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1.  Introduction

In 1984, Schechtman et al published an article in which was 
described a new type of crystals—quasicrystals [1]. Such sub-
stances have electron diffraction patterns with sharp diffrac-
tion peaks, but instead of periodicity, they characterized by 
quasiperiodicity. Properties of quasiperiodicity are: atomic 
density can be described by several periodic functions with 
incommensurate periods, there is a minimum distance between 
atoms, which distinguishes a quasicrystal from simple super-
position of periodic lattices with incommensurate periods; 
there is a strict orientational order of bonds between atoms 
and in the arrangement of atomic clusters [2]. Also, such 
crystals are characterized by types of symmetry forbidden for 
periodic crystals: icosahedral, decagonal, octagonal, dodecag-
onal. Since then, hundreds of quasicrystalline substances have 
been discovered [3–5].

Two-dimensional (2D) and three-dimensional (3D) tilings 
can be used for describing the crystal lattice of quasicrystals. 
Quasiperiodic tilings consist of at least two different types of 

elements. An example of a 2D quasiperiodic one is a Penrose 
tiling [6, 7] (figure 1), which has pentagonal symmetry. The 
tiling is built of rhombuses of two types (with sharp angles 
2π/5 and 2π/10). It is possible to get a structure corresponding 
to Penrose tiling using one element (decagon). However, such 
a construction is not a tiling, since both touching and partial 
intersection of the elements is possible [8]. Similar decagons 
were proposed to describe the structure of decagonal quasic-
rystals [9].

There are different approaches to building a Penrose tiling: 
matching rules; deflation [10]—replacing each rhombus 
with a cluster of smaller rhombuses; inflation—is a similar 
procedure in the opposite direction (inflation is probably not 
a way to build, but the Penrose tiling property). De Bruijn 
[11] has shown how Penrose tiling can be constructed using 
the ‘cut-and-projection’ method. A simple 5D cubic lattice is 
projected onto a 2D plane, which is located in a 5D space 
so, that the projections of lattice vectors are symmetrical [10, 
11]; the vector projections are situated at an angle of 2π/5 to 
neighbours. To construct Penrose tiling, not all nodes of the 
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5D lattice are selected, but only those whose projections fall 
into the rhombic icosahedron, which is called the acceptance 
domain [10]. The 3D space containing the acceptance domain 
belongs to the 5D space and is normal to the 2D plane. Using 
the acceptance domain allows selecting the vertices of the 
rhombuses, which are located no closer than a certain min-
imum distance.

There was also great interest in building a quasiperiodic 
tiling in three dimensions with icosahedral symmetry. In con-
nection with the discovery of Schechtman, these attempts 
acquired practical meaning, since they made it possible to 
describe the crystal lattice of icosahedral quasicrystals. The 
lattice was called Penrose 3D tiling [2, 12] since several 
authors proposed it independently [12, 13]. Projection tech-
nique was also developed for its construction [14–16]; it was 
chosen a 6D simple cubic lattice. The 6D space was divided 
into two 3D subspaces. The subspace, onto which the lat-
tice is projected, is called a parallel 3D space; perpendicular 
3D subspace contains the acceptance domain. In the parallel 
space, the projections of the 6D lattice vectors are directed 
from the centre of the icosahedron to its vertices (figure 2(a)). 
In the perpendicular space, corresponding vectors are directed 
similarly, with the difference that if the vectors ei and ej  are 
neighbours, then e′i and e′j are not neighbours, and vice versa 
(figure 2(b)).

1.1.  Fractals. The connection between fractals and  
quasiperiodic lattices

The term fractal is a concept proposed by Mandelbrot [17] 
to describe mathematical and physical objects with self-
similarity and fragmentation. Self-similarity is the repetition 
of properties when scale changing. Self-similarity is also 
the immanent property of quasiperiodic lattices (2D and 3D 
Penrose tiling). An important characteristic of fractals is the 
fractal dimension [18, 19]. The fractal dimension is usually 
greater than the topological dimension of the object but less 
than or equal to the dimension of the space in which the object 
is located. The building of classical fractals (Sierpinski carpet, 
Koch star [17]) can be described using a generator and ini-
tiator. An initiator is a source figure; a generator is a way of 
transforming the figure. At each stage, called the prefractal, 
the number of the fractal elements increases and each element 
is transformed by the generator. The deflation operation of 
constructing Penrose tiling [10] exactly matches the concept 
of a generator. However, if we calculate the fractal dimension 
of Penrose tiling, we obtain a value equal to 2, which does not 
differ from the dimension of a plane. This can be explained by 
the fact that the mosaic has no discontinuities, pores that will 
lead to a decrease in dimension, and the vertices of tiles do not 
come closer than a certain distance.

Thus, quasiperiodic tilings and fractals are very close con-
cepts. We can say that quasiperiodic tilings are fractals with 
constraints imposed by the conditions of quasiperiodicity.

The connection between fractals and quasiperiodic lattices 
was observed when using projection methods for constructing 
dodecagonal tiling composed of squares and triangles [20–
22]. Here, the acceptance domain (occupation domain) was 

chosen not as a convex figure, but as a fractal, which was 
obtained by the recursive generation. When choosing an 
acceptance domain—non-fractal figure, in addition to squares 
and triangles, distorted hexagons were observed in the tiling. 
The authors replaced the hexagons with squares and triangles, 
performed a recursive projection operation, and obtained an 
acceptance domain of a fractal form after some number of 
iterations.

1.2.  Fractals of five-pointed stars

2D Penrose tiling can be represented as a 3D structure. In this 
structure, two types of rhombuses of 2D tiling are substituted 
by rhombuses of one type that have been rotated differently 
relative to the plane. This construction was called Wieringa 
roof (WR) [11]. The vertices of these rhombuses lie in four 
horizontal layers. We have analysed the structure of individual 
layers of the WR; the analysis has shown [23] that all its 
points can be described by the vertices of regular five-pointed 
stars of the same size. These stars are characterized by two 
orientations which connected by inversion operation. Stars 
can touch each other with vertices, cross each other. In the 
WR layers, one can distinguish clusters of stars in which the 
stars have the same orientation. The stars are located in such 
a way that their centres coincide with ten vertices of a regular 
five-pointed star. The linear size of such a star is larger than 
the initial one in τ2, τ3 times, here τ  =  ((1  +  √5)) ⁄2  ≈  1.618 
is the golden ratio.

It should be noted that the symmetric projection of a 5D 
cube onto a 3D space can also be divided into layers; the two 
middle layers will have the form of regular five-pointed stars 
of different orientations.

We have proposed a new type of fractals of regular five-
pointed stars [24], whose construction is based on these prop-
erties of WR. An analysis of the fractals properties made it 
possible to repeat Penrose tiling [25] by combining four frac-
tals of stars. We have offered two approaches to the construc-
tion of fractals of stars: inflationary and deflationary [26], it 
was shown a connection between them. In the deflationary 

Figure 1.  Penrose tiling.
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approach, infinite fragmentation of the structure is consid-
ered, similar to fractal construction by generator and initiator 
[17]. In the inflationary approach, structural elements do not 
decrease, but the fractal increases infinitely in size. Two types 
of descriptions were proposed for each approach: absolute and 
relative ones [26]. In the absolute description, the exact values 
of each step characteristics of the fractal construction are 
recorded. The relative description contains records of changes 
in the characteristics. The changing of the prefractal charac-
teristics can be made constant, but it is possible to vary such 
changes, that will allow getting a wide variety of the fractals.

Let us consider in more detail the absolute inflationary 
approach to the construction of fractals of regular five-pointed 
stars [26].

When constructing a fractal by this method (figure 3), the 
size of the initial stars does not change and remains equal to 

a0 = aτN0, where τ is the golden ratio, N0 is a non-negative 
integer. It is assumed that there can be two orientations of 
stars, denoted by the symbols ‘w’ and ‘b’. These orientations 
are related by the inversion operation with respect to a point. 
The orientation c0 of the initial stars does not change. We have 
proposed the notion of a generalized star. The generalized star 
is not displayed. The size of the generalized star is determined 
by the expression ai = aτNi , where size number Ni form a 
non-decreasing sequence of integers. When constructing the 
prefractal, the cluster of stars (the prefractal of the previous 
step) is replicated. The replicas are situated so that the centres 
of the clusters coincide with ten vertices of the generalized 
star. A generalized star at each stage of construction is charac-
terized by the orientation of ci, which can be of the type ‘w’ or 
‘b’. The resulting fractal is written in a series of size numbers 
and orientations:

Figure 2.  Projections of 6D simple cubic lattice vectors onto parallel (a) and perpendicular (b) 3D spaces.

Figure 3.  An example of constructing a 2D fractal of stars using the absolute inflationary approach. The prefractals a  −  i0w2w, 
b  −  i0w2w5b. The generalized stars are shown by coloured lines (light grey in printed version).
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iN0c0N1c1N2c2 . . .Nici . . .� (1)

A description of quasiperiodic structures by means of a fractal 
of polygons or polyhedra was also proposed by Shen [27]. The 
author has chosen convex figures as building elements: deca-
gons, octagons and icosahedra. For structures with fifth-order 
axes of symmetry, the author used a construction approach 
similar to the inflationary one with a constant step of dimen-
sional numbers Ni − Ni−1 = 2. The fundamental difference 
between this approach and ours is that in [27] a prefractal of 
the previous order was added to the centre of the structure. 
This somewhat reduced the structure self-similarity, since a 
decagon and an icosahedron do not have a vertex in its centres.

1.3.  Symmetric projection of the 6D cube onto 3D space

We studied the properties of the symmetric projection of a 6D 
cube onto 3D space [28]. Knowing the properties of this pro-
jection will help us in choosing stars for building a 3D fractal. 
The same projection of 6D cubic lattice is used to construct 
the 3D Penrose tiling [15]; this projection is characterized 
by icosahedral symmetry. In it, the projections of the lattice 
vectors ei are directed from the centre of the icosahedron to 
its vertices (see figure 2(a)), and the projections of vectors e1 
through e5 are neighbours of the vector e6. All the 64 vertices 
of the cube can be obtained by enumerating the sums of all 
combinations of lattice vectors.

When constructing a cube projection [28], the vertices are 
denoted by 6-indices of the form (i1i2i3i4i5i6), the coordinates 
of the points are determined as follows:

r = i1e1 + i2e2 + i3e3 + i4e4 + i5e5 + i6e6,� (2)

where the indices are ik = 0 or 1, and ek are the projections of 
the lattice vectors (since the 6D lattice is projected onto two 
mutually perpendicular subspaces, the projection of the unit 
lattice vector has a length of 1/

√
2).

To evaluate the symmetry features, the origin was moved 
to the centre of the cube projection. In this case, the vertices 
are defined as follows:

r′ =
6∑

k=1

(ik − 0.5) ek =
1
2

6∑
k=1

(2ik − 1) ek =
1
2

6∑
k=1

jkek.

� (3)

Here i  =  0; 1  →  j   =  –1;  +1. The indices of the vertices 
of the cube projection are changing: instead of i  =  0, will be 
j   =  –1; if i  =  1, then j   =  1.

As analysis [28] has shown, all the vertices of the cube 
projection are located along the symmetry 3-fold axes and 
5-fold exes, that is, in the first case they are the vertices of 
a dodecahedron, and in the second, they are the vertices an 
icosahedron. All points can be considered as the vertices  
of two icosahedra and two dodecahedra, and the ratio of the 
sizes of the icosahedra are equal to τ2:1, and the ratio of  
the sizes of the dodecahedra is equal to τ:1. The lengths of 
the edges of the small icosahedron and dodecahedron are 
equal. The obtained points are also the vertices of 3D stars 
with icosahedral symmetry (figure 4): the great (I) and the 
small stellated dodecahedron (D) [29].

Extending the edges of the polyhedron to its intersection can 
give a stellated polyhedron. Thus, I is obtained by combining 
the vertices of the small icosahedron and the large dodecahe-
dron, and D consists of the points of the small dodecahedron 
and the large icosahedron [29]. Other options for combining 
projection points: the vertices of the large icosahedron and the 
large dodecahedron give the rhombic triacontahedron (R); the 
vertices of the small icosahedron and the small dodecahedron 
give the polyhedron, called by the authors [28] the symmetric 
star icosahedron. The rhombic triacontahedron is used in crys-
tallography of quasicrystals as an acceptance domain [10]. 
The symmetric star icosahedron (S) can be represented as an 
icosahedron with triangular pyramids augmented to its faces; 
the edges of these pyramids are parallel to the 3-fold axes, 
and the distance between the vertices of the pyramids is equal 
to the length of the edges of the icosahedron. The vertices of 
this polyhedron coincide with the outer points of the B-cluster 
[30], which is used in quasicrystalline structure models.

The vertices properties of the projection of the 6D cube, 
according to the materials of [28], can be combined in table 1.

Table 1 shows only half of the projection vertices, the 
second half can be obtained by multiplying the 6-index 
by  −1; 1  stands for  −1. The points belonged to the selected 
polyhedra: I—to the great stellated dodecahedron, D—to the 
small stellated dodecahedron, R—to the rhombic triacontahe-
dron, S—to the symmetric star icosahedron.

Both fractals and quasiperiodic lattices have the property 
of self-similarity, that is, the repetition of properties when the 

Figure 4.  Polyhedra that can be found in the symmetrical projection of a 6D cube onto 3D space: D—small stellated dodecahedron, I—
great stellated dodecahedron, S—symmetric star icosahedron, R—rhombic triacontahedron.
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scale changes. Lattices having 5-fold axes (icosahedral and 
decagonal) are characterized by self-similarity when the scale 
changes in integer degree of golden ratio τ. Therefore, the 
points of the projection of the lattice, when multiplied by τN, 
must also go to the points of this projection (the 3D Penrose 
tiling is characterized by self-similarity with a scale of τ3 [31]).

To multiply the projection of a unit vector by the golden 
ratio, you need to sum this vector and its five neighbours, then 
divide the resulting vector by 2 [15]. The matrix [28] of mul-
tiplication by the golden ratio of an arbitrary projection vector 
of a 6D cubic lattice:

τX =
1
2




1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1




X.� (4)

Here, X = (j1; j2; j3; j4; j5; j6) is the index column.

2.  Inflationary method of the fractal construction of 
3D stars

2.1. The choice of polyhedra

Consider the inflationary approach to constructing a fractal of 
stars in three dimensions. First, you need to choose polyhedra. 
It is necessary to understand how the vertex points of the pro-
jection of the 6D cube will behave when multiplied by τN. All 
the vertices of the cube are recorded in half-integer indices, 
which means that the cube occupies neighbouring points of the 
origin. We can say that it belongs to a simple cubic 6D lattice 
shifted by half the diagonal of the unit cell relative to the origin.

Multiplication by the golden ratio of the vector X, using the 
matrix (4), for the index j′6 gives the expression

j′6 =
1
2

6∑
k=1

jk =
1
2

s.� (5)

For j′m, 1  ⩽  m  ⩽  5

j′m =
1
2

6∑
k=1

jk − jm′ − jm′′ = j′6 − (jm′ + jm′′)

=
1
2

s − (jm′ + jm′′)

�

(6)

Here the numbers m′ and m″ are defined by the expressions

m′ = (m + 1) (mod 5) + 1
m′′ = (m + 2) (mod 5) + 1,� (7)

where (mod 5) is the smallest nonnegative residue modulo 5. 
We assume that all the indices describing a point are either 
half-integer or integer, it is impossible to combine integer and 
half-integer indices.

Based on equations  (5) and (6), it can be noted that the 
indices after multiplying by τ will be half-integer if the sum of 
the indices of the point before multiplication is odd. Otherwise, 
if the sum of the indices is even, they will be integers.

The sum of the indices of a point after multiplying by τ is

S′ =
6∑

m=1

j′m =
6∑

k=1

jk + 2j6 = s + 2j6.� (8)

Thus, if j6 is a half-integer, the parity of the indices sum 
changes, otherwise the parity does not alter. Table 2 shows the 
changes in the indices describing the projections of the 6D lat-
tice when they are multiplied by the golden ratio τ.

Table 1.  Properties of the vertices of 6D cube symmetric projection onto 3D space.

Symmetry  
axes Distance from the centre Indices

Belonging
Sum of 
indices

Number of 
verticesI D R S

5 τ/
√

2 ≈ 1.144 0.5 (1 1 1 1 1 1) ; 0.5
(
1 1 1 1 1 1

)
; 0.5

(
1 1 1 1 1 1

)
; + + 3,1, −1, 

−3
12

0.5
(
1 1 1 1 1 1

)
; 0.5(1 1 1 1 1 1); 0.5(1 1 1 1 1 1);

5 1/τ
√

2 ≈ 0.437 0.5
(
1 1 1 1 1 1

)
; 0.5

(
1 1 1 1 1 1

)
; 0.5

(
1 1 1 1 1 1

)
; + + 2,0, −2 12

0.5
(
1 1 1 1 1 1

)
; 0.5(1 1 1 1 1 1); 0.5(1 1 1 1 1 1);

3 τ
√

3/
√

2
√
τ + 2 ≈ 1.042 0.5(1 1 1 1 1 1); 0.5(1 1 1 1 1 1); 0.5(1 1 1 1 1 1); + + 2,0, −2 20

0.5(1 1 1 1 1 1); 0.5(1 1 1 1 1 1);
0.5

(
1 1 1 1 1 1

)
; 0.5

(
1 1 1 1 1 1

)
; 0.5

(
1 1 1 1 1 1

)
;

0.5(1 1 1 1 1 1); 0.5(1 1 1 1 1 1);

3 √
3/
√

2
√
τ + 2 ≈ 0.644 0.5(1 1 1 1 1 1); 0.5(1 1 1 1 1 1); 0.5(1 1 1 1 1 1); + + 1, −1 20

0.5(1 1 1 1 1 1); 0.5(1 1 1 1 1 1);
0.5(1 1 1 1 1 1); 0.5(1 1 1 1 1 1); 0.5(1 1 1 1 1 1);
0.5(1 1 1 1 1 1); 0.5(1 1 1 1 1 1);

Table 2.  The results of multiplying the projection points of 6D 
simple lattice by the golden ratio.

Initial sum of 
indices Integer indices

Multiplication by τ

Integer indices
Sum of 
indices

Odd No No Even
Even No Yes Odd
Odd Yes No Odd
Even Yes Yes Even

J. Phys.: Condens. Matter 32 (2020) 194003
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The sum of the indices of the vertices of the large icosahe-
dron and the small dodecahedron is an odd number (table 1); 
therefore, multiplying by the golden ratio τ will lead to the 
appearance of half-integer indices (table 2). This means that 
the points remain in a simple 6D cubic lattice shifted relative 
to the origin by half the diagonal of a 6D cube. The sum of the 
indices of the small icosahedron and the large dodecahedron is 
0 or  ±  2, which will lead to the appearance of integer indices 
when multiplied by τ. This means that the points will be in 
a simple 6D cubic lattice, not shifted relative to the origin. 
Moreover, the sum of the result indices will be odd, since the 
original indices were half-integer. Successive multiplication 
by τ of points of the cube projection will lead to the following: 
half-integer indices with an odd sum  →  half-integer indices 
with an even sum  →  integer indices with an odd sum  →  half-
integer indices with an odd sum. Note that the last line of 
table 2 will not be reached in this case. Therefore, we can say 
that the properties of the projection vertices of the 6D cube 
will be repeated with a step of τ3.

The appearance of a projection of a body-centred 6D lat-
tice is possible when mixing points with half-integer and 
points with integer indices. It will happen when multiplying 
by the golden ratio the coordinates of vertices of the polyhedra 
R and S. At the same time, the parity of the sum of indices is 
the same for all points of both I and D. Therefore, these points 
will always lie in a simple cubic lattice when multiplied by the 
golden ratio. To build fractals, the great and the small stellated 
dodecahedron are selected.

2.2.  Description of the algorithm

The algorithm for constructing the fractals of 3D stars is sim-
ilar to that for 2D stars [26]. Consider the absolute inflationary 
approach to fractal construction.

	 1.	�At the initial step, the type of star is set—C0  =  ‘I’ or 
‘D’ (the great or small stellated dodecahedron). A size 
integer N0 is specified. It determines the size of the initial 
polyhedron a0 = aτN0, where a is the length of the edge 
of the star’s core in the projection of the 6D cube, usually 
N0  =  0.

	 2.	�The next step sets C1, N1—the type and size number of 
the generalized star. The generalized star is not displayed. 
The fractal is constructed as follows: a star of the initial 
type and size is replicated and the replicas are positioned 
so that their centres coincide with the vertices of the gen-
eralized star.

	 3.	�Next steps: the characteristics of the k-th generalized star 
Ck and Nk are selected. The prefractal of the previous step 
replicates and the replicas are positioned so that its centres 
coincide with the vertices of the generalized star. The size 
of the generalized star core is ak = aτNk . Coinciding 
vertices are counted once. The integers Nk are chosen 
non-negative; their sequence must be non-decreasing: 
Nk � Nk−1.

The fractal is recorded by a series of characters and integers:

iN0C0N1C1 . . .NkCk . . . .

It should be noted that a wide variety of such fractals is 
possible due to the variability of their characteristics.

3.  Results and discussion

It was made a program complex in MATLAB for calculating 
and imaging of the prefractals. Figures 5 and 6 were got with 
the help of this complex. Figure 5 shows an example of the 
initial star i0D and two prefractals: i0D2I and i0D2I3I. The 
internal parts of the i0D2I and i0D2I3I prefractals are shown, 

Figure 5.  Prefractal i0D2I3I: a—initial star: small stellated dodecahedron i0D, b—prefractal i0D2I, c—prefractal i0D2I, only the cores of 
the initial stars are shown, d—inner part of the prefractal i0D2I, e—general view i0D2I3I, f —inner part of the prefractal i0D2I3I, g—central 
part of i0D2I3I.

J. Phys.: Condens. Matter 32 (2020) 194003
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it can be noted that intersections of the star cores are observed 
(figure 5(g)). This is due to a decrease in the step of size num-
bers in the third prefractal. An example of structures with the 
initial star i0I is given in figure 6, prefractals i0I1I, i0I1I3I are 
shown.

The difference between this approach and the 2D variant 
[26]: in that case, the stars had two variants of star orientation; 
in the 3D case, there are two types of polyhedra, which cannot 
be transformed into one another by rotation. At the same time, 
the transition from parallel to a perpendicular subspace (see 
figure 2) leads to that increasing in size polyhedra are replaced 
by decreasing ones, and its type is replaced by the opposite I 
↔ D. This transition leads to shuffling of the indices j 1 ... j 5 
(neighbours become non-neighbours) and replacing the index 
j 6 with  −j 6 (table 1 shows that there will be a mutual transition 
between the small icosahedron and the large icosahedron, the 
same for dodecahedrons).

What is the defining feature of the proposed fractals: poly-
hedra, the empty space between them, or the vertices? The 
polyhedra in the fractals can touch each other’s vertices, cross 
each other, or be separate. In this regard, the partition of space 
is not as unambiguous as that of tilings. Therefore, the main 
characteristic of the fractal will be the location of the vertices 
of the polyhedra, that is, the points. Note that when using the 

‘cut-and-project’ methods, it is the vertices that are obtained and 
not the sides and planes of the quasiperiodic mosaics. But the 
star polyhedra stress a local symmtery of the fractal structure.

4.  Conclusion

A new type of 3D fractals is proposed, the construction algo-
rithm of which is close to the previously developed methods 
for constructing 2D fractals of regular five-pointed stars. 
The great and small stellated dodecahedra were chosen as 
building elements. Their use allows leaving the resulting 
structure in the framework of the projection of a simple 6D 
cubic lattice.

The offered approach can facilitate the description of clus-
ters of polyhedra with icosahedral symmetry. It will be inter-
esting to try some of the fractals as photonic crystals and to 
repeat the structure of 3D Penrose tiling.
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Figure 6.  Prefractal i0I1I3I: a—great stellate dodecahedron i0I, b—i0I1I, c—i0I1I (the cores of the initial stars), d—central part of i0I1I, 
e—prefractal i0I1I3I, f —central part of i0I1I3I.
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