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1.  Introduction

Different topologically equivalent spin textures, such as 
skyrmions and magnetic-bubbles are being investigated 
extensively in different magnetic materials. Skyrmions are 
generally observed in non-centrosymmetric B20 materials, 
such as MnSi, Cu2OSeO3, FeGe etc [1–4], due to antisym-
metric Dzyaloshinskii–Moriya (DM) interaction. Now, it is 
highly desirable to explore new materials as a host for these 
topologically equivalent spin textures to extend the practical 
applications in spintronics. Rather unexpectedly skyrmion 
has been observed in manganites which are centrosymmetric 
materials and have been extensively studied in the past due 
to colossal magnetoresistance (CMR) [5–9]. In B20 materials 
(MnSi, Cu2OSeO3, FeGe etc) skyrmions are stabilized due to 
the competition between symmetric exchange interaction and 
antisymmetric DM interaction [2]. Hence, short-range interac-
tion is responsible for topological spin textures [2]. However, 
short-range DM interaction cannot exist in the absence of 

non-centrosymmetry, raising an important question regarding 
the origin of interaction responsible for topological spin tex-
tures in manganites. Though it has been conjectured that dipole-
dipole interaction is responsible for skyrmion in manganites 
[10], but the role of exchange interaction cannot be ruled out. 
Moreover, the skyrmion phase observed at relatively higher 
temperature (95–100 K) [11], so it can be doubted how only 
dipole-dipole interaction could be responsible for skyrmion in 
these materials. In this context, the important questions are—
what is the range of interaction responsible for the formation 
and stability of skyrmion in manganites? So, a detailed crit-
ical analysis of phase transition in these materials is needed 
to understand the universality class, which defines the range 
and dimensionality of the interaction responsible for different 
phases in materials. A particular universality class allows 
us to understand the fundamental physics such as range and 
dimensionality of the magnetic interaction for a second-order 
phase transition. Though, critical behavior of La1−xSrxMnO3 
with different concentration (x  =  0.125, 0.2, 0.25, 0.3) 
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of strontium (Sr) has been extensively studied [12–21],  
but most of the results on the range and type of interactions 
in manganites are incoherent and ambiguous. For example 
all possible universality classes, such as long-range mean 
field (x  =  0.2 and 0.3) [12–14], short-range 3D-Heisenberg 
(x  =  0.125 and 0.3) [15, 16] or 3D-Ising (x  =  0.2, 0.3 and 
0.25) [17–21] have been proposed to explain critical behavior 
in La1−xSrxMnO3. Initially, it was expected that mean field 
based long-range model would explain the interaction in 
La1−xSrxMnO3 in which effective ferromagnetism is induced 
by the double exchange mechanism [12–14]. Later on, 
Furukawa and Motome showed that the universality class of 
the double exchange ferromagnetic materials are consistent 
with that of short-range models instead of long-range model 
[22]. Presence of large magnetic anisotropy may lead to the 
3D-Ising type interaction instead of a 3D-Heisenberg interac-
tion [20]. The parent compound LaMnO3 is antiferromagnet 
and found to have 3D-Heisenberg [23, 24] like short-range 
interaction. In the present study, we have chosen centrosym-
metric, anisotropic infinite-layer La0.825Sr0.175MnO3, hereafter 
referred to as LSMO, of Ruddlesden–Popper (RP) series. 
We have selected this particular composition (La is replaced 
with 17.5% Sr) because of the recently observed skyrmionic-
bubbles in LSMO despite the absence of DM interaction due 
to centrosymmetric crystal structure [11]. The infinite-layer 
La1−xSrxMnO3 perovskite manganites are n = ∞ member 
of RP series (La,Sr)n+1MnnO3n+1 [25]. The infinite-layer has 
continuous stacking of perovskite structure with a 3D array of 
corner-sharing MnO6 octahedrons. Fan et al [26] have studied 
this particular composition (La0.825Sr0.175MnO3) and claimed 
that it belongs to mean field class based on very limited data 
without any detailed critical analysis. However, it is beyond a 
doubt that phase transition in these class of materials cannot be 
explained by mean field model [17–21, 27]. This paper aims 
to establish a complete understanding of the critical behavior 
of infinite-layer LSMO to find out the type and range of inter-
action responsible for ferromagnetic phases. Before critical 
analysis, we have first ensured the order of phase transition 
using entropy and Landau analysis, keeping in view of some 
reports of first order transition in La1−xCaxMnO3 for x  =  0.3, 
0.33 [28, 29]. We have studied the critical behavior of the 
sample around TC using high precision magnetic measure-
ments over a wide range of magnetic field and temperature.

2.  Experimental details

Monophasic polycrystalline sample of infinite-layer 
La0.825Sr0.175MnO3 was prepared through conventional solid 
state reaction method [30] using high purity La2O3 (Sigma 
Aldrich 99.99%), SrCO3 (Alfa Aesar 99.995%) and MnO2 
(Alfa Aesar 99.997%). Stoichiometric ratio of La2O3 (pre-
fired at 1000 °C for 12 h), SrCO3 (dried in air at 150 °C for 
12 h) and MnO2 were thoroughly ground together and cal-
cined at different temperatures 1150 °C, 1250 °C, 1350 °C for 
60 h followed by intermediate grinding. The LSMO sample 
was calcined for 20 h at each temperature. The sample was 
then regrounded, pressed into pellet and sintered at 1400 °C 

for 48 h. The final step was repeated until the single phase 
of LSMO sample is achieved. The phase purity and crystal 
structure of the sample were confirmed by powder x-ray dif-
fraction (XRD) (Rigaku miniflex 600-x-ray diffractometer 
with Cu-Kα radiation) at room temperature. The high preci-
sion magnetic measurements were carried out using physical 
properties measurement system (PPMS) by three different 
methods, (i) field cooled (FC) temperature scans in the pres-
ence of magnetic field; the infinite-layer LSMO sample was 
cooled from room temperature to the desired low temperature. 
Finally, the temperature-dependent magnetization data was 
recorded during heating. (ii) Zero field cooled (ZFC) temper
ature scans; the sample was brought at low temperature and 
then by applying magnetic field the temperature-dependent 
magnetization data was recorded during heating. (iii) ZFC 
magnetic field scans; the sample was brought at the various 
required temperatures and held until the thermal equilibrium 
was reached. First quadrant magnetization (M–H) data were 
collected in the temperature range 262–300  K (∆T = 2 K) 
with the applied field step of 10 mT from 0 mT to 500 mT and 
above 500 mT the step size was increased to 200 mT and data 
was collected up to 7 T for exact analysis of phase transition 
and critical analysis of infinite-layer LSMO.

3.  Results and discussion

3.1.  X-ray diffraction analysis

Crystal structure and phase analysis of the room temperature 
XRD of infinite-layer LSMO has been investigated with the 
help of retveild refinement (figure 1). The LSMO sample is 
found to be a rhombohedral structure with R3̄c space group. 
The lattice parameters are a  =  b  =  5.5354 ̊A  and c  =  13.3736 
Å . There is no peak corresponding to the secondary phase, 
confirming the single phase formation of the infinite-layer 
LSMO [31] (figure 1(a)). The schematic crystal structure of 
the infinite-layer LSMO (figure 1(b)) is made of MnO6 octa-
hedrons in which Mn atom lies in the center of the oxygen 
octahedron. The refinement results such as Rp (residuals for 
the pattern), Rwp (residuals for the weighted pattern), RF 
(structure factor) and the goodness of fit etc are listed in the 
table 1.

3.2.  Magnetic analysis

In order to study the phase transition between ferromagnetic 
(FM) to paramagnetic (PM) phases, we have carried out 
field-cooled (FC) and zero field-cooled (ZFC) temperature 
dependent magnetization (M–T) measurements of infinite-
layer LSMO with an applied field of 50 mT (figure 2(a)). 
The FC curve shows a rapid change in the magnetization 
with decrease in temperature corresponding to the PM to FM 
transition. The magnetic transition temperature TC ≈ 274 K is 
obtained from the minimum of dM/dT  (inset of figure 2(a)) 
[32]. A step down like behavior at ≈167  K, marked as TS 
is due to a structural phase transition from rhombohedral to 
orthorhombic phase and not due to antiferromagnetic ordering 
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[31]. Figure 2(b) shows the M-H data of infinite-layer LSMO 
measured in the vicinity of TC.

3.3.  It is a second-order phase transition

It is extremely important to determine the order of phase 
transition from paramagnetic phase to ferromagnetic phase 

as shown in figure  2. As mentioned before, there are some 
reports claiming that if Sr in La1−xSrxMnO3 is replaced with 
calcium (Ca), the magnetic transition is first-order [28, 29]. 
Hence before detailed critical analysis, one has to deter-
mine the order of phase transition unambiguously from two 
independent methods, such as entropy analysis [33–36] and 
Landau analysis [37].

3.3.1.  Entropy analysis.  Magnetic entropy change, |∆SM|, of 
infinite-layer LSMO around TC can be determined from iso-
thermal magnetization data using Maxwell’s thermodynamic 
relation [3, 38]:

∆SM(µ0H, T) =
∫ µ0H

0

(
∂M(µ0H, T)

∂T

)

H

d(µ0H),� (1)

where µ0 is the permeability of vacuum, H is the applied magn
etic field, M is the magnetization. Infinite layer perovskite 
manganites exhibit a very large magnetic entropy change 
around TC [39–41] due to efficient ordering of spins [42]. 
Guo et  al [43] suggested that the large |∆SM| in perovskite 

Figure 1.  (a) Retveild refinement of the room temperature XRD 
and (b) crystal structure of the infinite-layer La0.825Sr0.175MnO3, 
where different colors of the sphere represent the different atoms 
(red—oxygen, light green—(La, Sr) and blue—Mn).

Table 1.  Room temperature structural parameters of infinite-layer 
LSMO obtained from retveild refinement.

Parameters La0.825Sr0.175MnO3

Symmetry Rhombohedral
Space group R3̄c

a  =  b (Å) 5.5354

c (Å) 13.3736

V  (Å
3
)

354.8789

Rp (%) 12.7
Rwp (%) 17.1
RF (%) 2.80

χ2 (%) 1.316

Figure 2.  (a) FC of La0.825Sr0.175MnO3 under an applied field of 
50 mT. The inset shows the derivative of magnetization (dM/dT), 
where a minima was found at ≈274 K corresponding to TC. (b) 
M–H data of infinite-layer LSMO recorded with an applied field of 
0 to 7 Tesla at various temperatures ranging from 262 K to 300 K, 
∆T = 2 K.
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compounds can be due to the spin-lattice coupling. The mag-
nitude of the |∆SM| increases gradually with an increase in the 
applied magnetic field. A continuous nonmonotonic change 
of |∆SM| with temperature is an indication of the second-order 
phase transition around TC, shown in figure  3(a). Further 
to ensure the order of phase transition of the infinite-layer 
LSMO, we have used the rescaling of |∆SM|. The scaling of 
|∆SM| emphasize that if the LSMO sample exhibit a second-
order phase transition, then all the rescaled |∆SM| curves must 
collapse onto a single universal curve [33–36]. Franco et al 
have shown theoretically the existence of such universal curve 
in case of second-order phase transition [33]. Different phys-
ical quantity can be scaled in the vicinity of a second-order 
transition [44] and the scaling relation for a magnetic system 
is given by [45]

H
Mδ

= h
(

ε

M1/β

)
,� (2)

where ε = (T − TC/TC) is the reduced temperature, β and 
δ are the critical exponents for the magnetization behavior 
(H  =  0, ε < 0) and the critical isotherm (ε = 0) respec-
tively, and h(x) is a scaling function (x = ε/M1/β). Systems 
belonging to the same universality class have same scaling 

function h(x) provided that the magnetization and magnetic 
field units are such that h(0) = 1 and h(−1) = 0, so equa-
tion (2) can be rewritten as

M
|ε|β

= m±

(
H
|ε|∆

)
,� (3)

where ∆ = βδ  is the gap exponent. From equations (1)–(3) 
|∆SM| can be expressed as

∆SM/aM = ±|ε|1−α

∫ H/|ε|∆

0
dx[βm ± (x)−∆xm′

±(x)]

= |ε|1−αs̃(ε/H1/∆) = H1−α/∆s(ε/H1/∆),
� (4)

where aM = T−1
C Aδ+1B, (A and B are the critical amplitudes) 

and s(x) is the scaling function (x = ε/H1/∆). If |∆SM| is res-
caled by aMH(1−α/)∆ and ε by a factor H1/∆ the equation (4) 
implies that the experimental data would collapse onto the 
single curve [36]. A phenomenological way of doing this 
would be to normalize all the |∆SM| by the maximum value 
of the |∆SM| i.e. |∆Speak

M | which occurs at TC. To rescale the 
temperature axis we need to choose a reference temperature 
such that |∆SM(Tr)| /|∆Speak

M | � K . Where, K is defined as the 
relative value of the entropy changes at two reference temper
atures, K must have a value between 0 < K � 1 [46]. We have 
chosen two reference temperatures Tr1 < TC and Tr2 > TC 
such that |∆SM(Tr1)| /|∆Speak

M | = |∆SM(Tr2)| /|∆Speak
M | = 0.7 

and the rescaled temperature axis, say θ, is defined as

θ = −(T − TC)/(Tr1 − TC), T � TC

= (T − TC)/(Tr2 − TC), T > TC.
� (5)

Figure 3(b), shows the rescaled entropy curve in the field 
range 0.5 T–7 T. It can be noted that all the rescaled entropy 
curve collapses on a single universal curve, which confirms 
the second-order phase transition in infinite-layer LSMO.

3.3.2.  Landau analysis.  The magnetic free energy F(M, T) 
of a ferromagnet can be expressed as a power series in terms 
of the order parameter M [47]

F(M, T) = F(0) +
a1(T)

2
M2 +

a3(T)
4

M4 +
a5(T)

6
M6

+... − µ0HM,
� (6)

where a1(T), a3(T), and a5(T) are Landau coefficients. 
F(M, T) allows us to determine the nature of the phase trans
ition around TC. The minimization of the thermodynamic 
potential ∂F(M, T)/∂M = 0 gives the equilibrium condi-
tion, resulting

µ0H = a1(T)M + a3(T)M3 + a5(T)M5.� (7)

The Landau coefficients a1(T), a3(T), and a5(T) can be deter-
mined by equation  (7). The temperature dependent Landau 
coefficients a1(T) and a3(T) permit us to differentiate the first-
order and second-order phase transitions. The positive sign 
of a3(T) at TC corresponds to the second-order and negative 
sign corresponds to the first-order phase transition [37]. The 
minima in a1(T) is correlated with the TC of the infinite-layer 

Figure 3.  (a) Magnetic entropy change |∆SM| evolution versus 
temperature T at different applied magnetic fields. (b) the rescaled 
entropy curve in the field range 0.5 T–7 T.
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LSMO sample. While the coefficient a3(T) crosses zero at a 
second temperature, say T0.

The Landau coefficients a1(T) and a3(T) were obtained by 
fitting the magnetic isotherms (figure 4(a)) using equation (7). 
The variation of Landau coefficients with temperature are 
shown in figure 4(b). It has been found that a3(T)  >  0 at TC. 
This implies that infinite-layer LSMO exhibits a second-order 
phase transition near TC (figure 4(b)).

3.4.  Critical analysis and scaling

A particular universality class enables us to understand the 
mechanisms responsible for different types magnetic phases. 
There are predominantly five universality classes which 
define the phase transition in magnetic materials: (i) mean 
field model (ii) tricritical mean field model (iii) three dimen-
sional (3D) Heisenberg model, (iv) 3D-Ising model, and 
(v) 3D-XY model. Generally, under long-range mean field 
approximation, TC and critical exponents can be determined 
from Arrott plot (M2 versus µ0H/M ) [48]. If the M–H data 
at different temperatures plotted as M2 versus µ0H/M  (Arrott 
plot) are not parallel, one has to go beyond mean field approx
imation. Hence long-range universality classes such as long-
range mean field and long-range tricritical mean field can be 

ruled out. The Arrott plot of infinite-layer LSMO around TC is 
shown in figure 5. The non-linear behavior of the Arrott plot 
even in the higher field region suggests that the long-range 
interaction (mean-field model β = 0.5 and γ = 1) is not valid 
in infinite-layer LSMO. According to the Banerjee’s criterion, 
the positive slope of the line in the Arrott plot corresponds to 
the second-order phase transition while a negative slope cor-
responds to the first-order phase transition [49]. Hence, again, 
the Arrott plot is in agreement with the entropy analysis, 
Landau analysis and confirms the second-order phase trans
ition in infinite-layer. To determine the appropriate critical 
exponents (β and γ) and hence universality class to which 
infinite-layer LSMO might belong, we have focused our atten-
tion to the modified Arrott plots (MAPs).

It is widely known that the critical behavior of a system 
exhibiting a second-order phase transition can be studied 
with the help of a series of critical exponents (α, β, γ  and δ) 
and different universality classes can be distinguished based 
on these critical exponents. Also, we know that one cannot 
discriminate various models based on δ value only because 
all the universality classes have almost similar values (see 
table 2). The 3D-Ising model, 3D-XY model, 3D-Heisenberg 
model, and tricritical mean field model has a δ value 4.82, 
4.81, 4.8 and 5 respectively [19, 53, 54]. The appearance of 
divergence of the correlation length ξ = ξ0|T − TC/TC|−ν  in 
the vicinity of the TC leads to universal scaling laws for the 
spontaneous magnetization MS(T) and the initial susceptibility 
χ0(T). According to the universal scaling hypothesis, the 
mathematical definitions of critical exponents in the vicinity 
of TC from magnetization are defined as [44, 50, 51]

MS(T) = M0(−ε)β ; ε < 0, T < TC,� (8)

χ−1
0 = (h0/M0)(ε)

γ ; ε > 0, T > TC,� (9)

and

M = DH1/δ; ε = 0, T = TC,� (10)

Figure 4.  (a) Isothermal Magnetization curve at various 
temperatures. The solid lines show the fits to equation (7), (b) The 
temperature dependence of Landau coefficients a1(T), a3(T).

Figure 5.  Arrott plot (M2 versus µ0H/M ) of the M–H curves of 
infinite-layer LSMO measured at various temperatures ranging from 
262 K to 300 K, ∆T = 2 K.

J. Phys.: Condens. Matter 32 (2020) 195803
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where M0, M0/h0 and D are critical amplitudes. The critical 
exponents β, γ  and δ associated with MS(T), χ−1

0 (T) and iso-
thermal magnetization at TC, should follow the Arrott–Noakes 
equation  of state [52] in an asymptotic region |ε| < 0.1, 
expressed as

(H/M)1/γ = (T − TC)/TC + (M/M1)
1/β ,� (11)

where M1 is the material constant. Finally, the magnetic equa-
tion of state is expressed as [44, 53]

M(H, ε) = εβ f±(H/ε(β+γ))� (12)

where f + is defined for T > TC and f − is for T < TC. The rela-
tion between critical exponents can be given by Rushbrooke 
and Widom-scaling realtion [50, 54]:

α+ 2β + γ = 2,� (13)

and

δ = 1 +
γ

β
.� (14)

Thus, using equations  (8), (9) and MAPs ((M)1/β versus 
(µ0H/M)1/γ), critical exponents β and γ  can be obtained by 
fitting MS(T) and χ−1

0 (T). While, critical exponent δ can be 
obtained independently from M-H curve taken at TC using 
equation (10).

To construct the MAPs, we have chosen four kinds of 
possible three dimensional (3D) critical exponents [53, 54]  
corresponding to 3D-Heisenberg model (β = 0.365, 
γ = 1.386), 3D-Ising model (β = 0.325, γ = 1.24), 3D-XY 
model (β = 0.346, γ = 1.316) and tricritical mean field 
model (β = 0.25, γ = 1). All the models for infinite-layer 
LSMO show quasi-straight lines (figure 6). In this situation, it 
is difficult to decide the appropriate model to evaluate the crit-
ical exponents. In order to determine the appropriate model 
which describes the system, we have used normalized slope 
approach. In this method, we have calculated their normalized 
slopes (NS) which is defined as NS  =  S(T)/S(TC), where the 
slope S(T) = dM1/β/d(µ0H/M)1/γ (figure 7). If the MAPs 

shows a series of parallel lines with the same slope then NS 
should be 1 regardless of the temperature [55]. It is clear from 
figure 7 that out of all the models 3D-Ising model is closest to 
1 over the temperature range of 262–300 K. On the basis of 
above analysis it can be emphasized that the exponents β and 
γ  for infinite-layer LSMO may be close to 3D-Ising model. 
Therefore, we can use the critical exponents of the 3D-Ising 
model as starting exponents of MS(T,0) and χ−1

0 (T , 0) to find 
out the exact critical exponents of infinite-layer LSMO. In the 
MAPs of infinite-layer LSMO defined for 3D-Ising model 
(figure 6(b)), the intercepts with the axes M1/β and (H/M)1/γ 
obtained by the linear extrapolation from the high field region 
yield the reliable values of MS(T,0) and χ−1

0 (T , 0). By fitting 
these values of MS(T,0) and χ−1

0 (T , 0) to equation (8) and (9) 
one set of β and γ  is obtained. To find out the exact exponents 
(β and γ), an iterative method has been used [56]. This pro-
cess gives the reliable value of critical exponents which are 
given by: β = 0.319 ± 0.001 with TC = 274.11 ± 0.06 K and 
γ = 1.18 ± 0.03 with TC = 274.20 ± 0.02 K for infinite-layer 
LSMO (figure 8(a)).

Again, the critical exponents β and γ  can be found more 
precisely from the Kouvel–Fisher (KF) method [57], given by

MS(T)
dMS(T)/dT

=
T − TC

β
,� (15)

χ−1
0 (T)

dχ−1
0 (T)/d(T)

=
T − TC

γ
.� (16)

KF method states that MS(dMS(T)/dT)−1 versus T and 
χ−1

0 (dχ−1
0 /d(T))−1 versus T will result the straight line with 

slopes 1/β and 1/γ , respectively and the intercepts on the 
temperature axis give TC. The critical exponents (β, γ) and 
the critical temperature (TC) obtained from the linear fit of 
the MS(dMS(T)/dT)−1 and χ−1

0 (dχ−1
0 /d(T))−1 for infinite-

layer LSMO are β = 0.321 ± 0.003 with TC = 274.16 K ± 
0.02 and γ = 1.22 ± 0.01 with TC = 274.13 K ± 0.01 (figure 
8(b)). One can see that the critical exponents determined from 

Table 2.  Comparison of critical exponents β, γ  and δ of infinite-layer LSMO with various theoretical models. RG: Renormalization group, 
CI: Critical isotherm and EA: Entropy analysis.

Method TC (K) α β γ δ

(Theory)
Mean field [19, 53] 0 0.5 1 3
Tricritical mean field [19, 54] 0 0.25 1 5
3D-ISing (d = 3, n = 1) [19, 
53]

0.11 0.325 1.241 4.82

3D-XY (d = 3, n = 2) [19, 53] −0.007 0.346 1.316 4.81

3D-Heisenberg (d = 3, n = 3) 
[19, 53]

−0.115 0.365 1.386 4.8

(Experiment)
La0.825Sr0.175MnO3 MAPs 274.11 ± 0.06 0.319 ± 0.001

274.02 ± 0.02 1.18 ± 0.03
CI 4.67 ± 0.03
KF 274.16 ± 0.02 0.321 ± 0.003

274.13 ± 0.01 1.22 ± 0.01
EA 274 0.320 ± 0.020 1.180 ± 0.007
RG 0.08 0.34 1.24 4.64

J. Phys.: Condens. Matter 32 (2020) 195803
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KF method is in agreement with the exponents obtained from 
MAPs.

Further, we have used field dependent magnetic entropy 
change to find out the critical exponents of infinite-layer 

LSMO. The field dependence of magnetic entropy change for 
second-order transition can be expressed as [58]:

∆SM = a(µ0H)b,� (17)

where b depends on the magnetic state of the sample. The 
value of b is decided by the linear plot of ln(|∆SM|) versus 
ln(H) at TC is shown in figure 9(b). The value of b has been 
found to be 0.547. Now critical exponents are determined 
using the following relations [58]:

n = 1 +
1
δ

(
1 − 1

β

)
,� (18)

n = 1 +

(
β − 1
β + γ

)
.� (19)

The critical exponent δ is determined independently from the 
critical isotherm at TC by using equation (10). Figure 9 shows 
the isothermal M–H at TC and inset shows linear fit of the log–
log plot in the higher field region. Slope of the linear fit of the 
log–log plot defines 1/δ resulting δ = 4.670 ± 0.030. Further, 
critical exponents β = 0.320 ± 0.020 and γ = 1.180 ± 0.007 
are determined by using the equations (18) and (19) respec-
tively. The values of critical exponents (β and γ) match well 
with the exponents determined by MAPs and KF method.

Figure 6.  The isotherms of M1/β versus (H/M)1/γ with (a) 3D-Heisenberg model, (b) 3D-Ising model, (c) 3D-XY model and (d) tricritical 
mean-field model.

Figure 7.  Normalized slopes (NS  =  S(T)/S(TC)) for different 
models (3D-Heisenberg, 3D-Ising model, 3D-XY model, tricritical 
mean field model) as a function of temperature. Where slope 
S(T) = dM1/β/d(µ0H/M)1/γ, S(TC) is the slope at TC.

J. Phys.: Condens. Matter 32 (2020) 195803



J K Tiwari et al

8

Finally, the reliability of the exponents β, γ  and δ is ensured 
by Widom-scaling relation [59] using equation  (14). Using 
Widom-scaling relation and the exponents β, γ , obtained 
from both MAPs and KF method, the δ value for infinite-layer 
LSMO has been found to be 4.69, 4.80 respectively. Therefore, 
the critical exponents obtained from both the method are reli-
able and unambiguous. Further, to check the reliability of the 
obtained exponents, theory of critical phenomena [44, 53] has 
been employed by equation (12). If the critical exponents obey 
this relation then all the data should collapse onto two sepa-
rate curves below and above TC in the plot of Mε−β versus 
µ0Hε−(β+γ) [28, 60]. Figure  10(a) shows the scaling plot 
of renormalized magnetization, m (m = Mε−β) and field, h 
(h = Hε−(β+γ)). All the data collapse onto two independent 
universal curves above and below TC. The scaled renormalized 
magnetization and field confirm the validity of the above anal-
ysis. In addition, the reliability of the critical exponents and TC 
has been again confirmed more precisely by plotting m2 versus 
h/m [53]. One can see that all data collapse onto two separate 
curves: one below TC and other above TC (figure 10(b)). This 
implies that in critical regime, the interactions get appropri-
ately renormalized following the scaling equation of state.

Further, we have plotted the MAPs for β = 0.321 and 
γ = 1.22 obtained from KF method in very small range (
|ε| < 0.03

)
 near TC. All the isotherms in MAPs display as 

closely as possible parallel lines in higher field region, which 
is shown in figure 11. This is again the validation of our results 
for infinite-layer LSMO.

3.5.  Spin interaction

It is noted that critical exponents obtained for infinite-layer 
LSMO are different from those of mean field model and tri-
critical mean field model defined for long-range interaction 
(see table  2). One can see that exponents of infinite-layer 
LSMO do not belong to either 3D-XY or 3D-Heisenberg 
short-range exchange interaction J(r) ∼ e−(r/b) (where b is 
correlation length). The exchange interaction J(r) defines 
the universality class of the magnetic phase transition for a 
homogeneous magnet. The interaction between magnetic 
moments decreases rapidly with distance in short range 
interaction, while mobile electrons for the itinerant electron 
system may lead to long range interaction. Fisher et al defined 
a system exhibiting magnetic exchange interaction of the form 
J(r) ∼ r−(d+σ) (where d is the dimension and σ is the range 
of interaction) with the help of renormalization group theory 
[61]. The analysis suggests that such a model is valid for the 
value σ < 2 with long-range interaction. Theoretical models 
with short-range interaction is only valid for σ � 2 and the 
mean field model explains the critical behavior for σ � d/2. 
The exponent γ  can be expressed as follows [61]

γ = 1 +
4
d

(
n + 2
n + 8

)
∆σ +

(
8(n + 2)(n − 4)

d2(n + 8)2

)

×

[
1 +

2G( d
2 )(7n + 20)

(n − 4)(n + 8)

]
∆σ2,

� (20)

where ∆σ =
(
σ − d

2

)
 and G( d

2 ) = 3 − 1
4

( d
2

)
2, n is the 

spin dimensionality. Above expression holds good for 

d/2 � σ � 2. We have adopted the method described in [62] 
to evaluate the range of interaction σ, the dimensionality of 
both lattice (d) and spin (n). An appropriate value of parameter 
σ was chosen for a particular values of {d : n} so that above 
expression yield a value of γ  close to that of experimentally 
observed (γ = 1.22). This process is repeated for different 
set of {d : n} = {3 : 1, 2, 3} and yields a value σ = 1.91 
for {d : n} = {3 : 1}, σ = 2.10 for {d : n} = {3 : 2} 
and σ = 2.35 for {d : n} = {3 : 3}. The value of σ can 
be used to determine the remaining exponents using fol-
lowing relations: ν = γ/σ, η = 2 − σ, γ = ν(2 − η), 
α = 2 − νd, β = (2 − α− γ)/2 and δ = 1 + γ/β. The sigma 
value for {d : n} = {3 : 1} produces γ = 1.24 with β = 0.34, 
and δ = 4.64, which are close to the experimentally observed 
values of γ , β and δ for infinite-layer LSMO. However, 
σ = 2.10 for {d : n} = {3 : 2} produces β = 0.26, γ = 1.22 
and δ = 5.7. Similarly, σ = 2.35 for {d : n} = {3 : 3} yields 
β = 0.17, γ = 1.22 and δ = 8.17. It can be noted that the 
obtained critical exponents for the set {d : n} = {3 : 2, 3} 
show significant difference from the experimentally deter-
mined exponents. Hence, 3D-XY {d : n} = {3 : 2} and 
3D-Heisenberg {d : n} = {3 : 3} models can be discarded. 
This implies that the magnetic exchange interaction in infi-
nite-layer LSMO decays as J(r) ≈ r−4.91. The short-range 

Figure 8.  (a) MAPs plots for the Spontaneous magnetization 
MS(T,0) (left) and inverse susceptibility χ−1

0 (T , 0) (right) as a 
function of temperature, (b) KF plots for the MS(dMS(T)/dT)−1 
(left) and χ−1

0 (dχ−1
0 /d(T))−1 (right).
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3D-Heisenberg model is valid for σ � 2, where J(r) decreases 
faster than r−5. The mean-field model is satisfied for σ � 3/2, 
resulting slower decrease of J(r) than r−4.5. The exponents 
belong to other universality classes lies in the intermediate 
range i.e. 3/2 < σ < 2 for which J(r) decreases as r−3−σ. 
One can see that σ value for infinite-layer LSMO lies in the 
intermediate range defined as 3/2 < σ < 2. This confirms 
that there is short-range magnetic interaction in infinite-layer 
LSMO. The obtained value of σ for infinite-layer LSMO is 
then used to find out the other exponents such as η = 0.06, 
ν = 0.64, α = 0.08. Apart from this, we have also calculated 
the value of exponent α = 0.13 using the Rushbrooke scaling 
relation defined in equation (13) and exponents β, γ  obtained 
from KF method for infinite-layer LSMO. The exponent α 
obtained from Rushbrooke scaling relation is close to the 
value α = 0.08 obtained for {d : n} = {3 : 1} corresponding 
to 3D Ising system.

All the experimental findings discussed in previous sec-
tions  emphasize that infinite-layer LSMO belongs to the 
3D-Ising universality class. Thus, it is clear that magnetic 

anisotropy is the leading term in the critical fluctuations in the 
vicinity of TC, in opposition to the isotropic exchange mech
anism, which is compatible with the 3D-Heisenberg class. 
The value of the exponent α (=0.08) obtained from our data 

Figure 9.  (a) Isothermal M–H plot of infinite-layer LSMO at 
TC = 274 K. Inset is the log–log plot and the solid line is the linear 
fit using M = DH1/δ, (b) |∆SM| plot of infinite-layer LSMO at TC. 
Inset is the log–log plot and the solid line is the linear fit.

Figure 10.  (a) Scaling plots below and above TC using β and γ  
determined from Kouvel–Fisher method; the inset shows the same 
plot in log–log scale, (b) m2 versus h/m below and above TC.

Figure 11.  MAPs of infinite-layer LSMO in the range |ε| < 0.03 
for β = 0.321 and γ = 1.22 obtained from KF method in the 
temperature range 266–282 K.
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is very close to the 3D-Ising universality class. Thus the role 
of short-range exchange interaction cannot be ruled out in the 
formation of skyrmions in manganites.

4.  Conclusion

In summary, we have investigated the detailed critical behavior 
of ferromagnetic to paramagnetic phase transition near TC in 
the skyrmionic-bubbles host infinite-layer La0.825Sr0.175MnO3 
manganite perovskite. Critical exponents β, γ , and δ have been 
determined by using several methods such as modified Arrott 
plots (MAPs), Kouvel–Fisher (KF) method, entropy, and crit-
ical isotherm analysis. Our result yield short-range 3D-Ising 
type interaction in La0.825Sr0.175MnO3. Critical exponents 
obtained from different methods are close to values that define 
the short-range 3D-Ising universality class. The 3D-Ising uni-
versality class emphasizes that the description of the magnetic 
transition in La0.825Sr0.175MnO3 must consider the existence of 
magnetic anisotropy. Also, it is noteworthy that the obtained 
critical exponents are in agreement, with the magnetic equa-
tion  of state with the curves collapsing onto two separate 
branches above and below TC. This conclusively indicates that 
the obtained critical exponents (β, γ , and δ), as well as critical 
temperature, are unambiguous and intrinsic to the system. 
The critical exponents determined from various methods in 
this study are close to the values calculated from renormaliza-
tion group approach for 3D-Ising model ({d : n} = {3 : 1}) 
based on short-range interaction. So, it is necessary to look into 
whether short-range exchange interaction plays any role in the 
formation of skyrmionic-bubbles in manganites.
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