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1 Introduction

Rotational invariance, as part of the Lorentz group, is one of the underlying symmetries in
our current description of the fundamental interactions of nature. The weak Equivalence
Principle, which is one of the cornerstones of General Relativity (GR), ensures that Lorentz
invariance is respected not only in flat space-time, but also in the presence of gravity, where
the symmetry is locally preserved [1–3].

On the other hand, it is also well established from current observations [4] that rotational
symmetry is also manifested in a statistical way on the large-scale distribution of matter and
radiation in the universe. In the standard inflationary scenario, density perturbations are
generated from quantum vacuum fluctuations, so that the isotropy of the primordial spectrum
of perturbation reflects the invariance under rotations of the quantum vacuum state [5, 6].

Despite the fact that our current description of interactions seems to be compatible
with rotational invariance on a wide range of scales, certain observations seem to suggest
the existence of preferred spatial directions on cosmological scales. Thus, anomalies have
been detected in the low multipoles of the CMB [4, 7]. They include the alignment of
quadrupole, octupole and ecliptic plane, a dipole anomaly in the power spectrum that breaks
statistical isotropy and the hemispherical anomaly whose maximum asymmetry is observed
in the ecliptic frame. On the other hand, large scale bulk flows have also been detected
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with an amplitude which has been claimed to exceed the predictions of standard ΛCDM [8–
10]. Although the statistical significance of such anomalies is somewhat limited, and they
could be due to systematic effects, they have motivated the search for preferred directions
in cosmology.

One of the simplest frameworks to explore the consequences of Lorentz symmetry break-
ing is the presence of tensor fields acquiring non-vanishing vacuum expectation values. This
is indeed the case of the so called Standard Model Extension (SME) [11]. In particular,
in the case in which such vacuum expectation value is acquired by a vector field, the first
models were proposed by Nambu already in the sixties [12]. Depending on the particular
type of vector, this mechanism can induce two kinds of gravitational effects. On one hand,
if the vector field is timelike, preferred frame effects would be present. On the other hand,
a space-like vacuum expectation value for the vector field will generate preferred directions
effects in which we are interested in this paper.

Preferred frame effects have been explored in local gravitational experiments through
the so called parametrized post Newtonian parameters (PPN) formalism [2, 13]. In par-
ticular, two PPN parameters, α1 and α2, have been restricted by Solar System and pulsar
observations. Also, modifications in the gravity wave dispersion relations have been studied
in [14]. From a theoretical point of view, theories of gravity such as Horava gravity [15] or
Einstein-aether [16] have been shown to generate this kind of preferred frame effects. Also
on the cosmological framework, different kinds of vector-tensor theories including temporal
background vector fields have been analysed in the context of dark energy [17–23].

Preferred directions effects have been explored in the framework of the anisotropic PPN
formalism [24] and bounds from laboratory experiments have been obtained in [25]. The
possible cosmological implications have been studied both on the CMB temperature power
spectrum [4, 6] and in the matter distribution in [26–29]. In those works, the evolution
both of the background and perturbations is assumed to be the standard in ΛCDM and the
anisotropy is assumed to be present only in the primordial power spectra. Such anisotropic
power spectrum can be generated for instance in models of inflation with vectors [30–32] or
higher-spin fields [33]. A different kind of effects would be those associated to the presence
of non-comoving fluids singling out a preferred direction as those considered in [34–36].

However, in this work we will focus on a different possibility for the generation of pre-
ferred direction effects, i.e. that such directions are built in the theory of gravity itself. As
commented before, theories of gravity involving additional vector degrees of freedom have
been analyzed in detail in recent years in the case in which the vector field acquires a tem-
poral background. If the background vector field Aµ is spatial, the gravitational dynamics
can give rise to a modified evolution of perturbations, thus introducing anisotropies in the
corresponding transfer functions. Such modified evolution will however depend on the par-
ticular theory under consideration. It is precisely the aim of this work to analyze this kind of
effects in a model-independent way from the data that will be provided by future galaxy and
weak-lensing surveys. With that purpose, we will consider the effective approach to modified
gravity for theories involving vector degrees of freedom developed in [37]. Within the sub-
Hubble and quasi-static (QSA) approximations, which are very well suited to galaxy surveys
analysis, it is well-known that a very general modification of gravity involving additional
scalar degrees of freedom can be described with only two additional parameters: an effective
Newton constant µ(k, a) = Geff/G and a gravitational slip parameter γ(k, a) [38, 39]. In
the vector case, when the background vector field is purely temporal, the theory can still
be parametrized only with µ(k, a) and γ(k, a) parameters, but this scenario changes when
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we have a preferred direction. In this case we need two additional effective parameters (if
dark matter vorticity can be neglected as is usually the case) which relate matter density
perturbations to vector and tensor metric perturbations. Apart from the standard time a
and scale k dependence, those four effective parameters can have an additional y = k̂ · Â
dependence on the angle between the wave-vector direction k̂ and the preferred direction
fixed by the background vector field Â.

As mentioned above our goal is to analyze the impact of preferred directions effects in
galaxy and weak lensing surveys. Galaxy surveys can be classified in two main categories:
on one hand we have the spectroscopic surveys, such as BOSS [40] or the future DESI [41]
and the spectroscopic Euclid [42] survey which produce high-quality spectra that allow to
measure galaxy redshifts with high precision for a pre-selected sample of objects. On the
other hand we have photometric surveys, such as DES [43] or the future photometric Euclid
survey and LSST [44] which measure higher number of objects with poorer redshift precision
and, in addition, obtain object images that allow to make weak lensing maps. Finally, there
are also spectro-photometric surveys such as J-PAS [45] which, thanks to the high number
of filters, can detect a high number of objects with good photo-z precision. The two main
observables that can be extracted from galaxy surveys are, on one hand, the galaxy power
spectrum [46, 47] and, on the other, the weak lensing shear and convergence spectra [48–
50]. In particular, we will consider an Euclid-like experiment with both spectroscopic and
photometric surveys for clustering and lensing forecast analysis respectively.

The redshift-space galaxy power spectrum is the main observable for galaxy cluster-
ing [51]. It is sensitive to the growth of structures via the growth factor D(z) = δm(z)/δm(0).
In addition, thanks to the Alcock-Paczynski effect [52], the power spectrum is sensitive to the
Hubble parameter H(z) and the angular distance DA(z). Finally, due to the peculiar veloci-
ties, the position of galaxies in redshift space are distorted (RSD) [53]. This effect introduces
a dependence on the line of sight that involves the growth function f(z) = d lnD/d ln(a).
For all these reasons, the redshift space power spectrum has a strong dependence on the
cosmological model and on the underlying gravitational theory. As a matter of fact, when
a preferred direction is present, an additional y dependence is present which can be disen-
tangled from the standard angular dependence induced by the RSD. Also the anisotropic
effects generated by the gravity modification could be distinguished from those induced by
anisotropic primordial power spectra.

On the other hand, we have the weak lensing effect [54, 55] which is the distortion of
the shape of galaxies due to the gravitational perturbations. For scalar perturbations, the
possible distortions are the convergence κ, i.e the change in the size of the image, and the
shear γ1 and γ2, which modifies the ellipticity of the image. In the standard case, the shear
power spectra can be obtained from the convergence power spectrum [56, 57]. Moreover, we
have the following relationship between them,

Pγ1 + Pγ2 = Pκ, (1.1)

where, in principle, convergence and shear can be measured independently [58, 59]. These
power spectra give us information about the gravitational perturbations that affect light
propagation. When a preferred direction is present, density perturbations can source vector
and tensor modes thus affecting the lensing distorsion tensor. In this case, a new effect is
present which is the rotation ω of the images. This rotation mode is rarely studied in the
literature because it is a higher-order effect in the standard ΛCDM cosmology [60]. Also,
to measure this rotation effect using weak lensing surveys is not possible because there is
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no information about the original orientation of the galaxy image [61]. However, as we will
show, the rotation effect can be detected in an indirect way using the new closing relation,

Pγ1 + Pγ2 = Pκ + Pω, (1.2)

i.e. independent measurements of Pκ, Pγ1 and Pγ2 will allow to constrain the rotation power
spectrum Pω. Moreover, the new Pω cannot be generated by an anisotropic primordial
curvature spectrum, so that a violation of the closing relation (1.1) will be a smoking gun
for this kind of modifications of gravity.

Besides, we find that the modified convergence power spectrum acquires a line-of-sight
dependence which is absent in standard ΛCDM. This has allowed us to construct the con-
vergence multipole power spectrum. Thus a future detection of a non-vanishing multipolar
component could be a potential signal of the existence of a gravitational preferred direction.

The paper is organized as follows: in 2 we briefly summarize the results of [37] for the
anisotropic modified gravity parametrization. In 3 we analyze the multipole power spectrum
of clustering in the presence of an anisotropic vector background and we also study the effects
of the anisotropy in the weak lensing signals. In 4 we obtain the null geodesics in the presence
of scalar, vector and tensor perturbations. In 5 we calculate the distortion tensor, and in 6 we
compute the weak lensing power spectra using the model-independent parametrization. In 7
we present the Fisher matrix analysis for the multipole power spectra case and we obtain the
sensitivity for measurements of the effective µ(a, k, y) parameter. In 8 we compute the Fisher
matrix for the redshift space power spectrum of galaxies to compare with the multipole case.
In 9 we present the Fisher matrix of the convergence power spectrum and we obtain the
sensitivity for the modified gravity parameters. In 10 we apply the Fisher formalism to the
case of an anisotropic primordial curvature spectrum. In section 11 we briefly discuss the
results and conclusions. Finally in the appendices we calculate the covariance matrices for
the galaxy and convergence power spectra in the presence of preferred directions.

2 Model-independent parametrization of anisotropic modified gravities

In this first section we summarize the results of [37] on the model-independent parametriza-
tion of modified gravity theories with an additional vector field Aµ. Let us thus start by
considering a general anisotropic Bianchi I cosmology with scalar (Φ,Ψ), vector Qi and ten-
sor hij perturbations in the longitudinal gauge [62],

ds2 = a2
[
−(1 + 2Ψ) dτ2 + [(1− 2Φ) Ξij + hij ] dx

idxj − 2Qi dτ dx
i
]
, (2.1)

where Ξij is the Bianchi tensor that reduces to Ξij = δij in the isotropic limit and vector
perturbation satisfy kiQi = 0, whereas for tensors we have kihij = 0 and hii = 0. Considering
that the extra vector field Aµ can have both temporal and spatial background components,
the equations that relate the different metric and matter perturbations in the sub-Hubble
regime and in the quasi-static approximation read in Fourier space,

k2 Ψ ≡ −4πGa2 ρµΨ δ(k), (2.2)

k2 Φ ≡ −4πGa2 ρµΦ δ(k), (2.3)

k2Qi ≡ 16πGa2 ρµQAi δ(k), (2.4)

k2 hij ≡ −4πGa2 ρµh Σij δ(k), (2.5)
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where we have neglected the contribution from dark matter vorticity. Here G is the grav-
itational Newton constant, ρ is the pressureless matter density, δ(k) is the matter density
contrast and,

Ai = Âi − y k̂i, (2.6)

Σij = 2AiAj − (1− y2) (δij − k̂i k̂j), (2.7)

where hat denotes the corresponding unit vector. These quantities satisfy the following
properties,

Σij = Σji, k̂iΣij = 0,

Σi
i = 0, k̂iAi = 0, (2.8)

Unlike the case of modified gravities with an additional scalar degree of freedom [39] four
parameters (µΨ, µΦ, µQ, µh) are needed to describe the most general modification of gravity
in the presence of vector and tensor perturbations and an anisotropic background. Notice
that in general such parameters are functions of (a, k, y). In the particular case of an isotropic
background Ai = 0, we need only two parameters µΨ and µΦ which are related to those of
the scalar case as µ = µΨ and γ = µΦ/µΨ with

µ =
Geff

G
, (2.9)

and

γ =
Φ

Ψ
. (2.10)

3 Galaxy power spectrum

Now we will analyze how the galaxy power spectrum is modified for the theories of gravity we
have just introduced. We will consider for simplicity the case in which the background metric
is the standard Robertson-Walker metric of ΛCDM cosmology. In this case, the only effects
of the preferred direction come either from the matter power spectrum which can now exhibit
an statistical anisotropy P = P (k, y) or from the growth of scalar perturbations. Indeed,
let us define the growth factor D(a) normalized as D(a) = δ(a)/δ(0) and the corresponding
growth function

f(z) =
d ln(D(a))

d ln(a)
, (3.1)

being a = 1/(1 + z) the scale factor, which satisfies

ḟ + f2 +

(
2 +

Ḣ

H

)
f − 3

2
µΩm(a) = 0, (3.2)

where dots denotes derivative with respect to ln a, H(a) = H0E(a) is the Hubble parameter

and Ωm(a) is the matter density parameter Ωm(a) = Ωm a
−3 H2

0
H2(a)

. Notice that the only mod-

ification with respect to the standard cosmology is the appearance of the effective parameter
µ(a, k, y) which introduces the scale and direction dependence in the growth evolution. For
small anisotropy we can always expand [37],

µ(a, k, y) = µ0(a, k) + µ2(a, k) y2 + µ4(a, k) y4 +O(y6). (3.3)
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Taking the anisotropic growth into account, the redshift-space linear galaxy power spec-
trum can be written as [51],

Pg(z, k, µ̂, y) =
[
(1 + β(z, k, y) µ̂2) b(z)D(z, k, y)

]2
P (k, y), (3.4)

where k is the modulus of the perturbation ~k, and µ̂ = k̂ · n̂ being n̂ the line of sight. Here
P (k, y) is the matter power spectrum today which can be related with the matter power
spectrum today in ΛCDM model PΛ(k) as P (k, y)/PΛ(k) = D2

Λ(zmat)/D
2(zmat, k, y), so that

P (k, y) = exp

[
2

∫ zmat

0

f(z′, k, y)− fΛ(z′)

1 + z′
dz′
]
PΛ(k), (3.5)

where fΛ(z) is the growth function in ΛCDM and we have assumed that for z > zmat,
f(z, k, y) = fΛ(z). For the sake of concreteness in the forecast analysis we will assume that
zmat = 10 although the results are not very sensitive to its precise value. As mentioned
before, D(z, k, y) is the growth factor, b(z) is the galaxy bias and β(z, k, y) = f(z, k, y)/b(z).

As we can see from (3.4), the redshift-space galaxy power spectrum has two different
kinds of anisotropic contributions: on one hand the standard contribution from redshift space
distorsions (RSD) which introduces a quadrupole and hexadecapole in µ̂, and on the other, an
extra contribution coming from the y dependence of the growth function. Thus performing
a multipole expansion with respect to the line of sight we find,

Pg(z, k, µ̂, y) =
∑
`

P`(z, k, y)L`(µ̂), (3.6)

where L` are the Legendre polynomials so that

P`(z, k, y) =
2`+ 1

2

∫ 1

−1
dµ̂ Pg(z, k, µ̂, y)L`(µ̂). (3.7)

obtaining P`(z, k, y) different from zero for ` = 0, 2, 4 i.e. we recover the well-known monopole,
quadrupole and hexadecapole contributions but with the new y dependence.

In the particular case in which the modified gravity parameter µ is time independent,
i.e. µ = µ(k, y) a simple analytical expression for f(z, k, y) can be obtained [63],

f(z, k, y) = ξ(µ(k, y)) fΛ(z), (3.8)

being fΛ(z) = Ωγ
m(z) with γ = 0.55 [64, 65] and,

ξ(µ) =
1

4
(
√

1 + 24µ− 1). (3.9)

In this case, explicit expressions for the multipoles can be obtained. Thus we have

P0(z, k, y) =

(
1 +

2

3
ξ(µ)βΛ(z) +

1

5
ξ2(µ)β2

Λ(z)

)
b2(z)D

2 ξ(µ)
Λ (z)P (k, y), (3.10)

P2(z, k, y) =

(
4

3
ξ(µ)βΛ(z) +

4

7
ξ2(µ)β2

Λ(z)

)
b2(z)D

2 ξ(µ)
Λ (z)P (k, y), (3.11)

P4(z, k, y) =
8

35
ξ2(µ)β2

Λ(z) b2(z)D
2 ξ(µ)
Λ (z)P (k, y), (3.12)
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where,

βΛ(z) =
fΛ(z)

b(z)
, (3.13)

and

fΛ(z) =
d log(DΛ(a))

d log(a)
. (3.14)

The multipole coefficients P`, depend in turn on the angular variable y and therefore could be
additionally expanded in a different multipole expansion with respect to y. Alternatively, a
bi-polar expansion in (µ̂, y) [28], could have been performed. However for the Fisher analysis
that we will perform in this work, we will directly work with the P` coefficients.

4 Weak lensing: null geodesics with scalar, vector and tensor perturba-
tions

In order to obtain the convergence and shear power spectra for weak lensing in the presence
of scalar, vector and tensor perturbations, we start with the Bianchi perturbed metric (2.1),
where as in the previous section we have considered for simplicity Ξij ' δij . We will also
work in cosmological time t so that the metric reads

ds2 =− (1 + 2Ψ) dt2 + a(t)2 [(1− 2Φ) δij + hij ] dx
idxj − 2Qi a(t) dt dxi, (4.1)

For this metric, we are interested in deriving the corresponding null geodesics, satisfying

d2xi

dλ2
+ Γiαβ

dxα

dλ

dxβ

dλ
= 0. (4.2)

We will consider the angular perturbation with respect to the line of sight induced by the
metric perturbations. Thus, we define xi = χ θi where χ = χ(z) is the comoving radial
distance and θi = (θ1, θ2, 1), so that θi for i = 1, 2 are first order in the gravitational
perturbations and x3 = χ. The goal is to obtain the geodesics (4.2) for i = 1, 2,

d2xi

dλ2
=
dχ

dλ

d

dχ

(
dχ

dλ

d

dχ

(
χ θi

))
, (4.3)

where,

dχ

dλ
=
dχ

dt

dt

dλ
, (4.4)

and dχ
dt = − 1

a . In order to obtain dt
dλ we define Pµ = dxµ

dλ , where, for null geodesics,

gµνP
µP ν = 0, (4.5)

so, at order zero in perturbations, we have,

−(P 0)2 + gijP
iP j = 0. (4.6)

By defining p2 ≡ gijP iP j we find,

dt

dλ
= p, (4.7)
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so that we obtain dχ
dλ = − p

a and, since for i = 1, 2, θi is first order in perturbations, we can
write

d2xi

dλ2
= −p

a

d

dχ

(
−p
a

d

dχ

(
χ θi

))
. (4.8)

Thus we only need p to zeroth order, which satisfies p a ∝ const so that,

d2xi

dλ2
= p2 d

dχ

(
1

a2

d

dχ

(
χ θi

))
. (4.9)

On the other hand, we have the Christoffel symbol term,

Γiαβ
dxα

dλ

dxβ

dλ
=

(
dχ

dλ

)2

Γiαβ
dxα

dχ

dxβ

dχ
. (4.10)

For the metric (4.1), we have,

Γi00 = a−2 Ψ,i − a−1 (H Qi +Qi,0) , (4.11)

Γij0 = δij (H − Φ,0)− a−1Q[i,j] +
1

2
hij,0, (4.12)

Γijk = Φ,i δjk − Φ,k δij − Φ,j δki + aH Qi δjk +
1

2
(hij,k + hik,j − hjk,i), (4.13)

where a comma denotes derivative with respect to the coordinates (t, x1, x2, x3) and H = 1
a
da
dt

is the Hubble parameter. Let us analyze the different terms of equation (4.10):

• α = β = 0: in this case we only have the term Γi00

(
dt
dχ

)2
, and dt

dχ = −a to zeroth order,
so that we obtain,

Γi00

(
dt

dχ

)2

= Ψ,i − a [H Qi +Qi,0] . (4.14)

• α = j, β = 0 (and the symmetric case): now we have Γij0
dt
dχ

dxj

dχ . For j = 1, 2 the

derivative dxj

dχ is first order in perturbations, so that in this case Γij0 must be order zero.

However, when j = 3, we have dx3

dχ = 1 then Γi30 has to be first order in perturbations.
Taking all the terms into account we obtain,

Γij0
dt

dχ

dxj

dχ
=− aH d

dχ
(χ θi) +Q[i,3] −

1

2
a hi3,0. (4.15)

Notice that since we also have Γi0j , the term (4.15) contributes twice to the final
expression.

• α = j, β = k: finally we have Γijk
dxj

dχ
dxk

dχ , because xj is order one when j 6= 3 and Γijk
is always order one, the only term that contributes corresponds to j = k = 3 (i = 1, 2),

Γi33

(
dx3

dχ

)2

= Φ,i + aH Qi + hi3,3 −
1

2
h33,i. (4.16)
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As we can see in the previous analysis, Γiαβ
dxα

dχ
dxβ

dχ is first order in perturbations, so that the

prefactor
(dχ
dλ

)2
in (4.10) must be of zeroth order. Finally, equation (4.10) becomes,

Γiαβ
dxα

dλ

dxβ

dλ
=
(p
a

)2
[
(Φ + Ψ),i − 2 aH

d

dχ
(χ θi)

+2Q[i,3] + hi3,3 −
1

2
h33,i − a (Qi + hi3),0

]
. (4.17)

If we expand (4.9), and taking into account that d
dχ = −a2H d

da , we find,

d2xi

dλ2
=
(p
a

)2
[
d2(χ θi)

dχ2
+ 2 aH

d

dχ
(χ θi)

]
. (4.18)

Thus, using (4.17) and (4.18) we can obtain from the geodesic equation (4.2),

d2

dχ2
(χ θi) =− (Φ + Ψ),i − 2Q[i,3] − hi3,3 +

1

2
h33,i + a (Qi + hi3),0. (4.19)

At this point we apply the quasi-static approximation (QSA) and the sub-Hubble regime
in which we can neglect the time derivatives of perturbations with respect to the spatial
derivatives,

d2

dχ2
(χ θi) = −(Φ + Ψ),i − 2Q[i,3] − hi3,3 +

1

2
h33,i. (4.20)

It will be useful to define the source term of equation (4.20) as,

Yi ≡ −
(

Φ + Ψ +Q3 +
1

2
h33

)
,i

− (Qi + hi3),3, (4.21)

In the following section we will proceed with the integration of equation (4.20) and the
definition of the distortion tensor.

5 The distortion tensor

By integrating twice equation (4.20) we obtain,

θSi =
1

χ

∫ χ

0
dχ′′

∫ χ′′

0
dχ′ Yi(χ

′~θ) + const. (5.1)

Since the integrand is just a function of χ′, we can integrate over χ′′ and fix the integration
constant as the initial angle θi,

θSi = θi +

∫ χ

0
dχ′ Yi(χ

′~θ)

(
1− χ′

χ

)
. (5.2)

Now, we define the distortion tensor as,

ψij ≡
∂θSi
∂θj
− δij . (5.3)
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By using ∂
∂θj

= ∂xk

∂θj
∂
∂xk

= χ ∂
∂xj

we obtain,

ψij =

∫ χ

0
dχ′ χ′ Yi,j

(
1− χ′

χ

)
, (5.4)

where ψij = ψij(χ, ~θ). We want to integrate over χ to project onto the two-dimensional
(θ1, θ2) plane. In general the survey contains a distribution of galaxies W (χ), which is
normalized as

∫ χ∞
0 dχW (χ) = 1, where χ∞ = limz→∞ χ(z) so that the projected distortion

tensor is,

ψij(~θ) =

∫ χ∞

0
dχW (χ)

∫ χ

0
dχ′ χ′ Yi,j

(
1− χ′

χ

)
. (5.5)

By changing the order of integration, we can obtain,

ψij(~θ) =

∫ χ∞

0
dχ χ g(χ)Yi,j(χ, ~θ), (5.6)

where we have defined,

g(χ) ≡
∫ χ∞

χ
dχ′

(
1− χ

χ′

)
W (χ′). (5.7)

As we have seen, i = 1, 2 so that ψij is a 2 × 2 matrix. This matrix is non-symmetric in
general as we can see in (5.6),

ψij ≡
(
−κ− γ1 −γ2 − ω
−γ2 + ω −κ+ γ1

)
Thus, the convergence and shear parameters are,

κ = −ψ11 + ψ22

2
, (5.8)

γ1 = −ψ11 − ψ22

2
, (5.9)

γ2 = −ψ12 + ψ21

2
, (5.10)

whereas the rotation parameter corresponds to

ω = −ψ12 − ψ21

2
, (5.11)

Now, we use equation (4.21) into (5.6) so that

ψij(~θ) =−
∫ χ∞

0
dχ χ g(χ)

(
Φ + Ψ +Q3 +

1

2
h33

)
,ij

−
∫ χ∞

0
dχ χ g(χ) (Qi + hi3),3j ,

(5.12)

As we can see from the previous equation, the vector and tensor perturbations generate the
rotation effect in the distortion tensor [61]. Since x3 = χ, we can integrate by parts the
second integral to obtain,∫ χ∞

0
dχ χ g(χ) (Qi + hi3),3j =

((((((((((((
[χ g(χ) (Qi + hi3),j ]|χ∞0

−
∫ χ∞

0
dχ

(
g + χ

dg

dχ

)
(Qi + hi3),j , (5.13)
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so that the distortion tensor becomes,

ψij(~θ) = −
∫ χ∞

0
dχ χ g(χ)

[(
Φ + Ψ +Q3 +

1

2
h33

)
,ij

− 1

χ

(
1 +

χ

g

dg

dχ

)
(Qi + hi3),j

]
.

(5.14)

Now, we want to go to the Fourier space of ~θ so that we define,

ψ̃ij(~̀) =

∫
d2θ e−i

~̀·~θ ψij(~θ). (5.15)

Taking into account that,

∂

∂xi
=

1

χ

∂

∂θi
, (5.16)

the Fourier transform of the distorsion matrix is,

ψ̃ij(~̀) =

∫ χ∞

0
dχ

g(χ)

χ

[
`i `j

(
Φ̃ + Ψ̃ + Q̃3 +

1

2
h̃33

)
+ i `j

(
1 +

χ

g

dg

dχ

)
(Q̃i + h̃i3)

]
,

(5.17)

The power spectrum of this distortion matrix is the weak-lensing observable. In the following
section we will relate vector and tensor perturbations to the matter density perturbations
using (2.2)–(2.5), so that we can obtain the final weak-lensing power spectrum in terms of
the matter power spectrum.

6 Weak-lensing power spectra

The power spectrum of the distortion tensor is defined in the following way,

Pψijlm(~̀) ≡ 1

(2π)2

∫
d2`′ 〈ψ̃ij(~̀) ψ̃∗ij(~̀′)〉. (6.1)

Using expressions (2.2)–(2.5), we can obtain the power spectrum (6.1) as a function of the
matter power spectrum,

〈δ(a,~k) δ∗(a,~k′)〉 = (2π)3 δ3(~k − ~k′)P (a,~k). (6.2)

With that purpose it is first necessary to relate the Fourier transforms in the ~θ and ~x variables.
Let us thus denote with a bar the Fourier transform in ~x at a given time i.e.

f̄(~k) ≡
∫

d3x e−i
~k·~x f(~x). (6.3)

Thus, we can write

f̄(k3, ~̀) =

∫
dχ

∫
χ2 d2θ e−i

~̀·~θ e−i k3 χ f(~x), (6.4)

where we have used `i = χki for i = 1, 2 so that using the definition of the Fourier transform
in ~θ in (5.15) we obtain,

f̄(k3, ~̀) =

∫
dχχ2 e−i k3 χ f̃(χ, ~̀). (6.5)
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By performing the inverse transform in k3 we get,

f̃(χ, ~̀) =
1

2πχ2

∫
dk3 ei k3 χ f̄(k3, ~̀). (6.6)

In order to obtain the power spectrum in (6.1), we rewrite equation (5.17) for ψ̃ij(~̀) in the
following compact way,

ψ̃(~̀) =

∫ χ∞

0
dχ

∑
α

Cα(χ, ~̀) f̃α(χ, ~̀), (6.7)

where we have omitted the indices, fα are the different metric perturbations and Cα the
corresponding coefficients. Using this expression we obtain,

Pψ(~̀) =
1

(2π)2

∫
d2`′

∫ χ∞

0
dχ

∫ χ∞

0
dχ′

∑
α,β

Cα(χ, ~̀)C∗β(χ′, ~̀′) 〈f̃α(χ, ~̀) f̃∗β(χ′, ~̀′)〉, (6.8)

and using (6.6) in 〈f̃α(χ, ~̀) f̃∗β(χ′, ~̀′)〉, we obtain

〈f̃α(χ, ~̀) f̃∗β(χ′, ~̀′)〉 =
1

2πχ2

1

2πχ′2

∫
dk3 eik3χ

∫
dk′3 e−ik

′
3χ
′ 〈f̄α(k3, ~̀) f̄

∗
β(k′3,

~̀′)〉. (6.9)

As we can see from (2.2)–(2.5), metric perturbations f̄ can be related to the density pertur-
bations according to the following generic form,

f̄α(k3, ~̀) = Bα(~k) δ(~k), (6.10)

where ki = `i/χ for i = 1, 2, so that, formally we obtain,

〈f̄α(k3, ~̀) f̄
∗
β(k′3,

~̀′)〉 = Bα(~k)B∗β(~k′) 〈δ(~k) δ∗(~k′)〉. (6.11)

Using equation (6.2) and considering,

δ3(~k − ~k′) = δ2

(
~̀

χ
−
~̀′

χ′

)
δ(k3 − k′3), (6.12)

we obtain,

〈f̃α(χ, ~̀) f̃∗β(χ′, ~̀′)〉 =
2π

χ2 χ′2
δ2

(
~̀

χ
−
~̀′

χ′

)∫
dk3 ei k3 (χ−χ′)Bα(~k)B∗β(~k′)P (~k). (6.13)

For small distortion angles θ, we can consider k3 � k1, k2 so that, ~k ' ~̀/χ and accordingly,

〈f̃α(χ, `) f̃∗β(χ′, `′)〉 =
(2π)2

χ2 χ′2
δ2

(
~̀

χ
−
~̀′

χ′

)
δ(χ− χ′)Bα

(
~̀

χ

)
B∗β

(
~̀′

χ′

)
P

(
~̀

χ

)
. (6.14)

Using this expression in (6.8) and writing δ2
(

1
χ(~̀− ~̀′)

)
= χ2 δ2(~̀− ~̀′), we obtain

Pψ(~̀) =

∫ χ∞

0

1

χ2
P

(
~̀

χ

)∑
α,β

Cα(χ, ~̀)C∗β(χ, ~̀)Bα

(
~̀

χ

)
B∗β

(
~̀

χ

) dχ. (6.15)
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Finally changing from χ to the redshift variable z = 1/(1 + a), including explicitly the
time dependence of the matter power spectrum through the growth factor D2(z) and using[
4πGa2ρ

]2
=

9H4
0

4 Ω2
m (1 + z)2 we get,

Pψijlm(~̀) =
9H4

0 Ω2
m

4

∫ ∞
0

dz
(1 + z)2

H(z)
g2(z)

κi `j κ
∗
l `m

`4
D2(z)P

(
~̀

χ(z)

)
, (6.16)

where

κi ≡ `i α− i
(

1 +
χ g′

χ′ g

)
vi, (6.17)

α ≡ µΨ(1 + γ)− 4µQA3 +
1

2
µh Σ33, (6.18)

vi ≡ 4µQAi − µhΣi3, (6.19)

being γ ≡ µΦ
µΨ

, a prime denotes derivative with respect to redshift and

g(z) =

∫ ∞
z

(
1− χ(z)

χ(z′)

)
n(z′) dz′, (6.20)

with n(z)dz = W (χ)dχ and n(z) the galaxy density function as a function of redshift.
Now we can use expressions (5.8)–(5.11) to construct the power spectra for convergence,

shear and rotation,

Pκ =
1

4

(
Pψ1111 + Pψ2222 + Pψ1122 + Pψ2211

)
, (6.21)

Pγ1 =
1

4

(
Pψ1111 + Pψ2222 − P

ψ
1122 − P

ψ
2211

)
, (6.22)

Pγ2 =
1

4

(
Pψ1212 + Pψ2121 + Pψ1221 + Pψ2112

)
, (6.23)

Pω =
1

4

(
Pψ1212 + Pψ2121 − P

ψ
1221 − P

ψ
2112

)
, (6.24)

These expressions can be written in a more compact fashion by introducing the following
variables. We define `1 ≡ `Υ and `2 ≡ `

√
1−Υ2 where,

Υ ≡ Âi`i

`
√

1− Â2
3

. (6.25)

Considering the small-angle approximation k3 � k1, k2, the conditions k̂iQi = 0 and
k̂ihij = 0 imply,

`ivi = 0. (6.26)

Using this expression we can write v2 as a function of v1 and then we relate it with v2 ≡ v2
1+v2

2,

v2
1 = (1−Υ2) v2. (6.27)

Finally using (6.25) and (6.26) in the expressions of the power spectra (6.21)–(6.24) we obtain,

Pκ = Pα, (6.28)

Pγ1 = (1− 2 Υ2)2 Pα + 4 Υ2 (1−Υ2)Pv, (6.29)

Pγ2 = 4 Υ2 (1−Υ2)Pα + (1− 2 Υ2)2 Pv, (6.30)

Pω = Pv, (6.31)
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where Pα and Pv are,

Pα =
9H4

0 Ω2
m

4

∫ ∞
0

dz
(1 + z)2

H(z)
g2(z)

α2

4
D2(z)P

(
`

χ(z)

)
, (6.32)

Pv =
9H4

0 Ω2
m

4

∫ ∞
0

dz
(1 + z)2

H(z)
g2(z)

(
1 +

χ g′

χ′ g

)2 v2

4 `2
D2(z)P

(
`

χ(z)

)
. (6.33)

As we can see from equations (6.28)–(6.31), we have the following closing relation,

Pγ1 + Pγ2 = Pκ + Pω, (6.34)

This is a useful relation since it allows to determine the rotation power spectrum, which is
not directly measurable in lensing surveys, from shear and convergence measurements.

We can use the expressions of Ai and Σij considering k̂3 � 1, and the definition of Υ,
to obtain expressions for α and v2,

α = µΨ (1 + γ)− 4 ξ µQ + (2 ξ2 + (1− ξ2)Υ2 − 1)
µh
2
, (6.35)

v2 = (4µQ − 2 ξ µh)2 (1− ξ2)(1−Υ2), (6.36)

being ξ ≡ Â3 with −1 ≤ ξ ≤ 1. Since Â3 is the projection of Â along the line of sight, we
can perform a multipole expansion of α2 and v2 above, using the Legendre polynomials in ξ.
Thus for α2 =

∑4
r=0M

r
αPr(ξ) we have

M0
α =

1

20
f2

1 +
1

6
f1 f2 +

1

4
f2

2 +
16

3
µ2
Q, (6.37)

M1
α = −4

(
3

5
f1 + f2

)
µQ, (6.38)

M2
α =

(
1

7
f1 +

1

3
f2

)
f1 +

32

3
µ2
Q (6.39)

M3
α = −8

5
f1 µQ, (6.40)

M4
α =

2

35
f2

1 (6.41)

where f1 ≡ (2 − Υ2)µh and f2 ≡ 2µΨ (1 + γ) − (1 − Υ2)µh. On the other hand for v2 =∑4
r=0M

r
vPr(ξ)

M0
v =

8

15
µ2
h +

32

3
µ2
Q, (6.42)

M1
v = −M3

v = −32

5
µQ µh, (6.43)

M2
v =

8

21
µ2
h −

32

3
µ2
Q, (6.44)

M4
v = −32

35
µ2
h. (6.45)
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With these definitions we obtain,

P rα =
9H4

0 Ω2
m

4

∫ ∞
0

dz
(1 + z)2

H(z)
g(z)2 M

r
α

4
D(z)2 P

(
`

χ(z)

)
,

r = 0, 1, 2, 3, 4 (6.46)

P rv =
9H4

0 Ω2
m

4

∫ ∞
0

dz
(1 + z)2

H(z)
g(z)2

(
1 +

χ g′

χ′ g

)2 (1−Υ2)M r
v

4 `2
D(z)2 P

(
`

χ(z)

)
,

r = 0, 1, 2, 3, 4 (6.47)

Finally, if we want to analyze the weak lensing signal at different redshift bins, we define the
following window functions,

gi(z) =

∫ ∞
z

(
1− χ(z)

χ(z′)

)
ni(z

′) dz′, (6.48)

where we consider a galaxy density function of the form,

n(z) =
3

2 z3
p

z2 e−(z/zp)3/2
, (6.49)

being zp = zmean/
√

2 and zmean the survey mean redshift. Then, for each bin we have the
following galaxy distribution function, where we have take into account the photometric
redshift error σi in the corresponding bin,

ni(z) ∝
∫ z̄i

z̄i−1

n(z′) e
− (z′−z)2

2σ2
i dz′, (6.50)

where σi = δz (1 + zi), z̄i is the upper limit of the i-bin and ni(z) is normalized to one.
With these definitions, the convergence, shear and rotation multipole power spectra are,

P r
κ ij(`,Υ) =

9H4
0 Ω2

m

4

∫ ∞
0

dz
(1 + z)2

H(z)
gi(z) gj(z)

M r
α

4
D(z)2 P

(
`

χ(z)

)
, (6.51)

P r
ω ij(`,Υ) =

9H4
0 Ω2

m

4

∫ ∞
0

dz
(1 + z)2

H(z)
gi(z) gj(z)

×
(

1 +
χ g′i
χ′ gi

) (
1 +

χ g′j
χ′ gj

)
(1−Υ2)M r

v

4 `2
D(z)2 P

(
`

χ(z)

)
, (6.52)

P r
γ1 ij(`,Υ) = (1− 2 Υ2)2 P rκ ij(`,Υ) + 4 Υ2 (1−Υ2)P rω ij(`,Υ), (6.53)

P r
γ2 ij(`,Υ) = 4 Υ2 (1−Υ2)P rκ ij(`,Υ) + (1− 2 Υ2)2 P rω ij(`,Υ). (6.54)

7 Fisher analysis for the multipole power spectrum

Considering a set of cosmological parameters {pα}, the Fisher matrix for the multipole power
spectrum (3.7) can be written as [66],

Fαβ =
∑
n,n′

∑
`,`′

∂P`(~kn)

∂pα

∣∣∣∣∣
f

C−1
``′ (

~kn,~kn′)
∂P`′(~kn′)

∂pβ

∣∣∣∣∣
f

, (7.1)
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where sub-index f denotes that the corresponding quantity is evaluated on the fiducial model,
~kn are the discrete modes and C``′(~kn,~kn′) is the covariance matrix. In appendix A the
explicit calculation of the covariance matrix for the anisotropic power spectrum assuming
gaussian fields can be found. In each redshift bin this expression reads,

Fαβ(z) =
V (z)

8π2

∫ kmax

kmin

∫ 1

−1
k2 dk dy

∑
`,`′

∂P`(k, z, y)

∂pα

∣∣∣∣
f

C−1
``′ (z, k)

∂P`′(k, z, y)

∂pβ

∣∣∣∣
f

, (7.2)

C``′(z, k) =
(2`+ 1)(2`′ + 1)

2

∫ 1

−1
dµ̂L`(µ̂)L`′(µ̂)

[
Pg(z, k, µ̂)|f e

−k2 µ̂2 σ2
r +

1

n(z)

]2

, (7.3)

where we have included the effect of redshift errors [51] in the power spectrum through
the e−k

2 µ̂2 σ2
r factor, where σr = (δz (1 + z))/H(z) with δz the redshift error. Notice that

we assume that systematics are under control so that we do not include additional free
parameters such as non-gaussian shot noise. Here n(z) is the mean galaxy density and V (z)
the volume of the bin z. We consider a flat fiducial model,

V (z) =
4π fsky

3

[
χ3(z + ∆z/2)− χ3(z −∆z/2)

]
, (7.4)

being fsky the fraction of the sky, ∆z the width of the bin and χ(z) the comoving radial
distance,

χ(z) = H−1
0

∫ z

0

dz′

E(z′)
. (7.5)

As expected, this Fisher matrix reduces to the isotropic case when P`(k, z, y) = P`(k, z).
Finally, we need to know the values for kmin and kmax in each bin. kmin can be fixed to 0.007
h/Mpc [67], and we obtain kmax = kmax(za) by imposing that σ2(za, π/2kmax(za)) = 0.35 so
that we only consider modes in the linear regime. Thus, the amplitude of the fluctuations at
a scale R at redshift z is given by

σ2(z,R) = D2(z)

∫
k′2 dk′

2π2
P (k′)|Ŵ (R, k′)|2, (7.6)

where we have used a top-hat filter Ŵ (R, k), defined by

Ŵ (R, k) =
3

k3R3
[sin(kR)− kR cos(kR)]. (7.7)

7.1 Fiducial cosmology and galaxy redshift survey

The fiducial cosmology we consider is given by Ωc h
2 = 0.121, Ωb h

2 = 0.0226, Ων h
2 =

0.00064, ns = 0.96, h = 0.68, H−1
0 = 2997.9 Mpc/h (in units c = 1), Ωk = 0 and σ8 = 0.82 in

the standard ΛCDM model. For this cosmology,

E(z) =
√

Ωm (1 + z)3 + (1− Ωm). (7.8)

The growth function follows equation (3.8) and the growth factor is,

DΛ(z) = exp

[∫ N(z)

0
fΛ(N ′) dN ′

]
, (7.9)
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z kmax n × 10−3 δµ0/µ0(%) δµ2/µ0(%)

0.6 0.195 3.56 1.77 3.88

0.8 0.225 2.42 1.08 1.99

1.0 0.260 1.81 0.73 1.06

1.2 0.299 1.44 0.66 0.77

1.4 0.343 0.99 0.62 0.59

1.8 0.447 0.33 0.65 0.57

Table 1. Redshift bins, kmax values in h/Mpc units, galaxy densities in (h/Mpc)3 units and relative
errors for µ0 and µ2 for an Euclid-like survey. We compare δµ2 with respect to µ0 because the fiducial
value of µ2 is zero.

z kmax n × 10−3 δµ0/µ0(%) δµ2/µ0(%) δµ4/µ0(%)

0.6 0.195 3.56 2.20 13.6 15.2

0.8 0.225 2.42 1.27 6.96 7.78

1.0 0.260 1.81 0.81 3.71 4.15

1.2 0.299 1.44 0.71 2.69 3.01

1.4 0.343 0.99 0.66 2.06 2.30

1.8 0.447 0.33 0.67 1.99 2.22

Table 2. The same as in table I but including µ4 as an additional independent parameter in the
Fisher analysis.
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2 

Figure 1. Marginalized 1σ and 2σ regions for µ0 and µ2 for an Euclid-like survey from the multipole
power spectrum information.

being N(z) = − ln(1 + z). For the fiducial cosmology we obtain the present linear matter
power spectrum P(k) from CLASS [68]. Notice that the differences between linear and non-
linear (HALOFIT) matter power spectra vary in the range 10–30% for the kmax considered.
So that we do not expect important changes in our estimated errors. For the bias, we use a
fiducial value of the form [42],

b(z) =
√

1 + z. (7.10)

Finally, we will limit ourselves to constant modified gravity parameters so that µ =
µ0 + µ2 y

2 + µ4 y
4, and since we use ΛCDM as fiducial cosmology, we will take

[µ0, µ2, µ4]|r = [1, 0, 0].
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Figure 2. Marginalized 1σ and 2σ regions for µ2 and µ4 for an Euclid-like survey from the multipole
power spectrum information.

The inputs we need to compute Fαβ are therefore redshift bins and the galaxy densities
for each bin which can be found in table 1 and 2 for an spectroscopic Euclid-like galaxy
redshift survey. The fraction of the sky is fsky = 0.364 corresponding to 15000 deg2 and the
redshift error is δz = 0.001. We have taken the same redshift bins as in [67] where the bin
size is ∆z = 0.2 for all the bins except for the last one with ∆z = 0.6. The quoted values
correspond to the center of the bin, so that for instance, the first bin would be 0.5 < z < 0.7.

First of all, we consider as independent parameters in each bin [b σ8, µ0, µ2] and we
present the marginalized errors for µ0 and µ2 in table 1. In figure 1 we plot the 1-sigma and
2-sigma contours summing all the information in the whole redshift range. In such a case we
obtain errors for µ0 and µ2 of order 1 %.

Then, we add the parameter µ4 in each bin and we present the marginalized errors for
µ0, µ2 and µ4 in table 2. In figure 2 we plot the 1-σ and 2-σ contours for µ2 and µ4 summing
all the information in the full redshift range. As we can see, if we add a y4 dependence, the
errors for µ2 increase in a factor 3− 4 but the errors for µ0 remain the same. Errors for µ4

are slightly larger than for µ2.

8 Fisher analysis for the redshift-space power spectrum

An alternative way to perform the Fisher analysis consists in using the redshift-space power
spectrum (3.4) rather than the multipoles considered in the previous section. This, in fact,
allows to take into account the Alcock-Paczynski effect [52] so that we can write

Pg(z, kr, µ̂r, ξ) =
D2
Ar E

D2
AEr

[
(1 + βΛ ξ µ̂

2) b(z)Dξ
Λ

]2
P (k), (8.1)

where as mentioned before, the r sub-index denotes that the corresponding quantity is eval-
uated on the fiducial cosmology. The dependence k = k(kr) and µ̂ = µ̂(µ̂r) are given by,

k = Qkr, (8.2)

µ̂ =
E µ̂r
ErQ

, (8.3)
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Figure 3. From left to right, reference frame for the Fisher analysis of the redshift space power
spectrum, and auxiliary reference frame to calculate the integral in ~k.

with

Q =

√
E2 χ2 µ̂2

r − E2
r χ

2
r (µ̂2

r − 1)

Er χ
. (8.4)

The ξ = ξ(µ) parameter follows equation (3.9) and µ equation (3.3). DA is the angular
distance which, in a flat Universe, satisfies DA = (1 + z)−1 χ(z).

Thus, considering a set of cosmological parameters {pα}, the corresponding Fisher ma-
trix for clustering at a given redshift bin centered at za and for a solid angle of the survey
centered at the line of sight n̂ is,

dFij =
1

2

∫
d3k

(2π)3

∂ logPg
∂pi

∣∣∣∣
f

∂ logPg
∂pj

∣∣∣∣
f

[
n̄Pg

1 + n̄Pg

]∣∣∣∣
f

dVs,

where,
dVs = Vz dϕ dθ sin θ, (8.5)

and

Vz =
1

3

[
χ3(za + ∆z/2)− χ3(za −∆z/2)

]
, (8.6)

with n̂(θ, ϕ) where ϕ and θ are the azimuthal and polar angles in the axes frame on the left
panel of figure 3.

Since we are interested in summing all the angular information, we have to integrate

over the angles ϕ and θ but taking into account that
∂ logPg
∂pα

∣∣∣
f

may depend on these angles.

Thus, we integrate a spherical cap that encloses a fraction fsky of the sky,

Fij =
1

2

∫
d3k

(2π)3

∫ 2π

0
dϕ

∫ arccos(1−2fsky)

0
sin θ dθ

∂ logPg
∂pi

∣∣∣∣
f

∂ logPg
∂pj

∣∣∣∣
f

[
n̄Pg

1 + n̄Pg

]∣∣∣∣
f

Vz.

(8.7)
The only angular dependences we have are µ̂ = k̂ · n̂ and y = k̂ · Â. It is useful to keep µ̂
as an integration variable, so that we have to relate y with µ̂. With the choice of axes of
figure 3, we find that,

y = sinα′
√

1− µ̂2 cos ρ+ cosα′ µ̂, (8.8)

and,
cosα′ = sinα sin θ cos(ϕ− φ) + cosα cos θ, (8.9)

being Â(α, φ) with α and φ the polar and azimuthal angles in the axes frame in figure 3
left, where the Z axis is chosen in the direction of the center of the survey ~c. Thus, y =
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y(α, φ, µ̂, ρ, θ, ϕ) so that we have the following integration variables [k, µ̂, ρ, θ, ϕ]. Finally, we
have chosen as independent parameters for the Fisher matrix in each bin: [E, b σ8, µ0, µ2, µ4].
For these parameters the derivatives are,

∂ logPg
∂E

∣∣∣∣
f

= 1 +
2 ∆za

E2H0 χ(za)
+

4βΛµ̂
2(1− µ̂2)

1 + βΛ µ̂2

(
1

E
− ∆za
E2H0 χ(za)

)
,

∂ logPg
∂(b σ8)

∣∣∣∣
f

=
2

b σ8
, (8.10)

∂ logPg
∂µ0

∣∣∣∣
f

=
6

5

[
logDΛ +

∫ z̄i

z̄i−1

fΛ(z′)

1 + z′
dz′ +

βΛ µ̂
2

1 + βΛ µ̂2

]
, (8.11)

∂ logPg
∂µ2

∣∣∣∣
f

=
∂ logPg
∂µ0

∣∣∣∣
f

y2, (8.12)

∂ logPg
∂µ4

∣∣∣∣
f

=
∂ logPg
∂µ0

∣∣∣∣
f

y4. (8.13)

As we can see, the only angular dependence appear in the derivatives respect to µ2 and
µ4 which involve even powers of y. Thus, we can extract this dependence and define the
following function,

fyij(µ̂, α, φ) =

∫ 2π

0
dϕ

∫ arccos(1−2fsky)

0
sin θ dθ

∫ 2π

0
dρ (δ1i + δ2i + δ3i + y2 δ4i + y4 δ5i)

(δ1j + δ2j + δ3j + y2 δ4j + y4 δ5j),
(8.14)

where y = y(α, φ, µ̂, ρ, θ, ϕ) and i, j = E, bσ8, µ0, µ2, µ4 = 1, 2, 3, 4, 5. Notice that for
i, j = 1, 2, 3 we have fyij = 8π2 fsky, and we recover the isotropic case for the Fisher ma-
trix. Finally, the Fisher matrix for the redshift-space power spectrum in the presence of a
preferred direction pointing in the (α, φ) direction can be written as,

Fij(za, α, φ) =
Vz(za)

16π3

∫ 1

−1
dµ̂

∫ kmax

kmin

k2 ∂ logPg(za, µ̂, k)

∂pi

∣∣∣∣
f

∂ logPg(za, µ̂, k)

∂pj

∣∣∣∣
f

× fyij(µ̂, α, φ)

[
n̄P̂g(za, µ̂, k)

1 + n̄P̂g(za, µ̂, k)

]∣∣∣∣∣
f

dk,

(8.15)

being P̂g = Pg e
−k2 µ̂2 σ2

r and in this expression,

∂ logPg
∂p4

∣∣∣∣
f

=
∂ logPg
∂p5

∣∣∣∣
f

=
∂ logPg
∂µ0

∣∣∣∣
f

. (8.16)

The values for kmin and kmax are the same as in the previous section.
Notice that the final Fisher matrix (8.15) depends on the angles (α, φ). We could have

considered them as additional cosmological parameters pi and obtain and extended Fisher
matrix. However, since we are considering an isotropic fiducial model, the corresponding
entries would be identically zero. Instead, we will study that dependence of the errors on the
orientation of the vector Â. Thus, we find that errors are maximized for α = 0, i.e. when the
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z kmax n × 10−3 δµ0/µ0(%) δµ2/µ0(%) δµ4/µ0(%)

0.6 0.195 3.56 2.60 14.8 17.1

0.8 0.225 2.42 1.47 7.39 8.68

1.0 0.260 1.81 0.99 4.03 4.67

1.2 0.299 1.44 0.92 3.03 3.48

1.4 0.343 0.99 0.89 2.40 2.74

1.8 0.447 0.33 0.87 2.30 2.61

Table 3. Redshift bins, kmax values in h/Mpc units, galaxy densities in (h/Mpc)3 units and relative
errors for µ0, µ2 and µ4 for an Euclid-like survey using the redshift space power spectrum with α = 0.
We compare δµ2 and δµ4 with respect to µ0 because their fiducial values are zero.

0.03 0.02 0.01 0.00 0.01 0.02 0.03
2

0.04

0.03

0.02

0.01

0.00

0.01

0.02

0.03

0.04

4

1 
2 

Figure 4. Marginalized 1σ and 2σ regions for µ2 and µ4 using the information of the redshift space
power spectrum and considering α = 0 for an Euclid-like survey.

preferred direction points towards the center of the survey, for any value of φ, whereas they
are minimized for α = π/2 for any value of φ. Notice that in any case errors vary at most in
a 10% of their values. We use the same fiducial cosmology as in the previous section for and
Euclid-like survey. Results are summarized in table 3 and in figure 4 we plot the 1-σ and 2-σ
contours for µ2 and µ4 summing all the information in each bin.

As we can see, with this method we obtain slightly larger errors for µ0, µ2 and µ4 than
in the previous section.

9 Fisher analysis for the weak lensing power spectrum

In this section we extend in a simple way the Fisher matrix formalims for the weak lensing
convergence power spectrum in the presence of a preferred direction. To do that, we have
to analyze the multipole power spectrum for the convergence (6.51) and sum over all the
multipoles r and ~̀. The Fisher matrix is of the following form,

Fαβ =
∑
~̀
a,~̀b

∑
rr′

∂P r
κ ij(

~̀
a)

∂pα

[
Covrr

′
jmni(

~̀
a, ~̀b)

]−1 ∂P r′
κ mn(~̀b)

∂pβ
, (9.1)

where we are summing in indexes i, j, m and n. We obtain the covariance matrix as an
extension of the covariance matrix in the isotropic space in appendix B assuming once again
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that the fields are gaussian. The corresponding Fisher matrix reads,

Fαβ = fsky

∫ 1

−1

dΥ

π
√

1−Υ2

∑
r

∑
`

∆ ln `
(2`+ 1) `

2 (2r + 1)

∂P r
κ ij

∂pα

∣∣∣∣
f

C−1
jm

∂P r
κ mn

∂pβ

∣∣∣∣
f

C−1
ni , (9.2)

where the sub-index f denotes that the corresponding quantity is evaluated on the fiducial
model and,

Cij = Pκ ij +
γ2

int

n̂i
δij , (9.3)

being γint = 0.22 the intrinsic ellipticity [69], n̂i the galaxies per steradian in the i-th bin,

n̂i = nθ

∫ z̄i
z̄i−1

n(z) dz∫∞
0 n(z) dz

, (9.4)

where nθ is the areal galaxy density. We sum in ` with ∆ ln ` = 0.1 from `min = 5 to `max,
where `max values are obtained following [67] and can be found in table 4. For the multipole
power spectrum we use the following expression,

P r
κ ij(`,Υ) =

1

4

∑
a

Pij(za, `) M
r
α(Υ). (9.5)

where

Pij(za, `) =
9H3

0 Ω2
m

4

(1 + za)
2

Ea
∆zagi(za) gj(za)D

2
a P

(
`

χ(za)

)
, (9.6)

Regarding the parameters θα, it can be proved that in each redshift bin, the power
spectrum depends on four independent parameters, [Ea, µΨ a(1 + γa)Da, µQ a, µh a] where
the sub-index a denotes different redshift bins. In this section, in order to get errors for γa
we will assumed that µΨ a and Da are fixed to their fiducial values. Thus, we have a total
Fisher matrix of size 4n× 4n, being n the total number of z bins.

For the sake of simplicity, we will consider that the modified gravity parameters are
isotropic and scale invariant, i.e. γa = γ(za), µQa = µQ(za) and µh a = µh(za). The (non-
vanishing) derivatives, which are evaluated in ΛCDM as fiducial model, are,

∂P 0
κ ij

∂γa

∣∣∣∣∣
f

= Pij(za), (9.7)

∂P 1
κ ij

∂µQ a

∣∣∣∣∣
f

= −4Pij(za), (9.8)

∂P 0
κ ij

∂µh a

∣∣∣∣∣
f

=
2

3
(2−Υ2)Pij(za), (9.9)

∂P 2
κ ij

∂µh a

∣∣∣∣∣
f

=
4

3
(2−Υ2)Pij(za), (9.10)

∂P 0
κ ij

∂Ea

∣∣∣∣∣
f

= −Pij(za)
Ea

+
∑
b

1

gi(zb)

∂gi(zb)

∂Ea
Pij(zb) +

∑
b

1

gj(zb)

∂gj(zb)

∂Ea
Pij(zb), (9.11)
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z `max δγ/γ(%) δµQ/µ(%) δµh/µ(%)

0.6 311 6.75 0.64 1.48

0.8 385 5.43 1.45 3.04

1.0 515 9.27 2.71 4.73

1.2 609 20.6 6.70 9.18

1.4 760 70.5 23.0 24.9

1.8 959 816 250 324

Table 4. Redshift bins, `max values and relative errors for γ, µQ and µh for the Euclid forecast. We
compare µQ and µh with µ because the fiducial values of µQ and µh are zero.
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Figure 5. Relative errors for γ, µQ and µh using weak lensing information for an Euclid-like survey.

with,

∂gi(zb)

∂Ea
=

∆za
H0E2

a

[
−θ̂(za − zb)χ(zb)

∫ ∞
za

ni(z
′)

χ(z′)2
dz′

+ θ(zb − za)
∫ ∞
zb

(
1− χ(zb)

χ(z′)

)
ni(z

′)

χ(z′)
dz′
]
, (9.12)

where we have discretized the integration of E(z)−1 in χ(z) for the different bins, and the step
functions θ(z) and θ̂(x) are defined so that θ̂(0) = 0 and θ(0) = 1. We consider a photometric
Euclid-like weak lensing survey with a fraction of the sky fsky = 0.364, zmean = 0.9 and
nθ = 35 galaxies per square arc minute with δz = 0.05. We summarize the results in table 4
and in figure 5.

Finally, if we further assume that γ, µQ and µh are just constants, we can sum the
information in all redshift bins. We plot the corresponding 1-σ and 2-σ contours for µQ and
µh in figure 6.

We can see that lensing convergence measurements are very sensitive to the dipole term
P 1
κ ij , so that errors in µQ are much smaller than for γ and µh. Notice also that multipoles
r = 3, 4 do not appear in the derivatives (9.7)–(9.11) since those terms are quadratic in µQ
and µh so that on the fiducial ΛCDM cosmology the corresponding derivatives vanish. For
the same reason, the Fisher matrix for the rotation power spectrum also vanishes.
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Figure 6. Marginalized 1σ and 2σ regions for for µQ and µh summing the information of the whole
redshift range for an Euclid-like survey.

z kmax `max n× 10−3 100× δgC∗ 100× δgL∗
0.6 0.195 311 3.56 0.61 4.23

0.8 0.225 385 2.42 0.43 7.36

1.0 0.260 515 1.81 0.32 9.65

1.2 0.299 609 1.44 0.30 16.1

1.4 0.343 760 0.99 0.29 38.4

1.8 0.447 959 0.33 0.29 591

Table 5. Redshift bins, kmax values in h/Mpc units, `max values, galaxy densities in (h/Mpc)3 units
and forecasted absolute errors for g∗ from clustering (C) and lensing (L) for an Euclid-like survey.

10 Forecasting primordial anisotropies

So far we have studied the effects of preferred directions in the evolution of density and
metric perturbations, but anisotropies could also be present in the primordial curvature
power spectrum [6, 26]. In this case, and assuming parity symmetry, the leading effects
can be described by a modification of the primordial power spectrum from P (k) to P ′(~k)
such that,

P ′
(
~k
)

=
(
1 + g∗ y2

)
P (k). (10.1)

Assuming a scale-independent modification, g∗ is just a dimensionless constant. We can use
the Fisher formalism of section 3 and section 8 to forecast the sensitivity with which future
surveys could measure the g∗ parameter. With that purpose, we consider both, the multipole
power spectrum for the matter distribution and the multipole power spectrum for lensing
convergence. For clustering we consider the following independent parameters in the Fisher
analysis (fσ8 a, b σ8 a, g∗ a), whereas for lensing we take (Ea, La, g∗ a) where the sub-index a
denotes the different redshift bins and La ≡ ΩmDaσ8. We summarize the results in table 5
for an Euclid-like survey as in previous sections.

As we can see, we have better precision with the multipole power spectrum of galaxy
distribution. If we sum the information of clustering and lensing and in each bin, we obtain
and absolute error δg∗ = 1.4× 10−3.
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Notice that the effects of the g∗ terms would be strongly degenerate with the µ2 param-
eter. However, the gravitational preferred direction could be discriminated from a primordial
anisotropy through the contribution of µQ and µh to Pω, since (10.1) does not produce vector
or tensor modes which are the ones that generate the lensing rotation effect.

11 Conclusions

In this work we have considered possible observational signatures of modifications of gravity
involving preferred spatial directions. In the model-independent approach, these theories
can be parametrized in the sub-Hubble regime and using the quasi-static approximation by
four effective parameters µ(a, k, y), γ(a, k, y), µQ(a, k, y) and µh(a, k, y). We have analyzed
the effects of the existence of a preferred direction in galaxy distribution and weak lensing
observations. In the galaxy power spectrum, we find that a new angular dependence on
the line of sight appears which is different from the usual effect induced by redshift space
distortions. In the lensing case, we have two new effects. On one hand, a dependence on the
line of sight is introduced in the shear and convergence power spectra which is absent in the
isotropic case. In particular the µQ parameter introduces a dipole contribution, whereas the
µh produces a quadrupole term. On the other hand, images rotation is induced in addition
to the standard convergence and shear effects. Thus, we have found a useful relation between
the different power spectra,

Pγ1 + Pγ2 = Pκ + Pω, (11.1)

which shows that even though Pω cannot be measured directly using weak lensing maps, it
can be derived from Pγ1 , Pγ2 and Pκ.

We have also forecasted the precision with which future surveys will be able to measure
the four effective parameters. With that purpose we have extended the standard Fisher
matrix approach in order to include the presence of preferred directions. In particular,
explicit expressions for the covariance matrices for the multipole galaxy power spectrum and
for the convergence power spectrum have been derived in the appendices. For the galaxy
power spectrum, we have considered two different approaches. On one hand, we have obtained
the Fisher matrix for the power spectrum in redshift space, which allows us to include the
Alcock-Paczynski effect. On the other, we computed the corresponding Fisher matrices for
the multipole power spectra. In both cases, we obtain that the precision on measurements
of the effective Newton constant µ = µ0 + µ2 y

2 + µ4 y
4 for an Euclid-like survey will be

around 1% for µ0 and a few percent for µ2 and µ4 (in the case of constant µ0, µ2 and µ4

parameters and marginalizing over E(z) and bσ8(z) in each redshift bin). Very much as in the
clustering case, the lensing forecast indicates that the γ parameter could be measured with
a few percent precision, wheras µQ and µh parameters could be determined with precision
around 1% (again in the constant case and marginalizing over E(z)).

Notice that in this analysis, systematic effects are assumed to be controlled, so that
no additional parameters such as non-gaussian shot noise, multiplicative shear, etc are in-
troduced. We do not expect such isotropic systematics to affect in an important way the
determination of preferred direction effects, although it would be interesting to explore the
possible degeneracy with other anisotropic systematics.

The effects of gravitational preferred directions could, in principle, be degenerate with
anisotropies in the primordial power spectrum. In fact, clustering information alone would
not be able to discriminate between them. However, this degeneracy could be broken since
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gravitational preferred directions can generate vector and tensor perturbations which unlike
primordial anisotropies induce new anisotropic features in the lensing signal. Thus, a dipole
or quadrupole component of the lensing convergence power spectrum or a violation of the
consistency relation (1.1) will be the smoking guns of this kind of models.
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A Clustering covariance matrices

In this appendix we will calculate the covariance matrix for an anisotropic matter power
spectrum. To do that, we start by reviewing the standard calculation in the isotropic case [70–
73] and then we will extend it to include a preferred direction. Let us thus start with the
estimator for the matter power spectrum in the isotropic case,

P̂ (ki) = Vf

∫
ki

d3~k

Vs(ki)
δ(~k)δ(−~k), (A.1)

where Vf = (2π)3/V , being V the volume of the survey and
∫
ki
d3~k = Vs(ki) = 4πk2

i dki the
volume of the ki bin. Thus if we use,

〈δ(~k1)δ(~k2)〉 = δD(~k1 + ~k2)P (~k1), (A.2)

we can prove that 〈P̂ (ki)〉 = P (ki), where δD(0) = 1/Vf . Now, we want to calculate the
covariance matrix, defined as

C(ki, kj) = 〈P̂ (ki)P̂ (kj)〉 − P (ki)P (kj). (A.3)

We consider only the gaussian case, so that

〈F (s1)F (s2)F (s3)F (s4)〉 = 〈F (s1)F (s2)〉〈F (s3)F (s4)〉
+ 〈F (s1)F (s3)〉〈F (s2)F (s4)〉
+ 〈F (s1)F (s4)〉〈F (s2)F (s3)〉. (A.4)

Using this relation we obtain,

C(ki, kj) =
V 2
f δD(0)

Vs(ki)Vs(kj)

∫
ki

d3~k

∫
kj

d3~k′[δD(~k + ~k′) + δD(~k − ~k′)]P (k)2, (A.5)

where we have used the property δ2
D(x) = δD(0) δD(x), and P (~k) = P (k) being k = |~k|. We

consider that P (k) is constant in the integral of the ki-bin, so that we can extract it from
the integral as P (ki). Thus, the integrals in k and k′ become,

∫
ki

d3~k

∫
kj

d3~k′ [δD(~k + ~k′) + δD(~k − ~k′)] = 2Vs(kj) δij . (A.6)
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Finally if we take into account the shot noise, the observable galaxy density contrast becomes,

δobs(k) = δ(k) + ε(k), (A.7)

where ε(k) is a random gaussian variable with 〈ε(k)〉 = 0 and 〈ε(k)ε(k′)〉 = δD(k − k′)/n̄
with n̄ the average galaxy number density. Then the observable power spectrum becomes
P obs(ki) = P (ki) + 1

n̄ and we obtain,

C(ki, kj) = δij
2Vf
Vs(ki)

[
P (ki) +

1

n̄

]2

. (A.8)

Now we want to extend this procedure for the case in which we have an anisotropic power
spectrum depending not only on the full wavevector ~k, but also on its orientation with respect
to the line of sight n̂. In particular, we have a power spectrum P (~k, µ̂) where µ̂ = k̂ · n̂. We
can decompose this power spectrum in the form,

P (~k, µ̂) =
∑
`

P`(~k)L`(µ̂), (A.9)

being L`(µ̂) the Legendre polynomials,

P`(~k) =
2`+ 1

2

∫ 1

−1
dµ̂ P (~k, µ̂)L`(µ̂). (A.10)

We define the estimator for this multipole power spectrum in the following way,

P̂`(~ki) = Vf

∫
~ki

d3~k

Vs(~ki)

2`+ 1

2

∫ 1

−1
dµ̂ δ(~k, µ̂)δ(−~k, µ̂)L`(µ̂), (A.11)

where in general
∫
~ki
d3~k = Vs(~ki) = k2

i dki dyi dφi, being yi = cos θi. If we consider,

〈δ(~k1, µ̂)δ(~k2, µ̂)〉 = δD(~k1 + ~k2)P (~k1, µ̂), (A.12)

we can prove that 〈P̂`(~ki)〉 = P`(~ki). With this estimator we can calculate the covariance
matrix,

C``′(~ki,~kj) = 〈P̂`(~ki)P̂`′(~kj)〉 − P`(~ki)P`′(~kj). (A.13)

As in the isotropic case, we consider only gaussian perturbations satisfying (A.4), so that

C``′(~ki,~kj) =V 2
f

(2`+ 1)(2`′ + 1)

4

∫
~ki

d3~k

Vs(~ki)

∫
~kj

d3~k′

Vs(~kj)

∫ 1

−1
dµ̂

∫ 1

−1
dµ̂′L`(µ̂)L`′(µ̂′)

×
[
〈δ(~k, µ̂)δ(~k′, µ̂′)〉 〈δ(−~k, µ̂)δ(−~k′, µ̂′)〉

+ 〈δ(~k, µ̂)δ(−~k′, µ̂′)〉 〈δ(−~k, µ̂)δ(~k′, µ̂′)〉
]
.

(A.14)
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At this stage we use the distant observer approximation in which we assume that the
integrand of (A.14) is non negligible only when µ̂′ ' µ̂, then we obtain,

C``′(~ki,~kj) 'V 2
f

(2`+ 1)(2`′ + 1)

2

∫
~ki

d3~k

Vs(~ki)

∫
~kj

d3~k′

Vs(~kj)

∫ 1

−1
dµ̂L`(µ̂)L`′(µ̂)

×
[
〈δ(~k, µ̂)δ(~k′, µ̂)〉 〈δ(−~k, µ̂)δ(−~k′, µ̂)〉

+ 〈δ(~k, µ̂)δ(−~k′, µ̂)〉 〈δ(−~k, µ̂)δ(~k′, µ̂)〉
]
. (A.15)

Using (A.12) and taking into account once again that δ2
D(x) = δD(0)δD(x) and δD(0) = 1/Vf ,

we obtain,

C``′(~ki,~kj) 'Vf
(2`+ 1)(2`′ + 1)

2

∫
~ki

d3~k

Vs(~ki)

∫
~kj

d3~k′

Vs(~kj)

×
∫ 1

−1
dµ̂L`(µ̂)L`′(µ̂)

[
δD(~k + ~k′) + δD(~k − ~k′)

]
P (~k, µ̂)P (−~k, µ̂). (A.16)

As done before, we consider that P (~k, µ̂) ' P (~ki, µ̂) in the integral and also that∫
~ki

d3~k

∫
~kj

d3~k′ δD(~k − ~k′) = Vs(~kj) δki,kj δyi,yj δφi,φj , (A.17)

and ∫
~ki

d3~k

∫
~kj

d3~k′ δD(~k + ~k′) = Vs(~kj) δki,kj δyi,−yj δφi,φj+π. (A.18)

Using these expressions we obtain,

C``′(~ki,~kj) =
Vf δki,kj

Vs(~ki)
[δyi,yj δφi,φj + δyi,−yj δφi,φj+π]

× (2`+ 1)(2`′ + 1)

2

∫ 1

−1
dµ̂L`(µ̂)L`′(µ̂)P (~ki, µ̂)P (−~ki, µ̂). (A.19)

If we consider that the fiducial power spectrum is of the form P (~ki, µ̂) = P (ki, µ̂), and
we have only dependence on y2 then δyi,−yj = δyi,yj . Also, we can integrate in φi so that

Vs(~ki) = 2πk2
i dki dyi, and

C``′(~ki,~kj) = δ~ki,~kj
2Vf

Vs(~ki)

(2`+ 1)(2`′ + 1)

2

∫ 1

−1
dµ̂L`(µ̂)L`′ (µ̂)P 2(ki, µ̂). (A.20)

Finally we take into account that the observable matter power spectrum is P obs(ki, µ̂) =
P (ki, µ̂) + 1/n̄ so that the final expression for the covariance matrix we will consider reads

C``′(~ki,~kj) = δ~ki,~kj
2Vf

Vs(~ki)

(2`+ 1)(2`′ + 1)

2

∫ 1

−1
dµ̂L`(µ̂)L`′ (µ̂)

[
P (ki, µ̂) +

1

n̄

]2

. (A.21)
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B Lensing covariance matrices

In this appendix we will calculate the covariance matrix for an anisotropic lensing convergence
power spectra. As in clustering case, we start by reviewing [70–73] the standard isotropic
calculation. Let us thus first obtain the estimator for the convergence power spectra in
redshift bins i, j,

P̂ij(`a) = Af

∫
`a

d2~̀

As(`a)
κi(~̀)κj(−~̀), (B.1)

where Af = (2π)2/Ω, being Ω = 4πfsky the total area of the survey and
∫
`a
d2~̀ = As(`a) =

2π`ad`a the area of the `a bin. Then if we use,

〈κi(~̀1)κj(~̀2)〉 = δD(~̀1 + ~̀
2)Pij(~̀1), (B.2)

we can prove that 〈P̂ij(`a)〉 = Pij(`a), where δD(0) = 1/Af . The corresponding covariance
matrix is defined by,

Ciji′j′(`a, `b) = 〈P̂ij(`a)P̂i′j′(`b)〉 − Pij(`a)Pi′j′(`b). (B.3)

As before, we take into account (A.4) for gaussian perturbations so that

Ciji′j′(`a, `b) =
A2
f δD(0)

As(`a)As(`b)

∫
`a

d2~̀
∫
`b

d2~̀′

× [δD(~̀+ ~̀′)Pii′(`)Pjj′(`) + δD(~̀− ~̀′)Pij′(`)Pji′(`)], (B.4)

where once more we have used the property δ2
D(x) = δD(0) δD(x), and Pij(~̀) = Pij(`) being

` = |~̀|. By assuming that Pij(`) is constant within the `a bin, we can extract it from the
integral as Pij(`a). Then, the integrals in ` and `′ become,∫

`a

d2~̀
∫
`b

d2~̀′ δD(~̀± ~̀′) = As(`b) δab. (B.5)

Finally if we take into account the intrinsic ellipticity γint, the observable convergence reads,

κobs
i (`) = κi(`) + γint εi(`), (B.6)

where εi(`) is a random gaussian variable with 〈εi(`)〉 = 0 and 〈εi(`)εj(`′)〉 = δD(`− `′)δij/n̂i,
with n̂i the areal galaxy density (per steradian) in the redshift bin i. Then the observable
power spectrum is,

P obs
ij (`) = Pij(`) +

γ2
int

n̂i
δij . (B.7)

and the covariance is,

Ciji′j′(`a, `b) =
Af δab
As(`a)

[P obs
ii′ (`a)P

obs
jj′ (`a) + P obs

ij′ (`a)P
obs
ji′ (`a)]. (B.8)
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If we use the expressions for Af and As(`a) and consider ` ' (2`+ 1)/2 we obtain the known
result [73],

Ciji′j′(`a, `b) =
δab

(2`a + 1)fskyd`a
[P obs
ii′ (`a)P

obs
jj′ (`a) + P obs

ij′ (`a)P
obs
ji′ (`a)]. (B.9)

Now we want to obtain the covariance matrix for the case in which the power spectrum
denpends not only on the full ~̀ vector but also we have a dependence on the observation
direction n̂, in particular a polar dependence (ξ = n̂ · Â) where Â is the preferred direction.
As in (A.9), we can write

Pij(~̀, ξ) =
∑
r

P rij(
~̀)Lr(ξ), (B.10)

where,

P rij(
~̀) =

2r + 1

2

∫ 1

−1
dξ Pij(~̀, ξ)Lr(ξ). (B.11)

We define the estimator for this multipole power spectrum in the following way,

P̂ rij(
~̀
a) = Af

∫
~̀
a

d2~̀

As(~̀a)

2r + 1

2

∫ 1

−1
dξ κi(~̀, ξ)κj(−~̀, ξ)Lr(ξ), (B.12)

being
∫
~̀
a
d2~̀= As(~̀a) = `ad`adφa, where cosφa = Υa (6.25). If we consider,

〈κi(~̀1, ξ)κj(~̀2, ξ)〉 = δD(~̀1 + ~̀
2)Pij(~̀1, ξ), (B.13)

we can prove that 〈P̂ rij( ~̀a)〉 = P rij(
~̀
a). With this estimator we can calculate the covariance

matrix,

Crr
′

iji′j′(
~̀
a, ~̀b) = 〈P̂ rij(~̀a)P̂ r

′
i′j′(

~̀
b)〉 − P rij(~̀a)P r

′
i′j′(

~̀
b). (B.14)

As in the previous case, we consider only gaussian perturbations, so that

Crr
′

iji′j′(
~̀
a, ~̀b) =A2

f

(2r + 1)(2r′ + 1)

4

∫
~̀
a

d2~̀

As(~̀a)

∫
~̀
b

d2~̀′

As(~̀b)

∫ 1

−1
dξ

∫ 1

−1
dξ′Lr(ξ)Lr′(ξ′)

×
[
〈κi(~̀, ξ)κi′(~̀′, ξ′)〉 〈κj(−~̀, ξ)κj′( ~−`

′
, ξ′)〉

+ 〈κi(~̀, ξ)κj′(−~̀′, ξ′)〉 〈κj(−~̀, ξ)κi′(~̀′, ξ′)〉
]
. (B.15)

At this stage we use once again the distant observer approximation, in which we assume that
the integrand of (B.15) is non negligible only when ξ′ ' ξ, then we obtain,

Crr
′

iji′j′(
~̀
a, ~̀b) 'A2

f

(2r + 1)(2r′ + 1)

2

∫
~̀
a

d2~̀

As(~̀a)

∫
~̀
b

d2~̀′

As(~̀b)

∫ 1

−1
dξ Lr(ξ)Lr′(ξ)

×
[
〈κi(~̀, ξ)κi′(~̀′, ξ)〉 〈κj(−~̀, ξ)κj′( ~−`

′
, ξ)〉

+ 〈κi(~̀, ξ)κj′(−~̀′, ξ)〉 〈κj(−~̀, ξ)κi′(~̀′, ξ)〉
]
. (B.16)
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Using (B.13) and taking into account once more δ2
D(x) = δD(0)δD(x) and δD(0) = 1/Af , we

finally obtain,

Crr
′

iji′j′(
~̀
a, ~̀b) ≈Af

(2r + 1)(2r′ + 1)

2

∫
~̀
a

d2~̀

As(~̀a)

∫
~̀
b

d2~̀′

As(~̀b)

∫ 1

−1
dξ Lr(ξ)Lr′(ξ)

×
[
δD(~̀+ ~̀′)Pii′(~̀, ξ)Pjj′(−~̀, ξ) + δD(~̀− ~̀′)Pij′(~̀, ξ)Pji′(−~̀, ξ)

]
, (B.17)

As done before, we consider that Pij(~̀, ξ) ' Pij( ~̀a, ξ) in the integral and also that,∫
~̀
a

d2~̀
∫
~̀
b

d2~̀′ δD(~̀− ~̀′) = As(`b) δ`a`b δφaφb , (B.18)

and ∫
~̀
a

d2~̀
∫
~̀
b

d2~̀′ δD(~̀+ ~̀′) = As(`b) δ`a`b δφaφb+π, (B.19)

so that we finally obtain,

Crr
′

iji′j′(
~̀
a, ~̀b) =

Af δ`a`b

As(~̀a)

(2r + 1)(2r′ + 1)

2

∫ 1

−1
dξ Lr(ξ)Lr′(ξ)

×
[
δφaφb+π Pii′(

~̀
a, ξ)Pjj′(−~̀a, ξ) + δφaφb Pij′(

~̀
a, ξ)Pji′(−~̀a, ξ)

]
. (B.20)

Notice that if the only dependence in φa is in the form of Υ2
a, then δφaφb = δφaφb+π = δΥaΥb .

If we further consider that the fiducial power spectrum is isotropic, we obtain the final result
used in the work,

Crr
′

iji′j′(
~̀
a, ~̀b) =

2π (2r + 1) δ~̀
a
~̀
b
δrr′

fsky (2`a + 1)d`adφa
[P obs
ii′ (`a)P

obs
jj′ (`a) + P obs

ij′ (`a)P
obs
ji′ (`a)], (B.21)

where δ~̀
a
~̀
b

= δ`a`bδΥaΥb and we have approximated once more ` ' (2`+ 1)/2.
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[15] P. Hořava, Quantum gravity at a Lifshitz point, Phys. Rev. D 79 (2009) 084008
[arXiv:0901.3775] [INSPIRE].

[16] T. Jacobson and D. Mattingly, Gravity with a dynamical preferred frame, Phys. Rev. D 64
(2001) 024028 [gr-qc/0007031] [INSPIRE].

[17] C. Armendariz-Picon, Could dark energy be vector-like?, JCAP 07 (2004) 007
[astro-ph/0405267] [INSPIRE].

[18] C.G. Boehmer and T. Harko, Dark energy as a massive vector field, Eur. Phys. J. C 50 (2007)
423 [gr-qc/0701029] [INSPIRE].

[19] J. Beltran Jimenez and A.L. Maroto, A cosmic vector for dark energy, Phys. Rev. D 78 (2008)
063005 [arXiv:0801.1486] [INSPIRE].

[20] J. Beltran Jimenez and A.L. Maroto, Cosmological electromagnetic fields and dark energy,
JCAP 03 (2009) 016 [arXiv:0811.0566] [INSPIRE].

[21] J. Beltran Jimenez and A.L. Maroto, The electromagnetic dark sector, Phys. Lett. B 686
(2010) 175 [arXiv:0903.4672] [INSPIRE].

[22] J. Beltran Jimenez and L. Heisenberg, Derivative self-interactions for a massive vector field,
Phys. Lett. B 757 (2016) 405 [arXiv:1602.03410] [INSPIRE].

[23] J. Beltran Jimenez and L. Heisenberg, Generalized multi-Proca fields, Phys. Lett. B 770 (2017)
16 [arXiv:1610.08960] [INSPIRE].

[24] J.K. Nordtvedt, Anisotropic parametrized post-Newtonian gravitational metric field, Phys. Rev.
D 14 (1976) 1511 [INSPIRE].

[25] H. Muller et al., Atom Interferometry tests of the isotropy of post-Newtonian gravity, Phys.
Rev. Lett. 100 (2008) 031101 [arXiv:0710.3768] [INSPIRE].

[26] A.R. Pullen and C.M. Hirata, Non-detection of a statistically anisotropic power spectrum in
large-scale structure, JCAP 05 (2010) 027 [arXiv:1003.0673] [INSPIRE].

[27] D. Jeong and M. Kamionkowski, Clustering fossils from the Early Universe, Phys. Rev. Lett.
108 (2012) 251301 [arXiv:1203.0302] [INSPIRE].

[28] M. Shiraishi, N.S. Sugiyama and T. Okumura, Polypolar spherical harmonic decomposition of
galaxy correlators in redshift space: toward testing cosmic rotational symmetry, Phys. Rev. D
95 (2017) 063508 [arXiv:1612.02645] [INSPIRE].

– 32 –

https://doi.org/10.1051/0004-6361/201321299
https://arxiv.org/abs/1303.5090
https://inspirehep.net/search?p=find+EPRINT+arXiv:1303.5090
https://doi.org/10.1088/0004-637X/810/2/143
https://arxiv.org/abs/1411.4180
https://inspirehep.net/search?p=find+EPRINT+arXiv:1411.4180
https://doi.org/10.1093/mnras/stv2146
https://doi.org/10.1093/mnras/stv2146
https://arxiv.org/abs/1511.06930
https://inspirehep.net/search?p=find+EPRINT+arXiv:1511.06930
https://doi.org/10.1103/PhysRevD.58.116002
https://doi.org/10.1103/PhysRevD.58.116002
https://arxiv.org/abs/hep-ph/9809521
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9809521
https://doi.org/10.1143/PTPS.E68.190
https://doi.org/10.1143/PTPS.E68.190
https://inspirehep.net/search?p=find+%22Theor.Phys.Suppl.,E68,190%22
https://doi.org/10.1103/PhysRevD.74.045001
https://arxiv.org/abs/gr-qc/0603030
https://inspirehep.net/search?p=find+EPRINT+gr-qc/0603030
https://doi.org/10.1142/S0218271814430093
https://arxiv.org/abs/1412.4828
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.4828
https://doi.org/10.1103/PhysRevD.79.084008
https://arxiv.org/abs/0901.3775
https://inspirehep.net/search?p=find+EPRINT+arXiv:0901.3775
https://doi.org/10.1103/PhysRevD.64.024028
https://doi.org/10.1103/PhysRevD.64.024028
https://arxiv.org/abs/gr-qc/0007031
https://inspirehep.net/search?p=find+EPRINT+gr-qc/0007031
https://doi.org/10.1088/1475-7516/2004/07/007
https://arxiv.org/abs/astro-ph/0405267
https://inspirehep.net/search?p=find+EPRINT+astro-ph/0405267
https://doi.org/10.1140/epjc/s10052-007-0210-1
https://doi.org/10.1140/epjc/s10052-007-0210-1
https://arxiv.org/abs/gr-qc/0701029
https://inspirehep.net/search?p=find+EPRINT+gr-qc/0701029
https://doi.org/10.1103/PhysRevD.78.063005
https://doi.org/10.1103/PhysRevD.78.063005
https://arxiv.org/abs/0801.1486
https://inspirehep.net/search?p=find+EPRINT+arXiv:0801.1486
https://doi.org/10.1088/1475-7516/2009/03/016
https://arxiv.org/abs/0811.0566
https://inspirehep.net/search?p=find+EPRINT+arXiv:0811.0566
https://doi.org/10.1016/j.physletb.2010.02.038
https://doi.org/10.1016/j.physletb.2010.02.038
https://arxiv.org/abs/0903.4672
https://inspirehep.net/search?p=find+EPRINT+arXiv:0903.4672
https://doi.org/10.1016/j.physletb.2016.04.017
https://arxiv.org/abs/1602.03410
https://inspirehep.net/search?p=find+EPRINT+arXiv:1602.03410
https://doi.org/10.1016/j.physletb.2017.03.002
https://doi.org/10.1016/j.physletb.2017.03.002
https://arxiv.org/abs/1610.08960
https://inspirehep.net/search?p=find+EPRINT+arXiv:1610.08960
https://doi.org/10.1103/PhysRevD.14.1511
https://doi.org/10.1103/PhysRevD.14.1511
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D14,1511%22
https://doi.org/10.1103/PhysRevLett.100.031101
https://doi.org/10.1103/PhysRevLett.100.031101
https://arxiv.org/abs/0710.3768
https://inspirehep.net/search?p=find+EPRINT+arXiv:0710.3768
https://doi.org/10.1088/1475-7516/2010/05/027
https://arxiv.org/abs/1003.0673
https://inspirehep.net/search?p=find+EPRINT+arXiv:1003.0673
https://doi.org/10.1103/PhysRevLett.108.251301
https://doi.org/10.1103/PhysRevLett.108.251301
https://arxiv.org/abs/1203.0302
https://inspirehep.net/search?p=find+EPRINT+arXiv:1203.0302
https://doi.org/10.1103/PhysRevD.95.063508
https://doi.org/10.1103/PhysRevD.95.063508
https://arxiv.org/abs/1612.02645
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.02645


J
C
A
P
0
2
(
2
0
2
0
)
0
1
3

[29] V. Tansella et al., Redshift-space distortions from vector perturbations II: anisotropic signal,
Phys. Rev. D 98 (2018) 103515 [arXiv:1807.00731] [INSPIRE].

[30] N. Bartolo, S. Matarrese, M. Peloso and A. Ricciardone, Anisotropic power spectrum and
bispectrum in the f(φ)F 2 mechanism, Phys. Rev. D 87 (2013) 023504 [arXiv:1210.3257]
[INSPIRE].

[31] N. Bartolo, S. Matarrese, M. Peloso and M. Shiraishi, Parity-violating CMB correlators with
non-decaying statistical anisotropy, JCAP 07 (2015) 039 [arXiv:1505.02193] [INSPIRE].

[32] M.-a. Watanabe, S. Kanno and J. Soda, The nature of primordial fluctuations from anisotropic
inflation, Prog. Theor. Phys. 123 (2010) 1041 [arXiv:1003.0056] [INSPIRE].

[33] N. Bartolo et al., Detecting higher spin fields through statistical anisotropy in the CMB and
galaxy power spectra, Phys. Rev. D 97 (2018) 023503 [arXiv:1709.05695] [INSPIRE].

[34] A.L. Maroto, Moving dark energy and the CMB dipole, JCAP 05 (2006) 015
[astro-ph/0512464] [INSPIRE].

[35] J. Beltran Jimenez and A.L. Maroto, Cosmology with moving dark energy and the CMB
quadrupole, Phys. Rev. D 76 (2007) 023003 [astro-ph/0703483] [INSPIRE].

[36] J.A.R. Cembranos, A.L. Maroto and H. Villarrubia-Rojo, Non-comoving Cosmology, JCAP 06
(2019) 041 [arXiv:1903.11009] [INSPIRE].

[37] M.A. Resco and A.L. Maroto, Parametrizing modified gravities with vector degrees of freedom:
anisotropic growth and lensing, JCAP 10 (2018) 014 [arXiv:1807.04649] [INSPIRE].

[38] L. Pogosian, A. Silvestri, K. Koyama and G.-B. Zhao, How to optimally parametrize deviations
from General Relativity in the evolution of cosmological perturbations?, Phys. Rev. D 81 (2010)
104023 [arXiv:1002.2382] [INSPIRE].

[39] A. Silvestri, L. Pogosian and R.V. Buniy, Practical approach to cosmological perturbations in
modified gravity, Phys. Rev. D 87 (2013) 104015 [arXiv:1302.1193] [INSPIRE].

[40] BOSS collaboration, The clustering of galaxies in the completed SDSS-III Baryon Oscillation
Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample, Mon. Not. Roy.
Astron. Soc. 470 (2017) 2617 [arXiv:1607.03155] [INSPIRE].

[41] DESI collaboration, The DESI experiment part I: science,targeting and survey design,
arXiv:1611.00036 [INSPIRE].

[42] EUCLID collaboration, Euclid definition study report, arXiv:1110.3193 [INSPIRE].

[43] DES collaboration, The dark energy survey, astro-ph/0510346 [INSPIRE].

[44] LSST Science, LSST Project collaboration, LSST science book, version 2.0,
arXiv:0912.0201 [INSPIRE].

[45] J-PAS collaboration, J-PAS: the Javalambre-Physics of the Accelerated universe astrophysical
survey, arXiv:1403.5237 [INSPIRE].

[46] F. Bernardeau, S. Colombi, E. Gaztanaga and R. Scoccimarro, Large scale structure of the
universe and cosmological perturbation theory, Phys. Rept. 367 (2002) 1 [astro-ph/0112551]
[INSPIRE].

[47] B.A. Bassett and R. Hlozek, Baryon acoustic oscillations, in Dark energy, P. Ruiz-Lapuente
ed., Cambridge University Press, Cambridge U.K. (2010), arXiv:0910.5224 [INSPIRE].

[48] M. Bartelmann and P. Schneider, Weak gravitational lensing, Phys. Rept. 340 (2001) 291
[astro-ph/9912508] [INSPIRE].

[49] M. Kilbinger, Cosmology with cosmic shear observations: a review, Rept. Prog. Phys. 78 (2015)
086901 [arXiv:1411.0115] [INSPIRE].

– 33 –

https://doi.org/10.1103/PhysRevD.98.103515
https://arxiv.org/abs/1807.00731
https://inspirehep.net/search?p=find+EPRINT+arXiv:1807.00731
https://doi.org/10.1103/PhysRevD.87.023504
https://arxiv.org/abs/1210.3257
https://inspirehep.net/search?p=find+EPRINT+arXiv:1210.3257
https://doi.org/10.1088/1475-7516/2015/07/039
https://arxiv.org/abs/1505.02193
https://inspirehep.net/search?p=find+EPRINT+arXiv:1505.02193
https://doi.org/10.1143/PTP.123.1041
https://arxiv.org/abs/1003.0056
https://inspirehep.net/search?p=find+EPRINT+arXiv:1003.0056
https://doi.org/10.1103/PhysRevD.97.023503
https://arxiv.org/abs/1709.05695
https://inspirehep.net/search?p=find+EPRINT+arXiv:1709.05695
https://doi.org/10.1088/1475-7516/2006/05/015
https://arxiv.org/abs/astro-ph/0512464
https://inspirehep.net/search?p=find+EPRINT+astro-ph/0512464
https://doi.org/10.1103/PhysRevD.76.023003
https://arxiv.org/abs/astro-ph/0703483
https://inspirehep.net/search?p=find+EPRINT+astro-ph/0703483
https://doi.org/10.1088/1475-7516/2019/06/041
https://doi.org/10.1088/1475-7516/2019/06/041
https://arxiv.org/abs/1903.11009
https://inspirehep.net/search?p=find+EPRINT+arXiv:1903.11009
https://doi.org/10.1088/1475-7516/2018/10/014
https://arxiv.org/abs/1807.04649
https://inspirehep.net/search?p=find+EPRINT+arXiv:1807.04649
https://doi.org/10.1103/PhysRevD.81.104023
https://doi.org/10.1103/PhysRevD.81.104023
https://arxiv.org/abs/1002.2382
https://inspirehep.net/search?p=find+EPRINT+arXiv:1002.2382
https://doi.org/10.1103/PhysRevD.87.104015
https://arxiv.org/abs/1302.1193
https://inspirehep.net/search?p=find+EPRINT+arXiv:1302.1193
https://doi.org/10.1093/mnras/stx721
https://doi.org/10.1093/mnras/stx721
https://arxiv.org/abs/1607.03155
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.03155
https://arxiv.org/abs/1611.00036
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.00036
https://arxiv.org/abs/1110.3193
https://inspirehep.net/search?p=find+EPRINT+arXiv:1110.3193
https://arxiv.org/abs/astro-ph/0510346
https://inspirehep.net/search?p=find+EPRINT+astro-ph/0510346
https://arxiv.org/abs/0912.0201
https://inspirehep.net/search?p=find+EPRINT+arXiv:0912.0201
https://arxiv.org/abs/1403.5237
https://inspirehep.net/search?p=find+EPRINT+arXiv:1403.5237
https://doi.org/10.1016/S0370-1573(02)00135-7
https://arxiv.org/abs/astro-ph/0112551
https://inspirehep.net/search?p=find+EPRINT+astro-ph/0112551
https://arxiv.org/abs/0910.5224
https://inspirehep.net/search?p=find+EPRINT+arXiv:0910.5224
https://doi.org/10.1016/S0370-1573(00)00082-X
https://arxiv.org/abs/astro-ph/9912508
https://inspirehep.net/search?p=find+EPRINT+astro-ph/9912508
https://doi.org/10.1088/0034-4885/78/8/086901
https://doi.org/10.1088/0034-4885/78/8/086901
https://arxiv.org/abs/1411.0115
https://inspirehep.net/search?p=find+EPRINT+arXiv:1411.0115


J
C
A
P
0
2
(
2
0
2
0
)
0
1
3

[50] W. Hu and M. Tegmark, Weak lensing: prospects for measuring cosmological parameters,
Astrophys. J. 514 (1999) L65 [astro-ph/9811168] [INSPIRE].

[51] H.-J. Seo and D.J. Eisenstein, Probing dark energy with baryonic acoustic oscillations from
future large galaxy redshift surveys, Astrophys. J. 598 (2003) 720 [astro-ph/0307460]
[INSPIRE].

[52] C. Alcock and B. Paczynski, An evolution free test for non-zero cosmological constant, Nature
281 (1979) 358 [INSPIRE].

[53] L. Samushia, W.J. Percival and A. Raccanelli, Interpreting large-scale redshift-space distortion
measurements, Mon. Not. Roy. Astron. Soc. 420 (2012) 2102 [arXiv:1102.1014].

[54] D.J. Bacon, A.R. Refregier and R.S. Ellis, Detection of weak gravitational lensing by large-scale
structure, Mon. Not. Roy. Astron. Soc. 318 (2000) 625 [astro-ph/0003008] [INSPIRE].

[55] N. Kaiser, G. Wilson and G.A. Luppino, Large scale cosmic shear measurements,
astro-ph/0003338 [INSPIRE].

[56] N. Kaiser, Weak lensing and cosmology, Astrophys. J. 498 (1998) 26 [astro-ph/9610120]
[INSPIRE].

[57] W. Hu, Power spectrum tomography with weak lensing, Astrophys. J. 522 (1999) L21
[astro-ph/9904153] [INSPIRE].

[58] N. Kaiser and G. Squires, Mapping the dark matter with weak gravitational lensing, Astrophys.
J. 404 (1993) 441 [INSPIRE].

[59] N. Kaiser, G. Squires and T.J. Broadhurst, A method for weak lensing observations, Astrophys.
J. 449 (1995) 460 [astro-ph/9411005] [INSPIRE].

[60] A. Cooray and W. Hu, Second order corrections to weak lensing by large scale structure,
Astrophys. J. 574 (2002) 19 [astro-ph/0202411] [INSPIRE].

[61] D.B. Thomas, L. Whittaker, S. Camera and M.L. Brown, Estimating the weak-lensing rotation
signal in radio cosmic shear surveys, Mon. Not. Roy. Astron. Soc. 470 (2017) 3131
[arXiv:1612.01533] [INSPIRE].

[62] T.S. Pereira, C. Pitrou and J.-P. Uzan, Theory of cosmological perturbations in an anisotropic
universe, JCAP 09 (2007) 006 [arXiv:0707.0736] [INSPIRE].

[63] M.A. Resco and A.L. Maroto, Parametrizing growth in dark energy and modified gravity
models, Phys. Rev. D 97 (2018) 043518 [arXiv:1707.08964] [INSPIRE].

[64] E.V. Linder, Cosmic growth history and expansion history, Phys. Rev. D 72 (2005) 043529
[astro-ph/0507263] [INSPIRE].

[65] E.V. Linder and R.N. Cahn, Parameterized Beyond-Einstein growth, Astropart. Phys. 28
(2007) 481 [astro-ph/0701317] [INSPIRE].

[66] A. Taruya, S. Saito and T. Nishimichi, Forecasting the cosmological constraints with anisotropic
baryon acoustic oscillations from multipole expansion, Phys. Rev. D 83 (2011) 103527
[arXiv:1101.4723] [INSPIRE].

[67] L. Amendola et al., Model-independent constraints on the cosmological anisotropic stress, Phys.
Rev. D 89 (2014) 063538 [arXiv:1311.4765] [INSPIRE].

[68] J. Lesgourgues, The Cosmic Linear Anisotropy Solving System (CLASS) I: overview,
arXiv:1104.2932 [INSPIRE].

[69] S. Hilbert et al., Intrinsic alignments of galaxies in the illustris simulation, Mon. Not. Roy.
Astron. Soc. 468 (2017) 790 [arXiv:1606.03216] [INSPIRE].

– 34 –

https://doi.org/10.1086/311947
https://arxiv.org/abs/astro-ph/9811168
https://inspirehep.net/search?p=find+EPRINT+astro-ph/9811168
https://doi.org/10.1086/379122
https://arxiv.org/abs/astro-ph/0307460
https://inspirehep.net/search?p=find+EPRINT+astro-ph/0307460
https://doi.org/10.1038/281358a0
https://doi.org/10.1038/281358a0
https://inspirehep.net/search?p=find+J+%22Nature,281,358%22
https://doi.org/10.1111/j.1365-2966.2011.20169.x
https://arxiv.org/abs/1102.1014
https://doi.org/10.1046/j.1365-8711.2000.03851.x
https://arxiv.org/abs/astro-ph/0003008
https://inspirehep.net/search?p=find+EPRINT+astro-ph/0003008
https://arxiv.org/abs/astro-ph/0003338
https://inspirehep.net/search?p=find+EPRINT+astro-ph/0003338
https://doi.org/10.1086/305515
https://arxiv.org/abs/astro-ph/9610120
https://inspirehep.net/search?p=find+EPRINT+astro-ph/9610120
https://doi.org/10.1086/312210
https://arxiv.org/abs/astro-ph/9904153
https://inspirehep.net/search?p=find+EPRINT+astro-ph/9904153
https://doi.org/10.1086/172297
https://doi.org/10.1086/172297
https://inspirehep.net/search?p=find+J+%22Astrophys.J.,404,441%22
https://doi.org/10.1086/176071
https://doi.org/10.1086/176071
https://arxiv.org/abs/astro-ph/9411005
https://inspirehep.net/search?p=find+EPRINT+astro-ph/9411005
https://doi.org/10.1086/340892
https://arxiv.org/abs/astro-ph/0202411
https://inspirehep.net/search?p=find+EPRINT+astro-ph/0202411
https://doi.org/10.1093/mnras/stx1468
https://arxiv.org/abs/1612.01533
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.01533
https://doi.org/10.1088/1475-7516/2007/09/006
https://arxiv.org/abs/0707.0736
https://inspirehep.net/search?p=find+EPRINT+arXiv:0707.0736
https://doi.org/10.1103/PhysRevD.97.043518
https://arxiv.org/abs/1707.08964
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.08964
https://doi.org/10.1103/PhysRevD.72.043529
https://arxiv.org/abs/astro-ph/0507263
https://inspirehep.net/search?p=find+EPRINT+astro-ph/0507263
https://doi.org/10.1016/j.astropartphys.2007.09.003
https://doi.org/10.1016/j.astropartphys.2007.09.003
https://arxiv.org/abs/astro-ph/0701317
https://inspirehep.net/search?p=find+EPRINT+astro-ph/0701317
https://doi.org/10.1103/PhysRevD.83.103527
https://arxiv.org/abs/1101.4723
https://inspirehep.net/search?p=find+EPRINT+arXiv:1101.4723
https://doi.org/10.1103/PhysRevD.89.063538
https://doi.org/10.1103/PhysRevD.89.063538
https://arxiv.org/abs/1311.4765
https://inspirehep.net/search?p=find+EPRINT+arXiv:1311.4765
https://arxiv.org/abs/1104.2932
https://inspirehep.net/search?p=find+EPRINT+arXiv:1104.2932
https://doi.org/10.1093/mnras/stx482
https://doi.org/10.1093/mnras/stx482
https://arxiv.org/abs/1606.03216
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.03216


J
C
A
P
0
2
(
2
0
2
0
)
0
1
3

[70] K. Yamamoto et al., A measurement of the quadrupole power spectrum in the clustering of the
2dF QSO Survey, Publ. Astron. Soc. Jap. 58 (2006) 93 [astro-ph/0505115] [INSPIRE].

[71] M. Takada and S. Bridle, Probing dark energy with cluster counts and cosmic shear power
spectra: including the full covariance, New J. Phys. 9 (2007) 446 [arXiv:0705.0163] [INSPIRE].

[72] I. Kayo and M. Takada, Cosmological parameters from weak lensing power spectrum and
bispectrum tomography: including the non-Gaussian errors, arXiv:1306.4684 [INSPIRE].

[73] J. Guzik, B. Jain and M. Takada, Tests of gravity from imaging and spectroscopic surveys,
Phys. Rev. D 81 (2010) 023503 [arXiv:0906.2221] [INSPIRE].

– 35 –

https://doi.org/10.1093/pasj/58.1.93
https://arxiv.org/abs/astro-ph/0505115
https://inspirehep.net/search?p=find+EPRINT+astro-ph/0505115
https://doi.org/10.1088/1367-2630/9/12/446
https://arxiv.org/abs/0705.0163
https://inspirehep.net/search?p=find+EPRINT+arXiv:0705.0163
https://arxiv.org/abs/1306.4684
https://inspirehep.net/search?p=find+EPRINT+arXiv:1306.4684
https://doi.org/10.1103/PhysRevD.81.023503
https://arxiv.org/abs/0906.2221
https://inspirehep.net/search?p=find+EPRINT+arXiv:0906.2221

	Introduction
	Model-independent parametrization of anisotropic modified gravities
	Galaxy power spectrum
	Weak lensing: null geodesics with scalar, vector and tensor perturbations
	The distortion tensor
	Weak-lensing power spectra
	Fisher analysis for the multipole power spectrum
	Fiducial cosmology and galaxy redshift survey

	Fisher analysis for the redshift-space power spectrum
	Fisher analysis for the weak lensing power spectrum
	Forecasting primordial anisotropies
	Conclusions
	Clustering covariance matrices
	Lensing covariance matrices

