion rules. We also list the relevant OPE coefficients. For general n, we list 
only those details needed to perform the braiding calculation.

B.1.  General properties

The su (n + 1)2 /u (1)n parafermion CFTs were introduced in [47]. To completely specify the 
cosets su (n + 1)2 /u (1)n, we have to specify the radii (or the number of primary fields) of 
the compactified boson theories. These radii are 2i(i + 1), where i = 1, 2, . . . , n. The primary 
fields are related to the su (n + 1)k WZW models through the relation equation (A.10). The 
primary fields in the parafermion CFT are of the form ΦΛ

λ , where Λ denotes an su (n + 1)k 
representation and λ is a weight in that representation. To such primary fields, the following 
field identifications must be applied:
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ΦΛ
λ = ΦΛ

λ+kα� (B.1)

where α is an element of the root lattice Q = Zα1 + · · ·+ Zαn, as well as

Φ
(Λ1,...,Λn)
(λ1,...,λn)

= Φ
(Λ0,Λ1...,Λn−1)
(λ1+k,λ2...,λn)

� (B.2)

where Λ0 = k −
∑

i Λi.
The parafermion CFT corresponding to the su (2)2 model, which is the Ising CFT 

su (2)2 /u (1), has the primary fields Φ0
0,Φ1

1,Φ1
−1,Φ2

2,Φ2
0 and Φ2

−2 prior to field identifications. 
One then identifies Φ2

−2 ∼ Φ2
2 via equation (B.1) (the simple root is α = 2 in this case) and 

Φ2
2 ∼ Φ0

0,Φ1
−1 ∼ Φ1

1 via equation (B.2). We are left with the three well-known primary fields 
1 = Φ0

0,σ = Φ1
1 and ψ = Φ2

0 of the Ising CFT.
The conformal dimensions of the primary fields follow from equation (A.10) and the con-

formal dimensions of the WZW primary fields [47]; in the following we simply list the results. 
The braiding calculation further relies on the precise operator product expansions between 
primary fields, which are used to take limits of the master formulas. In general, the OPE 
between primary fields φi with conformal dimension ∆i reads

φa(z)φb(w) ∼
∑

c

Cc
ab(z − w)∆c−∆a−∆bφc(w).� (B.3)

Here Cc
ab denotes an OPE coefficient, and it is non-zero only if φc appears in the fusion between φa 

and φb. For k  =  2, each primary field fuses with itself to the identity, so that C1
aa = 1 for all a. For 

the remaining OPEs, we use the general expression for a three-point function of conformal fields:

〈φa(z1)φb(z2)φc(z3)〉 =
Cabc

z∆a+∆b−∆c
12 z∆a+∆c−∆b

13 z∆b+∆c−∆a
23

� (B.4)

with structure constants Cabc = Cc
ab = Cb

ac = Ca
bc . These can be determined by performing 

contractions of the ground state and the quasihole wave functions.

B.2.  Details on su (4)2 /u (1)3

We provide the details for the su (4)2 /u (1)3 parafermion CFT. The representations of the 
su (4)2 algebra are

Λ = (0, 0, 0) , (2, 0, 0) , (0, 2, 0) , (0, 0, 2) , (1, 0, 0) , (0, 1, 0) , (0, 0, 1) , (1, 1, 0) , (1, 0, 1) , (0, 1, 1) .
� (B.5)

The weights in the representations Λ are found by subtracting the appropriate simple roots

α1 = (2,−1, 0) , α2 = (−1, 2,−1) , α3 = (0,−1, 2) ,� (B.6)

which leads to a list of fields ΦΛ
λ . Applying the field identifications equations (B.1) and (B.2), 

the su (4)2 /u (1)3 parafermion CFT has the following twenty primary fields

1 = Φ0
0 ψ1 = Φ0

(2,−1,0) ψ2 = Φ0
(1,1,−1) ψ3 = Φ0

(1,0,1)

ψ12 = Φ0
(−1,2,−1) ψ13 = Φ0

(−1,1,1) ψ23 = Φ0
(0,−1,2) ψ123 = Φ0

(0,2,0)

σ0 = Φ
(1,0,0)
(1,0,0) σ1 = Φ

(0,0,1)
(1,−1,0) σ2 = Φ

(0,0,1)
(0,1,−1) σ3 = Φ

(0,0,1)
(0,0,1)

τ0 = Φ
(0,1,1)
(1,0,0) τ1 = Φ

(1,1,0)
(1,−1,0) τ2 = Φ

(1,1,0)
(0,1,−1) τ3 = Φ

(1,1,0)
(0,0,1)

ρ = Φ
(1,0,1)
(0,0,0) γ1 = Φ

(1,0,1)
(2,−1,0) γ2 = Φ

(1,0,1)
(1,1,−1) γ3 = Φ

(1,0,1)
(1,0,1).

� (B.7)
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Here we have used the shorthand 0 = (0, 0, 0). The most important fields are the parafermions 
ψ1,ψ2,ψ3 and the spin fields σ0,σ1,σ2,σ3, which are used to define the electron and funda-
mental quasihole operators in equations (10) and (14) for n  =  3. Note that the λ labels of the 
ψα are

(2,−1, 0) = α1, (1, 1,−1) = α1 + α2, (1, 0, 1) = α1 + α2 + α3� (B.8)

in terms of the simple roots equation (B.6). We denote these vectors by v1 = α1, v2 = α1 + α2 
and v3 = α1 + α2 + α3, so that

Vα (z) = Φ0
vα (z) eivα·φ(z)/

√
2.� (B.9)

Similarly, denoting the λ labels of the spin fields by q0 = ω1, q1 = ω1 − ω2, q2 = ω2 − ω3 and 
q3 = ω3, we obtain

H0 (w) = Φω1
q0

(w) eiq0·φ(w)/
√

2

Hα (w) = Φω3
qα (w) eiqα·φ(w)/

√
2.

� (B.10)

These vectors vα and qµ obey the correct inner products, where the inner product should be 
taken with respect to the quadratic form matrix of su (4)2.

The conformal dimensions of the primary fields are

∆ψ =
1
2

, ∆ψ123 = 1, ∆σ =
1
8

, ∆τ =
5
8

, ∆γ =
1
6

, ∆ρ =
2
3

.� (B.11)

B.2.1.  Fusion rules and OPEs.  We list the full set of fusion rules between the primary fields 
in equation (B.7). In general, the fusion rules read

ΦΛ
λ × ΦΛ

λ =
∑

Λ′′∈Λ×Λ′

ΦΛ′′

λ+λ′� (B.12)

where Λ× Λ′ denotes the fusion of the representations Λ× Λ′, which may be obtained by the 
Littlewood–Richardson rule. Note that the field identifications equations (B.1) and (B.2) may 
need to be used on the fusion outcomes.

The parafermions have simple, Abelian fusion rules: they have Λ = 0, so their λ labels add 
modulo 2Q by virtue of equation (B.12). We reminder the reader that Q is the root lattice, and 
k  =  2 in this case. The fusion table is

For the remaining fusion rules, we first note the following:

σµ × ψ123 = τµ.� (B.13)

By associativity of the fusion rules, the σ fusion rules encode all τ  fusion rules as well. Then, 
the following fusion tables encode all fusion rules:

ψ1 ψ2 ψ3 ψ123 ψ23 ψ13 ψ12

ψ1 1

ψ2 ψ12 1

ψ3 ψ13 ψ23 1

ψ123 ψ23 ψ13 ψ12 1

ψ23 ψ123 ψ3 ψ2 ψ1 1

ψ13 ψ3 ψ123 ψ1 ψ2 ψ12 1

ψ12 ψ2 ψ1 ψ123 ψ3 ψ13 ψ23 1
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In this particular CFT, the fusion rule equation  (B.13) implies that the braiding proper-
ties of the fields τ  are closely related to those of the fields σ. In particular the difference is a 
sign: braiding two τ  fields is equivalent to braiding a pair of σ and ψ123 around another pair, 
which is seen to give a relative minus sign compared to the braiding of the σ fields alone. The 
corresponding WZW primary fields Tµ = τµeiqµφ/

√
2 yield the same braid matrices as the 

Hµ, again up to a sign. We have verified this by explicitly calculating the F and R symbols for 
the representations Λ = (0, 1, 1) and Λ = (1, 1, 0) to which the τ  fields correspond, using the 
quantum group approach [49].

We turn to the coefficients appearing in the operator product expansions of the field. By 
performing contractions of the ground state and quasihole wave functions, we reduce the cor-
relators to three point functions, which determines several OPE coefficients. The coefficients 
for parafermions read:

ψ1 ψ2 ψ3 ψ123 ψ23 ψ13 ψ12

σ0 σ1 σ2 σ3 τ0 τ1 τ2 τ3

σ1 σ0 τ3 τ2 τ1 τ0 σ3 σ2

σ2 τ3 σ0 τ1 τ2 σ3 τ0 σ1

σ3 τ2 τ1 σ0 τ3 σ2 σ1 τ0

ψ1 ψ2 ψ3 ψ123 ψ23 ψ13 ψ12

ρ γ1 γ2 γ3 ρ γ1 γ2 γ3

γ1 ρ γ3 γ2 γ1 ρ γ3 γ2

γ2 γ3 ρ γ1 γ2 γ3 ρ γ1

γ3 γ2 γ1 ρ γ3 γ2 γ1 ρ

σ0 σ1 σ2 σ3

σ0 1 + ρ
σ1 ψ1 + γ1 1 + ρ

σ2 ψ2 + γ2 ψ12 + γ3 1 + ρ

σ3 ψ3 + γ3 ψ13 + γ2 ψ23 + γ1 1 + ρ

σ0 σ1 σ2 σ3

ρ σ0 + τ0 σ1 + τ1 σ2 + τ2 σ3 + τ3

γ1 σ1 + τ1 σ0 + τ0 σ3 + τ3 σ2 + τ2

γ2 σ2 + τ2 σ3 + τ3 σ0 + τ0 σ1 + τ1

γ3 σ3 + τ3 σ2 + τ2 σ1 + τ1 σ0 + τ0

ρ γ1 γ2 γ3

ρ 1 + ψ123 + ρ
γ1 ψ1 + ψ23 + γ1 1 + ψ123 + ρ
γ2 ψ2 + ψ13 + γ2 ψ3 + ψ12 + γ3 1 + ψ123 + ρ
γ3 ψ3 + ψ12 + γ3 ψ2 + ψ13 + γ2 ψ1 + ψ23 + γ1 1 + ψ123 + ρ
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Cψ1ψ2ψ12 = Cψ1ψ3ψ13 = Cψ2ψ3ψ23 = Cψ12ψ13ψ23 =
1√
2

Cψ1ψ23ψ123 = Cψ2ψ13ψ123 = Cψ3ψ12ψ123 = 1.
�

(B.14)

The structure of the remaining relevant OPE coefficients is

Cσσ′ψ = Cστψ123 =
1√
2

, Cστψ = 1,

Cσσρ =

√
3
√

h, Cσσ′γ =

√
−4

√
h.

� (B.15)

B.2.2. The sector ρ.  The weight (0, 0, 0) in the adjoint representation Λ = (1, 0, 1) has mul-

tiplicity three—this means that the field ρ = Φ
(1,0,1)
(0,0,0) actually consists of three independent 

Virasoro primary fields. A similar feature was noted in in the NASS case [33], where the 
equivalent sector splits up into two independent Virasoro primary fields. We proceed in a 
similar way as in that paper, defining fields ρµ by

σµ (w)σµ (w′) ∼ (w − w′)
−2∆σ + (w − w′)

∆ρ−2∆σ

√
3
√

hρµ (w′) .� (B.16)

This distinction between the sector ρ  and the fields ρµ is necessary to ensure consistency of 
the four-point functions of spin fields: studying their behavior also leads to the choice of OPE 
coefficient 

√
3
√

h above—see appendix C. Additionally one finds the OPEs

C1
ρµρµ′ = −1

3
,� (B.17)

i.e. the fields ρµ are not independent. They may be written in terms of the three independent 
fields ρc, ρs, ρt as

ρ0 = −ρc

ρ1 =
1
3
ρc + 0ρs −

2
√

2
3

ρt

ρ2 =
1
3
ρc +

√
2
3
ρs +

√
2

3
ρt

ρ3 =
1
3
ρc −

√
2
3
ρs +

√
2

3
ρt.

�

(B.18)

B.3.  Details on su (n + 1)2 /u (1)n

We provide the details on the CFT su (n + 1)2 /u (1)n needed to perform the braiding 
calculation. The primary fields are labeled by the representations Λ̂ = (Λ0;Λ1, ...,Λn) with ∑

µ Λµ = 2, and weights λ obtained by subtracting the simple roots equation  (A.9). The 
important fields after the field identifications are

ρ = Φα1+αn
0 ψ1 = Φ0

α1
ψ2 = Φ0

α1+α2
· · · ψn = Φ0

α1+···+αn

ψ12 = Φ0
α2

ψ23 = Φ0
α3

ψ34 = Φ0
α4

· · · ψ(n−1)n = Φ0
αn

σ0 = Φω1
q0

σ1 = Φωn
q1

σ2 = Φωn
q2

· · · σn = Φωn
qn

.
�

(B.19)
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This table is not exhaustive: there are many more primary fields within the CFT, but in order 
to perform the calculation of the braid behavior of the fundamental quasiholes we only need 
detailed knowledge of the fields listed above. The electron operators are

Vα (z) = Φ0
vα (z) eivα·φ(z)/

√
2� (B.20)

with v1 = α1, v2 = α1 + α2, . . . , vn = α1 + · · ·+ αn and the quasihole operators read

H0 (w) = Φω1
q0

(w) eiq0·φ(w)/
√

2

Hα (w) = Φωn
qα (w) eiqα·φ(w)/

√
2

� (B.21)

with q0 = ω1, q1 = ω1 − ω2, q2 = ω2 − ω3, . . . , qn = ωn. The conformal dimensions of these 
fields are [47]

∆ψ =
1
2

, ∆σ =
n

4(n + 3)
, ∆ρ =

n + 1
n + 3

.� (B.22)

Using equation (B.12) and the field identifications equation (B.1) the relevant fusion rules are

ψα × ψα = 1
ψ1 × ψ2 = ψ12,ψ1 × ψ3 = ψ13, . . .

ψα(α+1) × σα = σα+1

σµ × σµ = 1 + ρµ

� (B.23)

where, generalizing equation (B.16), we define the fields ρµ by Cρµ
σµσµ =

√
n
√

h using the 
properties of the four point functions derived in appendix C. This also yields C1

ρµρµ′ = − 1
n.

Appendix C.  Four point functions of spin fields

The calculation of the braiding properties ultimately relies on the knowledge of the four-point 
functions of spin fields σµ in the su (n + 1)2 /u (1)n CFTs, which we present here, following 
[33]. By virtue of equation (A.10), the spin fields are related to the following WZW primary 
fields which transform according to the fundamental representation:

H0 (w) = σ0(w)eiq0·φ(w)/
√

2

H−1
α (w) = σα (w) e−iqα·φ(w)/

√
2.

� (C.1)

To simplify the notation, we write these as gµ, µ = 0, 1, . . . , n where g0 = H0 and gα = H−1
α . 

Then, g−1
µ  transforms according to the anti-fundamental representation. The four point func-

tions of such WZW primaries are given by6 [34]

C( p)
1 =

〈
gµ(w1)g−1

µ (w2)g−1
µ′ (w3)gµ′(w4)

〉( p)

= [w12w34]
−2∆x2∆(1 − x)−

1
n+1 h

p
2 F p

1 (x)
�

(C.2)

C( p)
2 =

〈
gµ(w1)g−1

µ′ (w2)g−1
µ (w3)gµ′(w4)

〉( p)

= [w12w34]
−2∆x2∆(1 − x)−

1
n+1 h

p
2 [−xF p

1 (x) + (1 − x)F p
2 (x)]

�
(C.3)

6 We note that the results are obtained in [34] with a different convention for the anharmonic ratio.
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C( p)
1 + C( p)

2 =
〈
gµ(w1)g−1

µ (w2)g−1
µ (w3)gµ(w4)

〉( p)

= [w12w34]
−2∆x2∆(1 − x)

n
n+1 h

p
2 [F p

1 (x) + F p
2 (x)]

�
(C.4)

where p = 0, 1 denotes the fusion channel and ∆ = n(n+2)
2(n+1)(n+3) is the conformal dimen-

sion of g. We remind the reader of the notation wij = wi − wj  and x = w12w34
w13w24

. Additionally 
√

h = 1
(n+1)

√
Γ( n

n+3 )Γ(
n+2
n+3 )

Γ( 3
n+3 )Γ(

1
n+3 )

Γ( 2
n+3 )

Γ( n+1
n+3 )

 and the F p
i  are the following functions in terms of the 

hypergeometric functions 2F1 (a, b; c; x):

F0
1 (x) = x−2∆(1 − x)

1
(n+1)(n+3) 2F1

(
1

n + 3
,− 1

n + 3
;

2
n + 3

; x
)

F0
2 (x) =

1
2

x1−2∆(1 − x)
1

(n+1)(n+3) 2F1

(
1 +

1
n + 3

, 1 − 1
n + 3

; 1 +
2

n + 3
; x
)

F1
1 (x) = x

1
(n+1)(n+3) (1 − x)

1
(n+1)(n+3) 2F1

(
n

n + 3
,

n + 2
n + 3

; 1 +
n + 1
n + 3

; x
)

F1
2 (x) = −(n + 1)x

1
(n+1)(n+3) (1 − x)

1
(n+1)(n+3) 2F1

(
n

n + 3
,

n + 2
n + 3

;
n + 1
n + 3

; x
)

.

�

(C.5)

Up to a phase, the four point functions of spin fields can be found from equation (C.2) by split-
ting off a correlator of vertex operators. The final result is
〈
σµσµσµ σµ

〉( p)
= (−1) p

[w12w34]
n

2(n+1)−2∆x2∆(1 − x)
n

2(n+1) h
p
2 [F p

1 (x) + F p
2 (x)]

〈
σµσµσµ′σµ′

〉( p)
= (−1) p

[w12w34]
n

2(n+1)−2∆x2∆(1 − x)
−1

2(n+1) h
p
2 F p

1 (x)
〈
σµσµ′σµσµ′

〉( p)
= (−1) p

[w12w34]
n

2(n+1)−2∆x2∆− 1
2 (1 − x)

−1
2(n+1) h

p
2 [−xF p

1 (x) + (1 − x)F p
2 (x)].

�
(C.6)

The precise way in which the phases were obtained requires some additional clarification. 
In principle, these phases can be obtained by studying the behavior of the four point func-
tions in the limit w12, w34 → 0 or x → 0, using the OPEs of the spin fields. For the fusion 
channel p   =  0 this fixes all phases to 1. For the fusion channel p   =  1 however, the distinc-
tion between the sector ρ  and the fields ρµ introduced in appendix B.2.1 becomes important. 
Namely, naively using the sector ρ  as the p   =  1 channel in the OPEs of the spin fields, i.e. 
(σµσµ)

1 ∝ Cρ
σµσµ

ρ, the coefficients Cρ
σµσµ

 are found to be inconsistent.
Using the definition (σµσµ)

1 ∝ Cρµ
σµσµρµ instead, the normalization C1

ρµρµ
= 1 deter-

mines the phase for the four point function 〈σµσµσµσµ〉(1), which is  −1. For the remaining 
four point functions, the OPE coefficients C1

ρµρµ′ are not known a priori: to fix the phases an 
additional limit of the master formula, given in equation (26) for n  =  3 and equation (54) in 
the general case, is taken. This gives a consistency condition between the expansion coeffi-
cients A( p), B( p) which is used to fix the phases and thereby the OPE coefficients. The phases 

are  −1, and the OPE coefficients read C1
ρµρµ′ = − 1

n.

Appendix D. Transformation properties of the F p
i

We present the transformations of the functions F p
i (x) given in equation  (C.5) under 

x → 1 − x, x → −x
1−x

 and x → 1
x. For this, the transformation properties of the hypergeomet-

ric functions are needed, as well as contiguous relations between them.
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For the transformation w1 � w2, corresponding to x → −x
1−x

, we have

F p
1

(
−x

1 − x

)
= (−1)

(n+1) p
n+3 −2∆

(1 − x)2∆− 1
n+1 F p

1 (x)

F p
2

(
−x

1 − x

)
= (−1)

(n+1) p
n+3 −2∆

(1 − x)2∆− 1
n+1 [−xF p

1 (x) + (1 − x)F p
2 (x)].

�

(D.1)

For the transformation w2 � w3, corresponding to x → 1
x:

F p
1

(
1
x

)
= (−1)−

(n+1) p
n+3 − n

(n+1)(n+3) x2∆− 1
n+1 [C p

0 [xF
0
1 − (1 − x)F0

2 ]− (−1)
2

n+3 C p
1 [xF

1
1 − (1 − x)F1

2 ]]

F p
2

(
1
x

)
= (−1)

−(n+1) p
n+3 − n

(n+1)(n+3) x2∆− 1
n+1 [C p

0 F
0
2 − (−1)

2
n+3 C p

1 F
1
2 ]

�

(D.2)

where

C0
0 = −C1

1 =
1

2 cos
(

π
n+3

)

C1
0 =

1 − (C0
0)

2

C0
1

= −(n + 1)
Γ2( n+1

n+3 )

Γ( n
n+3 )Γ(

n+2
n+3 )

.

�

(D.3)

Finally, for the transformation w1 � w3, corresponding to x → 1 − x [34]

F p
1 (1 − x) = C p

0 F
0
2 (x) + C p

1 F
1
2 (x)

F p
2 (1 − x) = C p

0 F
0
1 (x) + C p

1 F
1
1 (x) .

� (D.4)

To obtain the braid behavior of the fundamental quasiholes, the following identities are also 
useful:

dn = (C0
0)

−1 = 2 cos
(

π

n + 3

)

C1
0

√
h =

C0
1√
h
= −

√
1 − (C0

0)
2.

�
(D.5)

Appendix E.  Rank level duality

We comment on the consequences of rank-level duality, which relates the su (n + 1)k and 
su (k)n+1 WZW theories. In particular, we consider the consequences for the correlators, and 
thereby the braiding behavior of the quasiholes. In [50], the relation between the correlators 
of WZW primary fields in the dual WZW theories was derived. For the present purposes, we 
only consider the su (n + 1)2 and su (2)n+1 cases. The correlators of four primary fields of 
the former theory are given in equations (C.2)–(C.4). The equivalent correlators for the later 
theory are stated here, using the convention x = w12w34

w13w24
, which differs from the one used in 

[34], where these correlators were derived. The correlators C̃( p)
a  of the fields g, corresponding 

to the fundamental representation of the su (2)n+1 WZW theory read

C̃( p)
1 =

〈
gµ(w1)g−1

µ (w2)g−1
µ′ (w3)gµ′(w4)

〉( p)
= w−2∆̃

12 w−2∆̃
34 x2∆̃h̃

p
2
[
F̃ p

1 (x) + F̃ p
2 (x)

]
� (E.1)

Y Tournois and E Ardonne﻿J. Phys. A: Math. Theor. 53 (2020) 055402



27

C̃( p)
2 =

〈
gµ(w1)g−1

µ′ (w2)g−1
µ (w3)gµ′(w4)

〉( p)
= w−2∆̃

12 w−2∆̃
34 x2∆̃h̃

p
2
[
−F̃ p

2 (x)
]

�
(E.2)

C̃( p)
1 + C̃( p)

2 =
〈
gµ(w1)g−1

µ (w2)g−1
µ (w3)gµ(w4)

〉( p)
= w−2∆̃

12 w−2∆̃
34 x2∆̃h̃

p
2
[
F̃ p

1 (x)
]
,� (E.3)

where µ,µ′ label the weights of the fundamental (i.e. two-dimensional) representation of 
su (2). The p   =  0 channel corresponds to the trivial intermediate channel, (0), while the p   =  1 
channel corresponds to (2), the adjoint (i.e. three dimensional) representation. The tilde indi-
cates that we deal with the su (2)n+1 quantities instead of the su (n + 1)2 version (for the gen-

eral su (n + 1)k results, see [34]), that is ∆̃ = 3
2(n+3), h̃ =

Γ( 1
n+3 )Γ(

3
n+3 )Γ(

n+1
n+3 )

2

4Γ( n
n+3 )Γ(

n+2
n+3 )Γ(

2
n+3 )

2 and

F̃0
1 (x) = x−2∆̃(1 − x)

1
2(n+3) 2F1

(
1

n + 3
,− 1

n + 3
;

n + 1
n + 3

; x
)

� (E.4)

F̃0
2 (x) =

1
n + 1

x1−2∆̃(1 − x)
1

2(n+3) 2F1

(
1 +

1
n + 3

, 1 − 1
n + 3

; 1 +
n + 1
n + 3

; x
)

�
(E.5)

F̃1
1 (x) = x

1
2(n+3) (1 − x)

1
2(n+3) 2F1

(
1

n + 3
,

3
n + 3

; 1 +
2

n + 3
; x
)

� (E.6)

F̃1
2 (x) = −2x

1
2(n+3) (1 − x)

1
2(n+3) 2F1

(
1

n + 3
,

3
n + 3

;
2

n + 3
; x
)

.� (E.7)

For the correlators of the su (n + 1)2 and su (2)n+1 WZW theories, rank level duality takes the 
following form [50]

(
C̃(0)

1 + C̃(0)
2

)(
C(0)

1 + C(0)
2

)
+
(
C̃(1)

1 + C̃(1)
2

)(
C(1)

1 + C(1)
2

)
= w

− 2n+1
2(n+1)

12 w
− 2n+1

2(n+1)

34 (1 − x)
2n+1

2(n+1) .
� (E.8)

Before we comment on the consequences for the braid matrices, we note that we obtained the 
results for the correlators C̃( p)

a  by taking the result from [34], and transforming x → − x
1−x

, 
to take the different choices for the anharmonic ratios into account. This leads to the fact that 
for the su (2)2 correlators, i.e. either C( p)

a  or C̃( p)
a  with n  =  1, we have that C(0)

1 = C̃(0)
1  and 

C(0)
2 = C̃(0)

2 , but in the p   =  1 channel they differ by a sign, C(1)
1 = −C̃(1)

1  and C(1)
2 = −C̃(1)

2 .
The duality relation between the correlators equation (E.8), implies that the braid matrices 

are also related. To avoid clutter in the notation, we denote braid matrices derived from the 

WZW correlators by W(n+1,k)
ij . From the explicit form of the correlator equation  (E.3), we 

obtain the braid matrices W(2,n+1)
23  for the exchange of w2 ↔ w3,

W(2,n+1)
23 =

(−1)2∆̃

dn

(
1 (−1)−

2
n+3

√
d2

n − 1

(−1)−
2

n+3
√

d2
n − 1 −(−1)−

4
n+3

)
.� (E.9)

From the correlator C( p)
1 + C( p)

2 , equation  (C.4), we obtain the equivalent braid matrix for 
su (n + 1)2

W(n+1,2)
23 =

(−1)2∆

dn

(
1 (−1)

2
n+3

√
d2

n − 1

(−1)
2

n+3
√

d2
n − 1 −(−1)

4
n+3

)
.� (E.10)
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These matrices satisfy

W(2,n+1)
23 · W(n+1,2)

23 = −(−1)−
1

2(n+1) 1,� (E.11)

as expected from the duality relation equation (E.8), see [50].

The matrices W(n+1,2)
23  differ from the ones obtained using the parafermion correlators in 

section 5 by a sign of the off-diagonal elements, see equation  (57). From an anyon-model 
point of view [57], this sign is a gauge convention. However, the (sign) ‘choices’ made in 
section 5 came from various consistency conditions. These choices are consistent with the 
choices made in [33] in the case su (3)2, so indeed, the braid matrices are the same (after tak-
ing the different choices for the anharmonic ratio into account). In addition, these choices also 
coincide with natural phase choices when one calculates the F- and R-matrices of the anyon-

models using quantum groups, as explained in [58]. The braid matrices U(2,n+1)
23  calculated in 

[33] are the same as the ones obtained from the WZW correlator equation (C.4) (again after 

taking the different anharmonic ratio into account), so W(2,n+1)
23 = U(2,n+1)

23 . They also corre-
spond to the braid matrices obtained using quantum groups.

Thus, because of the difference between W(n+1,2)
23  and U(n+1,2)

23 , it is interesting to inves-
tigate if the braid matrices U(n+1,2)

23  and U(2,n+1)
23 = W(2,n+1)

23  as given in equations (57) and 
(E.10) are also related in some way. Such a relation indeed exists, if one swaps the rows and 

columns of U(2,n+1)
23 . This swap is natural, because the two fusion channels of two fundamental 

representations ω1 are (2, 0) and (0, 1) for su (3)2; (2, 0, 0) and (0, 1, 0) for su (4)2; (2, 0, 0, 0) 
and (0, 1, 0, 0) for su (5)2, etc. Form this point of view, the natural ordering for su (2)2 would 

be (2) and (0), which is the opposite ordering in comparison to one used for U(2,n+1)
23  of equa-

tion (E.10). We denote the version of U(2,n+1)
23  with swapped rows and columns by U

(2,n+1)
23 . 

One then easily obtains the relation

(−1)
1

(n+1)(n+3) U(n+1,2)
23 = (−1)

1
2(n+3) U

(2,n+1)
23 .� (E.12)

One finds that relation between the braid matrices for exchanging w1 ↔ w2 is the same, and 
the one for w1 ↔ w3 easily follows,

(−1)
1

(n+1)(n+3) U(n+1,2)
12 = (−1)

1
2(n+3) U

(2,n+1)
12� (E.13)

(−1)
3

(n+1)(n+3) U(n+1,2)
13 = (−1)

3
2(n+3) U

(2,n+1)
13 .� (E.14)
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