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Abstract
The scaling invariance technique has been used to get the conserved quantities of (1+1)-
dimensional dynamics of modulated compressional dispersive Alfvén (MCDA) and soliton
dynamics with non-local nonlinearity. Conserved densities and their respective conserved fluxes
are obtained by using the Euler and Homotopy operators. The conserved densities along with
corresponding conserved fluxes lead towards the extraction of conservation laws.
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1. Introduction

Soliton being a solitary wave has remarkable role in nonlinear
optics. It has the ability of regaining its speed as well as shape
and it travels with a bit energy loss. They emerge as a result of
the mutual cancellation of nonlinearity and dispersion [1–5].
Temporal and spatial solitons have much significant impor-
tance in the field of nonlinear optics. Temporal solitons
represent optical pulses which maintain their shape, while
spatial solitons represent beams that are self-guided and are
confined in the transverse directions perpendicular to the
direction of propagation. Spatial solitons are important out-
comes of modern soliton and material sciences due to their
ease with which they can be manipulated. Although there are
still worries about how fast many materials can react to light
or changes of the direction of beams, research on spatial
soliton should herald an era of new, all-optical processing
devices that are easy to implement and cheap [6]. In the
analysis of nonlinear systems, dissipative solitons form a new
paradigm for the study of stable structures far from equili-
brium. They exist only in case of continuous energy supply
from some external source. Their formation demands a bal-
ance between the energy lost and supplied in order to prevent
cooling down and overheating of the system and the resulting

disappearance of the soliton. There are certain examples of
dissipative solitons such as ultra-short pulses from passively
mode-locked lasers, localized formations in the reaction-dif-
fusion systems, nerve pulses, vegetation clustering in arid
land, wave phenomena in neuron networks, Bose–Einstein
condensates in cold atoms, travelling waves in cortical net-
works and spiral waves in weakly-excitable media [7]. Non-
linear Schrödinger equation (NLSE) possesses the soliton
solutions and the propagation of light in nonlinear optical
fibers is the prime application of this equation. There are
certain waves which occur on the surface of deep and inviscid
water like gravity waves which have small amplitudes. NLSE
is also being used for the analysis and study of gravity waves
[8]. Song et al. studied optical solitons in fiber lasers [25]. For
the analysis of complete integrability of a PDE, the role of
conservation laws (CL) is much vital [9, 10]. The completely
integrable PDEs are nonlinear and they can be linearized by
using some transformations. Daniel et al analysed soliton spin
excitations in an anisotropic Heisenberg ferromagnetic with
octupole-dipole interaction [11]. Triki et al investigated per-
iodic wave solutions and new solitons for the (2+1)-dimen-
sional Heisenberg ferromagnetic spin chain [12]. Hereman
symbolically computed the conservation laws of nonlinear
PDE in multi-dimensions [13]. Hereman et al evaluated
continuous and discrete homotopy operators [14]. Dodd et al
obtained polynomial conserved densities for the Sine-Gordon
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equations [15]. Aljohani et al obtained conservation laws of
the Biswas–Arshed equation [16]. Kara et al computed CL for
the dynamics of soliton propagation through optical fibers
[17]. Sulaiman et al calculated dark and singular solitons to
the (1+1)-dimensional dynamics of MCDA model [18].
Hereman et al utilized homotopy and discrete operators and
computed the CL [19]. Hereman et al symbolically calculated
conserved densities, generalized symmetries and recursion
operators for nonlinear differential difference equations
(DDEs) [20]. Kara et al established relationship between
symmetries and CL [21]. In this paper, our goal is to compute
the conserved densities and their respective conserved fluxes
with the help of scaling invariance technique [22] for the
NLSE showing the dynamics of soliton propagation through
optical fibers, managing non-local nonlinearity [17] and (1
+1)-dimensional dynamics of MCDA model [18].

2. Governing models

The (1+1)-dimensional MCDA model is given by [23]:

∣ ∣ ( )a b g+ - + =iq q q q qi 0, 1t x xx
2

where the group velocity of the pump is represented by α, and
a = ¶

¶
w

k
0

0
, β denotes the group dispersion, the coefficient of the

nonlinearity is defined by γ where
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g+w k
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0
2 . Here w0,

k0, γe and A0 are real constants. Equation (1) describes the
MCDA model which appears in plasma physics [23]. The
features of intrinsic excitations of electromagnetic dis-
turbances in laboratory plasmas and magnetized space are
expressed tremendously by the nonlinear propagation of
hydromagnetic waves [24]. Hydromagnetic waves include the
Alfvén waves which propagate across and along the direction
of external magnetic field [23]. After substituting = +q w vi
into equation (1), we get the system as:

( )a b g g+ - + + =w w v w v v 0, 2t x xx
2 3

( )a b g g- + - + + =v v w wv w 0, 3t x xx
2 3

where w and v both are functions of variables x and t.
Next model represents dimensionless form of the

dynamics of soliton which propagates through optial fibers,
containing non-local nonlinearity, and is given below [17]:

(∣ ∣ ) ( )+ + =q aq b q qi 0. 4t xx xx
2

In equation (4), q(x, t) represents wave function and is com-
plex-valued. x, and t are two independent variables and they
respectively represent spatial and temporal co-ordinates. In
equation (4), the temporal evolution of solitons is defined by
the first term. Moreover, the coefficient of group velocity
dispersion (GVD) is denoted by a, and the non-local non-
linearity is represented by b.

By putting q=w+iv into equation (4), we get a system
as:
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where the functions w and v involve two variables x and t.

3. Conservation Laws

3.1. Preliminaries

Next we present some preliminaries that are used in the fol-
lowing analysis.

In present paper, we encounter with the systems of nth-
dimensional and mth-order PDEs

( ( )) ( )( )D =w x 0, 7m

in which x is the independent variable such that
( )= ¼x x xx , , , n1 2 . The dependent variable is w and its partial

derivative (up to mth-order) with respect to x is denoted by
w(m)(x) such that w=(w1, K, wj, K, wN).

A conservation law for above equation (7) is in the form
of a scalar PDE such as:

( )= D =P o oDiv on , 8

where P=P(x, w(P) (x) having order P. All through this
paper, we will use an alternative form for (8) as given by:

( )+ = D =D T XDiv 0 on 0, 9t

where T=T(x, w(Q)(x)) denotes the conserved density of
order Q, whereas X=X(x, w(L)(x)) represents the associated
flux of order L (Miura et al.; Ablowitz and Clarkson 1991).
From equation (8) and equation (9), it is obvious that P=(T,
X) whereas P=max{Q, L}.

All through the recent paper, the dependent variables will
be represented by w, v and u etc. This is to be clarified that
Div X is an operator and it denotes the total divergence. If we
pick X=(Xx, Xy) then Div X=Dx X

x+Dy X
y; similarly, if

we take X=(Xx, Xy, Xz) then
= + +D X D X D XXDiv x

x
y

y
z

z. This is to be noted that Dx,
Dy, Dz and Dt are operators which represent the total deri-
vatives. As an example, in case of 1-D, the total derivative
operator Dt on ( ( ))( )=g g x t x tw, , ,m of order m is defined
by:
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while M j
1 denotes the order of g in -w thj component

where { }= ¼M M Mmax , , N
1
1

1 .
Our goal is to compute local conservation laws for sys-

tems of nonlinear PDEs which can be changed to the evol-
ution forms If we take x=(x, y, z, t), then the evolution form,
in variable t, of the PDE is:

(
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while H is taken to be smooth whereas the orders, with
respect to x, y and z, of -w thj component are respectively
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denoted by M j
1 , M j

2 and M j
3 . Here M is the maximum total

order of whole terms in the differential function.
A PDE has a set of Lie-point symmetries including either

translation, Galilean boosts, rotations, dilations or some other
symmetries (Bluman et al 2010). New solutions can be found
from known solutions by applying these symmetries. In
present paper, our intention is to formulate a ‘candidate
density ’ by applying the scaling (or dilation) symmetry.

If a system does not varies even after applying a dilation
symmetry then this system is called scaling (or dilation)
invariant. We will analyse above models for scaling sym-
metry and after that we will find the conserved densities along
with corresponding conserved fluxes.

For the evaluation of conserved densities (Ti) and their
corresponding conserved fluxes (Xi), we come across two
important operators namely Euler and Homotopy operators.
The Euler Operator, ( )Lw x

i is defined by:

( ) ( )( )L å= -
¶

¶=

¥
-C D

w
, 12w x

i

k i

k

i x
k i

kx

where Ck
i denotes the binomial coefficient.

The second and the most demanded operator for the
calculation of conserved quantities is the homotopy operator.
The homotopy operator, in 1-D, with variable x is given
below:
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The integrand involves the Euler operator.
Similarly, the homotopy operator, in 2-D, with variables

x, y consists of two components ( ( ) ( ))( )
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Likewise, the y-component of the operator is given below
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where both x- and the y-components involve the Euler
operator.

In the following section, we will obtain some conserved
densities (Ti) along with their corresponding conserved fluxes
( )Xi for two NLSEs. The conserved densities together with
their respective fluxes give us conservation laws for the
governing models.

In the following subsections, we obtain conserved
quantities for MCDA model and NLSE with non-local
nonlinearity.

3.2. MCDA model

If we analyse the above mentioned system of equations
represented by equation (2) and (3) for scaling symmetry we
get:

⎜ ⎟⎛
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⎞
⎠

( ) ( ) ( )

( ) ( )

a

b g

= = =

= =
¶
¶

=
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t

1, 1, 2,

1, 1, 3.

Thus the system of equations given by equations (2) and
(3) is scaling invariant under the dilation symmetry:
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)
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For the computation of conserved densities and their
corresponding fluxes we use Euler and Homotopy operators
as represented by equation (12) and (13). Using these
operators, first six conserved densities and corresponding
conserved fluxes of MCDA are given below:

( )= - = -T X, , 141 1

( )a a b b= + = + + -T w v X w v vw wv, 2 2 , 15x x2
2 2

2
2 2

( )

g g g

a
b b

b

= = - + +

+ + + -

T vw X
w w v v

vw
w v

vv

,
4 2

3

4

2 2
, 16

x

x
x x

xx

3 3

4 2 2 4

2 2

( )= =T T X X, , 174 3 4 3

( )b
g

b
g

= + + + +T w w v v
w v

2
2 2

, 18x x
5

4 2 2 4
2 2

( )

a a a b

b
ab
g

b b

b
g

ab
g

b
g

= + + +

+ + - -

+ + -

X w w v v w vw

v w
w

w v wv v

w v v w v

2 4

4
2

4 4

4 2 4
, 19

x

x
x

x x

xx x x x xx

5
4 2 2 4 2

3
2

3 2

2 2 2

( )b
g

= + +T w vw
v w w v

3 3
, 20x

x xx x
6

2
3

3

Phys. Scr. 95 (2020) 045209 I Ali et al



( )

g g g g
a

a b b
g

ab
g

b
b b

b

b
g

b
g

=- + + + +

+ + + +

+ + - -

+ -

X
w w v w v v

w vw

v w v w w w v

w v
v v w vv

v v

v v v

6 2

5

6 6

3 3 6 3

2

3 3

6 3
. 21

x

x x xx xx x

x
x xx

xx

xx x xxx

6

6 4 2 2 4 6
2

3 2 2 2 2

2 2
2 2 2

3

2 2 2

3.3. NLSE with non-local nonlinearity

If we check the system of equations marked by equation (5)
and (6) for scaling symmetry, we get:

⎜ ⎟⎛
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So, the system of equations equation (5) and (6) is dilation
invariant under the scaling symmetry:
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Using Euler and Homotopy operators given by equation (12)
and (13), first seven densities and their respective conserved
fluxes of the above mentioned model are given below:
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4. Conclusion

Conserved quantities of (1+1)-dimensional MCDA as well as
of NLSE with non-local nonlinearity have been presented in
this paper. One of the most famous type of Lie symmetry
namely dilation (or scaling) invariance has been utilized tre-
mendously. So calculated conserved densities along with
conserved fluxes give rise to the generation of conservation

laws. Numerous techniques such as multipliers approach,
method based on Noether’s theorem etc are present for the
establishment of the conservation laws. But we adopted a
novel technique for the extraction of conservation laws for
NLSEs. This technique is awesome and based on scaling
invariance in which homotopy and Euler operators are fun-
damental tools. Our results are unique and novel.
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