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Instability of a vortex ring due to toroidal normal fluid flow
in superfluid 4He
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Abstract – Vortex rings self-propelling in superfluid 4He are shown to be driven unstable by a
toroidal normal fluid flow. This instability has qualitative similarities with the Donnelly-Glaberson
instability of Kelvin waves on a vortex filament driven by the normal fluid flow along the vortex
filament.

Copyright c© EPLA, 2020

Introduction. – Following Landau [1], one considers
the superfluid 4He below the Lambda point as an invis-
cid, irrotational fluid with thermal excitations superposed
on that fluid. These excitations are modeled by a nor-
mal fluid whose interactions via mutual friction with the
superfluid are mediated by vortices. The mutual friction
models the scattering of thermal excitations by the vor-
tices [2] and was confirmed experimentally via the second
sound attenuation in liquid 4He [3,4]. Vinen [5] gave a phe-
nomenological model for the mutual friction force1. Vor-
ticity can enter superfluid 4He, as Onsager [10] suggested,
only in the form of discrete linear topological defects with
the superfluid density vanishing at the vortex core and
the circulation around a vortex line quantized, which was
confirmed experimentally by Vinen [11]. Thanks to the
circulation quantization constraint, as Feynman [2] sug-
gested, the only possible turbulent motion in a superfluid
is a disordered motion of tangled vortex lines.

Vortex rings are self-propelled three-dimensional
toroidal structures [12]2, which are believed to play a key
role in the mechanism of superfluid turbulence [14,15]3.

1The mutual friction is known [6–8] to play the dual roles of
driving force and drag force and hence to produce both growth and
decay of the vortex line length. A phenomenological model masks
details about the microscopic origin of the underlying physical pro-
cesses such as roton-vortex scattering which are not well understood
yet [9].

2In his vortex theory of matter, Kelvin [13] proposed to explain
the behavior of atoms by considering them as vortex rings and knots
in ether.

3Rayfield and Reif [16] used ions coming from a radioactive cath-
ode to produce vortex rings and gave direct experimental confir-
mation for the existence of quantized circulation. The vortex ring
nucleation process sets in when the ions are accelerated by imposed
electric fields and reach a critical velocity [17]. Low-temperature

Superfluid turbulence has been suggested to be the kinet-
ics of merging and splitting vortex rings rather than the
kinetics of tangled vortex lines [17,20]. The emission of
vortex rings from reconnections between vortex filaments
is believed to facilitate the energy transfer from large-
scale quasi-classical motion to small-scale Kelvin-wave
cascade in the ultra-low-temperature regime [14,21,22].
Walmsley et al. [23] generated superfluid turbulence exper-
imentally via collisions in a beam of unidirectional vortex
rings in superfluid 4He in the limit of zero temperature
(0.05K). Vortex rings in superfluids, thanks to the topo-
logical robustness due to the quantization condition on
the circulation, tend to be very stable (in contrast to
their counterparts in hydrodynamics) especially at very
low temperatures, where the dissipative effects are very
small. On the other hand, the decay of the vortex rings in
superfluid 4He was used by Bewley and Sreenivasan [24]
to demonstrate energy dissipation in superfluid 4He near
the lambda point through the energy transfer from the
superfluid to the normal fluid via mutual friction. Direct
observation of vortex cores in superfluid 4He was accom-
plished by Bewley et al. [25] and Fonda et al. [26] by using
small solid hydrogen particles as traces in liquid 4He.

It may be noted that the generation of vorticity in super-
fluid 4He signifies, on the other hand, the local destruction

conditions favor the vortex-ring generation by keeping the ther-
mal excitations (phonons) sufficiently low and hence the energy loss
small. At higher temperatures, rotons appear and cause large energy
losses. The motion of the vortex rings was controlled and detected
by tagging each ring with a trapped ion and the applied electric field
enabled tuning the ring radius r0 to particular values. Vortex rings
were experimentally generated in a two-component BEC via insta-
bilities of dark solitons [18], topological phase engineering [19], and
a few other methods.
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of superfluidity [1]. So, vortices in superfluid 4He essen-
tially behave like classical vortex filaments, barring quan-
tum mechanical features associated with their circulations
and extremely thin cores and inclusion of the mutual fric-
tion force4. This was very adequately confirmed by the
numerical simulations of Schwarz [6,29].

The extremely thin cores of vortex filaments in super-
fluid 4He lead to a singularity in the vortex self-advection
velocity according to the Biot-Savart law in hydrodynam-
ics which is resolved by an asymptotic calculation [30,31]
called the local induction approximation (LIA). Arms and
Hama [31] used the LIA to investigate the evolution of a
perturbed vortex ring in hydrodynamics. Kiknadze and
Mamaladze [32] extended this investigation to consider
evolution of a perturbed vortex ring in superfluid 4He and
found that the mutual friction causes a decay of the per-
turbation on the vortex ring. The purpose of this paper is
to investigate the effect of a toroidal normal fluid flow on
a perturbed vortex ring in superfluid 4He (see footnote 5).

Stability of a vortex ring in a superfluid. – Upon
including the mutual friction force [3–5,33] exerted by the
normal fluid on a vortex ring, the self-advection velocity
of the vortex ring as per the LIA is given by (the HVBK
model6):

v = γκt̂ × n̂ + αt̂ ×
(
U − γκt̂ × n̂

)
−α′t̂ ×

[
t̂ ×

(
U − γκt̂ × n̂

)]
, (1)

where U is the normal fluid velocity (taken to be con-
stant in space and time and prescribed [6,29], κ is the
average curvature, and t̂ and n̂ are unit tangent and
unit normal vectors, respectively, to the vortex ring, and
γ = Γ ln(c/κa0), where Γ is the quantum of circulation,
c is a constant of order unity and a0 ≈ 1.3 × 10−8 cm is
the effective core radius of the filament. α and α′ are the
mutual friction coefficients which are small (except near
the lambda point) so the short-term vortex ring evolution
is only weakly affected by the mutual friction. However, it
provides for a mechanism to stretch the vortex ring (which
is inextensional in the LIA). The mutual friction term as-
siciated with α plays the dual roles of driving force and
drag force [6–8,29]. We drop here the mutual friction term
associated with α′ because

– α > α′ [34],
4This scenario is however violated in vortex reconnection pro-

cesses between two neighboring vortex filaments which involve sharp
distortions of the vortex filaments [27,28] and the concomitant gen-
eration of Kelvin waves associated with helical displacements of the
vortex cores [14].

5The Kelvin waves on a linear vortex filament are known to
be driven unstable by the normal fluid flow along the vortex
filament [7,8].

6Strictly speaking, the normal fluid flow should be determined as
part of the meso-scale solution by accounting for the back reaction
of the vortices on the normal fluid. However, the HVBK model
is valid if the length scales characterizing the flow in question are
much larger than the intervortical distance so the vortex lines can
be considered to be organized into polarized bundles.

– it does not produce physically significant effects in
comparison with those produced by the mutual fric-
tion term associated with α [7,8].

Let us write in cylindrical coordinates [31],

r = (r0 + r̂)̂ir + (wt + ẑ)̂iz, (2)

where r0 is the unperturbed radius of the vortex ring, r̂
and ẑ are the deviations from the circular vortex ring in
the r and z directions, respectively, and w is the uniform
translational self-propelling velocity of the circular ring,
given by Kelvin’s formula7

w =
Γ

2πr0
ln

(
8r0

a0
− 1

2

)
. (3)

Next, noting [7,8] that the destabilizing effect of the nor-
mal fluid flow is produced by the toroidal normal fluid
flow velocity component along the vorticity vector (see
appendix), we take

U = Uθ îθ. (4)

The toroidal normal fluid flow speed Uθ may in general
be expected to vary with the radial distance r. However,
we take it to be constant in the interest of analytic conve-
nience so this assumption may be considered to be a local
approximation.

Substituting (2) and (4) in eq. (1), and neglecting the
nonlinear terms, we obtain

r̂t = σẑθθ + ασ(r̂θθ + r̂) − α

r0
Uθ ẑθ, (5a)

ẑt = −σ(r̂θθ + r̂) + ασẑθθ +
α

r0
Uθ r̂θ, (5b)

where σ ≡ γ/r2
0.

Looking for solutions of the form

q̂(θ, t) ∼ ei(mθ−ωt), (6)

eqs. (5a), (5b) give

ω2 + iασω(2m2 − 1) − σ2m2(m2 − 1)

−iασ
mUθ

r0
(2m2 − 1) = 0. (7)

Noting that α is small, eq. (7) gives

ω ≈ −iασ

[
(2m2 − 1) ∓

Uθ

r0
(2m2 − 1)

2σm(m2 − 1)

]

±σm
√

m2 − 1. (8)

Equation (8) shows that the vortex ring develops an
instability produced by the toroidal normal fluid flow ve-
locity component Uθ (as in the case of a linear vortex fil-
ament [7,8] (see appendix for a qualitative picture of this

7According to LIA, an arbitrary vortex filament experiences a
self-induced motion, which may be approximated locally as that of an
osculating vortex ring of radius same as the local radius of curvature
of the vortex filament.
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instability)). This instability also has qualitative8 simi-
larities with the Donnelly-Glaberson instability [35,36] of
Kelvin waves on a vortex filament driven by the normal
fluid flow along the undisturbed vortex filament. This
instability would materialize if the time required for this
instability to develop is smaller than the time characteriz-
ing viscous decay of the toroidal normal fluid flow (which
may be taken to be ∼ O(r2

0/ν), ν being the kinematic
viscosity of the normal fluid), i.e.,

2kν
(
k2r2

0 − 1
)

αUθ (2k2r2
0 − 1)

< 1, (9)

which favors large toroidal normal fluid flows.
It may be noted that, if the vortex ring remains closed,

m = 1, 2, ..., so the motion is periodic around the periph-
ery of the vortex; m = 1 corresponds to the trivial case of
a uniform displacement of a circular vortex ring.

Note that (8) reduces

– in the limit Uθ ⇒ 0, to the result of Kiknadze and
Mamaladze [32] —the effect of mutual friction is now
to cause only decay of the perturbation on the vortex
ring;

– in the limit α ⇒ 0 (the hydrodynamics limit), to the
result of Arms and Hama [31].

Discussion. – The effect of mutual friction on a self-
propelling vortex ring in superfluid 4He is to produce a
decay of a perturbation imposed on the ring. However, a
toroidal normal fluid flow is found to drive a vortex ring
unstable. This instability has qualitative similarities with
the Donnelly-Glaberson instability of Kelvin waves on a
vortex filament driven by the normal fluid flow along the
vortex filament.

One important issue at this point is how to set up an
experiment in which only the normal fluid (but not the
superfluid) goes around a vortex ring. This may be ac-
complished by an appropriate heat-current directing de-
vice. Another possibility may be to find a way to inject
an azimuthal flow combined with viscous action near the
exit in the arrangement to generate vortex rings by forc-
ing 4He out of a tube used by Borner et al. [37]. But, the
engineering details are not clear at this time.
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Appendix: stability of a vortex filament in a su-
perfluid. – Consider a vortex filament aligned essentially
along the x-axis in a superfluid [7,8]. Writing in Cartesian
coordinates,

r = x̂ix + ŷ(x, t)̂iy + ẑ(x, t)̂iz, (A.1)

taking
U = U1 îx, (A.2)

and neglecting the nonlinear terms, we obtain, from
eq. (1),

ŷt = −σẑxx + ασŷxx + αU1ẑx, (A.3a)
ẑt = σŷxx + ασẑxx − αU1ŷx. (A.3b)

Putting
Φ ≡ ŷ + iẑ, (A.4)

eqs. (A.3) give

iΦt = −σΦxx + αU1Φx, (A.5)

which may be viewed as a Schrödinger-type equation for
a non-conservative system [38,39]. If one puts

Φ(x, t) = Ψ(x)e−iωt, (A.6)

eq. (A.5) leads to

σΨxx − αU1Ψx + ωΨ = 0, (A.7)

which represents a harmonic oscillator with negative
damping.

Looking for solutions of the form

Φ(x, t) ∼ ei(kx−ωt), (A.8)

eq. (A.5) leads to

ω = iαkU1 + σk2. (A.9)

Equation (A.9) shows the destabilization of the circu-
larly polarized Kelvin waves propagating along the vortex
filament9.
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