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Abstract
In this study we investigate the concept of magnetically actuated mucociliary pumping in a
bronchial tube. To analyze the muco ciliary clearance in bronchial tube different techniques have
been used to observe the ciliary beat frequency. CT-scan and MRI-scan are very effective to
detect the ciliary motions which are possible due to the presence of magnetic field. In this study
velocity, pressure difference and flow rate are analyzed with the help of continuity equation,
Darcy’s law and non-linear momentum equation. The mucus layer is considered as a viscoelastic
fluid, therefore stress components are simplified for the Maxwell fluid (viscoelastic model). The
transportation of mucus layer in the bronchial tube with the help of ciliary movement is modeled
in the wave and fixed frame. The resulting PDE’s are solved by the perturbation and Adomian
decomposition method. Effects of magnetic field, Darcy’s resistance and viscoelastic parameter
are discussed at length in the graphical results section.

Keywords: strong viscous forces, constant magnetic field, Darcy’s law, ciliated bronchial tube,
mucociliary clearance

(Some figures may appear in colour only in the online journal)

Nomenclature

V velocity field

W U, axial and radial velocity in fixed frame

J current density

B0 strength of constant magnetic field

R Darcy’s resistance

P pressure

y stream function

S stress tensor

c wave speed

k permeability of porous medium

M Hartmann number

a mean radius of tube

l wavelength

e cilia length

a eccentricity of elliptical path

s electrical conductivity

b wave number

l1 relaxation time

Da Darcy’s number

1. Introduction

Biofluid mechanics have become an important subject in the
medical field. It produces a nice view of physical phenomena
occurring in the body without any surgery. Many organs such
as kidney and heart have already discussed by different sci-
entists using mathematical model [1, 2]. A bronchial tube is
about 1.09 cm long and having radius 1.5 mm in human
body. Human inhale oxygen (air) in the respiratory system
through trachea with all pollutants and dirt. In healthy
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bronchial tube most of the tube is filled with air but we have
considered the case of diseased bronchial tube. A disease
‘Bronchitis’ is caused by inflammation of airways and in
response to these inflammations goblet cells present in epi-
thelial tissues produces excess amount of mucus in bronchial
tube. Thus most of the bronchial tube is filled with mucus and
cilia helps to transport mucus out of bronchial tube through
coughing and sneezing. The respiratory system cleans the
mucus from dirt with the help of cilia. Cilia are hair like
structure present in the epithelial tissues of respiratory tract.
The ciliary movement helps to expel the dirt and pollutants
from the mucus present in our body which is known as muco
ciliary clearance. Since the human organs like heart, lungs,
trachea and tissues are not solid therefore these organs have
small pores and the fluid flow through these organs like
bronchial tube requires the Darcy’s law. The mathematical
model of magnetically actuated muco ciliary pumping in
bronchial tube is presented with the help of law of con-
servation of momentum and Darcy’s law under the effect of
constant magnetic field.

Transportation of fluids under the action of ciliary motion
is one of the basic problems in biomedical sciences. Cilia and
flagella oscillate in a waving fashion to transport fluids and
propel cells. Cilia motion contributes a pivotal role in phy-
siological processes of alimentation, circulation, locomotion,
respiration and reproduction [3–5]. The cycle of beat of single
cilium separated into effective and recovery stroke. Fluid can
flow very rapidly during effective stroke because of large
curvature at the base of cilium [6–9]. The hydrodynamic
coupling encourages adjacent cilia to beat with a constant
phase difference to one another. A field or row of cilia beating
in this manner is said to be metachronism. This combined
movement of cilia has been used in many biological and
psychological studies [8, 10].

In this paper we are interested to investigate the role of
cilia for the movement of mucus in the bronchial tube. The
moving cilia which are responsible for muco ciliary clearance
have the metachronal wave pattern. It is also mentioned in
literature [11, 12] that all ciliary activity taking place due to
hydrodynamic interactions among the cilia and their sur-
rounding cells and bio fluids. Some important and recent
detailed works on hydrodynamics interactions may be cred-
ited to Dauptain [13] and Guo [14].

It is evident that microorganisms when causes infection
in human body, can die with the application of constant
magnetic field strength. It is observed by the medical doctors
that tuberculosis skin lesion is completely recovered by the
antibiotic having constant negative strength of magnetic field.
It is also observed by the physicians that for throat infection
when pulmonary cilia are not working properly antibiotics
containing magnetic field help to die out the virus that effects
the pulmonary cilia movement. The magnetic field acting on
the cilia lead to a reduction of the asymmetric area for the
case of symplectic metachrony compared to antiplectic
metachrony also external magnetic field increase the ciliary
beat frequency due to which cilia requires less energy (ATP)
to beat. Recently several researchers [15–19] introduced the

study of ciliary and peristaltic motion where they used the
magnetic field to observe the wave frequency.

Keeping in view the importance of ciliary movement and
Maxwell fluid model with reference to MCC (muco ciliary
clearance). In this study we have considered the mathematical
model of magnetically actuated muco ciliary pumping in
bronchial tube with Darcy’s law and constant magnetic field.
The governing partial differential equations are simplified by
stream function. The effects of inertial forces appearing in
governing equations of magnetically actuated muco ciliary
pumping in bronchial tube are modeled and solved by per-
turbation method and Adomian decomposition method
(ADM). The graphical results are included for the pressure
rise, pressure gradient and velocity distribution.

2. Mathematical model

For the muco ciliary pumping in the bronchial tube, we have
considered a ciliated symmetric tube of finite length l with
radius a, which is resembling with a bronchial tube having
epithelial tissues. The mucus layer in the respiratory tract is a
viscoelastic fluid which is resembling with the Maxwell fluid
possessing both viscous and elastic properties which is shown
in Figure 1. In this study we have used the envelope model
[20, 21] approach for the magnetically actuated muco ciliary
pumping in the bronchial tube.

In an axisymmetric tube the cilia tips moving in elliptical
path therefore position of fluid particles is defined by the
following expression

( ) ( )e= = +R f Z t a a m, cos 1* * *

( ) ( )ea= = +Z g Z Z t Z a m, , sin , 20 0* * * * *

where ( )= -p
l

m Z ct ,2 * * a, e, aZ , ,0 * l and c represents
mean radius of tube, cilia length parameter, reference position
of cilia, eccentricity of ellipse, wavelength and wave speed of
metachronal wave respectively. According to no slip condi-
tion of velocity R* and Z* components of velocity are given
as follows
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Substituting equations (1), (2) in (3)), we get
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The wave frame and fixed frame are related by the fol-
lowing transformation

( ) ( ) ( )
= - = = -
= =

z Z ct r R w W c u
U p z r P Z R T

, , ,
, , , , , 7

* * * * * * * *
* * *

where r z w u, , ,* * * * and p* are the quantities in wave frame
and R Z W U, , ,* * * * and P* are in fixed frame.

For the magnetically actuated muco ciliary pumping in
the bronchial tube following velocity profile is appropriate
along the axis and radius of tube (bronchial tube)

[ ( ) ( )] ( )=V u r z w r z, , 0, , . 8

For the transportation of mucus layer through the bron-
chial tube, the continuity equation and momentum equation
with Darcy’s law in the presence of magnetic field [22] are
expressed as follows
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In above equations V represents the velocity field, T the
extra stress tensor, S the Cauchy stress tensor, r the density of
fluid, J the current density, B0 the strength of applied
magnetic field, s the electrical conductivity of the fluid,
R the Darcy’s resistance, L gradient of velocity, p the
pressure, m the viscosity of fluid, l1 the relaxation time of
Maxwell fluid and A1 the first Rivilian Erickson tensor.

In the muco ciliary pumping, the velocity, pressure and
shear stress need to be analyzed, therefore continuity and
momentum equation together with the stress and strain rela-
tionship are expressed in the following manner
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where shear and normal stresses satisfying the following
expressions

Figure 1. (a) Geometry of bronchial tube. (b) Geometry of diseased
bronchial tube. (c) Formation of elliptic wave.
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The mucus layer covers the region -  h r h and
/ /-  l z l2 2 where the no slip condition requires that

velocity of the cilia tips and fluid adjacent to the cilia tips are
same, therefore the following boundary conditions on the cilia
tips are defined as follows
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Figure 2. (a)–(c) Barchart of pressure rise for distinct values of l M D, , .a1 When b a e= = = = =Re r1, 0.1, 0.4, 0.3 and 0.2 are
kept fixed.
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The biological flows are poiseuille type which requires
that flow is maximum at the centre line of the ciliated tube,
therefore axial velocity at =r 0 (centre line) satisfies the
following condition
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r
r0 at 0. 25

For the mathematical computation following non-
dimensional quantities are require
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Figure 3. (a)–(c) 3D view of pressure gradient for =M 1, 5, 10. When =Re 1, b = 0.1, a = 0.4, e = 0.2, =D 1,a ¯l = = -Q0.1 and 31

are kept fixed.
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The non-dimensional boundary conditions can be written
as
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Figure 4. (a)–(c) 3D view of pressure gradient for =D 0.1, 1, 10.a When =Re 1 , b = 0.1, a = 0.4, e = 0.2, =M 1,
¯l = = -Q0.1 and 31 are kept fixed.
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Following relations of velocity and stream function are
used to simplify the equations (27)–(37)
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Equation (27) is identically satisfied and equations (28)–
(37) take the following form
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Eliminating pressure gradient from above equations, one
can get the following form
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where q qq qS S S S S S, , , andrr r rz z zz, satisfy following
equations

Figure 5. (a)–(c) 3D view of pressure gradient forl = 0.1, 1, 10.1 When =Re 1 , b = 0.1, a = 0.4, e = 0.2, =M 1, ¯= = -D Q1 and 3a

are kept fixed.
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Figure 6. (a)–(c) 3D view of axial velocity for =M 0.1, 1, 10. With b= =Re 1, 0.1, a e= =0.4, 0.2, ¯l = = = -D Q1, 1 and 3.1 a
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The transformed boundary conditions are defined as

( )y = a0 by convension 48
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r r r

r b
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0 by symmetry at 0 48

⎜ ⎟⎛
⎝

⎞
⎠ ( ) ( )y¶
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r r
w h c

1
by no slip condition 48

( )y = =r h d0 at . 48

The flow rate of mucus in human bronchial tube ranges
from ( )- -0.1 0.6 mm min ,1 therefore it is important to cal-
culate flow rate of mucus from the airways to the ciliated
epithelium. The volume flow rate in the wave and fixed frame
can be calculated by the following formulas

( ) ( ) ( ) ( )òp=Q Z t RW R Z t R, 2 , , d , Fixed Frame 49
h

0

( ) ( ) ( )òp=q rw r z r2 , d , Wave Frame . 50
h

0

Continuity and above equations yield following relation

( ) ( )p= +Q Z t q c h, . 512

The mean-time volume flow rate can be defined as fol-
lows
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Figure 7. (a)–(c) 3D view of axial velocity for =D 0.1, 1, 10.a When b= =Re 1, 0.1,
a e l= = =0.4, 0.2, 1,1 ¯= = -M Q1 and 3 are kept fixed.

9

Phys. Scr. 95 (2020) 045211 S Shaheen et al



Defining ¯ =
p

Q Q

a c2 2

* and =
p

F q

a c2 2 we can write follow-
ing relation

⎛
⎝⎜

⎞
⎠⎟¯ ( )e

= + +Q F 1
2

. 53
2

3. Perturbation solution

To find perturbation solution of proposed problem we will
expand the stream function y, pressure distribution p, stress S
and flux F in power series of small parameter b 1 (Since
wave number have inverse relationship with wavelength and
wave length of metachronal wave is large as compared to
diameter of tube) as follows

( )y y by b y= + + ¼¼¼¼ a540 1
2

2

( )b b= + + ¼¼¼¼p p p p b540 1
2

2

( )b b= + + ¼¼¼¼S S S S c540 1
2

2

( )b b= + + ¼¼¼¼F F F F d540 1
2

2

3.1. Zeroth order solution

After substituting equations (54a)–(54d) in (41)–(47) and
comparing the coefficients of ( )b ,0 following boundary value
problems for the stream function, pressure gradient and stress
components can be obtained
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Figure 8. (a)–(c) 3D view of axial velocity for l = 0.1, 1, 10.1 When b= =Re 1, 0.1,
a e= = =D0.4, 0.2, 1,a ¯= = -M Q1 and 3 are kept fixed.
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with the boundary conditions
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Integrating equation (55a) and using boundary conditions
in equation (56) one can get the following integro differential
equation
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The above Integro-differential equation is solved with the
help of ADM.

Linear operator and inverse linear operator can be chosen
as follows
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r
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d
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r
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With the help of above inverse operator equation (57)
takes the following form
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ADM suggest the following series

( )åy y=
=

¥

. 61
n
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Using above equation in equation (59) following recur-
sive relation is obtained
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Using equations (57) and (63) following equations can be
evaluated
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Making use of boundary conditions given in
equations (56a), (56b) we arrive at zeroth order solution

( )y = + +A r A r A r . 660 1
2

2
4

3
6

Substituting equation (66) and equations (55d)–(55g) in
equation (56b) we can get

¶
¶
p

z
0 which is calculated by using

software ‘MATHEMATICA’ as
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z
A A r A r , 670

4 5
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where ( ( ))( ) A M D h w h i, , , 1 5I a are evaluated by
‘MATHEMATICA’
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3.2. First order solution

We can write the following first order problem in the analogy
of equations (56) and (57)
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and the boundary conditions are
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Following the same procedure of zeroth order system one
can get following equation
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The above equation is integro-differential equation which
is solved by applying ADM.

Applying - 1 on equation (71) one can get
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y1 can be decomposed into the following series
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Initial guess is chosen as follows
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Using equations (75)–(76) in (74) we can get y1 in the
following form
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Using boundary conditions given in equation (70) we
arrived at first order solution

( )

y = + + + +
+ + + +
+ + +

A r A r A r A r A r

A r A r A r A r

A r A r A r . 78

1 15
2

16
4

17
5

18
6

19
7

20
8

21
9

22
10

23
11

24
12

25
13

26
14

Substituting equations (78) and (69c)–(69e) in (69b) we
get
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where ( ( ) )( )l  A M D h w h i, , , , 15 39I a 1 are evaluated by
‘MATHEMATICA’
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4. Graphical results

In this section the effects of emerging parameters appearing in
the magnetically actuated mucociliary pumping are shown
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graphically. The effect of viscoelastic parameter l ,1 Hartmann
number M and Darcy’s parameter D ,a are observed on the
pressure rise, pressure gradient and axial velocity.

Effect of emerging parameter on pressure difference are
displayed by the bar charts through figures 2(a)–(c).
Figure 2(a) shows that by increasing relaxation time l ,1

pressure difference enhances. The increasing value of
relaxation time l1 demonstrates that decay in stress requires
more time and also it measures the viscosity of viscoelastic
material. The increasing value of l1 means that viscosity of
viscoelastic material increases which requires high pressure to
flow in the continuum regime. Figure 2(b) shows that by
increasing Hartmann number M pressure rise increases
because Lorentz force is acting in the perpendicular direction
of the flow which resists the fluid motion, for the mucociliary
movement through bronchial tube more change in the pres-
sure is required with the increasing value of constant magn-
etic field parameter. Figure 2(c) shows that by increasing
Darcy’s parameter Da pressure rise decreases because when
Darcy’s number increases the volume fraction ratio increases
which permits the fluid to flow with less amount of pressure.

3D plots of pressure gradient for various values of, vis-
coelastic parameter l ,1 Hartmann number M and Darcy’s
parameter Da are plotted in figures 3–5 It is observed that
pressure gradient form a wavy pattern because fluid particles
trace the shape of metachronal wave. In figures 3(a)–(c) it is
shown that by increasing Hartmann number M the amplitude
of elliptic wave increases as Hartmann number is the ratio of
Lorentz force to viscous force, therefore increase in Hartmann
number shows that Lorentz force is dominant over the viscous
forces and Lorentz force has the ability to resist the fluid flow
which requires large amount of pressure to maintain the same
flux. It is depicted from figures 4(a)–(c) that by increasing
Darcy’s parameter amplitude of pressure gradient decreases
because Darcy’s number is the ratio of pore volume to the
bulk volume which is mostly less than one, if we increase the
porosity parameter more fluid flows from pores with low
pressure gradient. Figures 5(a)–(c) illustrates that by
increasing viscoelastic parameter l1 amplitude of wave
increases because by increasing viscoelastic parameter elastic
forces begin to dominant over the viscous forces and the
mucus requires large amount of pressure to return in relaxed
state after deformation.

Figures 6–8 display 3D view of axial component of
velocity for distinct values of viscoelastic parameter l ,1

Hartmann number M and Darcy’s parameter D .a It is observed
that fluid particles follow the wave pattern due to formation of
metachronal waves at the boundary. In figures 6(a)–(c) it is
shown that by increasing Hartmann number M amplitude of
wave decreases, as magnetic force opposes fluid flow that
results to decrease in the magnitude of velocity profile.
Figures 7(a)–(c) shows that with the increasing value of
Darcy’s parameter, magnitude of the velocity (in the wave
form) increases because increasing value of Darcy’s para-
meter indicate that pore volume increases which permits the
fluid to flow through the axisymmetric tube (continuum
regime). Since the pore volume assists the fluid flow, there-
fore velocity profile in wave form increases with the

increasing values of porosity parameter. Figures 8(a)–(c)
portrays that waving velocity of mucus layer decreases with
the increasing value of relaxation time l ,1 because the
increasing values of l1 indicate that viscosity of viscoelastic
fluid (mucus layer) increases which causes to slow the
movement of mucus, therefore axial velocity reduces with the
increasing value of l .1

5. Conclusions

In this research we have modelled the boundary value pro-
blem of magnetically actuated mucociliary pumping in
bronchial tube. For the mucociliary pumping we have con-
sidered the mathematical model of magnetically actuated
muco ciliary pumping in bronchial tube with the Darcy’s law
in the presence of constant magnetic field. Perturbation
solution of the problem is obtained using small wave number
b 1. If Re 0, l  01 and D 0a the present model

reduces to the viscous model and our results are matching
precisely with the existing results [23]. The results obtained
by the ADM and perturbation method are convergent because
the resulting expressions of stream function and pressure
gradient are in the form of power series with decaying coef-
ficients in the given domain. The graphs of pressure rise with
volume flow rate, pressure gradient and velocity field are
plotted for different values of prominent parameters. From
graphs the noteworthy results are as follows:

• Volume flow rate and pressure rise show a reverse
behavior against all important parameters e.g., Maxwell’s
parameter, Hartmann number and Darcy’s number.

• It is found that the pumping due to ciliary activity has to
work more efficiently for pushing the MHD fluid if
compared with a simple Newtonian fluid.

• It is observed that in highly porous medium magnetically
actuated cilia are very helpful to clear thin layer of mucus.

• It is investigated that the velocity of fluid decays with the
increase in relaxation time (viscoelastic parameter) which
make the mucus thick.

• The obtained results are useful in transport phenomena of
physiological systems i.e., if the fluid becomes thick due
to infection and congestion of throat the mucus cannot
flow freely. This study shows that mucus become thin by
the application of magnetic field in the direction of flow
field and mucus layer become thick if magnetic field is
applied in the transverse direction of the flow field.

• The present study is applicable in oesophageal transport,
bio fluid mechanics and other areas of physiology.

• In this study we have considered the single layer of
mucus in the bronchial tube with the effects of constant
magnetic field and porous medium but the mucus near the
epithelium cell and near the center of the bronchial tube
have different viscosity, so we will consider the two layer
approach of ciliary motion in the future work.
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