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1.  Introduction

Accompanying the hottest discussion on gapped topological 
phase [1–4], gapless topological phase with Fermi surface has 
gradually become another studying focus [5, 6]. Considering 
all ten Altland–Zirnbauer symmetry classes, topologically 
stable Fermi surfaces with all kinds of codimension p  have 
been classified according to their topological charges from the 
K-theory [7, 8]. A typical representative explored in various 
cold atom systems [9–16] and solid state materials [17–29] is 
three-dimensional (3D) Weyl semimetal/superfluid with codi-
mension p   =  3, which characterize Weyl point (WP) Fermi 

surfaces. The WP can be regarded as the magnetic monopole 
in momentum space [30–32] and topologically protected by 
nonzero Chern number defined for any two-dimensional (2D) 
surface enclosing the WP.

The bulk-boundary correspondence signifies the nontrivial 
surface states in Weyl semimetal/superfluid. For any surfaces 
not perpendicular to lines connecting WPs, there exists open 
Fermi arc, which connects projections of the WPs with oppo-
site Chern number on the surface Brillouin zone [17]. In terms 
of Weyl superfluids, Fermi arc possesses Majorana character 
and is also denoted by Majorana Fermi arc (MFA) due to 
inherent particle-hole symmetry (PHS). To our knowledge in 

Journal of Physics: Condensed Matter

Nodal line topological superfluid  
and multiply protected Majorana Fermi  
arc in a three-dimensional  
time-reversal-invariant superfluid model

Beibing Huang , Yujie Bai and Ning Xu

Department of Physics, Yancheng Institute of Technology, Yancheng 224051, People’s Republic of China

E-mail: hbb4236@ycit.edu.cn and nxu@ycit.cn

Received 21 October 2019, revised 17 December 2019
Accepted for publication 15 January 2020
Published 13 February 2020

Abstract
We theoretically study a time-reversal-invariant three-dimensional superfluid model by 
stacking in z direction identical bilayer models with intralayer spin–orbit coupling and 
contrary Zeeman energy splitting for different layers, which has been suggested recently to 
realize two-dimensional time-reversal-invariant topological superfluid. We find that this model 
shows two kinds of topologically nontrivial phases: gapless phases with nodal lines in pairs 
protected by chiral symmetry and a gapped phase, both of which support a time-reversal-
invariant Majorana Fermi arc (MFA) on the yz and xz side surface. These MFA abide by time-
reversal and particle-hole symmetries and are topologically protected by the winding numbers 
in mirror subspaces and the Z2 numbers of two-dimensional DIII class topological superfluid, 
which are different from MFA in the time-reversal broken Weyl superfluid protected by 
nonzero Chern numbers. This important observation means that MFA in our model represents 
a new type of topological state not explored previously. The Zeeman field configuration in 
our model is relevant to the antiferromagnetic topological insulator MnBi2Te4, thus our work 
stimulates the further studies on superconducting effects in the realistic antiferromagnetic 
topological insulator.

Keywords: nodal topological superfluid, Majorana Fermi arc, mirror symmetry

(Some figures may appear in colour only in the online journal)

B Huang et al

Nodal line topological superfluid and multiply protected Majorana Fermi arc in a three-dimensional time-reversal-invariant superfluid model

Printed in the UK

195502

JCOMEL

© 2020 IOP Publishing Ltd

32

J. Phys.: Condens. Matter

CM

10.1088/1361-648X/ab6bea

Paper

19

Journal of Physics: Condensed Matter

IOP

2020

1361-648X

1361-648X/ 20 /195502+6$33.00

https://doi.org/10.1088/1361-648X/ab6beaJ. Phys.: Condens. Matter 32 (2020) 195502 (6pp)

https://orcid.org/0000-0001-8202-5495
mailto:hbb4236@ycit.edu.cn
mailto:nxu@ycit.cn
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-648X/ab6bea&domain=pdf&date_stamp=2020-02-13
publisher-id
doi
https://doi.org/10.1088/1361-648X/ab6bea


B Huang et al

2

all existing models realizing the Weyl superfluid [9–14, 27, 28],  
time-reversal symmetry (TRS) is explicitly broken, and MFA 
is protected by nonzero Chern number.

In this work, we suggest a 3D theoretical model to study 
MFA not protected by nonzero Chern number. Our main 
results are as followings. The suggested model realizes two 
kinds of topologically nontrivial phases, both of which sup-
port MFA. The first kind of phase is gapless. Different from 
Weyl superfluids, this gapless phase has nodal lines instead of 
WPs. The topological stabilities of nodal lines are protected 
by chiral symmetry [7, 33, 34]. By tuning the parameters of 
the model, these nodal lines disappear in pairs, driving the 
system into a fully gapped phase, which shows the MFA in 
the whole Brillouin zone in the z direction and is different 
from the conventional gapped topological phases. Moreover 
MFA in two kinds of phases are topologically protected by 
the winding numbers in mirror subspaces and Z2 numbers of 
2D DIII class topological superfluid, but not nonzero Chern 
number. This important observation means that MFA in our 
model represents a new type of topological state not explored 
previously.

2. Theoretical model

The model we consider can be regarded as 3D extension of 
a bilayer model with intralayer spin–orbit coupling and con-
trary Zeeman energy splitting for different layer, which has 
been suggested recently to realize 2D time-reversal-invariant 
topological superfluid [35]. Let Hi and Vi denote single par-
ticle Hamiltonian and pairings for ith bilayer, Hi,i+1 the cou-
pling between ith and (i + 1)th bilayers, the Hamiltonian of 
3D system is

H =
∑

i

[Hi + Vi + Hi,i+1] ,

Hi =
∑

k⊥αβs

ψ†
k⊥iαs {[εk⊥ + Γασz + λykyσx

−λxkxσy]ss′ δαβ − t(1 − δαβ)δss′
}
ψk⊥iβs′ ,

Vi = −∆
∑
k⊥α

ψ†
k⊥iα↑ψ

†
−k⊥iα↓ + h.c.,

Hi,i+1 = −t
′∑

k⊥s

ψ†
k⊥iαsψk⊥i+1βs + h.c.

� (1)

where ψ†
k⊥iαs is the creation operator for the fermion par-

ticle with momentum k⊥, spin s =↑, ↓ and sublayer index 
α = 1, 2 in a bilayer. εk⊥ = k2

⊥/2m − µ is in-plane kinetic 
energy measured from chemical potential µ. The prime over 
the summation in Hi,i+1 means that the sublayer indexes are 
limited to α = 2 and β = 1, i.e. we only consider the nearest 
neighborhood tunneling between the bilayers. t is the tun-
neling between different sublayers. We assume the distance 
between any two nearest layer to be a/2, so the length for 
unit cell in z direction is a. λx and λy are anisotropic intra-
layer spin–orbit coupling. Our main investigations are on 
the isotropic case λx = λy = λ. We will briefly discuss the 

effects of the anisotropy. Γα are sublayer-dependent effec-
tive Zeeman energy splittings Γ1 = −Γ2 = Γ. Such Zeeman 
field configuration can be relevant to Van der Waals lay-
ered material MnBi2Te4 [36–38], in which the intralayer 
exchange coupling is ferromagnetic, giving 2D ferromag-
netism in their septuple layer; while the interlayer exchange 
coupling is antiferromagnetic, forming 3D A-type antifer-
romagnetism in their bulk. On the other hand this required 
Zeeman field may also be realized in ultracold atoms using 
spin-dependent optical lattice [35, 39]. Under the Nambu 
basis Φk = (ψk,ψ†

−k)
T  with ψk = (ψk1↑,ψk1↓,ψk2↑,ψk2↓) 

and k = (k⊥, kz), the Hamiltonian H can be arranged 
into the following Bogoliubov–de Gennes (BdG) equa-

tion H = 1
2

∑
k Φ

†
kH(k)Φk with

H(k) =

(
H0(k) ∆̂

∆̂† −H∗
0 (−k)

)
,� (2)

where H0(k) = εk⊥s0 ⊗ σ0 + Γsz ⊗ σz − 2t cos (kza/2)sz ⊗ σz− 
2t cos (kza/2)sx ⊗ σx + λykys0 ⊗ σx − λxkxs0 ⊗ σy, ̂∆ = −i∆s0 ⊗ σy.  
s0,x,y ,z, σ0,x,y,z are two sets of Pauli matrices acting on the 
layer and spin spaces. We will also introduce τ0,x,y,z as Pauli 
matrix acting on the particle-hole space. A feature of this 
Hamiltonian is that it is free in xy plane and constrained by a 
lattice in z direction.

The Hamiltonian (2) has PHS ΣH∗(k)Σ−1 = −H(−k) with  
Σ = τx ⊗ s0 ⊗ σ0 and TRS T H∗(k)T −1 = H(−k) with 
T = iτ0 ⊗ sx ⊗ σy. Thus our model belongs to 3D DIII 
class. The combination of TRS and PHS gives rise to a chiral  
symmetry C = iT Σ with CH(k)C−1 = −H(k). In addition,  
the model (2) also has spatial inversion symmetry IH(k)I−1 =  
H(−k) with I = τz ⊗ s0 ⊗ σz and mirror symmetries  
MxH(kx, ky, kz)M−1

x = H(−kx, ky, kz), MyH(kx, ky, kz)M−1
y =  

H(kx,−ky, kz), MzH(kx, ky, kz)M−1
z = H(kx, ky,−kz) with 

Mx = IT , My = −iT  and Mz = τ0 ⊗ s0 ⊗ σ0 . These mirror  
symmetries are very vital to topological stabilities of MFA in 
the model (2), as demonstrated below.

3.  Possible phases and bulk topology

The structure of phase diagram can be obtained from ana-
lyzing the determinant of H(k), which can be calculated with 
the help of the chiral symmetry. By finding a unitary matrix 
U = (τx ⊗ sx ⊗ σy + τz ⊗ s0 ⊗ σ0)/

√
2 to diagonalize C that 

UCU† = τz ⊗ s0 ⊗ σ0, we can transform the Hamiltonian into 
an off-diagonal form

UH(k)U† =

(
0 Q

Q† 0

)
,� (3)

with Q = H0(k) · (sx ⊗ σy)− ∆̂. Thus Det(H(k)) = Det(Q)·
Det(Q†) � 0 and the gap closing condition is Det(Q) = 0. 
Following this method, we find for our model gap closing sig-
nifies that the equations

ε2
k⊥

+∆2 = Γ2,λ2k⊥
2 = 4t2 cos2 kza

2
� (4)
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have solutions for k⊥ and kz. With the second equation  in 
(4) defining an irregular spherical surface, the first equa-
tion  defines possible cylindrical surfaces depending on the 
values W±

c = 2m(µ±
√
Γ2 −∆2). Thus the solutions of (4) 

correspond to the intersections of spherical surface and cylin-
drical surfaces and define some gapless nodal lines. Since 
the number of cylindrical surfaces is at most equal to 2, the 
maximal number of nodal lines is 4. The relation between all 
possible phases and parameters 2t/λ, W±

c  can be found in 
figure 1. Here we notice that the sign of µ affects the phases 
available. For µ < 0 the maximal number of phases is 3, but 
for µ > 0 the maximal number of phases is 4.

Below we discuss the topological properties of all phases 
from the 3D bulk viewpoint. For the gapless phases, there are 
pairwise nodal lines. The featured structures of nodal lines 
can be visualized from the circles at kz  =  0 plane in figure 1. 

To characterize their stabilities, we calculate the winding 
number [7, 33, 34] N1 = 1

2π

∮
S1 dk · ∂kIm[lnDet(Q)], where 

the contour S1 encircles the one of nodal lines from its trans-
verse direction. A nonzero N1 signifies topological stability. 
In our model N1 = ±1. The topological superfluid with 
nodal lines can be regarded as the superfluid counterpart 
of nodal line semimetal widely studied in the solid state 
materials Ca3P2 [40], SrIrO3 [41], PbTaSe2 [42] and stable 
3D carbon allotrope [43, 44]. While for gapped phase, 
we could consider a strong topological invariant [3] 

N2 =
∫ d3k

24π2 ε
ijkTr[(Q−1∂iQ)(Q−1∂jQ)(Q−1∂kQ)] with i, j, k =  

kx, ky, kz defined in the whole momentum space, but N2  =  0 
due to trivial mirror symmetry Mz in our model, which leads 
to Q(−kz) = Q(kz) [45]. N2  =  0 means our model cannot 
realize a strong 3D DIII class topological superfluid, but 
as illustrated in the next section, the gapped phase III owns 
anomalous surface states in xz and yz side surfaces, thus it 
remains topological.

4.  Majorana Fermi arc and topological protection

In this section  surface states on the yz side surface are dis-
cussed. We consider a slab with periodic boundary condition 
in y , z directions and a finite thickness L along x direction. 
Expanding the wavefunction ψ(x) =

∑∞
n=1 cn sin (nπx/L) 

[46, 47], the calculated results for ky   =  0  are presented in 
figure 2. There exists MFA with four fold degeneracy in two 
gapless phases and gapped phase III.

To correctly illustrate the observed MFA, we introduce two 
different topological invariants. Firstly we regard 3D system 
as a set of 2D subsystems, parameterized by the momentum 
component kz. Generally the symmetries satisfied by a 3D 
system must not remain symmetries of 2D subsystem, espe-
cially for TRS and PHS, since they correlate the momentum 

Figure 1.  Possible phases in the model (2). The schematic plots 
for two equations in (4) at kz  =  0 plane. The radius of black circle 
(dotted) is 2t/λ, while the radii of red (solid) and blue (dashed) 
circles are 

√
W+

c , 
√

W−
c  if they can be defined. In 3D the red (blue) 

circle corresponds to an open cylindrical surface along the kz axis, 
while the black circle gradually decreases to zero when kz reaches 
the boundary of the Brillouin zone to form an irregular spherical 
surface. Thus as long as one of the blue and red circles is into the 
black one, the cylindrical surface(s) will cross irregular spherical 
surface to form gapless nodal lines of the model (2). From this 
criterion (a), (e), (f) are gapped phases, (b) is gapless phase with four 
nodal lines and (c), (d) are gapless phases with two nodal lines. In 
the maintext, (a) ((e) and (f)) is (are) denoted by gapped phase I (III), 
while (c) and (d) ((b)) are (is) denoted by gapless phase II (IV).

Figure 2.  Surface states on yz side surfaces at ky   =  0 for four 
phases in our model (2). (a)–(d) correspond to phases I–IV, 
respectively. In (a) Γ = 0.8EF, ∆ = 1.23EF, µ = −0.07EF, (b) 
Γ = 1.3EF, ∆ = 0.63EF, µ = −0.11EF, (c) Γ = 1.8EF, ∆ = 0.22EF, 
µ = −0.43EF, (d) Γ = 0.41EF, ∆ = 0.23EF, µ = 0.42EF, with 
t = 0.55EF, λkF = 1.0EF. For EF and kF, see figure 3.
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k with −k non-locally. However in our model due to trivial 
MS Mz [48], TRS T H(k⊥, kz)T −1 = H(−k⊥, kz) and PHS 
ΣH(k⊥, kz)Σ

−1 = −H(−k⊥, kz) always exist for 2D sub-
systems. Thus every kz fixed plane belongs to 2D DIII class 
and its topological properties can be distinguished by the Z2 
number [49]

ν2(kz) =
∏

j

[sgn(δj)]
pj ,� (5)

where p j  is the number of time-reversal-invariant points 
enclosed by the j th Fermi surface, δj,k = 〈 jk|(isx ⊗ σy) · ∆̂†|jk〉 
and sgn(δj) is the sign of pairing gap on the Fermi surface with 
|jk〉 being the eigenstates of H0(k).

Additionally we consider the mirror symmetry 
My. For ky   =  0, the Hamiltonian commutes with My and 
can be partitioned into two independent mirror subspaces 
M±(kx, kz) = −εkxσz ⊗ σ0 − Γσz ⊗ σz − (λkx ± 2t cos kza

2 )σz

⊗σz − (λkx ± 2t cos kza
2 )σz ⊗ σy +∆σy ⊗ σy under the basis 

of diagonalizing My [50–54]. Since My anticommutes with 
TRS and PHS, every mirror subspace belongs to AIII class 
with the common chiral operator S = σx ⊗ σ0. Thus every 
mirror subspace can be further written into the nondiagonal 
form

M±(kx, kz) ∼

(
0 Q±

Q†
± 0

)
� (6)

with Q± = εkxσ0 − Γσz − (i∆+ λkx ± 2t cos kza
2 )σy. In the 

mirror subspaces, every 1D subsystem can be classified by the 
winding number

N±(kz) =
1

2π

∫ ∞

−∞
dkx∂kx Im[lnDetQ±].� (7)

Since two mirror subspaces are correlated with each other by 
TRS and PHS, the winding numbers N±(kz) are not indepen-
dent and we can prove exactly N+(kz) = N−(kz).

We have numerically calculated ν2(kz), N±(kz) and  
find that two topological invariants are nonzero as long as 

Γ2 >
[
2t2 cos2 kza

2 /(mλ2)− µ
]2

+∆2. In gapped phase I 

(III), two invariants are trivial (nontrivial) for all kz fixed 
subsystems; In gapless phase II, only subsystems with 

kz ∈ (−π/a,−k+z ) ∪ (k+z ,π/a) or kz ∈ (−k−z , k−z ) are non-

trivial, where cos (k±z a/2) =
√
λ2W±

c /(4t2), depending 

on that the gapless phase II corresponds to figure  1(b) 
or (d); While in gapless IV only subsystems with 
kz ∈ (−k−z ,−k+z ) ∪ (k+z , k−z ) are nontrivial. We also find that 
the range in which two topological invariants are nonzero is 
exactly the same as that MFA exist, in other words MFA in 
the model (2) is protected by ν2(kz), N±(kz). No matter which 
topological invariant protect the MFA in figure  2, it is dif-
ferent from MFA in the time-reversal broken Weyl superfluid 
protected by nonzero Chern number. This important observa-
tion means that MFA in our model represents a new type of 
topological state not explored previously. The same MFA also 
exists in xz surface and can be analyzed similarly if we con-
sider the mirror symmetry Mx .

5.  Phase diagram with self-consistent pairing gap

Within Bardeen–Cooper–Schrieffer mean-field theory, 
let  −U (U  >  0) denote the effective attraction strength in 
each layer. Then the pairing gaps ∆α = U

∑
k〈ψ−kα↓ψkα↑〉 

and the free energy at zero temperature F = 
1
2

∑
k

[
TrH0(k)−

∑4
η=1 Eηk

]
+ (|∆1|2 + |∆2|2)/U + µN . Here Eηk 

are four positive eigenvalues of BdG Hamiltonian H(k) and N 
is the particle number. The integral for k⊥ is divergent and we 
choose to use the relation 1/U =

∑
k⊥

(k2
⊥/m + εb)

−1 with εb 
being the binding energy in 2D free space [55] to regularize 
F. The physical properties of the ground state can be obtained 
by minimizing F. Notice that the conclusions of nodal line 
topological superfluid and multiply protected MFA in model 
(2) is highly depend on whether the order parameters ∆α of 
two layers are equivalent. The same magnitudes for ∆α can 
be directly anticipated from the bilayer’s symmetry. In order 

Figure 3.  The landscapes of free energy F as the function of the relative phase φ of two order parameters ∆α (a) and phase diagram from 
the self-consistent calculation (b). In (a) εb = 1.0EF, Γ = 0.8EF for the black (upper) line and Γ = 1.3EF for the red (lower) line. The 
step structure in the middle of the red (lower) line corresponds to the normal state with ∆α = 0. The other parameters are t = 0.55EF, 
λkF = 1.0EF. We define the Fermi momentum kF =

√
πn from particle number density n for every bilayer and Fermi energy EF = k2

F/2m 
as the unit of inverse length and energy. For the definitions of different phases, see figure 1.
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to check whether ∆α have the same phases, we consider the 
ansatz ∆1 = ∆, ∆2 = ∆eiφ to investigate the behavior of free 
energy F as the function of the relative phase φ by self-con-
sistently solving order parameter ∆ and chemical potential µ. 
We find that F always obtains minimum at φ = 0. Figure 3(a) 
shows the landscapes of the free energy for two chosen param-
eter sets. When ∆1 = ∆2, TRS T  and chiral symmetry C are 
recovered and our conclusions about bulk topology and MFA 
are valid. The phase diagram from the self-consistent calcula-
tion is shown in figure 3(b).

6.  Discussions

We want to emphasize the following comments. Let us note 
that the model (2) also have the chiral symmetry C. Thus at 
ky   =  0 we can define similar topological invariant (7) by sub-
stituting Q for Q±. The numerical results suggest that this 
winding number is often zero and cannot protect the MFA 
observed in figure 2. (This winding number in essence is the 
same as N1, but its integral path cannot embrace the nodal 
lines.) However this chiral symmetry can protect some other 
interesting surface states. For example when the projections 
of nodal lines on certain surfaces do not overlap completely, 
there are zero-energy Andreev bound states on this surface 
located within the projected nodal rings [56]. Here we are not 
interested in them.

In our Hamiltonian, Rashba spin–orbit coupling has been 
assumed, which ensures flat nodal lines and the same MFA in 
yz and xz surfaces. However the existences of gapless nodal 
lines and MFA are also robust for the anisotropic spin–orbit 
coupling. When we change λy (λx) slightly, every flat nodal 
line will develop into a spatial curve and have a finite exten-
sion along kz axis, while the MFA on yz (xz) surfaces will 
not change when other parameters are fixed. But for a large 
anisotropy, the number of nodal lines and MFA can change 
once the red or blue circle intersects with the black ellipse 
at kz  =  0 in figure 1. As an example, let us decrease λy from 
figure 1(e) to induce the crossings. As a result gapped phase 
III transits into gapless phase II and the MFA in xz surface has 
the similar structure with figure 2(b), with the MFA in yz sur-
face invariant. Since a nonzero 2D topological invariant ν2(kz) 
means the simultaneous presence of edge states in yz and xz 
surfaces, thus generally for λx �= λy the MFA is only protected 
by N±(kz). Moreover the above example also demonstrates 
that for λx �= λy the different phases can own the same MFA 
in yz or xz surface.

One of the motivations considering sublayer-dependent 
effective Zeeman energy splittings Γ1 = −Γ2 = Γ comes 
from the recent discovery of layer antiferromagnetic topolog-
ical insulator MnBi2Te4 [36–38]. In the low energy effective 
model of MnBi2Te4, there are 4 bands for every septuple layer, 
thus for the antiferromagnetic bilayer there are 8 bands totally; 
While we only consider a two-band case for the single layer, 
which is usually used to describe semiconductors or Fermi 
gases with spin–orbit coupling and is also the starting point 
for studying D class topological superfluid in 2D [57–59].  
Additionally from the 3D perspective the single-particle model 
of MnBi2Te4 has been topological, but it is not true for our 

model. Although the model (2) is more simple, it has shown 
lots of exotic quantum phenomena, as demonstrated before. 
Thus to investigate superconducting effects in the realistic 
antiferromagnetic topological insulator should be deserved. 
The superconductivities in time-reversal-invariant topological 
insulator, Dirac and Weyl semimetal have been widely studied 
and bring interesting results [60–63].

Experimentally, four kinds of phases in our model can be 
solely identified by radio-frequency spectroscopy in the cold 
atom gases and angle-resolved photoemission spectroscopy 
in condensed matter materials [64–69]. On one hand gapless 
and gapped phases can be distinguished by nodal lines in the 
gapless phases, meantime different number of nodal lines 
can also discriminate different gapless phases. On the other 
hand in contrast to the gapped phase I, the existence of MFA 
in gapped phase III enhances the low-energy spectral func-
tion and becomes a smoking gun for identifying the different 
gapped phases.

7.  Conclusion

To conclude we theoretically study a time-reversal-invariant 
three-dimensional superfluid model by stacking a series of 
bilayers with intralayer spin–orbit coupling and contrary 
Zeeman energy splitting for different layers. This model 
shows two kinds of topologically nontrivial phases: gapless 
phases with nodal lines in pairs protected by chiral symmetry 
and a gapped time-reversal-invariant weak topological super-
fluid phase, both of which support a time-reversal-invariant 
Majorana Fermi arc on the yz and xz side surface, which is 
topologically protected by the winding numbers in mirror 
subspaces and the Z2 numbers of two-dimensional DIII class 
topological superfluid, which are different from the Majorana 
Fermi arc in the time-reversal broken Weyl superfluid pro-
tected by nonzero Chern numbers. The exotic Majorana Fermi 
arc predicted here represents a new type of topological state 
and provides fertile grounds for exploring exotic quantum 
matters.
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