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Abstract

Based on statistical analysis of synchrotron polarization intensity, we study the anisotropic properties of
compressible magnetohydrodynamic (MHD) turbulence. The second-order normalized structure function,
quadrupole ratio modulus, and anisotropic coefficient are synergistically used to characterize the anisotropy of
the polarization intensity. On the basis of predecomposition data cubes, we first explore the anisotropy of the
polarization intensity in different turbulence regimes and find that the most significant anisotropy occurs in the sub-
Alfvénic regime. Using postdecomposition data cubes in this regime, we then study the anisotropy of the
polarization intensity from Alfvén, slow, and fast modes. The statistics of the polarization intensity from Alfvén
and slow modes demonstrate the significant anisotropy, while the statistics of the polarization intensity from fast
modes show isotropic structures. This is consistent with earlier results provided in Cho & Lazarian. As a result,
both quadrupole ratio modulus and anisotropic coefficient for polarization intensities can quantitatively recover the
anisotropy of underlying compressible magnetohydrodynamic turbulence. The synergistic use of the two methods
helps enhance the reliability of the magnetic field measurement.

Unified Astronomy Thesaurus concepts: Interstellar magnetic fields (845); Magnetohydrodynamics (1964);
Interstellar synchrotron emission (856)

1. Introduction

Magnetohydrodynamic (MHD) turbulence is ubiquitous in
astrophysical environments (see Armstrong et al. 1995; Ferrière
2001; Elmegreen & Scalo 2004), and has a profound impact on
many key astrophysical processes, such as the formation of stars
(Mac Low & Klessen 2004; McKee & Ostriker 2007), the
propagation and acceleration of cosmic rays (Yan & Lazarian
2008), heat conduction (Narayan & Medvedev 2001), and
turbulent magnetic reconnection (Lazarian & Vishniac 1999,
hereafter LV99). Thus, studying the properties of MHD
turbulence is necessary for a thorough comprehension of key
astrophysical progresses.

Magnetohydrodynamic turbulence has long been understood to
be isotropic (Iroshnikov 1964; Kraichnan 1965; Shebalin et al.
1983). However, significant progress was made by Goldreich &
Sridhar (1995), henceforth GS95, in understanding the properties
of incompressible MHD turbulence, which was predicted to be
anisotropic by considering relative motions of eddies parallel and
perpendicular to the magnetic field directions. The anisotropies of
the turbulence are related to the eddy scales, that is, the smaller
the eddy scale, the more elongated the anisotropic structures of
the turbulence. These relations, predicted by GS95, have been
confirmed numerically (Cho & Vishniac 2000; Maron &
Goldreich 2001; Cho & Lazarian 2002; hereafter CL02; Cho &
Lazarian 2003; hereafter CL03). It is worth pointing out that
the GS95 theory was applicable for the local system of reference
defined by the direction of the local mean magnetic field
surrounding the eddies (LV99; Cho & Vishniac 2000; Cho et al.
2002). This definition provides an important basis for under-
standing the critical balance condition, the scale-dependent
anisotropy, and turbulent reconnection theory. The GS95 theory
focused on incompressible MHD turbulence, which was extended
to compressible ones (CL02 and CL03). The anisotropies of
compressible MHD turbulence were explored in the subsequent

numerical simulation (Matthaeus et al. 1996), which opened the
way for numerical simulation of the compressibility of MHD
turbulence. An important work of compressible MHD turbulence
was carried out by CL02, who developed and tested the technique
of separating different MHD modes. By decomposing the MHD
turbulence modes, they found that Alfvén and slow modes
have scale-dependent GS95 anisotropy, while the fast mode is
isotropic.
In fact, the compressible MHD turbulence is involved in

density and magnetic field fluctuations. The plasma parameter
b = P Pgas mag is used to characterize the compressibility of
MHD turbulence, where Pgas and Pmag are gas and magnetic
pressures, respectively. By introducing the Alfvénic and sonic
Mach numbers,
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respectively, we have b = M M2 A
2

s
2. Here, v is the gas velocity,

pr= Bv 4A ∣ ∣ is Alfvénic velocity, and cs is the sound speed.
The high-β regime indicates a gas-pressure-dominated plasma,
whereas the low-β regime is a magnetic-pressure-dominated one.
The incompressible regime formally corresponds to b ~ ¥, and
the compressible one to the low-β regime.
Although a numerical simulation is a great tool for exploring

the properties of MHD turbulence, the currently available 3D
simulations are limited by numerical resolutions, with the
Reynolds number up to~105 less than the Reynolds number at
least 108 of real astrophysical fluids. Therefore, measurements
of the interstellar medium (ISM) turbulence are important for
studying properties of ISM, gauging the cosmic microwave
background foregrounds, and predicting the propagation of
cosmic rays. Obviously, to develop an effective method based
on observations is very promising for exploring the properties
of turbulent fluctuations.
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Based on an analytical description, Lazarian & Pogosyan
(2012, henceforth LP12) made the first step into employing
statistics of synchrotron intensity fluctuations to recover the
properties of MHD turbulence. They predicted that (1) synchro-
tron intensity fluctuations are anisotropic with the elongated
structure along the direction of magnetic field; (2) anisotropies
of synchrotron fluctuations are dominated by the quadrupole
component, and the quadrupole ratio, i.e., the ratio between
quadrupole and monopole parts, is sensitive to the compressibility
of underlying turbulence; (3) synchrotron intensity correlations are
very weakly dependent on the spectral index of relativistic
electrons. These theoretical predictions were tested and verified
numerically by Herron et al. (2016) using MHD turbulence
simulations. In addition, LP12 also found that the quadrupole ratio
moduli of synchrotron intensity from three (Alfvén, slow, and
fast) modes show different levels of anisotropy related to Alfvénic
Mach numbers, which should be tested further. The advantage of
using synchrotron intensity fluctuations to study MHD turbulence
is free from the influence of Faraday rotation. However, we all
know that this technique is not applicable to the line-of-sight
magnetic field measurements.

In view of the powerful and abundant polarization observations,
the traditional Faraday rotation synthesis or Faraday tomography
(Burn 1966; Brentjens & de Bruyn 2005) has been popularly used
in studies of the properties of the magnetic field by combining
synchrotron polarization with the Faraday rotation effect. This
method was recently applied to polarized observational data and
provides significant insight into magnetic field structures of
galaxies (see Fletcher et al. 2011; Beck & Wielebinski 2013;
Haverkorn 2015 for a review) and the properties of the ISM (Jelić
et al. 2015; Van Eck et al. 2017; Dickey et al. 2019). An apparent
limitation of the Faraday tomography is related to its treatment of
magnetic turbulence. In particular, the estimation of the line-of-
sight magnetic field through the Faraday depth is ambiguous due
to magnetic field reversals along the line of sight. With the purpose
of measuring the properties of MHD turbulence, statistical
techniques of synchrotron polarization gradient, i.e., the gradient
of polarized vector, have been applied to determining the sonic
Mach number of the interstellar turbulence (Gaensler et al. 2011;
Burkhart et al. 2012). Very recently, more sophisticated construc-
tions of synchrotron diagnostics have been derived in Herron et al.
(2018) to feasibly explore the magnetized ISM.

Taking synchrotron polarization fluctuations into account,
Lazarian & Pogosyan (2016, henceforth LP16) introduced two
important new techniques, i.e., polarization spatial analysis and
polarization frequency analysis, to obtain the properties of
magnetic turbulence, such as the power spectral index and
correlation scale. These two techniques consider polarization
fluctuations as a function of the spatial separation of the direction
of the measurements and wavelength for the same line of sight,
respectively. The theoretical predictions presented by LP16 have
been successfully tested by Zhang et al. (2016, 2018). With the
modern understanding of MHD turbulence theory (GS95) and
analytical theoretical description of synchrotron intensities
(LP12) and polarization intensities (LP16), Lazarian & Yuen
(2018) developed a new (scalar quantity) gradient technique of
synchrotron polarization intensities that is different from the
gradient of polarization vector provided by Gaensler et al. (2011)
to trace the direction of mean magnetic fields. The new gradient
technique originates from the relation between the magnetic field
direction and synchrotron gradients according to the modern

understanding of the fundamental theory of magnetic turbulence,
i.e., the eddies that align with the local magnetic field that
surrounds the eddies. This technique has been generalized from
the sub-Alfvénic to the super-Alfvénic turbulence regime in
terms of the multifrequency measurement (Zhang et al. 2019a).
By analogy to anisotropies for synchrotron intensity fluctuations
(LP12), LP16 predicted that polarization intensity fluctuations
should show a similar behavior, recovering the underlying
magnetic field fluctuations.
It is obvious that not only can recovering the anisotropy of

MHD turbulence explore the structure of the eddies, but it can also
trace the direction of the mean magnetic field. In addition,
studying compressibility allows us to understand the relations
between the turbulent magnetic filed and densities better. As
mentioned above, a large number of the properties of compres-
sible MHD turbulence are derived from a direct numerical
simulation. The current numerical capabilities are not sufficient to
simulate a real astrophysical environment, however; we do not
know to what extent the properties and laws based on finite
numerical simulations are correct. This motivates us to explore the
properties of compressible MHD turbulence using mimicked
polarization observations. We expect to know whether statistical
analysis techniques of polarization intensities can reveal the
properties of the anisotropy and compressibility of MHD
turbulence.
The structure of the paper is as follows. In Section 2 we

provide theoretical descriptions including MHD turbulence
basics, synchrotron radiative processes, and measurement
techniques of synchrotron polarization fluctuations. Section 3
presents the procedure of the numerical simulation of MHD
turbulence. Anisotropies of polarization intensity are presented
in Section 4 for the mode predecomposition scenario and in
Section 5 for the mode postdecomposition case. Discussion and
a brief summary are given in Sections 6 and 7, respectively.

2. Theoretical Descriptions

2.1. Fundamental of MHD Turbulence

The modern MHD turbulence theory states a collection of
anisotropic eddies in the presence of a strong magnetic field
(GS95), the direction of which is aligned with the major axis of
the eddies. In general, this alignment law can be retained only
when the energy of the magnetic field over the volume of the
eddy is equivalent to or higher than the kinetic energy of the
eddy. The Alfvénic Mach number mentioned above can
quantificationally characterize this relation. This parameter can
be used to describe different MHD regimes. The incompressible
MHD turbulence by GS95 corresponds to ~M 1A , for example.
Under the condition of a critical balance, i.e., =^

- -v l V ll
1

A
1

 ,
where vl is the fluctuation velocity at the scale l, with l and l⊥
indicating parallel and perpendicular scales of the eddies,
respectively, the derived relation of

µ ^l l 22 3 ( )

characterizes the anisotropy of MHD turbulence.
The generalization of the GS95 theory to <M 1A and >M 1A

was provided in LV99 and Lazarian (2006). In the case of the
<M 1A , when the turbulence is driven with sub-Alfvénic

velocities at an injection scale L inj, there is a range of weak
turbulence that spans from L inj to the transition scale =ltrans

L Minj A
2. The strong sub-Alfvénic turbulence is present on the

2
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scales smaller than ltrans. The eddies of magnetic turbulence
are more elongated along the magnetic field compared to the
original GS95 anisotropy (see Equation (2)). Over the inertial
range of l l,trans diss[ ], where ldiss is the turbulence dissipation scale,
the relation between the extended eddy scale along the magnetic
field l and the transversal eddy scale l̂ is

» ^
-l L l M , 3inj

1 3 2 3
A

4 3 ( )

when MA = 1 returns to the original GS95 relation. What can
be obtained in the case of >M 1A corresponds to super-
Alfvénic turbulence >V VL A. For the limiting case of M 1A  ,
because the weak magnetic field has a marginal influence on
MHD turbulence, the turbulence at scale close to L inj scale
has an essentially hydrodynamic Kolmogorov property, i.e.,

=v V l Ll L inj
1 3( ) . The hydrodynamic properties of cascade

processes have been changed at the scale = -l L MA inj A
3, where

the turbulent velocity is equal to the Alfvén velocity =v Vl A

(Lazarian 2006). In the inertial range of l l,A diss[ ], the super-
Alfvénic turbulence again shows the characteristics of the
GS95 anisotropy.

The GS95 theory developed in the study of incompressible
turbulence serves as a guide in the later exploration of
compressible MHD turbulence. The applicability of the model
of real compressible turbulence was obtained in numerical
simulations (Lithwick & Goldreich 2001, CL02 and CL03).
Specifically, CL02 and CL03 presented a technique of
decomposing MHD turbulence into three modes, i.e., Alfvén,
slow, and fast modes, which made a great contribution to the
development of MHD turbulence. They demonstrated that
while the density is greatly modified as a result of the
compressibility, the magnetic and velocity fluctuations of
Alfvén and slow modes are only marginally different from the
incompressible case. Meanwhile, numerical simulations show
that the amount of energy in fast modes is smaller than that in
Alfvén and slow modes (CL02, and Kowal & Lazarian 2010).
Among them, Alfvén modes follow Kolmogorov spectrum
( µ ^l l2 3
 ) and are compatible with the GS95 anisotropic

model, while slow modes ( µ ^l l2 3
 ) sheared by Alfvén modes

are likely to evolve passively, and fast modes have isotropic
properties ( µ ^l l ).

2.2. Synchrotron Radiative Processes

The relativistic electrons that merged into the magnetic field
are accelerated by the Lorentz force, resulting in the production
of synchrotron radiation. Because synchrotron fluctuations
carry the information of turbulent magnetic fluctuations,
developing a statistical technique related to synchrotron
observations is a natural way for the study of MHD turbulence.
We assume a homogeneous and isotropic power-law energy
distribution of relativistic electrons,

= a-N E dE KE dE, 42 1( ) ( )

where N is the number density of relativistic electrons with the
energy between E and E+dE, K is the normalization constant,
and α is the spectral index of the electrons.

The synchrotron emission intensity as a function of radiative
frequency ν is given by (Ginzburg & Syrovatskii 1965)
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where Γ indicates the gamma function, B⊥ represents the
strength of the magnetic field perpendicular to the line of sight,
and L is the integral length along the line of sight. Other
parameters (e, me, and c) keep their usual meanings.
By means of the synchrotron intensity provided in

Equation (5) and the fraction polarization degree (p), the
linearly polarized intensity can be calculated by

a
a

= ´ = ´
-
-

I p IPI
3 3

5 3
. 6( )

The Stokes parameters Q and U are related to the polarization
intensity by y=Q PI cos 2 and y=U PI sin 2 . From the view
point of an observation, the polarization intensity PI and the
polarization angle ψ (measured anticlockwise from north) are
an intuitive measurement for the linearly polarized emission
(Hamaker & Bregman 1996) and are given by

y= + =Q U
U

Q
PI and

1

2
arctan . 72 2 ( )

Moreover, we can define the complex polarization vector as
= +P Q iU , by which the polarization intensity is written as

the complex modulus of P∣ ∣ and the complex argument as 2ψ in
the Q–U plane. With the consideration of the Faraday rotation
effect, the polarization angle is expressed as y y l= + RM0

2,
where λ is the wavelength of synchrotron radiation, and the

rotation measure is given by ò= -n B dzRM 0.81 rad m
L

0 e
2

 ,
where ne is the number density of thermal electrons and BP is
the strength of the magnetic field parallel to the line of sight.

2.3. Statistical Measure Techniques

To extract the properties of MHD turbulence, basic statistical
tools, such as the power spectrum, the power density spectrum,
the correlation function, and the structure function, are adopted.
In this paper, both the structure function and a new quadrupole
ratio for synchrotron polarization intensities are used to explore
the anisotropy of compressible MHD turbulence.
Based on LP12, the normalized correlation function of

synchrotron polarization intensity is written as

x =
á + ñ - á ñ

á ñ - á ñ
R

X X R X

X X

PI PI PI

PI PI
, 8PI

2

2 2
( ) ( ) ( ) ( )

( ) ( )
( )

where =X x y,( ) denotes a two-dimensional position vector, and
R is the separation vector between any two points on the plane of
the sky. By analogy of the formula of LP12, the structure function
of the synchrotron polarization intensity is given by

= á - + ñR X X RD PI PI . 9PI
2( ) ( ( ) ( ) ( )

Alternatively, the normalized structure function of the
polarization intensity can be obtained by

x= -D 2 1 , 10PI PI
˜ ( ) ( )
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according to Equation (8). By Equation (10), the quadrupole
ratio for synchrotron polarization intensities is defined by LP12,

ò
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where R is the radial separation between two points, and f
represents the polar angle. The quadrupole ratio is used to
reveal the anisotropy of MHD turbulence.

In addition, we can employ a diagnostic of the anisotropic
coefficient to quantitatively characterize the anisotropy of the
turbulence. Specifically, we consider two measurement direc-
tions perpendicular to each other from polarization intensities
and define their ratio of the individual structure function,

= =
á + - ñ

á + - ñ^ ^ ^ ^

x r x

y r y
AC

SF

SF

PI PI

PI PI
, 12

2

2

∣ ( ) ( )∣
∣ ( ) ( )∣
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as an anisotropic coefficient in dimensionless units, with the
relation of = + ^r r r2 2 1 2[ ] . Equation (12) indicates that the
isotropy and anisotropy of the turbulence structure happened in
the case of AC=1 and that of AC far away from 1, respectively.

3. Simulation Methods and Data Generation

The third-order-accurate hybrid, essentially nonoscillatory code,
is used to solve control equations of MHD turbulence as follows:

r r¶ ¶ +  =vt 0, 13· ( ) ( )

r p¶ ¶ +  +  - ´ =v v v J B ft p 4 , 14[ ( · ) ] ( )

¶ ¶ -  ´ ´ =B v Bt 0, 15( ) ( )
 =B 0, 16· ( )

and simulates an emitting synchrotron radiation medium in a
periodic box of the length of 2π. Here, r=p cs

2 is the gas
pressure, t is the evolution time of the fluid, =  ´J B is the
current density, and f is a random driving force. In the simulation,
the turbulence is driven by a random solenoidal driving force on
large scales, and an isothermal equation of state is used to close the
above equations. Furthermore, nonzero mean magnetic fields are
set along the x-axis direction. The obtained data cubes with
numerical resolution of 5123, corresponding to different turbulence
regimes, are listed in Table 1. These data cubes are mainly
characterized by the Alfvénic and sonic Mach numbers.

The decomposition method of MHD modes provided
by CL02 is used to decompose data cubes listed in Table 1
into Alfvén, slow, and fast modes.3 The main procedures are
given as follows:

z b b
µ + + + - + +^ ^
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z µ - ´k̂ k , 19A
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where b q= + -bD 1 2 cos
2

2
2( ) and q = k Bcos ˆ · ˆ . We only

use the line-of-sight component of decomposed velocities to
calculate the magnetic field mode components, resulting in
three magnetic field modes,

z z z= -  BB , 20f,s,a ,z
1

f,s,a f,s,a LOS[ ( ( ) · ˆ )](ˆ · ˆ ) ( )( )

where  is the Fourier transform operator.
The data cubes decomposed by the method of CL02 are

employed as input parameters of Equations (5) and (6) to
reprocess the simulation to construct a synthetic map of
synchrotron emission. Assuming the line of sight (z-axis)
perpendicular to the direction of mean magnetic fields (x-axis),
we can calculate B⊥ in Equation (5) by = +B̂ B Bx y

2 2 . The
final synthetic synchrotron map is generated by the line-of-
sight integral to simulate real observations.

4. Anisotropy of the Polarization Intensity for
Predecomposition MHD Modes

Before decomposing compressible MHD turbulence modes,
we explore in this section the anisotropy of predecomposition
MHD modes by the statistics of the synchrotron polarized
intensity. Using the different statistical techniques and data
cubes listed in Table 1, we investigate how Mach numbers
(Section 4.1) and radiation frequency (Section 4.2) affect the
anisotropy of the polarized intensity, reflecting the anisotropy
of MHD turbulence.

4.1. Effect of Mach Numbers

We employ Equation (6) to obtain a synthetic map of the
synchrotron polarization intensity with the setting of a = -1
and n = 10 GHz, corresponding to the weak Faraday rotation
effect. It is known that the structure function is the most
intuitive method to reflect the structure anisotropy. Here, we

Table 1
Data Cubes with Numerical Resolution of 5123 Generated in the Simulation of

Compressible MHD Turbulence

Run Ms MA β d á ñB Brms Turbulence Regime

1 9.92 0.50 0.005 0.465 Supersonic and sub-Alfvénic
2 6.78 0.52 0.012 0.463 Supersonic and sub-Alfvénic
3 4.46 0.55 0.030 0.467 Supersonic and sub-Alfvénic
4 3.16 0.58 0.067 0.506 Supersonic and sub-Alfvénic
5 0.87 0.70 1.295 0.579 Subsonic and sub-Alfvénic
6 0.48 0.65 3.668 0.614 Subsonic and sub-Alfvénic
7 7.02 1.76 0.126 4.606 Supersonic and super-

Alfvénic
8 4.32 1.51 0.244 5.175 Supersonic and super-

Alfvénic
9 3.11 1.69 0.591 5.254 Supersonic and super-

Alfvénic
10 0.83 1.74 8.790 6.110 Subsonic and super-Alfvénic
11 0.45 1.72 29.219 6.345 Subsonic and super-Alfvénic

Note. dBrms indicates the root mean square of random magnetic field, and á ñB
the regular magnetic field.

3 Here, each MHD mode is separated by the Fourier transformation related to
the mean magnetic field. Because it is affected by the wandering of large-scale
magnetic field and density inhomogeneities, this approach is applicable for the
case of the sub-Alfvénic turbulence with a strong mean magnetic field and
small perturbation. An improved procedure is to extend the CL03 decomposi-
tion into modes, in which each components of the local magnetic field is
decomposed into orthogonal wavelets using discrete wavelet transformation
(Kowal & Lazarian 2010). This method has more significant advantages in
dealing with turbulent fluctuations of high amplitude such as trans-Alfvénic
turbulence.
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focus mainly on using the second-order normalized structure
function (see Equation (10)) to reveal the anisotropy of the
polarization intensity at different turbulence regimes. The
resulting contour maps of the normalized structure function of
the polarization intensity are shown in Figure 1 at supersonic
and sub-Alfvénic (left upper panel: =M 6.78s , =M 0.52A ),
subsonic and sub-Alfvénic (right upper panel: =M 0.87s ,

=M 0.70A ), supersonic and super-Alfvénic (left lower panel:
=M 3.11s , =M 1.69A ), and subsonic and super-Alfvénic

(right lower panel: =M 0.83s , =M 1.74A ) regimes. The pixels
of the map are in units of the code unit, and the dotted contour
lines are plotted to indicate isotropy for the sake of comparison.

As shown in Figure 1, the solid contour lines are extended along
the x-axis (horizontal) directions, which reflects the anisotropic
structure of eddies whose major axis is aligned with the direction
of the mean magnetic field. The right upper panel presents a more
elongated structure of the normalized polarization intensity than
that of the left upper panel, but the anisotropic structures in the

right upper panel are destroyed on a large scale. Similarly, on a
smaller scale (<60 pixels) than those of the upper panels, the right
lower panel also presents slightly more extended structure than that
of the left lower panel, both of which show that the structure is
destroyed on a large scale. As a result, the anisotropy of the
synchrotron polarization intensity is more sensitive to sub-Alfvénic
than to super-Alfvénic turbulence. The reason is that sub-Alfvénic
turbulence corresponds to stronger magnetic field fluctuation and
produces more significant anisotropy. Although structures of
polarized intensity have weak dependence on sonic Mach
numbers, it can been seen that subsonic turbulence produces more
anisotropic structure at small scales than supersonic turbulence. In
addition, it may be that supersonic Mach number helps to form the
structure of anisotropy on larger scales (see the left upper panel)
due to the formation of shock waves.
To see the dependence of the anisotropy on Mach numbers

more quantitatively, we apply the quadrupole ratio (see
Equation (11)) to depict the anisotropy of the polarization

Figure 1. Images of the normalized structure function of synchrotron polarization intensities at different turbulence regimes. The dotted contour lines plotted in each
panel denote isotropy.

5
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intensity. Based on the data listed in Table 1, quadrupole ratio
moduli of the polarization intensity as a function of radial
separation are plotted in Figure 2 at four different turbulence
regimes. With increasing radial separation, quadrupole ratio
moduli decrease and reach a minimum value with physical
meaning at a scale of approximately 100 pixels. Between this
scale and the injection scale of 200 pixels, unstable curves
reflect the phenomenon that the turbulence has not been fully
developed. The curves of quadrupole ratio moduli show a trough
at small scales of about 5 pixels, which is due to the existence of
the discrete grid of pixels in 2D normalized structure function.

As for the upper panels of Figure 2, the quadrupole ratio
modulus has the highest amplitude value of approximately 0.39
in the left panel, whereas the amplitudes are smaller than 0.15
for a wide range of radial separations in the right panel. It is
easy to understand that quadrupole ratio moduli are sensitive to
sub-Alfvénic Mach numbers, resulting in more anisotropy,
while super-Alfvénic simulations present a weak anisotropy at
small scales and almost isotropy at large scales.4 As for the

lower panels, the simulations related to sonic Mach numbers
are separated into two parts, in which a high quadrupole ratio
corresponds to low MA, and a low quadrupole ratio to high MA.
The main reason may be that low MA simulations have a
stronger magnetic fluctuation and produce more magnetic-
field-dominated anisotropy. It can also be seen that the
quadrupole ratio moduli depend on sonic Mach numbers. The
slope at large scales of the quadrupole ratio moduli for the sub-
Alfvénic and subsonic simulation (left lower panel) is steeper
than those for the sub-Alfvénic and supersonic simulation
(right lower panel). The reason should be that increasing the
sonic Mach number results in the formation of shock waves of
fast fluid motions, which maintains smooth changes for the
anisotropy of turbulence.
Alternatively, an additional statistical technique, called

anisotropic coefficient, is used to test the anisotropy of the
synchrotron polarization intensity. This technique does not only
reflect the relative value of the component of the anisotropic
structure, but also reveals the direction of the mean magnetic
field. The anisotropic coefficients of the polarization intensity
calculated by Equation (12) are plotted in Figure 3 using the
same data cubes as in Figure 2. In each panel of Figure 3, the
horizontal dashed line with AC=1 represents the isotropy of

Figure 2. Quadrupole ratio modulus of the synchrotron polarization intensity as a function of the radial separation of maps at different turbulence regimes.

4 It should be emphasized that the amplitude of the quadrupole ratio modulus is
an important basis for judging anisotropy. According to our test using isotropic
synthetic data generated in Zhang et al. (2016), we realize that if the mean
amplitude 0.08, the structure of the map can be considered as isotropy.
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the normalized structure function of the polarization intensity.
As is seen in Figure 3, the anisotropic coefficients of polarization
intensity show the scale-dependent anisotropy that decreases as
the scale increases. It is clearly shown that the sub-Alfvénic
simulation generates anisotropic coefficient values that far
exceed those generated by the super-Alfvénic simulation (weak
anisotropy). In other words, anisotropic coefficients are more
sensitive to sub-Alfvénic Mach numbers, resulting in more
significant anisotropy. In addition, we can see that the anisotropic
coefficients in sub-Alfvénic regimes increase as the sonic Mach
number decreases, which demonstrates the dependence of the
anisotropic coefficient on sonic Mach number in sub-Alfvénic
turbulence regimes. According to the anisotropic coefficient
values (>1) shown in this figure, we derive the direction of the
magnetic field in a horizontal (x-axis) direction.

4.2. Effect of Frequency

In this section we explore how radiative frequency affects
the anisotropy of the synchrotron polarization intensity using

the three methods mentioned above. All calculations are based
on run 5 listed in Table 1 by setting different frequencies.
Figure 4 shows the contours of the normalized structure

function of the polarization intensity at frequencies of ν=1.4,
0.5, 0.1, and 0.01 GHz. The dotted lines plotted in each panel
denote the distribution of the isotropic structure for the sake of
comparison. It can be clearly seen that structures of eddies are
elongated along x-axis, i.e., the direction of the mean magnetic
field. As the frequency decreases, the elongated anisotropic
structures we can see from the figure move to a smaller scale,
accompanied by a decrease in anisotropy levels, but the large-
scale anisotropy structure is replaced by the chaotic one. The
reason should be that as the frequency decreases, the Faraday
rotation produces a stronger effect on the anisotropic structure,
with the loss of correlation at a large scale. In any case, the
Faraday rotation effect is no obstacle to studying anisotropy
and tracing mean magnetic field directions.
Next, we use the quadrupole ratio modulus to explore the

anisotropy of the synchrotron polarization intensity at frequencies

Figure 3. Anisotropic coefficient for synchrotron polarization intensity as a function of radial separation of maps at different turbulence regimes. The dashed line
plotted in each panel corresponds to the anisotropic coefficient of 1, reflecting the isotropy properties of MHD turbulence.
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of ν=1.4, 0.5, 0.1, and 0.01 GHz. The quadrupole ratio modulus
of the polarization intensity as a function of radial separation is
shown in Figure 5. The amplitude of the quadrupole ratio
modulus decreases with increasing radial separation, reflecting the
anisotropic structures as more elongated at small scales. It can be
seen that for the simulations plotted at 0.5 and 1.4 GHz, the
quadrupole ratio moduli present almost the same distributions
(changes occur at about 0.2 GHz according to our test), but the
amplitude is significantly reduced for the simulation with the
frequency of 0.01 GHz. As a result, the low-frequency Faraday
rotation causes the anisotropy of the polarization intensity to
decrease, which will be considered in detail in the future.

The influence of the frequency on the anisotropic coefficient is
studied in Figure 6, in which the horizontal dotted line represents
isotropy. It is shown that the anisotropic coefficient becomes
small as the radial separation increases, which reflects the scale-
dependent anisotropy. The dependence of the anisotropic
coefficient on frequency is similar to the dependence shown in

Figure 5. The difference is that the anisotropic coefficient can
directly reveal the direction of the mean magnetic field, while the
quadrupole ratio can reflect the anisotropic degree of the
polarization intensity with high accuracy. Accordingly, combin-
ing the quadrupole ratio with the anisotropic coefficient can be
very synergetic to study the anisotropy of the synchrotron
polarization intensity.

5. Anisotropy of the Polarization Intensity for
Postdecomposition MHD Modes

We now explore anisotropies of synchrotron polarized
intensities for Alfvén, slow, and fast modes using the
quadrupole ratio and anisotropic coefficient methods. As is
shown in Section 4, because super-Alfvénic simulations show a
weak anisotropy, only the sub-Alfvénic data listed in Table 1
are decomposed in this paper to study the anisotropic structure
for the three modes.

Figure 4. Contour maps of normalized structure function of synchrotron polarization intensity at different radiation frequencies. The dotted contour lines plotted in
each panel indicate isotropy.
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5.1. Influence of Mach Numbers

Using the parameters of the electron spectral index ofa = -1
and the frequency of n = 10 GHz, we show in Figure 7
quadrupole ratio moduli of polarized intensities calculated by
Alfvén, slow, and fast modes. In the left and middle panels of
this figure, the quadrupole ratio modulus is a decreasing function
of the radial separation with the peak at approximately 6 pixels, a
similar performance to those in the left upper panel of Figure 2,
which reveals the scale-related anisotropy of Alfvén and slow
modes. However, the quadrupole ratio moduli from Alfvén

modes and slow modes vary in the dependence on Ms—the
former are mild, while the latter are sensitive. The reason may
be that these two modes have distinct intrinsic characteristics,
i.e., incompressible Alfvén modes versus compressible slow
modes. Concerning the simulations from slow modes, it can be
seen that two curves (marked with = =M M0.48, 0.65s A and

= =M M0.87, 0.70s A ) present larger amplitudes than others,
which suggests that turbulent magnetic pressure dominates small
Ms fluid pressure to stimulate anisotropic structure. Compared
to Alfvén modes, most simulations for slow modes have a larger
amplitude of quadrupole ratio moduli for the same set of
simulations. Different from Alfvén and slow modes, the
amplitudes of the quadrupole ratio modulus from fast modes
(see right panel) have no scale dependencies and meet the
anisotropic criterion of a mean amplitude lower than 0.08
mentioned above, which means the isotropy of the polarized
intensity from fast modes.
We now adopt the anisotropic coefficient method to explore

the degree of anisotropy for three modes, with the results
plotted in Figure 8. It can be clearly seen in the left and middle
panels that the anisotropic coefficient reflects the scale-
dependent anisotropy well, and its magnitude larger than 1
decreases with increasing radial separation. As for distributions
of the anisotropic coefficient, we find a larger magnitude of the
anisotropic coefficient for slow modes than that of Alfvén
modes in the same set of simulations. On the basis of
Equation (12), we know that anisotropic structures of both
Alfvén and slow modes are elongated along the x-axis, i.e., the
direction of the mean magnetic field, which demonstrates that
they have a similar anisotropic structure. In the case of the right
panel, the magnitude of the fast-mode anisotropic coefficient is
smaller than 1 but very close to 1, which indicates that an
approximately isotropic structure of the polarization intensity
should be aligned perpendicular to the mean magnetic field.
Both Alfvén and slow modes dominate the composition of
the compressible turbulence; the anisotropic structure of the
polarized intensity for predecomposition MHD modes is
confirmed in Section 4.

5.2. Influence of the Spectral Index

In this section we study the influence of relativistic electron
spectral index on the anisotropy of polarized intensity at the
fixed frequency of n = 10 GHz, on the basis of the MHD
mode decomposition of run 5 listed in Table 1. First, the
quadrupole ratio method is used to study the anisotropy of the
synchrotron polarization intensity, and the results are shown in
Figure 9. This figure shows the quadrupole ratio modulus for
three modes as a function of radial separation by changing the
spectral index of relativistic electrons. In general, the overall
distributions of the quadrupole ratio modulus of the polarized
intensity are similar to those of Figure 7. From this figure, we
can see that the quadrupole ratio moduli for three modes
marginally depend on the electron spectral index, the range of
which covers the important cases in astrophysics we are
aware of.
Using the anisotropic coefficient method, we now explore the

influence of relativistic electron spectral index on the anisotropy of
polarized intensities for three modes. Figure 10 shows the relation
of the anisotropic coefficient and the radial separation at different
spectral indices, from which we can see that the anisotropic
coefficient of the polarized intensities from slow modes seems
to be more sensitive than that from Alfvén modes. In particular,

Figure 5. Quadrupole ratio modulus of the synchrotron polarization intensity
as a function of radial separation at different frequencies.

Figure 6. Anisotropic coefficient for the synchrotron polarization intensity as a
function of radial separation of maps at different frequencies. The dotted line
indicates isotropy of the map structure.
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the anisotropic coefficients from fast modes are insensitive to
changes in radial separation. As a result, both the quadrupole ratio
moduli and anisotropic coefficients from synchrotron polarization

intensities marginally depend on the spectral index of relativistic
electrons, the change of which does not prevent us from
determining the anisotropy of magnetic turbulence.

Figure 7. Quadrupole ratio moduli of the synchrotron polarization intensities for Alfvén, slow, and fast modes as a function of radial separation of maps in the sub-
Alfvénic regime.

Figure 8. Anisotropic coefficients of the synchrotron polarization intensity for Alfvén, slow, and fast modes as a function of radial separation in the sub-Alfvénic
regime. The dashed line plotted in each panel signifies isotropy.
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5.3. Influence of Frequency

The influence of the radiative frequency on the quadrupole
ratio modulus of polarized intensities for three modes is
explored in this section using the electron spectral index of
a = -1. Based on the MHD-mode decomposition of run 5
listed in Table 1, we adopt two statistical techniques mentioned
above, i.e., the quadrupole ratio modulus and the anisotropic
coefficient method, to reveal the anisotropy of MHD
turbulence. Quadrupole ratio moduli for three modes as a
function of radial separation are shown in Figure 11 at different
frequencies. From this figure, we find that the quadrupole ratio
moduli for three modes marginally depend on the frequency,
while the quadrupole ratio modulus for slow modes has a
smaller dependence on the frequency than those of other
modes. In general, with decreasing the frequency, we expect
the amplitude of the quadrupole ratio modulus to become
smaller because the Faraday rotation effect becomes stronger at

low frequencies. However, for the frequency ranges we study
in this paper, the quadrupole ratio modulus for the slow mode
does not change much. Therefore, the quadrupole ratio
modulus with the larger amplitude from the slow mode
provides a more reliable way to determine the anisotropy of
magnetic turbulence than those of Alfvén and fast modes.
The anisotropy of the polarization intensities for three modes

at different frequencies is plotted in Figure 12 by the
anisotropic coefficient method. As is shown in this figure, the
anisotropic coefficients of the polarized intensities for three
modes show a behavior similar to those of Figure 11. Namely,
the anisotropic coefficients for the slow mode are less sensitive
to the frequency, while the anisotropic coefficients for the
Alfvén and fast modes depend on the frequency. As a result,
the low-frequency strong Faraday rotation effect slightly
reduces the anisotropic degree of the polarization intensity,
whose structures are elongated along the mean magnetic field
direction for Alfvén and slow modes.

Figure 9. Influence of the relativistic electron spectral index on the quadrupole ratio moduli of the synchrotron polarization intensity for Alfvén, slow, and fast modes.

Figure 10. Influence of the relativistic electron spectral index on the anisotropic coefficients of the synchrotron polarization intensities for Alfvén, slow, and fast
modes.
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6. Discussion

This work studied the anisotropy of the synchrotron
polarized intensity using a 2D normalized structure function,
the quadrupole ratio modulus, and the anisotropic coefficient.
The contour map of the structure function can qualitatively
reveal the anisotropy of MHD turbulence, while the anisotropic
coefficient adopting the ratio of the parallel component of
the structure function to the perpendicular component can
quantitatively measure the anisotropy. Importantly, the quad-
rupole ratio modulus can accurately reflect the degree of
anisotropy at different scales.

The structure function map can be used as a prior for
diagnosing the anisotropy of the synchrotron polarization
intensity. The synergy effect can be realized in the quantitative
study of the anisotropy of synchrotron polarization intensity by
the combination of the quadrupole ratio and the anisotropic
coefficient. The former can be used to accurately measure the
amplitude of the anisotropy with no reflection of the mean

magnetic field direction. The latter reveals the degree of the
anisotropy by the ratio of the parallel to perpendicular
component of the structure function with the successful
reflection of the mean magnetic field direction. Provided with
the anisotropic coefficient greater than 1, the parallel comp-
onent of the synchrotron polarization intensity is larger than the
perpendicular component, and vice versa.
Based on multiple sets of data, we first tested in Section 4.2

the results obtained by Lee et al. (2019), who studied how the
wavelength affects the anisotropy of the synchrotron polarized
intensity. Then, we move to focus on the investigation of the
anisotropy of MHD turbulence. Generally, the structures of
polarized intensities from Alfvén and slow modes are found to
be anisotropic, being aligned with the direction of the mean
magnetic field, while those from fast modes are isotropic, with
the tendency of being perpendicular to the direction of the
mean magnetic field. The results from the above three modes
are consistent with that from the direct numerical simulation

Figure 11. Influence of the radiation frequency on the quadrupole ratio moduli of the synchrotron polarization intensity for Alfvén, slow, and fast modes.

Figure 12. Influence of the radiation frequency on the anisotropic coefficients of the synchrotron polarization intensity for Alfvén, slow, and fast modes.
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of CL02 and CL03, only with a slightly stronger anisotropy of
the slow modes than that of Alfvén modes. Meanwhile, the
slow mode simulation shows less dependence on the radiation
frequency.

Therefore, more robust measurements of the magnetic field
can be achieved by means of the synchrotron polarization
statistics, which restored the MHD turbulence modes success-
fully. The distinct properties of each mode revealed in our
simulation provide us the possibility to distinguish the different
contributions they make in the real astrophysical environment.
Complementary to the synchrotron gradients technique men-
tioned previously to map the 3D structure of the magnetic field,
the application of the second-order normalized structure
function, quadrupole ratio modulus, and anisotropic coefficient
provides a more detailed analysis for the contribution of the
compressible MHD turbulence modes.

As is shown in Figures 5, 6, 11, and 12, the anisotropic level
of the polarization intensity is relatively low at the frequency of
0.01 GHz, which makes the low-frequency polarized intensity
more challenging to reveal the properties of MHD turbulence in
the effect of the relevant noise and strong Faraday rotation. If the
effect of small-scale noise is removed, we expect an increase in
the degree of anisotropy, which should be similar to the scenario
for the application of the synchrotron polarization gradient
techniques in the low-frequency range (Zhang et al. 2019a,
2019b). The quadrupole ratio modulus and anisotropic coeffi-
cient used in this paper are complementary techniques to the
gradient measurement. With the high-resolution data currently
available from the Low Frequency Array for radio astronomy
and those in the future from the Square Kilometer Array, these
techniques will have broader application prospects.

7. Summary

The polarized intensity anisotropy has been investigated in
this paper using the statistical techniques of the normalized
structure function, the quadrupole ratio, and the anisotropic
coefficient to reveal the anisotropy of compressible MHD
turbulence. We focused on studying how Mach numbers,
spectral index, and radiation frequency affect the anisotropy of
the polarized intensity and exploring how to obtain the
anisotropy of eddies related to the direction of the mean
magnetic field. The main results are briefly summarized as
follows.

1. The anisotropy of the synchrotron polarization intensity is
found to be influenced by several MHD turbulence
regimes. The most significant anisotropy of the polarized
intensity occurs in the sub-Alfvénic turbulence regime, in
which a gradual change in anisotropy occurs in the
supersonic regime with the increase of the spatial scale.

2. With decreasing frequency, the level of the anisotropy of
the polarization intensity is reduced due to the Faraday
rotation effect. This is no obstacle to studying the MHD
turbulence anisotropy and tracing the mean magnetic field
directions.

3. On the basis of basic MHD modes decomposed using the
sub-Alfvénic data cubes, we have found that
(a) the anisotropy of the polarized intensity structure from

Alfvén modes can help better trace the direction of the
mean magnetic field, with slight reliance on the
electron spectral index and the radiation frequency

(b) the polarized intensity structure from slow modes is
also anisotropic, showing a stronger anisotropy than
that from Alfvén modes. The anisotropy for slow
modes has marginal dependence on the electron
spectral index and frequency

(c) the polarized intensity structure from fast modes is
nearly isotropic. For fast modes, the influence of the
electron spectral index and frequency on the structure
of polarized intensity is insignificant.

4. The elongated structures of the polarized intensity from
Alfvén and slow modes are aligned with the direction of
the magnetic field. These findings are in good consistency
with those from the earlier direct numerical simulations.

5. The normalized structure function, anisotropic coeffi-
cient, and quadrupole ratio modulus are very synergetic
in studying the anisotropy of compressible MHD
turbulence. The former two can reflect the direction of
the mean magnetic field, and the latter can accurately
obtain the degree of anisotropy.
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