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Abstract. Motivated by their potential role as dark matter, we study the cosmological evo-
lution of light scalar and vector fields non-minimally coupled to gravity. Our focus is on a
situation where the dominant contribution to the energy density arises from the misalign-
ment mechanism. In addition, we also discuss the possibility that dark matter is generated
in a stochastic scenario or from inflationary fluctuations. Even small deviations in the non-
minimal couplings from the standard scenarios lead to significant qualitative and quantitative
changes. This is due to the curvature-coupling driven superhorizon evolution of the homoge-
neous field and the non-zero momentum modes during inflation. Both the relic density yield
and the large-scale density fluctuations are affected. For the misalignment mechanism, this
results in a weakening of the isocurvature constraints and opens up new viable regions of
parameter space.
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1 Introduction

Light scalars or vectors very weakly coupled to the Standard Model are phenomenologi-
cally and experimentally interesting dark matter candidates [1-7] (cf. also [8] for a recent
review). Over recent years a sizeable experimental program has developed to search for their
signatures [9-20]! (see [29, 30, 33-35] for some overviews).

Their low mass and very small couplings make them automatically stable even on cosmo-
logical time scales, without the need to completely forbid their decay by an additional sym-
metry. Furthermore, they are naturally produced via the misalignment mechanism [1-3, 5-7]
and as such they generally contribute to at least a fraction of the observed dark matter den-
sity. The initial (homogeneous) field value in our observable Universe can simply correspond
to the initial misalignment of the field away from the vacuum, or it can arise “stochasti-
cally” [36-41] from the accumulated effect of fluctuations during a long phase of inflation.
Additional contributions may arise from production via inflationary fluctuations [42-47] as
well as from decays of precursor particles [48-53]. Modifications to the usual misalignment
mechanism have been for example explored in [54, 55].

So far, most studies of the misalignment mechanism for (pseudo-)scalars have concen-
trated on the case of minimal coupling to gravity [1-3]. For vectors, this case typically only

"While not searching directly for dark matter, experiments like ALPS [21-23], CAST [24, 25] and
TAXO [26-28] are searching for suitable light candidates (see also [29-32]).



yields a small amount of dark matter in today’s Universe. In order to enhance the relic abun-
dance, an option is to introduce a curvature coupling which has to be set close to a specific
value that makes the evolution equivalent to that of a scalar [6, 56]. In this paper, we broaden
this perspective by considering more general couplings of (pseudo-)scalar and vector fields to
the Ricci scalar. Our main aim is to study their effects on the misalignment mechanism, but
we also consider the impact of the curvature couplings on the stochastic scenario [38, 39] and
the contribution of inflationary fluctuations [42, 47] to the dark matter density.

The starting point of our discussion is the usual Einstein-Hilbert action, which is ex-
tended to allow for direct couplings of the fields to the Ricci scalar R. In particular, for the
scalar case we consider the action

1 1 1
5= [atov=g (5 (0 - €6%) R J0,00% - mie?). (1)

where we allow for both positive and negative values of £. Similarly, the action for the vector
field is given by

S= /d% N (; (a2 + %XHX“> R- %XWX/“’ - ;m_zxXMX“> . (1.2)
Note that the non-minimal coupling in the vector model has the opposite sign with respect
to the scalar case. Also, this choice for the normalization of x ensures that the vector field
behaves like a minimally coupled scalar for k = 1, as we will see in section 3 (such was the
convention chosen in [6, 57-59]).

The role of non-minimal couplings to gravity in cosmology has been extensively studied
in the literature. The main focus was originally on the construction of inflationary mod-
els [60, 61], which attracted particular interest after it was realized that the Higgs boson can
play the role of the inflaton [62] if a large value of & ~ 10* is assumed (for a recent review
see, e.g. [63]). The possibility of inflation being driven by a non-minimally coupled vector
field was also considered in [56]. More recently, increasing attention has been payed to the
possibility that the dark matter may also enjoy such couplings. The focus of the studies
has been on the generation of dark matter during inflation [42-47] or at preheating and
reheating [64-72]. Graviton-mediated thermal production has also been explored [70-76].

Aside from phenomenological reasons, there are theoretical motivations to study the
couplings delineated above. Generally, these operators need to be considered if general rela-
tivity is viewed as an effective field theory [77]. In addition, the quantization of any scalar field
theory in a gravitational background [78] inevitably produces terms like the ones in eq. (1.1).
Their presence turns out to be essential for the renormalizability of the energy-momentum
tensor in curved backgrounds [79]. We will consider O(1) (or smaller) dimensionless couplings,
which correspond to interactions of strength 1 /Mgl after the graviton fields are properly nor-
malized. This is the natural size that is a priori expected in a theory of quantum gravity. As
an example, such scalar couplings have been found to generically arise [80-85] in approaches
to the quantization of gravity like asymptotic safety [86] (see [87, 88] for recent reviews).

The situation of vectors is somewhat complicated by gauge invariance and the need
to involve a Stueckelberg (or Higgs) mechanism. Constructing the appropriate Stueckelberg
terms for the couplings to R leads to a naive violation of unitarity? already at relatively
low energies [48]. A more detailed investigation, e.g. along the lines of [89] would be very

2We are indebted to Fuminobu Takahashi for discussions on this issue.



interesting but is beyond the scope of this work. Another difficulty for the vector theory is
that the sign of the kinetic term of the longitudinal mode becomes negative for a certain range
of momenta. This is reminiscent of a scalar particle with a negative kinetic term, i.e. a ghost.
As is well known, ghosts are generally dangerous because they destabilize the vacuum of the
theory [90, 91]. The situation is however more complex for the vector theory at hand. Firstly,
the sign of the kinetic term depends on the size of the momentum, and only becomes negative
for a finite range of momenta. Secondly, the sign change appears at all only in situations
with sufficiently large spacetime curvature. Thirdly and due to the aforementioned sign flip,
the kinetic term becomes singular for certain values of the momentum. These problems have
been discussed in [59, 92-94], but no final conclusion regarding the viability of the theory has
been reached. This certainly calls for a more exhaustive investigation, which is however not
the aim of the present work. Acknowledging this potential issue, we nevertheless consider the
vector scenario and treat the non-minimal coupling as a phenomenological O(1) parameter.

From the point of view of cosmology, the main effect of both scalar and vector non-
minimal couplings is that the dark matter fields acquire an additional positive (or negative)
mass term during inflation. As a consequence, the superhorizon evolution becomes fast
enough so as to strongly suppress (or enhance) the field value and the fluctuations during the
inflationary period, typically in an exponential manner. This has important consequences
for the initial field values required to produce today’s dark matter density, as even relatively
small values of the coupling parameters can lead to drastic shifts in the initial scale that
“naturally” produces the observed dark matter density. The fluctuations are affected in a
similar way, leading to changes in the isocurvature constraints as well as their contribution
to the density today. Both effects will be discussed in detail in this work.

Our paper is structured along the following lines. Section 2 discusses the effects of
non-minimal couplings on the misalignment, stochastic and fluctuation scenarios for (pseudo-
)scalars, whereas section 3 does the same for vectors. For each case, we discuss the amount of
dark matter produced as well as constraints from isocurvature fluctuations. Finally, a short
summary and conclusions are given in section 4.

Before continuing let us note that, for simplicity, in the following we will simply write
scalars instead of (pseudo-)scalars. That said, all of our results equally apply to pseudoscalar
particles.

2 Scalars

2.1 Homogeneous scalar field and relic density

The equations of motion (EOMs) for the homogeneous field can be readily derived from the
action given in eq. (1.1). Neglecting spatial derivatives, we arrive at

¢+ 3Ho+ (m2 +ER) ¢ = 0. (2.1)

As already mentioned in the introduction, the presence of the non-minimal coupling to gravity
results in a space-time dependent effective mass for the field. Because of the particular cos-
mological evolution of the Ricci scalar, which is sketched in figure 1, non-negligible effects will
only occur during inflation. This means that the post-inflationary evolution of the scalar field
can be described by the standard equations used for the misalignment mechanism (cf. [6]).
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Figure 1. Illustration of the cosmological evolution of the effective mass for the non-minimally
coupled scalar (the vector case is analogous). For the purpose of illustration we set £ = 1. The field
acquires a large effective mass during inflation, when the Ricci scalar is large. As soon as radiation
domination starts, R = 0 and the field acquires its late-time mass given by the explicit mass term
miqﬁQ /2. By the time of matter-radiation equality, the Hubble parameter is so small that as long
as me 2 10728 eV, the non-minimal coupling has no significant effect on the effective mass and the
evolution any more.

The final relic abundance relative to the observed dark matter one can be expressed as®

0 ~ 5 F(T}) Pe ’ [Me (2.2)
QDM * 1012 GeV eV ’ '

where F(Ty) = (9.(T%)/3.36)%/*/(g.5(T%)/3.91) is an O(1) function encoding the change in
the number of relativistic degrees of freedom between today and the time t, when the scalar
oscillations start, at 3H(t.) ~ mg. We have explicitly expressed the result in terms of the
field value at the end of inflation ¢., to highlight that it is in general different from the
initial field value ¢s, which can be identified with the field value at the start of inflation.
This nontrivial evolution is precisely due to the existence of the R-coupling. From now on we
assume that the scalar field is responsible for all of the observed dark matter, i.e. 24 = Qpm
is enforced if not explicitly stated otherwise.

During inflation,* when R = 12 HIQ, the EOM eq. (2.1) is that of a damped oscillator with
a constant frequency and can easily be solved. Due to the non-minimal coupling £ # 0, some
care has to be put into selecting the appropriate initial conditions. In the minimally coupled
case, one can normally assume that és = 0 (the subscript s denotes the start of inflation).
However, this is not necessarily true in the presence of curvature couplings. Allowing for a
non-vanishing bs (and assuming that ¢s # 0), the general solution is given by

¢(t) _ ¢S <Cl e—%a,Hjt + ¢y e—%a+H1t) , (2‘3)

30ur result differs slightly from the one in [6] due to the use of the updated value for Qpy from [95] and
a more careful matching of the initial conditions for the WKB approximation.

4We approximate inflation by a purely de Sitter expansion with H = H; = const. Our results do not change
qualitatively if we allow for a small non-vanishing H;. We will briefly discuss this possibility in section 4. We
also take reheating to be instantaneous.



where ¢; and ¢y, which are given in eq. (B.2), satisfy ¢; + ¢ = 1 and encode the exact
dependence on the initial conditions. Additionally, we have defined

s =3+ /9 — 48¢. (2.4)

As we will see, all our results only depend on the product ¢; ¢s. As long as ¢ ~ Hj¢s and
except for fine-tuned choices of initial conditions, the coefficient ¢; is of O(1). Because of this
and for the sake of simplicity, we will henceforth drop it from the equations. For practical
purposes, powers of ¢; can be easily reinstated by swapping ¢ for c¢; ¢ at any point in the
discussion. The exact form of the full solution is used for the calculation of the stochastic
scenario and can be found in appendix B.

For the parameter range of interest, i.e. £ < 3/16, oy are always real and positive, and
satisfy a4 > a_. Hence, after a long enough time the first term in eq. (2.3) will dominate
over the second one and we can approximate the solution by

o(a) ~ ¢s <>2a— vy e,%a_N(a)7 (2.5)

as

where we use scale factors and number of e-folds instead of time. For small values of the
non-minimal coupling &, the value of a_ is also small but the product a— N (a) can be large,
resulting in a significant suppression (or enhancement, if £ < 0) of the homogeneous field
value. In particular, we can relate the value at the end of inflation to the initial condition by

Pe ~ ¢se_%a7NtOt- (2.6)

The exponential factor can be enormous depending on the total number of e-folds of inflation
Niot, which is observationally only bounded from below. Indeed, some models of inflation
predict it to be extremely large [96, 97]. In addition to that and in contrast to the minimally
coupled case, the field has a non-vanishing time derivative at the end of inflation,

P = —%aszqbe. (2.7)

When ¢ < 1, this is a small effect, as d log ¢ /dt ~ £, but it can have important consequences
for the post-inflationary evolution of the fluctuations, as we will see in section 3.

As long as there are no additional stabilizing terms in the potential,® a negative value of
¢ induces a runaway potential that can drive ¢ into a trans-Planckian field value. Avoiding
such a potentially dangerous field excursion sets a limit on the size of the non-minimal
coupling. Under the most conservative assumptions of minimal number of inflationary e-
folds Niot = Nmin(H1) (see appendix A for an explicit expression for Nyin(H7)) and initial
conditions corresponding to de Sitter vacuum fluctuations ¢s = Hj/2m, the limit on £ only
depends on the Hubble scale of inflation H; and is shown in figure 2. This bound is not
contingent on the mass of the field or its potential role as dark matter. The bound gets
stronger for a longer period of inflation according to eq. (2.6).

SFor example this could be a self interaction term ~ A¢*. To avoid trans-Planckian values we would need
\ > EH? /Mgl. Note, however, that for A¢? > mi the energy density in a homogeneous field dilutes as ~ a~*
and the cosmology might be significantly affected (see, e.g., [98-100]). Moreover, stability of the mass under
quantum corrections also suggests that self-couplings are severely suppressed, e.g. by a shift symmetry.
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Figure 2. Limit on the size of a negative non-minimal coupling £ < 0 (for scalars, left vertical
axis) or kK > 1 (for vectors, right vertical axis) as a function of the inflation scale Hj, obtained from
avoiding a trans-Planckian field excursion (in the absence of extra stabilizing terms in the potential).
We make the most conservative assumptions of minimal inflation and initial conditions corresponding
to de Sitter vacuum fluctuations, i.e. ¢, = Hy/2m and (/35 = 0. The inset zooms into the region of
high-scale inflation and small non-minimal couplings.

2.2 Scalar fluctuations and isocurvature perturbations

The evolution of quantum fluctuations produced during inflation is also modified by the
presence of the non-minimal coupling to gravity. This was studied in [47], to which we
refer for details while presenting here only the main results. The time-evolving gravita-
tional background makes the quantum vacuum transition into an excited state, which can
be described as a classical stochastic field on smaller and smaller comoving scales as they
leave the horizon during inflation. At that time, each independent Fourier mode becomes a
Gaussian-distributed random field with power spectrum (valid for & # 0)

Py(k, ar) = <H1>2 Fla-), (2.8)

2

Fla_) = 22:_ r2<3 _2a) , (2.9)

and we denote ap = k/Hj. At this point, the result only deviates from the usual scale
invariant power spectrum of a minimally coupled, massless field by the O(1) factor F(a_).
This is to be expected, as within the horizon where k > aH; the modes are relativistic
even with respect to the R-dependent mass. This changes drastically after horizon exit. The
modes become non-relativistic due to their large effective mass, and their classical EOM
quickly approaches that of the homogeneous field. This means that the field power spectrum
is not frozen on superhorizon scales, but rather evolves as

k

Pathoa) = Pottan) () (210

where

By the end of inflation, the power spectrum of an individual mode is suppressed (or enhanced)
by
Py(k, ac) = Py(k, ap)e 2= N®), (2.11)



Here N (k) is the number of e-folds (counting from the end of inflation) at which the mode k
exits the horizon. A precise expression for it is given in eq. (A.1) in appendix A. The crucial
difference to eq. (2.6) is that the evolution of fluctuations only happens while the modes are
superhorizon during inflation. As opposed to Niot, N(k) can, under some assumptions, be
bounded from above using observations, at least for the modes of cosmological interest [101].

The field fluctuations translate into density perturbations which become relevant when
the dark matter scalar field composes a significant fraction of the energy density of the Uni-
verse. Within the misalignment approximation, the fluctuations are always small compared
to the homogeneous field value. As the energy density of the coherently oscillating field is
Pp ~ ¢?, where here ¢ denotes the amplitude of the oscillations rather than the instantaneous
field value, we can express the density contrast as

5
5, = 2P0 _ 9% (2.12)

P ¢
so that its power spectrum can be read off the field one,

Py, (k) = @;‘;27%(1{,@). (2.13)

Being independent of the inflaton ones, these density fluctuations are generically of isocur-
vature type and thus subject to constraints arising from their non-observation in the Cosmic
Microwave Background (CMB). The evaluation of eq. (2.13) at the CMB scales is simple®
because the evolution of the scalar field is linear at those large scales, which means that Ps,
stays constant at all times after horizon exit. Taking advantage of this fact, we evaluate it at
the time when the relevant mode k leaves the horizon.” For the CMB modes, this happens
Nems = N(koup) e-folds before the end of inflation, and thus

4

Hp\?
Ps,(kems) = 57 o= (Nen—Nown) (27T> F(a-)

4 Hp\?
- 7% o Nows <27T> F(a-).

Note that Nomp = Nowms(H) is determined once the scale of inflation is fixed (see ap-
pendix A for an explicit formula). We have chosen to display the result both as a function
of ¢ and ¢ to highlight the difference between both expressions, due to the superhorizon
evolution of the modes caused by the non-minimal coupling.

The non-observation of an isocurvature mode in the CMB by the Planck satellite [95]
sets an upper limit® on the size of P » (kcms). Figure 3 shows the resulting constraints in the
(m, Hy) parameter space for some representative values of {. A large enough positive non-
minimal coupling relaxes the isocurvature bounds, allowing for the misalignment mechanism
to produce the observed dark matter density for scales of inflation as high as ~ 10'3 GeV
irrespective of the mass of the scalar field. This is in stark contrast to the minimally coupled

(2.14)

5 As we are only interested in the amplitude of the oscillations of the background field and the fluctuations,
any potential phase difference between the two is irrelevant.

"As is commonly done, we use the late time behavior of the fluctuations to evaluate this expression. We
estimate that this approximation is valid up to a factor < 2.

8The isocurvature power spectrum eq. (2.14) has a nonzero spectral index and is uncorrelated with the
adiabatic one. Because of this, we use the limit from the “axion II” case in the Planck 2018 [95] CDI scenario.
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Figure 3. Constraints on the combinations of the inflationary Hubble scale H; and the mass my of
the scalar that allow to produce all of the dark matter via the misalignment mechanism. The top
axis shows the required field value at the end of inflation whereas the right axis shows the minimal
number of e-folds of inflation for a given Hubble scale, as given in eq. (A.2). The colored regions show
the exclusions due to isocurvature constraints for some exemplary values of the non-minimal coupling
€. The lines in the same colors indicate the field value, ¢5 = My, (solid) and ¢ = 1016 GeV (dashed)
at the beginning of inflation under the assumption of minimal inflation. In the black hatched region
there exist no values of £ and ¢, < My, for which the misalignment mechanism generates all the dark
matter without producing a too large isocurvature component in the CMB.

case, where a low enough inflationary scale is required for the misalignment mechanism to be
phenomenologically viable. On the contrary and as expected, a negative & strengthens the
isocurvature constraints.

2.3 Energy density in fluctuations

In the discussion above we have focused on the production of non-minimally coupled scalar
dark matter through the misalignment mechanism. However, as was discussed in [47], infla-
tionary fluctuations of a non-minimally coupled scalar field can also carry a significant energy
density. We now briefly review this alternative production mechanism in order to understand
the interplay between the misalignment and the fluctuation-based contribution to the dark
matter density.

Let us assume that the background homogeneous field value is smaller than the typical
fluctuation, in other words, we neglect the energy density generated by misalignment. This
is the case if the initial misalignment is too small, or if it gets diluted away by a long period
of inflation. To be more precise, any possible initial misalignment is rendered insufficient for
dark matter production (cf. egs. (2.2) and (2.6)) if inflation lasts longer than

1 1 me
N, —_ — log — 2.1
tot <30+20gev>7 (2.15)

where we have taken the extreme initial condition ¢ ~ M. Looking at figure 3, we see that
for non-minimal couplings in the range of interest, & ~ 0.01, a number of efolds in the 102103



range is sufficient to effectively dilute any initial homogeneous field value. In this situation
and following [47], the energy density stored in the inflationary-generated fluctuations of a
non-minimally coupled scalar field is

Q330 Flal)  [FT)RC 14 deea)
~ 11 1 2 JLqu2 H12 mi(a_Jrl)? (216)
Qpm 2in2 a-(l—a-) [F)se- My

where 7). is the reheating temperature, H.q denotes the Hubble scale at the time of matter-
radiation equality and the rest of notation is as described in previous sections. Figure 4 shows
the regions of parameter space where this contribution is sizeable, for different values of .
It is important to note that the power spectrum of density contrast fluctuations is peaked at

the comoving scale
v
kot~ 1.3-10 6 pey [, (2.17)
me

which means that the energy density is mainly stored in fluctuations of typical comoving size
k!, At larger scales, the power spectrum can be expressed as

200
Ps, (k) ~ (/f*) Ps, (ky), (2.18)

which is valid for 0 < a_ < 1 and k < k.. The amplitude of fluctuations at that scale can
be computed as

Ps, (k) ~ a® (1 — a_)? - I(a_), (2.19)

where I(«_) is the integral defined as

11
I ) = / dydz — L p(y)P(2), (2.20)
ly—1|<z<y+1 Y=z
with
T <1
Pay=4" S 221
@ {x o 21

The integral is to be evaluated numerically in order to obtain the size of isocurvature fluc-
tuations at CMB scales using eq. (2.18), which can be confronted with the observational
constraints by the Planck satellite [95]. As can be seen in figure 4, a large enough value
of the non-minimal coupling £ 2 0.03 suppresses the large-scales isocurvature fluctuations
below the observational limits. One comment is in order: looking at eq. (2.18), one realizes
that the isocurvature power spectrum does not directly depend on the scale of inflation. The
reason for this is that both the amplitude of field fluctuations and the variance are quadratic
in Hj, so the dependence cancels out in the density contrast power spectrum. The apparent
dependence on the scale of inflation of figure 4 is only due to the requirement that the relic
energy density matches the observed dark matter abundance.

Compared to the production via the misalignement mechanism, dark matter produc-
tion from fluctuations is typically viable at much larger masses and higher inflationary
Hubble scales.
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2.4 Stochastic scenario

The “stochastic axion” scenario was presented in [38, 39] as a way to generate the dark
matter abundance from inflationary fluctuations with wavelengths larger than the current
size of the Universe. The accumulation of such fluctuations over a long period of inflation
can significantly contribute to the effective homogeneous field in our Hubble patch. This
effect can be described as a random walk process of the field value, which receives a “kick”
every Hubble time from the modes exiting the horizon during inflation. Working against
that is the relaxation of the field towards zero, which is driven by the mass of the scalar.
For the following discussion, we take a strict definition of the “stochastic scenario”, requiring
that equilibrium is reached to a good approximation. In principle, one could also consider
situations where equilibrium is not fully attained.

This scenario is also significantly impacted by the inclusion of a non-minimal coupling,
which acts as a comparatively large, effective mass during inflation. Our calculation follows
along the lines of [39] and generalizes it to be valid for scalars with masses comparable to
the scale of inflation. This is important as the effective mass mgﬂ = mi +E¢R =~ 12§H12 is in
general not negligible compared to Hﬁ,2 This fact also requires us to track the evolution of
superhorizon modes during the last Ny, e-folds of inflation. The details of the calculation
are presented in appendix B, whereas here we focus on the main results.

Given a long enough inflationary period, the probability distribution of the field value
asymptotically approaches a Gaussian distribution with zero mean and variance given by
(see eq. (B.9) for the exact expression),

(93) = Flo) (I“”)N (222)

o_ 2

which is valid for positive . From this, we deduce that the expected typical value of the field

at the end of inflation is of order 1/<¢§>. The above expression only sums over the modes

~10 -



which are superhorizon today, as those are the ones that contribute to the homogeneous field
value in the observable Universe. The first part of eq. (2.22) accounts for the generation
and accumulation of fluctuations, while the last factor describes the evolution of the field
during the last Ny, e-folds of inflation. This late time exponential relaxation towards zero
is relevant due to the fast evolution driven by the non-minimal coupling to gravity.

In the stochastic scenario, the field “loses” memory of the preinflationary initial condi-
tion and the observable misalignment angle in each Hubble patch is chosen randomly from
the distribution described by eq. (2.22). Critically, if the effective mass during inflation
is large, equilibrium can be reached much faster than in the minimally coupled scenario
studied in [38, 39]. As is shown in appendix B, an extra number of e-folds of inflation
AN = Niot — Nmin > 1/a— on top of the minimum is necessary for equilibrium to be at-
tained. In addition to this, to reach the purely stochastic regime the variance induced by
fluctuations has to become larger than the exponentially decaying field value originating from
the initial homogeneous ¢s. If we require the induced field value to be a factor of + larger,

we get
. 2
1 22+a- g3 a_ bs 1 ¢
AN > —1 24 oy 1. 2.23

a_ " 7{*2(3—20!> (ay —a_)? <H12 + 2&+H[ + (2.23)

The two results in egs. (2.22) and (2.23) generalize the ones found in [38, 39], allowing for
arbitrary initial conditions and large effective masses.

The stochastic scenario is also prone to generating too much isocurvature fluctuations
at the CMB scales. From the point of view of subhorizon modes, the homogeneous field
value generated in the stochastic regime is indistinguishable from one originating from a
homogeneous initial condition. This implies that eq. (2.14) also holds in the stochastic case,
which allows us to express the isocurvature component as

Ps,(kemp) =~ 4o @~ (Nmin=Nows) (2.24)

The exponential factor arises due to the slight difference between the largest observable scale
and the ones that are accessible at the CMB, which corresponds to about 7 e-folds (see ap-
pendix A). As long as a_ is small, this is a small correction and the result is dominated
by the factor in front. It is easy to understand where this factor comes from: compar-
ing eq. (2.22) with eq. (2.8), we see that the accumulated field variance of a large number of
superhorizon modes in enhanced by a factor of 1/« _ with respect to the amplitude of the fluc-
tuations of an individual mode. Given the Planck [95] constraint on isocurvature fluctuations
Pr(kems) S 1077, we conclude that the stochastic scenario can only be realized for very small
values of the non-minimal coupling of order ¢ < 10719, This should apply to any model in
which the effective mass is non-negligible compared to H;, independently of the origin of mg.

3 Vectors

After having discussed the misalignment, stochastic and fluctuations scenario for a scalar
field, let us now turn to the vector case and see how these scenarios can be realized there.

3.1 Homogeneous vector field and relic density
Starting from the action eq. (1.2), we derive the EOMs for the homogeneous field [6, 56, 57]

1—&

xo=0 and ¥;+3Hx;+ <m§< + R> xi =0, (3.1)
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which are given in terms of the physical field x, = X,/a, so that the energy density can (for
an approximately homogeneous field) be written as [6, 56, 57]

3

1., 1 1 ,

=2 [QX? +5max; + (1= k) <2H2x? + waa)] . (3.2)
=1

The advantage of this field redefinition is that the EOM for each of the spatial components
coincides with the scalar one, eq. (2.1), after the identification

(1-r)

R (3.3)

In particular, a non-minimally coupled vector with k = 1 behaves as a scalar with a minimal
coupling to gravity (£ = 0). Because of this correspondence, the discussion of the misalign-
ment mechanism made in section 2.1 carries over to the vector case, as do all the evolution
equations (cf. eq. (2.3) ff.). Let us then simply rewrite the main results using the notation
of this section. The relic density of vectors can be expressed as

QX Xe 2 [mx
~ 5 F(T ( ) , 3.4
Qpm T (107 Gev eV (3:4)
where we denote xy = |X]. As in the scalar case, the field value at the end of inflation x. is
different than the initial one ys due to the superhorizon evolution caused by the coupling to
R. Both are related by
7lﬁ—NtOt
Xe ™ Xs€ 2 , (3.5)

with an analogous definition? to the scalar case,

By =3+ 1+ 8k. (3.6)

Note that we are using the conventions described in section 2.1 for the field value at the
beginning of inflation. Depending on whether « is larger or smaller than one, there can be a
substantial enhancement or suppression of the homogeneous field value during inflation. Asin
the scalar case, an absolute limit can be placed on k > 1, independently of the dark matter as-
sumption, by avoiding a trans-Planckian field excursion. Using the identification of eq. (3.3),
this limit is analogous to the one for scalars. Both are shown simultaneously in figure 2.

3.2 Vector fluctuations and isocurvature perturbations

Like a scalar field, a vector field present during inflation acquires a spectrum of isocurvature
perturbations. We now study the role of the non-minimal coupling in the generation and
evolution of such fluctuations.

3.2.1 Generation during inflation

For vectors, the situation is similar to the scalar case, albeit a bit more complex due to
the multicomponent nature of the field. The best way to deal with the perturbations is
to split them into transverse (L) and longitudinal (||) modes and address each polarization
separately.

9The parameter B_ defined here is related to v used in [57, 58] by B— = 3 — 2v, neglecting terms of
O(mx/H[).
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Transverse fluctuations. The EOMs of the fluctuations in momentum space and for the
two transverse polarizations 5)(24- read

a2

. . 1— k2
Sxi +3HEY, + (m?x + TRR + > oxit =0, (3.7)

which is identical to the expression in the scalar case (cf. [47]) with (1 — x)/6 <> £. We can
therefore directly translate the results of section 2.2: the power spectrum for non-vanishing
momentum modes outside the horizon (0 # k < aHy) is

P;<ha>::(§;)2fxﬁ><ag})ﬂ, (35)

with F(-) as defined in eq. (2.9).

Longitudinal fluctuations. In this case, the discussion is simplified by making use of
conformal time 7 and of the field redefinition f = a2yl = a6X/l. The full EOM for the
mode functions then reads

g 2 2K , 9 2K 2
T TP\ e e ) 0 (3.9)

where we have assumed that mg( < HI2 so that the bare mass has been neglected. It can easily
be reinstated by substituting x — £ —m% /(12H?) at any point in the derivation. Although
we are not able to solve eq. (3.9) analytically, we can study its most relevant limits.

f

e Subhorizon limit |kT| > 1. The mode equation simplifies in this limit to
"+ Ef=0. (3.10)

We recognize the equation of motion of a harmonic oscillator in Minkowski space: as
expected, the mode functions in the deep subhorizon limit can be described as quantum
fluctuations of the vacuum. This allows us to set the initial condition for the evolution,

1
V2k

which is the usual Bunch-Davies vacuum. Note that the units of Fourier transformed
fields differ from the ones in position space by a factor of [mass]*/2.

f(r = —o00) = e kT (3.11)

e Superhorizon limit k7| < 1. The mode equation now becomes

a?f 2df 2
4y 2df 2k, (3.12)
dy>  ydy g2

where y=|k7|. This can be solved analytically and we can express the general solution as

f=0 y(71+\/1+8n)/2 + Oy y(717\/1+8n)/2. (3.13)

The second exponent is always smaller that the first one, so the second term dominates
at late enough times (for y < 1). Recovering the physical field and scale factors, we have

1
1g
| crgt-ds- Hi (F )2
ox! ~(Cy2° 72 1372 (aHI . (3.14)
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Figure 5. Evolution of the early time, late time Figure 6. Numerical results (C} values), deter-
and numerical solution to the full mode equation mined from figures similar to figure 5, and corre-
in conformal time (cf. appendix C) for k = 1. sponding fit function | f(x)| shown together with
The value of CY, is chosen such that for late times the relative deviation of the fit function (residu-
the numerical solution agrees with the late time als) from the numerical results underneath. The
solution. fit function for |f(k)| is given in eq. (3.15).

The chosen normalization is motivated by the more detailed calculation'® presented in
appendix C. Importantly, this superhorizon solution has the same time dependence as
the solution for the homogeneous field and the transverse polarization.

e Intermediate regime |kT| ~ 1. Here we have no choice but to solve the full mode
equation. As an analytic solution for it is hard to come by in this regime, we solve it
numerically to connect the sub- and superhorizon expressions and determine C}. As
expected, we find a dependence of C, on k and we use the numerical solution to deter-
mine a fitting function C% = |f(k)|. A particular example for the numerical evaluation
and the matching of the analytic asymptotic results in the case of kK = 1 is shown in
the left panel of figure 5 (cf. appendix C for the relevant formulas). Extracting several
values of C} in the range x € [10™%,10], which extensively covers our region of interest,
we determine an accurate fit to the numerical results. It is given by

|f (k)] = 0.5027%% — 0.224 + 0.262k — 0.0411k2 + 0.00654x3, (3.15)

which is depicted together with the residuals in the right panel of figure 6.

Putting it all together, the expression for the power spectrum of the longitudinal fluctuations
can be written as ) 5
H k -
| (k,q) ~ 25~ 2(H) (== 3.16
Pl =2 1500 (50) (o) (3.16)
which is valid for superhorizon modes with k # 0. Comparing with the expression for the
transverse fluctuations eq. (3.8), we find the relation

(3.17)

1ONote that here we use the redefined field f = adX! to keep the notation as slim as possible, whereas in
appendix C, where we present the full detailed calculation, we work with the field X!, making it easier to
determine the most useful normalization.
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This generalizes the result found in [58, 59] for x = 1, for which the relation Pl ~ 273%2. is
recovered.

We conclude that the primordial power spectrum of the longitudinal fluctuations is
proportional to the one of the transverse fluctuations. In particular, for values of s close to
unity, the proportionality factor is of O(1). However, as we will now see, the post-inflationary
evolution of the two modes can significantly differ.

3.2.2 Evolution after inflation

We now discuss the evolution of the primordial fluctuation power spectrum generated during
inflation throughout the different epochs in the history of the Universe until today. As in the
previous section, we differentiate between transverse and longitudinal modes.

Transverse fluctuations. The EOMs for the two perpendicularly polarized modes are

2
vt +3HSY: + <m§( . g "R+ l;) Sxit =0, (3.18)
which after the substitution x — 1 — 6£ are the same as for the scalar perturbations: the
transverse fluctuations thus evolve in the same way as the fluctuations of a scalar field. We
conclude that, for large scales like the CMB ones, the ratio between the transverse fluctuations
and the homogeneous field stays constant throughout the cosmological evolution. This implies
that the density contrast power spectrum can be evaluated at any point, such as right after
horizon exit. Doing so and adding up the two transverse polarizations, we find

8 H\?
L ~_ S (4
Ps. (kcmB) ~ "2 P Nows <27T> F(B-). (3.19)

As expected, we encounter the same suppression (for x < 1) or enhancement (for x > 1) in
the isocurvature perturbations as in the scalar case.

Longitudinal fluctuations. The full EOM in this case is more complicated, but it greatly
simplifies during the radiation domination epoch when R = 0, or whenever we can neglect
R, RK m%o yielding

5"'+<3+2]{22>H5"+<2]€2H2+kz+ 2>5“—0 (3.20)
X k2 4+ a?m5 X k% 4+ a?m5 a2 ) o= '

As long as reheating proceeds almost instantaneously, which we assume to be the case,
this simplified version of the EOM is adequate to study the full post-inflationary evolution.
Comparing eq. (3.20) with eq. (3.18), it becomes clear that the behaviour of longitudinal
perturbations can significantly differ from the one of transverse (and scalar) ones. Let us focus
on large scale modes that become non-relativistic before they reenter the horizon, as these are
the ones relevant for CMB observables. These modes evolve through three distinct regimes:

(i) H>k/a>mx. Inthe superhorizon and relativistic limit, eq. (3.20) further simplifies to

Sx Il

+5H6X" + 2H%5y!I =0, (3.21)

which is solved by
oxll ~ cha™t + cha 2. (3.22)
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(iii)

The physical field thus redshifts as 1/a. The modes corresponding to the largest scales
might not enter this regime at all if they become non-relativistic before the end of
inflation, i.e. if they violate k/a, > mx. Therefore, the condition for the CMB modes
to skip this regime is

k H
CMB ~9.10"%ev !

> it S
mX < 6.6-1013 GeV’

(3.23)
where koump is a typical CMB scale, which we take to be the Plank pivot scale kcyp =
0.05Mpc~!, and a, is the scale factor at reheating, given by a, = e~ Nmin(H1) ynder the
assumption of instantaneous reheating. We conclude that if m > 10*eV, the CMB
modes do not enter regime (i) if inflation happens at the highest scale compatible with
the limit from the non observation of tensor modes [95], H; < 6.6-10'3 GeV. For lower
values of Hj, this condition shifts to lower and lower masses.

H > mx > k/a. Modes are superhorizon but already non-relativistic, which allows to

approximate eq. (3.20) by

55( I

+3Héy' =0, (3.24)

and to obtain the solution
oxll ~ ¢! + ™. (3.25)

In principle, it seems that the constant mode would dominate the solution.!! In the
absence of a non-minimal coupling, the authors of [42] argue that this is actually not
the case, because ¢ < ¢j and the constant mode can be dropped. The reason for this
is that in region (i) the solution becomes o a~! to great accuracy, and continuity of the
solution and the first derivative imposes a large hierarchy between the two coefficients.
This is not necessarily the case when a non-minimal coupling is present, because during
inflation the superhorizon modes are not frozen and x. # 0 as eq. (2.7) indicates. As a
consequence, the “flattening” of the mode functions is either weakened or not applicable
at all depending on how long the CMB modes spend in region (i), if they enter it at all.

On the one hand, if region (i) is skipped, that is, if the CMB modes become non-
relativistic before the end of inflation, then there is no suppression. On the other hand,
if mx < kcup/ar and the CMB modes enter region (i), i.e. they are still relativis-
tic once radiation domination starts, then we expect some suppression of the power
spectrum at those scales. By carefully matching the field value and its first derivative

through the regimes (i) and (ii), we obtain that

mx

2
XV (kems, agy) ~ ( ) ox(kons, ar), (3.26)

kovs/ay
where a;;) denotes the scale factor at the end of region (ii).

myx > H, k/a. Modes become massive enough to overcome Hubble friction, and we
recover the usual pressureless-matter like EOM

ox" +3H6X" +m%ox! =0, (3.27)

which is identical to the scalar case, as was already discussed for the homogeneous field
and the transverse polarizations.
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Figure 7. Parameter space showing the ability of a non-minimally coupled vector field to generate
the observed dark matter abundance through the misalignment mechanism, as a function of its mass
and the Hubble scale of inflation. This figure should be interpreted in the same way as figure 3. The
kink in the isocurvature limits is due to the fact that longitudinal modes are only relevant for large
enough masses, see eq. (3.28).

We conclude that except for the potential suppression factor of eq. (3.26), the evolution
of longitudinal modes is analogous to that of the transverse ones, allowing us to write

ol f(w))2 |1 if m 2 kovs/ar

2 (%) (L)él, if m < koms/ar- (3.28)

P(‘;‘X(kCMB) ~ = P; (koms) -

1
2

kcumB/ar

The total density contrast is the sum of the contributions from all the polarizations, so that
Ps, (kcmB) = 'P(i (kcmB) + 77(|;|X (kcuB)- (3.29)

In analogy to the scalar case, figure 7 shows the Planck [95] isocurvature constraints in the
(mx, Hr) parameter space for selected values of k. The conclusion is similar to the scalar case:
as long as Hr < 10'3 GeV, vector dark matter produced from the misalignament mechanism
is compatible with isocurvature constraints provided a non-minimal coupling x < 1 is present.

3.3 Enmergy density in fluctuations

Given the correspondence between transverse vector fluctuations and scalar ones, it is ex-
pected that the energy density stored in small scale fluctuations can also be important here.
In addition to that and as a particularity of the vector case, the authors of [42] (see [72] as
well) showed that longitudinal vector fluctuations can be copiously produced during inflation
also for k = 0.

As already discussed, the behaviour of the transverse modes is exactly the same as that
of a scalar field after the identification (1 — k)/6 <> £. At the same time, when x ~ 1, the

"Note that in terms of 5X¢H this would correspond to a growing mode. However, as the physical field is the
one that controls the density perturbations, there is no real growth of fluctuations in this regime.
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Figure 8. Regions of parameter space where the energy density stored in vector field fluctuations of
inflationary origin makes a sizeable contribution to dark matter. This figure should be interpreted in
the same way as figure 4, with the addition of the grey line, which corresponds to the contribution of
longitudinal fluctuations in the case of a minimal coupling x = 0, as was computed in [42] (the presence
of a small enough non-minimal coupling as in eq. (3.31) is permitted; in this case the isocurvature
constraints are also different and the full grey line is viable). We remind the reader that this figure
assumes no contribution to the relic density from the misalignment mechanism.

contribution from longitudinal modes at small scales around the peak at k! is suppressed
due to the particularities of the post inflationary evolution described in the previous section.
The easiest way to understand why the suppression at small scales is even stronger than at
CMB scales is by replacing kcyp by the much larger k, in eq. (3.28). All this means that
the discussion in section 3.2 carries over: the inflationary (transverse) fluctuations of a non-
minimally coupled vector field can carry enough energy density to reproduce the observed
dark matter abundance. As can be seen in figure 8, the region of parameter space where this
production is viable corresponds to relatively high-scale inflation, masses above roughly eV
and non-minimal couplings x moderately smaller than 1.

The contribution from longitudinal modes is however relevant for minimally coupled
fields, i.e. when k = 0, as was discussed in [42, 72]. The relic density that is generated in this

case is given by
Q H 2
X oo [ . (3.30)
Qpm 3-107%eV \ 6.6 - 1013 GeV

This is in contrast to misalignment and transverse fluctuations, whose contribution is com-
pletely negligible in the minimally coupled case. Longitudinal modes are very strongly sup-
pressed at CMB scales due to the smoothing of the field that occurs during inflation when
k = 0. However, the presence of even a small non-minimal coupling can significantly weaken
this suppression. This is due to the fact that the modes describing the fluctuations have an
O(k) time derivative at the end of inflation, similarly to the homogeneous field value (cf.
eq. (2.7)). Taking this into account and carefully matching the solutions of the EOMs in the
different regimes, we find that the amplitude of the power spectrum at CMB scales can be
approximately computed as

4k _ 9(1—2x)
Ps(kems) o ( kous \7 4 5 (6-1076ev !
N ~1.7-1 2 ey 31

Ps(ky) " mx - Gy 7107k mx ’ (3.31)
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which is valid for sufficiently small but non-vanishing . Taking into account that the power
spectrum is of O(1) at the peak, i.e. Ps(k.) ~ 1, and applying the Planck constraint [95] on
isocurvature perturbations Ps(kcymp) < 1.3- 1079, we conclude that the non-minimal coupling
is bound to be very small if the vector is light. For instance, a mass of my ~ 1076 eV requires
x < 1076, If this condition is satisfied, a high inflationary scale allows for generation of sub-eV
vector dark matter in this case, as can be seen in figure 8.

3.4 Stochastic scenario

In analogy to the scalar case discussed in section 2.4, the stochastic scenario can also be
realized for a vector field with a non-minimal coupling to gravity. Once more, the calculation
is simplified by considering the contribution from transverse and longitudinal fluctuations
separately. As expected, transverse modes behave like scalar ones with the usual replacements
ay < By and € < (1 — k)/6. Following appendix B and once equilibrium is reached, the
variance of the transverse superhorizon fluctuations is given by

2
(%) =2 F(Bﬁ_—) <125;I) o0~ N (3.32)

where the factor of 2 accounts for the two transversal polarizations. For the longitudinal
fluctuations, we make use of the results of section 3.2 to write the mode functions as

1
_15 Hj k)27
o) = ()| 21 <aHI) , (3.33)

which is valid after horizon exit during inflation. The variance of the Gaussian distribution

of the longitudinal field fluctuations can also be found by integrating over the superhori-

zon contributions.'? At the end of inflation, both transverse and longitudinal contributions

are of the same size. However, the post-inflationary evolution is different for each polariza-

tion. Because of the flattening of the wavefunctions described in section 3.2 (cf. also [42]),

longitudinal modes will be suppressed unless

ko 6.6 - 1013 GeV

> 2 1077 eV | ———————, 3.34

my 2 0 (3:34)

where k; ' ~ 10Gpc is the size of the observable Universe. The variance of superhorizon
longitudinal fluctuations is thus

2 1, if m 2 ko/ar
(3 0 T ()t wmemi O

The total variance is obtained by adding up the contributions from both polarizations,

(6?) = (x&") + <x52> : (3.36)

so that the typical field value is given in the stochastic regime by +/(xs2).

2Note that the integral eq. (B.7) is dominated by the upper limit, which means that the variance is
dominated by the smallest superhorizon modes.
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As in the scalar case, the stochastic regime is only reached if inflation lasts for an extra
AN e-folds in addition to Npj,. On the one hand, AN > 1/5_ is required for the random
walk process to attain equilibrium. On the other hand, dominance (by a factor of 7) of the
variance of the stochastic distribution over any remnant of the initial field value y; sets the
additional constraint

1
AN > B—_ln ¥ @ 2 (%) (B+—pB-)?

ol

-1
| f(8)[? o173 B ds 1, ¢s
+1 sz

2
) +1]. (3.37)

Because the stochastic scenario does not modify the last Ny, e-folds of inflation, isocurvature
constraints can be computed in the same way as for the misalignment mechanism. Using
egs. (3.29), (3.32) and (3.35), we find that the density contrast power spectrum at CMB
scales is given by

Ps(kcms) ~ 45— efB—(Nmin*NCI\IB)7 (3.38)

where we have neglected a small effect coming from the different scale dependence (kg
vs komp) of the longitudinal power spectrum: see the difference between eq. (3.35) and
eq. (3.28). This equation highlights the fact that the accumulated variance is enhanced by
a factor of 1/8_ with respect to that of each individual mode. The need for a strong sup-
pression of the CMB isocurvature makes it hard to realize a stochastic scenario for x # 1.
Indeed, the Planck [95] constraint translates into a limit 1 — x < 10710 on the deviation of
the non-minimal coupling from the scalar-like value.

4 Conclusions and outlook

In the present paper we have considered light (pseudo-)scalar and vector fields with couplings
to the curvature/Ricci scalar as candidates for dark matter. The main impact of these cou-
plings occurs during inflation when they give a contribution to the mass of the fields. The
effective mass is then typically of the order of the Hubble scale, leading to a non-trivial evo-
lution of both the field and the fluctuations during inflation. This evolution during inflation
impacts all three possible non-thermal scenarios for the production of the dark matter den-
sity: misalignment [1-3, 5-7], stochastic [38-41] and fluctuation [42-47] production. After
inflation, the Ricci scalar vanishes during radiation domination and the evolution proceeds
in the standard way.

For (pseudo-)scalars, even relatively small positive vales of & < (O(0.1) open up size-
able areas in parameter space for the misalignement mechanism due to the suppression of
isocurvature fluctuations at the CMB scales. In the opposite direction, negative values of
¢ < —4 are excluded or require stabilization by an additional term in the potential because
the induced tachyonic mass produces trans-Planckian field excursions, even for the smallest
possible values of the inflationary Hubble scale (for high-scale inflation, this occurs for much
smaller couplings, £ < —0.1).

For high scale inflation and larger masses above ~ 1eV, the energy density stored
in small-scale fluctuations of the scalar field becomes sizeable up to the point where it can
account for the entire observed dark matter density. In this situation, dark matter is produced
from fluctuations of the field generated during inflation, long after the CMB modes exit the
horizon. The presence of a non-minimal coupling & 2 0.03 suppresses fluctuations at large
scales, avoiding the Planck isocurvature constraints and leading to a peaked density contrast
power spectrum [47].
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Finally, assuming that inflation lasts for a sufficiently long time, the accumulation of
superhorizon fluctuations with wavelengths larger than the size of the visible Universe can
dominate the observable homogeneous field over any initial condition. In this stochastic
scenario, the homogeneous field value for the post-inflationary evolution in our Hubble patch
is chosen probabilistically from a Gaussian distribution whose variance is controlled by the
curvature coupling £. In order for the super Hubble variance to grow sufficiently large and
avoid isocurvature constraints, the minimal coupling is required to be very small, £ < 10710,
while the number of e-folds of inflation has to be larger than ~ 1/(8¢) ~ 10°.

A massive vector can also act as dark matter and is subject to production through
the same three mechanisms as a scalar. The cosmological evolution of the homogeneous
component of a vector field with curvature coupling « is found to mimic that of the scalar
field after the identification x <> 1—6£. Consequently, the misalignment mechanism proceeds
in the usual way, with the distinction that the minimally coupled scalar corresponds to a non-
minimally coupled vector with x = 1. It should however be noted that the massive vector
acquires a longitudinal polarization whose kinetic term is rendered negative for a finite range
of momenta due to the presence of the non-minimal coupling. A detailed study of how this
sign flip affects the stability of the vacuum, along the lines of [59, 92-94], is left for future work.

The discussion of vector fluctuations is most easily carried out by considering transverse
and longitudinal polarizations separately. As for the homogeneous field and due to their ap-
proximate conformal symmetry, transverse fluctuations behave like scalar fluctuations with
the identification of curvature couplings mentioned in the previous paragraph. This means
that in the misaligned regime, isocurvature constraints are weakened'? if x < 1. The phe-
nomenologically interesting region where misalignment production is viable even for high
scale inflation corresponds to 1 — x being O(0.1). The vector DM production from transverse
fluctuations and the stochastic scenario are also viable and proceed in a manner analogous
to the scalar case.

The longitudinal mode, however, presents a number of particularities with respect to
the transverse ones. In the misalignment mechanism and owing to the differences both in its
inflationary and post-inflationary evolution, the longitudinal mode is shown to be suppressed
if the vector is very light. However, when it is heavier than 10~*eV (or less depending on the
scale of inflation), the contribution of longitudinal modes to the isocurvature spectrum at
CMB scales is of the same size as that of the transverse ones and cannot be neglected. The
situation of the production from inflationary fluctuations is also interesting. While small-
scale longitudinal fluctuations are always suppressed when x ~ 1, in the case of a minimally
coupled vector their amplitude can be large enough to contain an energy density comparable
to that of the DM, provided inflation occurs at a high scale. We show that the viability of
this scenario strictly relies on the almost complete absence of a non-minimal coupling; for
instance, a k > 107° spoils the mechanism if my ~ 107 %eV.

Throughout this paper we have considered the inflationary epoch of our Universe to be
a perfect de Sitter expansion with constant H;. However, the observation of a slight scale
dependence in the fluctuation spectrum at CMB scales [95] indicates that H; is a slowly
decreasing function of time. As long as this spectral tilt remains small,'* the results of this

13A tachyonic mass for the vector is generated during inflation if x > 1. In analogy to the scalar case,
avoiding trans-Planckian field excursions sets strong constraints on the size of the curvature coupling.

14The spectral index of adiabatic modes has only been measured around the scales accessible in the CMB.
Without more observational guidance, it is reasonable to make the assumption that ns remains small during
most of inflation. A full discussion of the physical consequences of large variations in Hr is an interesting
topic, but one that lies beyond the scope of this work.
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work are not changed qualitatively. Quantitatively, the effect of the spectral tilt can be
compensated by a shift to slightly larger (for scalars) or smaller (for vectors) values of the
non-minimal coupling.

Non minimal curvature couplings allow for the generation of light (pseudo-)scalar or
vector dark matter in a wide range of masses. The three different production mechanisms
complement each other in terms of their viability in different regions of parameter space.
This opens up exciting possibilities for experiments and potentially interesting interactions
between the physics of dark matter and inflation.
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A Inflation scale and minimal number of e-folds

Being crucial to our calculations, here we give a somewhat exhaustive discussion about how
long inflation needs to have lasted, based on observations, the standard cosmology and basic
assumptions about the model of inflation and reheating. We will closely follow ref. [101] for
this purpose.

Let us denote by N (k) the number of e-folds at which the comoving scale k left the
horizon, that is, when k = aH during inflation. Note that the requirement of an accelerated
expansion implies that aH is a monotonically increasing function of time. The largest scale to
which we have access observationally is the present horizon scale kg = agHy. The requirement
N (ko) < Niot gives a lower limit on the total number of e-folds of inflation, but it cannot
say anything about the actual value of Nio, which can (and usually is expected to) be much
larger. In order to make numerical statements, we will often make the assumption of minimal
inflation, which sets Nyt to its smallest observationally allowed value Ny, = N (ko).

The general expression for N (k) is [101]

k 1 preh) 1 <p6q> <Hk>
N(k)=—1In + —1In + —1In + In + 1n (219 Qgh) , Al
( ) <a0H0> 3 <pend 4 Preh Heq ( 0 ) ( )

where pend, Preh; Peq are the energy density at the end of inflation, at reheating and at matter-
radiation equality, respectively; and Hj is the Hubble parameter at the time when the scale
k exits the horizon during inflation. We can simplify this expression by making two main
assumptions:

e Hj ~ Hepng ~ Hip: there is no energy drop during inflation. This amounts to assuming
exactly exponential expansion with a constant value of H.

® preh ~ Pend: reheating happens instantaneously when inflation ends.

Under these assumptions and using p = 3m?)]H 2 (with the reduced Planck mass), Heq ~
2-10727 GeV, the matter density Qg ~ 0.3 and h ~ 0.7, we can obtain a simple expression
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for the minimum number of e-folds, Nuin, which reads

N =107+ b (Y w
We normalize the result to the largest scale of inflation allowed by observations (using the 95%
cl limit from [95]). Note that Nyin becomes smaller for lower inflationary scales. Another
quantity that is relevant for us is N(kcmp), which is the number of e-folds at which the
perturbations accesible in the CMB exited the horizon. Using the Planck pivot scale kcyp =
k, = 0.05Mpc~!, we obtain that these scales exited the horizon

Nmin — N(kCMB) =7.26 (A3)

e-folds after the current horizon scale. Finally, let us relax the two former assumptions and
give a more general expression for the number of e-folds,

1 H] 1 Vk 1 Preh
Noin = 6197 + ~In | ———L )y S R0 ) 4 . Ad
min o (6.6 1018 Gev> g <pend> BT <pend (A.-4)

Here, we use the slow-roll approximation to write Hy = 8wVj/ 3M§l and express the result in
terms of the energy scale of inflation instead of the Hubble scale. Note that a longer period
of preheating generally implies preh < penq and leads to a decrease in Ny, while a deviation
from pure de Sitter expansion means that Vi, > penq and results in a larger value for Nyip.

B Stochastic scenario

One aspect that is relevant to the stochastic scenario is the exact form of the field value
evolution during the inflationary period. For arbitrary initial conditions ¢ and bs, it is
given by

Ot) = ¢y (cre™ 301 4 cyemhos it (B.1)

S S R
oy —a_ \ U Hpgs )’

SRS S N
? ay—a_ \  Higs)’

and identical equations being valid in the vector case for x;(¢) only exchanging a4 for fi.
Using that aq > a— (B4 > B-), we find for late times the expressions

with

(B.2)

N 2
Hi(og —a-)

(1) (q'bs + ;a+Hz¢s> ezt (B.3)

ot~ —— («zss n ;amms) e b tirt (B.4)

oy — o

Note that t is defined such that at the end of inflation Hjt = Niot. Furthermore, we can see
from these expressions that in general

3t) = — o Hio(h) (B.5)

so in terms of initial conditions the assumption ¢, ~ H s is reasonable as long as a_ % 0.
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Let us now turn into the stochastic regime, which involves the computation of the
variance of the field induced by the non-vanishing momentum modes that describe the fluc-
tuations. As noted in section 2.4, our calculation is done along the lines of [39]. There, the
quantity v appears, which is given by . = 3 — 2v in terms of the quantities used throughout
this paper, or more directly by v & 3/2,/1 — 16/3¢, with 0 < £ < 3/16. As in [39], we can
also express the Hankel functions that describe the modes in terms of Bessel functions and
see that the contribution of J_, () is the dominant one, leading to

H? 3—a_ 1 \? /2H;\>"*
2 o Hr 2 I
56 _4ﬂr( ' )(H) ( ! ) . (B.6)

Here, the subscript “horizon” indicates the quantity at horizon exit. These fluctuations con-
tribute to our Universe’s homogeneous field value as long as inflation stretches to scales that
are still superhorizon today. The accumulated effect of all the sufficiently long wavelength
modes results in a Gaussian distribution for the homogeneous field value, with variance

a(thorizon)HI d3E
<¢§> orizon :/ ‘5¢k|2:a orizon
h S 2 h (B7)
_ “ 2 — o 2 —a— (Ntot —Nmin
_W?)a_r( > >HI[1—e (e )}.

The field value right at horizon exit is randomly drawn from this Gaussian distribution. As-
suming that it is centered at the origin, the “typical” result corresponds to ¢norizon = 1/ <¢§>.
That said, this homogeneous field can vary significantly by the end of inflation due to the
potentially fast superhorizon evolution caused by the non-minimal coupling. We can use
eq. (B.3) with ¢norizon = 0 (this assumes that equilibrium has been reached in the sense that
is described below) to describe the subsequent evolution after horizon exit by
a4 _1 :
¢6 ~ —¢€ 20é_]\lmmqshorizon- (B8)
a4y — o

Taking into account this superhorizon evolution during the last Ny, efolds of inflation, the
typical homogeneous field value at the end of inflation in our Hubble patch is

(¢2) = Flo-) <Hf>2 [1 _ efa_(Ntothmin)} <0‘+ e;a_Nmin>2' (B.9)

o 27 ay — o

The truly stochastic regime, when the distribution is well approximated by a Gaussian, is only
reached after a sufficient amount of inflation. This occurs when AN = Niot — Npin > 1/
so that the integral eq. (B.7) is dominated by the superhorizon modes with the shortest
wavelengths. In this regime, the term in the square brackets in eq. (B.9) can be dropped.
By also using oy /(a4 —a—) =~ 1 we get the result given in section 2.4.

The stochastic contribution to the homogeneous field competes with the exponentially
decaying contribution from the initial field value at the start of inflation ¢5. Determining
the extra number of e-folds (before modes dominating eq. (B.7) exit the horizon) that are
necessary for the variance in eq. (B.9) to be a factor of v bigger than the contribution from
initial condition, cf. eq. (B.3)) is straightforward. To do so we have to ensure that the
remnant of the initially homogeneous field value is a factor of v smaller than the variance.
The result is given in eq. (2.23).

The calculations for the stochastic scenario in the case of a vector field go along the
same lines as the ones presented above, with the contributions being split into transverse and
longitudinal modes.
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C Longitudinal fluctuations

The EOMs for the longitudinal modes of the physical field y in momentum space (cf. [57]) are

- k2 k R Al
0=90y + |3H + 2H— —————— 1)
X k:2—|-a2(m§(—’gR)< 6 mi — & ) X )
Nl
1—k k2 k2H k R
2 Il
— R+ — 2H— ——————— o'
N e R e ey ot )< e ) X

When specifying to inflation, it turns out to be advantageous to work with the original field
6X I = a 6x!l and to switch to conformal time using d¢/dr = a and a = —1/(7Hj). This devi-
ates from the redefinition used in the main text, f = ad X!, but it allows to more easily obtain
more precise analytic approximations of the mode functions. With this, we find (cf. [57])

27k?H? b4 m% — 2k H?
T2k2H? + m3 — 2kH? T T2H?

0= {aﬁ — + kﬂ sxl. (C.2)
This equation can be simplified and analytically solved in the limits of interest to us.
In the subhorizon limit, when k/(aH;) = —k7 > 1, we can approximate eq. (C.2) by

72
27172
TeH7

0= [az - %aT + + kﬂ sx (C.3)

where we introduced the shifted mass m? = m% — 2xH?. As is done in [58], the additional

redefinition (SA)Z'D = —|m|/(tkHy) 5X1.H, allows to further simplify the EOM to

2(k 4+ 1)H7}
T2H?

v kQ] 5x . (C.4)

2 _
0:[83+mx

This equation allows the Bunch-Davies vacuum as initial condition (cf. [58])

e L o5

Eq. (C.4) with initial condition eq. (C.5) has the solution [57]

_TkH[g\)-’(H . _TkH] _7”_61%(5—"_%)

sxll = - TEHIg ) ThHy e
@ ml Ve

[Jg(—kT) - eWJ,;<—kT)} , (C.6)

where J,;(-) are Bessel functions of the first kind and we introduce =1/ 2\/1 +8(k+1)—4m% /H?.
This is the early time solution shown in figure 5.
In the superhorizon limit, i.e. when —7k < 1, eq. (C.2) can be recast as

27k2 H? 2
=5 L0+ o+ kQ] oxll (C.7)
I

This equation can be explicitly solved in terms of confluent hypergeometric functions of the
first kind. By making use of relations m?X < 2/<5H12 and —7k < 1, the solution can be
approximately expressed as

5X |~ 272728 ()12~ [61 (k7)>B~ + Cs 23—67} ~ Gy 21728 (kr) 128~ (C.8)
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where 6’1 and 6’2 are constants that depend on the initial conditions. The second approxi-
mation holds long after horizon exit. This the late time solution that is depicted in figure 5.

The full match of egs. (C.6) and (C.8) cannot be performed analytically, but it is easy
to see that the matching is only possible if the k-dependence of the coefficients is precisely
CN’LQ ~1/ Vk. Using this knowledge, we can extract the momentum dependence and define
CY such that

1
lg
~ Vol—21p_ Hj k 2

in terms of scale factors rather than conformal time. This is precisely the result derived in
section 3.2.
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