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Abstract

The task about thin wire conductivity in a longitudinal stationary magnetic field and alternative
electrical field is solved by the kinetic method in the view of Fuchs model. The ratio between the
wire radius and the charge carrier mean free path is arbitrary. Electric and magnetic fields are
homogeneous. The wire radius is much less than the skin layer depth, i.e. the skin effect is
neglected. The limiting cases of a degenerate and nondegenerate electron gas are considered. The
conductivity dependences on the magnetic field induction, electric field frequency, wire radius
and surface specularity coefficient are investigated. Results obtained for limiting cases of
degenerate and nondegenerate electron gas are compared. Also, these results are compared with
experimental data. An effective method for determining the surface specularity coefficient and
charge carrier mean free path is illustrated. The dependence of the charge carrier mean free path

in a sample volume on the wire radius is analyzed.

Keywords: Boltzmann equation, distribution function, Fuchs model, thin wire,

magnetoresistance, specularity coefficient, mean free path

1. Introduction

It is known that the resistivity of conductive material changes
when placing it in an external magnetic field. There are many
causes inducing the magnetoresistive effect: the classic
magnetoresistive effect [1], the giant [2], tunnel [3], colossal
[4] magnetoresistances etc. The classic magnetoresistive
effect appears in all typical metals and semiconductors. The
giant and tunnel magnetoresistances manifest in multilayer
ferromagnetic structures, the colossal one occurs in
manganites.

Let us focus in the classic magnetoresistive effect
explanation. This phenomenon occurs due to charge carrier
trajectory curvature. As a result, the charge carrier mean free
path at magnetic field presence becomes less than one at
magnetic field absence. At weak magnetic field (A < r,
where A is the charge carrier mean free path, r is the charge
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carrier trajectory curvature radius) the theoretical calculations
indicate the sample resistance grows quadratically with
increasing magnetic field [1]. At room temperature in typical
metals the magnetoresistive effect is pronounced enough
weakly. With lowering temperature the magnetic field influ-
ence on metal conductivity grows due to increasing the ratio
between the charge carrier mean free path and the charge
carrier trajectory curvature radius.

If the characteristic sample size becomes comparable
with or less than the charge carrier mean free path, the
magnetoresistance caused by charge carrier surface scattering
appears. So, the longitudinal magnetoresistive effect in a thin
conductive wire causes resistance reduction. It is connected
with the charge carrier behavior specialty at magnetic field
presence. In this case the charge carrier movement trajectory
represents a spiral. The situation is realized when one part of
charge carriers collides with wire boundary and another part
of those does not. With growing magnetic field induction the
relative amount of charge carriers participating in surface
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collisions decreases, and the surface influence on electric wire
properties diminishes. Because of that the sample resistance
reduces. In several cases the magnetoresistive effect related to
charge carrier surface scattering suppresses the macroscopic
magnetoresistive effect. For example, the decrease of thin
sodium wire resistance with magnetic field induction growth
is observed [5].

In 1950 Chambers was trying to describe theoretically the
longitudinal magnetic field impact on electrical properties of
thin metal wires [5]. This problem was being decided not by
means of the kinetic Boltzmann equation solution, but by direct
calculation of the charge carrier mean free path. In the 1980s the
series of works [6, 7] were being published, the authors of
which had attempted to compare the experimental magnetic
field dependences of thin copper wire resistance at the temp-
erature 4.2 K with Chambers theory [5]. However, the agree-
ment of this theory with experimental data was being observed
in the region of weak magnetic fields only (B < 0.2T). The
authors of the work were explaining this dispersion by the non-
spherical form of a copper Fermi surface.

Theoretical investigations devoted to the study of
magnetic field influence on electric properties of thin wires
continue at present time. In the works [8, 9] the tasks about
thin metal wire conductivity in a longitudinal magnetic field
are solved taking into account diffuse [8] and diffuse-specular
[9] boundary conditions. In these works the electric field is
assumed to be alternative. In contrast to Chambers the authors
of the works [8, 9] used the standard kinetic method con-
sisting in Boltzmann equation solution with relevant bound-
ary conditions. The theoretical and experimental studies of the
temperature dependences of thin wire resistance are carried
out in the work [10]. In papers [11-14] the tasks about the
static conductivity of a thin metal mono- and polycrystalline
wire with rectangular and circular cross section are solved.
The static conductivity model of a nanotube in a longitudinal
magnetic field is constructed in the work [15]. In papers
[16, 17], the static conductivity models of thin mono- and
polycrystalline wires are built. In these papers the surface
roughness effect on the metal wire resistance is performed by
representing the sample boundary as a quantum well set.

In present work we built the kinetic model of thin wire
conductivity in a longitudinal magnetic field. For generality
we consider the case of an alternative electric field. We show
at the limiting case of a degenerate semiconductor theoretical
calculations are in an agreement with the results of the work
[9], and at the cases of a diffuse charge carrier reflection and
constant electric field ones are in an agreement with the
Chambers theory [5]. We compare the results with exper-
imental data of the work [7]. We illustrate an effective
determination method of the volume and surface charge car-
rier scattering parameters based on the longitudinal wire
magnetoresistance measurement.

2. Problem statement

Let us consider a thin conductive wire with the radius R
placed in a longitudinal alternative electric field with the

intensity E and frequency w, and a stationary magnetic field
with the induction B. We supose the wire radius is much less
than the skin layer depth, i.e. skin effect is neglected. The
wire radius is much larger than charge carrier de Broglie
wavelength. In this case, quantum size effects associated with
the quantization of charge carrier energy spectrum along wire
radius are not considered. Electric and magnetic fields are
supposed to be homogeneous.

The time-periodic electric field obeys the following law:

E = Egexp(—iwt) (1)

and acts on charge carriers inducing the distribution func-
tion deviation f, from the equilibrium Fermi distribution
function f:

fa,v,0)=fE) +AH@, v, 1) =fE)
+A(x, v) - exp(—iwt); 2)

1
€)= . 3
L Y T @)
There ¢ = mv?/2 is an electron (hole) kinetic energy in the
case of a spherically-symmetric energy band, r is an elec-
tron (hole) radius vector (the origin is situated on the wire
symmetry axis), v and m are an electron (hole) velocity
vector and effective mass correspondingly, 4 is a chemical
potential, k( is a Boltzmann constant, T is a temperature.
The function f obeys the kinetic Boltzmann equation in
relaxation time approximation and in linear approximation to
external field:

—iwf, + v% + e(v - E)%
or Oe

M _ _h

e
“[v,B]I=2 =-Z4 @«
+m[v ](9V = @4

There e is an electron (hole) charge, 7 is the relaxa-
tion time.

As Boundary conditions we use Fuchs diffuse-specular
boundary condition model:

Ir | =R,

K@ v, v) =g - fi(en, v, v) - at {(u -v1) < 0.

&)

There v/, = v, — 2r;(r, - v,)/R? is the velocity vector,
which transforms to the vector v at specular charge
carrier reflection from an inner wire surface at the point
r (r|=R). r and v are correspondingly the electron
(hole) radius vector and velocity vector components in the
plane perpendicular to a wire axis symmetry; v_is the electron
(hole) velocity vector component situated along the wire
symmetry axis; g (0 < g < 1) is the surface specularity
coefficient, which characterizes the relative amount of charge
carriers reflecting specularly from a wire boundary. The case
q = 0 corresponds to a purely diffuse charge carrier scatter-
ing, and the case ¢ = 1 respects to a purely specular one.
Find an expression for the current density, which
includes the nonequilibrium distribution function of charge
carriers. The number of electrons (holes) at the time ¢z, the
wave vector components of which lie in the range from k, to
ky + dk,, from k, to k, + dk,, from k. to k, + dk, respec-
tively per unit of volume of geometric space is determined by
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the following expression:
&k
@2m)?

where h—the Plank constant.

We assume here that the electron (hole) quantum state
number per unit of volume is d*/(27)3. In the expression (6)
Pauli principle is considered, according to which in each
quantum state there can be two electrons (holes) with oppo-
sitely directed spins.

Charge carriers with the number dn, move with speed v
and induce an electric current with the density:

3
dn = 2f(x, v, 1) - 2(%) fe,v, 0 -du, (6

3
dj = evdn = 2e(m) vi(r, v, t) - du. 7

The wire current density is determined as the integral of
the expression (7) over entire velocity space:

3
j:Ze(%) fvf(r, v, Hd%
3
:2e(%) f Vi, v, 1) - do. 8)

Since in the equilibrium state the motion of charge car-
riers in all directions is equally probable, the current density is
determined by the distribution function deviation f from the
equilibrium Fermi—Dirac distribution function.

3. Solution method and mathematical calculations

The Boltzmann equation (4) in the view of the boundary
condition (5) is decided by the method similar to the work [9]:

: %) — o
@) = _eE®-v) 1 — (1 — q)exp(—vt') o
% Oe 1 — qexp(_vT/)
There v = 77! — iw is the complex scattering frequency.

We note that in the expression (9) the parameters ' and T’
mean respectively the electron (hole) movement time from a
previous surface collision point to a current point and that
between two successive collisions with a sample boundary.
The charge carrier movement trajectory in magnetic field
represents a spiral. The situation when one part of charge
carriers collides with a wire boundary, and another part of
those does not. At the case of charge carrier trajectory inter-
secting with wire surface the parameters ¢ and T’ express as
follows:

t, = <)0rC/’UJ_’ T = (p/rc/vj_' (10)

There r. = muv, /eB is an arc radius, ¢ and ¢’ are respectively
the arc central angles corresponding to the charge carrier
movement trajectory from a previous surface collision point
to a current point and that between two successive collisions
with a wire boundary.

If the charge carrier trajectory does not intersect with the
wire boundary, then

T, t — oo.

(1)

Due to the foregoing, the wire conductivity is determined
by two types of charge carriers, the trajectory of which
crosses and does not cross the wire boundary. Therefore, in
order to find the total wire conductivity, we need to calculate
the conductivity due to charge carriers, which collide and
don’t collide with the wire surface respectively (we will call
the total conductivity contributions due to bulk and surface
charge carrier collisions).

Let us determine the total wire conductivity contribution
in the view of surface charge carrier collisions., It is con-
venient for finding the current density (8) to use a cylindrical
coordinate system (v = (v, a, V), V_is the polar axis). The
wire symmetry axis coincides with Z axis. Since the electric
field has only z-component in cylindrical coordinates, the
current also has z-component (current lines are aligned with Z

axis):
= 26( )f f f% v, f; - v dudadu;,. (12)

Note that due to the problem symmetry, the integration
over the velocities v_is replaced by the one over the positive
range, and the result is doubled. Substituting (9) into (12) and
taking into account the foregoing, we obtain the following
expression for the current density:

z/k()T( )j(‘) j(; j(;zw

exp[[m(v] + v2) /2 — pl/koT]
[1 + exp[[m(v? 4+ v%) /2 — ul/koTIP

_ _ /
|1 = L= DXV 1y Gade..
1 — gexp(—vT")

jz_

13)

The full current passing through a wire cross section is
equal to:

R 2w 1
I:ijdS:j(; 0 jzmdmd@:m?fo g.de, (14)

where the designation £ = | /R is introduced.

The integral wire conductivity we can define by using the
Ohm law:

G=1I/U. (15)

There U is the voltage applied to wire ends.

By substituting the expression (13) in (14) and (15) and
assuming electric field homogeneity within the wire
(U = E,L, where L is the wire length), we obtain the wire

integral conductivity expression:
gJ”—zeXP(ML + U, — M/l,)

27
B m'UIZOLIl/Zf f f 0 [1+ exp(u + u; — u,)P?

X{l (1= @exp(=209/By)
I — gexp(—z0¢'/5))

]duLduzdadé.
(16)
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Figure 1. Complex plane for angles ¢ and ” definition in the case of charge carrier trajectory intersection with wire boundary.

There we introduce the following non-dimensional parameters:

2

00 uf - du mv’, muv;,
I, = f su = JUp =
0 1+ exp(u—u,) 2koT 2koT
mu? i VR R .Rw
u = Sy = 30 = — = — —i—
2k()T koT U1 mT U1
. eRB
=Xo — 1Yy Bo=—.
muq

7)

The parameters x,, y,, z, and ﬂo are non-dimensionalized to
the characteristic charge carrier velocity introduced by the
following view:

3 3
i = 3 fua, 2000 _ 20 ()
3 h3 3 \h

(18)

where n is the charge carrier concentration, which is defined by
the following expression:

3 3 32
n= 2(%) ffod% - 47r(%) (ZI‘TOT) Ly o (19)

In the case of a degenerate electron gas (metal wire)
v; — UR, where vg is Fermi velocity, and in the case of a non-
degenerate one (non-degenerate semiconductor) v; — vy =
\J5koT/m, i.e. the characteristic velocity is proportional to the
average thermal velocity of charge carriers.

To obtain the final expression for the conductivity due to
surface charge carrier collisions we find the connection of the
angles o and ¢’ with the velocity space angle a. Consider the

complex plane (figure 1) representing a wire cross-section. An
X axis plays the role of a real axis, and an Y axis represents an
imaginary axis. The charge carrier movement trajectory takes
the form of a circle with a center O. The equation of this
circle is as follows:

z=2 Frexpli(p + @)l (20)
There 7’ is the complex number corresponding to the point O
in the complex plan with the coordinates (x', y'); ¢, is the
inclination angle of the arc radius r_to the axis X in a moment
of charge carrier reflecting from a wire boundary.

By differentiating the equation (20), we find the con-
nection between the angles ¢, ¢, and «:

0z .0 .
a—f: rca—fexp i (go + ©)] = v

X exp [i (% + o+ g)] = v exp( Q). 1)

In the points A and B the following relations are satisfied:

reexp (i @) + 2/ = Rexp (i vo) ; (22)

r. =rexpli(p, + @]+ 7. (23)

By summing the expressions (22) and (23), we obtain the
following equation:

r. + r.exp (i gy = Rexp (i) + r.exp [i (¢y + @)
(24)
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By equaling the real and imaginary parts of the expres-
sion (24) and using the relation between ¢, ¢ and a, we
obtain the equation system:

r. + r.sin(a — ) = R cos ¢y + 7. sin
. . (25)
—r.cos(a — ) = Rsin ¢y — r. cos «

By excluding ¢, from the system (25), we obtain the

equation to ¢ angle:

(6’ — rysin @)cos ¢ + . cos « sin @
= (r? 4+ 26" — 28'r, sina — R?) /26, (26)

the solution of that in the view of (17) is as follows:

2
@, = 2arcctg m\/% —2&cosa + \/4 — [2{ sin v + \/Zilﬂo(l — 52)]

There we introduce the designation:

_3bp
35,

muv?
2koT

u = (28)
For geometrical reasons (figure 1), we find the relation
between ¢, ¢’ and the roots of the equation (27):

@). (29)

o=, =21~ (o —

Note that the charge carrier trajectory crosses the wire
boundary when the angles ¢ and ¢’ are real numbers or the
radicand in (27) is a real number:

4 — [2¢ sin o + Jur/u Bo(1 — EHP >0 (30)
or
[2 - 2¢ sin o — \Jur/u Bo(1 — €)1[2 + 2 sin @
+Jur/u Bo(1 — €%)] > 0. 31)

Since the second factor in the expression (31) is not equal
to zero, the inequality (31) can be rewritten in the following
form

2(1 — & sina)

— Jur/u Bo(1 — &) > 0.

Inequality (32) is the charge carrier trajectory intersection
condition with the wire boundary. Note that only a partial
values range of the integration variables u , &, « satisfies to
the condition (32). Therefore, to obtain the final expression
for wire conductivity due to surface charge carrier collisions,
it is necessary to multiply the integrand in (16) by the theta
function ©(A)(see the expression (35)). In this case, the
integrand in (16) is not equal to zero only when the condition
(32) is satisfied. If the integration variable values do not
satisfy this condition, then the integrand is equal to zero.

In terms of the above, we obtain the final expression for
the integral wire conductivity due to surface charge carrier
collisions:

(32)

GS = GOE(xO, }’o’ 607 q, uu); (33)

X0 00 ) 2w 1
B.(x0, o> Bos 4> 1) = [ [ ][ ew
zomh pJ0 Jo Jo Jo

% f\/u—zeXP(ML + u; — uu)
(1 + exp(u + u; — uy))?

X[l _a- q)exp(—zowﬁo)] du, du,dode.
1 — gexp(—zo¢'/Bo)

(34)

A=2(1 — £sina) (35)

— N/ Bo(1 — &3).

Here Gy = oy(wR?*/L) is the classical static conductivity,
oo = ne*r/m is the classical spesific conductivity, P is the
dimensionless conductivity due to surface collisions of

27)

carriers, which depends on the following dimensionless
parameters: x is the wire radius, y is the electric field fre-
quency, 3 is the magnetic induction, g is the surface spec-
ularity coefficient, and u is the chemical potential.

Similarly, we can find the conductivity due to volume
charge carrier collisions. By taking into account (11) and
performing similar calculations, we obtain:

G, = GoPB,(x0, Yo, Bo, u.); (36)
X0 o0 o0 2m 1
R0, Yor B 1) = [ [ [ ] eca
zomh pJo Jo Jo  Jo
§uzexplu + u; — u“')z duy du,dad€.
(1 + expQu + u; — u,)] 37)

The total conductivity is defined as the sum of con-
ductivities due to volume and surface charge carrier colli-
sions:

G = GOP(XO’ )’0, ﬂo’ q, up); (38)

x 1 —q)x 2
PG o o 4o 1) = B+ Bi= 2 = Goah = [~ f
EJuzexp(u + u; — uy,)

2071']1/2
1
[ ew .
0 [1 + exP(ML + u; — u/l,)]

exp(—2zo¢/By)
1 — gexp(—zo¢'/By)

du; du,dad€.
(39)

4, Limiting cases

1. Let us consider the case of a degenerate electron gas
(a metal wire) (exp(u,) > 1). The equilibrium distribution
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function takes the view of a step approximation:

fo(e){l’ 0<e<ep

40
0, € > ep; (40)

where ez = mv%/2 is Fermi energy, vp is Fermi
velocity.

Taking into account (40) the total dimensionless
integral conductivity, also dimensionless conductivities
due to volume and surface charge carrier collisions take
the following views:

Ry o = 22 [ [ [T o-appe T 7

20
xdadédp;
(41)
2T
R o) = 22 [ [ [ 0o T= 77
X[l - Q)CXP(—ZW/ﬁo)]dadgdp;
1 — gexp(—z0%'/ o) 42)

P (x0, y9» Bo» @)

xpé1 — p?

X0 G R e
== —-3— O(A
20 TZ0 fO j(: 0 ( )

exp(—zo0¢/Bo)

- dad&dp;
1 — gexp(—2z0¢'/Bo)

(43)
A=2(1 —¢sina) — Bo(1 — &2 /ps (44)
p=p, ¢ =21 —(p, — ) (45)

P, = 2arcctg{ﬂ0(+_€2)[—2p§ cos o
/40> — [2p€ sina + Bo(1 — )P ]}; (46)
p = UL /’UF. (47)

The analytical expressions for the integral conductivity
(41)—(43) agree with the results of the work [9].
2. Let us consider the case of a non-degenerate electron
gas (a semiconductor wire) (exp(—u,) > 1). In this
case, the equilibrium distribution function takes the

In the view of (48) the total dimensionless integral
conductivity, also dimensionless conductivities due to
volume and surface charge carrier collisions take the
following views:

B (3o, yo» o) = 22 f f | T A)p&exp(f—p)

xdad&dp;
(49)

%zfooflfzw 9(A)p§exp(_§p2)

PS(X(), Yo» ﬁOv 61) =

x[l (1 — g)exp(— ZO@/ﬁO)]d dedp;
1 — gexp(—z0¥'/Bo) (50)
P (x0, ¥p» Bp» @) = q)xof f f O@)psexp
X(,§p2) eXp( 209/ By) dadedp;
2" )1 — gexp(—z0¢'/By) 51
p=v/vr; (52)

where vy = /5koT/m is proportional to the charge
carrier average thermal velocity. The angles ¢ and '
have the view similar to the case of a degenerate
electron gas taking into account (52).

3. Consider the case of magnetic field absence (3, — 0).
In this case there is uncertainty in the expressions
z09/0Bo and zop'/Bo. By revealing this uncertainty
according to the L’Hopital’s rule, we obtain:

gimo(wm/ﬁo) = zour/u (€ cos a 4+ /1 — E2sin* o),
(53)
(54

}im0(<p’z()/ﬁo) = 2zoui/u /1 — E%sin® o
Po—

By substituting (53) and (54) into (39) and
considering the fact that the integrand is an even
function of the angle «, we obtain the expression for the
dimensionless integral conductivity in magnetic field
absence:

X0 2xo(l—gq) L& Juexp(u + u, — u,)
P(-xo’ y07 q’ u,u) - O 0 q j; j; \j(\) L \/_ : :

20 wzolo

exp[ zo~Jur/u (€ cos a + /1 — E%sin® )]

[1 + expQu + u, — u,)P

1 — gexp(—2zoui/u 1 — £%sin® o)

form of the classical Maxwell-Boltzmann distribution:

&
= Cexp| —|.
koT ) p( koT)

e = eXP( (48)

du, du, dadé. (55)

The expression (55) is consistent with results

of [18].
4. Consider the case of a large magnetic field (3, — 00).
In this case, the expression in the theta function ©(A) is
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Figure 2. The dependences of total dimensionless integral conductivity P, conductivity due to volume P, and surface P, charge carrier
scattering on dimensionless magnetic field induction 3, at the case of a stationary electric field (y, = 0) at the values of dimensionless wire
radius x = 0.1 and specularity coefficient g = 0. Solid curves are plotted for the case of a degenerate electron gas, and dashed curves are

plotted for the case of a non-degenerate one.

less than zero, i.e. the integral in the expression (39) is
equal to zero. We obtain the expression for classical
conductivity:

7R? xq

G = GoP(xo, yp) = op——— =
L z

2
TR 09 . (56)
L 1 —iwr

This result is obvious, because at strong magnetic
fields the charge carriers practically do not scatter on
wire surface, i.e. boundary scattering does not con-
tribute to the wire conductivity.

5. In the case of a mirror surface (g — 1), the second term
in the expression (39), which contains the factor
(1 — @), is equal to zero. We also obtain the expression
for classical conductivity (56). The result obtained
shows that in this limiting case the mirror surface does
not affect the charge carrier distribution function.

6. In the case when the wire radius is much more than the
charge carrier mean free path, the exponents
exp (—zop/Bo) and exp (—zo¢'/Po) quickly attenuate.
We obtain a classic result for conductivity of a thick
wire (56).

5. Result analysis

In figure 2, we built the dependences of the dimensionless
integral conductivity of a thin wire on the dimensionless
magnetic induction 3 at the case of a stationary electric field
(v, = 0) and zero specularity coefficient value. Solid curves
are plotted for the case of a degenerate electron gas (metal),
and dashed curves are plotted for the case of a non-degenerate
electron gas. Figure 2 shows total integral conductivity
components in the view of volume (P) and surface (P)
charge carrier collisions. For numerical calculations we used
formulae (41)—(43) and (49)—(51). Figure 2 indicates with

increasing magnetic field induction the relative number of
charge carriers, which do not intersect the wire boundary,
increases. Therefore, the contribution of these carriers to the
total integral conductivity grows. Consequently, with
increasing (3, the conductivity due to volume charge carrier
collisions rises and the one due to surface charge carrier
collisions diminishes. We also see the total dimensionless
integral conductivity of a semiconductor wire is more than
that of a metal wire. With growing 3, the relative difference
between curves corresponding to conductivity due to volume
carrier scattering decreases, and the one between curves
respecting to conductivity due to surface carrier scattering,
firstly increases at the value ﬁo < 1, then decreases.

In figure 3, we show the dependences of the dimen-
sionless wire integral conductivity on the dimensionless
magnetic field induction 3 at different surface specularity
coefficient values. Solid curves are plotted for the case of a
degenerate electron gas (metal), and dashed curves are con-
structed for the case of a non-degenerate electron gas.
Figure 3 indicates with growing magnetic induction, the
dimensionless conductivity increases. At strong magnetic
fields, a transition to the classical conductivity of macroscopic
sample is observed, because in strong magnetic fields almost
all charge carriers do not participate in surface collisions.
Therefore, the surface does not affect to the nature of the
magnetic field conductivity dependence. With reducing
specularity coefficient, the relative difference between solid
and dashed curves increases and reaches 15% at diffuse
charge carrier scattering.

Figure 4 shows the dimensionless wire integral con-
ductivity dependences on the surface specularity coefficient g.
Solid curves are plotted for the case of a degenerate electron
gas (metal), and dashed curves are built for the case of a non-
degenerate electron gas. We see that all curves converge at
one point at completely specular carrier scattering, and the
dimensionless conductivity becomes equal to unity. This is
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Figure 3. The dependences of dimensionless wire integral conductivity P on dimensionless magnetic field induction 3 at the case of a
stationary electric field (y, = 0) at the values of dimensionless wire radius x, = 0.1 and different specularity coefficient g values. Solid curves
are plotted for the case of a degenerate electron gas, and dashed curves are plotted for the case of a non-degenerate one.

P-
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Figure 4. The dependences of dimensionless wire integral conductivity P on specularity coefficient g at the case of a stationary electric field
(y, = 0) at the value of dimensionless wire radius x, = 0.1 and different magnetic field induction 3 values. Solid curves are plotted for the
case of a degenerate electron gas, and dashed curves are plotted for the case of a non-degenerate one.

because the mirror surface does not affect the charge carrier
distribution function, and we obtain the classical result for the
macroscopic conductivity (56). Therefore, the lower the sur-
face specularity coefficient, the greater the surface effects on
conductivity, and we observe a monotonic conductivity
decrease with reducing specularity coefficient. In figure 4, as
well as in figures 2 and 3, we show the dimensionless con-
ductivity of a semiconductor wire is greater than that of a
metal wire. This phenomenon can be explained by the charge
carrier thermal velocity dispersion in a nondegenerate elec-
tron gas. The largest wire conductivity contribution is made
by charge carriers that do not scatter on the wire surface and
move along the wire symmetry axis. Unlike a metal, in a non-
degenerate gas, due to the charge carrier thermal velocity
dispersion, there is a small group of charge carriers moving
with velocities greater than the average thermal speed. This

group of charge carriers is responsible for a slight increasing
the dimensionless conductivity of the semiconductor wire
with respect to the conductivity of the metal wire. Therefore,
the dotted curve slope less the solid one. Therefore, the
relative difference between the solid and dashed curves
increases with reducing specularity coefficient. The maximum
relative difference between the dimensionless conductivity of
metal and semiconductor wires is observed at diffuse charge
carrier scattering and the value 3 = 1 and reaches 15%.

In figures 5 and 6, we built the frequency dependences of
the dimensionless wire integral conductivity modulus and
argument. The dimensionless magnetic induction is equal to 0
(solid curves) and 1 (dashed curves). In figure 5, we see when
electric field frequency increases, the conductivity modulus
reduces. This is explained by the fact that the system of free
charge carriers hasn’t time to respond to the high-frequency
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Figure 5. The dependences of dimensionless integral conductivity modulus |P| of a thin metal wire on dimensionless electrical field
frequency y, at the values of dimensionless wire radius x, = 0.1 and different specularity coefficient g values. Magnetic field induction 3, is

equal to O (solid curves) and 1 (dashed curves).
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Figure 6. The dependences of dimensionless integral conductivity argument arg(P) of a thin metal wire on the dimensionless electrical field
frequency y, at the values of dimensionless wire radius x, = 0.1 and different specularity coefficient g values. Magnetic field induction 3, is

equal to O (solid curves) and 1 (dashed curves).

oscillations of the electric field intensity vector. In this case
the free charge carrier system behaves like a set of related
charges, which do not contribute to conductivity. With
increasing electric field frequency (figure 6), the conductivity
argument grows and tends to 7/2. In high frequency limit the
conductivity becomes a purely imaginary value. The largest
relative difference is observed at diffuse charge carrier scat-
tering and the value y, which is equal to zero (for con-
ductivity modulus) and 0.1 (for conductivity argument). For
the above values of g and y, the wire conductivity modulus
and argument value for a semiconductor wire is almost two
times higher than those for a metal wire. With increasing y,,
the relative difference lows. At the frequencies y > 0.2 (for
conductivity module) and y > 0.8 (for conductivity argu-
ment), the relative difference between solid and dashed curves
does not exceed 10%.

In figures 7 and 8 we adduce a comparison of frequency
dependences of the dimensionless integral conductivity
module and argument of a thin metal (solid curves) and
semiconductor (dashed curves) wire. We see with reducing
specularity coefficient, the relative difference between the
solid and dashed curves increases and reaches 10% at diffuse
charge carrier scattering.

Figure 9 shows the dependences of dimensionless integral
wire conductivity on a dimensionless wire radius x. Solid
curves are plotted for the case of a degenerate electron gas
(metal), and dashed curves are constructed for the case of a non-
degenerate electron gas. We see with decreasing surface spec-
ularity coefficient the conductivity reduces. This is due to the
growth of diffusely reflected charge carrier number. At large
values of x, we observe a transition to a macroscopic asymptotic
(56) regardless of charge carrier scattering character.
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Figure 7. The dependences of dimensionless wire integral conductivity modulus |P| on the dimens

ionless electrical field frequency y, at the

values of dimensionless wire radius x, = 0.1, magnetic field induction 3 = 1 and different specularity coefficient g values. Solid curves are

plotted for the case of a degenerate electron gas, and dashed curves are plotted for the case of a

non-degenerate one.
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Figure 8. The dependences of dimensionless wire integral conductivity argument arg(P) on the dimensionless electrical field frequency y, at

the values of dimensionless wire radius x, = 0.1, magnetic field induction 3 = 1 and different spe

cularity coefficient g values. Solid curves

are plotted for the case of a degenerate electron gas, and dashed curves are plotted for the case of a non-degenerate one.
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Figure 9. The dependences of dimensionless wire integral conductivity P on dimensionless wire radius x, at the case of a stationary electric

field (y, = 0) and zero magnetic field (3, = 0) and different specularity coefficient ¢ values. Soli
degenerate electron gas, and dashed curves are plotted for the case of a non-degenerate one.
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Figure 10. Resistance dependences for four copper wires with different diameters (1, 5, B—32 ym; 2, 6, @—53 um; 3, 7, A—S82 um; 4, v—
102 pm) on magnetic field induction at the temperature 4.2 K. Points are experimental data [7]. Solid curves 1-4 are theoretical calculations
(formula (43)) at the value of ¢ = 0.12and y, = 0:1 = A = 41 pm; 2 — A = 47 ym; 3 — A = 51 pym, 4 — A = 57 pm. Dashed curves 5-7 are

calculations by Chambers theory at the value of A = 56 ym.
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Figure 11. Dependence of the charge carrier mean free path for four thin copper wires on its radius.

In figure 10 we built the resistivity dependences on the
magnetic field induction for four copper wires at the temp-
erature 4.2 K. Solid curves signify theoretical calculation at a
stationary electric field (y, = 0) and different values of
specularity coefficient ¢ and mean free path A. Points signify
experimental data of the work [7]. The authors of [7] com-
pared experimental data with Chambers theory [5] (dashed
curves in figure 10). The accordance of Chambers theory with
experimental data is observed in the range of a weak magnetic
field (of the order to 0.2 T) only [7]. The authors explained
this difference by copper Fermi surface non-sphericity and
simplified diffuse boundary condition model, which is used in
Chambers theory. In the theoretical model proposed by us the
one more parameter appears—the specularity coefficient
characterizing a relative amount of charge carriers reflected
specularly from wire surface. The value of this parameter
depends on sample surface properties and on wire manu-
facturing technology consequently. Due to the fact that all
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wires, which are used in the work [7], are made by similar
method, the specularity coefficient for all wires should be
equal. The experiment is conducted at the temperature 4.2 K,
and consequently the sample resistance and the charge carrier
mean free path are conditioned almost entirely by impurity
and defect scattering. The defect concentration depends on the
wire diameter, therefore the charge carrier mean free path in a
sample volume (this is the parameter characterizing the
volume charge carrier scattering) is different for all wires. In
figure 10 we represent the resistivity calculations at identic
surface specularity coefficient, which is equal to 0.12, and
different charge carrier mean free path values (see figure 10).
We note our theoretical calculations agree with experimental
data. The maximal relative difference between theoretical and
experimental results does not exceed 6%. Thus, the mea-
surement of longitudinal wire magnetoresistance allows to
determine the surface specularity coefficient and the charge
carrier mean free path in sample volume.
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The experimental measurement of charge carrier mean
free path in sample volume at low temperatures permits to
learn how the defect density depends on something para-
meters. In figure 11 we built the dependence of the charge
carrier mean free path on the wire radius. We see that mean
free path reduces with decreasing wire radius. Consequently,
we establish the less sample characteristic size, the more
defect density.

6. Conclusions

In present work, we built a theoretical model of wire con-
ductivity in a longitudinal magnetic field within the frame-
work of Fuchs boundary conditions. An analytical expression
is obtained for the integral conductivity as a function of wire
radius, electric field frequency, magnetic induction, chemical
potential, and surface specularity coefficient. The cases of
degenerate and nondegenerate electron gas are considered.
We showed with increasing surface specularity coefficient,
the relative difference between dimensionless conductivity of
metal and semiconductor wires grows and reaches 15% at a
diffuse charge carrier scattering.

We compared the results with experimental data for four
copper wires. We illustrated an effective determination
method of volume and surface scattering parameters: spec-
ularity coefficient and charge carrier mean free path by
measuring of the longitudinal magnetoresistance of a thin
metal wire with the characteristic size comparable to or less
than the charge carrier mean free path. We obtained the size
dependence of volume charge carrier scattering parameter,
which characterizes the defect and impurity density. The
charge carrier mean free path reduces with decreasing char-
acteristic wire size. This fact is equal to increase defect and
impurity density with reducing wire radius.
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