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Abstract

CrossMark

In this paper, an effective modification of variational iteration algorithm-II is presented for the
numerical solution of the Korteweg—de Vries-Burgers equation, Burgers equation and
Kortewege—de Vries equation. In this modification, an auxiliary parameter is introduced which
make sure the convergence of the standard algorithm-II. In order to assess the precision of the
solutions, numerical computations obtained from the time evaluation of the solutions of the
Kortewege—de Vries-Burgers equation with different values for dispersion and diffusion
coefficients, show that the proposed algorithm converges rapidly, yields accurate results and
offers better accuracy and robustness in comparison with other previous numerical methods.

Furthermore, the method can be readily implemented for illuminating viably an enormous
number of nonlinear differential equations with better accuracy. Furthermore, any
transformation, weak nonlinearity assumption to find an explicit solution or any discretization to
find the numerical solution is not necessary for this proposed algorithm.

Keywords: mathematical methods, mathematical physics, Kortewege—de Vries-Burgers

equation, modified variational iteration algorithm-II

(Some figures may appear in colour only in the online journal)

1. Introduction

In many fields of engineering and science, particularly in fluid
mechanics, heat and mass transfer, hydrodynamic, electro-
magnetic theory, chemical physics, plasma wave, chemical
kinematics, nonlinear optic, etc, a large number of the
applications arising in physical systems are described by
partial differential equations which can be sculpted in terms of
nonlinear equations [1-8]. In this work, we study one of a
couple illustrious nonlinear partial differential equations
which were primarily formulated by Su and Gardner [9]
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known as KDV Burgers equation.
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where ¢, 1 and v are real constants. This model equation has
damping and dispersion that is why it can be utilized for an
enormous number of nonlinear systems with better accuracy
in the lengthy wavelength approximations and weak non-
linearity. It has been developed when incorporating electron
inertia special effects in the interpretation of nonlinear plasma
waves. When weak plasma shocks propagate to a magnetic
field perpendicularly, the steady-state solution of this equation
had been shown [10]. Steady state solution of KdVB equation
is monotonic when diffusion overwhelms the dispersion [11],
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and when dispersion commands the diffusion then at that
point shocks are oscillatory. This equation has been utilized
extensively to describe shallow water waves on a fluid which
does not flow easily, i.e. viscous fluid [12] and propagation of
wave propagation by a fluid filled elastic tube [13]. Numerical
work to solve this equation has been done in a very small
amount. Canosa and Gazdag [14] gave a short detail of the
numerical solution of this equation by applying a technique
named accurate space derivative they also figured out how to
nonanalytic initial data changes into monotonic shocks. Then
B-spline FE scheme was created by Ali et al [15] for the
numerical treatment of equation (1). When the parameter v is
zero then equation (1) takes the form

u— + p— =0, 2)

which is called KDV equation, Kortweg and De-Vries
developed KdV equations in 1895, to show a crucial role in
Solitons like waves with slight and limited amplitudes of
shallow water. KdV equations are the mathematical models
which perform a significant role in fluid mechanics [16], one-
dimensional nonlinear lattice [17], and other areas [18-29]. It
was originally prescribed as an evolution equation which
indicate a one dimensional, limited amplitude, long surface
gravity waves. Recently, exact solution of coupled KdV
equations based on Kudryashov technique demonstrated by
[30]. Numerous approaches have been handled to these pro-
blems such as: finite difference scheme [31], (G’/G)-expan-
sion method, finite volume scheme [32], homotopy analysis
method [33], finite element scheme [34], decomposition
method [35], spectral method [36], Wronskian form expan-
sion method [37] Exp-function method, canonical formulation
of Whitham’s variational principle [38], residual power series
method [39], tanh function method, variational iteration
method [40], inverse scattering transform [41] and reduced
differential transformation method [42].
When the parameter p is zero then equation (1) takes the
form
Ou Ou
o + cu En v 0, 3)
which is called Burger equation. Burgers model of free turbu-
lence is the most significant fluid dynamics model. Many
authors have considered the study of theory of shock of waves
and this model for conceptual understanding as well as for
analyzing various numerical methods. Special characteristics of
equation (3) are that it creates competition between viscous
diffusion and nonlinear advection. A mathematical property of
equation (3) was studied by cole in 1951 [11]. And then cole
described the detailed relationship between equation (3), shock
wave theory and turbulence theory. Exact solution for burgers
equation was also introduced by cole. After that Platzman and
Benton in 1972 exhibited over 35 exact solutions for burgers-
like equations with their classification [43]. Generally, the
restricted value of € can only derive the exact solution for bur-
gers equation where the restricted value of ¢ represents kine-
matic viscosity of the fluid motion. Due to this reality different
methods have been used to get solution of equation (3) by

substituting very small values of €. A lot of numerical solutions
for equation (3) have been used, but frequently finite element
technique has been used, such as Varoglu and Finn [44] in 1980
introduced an isoperimetric spacetime finite-element technique
for resolving Burgers equation. Caldwell et al [45] in 1981 used
the FEM by changing the size of element at each steps and by
using data from preceding steps. In 1980, Caldwell et al [46]
indicated that how do complementary vibrational principles can
be put in an application to Burgers equation. After that, in 1984,
Saunders et al [47] showed that how a variational-iterative
scheme can be used to a nonlinear PDEs and steady state form
of the burgers equation is the test problem that has been chosen.
The direct variational method was used by Ozis and Ozdes [48]
in 1996 to make finite form of solution of the Burgers equation.
After that Aksan and Ozdes [49] in 2004 abridged Burgers
equation by discretization in time to the system of nonlinear
ODE:s and then by using Galerkin method, and their approach
provides more accuracy even for N =35 grid points, because they
claimed for slightly small value of . In some cases where
kinematics viscosity is small enough like € = 1.0 x 10~*,
exact solution is unavailable, a conflict remains in literature.
Soliman [50] used variational iteration method in 2005 and
obtained an infinite power series solution of Burger equation. It
is widely known that VIM converges quickly to results. At the
end, to get solution for this equation, Aksan ef al [51] in 2006
used least squares method, while Mostafa Inc. [52] used
homotopy analysis method. In this study, the KDV Burgers’
equation (1), KDV equation (2) and Burgers’ equation (3) are
solved by modified variational iteration algorithm-II. The paper
is organized in the following way. In section 2, modified var-
iational iteration algorithm-II is described. In section 3, some
problems are investigated to show the applicability and accuracy
of the proposed technique and in the last section 4, a detailed
conclusion is discussed.

2. Modified variational iteration algorithm-Il (MVIA-II)

To illustrate the standard solution procedure of modified
variational iteration algorithm-II, consider the nonlinear
differential equation.

Lu(x)] + N{u@x)] = c(x), “

where L[u(x)] is a linear term, N [u(x)] nonlinear term, while
c is the source term. Approximate solution u;,(x) of
equation (4) for given initial condition u(x) can be obtained
as below:

U1 (0) = 1 (x) + hj; A()

X [L{w (D} + N{ux@) — epldn, (5

where A is a parameter known as the Lagrange multiplier
[53], which can be found by taking 6 on both sides of the
recurrence relation (5) w.r.t. the variable u(x),

Sutp1 () = Sup(x) + ho fo oY)

X [L{ug(m)} + N{ux(} — c(pldn,  (6)
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where m is a restricted term, i.e. 61,4% = 0. The sig-
nificant value of A(n) can be identified by making use of
optimality conditions. This gives an exact solution u(x), when

ulx) = klim uy (x). (7)

While % is an auxiliary term which is utilized to ensures
convergence of approximate solution ideally by limiting the
norm 2 of residual error over the space of the given problem.
The ideal decision of this & improves the precision and pro-
ficiency of the algorithm. Summarizing the iterative algorithm
for equation (4) as,

uo(n) is an appropriate initial approximation,

w(x, h) = up(x) + h j; A Nuo () — c()ldy

1 ) = e, ) + [ A N, B — ey, W1dy

®)

The approximate solution u,(x, #) has the auxiliary para-
meter i, which ensures the convergence to the precise solu-
tion. This algorithm is named as MVIA-II. We utilize this
modified algorithm for the solution of the KDV Burgers’
equation, KDV equation and Burgers’ equation, which is able
to provide numerical results for nonlinear and linear pro-
blems, in a direct way very accurately.

3. Numerical examples

In this section, modified variational iteration algorithm-II is
used for the scientific treatment of the Kortewege—de Vries-
Burgers equation, Burgers equation and Kortewege—de Vries
equation. Results gained from the modified algorithm are very
encouraging, empowering, noteworthy and significant. Illu-
strated examples revealed the effectiveness and power of the
suggested algorithm.

3.1. Example 1

Consider the following Kortewege—de Vries-Burgers equation

N oxs

=0. 9
Ot * Ox Ox? ®)

In this important problem, considering £ = 1, the initial con-
dition takes the form

2
u(x, 0) = _ 6 1 + tanh | 22| + lse:ch2 L ,
25u 104 2 10u

(10)
the boundary conditions
2 2
u(a, t):—6L 1 4 tanh 2 a—+ 6Lt
250 10p 250
2
+ Leer?| 2 fa + 87 |L, (11)
2 10u 254

2 2
ub. )= — 211 4 tann | 2[5 + 8
25u 10u 25u

2
—i—lsech2 Lb+6it ,
2 104 251

and the exact solution is given by [54]:

u(x, 1) = —6—U2{1 + tanh (@) + lsech2 (@)} (13)
' 250 2 '

12)

104 254
above system of KdV Burger equation by MVIA-II. Making
the correction function for the equation (9) as,

where @ = ( v )(x 4+ & t). To start with, we solve the

Mk+1(.x, t3 h) = uk(-xa t, h) + h

y f’ )‘(77)[ Ouy(x, n, h) Ouy(x, m, h)
0

h
+ Mk(x, 1, ) 8()()

o)

- v d
0(x)? o(x)3

(14)

The value of A(n) as it may be obtained most positively by
variational principle [55]. we obtain the estimation of \(7)
which is A(n) = —1. Utilizing this estimation of A(n) in
equation (14) results in the underneath iterative structure:
Mk+1(.x, 1, h) = MO(.X, t, h) —h
1 2
» f [uk(x, 0 ) Ouy(x, m, h) U@ up(x, n, h)
0

O(x)?

O(x)

+h

Pug(x, n, h)]d (15)

(x)?
For the optimal solution of auxiliary parameter, we define
residual function for approximated solution
Ous(x, t, h)

ot

2

y Ous(x, t, h) _ Ua us(x, t, h)

Ox Ox?
Ous(x, t, h)
—

ox3

The square of residual function for Sth-order approximation
with respect to & for (x, 1) € [0, 1] x [0, 1] is

1
1 1010((l. j ))22
— rs| —, =—, h .
((11)2 FZOJZ::O 10" 10
The minimum value of the above square residual function

occurs at h = 0.991 802303 549 310. Introducing with a
proper initial guess,

2
ug(x, 1) = _ 67 1 + tanh[ 22| + lsech2 -~ ,
250 10u 2 10p
(18)

one can get the different approximations by utilizing the
iterative structure (15). For showing the accuracy and

rs(x, t, h) = + 0 us(x, t, h)

+ 4 (16)

(7)
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Table 1. Comparison of absolute errors of example 3.1 for different values of parameters.

t v I X Absolute error in MVIA-II  Absolute error in VIM [56]

100 0.001  0.001 0.0 9.4260 x 107 942602 x 107
25.0 2.6560 x 10710 2.6590 x 10710
50.0 1.262 x 107 3.0000 x 10713
75.0 6.505 x 107" 0.0
100.0 1.084 x 1071 2.000 x 10713

800 0.001 0.001 0.0 6.599 x 107 6.6033 x 1077
25.0 2.071 x 107 2.0712 x 1079
50.0 9.876 x 10714 2.000 x 10713
75.0 4554 x 1078 1.000 x 10713
100.0 1.084 x 107" 0.0

100.0 0.01  0.01 0.0 7.925 x 107 7.9364 x 107%
25.0 2.570 x 1079 2.5702 x 1078
50.0 1.227 x 10712 1.000 x 10~'2
75.0 5.725 x 107V 1.000 x 1072
100.0 8.674 x 107 2.000 x 10712

100.0 0.1 0.1 0.0 3.388 x 1079 1.268 18 x 107%
25.0 1.854 x 1079 1.81158 x 107%
50.0 9.821 x 107! 8.000 x 107!
75.0 4476 x 1071 0.0
100.0 6.939 x 1071 4,000 x 107!

100 1.0 1.0 0.0 3.388 x 107% 1.2681 x 107
25.0 1.854 x 107% 1.81158 x 107%
50.0 9.821 x 1071° 8.000 x 10710
75.0 448 x 10714 0.0
100.0 1.898 x 10~ 4.000 x 10710

compactness of our proposed algorithm we compare our In this important problem, considering ¢ = —6 and p = 1 the

results with [56], which shows that our proposed algorithm
is very effective than variational iteration method [57]. It can
be perceived from table 1 that proposed technique: the
modified variational iteration algorithm-II converges rapidly
and yields accurate results for all values of different para-
meters. The graphs of different values of x, ¢, u, and v show
the behavior of the KDVB equation at different time levels,
even at t =800 it gives very accurate result which can be
seen in figures 1 and 2. While figure 3 shows the comparison
of approximate and exact solution. In order to check
numerically whether the proposed algorithm leads to higher
precision, we assess the numerical solution of this problem
by taking e =1, p=0.1, &x =0.5 and v = 0.1, 0.04,
0.004, to investigate the properties of viscosity and compare
the results with mesh-free method used in [54], where three
different RBF functions are used and proved that MQ RBF
is marginally better than the others. It is clear from table 2
that our algorithm produced more precise results than all the
other techniques used in [54].

3.2. Example 2

Consider the following KDV equation, which is an important
case obtained by considering v = 0 in equation (1)

19)

initial condition takes the form

u(x, 0) = —2sech?(x), (20)

and the boundary conditions
u(a, t) = —2sech?(a — 41), (21)
u(b, t) = —2sech’(b — 41). (22)

the exact solution of equation (19) is given by [56] which is:
u(x, t) = —2sech?(x — 4t). (23)

To start with, we solve the above system of KDV equation by
MVIA-IL. Making the correction function for the equation (19),

t a , i h
ugr1(x, 1, h) = ug(x, t, h) + hj; /\(n)[%
FE
o(x) A(x)’
(24)

The value of A\(n) as it may be obtained most positively by
variational theory. we obtain the estimation of A(n) which is A
(n) = —1. Utilizing this estimation of A(1) in equation (24)
results in the underneath iterative structure:
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Figure 1. Numerical solution of example 3.1 at different values of 7, u, and v.
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Figure 2. Numerical (MVIA-II) (left) and exact (right) solutions of KDVB equation up to # = 10.0 s with 4 = 1, and v = 1, in space-time
graph form.

uk+1(x9 tv h) = MO(X, ta h)a_ h 83 h r4(x, [, ]’l) — au4(—29 t’ h)
t h t
X j(‘) [—6uk(x, 1, h) ukgc(,x;% ) + ulza(z:)?’ )]dn~ 5 Ous(x, t, h) Ouy(x, t, h)
— 60 us(x, t, h 4 .
25) 4 ) Ox ox3

(26)
For the optimal solution of auxiliary parameter, we define resi-  The square of residual function for 4th-order approximation with
dual function for approximated solution respect to h for (x, t) € [0, 1] x [0, 1] is
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Figure 3. Behavior of KDVB equation: by mesh-free method [54] (left) and MVIA-II (right).

Table 2. Comparison of L, error norms of example 3.1 at different time levels with v = 0.1, 0.04 and 0.004.

Time 1 2 3 10
v=0.004 MVIA-I 1.267 x 10712 2534 x 10712 3801 x 1072 1.267 x 107
MQ [54] 6.822 x 107 1.150 x 1079 1.485 x 107 2479 x 107
GA [54] 7913 x 107% 5.128 x 1079 1.677 x 10797 3.294 x 107
1Q [54] 4.077 x 10777 7475 x 10797 9.830 x 1077 1.270 x 107
v=0.04 MVIA-II 0.588 x 107" 3.176 x 1077 4763 x 107%7 1585 x 107%
MQ [54] 2936 x 1079 4204 x 107%  4.126 x 1079 5800 x 107%
GA [54] —1.482x 107% —8.668 x 107%° 2.665 x 107% 2987 x 10°*
1Q [54] 3.925 x 107% 2465 x 107" 3567 x 107 1.669 x 107
v=0.1 MVIA-II 1.544 x 1073 3.080 x 1079 4.608 x 107 1.497 x 107
MQ [54] 1.540 x 107% 3.076 x 107%  4.604 x 107 1498 x 107
GA [54] 1.540 x 107% 6.794 x 107 1.622 x 107  4.886 x 10~*
1Q [54] 1.314 x 107% 2330 x 107 1741 x 107 4.436 x 107*

Table 3. Comparison of the exact and numerical solutions for the example 3.2 at different time levels versus x.

t X

Exact solution

Numerical solution

Error in MVIA-II

Error in VIM [56]

001 =75
-2.5
25
7.5
0.02 -75
-25
2.5
7.5
003 -75
-2.5
25
7.5
0.04 =75
-2.5
2.5
7.5
0.05 -75
-2.5
2.5
7.5

—0.000 002 259 066 184
—0.049 146 003 462 853
—0.057 549 852 860 410
—0.000 002 651 038 465
—0.000 002 085 381 012
—0.045 410 632 004 680
—0.062 267 829 152 858
—0.000 002 871 835 527
—0.000 001 925 049 378
—0.041 956 119 605 842
—0.067 365 873 057 820
—0.000 003 111 022 101
—0.000 001 777 044 614
—0.038 761 798 018 418
—0.072 873 449 191 261
—0.000 003 370 129 790
—0.000 001 640418 988
—0.035 808 453 508 827
—0.078 822 108 052 050
—0.000 003 650 817 762

—0.000 002 259 066 250
—0.049 145 993 934 678
—0.057 549 862 692 888
—0.000 002 651 038 397
—0.000 002 085 383 094
—0.045 410 331 684 257
—0.062 268 148 964 427
—0.000 002 871 833 331
—0.000 001 925 064 977
—0.041 953 872 453 297
—0.067 368 342 526 690
—0.000 003 111 005 201
—0.000 001 777 109 506
—0.038 752 463 694 269
—0.072 884 034 999 011
—0.000 003 370 057 588
—0.000 001 640 614 507
—0.035 780363 361 840
—0.078 854 983 860 627
—0.000 003 650 594 328

6.590
9.528
9.832
6.768
2.081
3.003
3.198
2.195
1.560
2.247
2.469
4.588
6.489
9.334
1.059
7.220
1.955
2.809
3.288
6.066

X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X

10714
10—09
10709
10714
10—]2
10707
10707
10—]2
10711
10706
10—06
10711
10711
10—06
10706
10711
10—]0
10705
10705
10—]0

6.700 x 10714
0.951 x 1078
0.979 x 107
6.700 x 1071
2.081 x 10712
3.003 x 107
3.198 x 1077
2.197 x 10712
1.559 x 107!
2247 x 1079
2.469 x 107
1.690 x 10~
6.489 x 107!
9.334 x 107%°
10.58 x 107%
7.220 x 107!
1.955 x 107'°
2.809 x 107%
3.287 x 107%
2234 x 10710

10 10

1
(WZZ

i=0,j=0

[

1
i h)) g
10 10

27)

The minimum value of the above square residual function
occurs at & = 0.073 082 102 754 9854 Introducing with a proper

initial guess,

u(x, 0) = —2sech?(x),

(28)

one can get the different approximations by using the iterative
structure (25). For showing the accuracy and compactness of our
proposed algorithm we compare our results with [56]. It can be
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Exact Solution

Numerical Solution

Figure 4. The behavior of numerical (Right) and exact (Left) solutions of KDV equation.
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Figure 5. Solution graph (Right) and Absolute error graph (Left) of Burgers’ equation at t = 1.

perceived from table 3 that the present algorithm is very effec-
tive and yields accurate results. The behavior of the numerical
solution of kdv equation obtained by modified variational
iteration algorithm-II and exact solution (23) are shown for
different time levels in figures 4 and 5.

3.3. Example 3

Consider the following Burgers equation, which is an
important case obtained by considering &+ = 0 in equation (1)

Ou Ou Pu

—teu——v_—=
ot Ox

Ox

In this important problem, considering € = 1 and v = 1, the
initial condition takes the form
at+ B+ (B —-a)e

ux, 0) = T s

0, (29)

(30)

where v = (%)(x — () and the exact solution of this problem

is given by [54]:

a+ B+ (68— ae’
(1 +e%)

where ¢ = (%)(x — Ot + (). To start with, we solve the

above system of Burger equation by MVIA-II. Making the

u(x, t) = R (31

correction function for the equation (29),

Mk+1(.x, t, h) - uk(-x7 t’ h) + h

t Ouy (x, 0, h) Ouy(x, n, h)
x j; A(n)[—a T e e
O(x)? 32)

The value of A(n) as it may be obtained most positively by
variational theory. we obtain the estimation of A (7)) which is
A(n) = —1. Utilizing this estimation of \(n) in equation (32)
results in the underneath iterative structure:

uk+1(x’ t? h) = uO(xa t’ h) - h

' Qu(x, m, h)  DPu(x, . h)
X j(; [uk(x, n, h) 20 200)? ]dn

(33)

For the optimal solution of auxiliary parameter, we define
residual function for approximated solution

nx, 1, h)zw
2
+ 0 ug(x, t, h) Oug(x, 1, h) — Oua(x, 1, h).

Ox Ox?

(34)
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Table 4. Comparison of L, error for different values of o and v for example 3.3.

L, error
t=0.1 =02
a v MVIA-II MOL-MQ [58]  ChSC [58] MVIA-II MOL-MQ [58]  ChSC [58]
1 0.01 306 x 100 307 x 1009  3.06x10% 612x10% 612 x107% 611 x 107%
0.001 3.07 x 10797 3.06 x 1070 3.06 x 107”7 614 x 1077 613 x 1077  6.18 x 1077
00001 3.07x107% 171 x107%® 224 x10® 615x107® 375x10%® 522x10°%
0.1 0.1 3.06 x 107% 307 x 1070 306 x 107 612 x100* 612 x 100% 611 x 107
0.001 307 x 107 306 x 107 3.10x 107% 614 x107% 613 x 107 632 x 107%
00001 3.07x10%® 171x107%7 715x107 615x107%® 375%x10°% 131 x 107"
Table 5. Comparison of L, error for different values of time for example 3.3.
Time 0.1 0.3 0.5 0.8 1.0
MVIA-II 7924 x 107 2718 x 107%®  1.190 x 107 9723 x 1077  2.919 x 107
[54] 1.064 x 1079 1292 x 107%° 1449 x 107  2.082 x 107** 2497 x 107
1.220 x 1072 3.686 x 107 6.166 x 1072 9.956 x 107 1.250 x 107
IQ 1220 x 1072 3.686 x 1072 6.166 x 107°*  9.956 x 107 1.251 x 107

The square of residual function for 4th-order approximation
with respect to 4 for (x, 1) € [0, 40] x [0, 1] is

[(131)2§%§2’(r“(40i j h))z]é'

==\ "\100” 100
The minimum value of the above square residual function
occurs at h = 0.999 998 345 820 750. Introducing with a
proper initial guess,

(35)

M(x, 0) — ﬁ—’— a + (ﬁ _ a)eﬂ/’
e+ 1

(36)

one can get the different approximations by utilizing the
iterative structure (33) using the initial condition (30). For
showing the accuracy and compactness of our proposed
algorithm we compare our results with [54, 58, 59], which
shows that our proposed algorithm is very effective. It can be
perceived from tables 4 and 5, that the modified variational
iteration algorithm-II gives more accurate solution than those
given in [58] for smaller values of parameters « and v. By the
proposed algorithm the L., error norm att = 11is L, = 2.919

X 10706, and the error norms quoted from [54], for alter-
native techniques including MQ L., = 2.497 x 107%°, GA
and IQ L., = 1.250 x 1072, collocation with cubic B-spline
L., = 0.005, for a standard Galerkin approach L., = 0.096, a
product approximation Galerkin method L., = 0.082, and a
compact finite difference method L, = 0.151. From the
above analysis, we see that the modified variational iteration
algorithm-II gives a stable and accurate solution closer to the
exact solution, over the entire range, than any of the other
referenced techniques reported in [54, 59].

4. Conclusion

In this paper, the two main goals which have been achieved
are, to introduce a new and simple algorithm namely new
modified variational iteration algorithm-II for investigating
Kortewege—de Vries-Burgers’ equation, Burgers’ equation
and Kortewege—de Vries equations, and showing the relia-
bility and accuracy of this method. The use of auxiliary
parameter ensure the convergence converges rapidly and
yields accurate results for all values of different parameters
Kortewege—de Vries-Burgers’ equation. This modified algo-
rithm makes easy the computational work for solving linear
and nonlinear problems arises in science and engineering, and
results of high degree accuracy can be obtained in few
iterations as compared to earlier methods. Furthermore,
modified variational iteration algorithm-II gives an analytical
solution with initial conditions, boundary conditions might be
utilized uniquely to give justification for the acquired results,
as opposed to traditional strategies that require both initial and
boundary conditions. Based on above study, following cer-
tainties are featured

* The modified variational iteration algorithm-II used to
investigate the the Kortewege—de Vries-Burgers’
equation (1), Kortewege—de Vries equation (2) and
Burgers’ equation (3) is a productive technique contrasted
with numerous numerical techniques accessible in the
literature.

The oddity of this exploration lies in catching the conduct
of solutions for smaller values of ¢ and better results than
existing numerical techniques in the literature.

This modification avoid discretization of the variables,
rounding off errors and any kind of assumptions.
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 This modification is appropriate for linear and nonlinear
partial differential equations which give exact solutions
after a couple of iterations.

¢ All calculations made on MATLAB 2016.
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