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Abstract.  Chaperone-assisted translocation through a nanopore embedded in 
membrane holds a prominent role in the transport of biopolymers. Inspired by 
classical Brownian ratchet, we develop a theoretical framework characterizing 
such a translocation process through a master equation  approach. In this 
framework, the polymer chain, provided with reversible binding of chaperones, 
undergoes forward/backward diusion, which is rectified by chaperones. We 
drop the assumption of timescale separation and keep the length of a polymer 
chain finite, both of which happen to be key points in most of the previous 
studies. Our framework makes it accessible to derive analytical expressions for 
mean translocation velocity and an eective diusion constant in a stationary 
state, which is the basis of a comprehensive understanding of the dynamics of 
such a process. Generally, the translocation of polymer chains across a membrane 
consist of three subprocesses: initiation, termination, and translocation of the 
main body part of a polymer chain, where the translocation of the main body 
part depends on both the binding/unbinding kinetics of chaperones and the 
diusion of the biopolymer chain. This is the main concern of this study. Our 
results show that the increase of the forward/backward diusion rate of a 
polymer chain and the binding/unbinding ratio of chaperones both raise the 
mean translocation velocity of a polymer chain, and the mean velocity finally 
reaches a saturation amount with an extremely rapid diusion or extremely 
high binding/unbinding ratio. Roughly speaking, the dependence of eective 
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diusion constant on these two major processes achieves similar behavior. 
Besides, longer polymer chains employ higher velocity when the diusion rate 
and binding/unbinding ratio are both large and similar results hold for polymer 
chains that are not too long in terms of the eects on the eective diusion 
constant.
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1.  Introduction

Translocation across membranes are ubiquitous during or after the synthesis of biopoly-
mers. A typical example is of proteins that translocate across the endoplasmic reticu-
lum through an aqueous-pore protein-conducting channel [1–5]. Additional examples, 
including the exportation of RNA across nuclear membranes in eukaryotic cells [6, 7] 
and the viral injection of DNA into a host [8, 9], both involve translocation through 
nanoscopic pores embedded in biological membranes. New evidence also indicates that 
the uptake of long DNA molecules concern the linear passage through the nuclear pore 
complex [10]. Despite the lack of a membrane-bound nucleus or any membrane-bound 
organelle, the DNA of bacteria travels across the cell envelope through narrow con-
strictions during the process of horizontal gene transfer [11–13], such as transforma-
tion [14], which is responsible for the adaptive evolution of bacteria. Similar transport 
mechanisms have also been reported in the biotechnology of drug delivery [15] and 
rapid DNA sequencing [16].

In recent decades, wide attention has been devoted to understand the mechanism of 
such crucial biological processes. Pioneering work has established various mechanistic 
understandings of what induces the directional movement of biopolymers through nar-
row pores. One important driving force is the external electric field across the mem-
brane, demonstrated by in vitro experiments [17, 18] and extensive theoretical analysis 
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[19–21]. Considering there is usually not a strong enough electric field in living cells, the 
other mechanism, Brownian ratchet suggests pure random thermal diusion is rectified 
by chemical asymmetry between the cis and trans sides of the membrane, giving rise 
to directional motion [22, 23]. This is the main concern of this paper. A typical case, 
particularly for proteins, is that the binding of chaperones to the translocating polymer 
on the trans side of a membrane prohibits the polymer chain’s backward diusion to 
the cis side, thus leading to the directional translocation [3, 24, 25]. This mechanism 
appears to be confirmed on the basis of empirical data for the transport of prepro-α 
factor into the lumen of endoplasmatic reticulum, where prepro-α-factor is regarded as 
the protein and BiP serves as a chaperone molecule [26]. Recent progress on the kinetic 
uptake of DNA also provides evidence for analogous mechanisms [27].

Quantitative investigations devoted to chaperone-assisted transcriptions mainly 
focus on the dynamic properties of the system, with theoretical explorations mostly 
setup through a continuous space and time description [22, 23, 28]. Such continuum 
models can work eectively in the limit that chaperones are much larger compared with 
the translocating polymer. However, this may become unrealistic in living cells.

Other studies contribute to translocation process of such structure usually through 
discrete master equations. Early results based on one-dimensional master equations are 
derived on the simple assumption that both the attachment and the detachment of 
corresponding chaperones are much faster than the translocation rate, leaving the 
state of individual sites drawn from the stationary distribution [29, 30]. Dropping 
this approximation, a more general discrete model is then proposed [31], where the 
translocating polymer is represented by a one-dimensional lattice of infinite length 
and an analytical expression for the transcription velocity is obtained mathematically. 
Extensive analysis was carried out on this model to determine the diusion constant 
and even higher cumulants of the translocated length [32], while the same process 
is discussed from the viewpoint of first-passage time [33]. These three models enjoy 
a common feature, they always keep track of the state of each binding site that has 
been translocated to the target region. This approach, although ideal, does not seems 
feasible, especially for long polymer chains, since the space of states shall experience 
an explosion as the number of binding sites grows. In this sense, such modeles makes a 
dierence merely on the numerical simulation side, even if explicit expressions for some 
dynamic quantities can be obtained. To avoid this issue, a fresh study on this problem 
setup a modified translocation ratchet model involving the state of only a few bind-
ing sites [34]. Although a model is proposed dropping the key assumption of timescale 
separation between the binding/unbinding process of chaperones and the forward/
backward diusion process, analytical results become no longer accessible. Meanwhile, 
the length of a particular polymer chain is always assumed to be infinite on both sides 
of the membrane in this model, which is not quite appropriate.

In this paper, based on the classical Brownian ratchet, a general framework describ-
ing the chaperone-assisted translocation of a polymer chain across a membrane is 
provided. Since the binding/unbinding kinetics of chaperones might have a sizable 
eect on the dynamics of the translocation process, as addressed in previous work 
[31, 32], the state of binding sites located just behind the membrane, i.e. whether it is 
bound with a chaperone, is taken into account explicitly in our model. Moreover, the 
usual assumption of infinite length of polymer chain is also rejected. That is to say, 

https://doi.org/10.1088/1742-5468/ab633d


Mean velocity and eective diusion constant for translocation of biopolymer chains across membrane

4https://doi.org/10.1088/1742-5468/ab633d

J. S
tat. M

ech. (2020) 023501

the number of binding sites of a particular polymer chain, or the length of a polymer 
chain, is assumed to be finite in our model. Through a scheme similar to that in previ-
ous investigations [35], the mean velocity and eective diusion constant of polymer 
translocation are obtained explicitly.

This paper is organized as follows. On the concept of Brownian ratchet, a model 
describing the process of polymer translocation across membrane is introduced in sec-
tion 2. How this model works will be explained in detail with coupled master equations. In 
section 3, we deduce analytical expressions for mean translocation velocity and eective 
diusion constant. To show basic properties of the translocation process, numerical results 
are presented in section 4. Finally, we summarize our results briefly in section 5.

2. Theoretical description of polymer translocation across a membrane through a 
nanopore

During the translocation across a membrane, a polymer chain moves stochastically to 
the other side of the pore embedded in the membrane, which is the only possible way 
that polymers can pass through. Chaperones are assumed to exist in the target region 
only. Once the binding site of a polymer chain adjacent to the pore is occupied, the 
polymer chain is prevented from moving backward through the pore due to the large 
relative size of the chaperone with respect to the diameter of the narrow pore.

A polymer chain of finite length is represented as a one-dimensional lattice with 
N  +  1 binding sites, labeled 0, 1, 2, · · · ,N . For convenience, the distance between each 
two neighboring binding sites is normalized to one. If we take the polymer chain as a 
reference frame, the translocation process of a polymer chain across membrane through 
a pore can be regarded as the membrane’s stochastic motion along a one-dimensional 
lattice. We represent the membrane as a wall for simplicity. If the wall is standing at 
site k and the previous site, labeled k  −  1, remains unoccupied, the wall may hop sto-
chastically either forward to the next site k  +  1 with rate ωf0, or backward to site k  −  1 
with rate ωb. Otherwise, if the site k  −  1 is occupied with a chaperone, the wall will 
have no choice but to hop forward stochastically by one step and the corresponding 
rate is denoted as ωf1. In summary, the stochastic motion of a membrane along a poly-
mer chain can be divided into two categories, one is the usual diusion process with 
possible forward and backward hopping, the other is the rectified diusion with pos-
sible forward hopping alone, since the backward hopping is blocked by chaperones. In 
this sense, our model can be regarded as a Brownian ratchet translocation model.

We assume that chaperones can stochastically bind to any unoccupied site behind 
the wall with rate ωa. At the same time, any attached chaperone can detach from its 
binding sites at random as well, where the detachment rate is denoted as ωd. It is easy 
to find that the dynamics of a translocation process depend on the states of all the 
binding sites of the polymer chain behind the wall. An ideal model, therefore, should 
include the states of all these binding sites, i.e. whether it is occupied with some chap-
erone or not. However, keeping all these states explicitly in the model will make further 
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theoretical analysis inaccessible, especially for long polymer chains, since the state 
space grows exponentially with the number of binding sites.

Taking this into consideration, we assume that the binding sites of two units or 
more away from the wall have sucient time to reach equilibrium, and the probability 
of staying unoccupied thereby is q = ωd/(ωa + ωd). Actually, the binding/unbinding 
kinetics of chaperones are much faster than the forward/backward diusion process of 
a polymer chain’s translocation across the membrane. The ratio of their timescales lies 
around 1/300 [36], which therefore makes the assumption plausible.

Our model, characterizing the stochastic translocation of a polymer chain across 
membrane, or equivalently the stochastic motion of a wall along one-dimensional lat-
tice of length N is depicted in figure 1. For k = 1, . . . ,N, we denote Pk,0 and Pk,1 as 
the probability that the wall stands at site k with the previous site k  −  1 unoccupied 
or occupied respectively, see figure 1(a) and (b). The first site of a polymer chain is 
labeled as 0, and the corresponding probability that the wall stands at this site, site 0, 
is denoted as P0. Additionally, we denote Q as the probability that none of the sites 
of a polymer chain is passing through the pore, i.e. the nanopore of the membrane is 
vacant. In other words, Q is the probability that a polymer chain has just accomplished 
its translocation, and a new translocation process has not started yet.

Since chaperones only exist in the target region, only the sites behind the wall are 
permitted to be bound. Then, the wall, currently standing at site k, can always move 
forward stochastically to the next site k  +  1, while it gets quite dierent for backward 
motions. If the site k  −  1 is unoccupied, the wall at site k can also stochastically move 
backward to site k  −  1 with rate ωb. However, if site k  −  1 is occupied with a chaperone, 
the backward motion of the wall at site k will be blocked. That is to say, the forward 
motion of the wall standing at site k may depend on the state of site k  −  1. To state a 
general case, the forward hopping rate of the wall is denoted dierently, where ωf0 and 
ωf1 match the cases that site k  −  1 stays in an unoccupied and occupied state.

To picture the site-by-site translocation process, we can still imagine a wall stand-
ing at some site on the main body, labeled as k. As described in the beginning of this 
section, the probability that site k  −  2 stays in an unoccupied state is q, with this site 
reaching the equilibrium of binding/unbinding kinetics. Based on a sustained trans-
location process, we establish a one-dimensional system of period l, where one period 
indicates a complete transfer of one identical polymer chain. Then, master equations of 
probabilities Pk,0 and Pk,1 in the main body of a lattice, i.e. k = 2, · · · ,N − 1, are given 
by

∂Pk,0(l, t)

∂t
= ωf0Pk−1,0(l, t) + ωf1Pk−1,1(l, t) + ωdPk,1(l, t)

+ qωbPk+1,0(l, t)− (ωb + ωa + ωf0)Pk,0(l, t),
�

(1)

∂Pk,1(l, t)

∂t
= ωaPk,0(l, t) + (1− q)ωbPk+1,0(l, t)− (ωd + ωf1)Pk,1(l, t).� (2)

See figure 1(c) for the schematic depiction.
Since site 0 is the starting point of translocation process, see figure 1(d), there is 

no lattice site behind the wall if it stands at site 0, indicating that no chaperone can 

https://doi.org/10.1088/1742-5468/ab633d


Mean velocity and eective diusion constant for translocation of biopolymer chains across membrane

6https://doi.org/10.1088/1742-5468/ab633d

J. S
tat. M

ech. (2020) 023501

be attached to the polymer chain when k  =  0. Thus, the forward hopping rate of the 
wall at site 0 may be dierent from both ωf0 and ωf1. A dierent notation ωf  is used to 
denote the forward hopping rate of the wall located at site 0. As schematically depicted 
in figure 1(d), equation (2) still holds for k  =  1 while equation (1) should be modified as

∂P1,0(l, t)

∂t
=ωfP0(l, t) + ωdP1,1(l, t) + qωbP2,0(l, t)

− (ωb + ωa + ωf0)P1,0(l, t).
� (3)

When it comes to the boundary sites, things change. As discussed above, we use Q 
to denote the probability that the system stays in the interval between two transloca-
tion processes of separate polymer chains, and in this state, we can imagine the wall is 
standing at a fictitious site Q. Translocation starts with rate ωs when the wall binds to 
the initial site 0 of a polymer chain, or we say the wall jumps from the fictitious site 
Q to site 0 with rate ωs. Similarly, it is when the wall hops forward from the terminal 
site N to the fictitious site with rate ωe that the translocation of a polymer chain comes 
to an end. See figure 1(d) for a schematic depiction. Based on this scenario, the master 
equation for probability P0 is as follows,

∂P0(l, t)

∂t
= ωsQ(l, t) + ωbP1,0(l, t)− ωfP0(l, t).� (4)

Similarly, probabilities PN,0 and PN,1 are governed by

Figure 1.  Schematic depiction of the chaperone-assisted translocation of a polymer 
chain across a membrane. (a) and (b) depict the two possible states included in 
our model, that is, whether the last site transferred is unoccupied or occupied 
with a chaperone. The corresponding probabilities are denoted as Pk,0 and Pk,1, 
respectively. Here, the linear polymer molecule is represented by a one-dimension 
lattice, the bar stands for the moving wall (membrane) and the circle is for a 
chaperone. The target region of polymer chain is on the left side of the wall, (c) 
provides a detailed description of possible transitions around site k (2 � k � N − 1), 
while (d) shows the transitions around boundary sites 0 and N.

https://doi.org/10.1088/1742-5468/ab633d
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∂PN ,0(l, t)

∂t
=ωf0PN−1,0(l, t) + ωf1PN−1,1(l, t) + ωdPN ,1(l, t)

− (ωb + ωa + ωe)PN ,0(l, t),
� (5)

∂PN ,1(l, t)

∂t
= ωaPN ,0(l, t)− (ωd + ωe)PN ,1(l, t).� (6)

Once a polymer chain has been transferred to the target region completely, the 
translocation process enters into a pause state, where the wall will wait until it walks 
onto another polymer chain, that is when another polymer chain starts its transloca-
tion. With figure 1(d), the probability Q satisfies

∂Q(l, t)

∂t
= ωe[PN ,0(l − 1, t) + PN ,1(l − 1, t)]− ωsQ(l, t) .� (7)

Hence, we have setup a system of 2N  +  2 states, where the translocation of a poly-
mer chain across a nanopore of membrane is mapped into the motion of a wall through 
a one-dimensional lattice in terms of relative motion.

3. Expressions for mean velocity and eective diusion constant

In this section, we will generalize the main idea of Derrida [35, 37] to realize analytical 
expressions for mean velocity and eective diusion constant of translocation of poly-
mer chains across a membrane in the stationary-state limit, t → ∞. We begin with a 
general expression for the mean translocation of the wall,

〈x(t)〉 =
+∞∑

l=−∞

[
(Nl)Q(l, t) +

N∑
k=0

(k +Nl)Pk(l, t)

]
.� (8)

That is to say, if we assume the biopolymer chain is of length N, each translocation 
period will add N units to the accumulated distance that the wall travels, since hop-
ping away from a polymer chain (translocation termination, from site N to pause state, 
or stepping into a new period (translocation initiation, from fictitious site Q to site 1), 
does not increase the total distance that the wall travels.

Note that, in equation (8) Pk(l, t) := Pk,0(l, t) + Pk,1(l, t) for 1 � k � N , is the prob-
ability that the wall stands at site k of the l−th polymer at time t, see figure 1. We now 
define a few auxiliary functions for each state concerned, they are

BQ(t) =
+∞∑

l=−∞

Q(l, t), CQ(t) =
+∞∑

l=−∞

(Nl)Q(l, t),

Bk(t) =
+∞∑

l=−∞

Pk,0(l, t), Ck(t) =
+∞∑

l=−∞

(k +Nl)Pk,0(l, t),� (9)

https://doi.org/10.1088/1742-5468/ab633d
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B̃k(t) =
+∞∑

l=−∞

Pk,1(l, t), C̃k(t) =
+∞∑

l=−∞

(k +Nl)Pk,1(l, t).� (10)

Notably, functions in equation (9) are defined for index k such that 0 � k � N whereas 
those in equation (10) are defined for 1 � k � N only. Here, for convenience, we assume 
Pk,0(l, t) = Pk(l, t) for k  =  0 in equation (9). Generalizing Derrida’s original method [35, 
37], we propose the following ansatz in the stationary-state limit, i.e.

BQ(t) → bQ, Bk(t) → bk, B̃k(t) → b̃k,� (11)

CQ(t) → aQt+ TQ, Ck(t) → akt+ Tk, C̃k(t) → ãkt+ T̃k.� (12)

Obviously, all these bk s together with b̃k s are governed by normalization condition

bQ + b0 +
N∑
k=1

(bk + b̃k) = 1,� (13)

since bk (or b̃k) gives the probability of finding the wall at a specific state at large time.

In the stationary-state limit, (11), that is dBk/dt = 0 and dB̃k/dt = 0 when time t 
is infinite, master equations given in section 2 are transformed into

0 =ωe(bN + b̃N)− ωsbQ,

0 =ωsbQ + ωbb1 − ωfb0,

0 =ωfb0 + ωdb̃1 + qωbb2 − (ωb + ωf0 + ωa)b1,

0 =ωf0bk−1 + ωf1 b̃k−1 + ωdb̃k + qωbbk+1 − (ωa + ωf0 + ωb)bk,

(k = 2, · · · ,N − 1),

0 =ωf0bN−1 + ωf1 b̃N−1 + ωdb̃N − (ωa + ωe + ωb)bN ,

0 =ωabk + (1− q)ωbbk+1 − (ωd + ωf1 )̃bk, (k = 1, · · · ,N − 1),

0 =ωabN − (ωd + ωe)̃bN .

� (14)

These equations lead to a recurrence

Rbk+1 − Sbk = ωbb1 − ωfb0 = −ωsbQ, for k = 1, · · · ,N − 1,� (15)
where

R = ωb
ωd + qωf1

ωd + ωf1

, S = ωf0 +
ωaωf1

ωd + ωf1

.� (16)

Equation (15) means that the probability-fluxes between each two neighboring eective 
sites remain constant in steady state.

Considering the stationary state for boundary sites, i.e. the first equation and the 
last equation in equation (14), we have

bN =

[
ωe +

ωaωe

ωd + ωe

]−1

ωsb0 ≡ KωsbQ.� (17)

https://doi.org/10.1088/1742-5468/ab633d
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The recurrence given in equation  (15) along with equation  (17) yields a general 
expression for bk,

bk =

{[
S̃k−N [K − (S −R)−1] + (S −R)−1

]
ωsbQ, (k = 1, · · · ,N),

ω−1
f (ωbb1 + ωsbQ), (k = 0),

� (18)

where S̃ ≡ S/R.
Thus, all of bk s and b̃k s are determined by ωsbQ, which is the probability flux 

exactly. With the normalizing condition, equation (13), we obtain

ωsbQ =
[
W1 +W2S̃

1−N +W3N
]−1

,� (19)

where

W1 =
1

ωs

+
1

ωf

+
U

S −R
+K(

ωa

ωd + ωe

− ωa

ωd + ωf1

) +M
S

S −R
(K − 1

S −R
),

W2 =

(
K − 1

S −R

)(
U − M

S̃ − 1

)
and W3 =

M

S −R
,

with

M = 1 +
ωa

ωd + ωf1

+
(1− q)ωb

ωd + ωf1

, U =
ωb

ωf

− (1− q)ωb

ωd + ωf1

.

So far, bQ has been obtained explicitly as a function of all constant rates. So do bk s and 
b̃k s.

Let us return to the ansatz (12) to derive explicit expressions for ak s, ãk s, Tk s and 

T̃k s. With the definitions of Ck(t) and C̃k(t), i.e. (9) and (10), as well as the master equa-
tions presented in section 2, it is easy to show that Ck(t) and C̃k(t) satisfy

dCQ

dt
(t) =ωe(CN + C̃N)− ωsCQ,

dC0

dt
(t) =ωsCQ + ωbC1 − ωfC0 − ωbB1,

dC1

dt
(t) =ωfC0 + ωdC̃1 + qωbC2 − (ωb + ωa + ωf0)C1 + ωfB0 − qωbB2,

dCk

dt
(t) =ωf0Ck−1 + ωf1C̃k−1 + ωdC̃k + qωbCk+1 − (ωb + ωa + ωf0)Ck

+ ωf0Bk−1 + ωf1B̃k−1 − qωbBk+1, (k = 2, . . . ,N − 1),

dCN

dt
(t) =ωf0CN−1 + ωf1C̃N−1 + ωdC̃N − (ωb + ωa + ωe)CN

+ ωf0BN−1 + ωf1B̃N−1,

dC̃k

dt
(t) =ωaCk + (1− q)ωbCk+1 − (ωd + ωf1)C̃k

− (1− q)ωbBk+1, (k = 1, . . . ,N − 1),

dC̃N

dt
(t) =ωaCN − (ωd + ωe)C̃N .

� (20)

https://doi.org/10.1088/1742-5468/ab633d
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Let time t → ∞ and focus on the terms proportional to time t. Then we get a set of 
equations analogous to equation (14). Specifically, these equations on aks(ãks) are just 
the same as equation (14), if bks( b̃ks) in equation (14) are all replaced by aks(ãks). Thus, 
one can immediately conclude that

aQ = AbQ, ak = Abk, ãk = Ab̃k ,� (21)

and

aQ + a0 +
N∑
k=1

(ak + ãk) = A[bQ + b0 +
N∑
k=1

(bk + b̃k)] = A ,� (22)

where A is a constant. Sum up all of the equations in the stationary-state limit of equa-
tion (20) and we have

A = ωfb0 + ωf0

N−1∑
k=1

bk + ωf1

N−1∑
k=1

b̃k − ωb

N∑
k=1

bk

= ωbb0 − ωfb1 +
N−1∑
k=1

(Sbk −Rbk+1)

= Nωsb0,

�

(23)

where the last equation follows the recurrence in equation (15) and bQ is given in equa-
tion (19). Therefore, constant A is determined by all of the constant transition rates. 
Explicit expressions for ak s and ãk s can also be obtained via equations (18), (19), (21), 
(23).

Next, we begin to derive the expressions for Tk s and T̃k s. In the stationary-state 
limit, equation (20) employs the following expressions,

aQ = ωe(TN + T̃N)− ωsTQ,

a0 = ωsTQ + ωbT1 − ωfT0 − ωbb1,

a1 = ωfT0 + ωdT̃1 + qωbT2 − (ωb + ωa + ωf0)T1 + ωfb0 − qωbb2,

ak = ωf0Tk−1 + ωf1T̃k−1 + ωdT̃k + qωbTk+1 − (ωb + ωa + ωf0)Tk

+ ωf0bk−1 + ωf1 b̃k−1 − qωbbk+1, (k = 2, . . . ,N − 1),

aN = ωf0TN−1 + ωf1T̃N−1 + ωdT̃N − (ωb + ωa + ωe)TN

+ ωf0bN−1 + ωf1 b̃N−1,

ãk = ωaTk + (1− q)ωbTk+1 − (ωd + ωf1)T̃k − (1− q)ωbbk+1,

(k = 1, . . . ,N − 1),

ãN = ωaTN − (ωd + ωe)T̃N .

� (24)

Here, in the stationary-state limit, attention is paid to the terms independent of time t 
and thus equation (20) reduces to (24).

https://doi.org/10.1088/1742-5468/ab633d
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With some new auxiliary quantities

yk ≡
{
ωfT0 − ωbT1, for k = 0

STk −RTk+1, for k = 1, · · · ,N − 1.

Equation (24) can be transformed into a recurrence, that is

yk − yk−1 = Zk,� (25)
and the first term y 0 comes as

y0 = ωsTQ + Z0.� (26)
Since we have already obtained the explicit expressions for bk s as well as ak s, Zks turn 
to known terms, see equation (A.1).

Through a simple summation, it produces

yk = ωsTQ + rk,� (27)
where

rk =
k∑

i=0

Zi,

and k = 0, · · · ,N − 1. See equation (A.6) for expressions of rk.
It means that each y k consists of two components: one has been determined explic-

itly and the other depends on the undetermined constant TQ. In fact, the same holds 
for each Tk, which can be shown through backward iterations. That is

Tk =



K(aQ + ωsTQ) + (ωa + ωd + ωe)

−1ãN , for k = N ,

S−1(RTk+1 + yk), for k = 1, · · · ,N − 1,

ω−1
f (ωbT1 + y0), for k = 0.

� (28)

Obviously, TN and consequently all Tk s are made up of these two components as well, 
i.e. one has been determined explicitly by constant transition rates and the other 
depends on the undetermined constant TQ.

We can now write Tk = Xk + Yk, where Xk is proportional to TQ and Yk is described 
in some determined factors. Particularly, TQ = XQ and YQ  =  0. At the same time, T̃k

s can be derived from the last two equations in equation (24) and they are shown as

T̃k =



(ωd + ωe)

−1[ωaTk − ãk], for k = N ,

(ωb + ωf1)
−1[ωaTk + (1− q)ωf1Tk+1 − ãk − (1− q)bk+1],

for k = 1, · · · ,N − 1.
� (29)

That is to say, each T̃k can also be split into those two parts and we can then write 
T̃k = X̃k + Ỹk with X̃k proportional to TQ and Ỹk determined.

Surprisingly, the undetermined constant TQ will cancel out in the final expressions 
for the dynamic properties concerned. Keeping this in mind, we first let TQ  =  0 for the 
calculation of Yk and show how that works later.

With TQ  =  0, that is when both Xk and X̃k equal zero, we find

https://doi.org/10.1088/1742-5468/ab633d
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YN = KaQ + (ωa + ωd + ωe)
−1ãN ,

Yk = S̃k−NYN + S−1

N−1−k∑
i=0

ri+k

S̃i
for k = 1, · · · ,N − 1,

Y0 = ω−1
f [ωbY1 + Z0],

YQ = 0,

� (30)

and Ỹk is given by Yk in the same form as equation (29), i.e.

Ỹk =




(ωd + ωe)

−1[ωaYk − ãk] , for k = N ,

(ωd + ωf1)
−1[ωaYk + (1− q)ωf1Yk+1 − ãk − (1− q)bk+1],

for k = 1, · · · ,N − 1.
� (31)

Now, we are fully prepared to derive analytical expressions for dynamic properties 
of interest, i.e. the mean translocation velocity V  and eective diusion constant D in 
the steady state, which is respectively defined as

V = lim
t→+∞

d〈x(t)〉
dt

,� (32)

and

D = lim
t→+∞

1

2

d [〈x2(t)〉 − 〈x(t)〉2]
dt

.� (33)

With equation (8) and the auxiliary functions given in equations (9) and (10),

d〈x(t)〉
dt

=
dCQ(t)

dt
+

N∑
k=0

dCk(t)

dt
+

N∑
k=1

dC̃k(t)

dt
,� (34)

which is exactly the summation of equation (20). Recall the derivation of constant A 
(see equations (21)–(23)), as well as the stationary-state assumption as is given in equa-
tion (12), and we can easily get the mean velocity in the stationary-state limit, i.e.

V = aQ +
N∑
k=0

ak +
N∑
k=1

ãk = A = NωsbQ ,� (35)

where the probability flux ωsb0 is given by (19).
An explicit expression for eective diusion constant D requires more detailed anal-

ysis. Utilizing the master equations in section 2, the dierentiation of 〈x2(t)〉 turns to

1

2

d〈x2(t)〉
dt

= D1 +D2 ,� (36)

where

D1 =

[
ωfC0 + ωf0

N−1∑
k=1

Ck + ωf1

N−1∑
k=1

C̃k − ωb

N∑
k=1

Ck

]
,� (37)

https://doi.org/10.1088/1742-5468/ab633d
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D2 =
1

2

[
ωfB0 + ωf0

N−1∑
k=1

Bk + ωf1

N−1∑
k=1

B̃k + ωb

N∑
k=1

Bk

]
.� (38)

At the same time, the second part of D as given in (33) can be described as

D3 ≡
1

2

d〈x(t)〉2

dt
= V 〈x(t)〉 = A

[
CQ +

N∑
k=0

Ck +
N∑
k=1

C̃k

]
.� (39)

In the stationary-state limit, we first claim that terms proportional to time t in the 

expression for D cancel out. Since Bk(B̃k) tends to be a constant bk (̃bk)  as time t goes 

infinity, we just concentrate on equations (37) and (39) to verify it. Replacing Ck(C̃k) 

with ak(ãk) in equation (37), one can easily find that the coecient of t in D1 comes as 
A ·NωsbQ = A2 in comparison with equation (23). Similarly, the coecient of t in D3 is

A

[
aQ +

N∑
k=0

ak +
N∑
k=1

ãk

]
= A2.

Then, we focus on the terms proportional to TQ in order to show that the eective 
diusion constant D is independent of them. As mentioned before, each Tk and T̃k can 
be written as Tk = Xk + Yk and T̃k = X̃k + Ỹk, respectively. With a glance at equa-
tions (27) and (28), we find Xk follows the same recurrence as bk does. In other words, 
every bk in equation (15) can be replaced with Xk. So does X̃k with respect to b̃k. Thus, 
we have

Xk =
TQ

bQ
bk, X̃k =

TQ

bQ
b̃k.� (40)

This can be better understood if the procedure of seeking bk and b̃k is regarded as 
solving linear equations Ωx = 0 corresponding to equation (14), where Ω is a matrix of 

2(N + 1)× 2(N + 1) in size. Since the rank of Ω is 2N  +  1, b = (bQ, b0, b1, b̃1, · · · , bN , b̃N)ᵀ, 
what we obtained in the foregoing, is determined on the normalizing condition. If we 

denote T  as the vector (TQ,T0,T1, T̃1, · · · ,TN , T̃N)
ᵀ, one can find the derivation of T  is 

just solving the linear equation Ωx = β due to equation (24), where each component 

in β is determined by bk (̃bk) and ak(ãk). Actually, we have already obtained a solution 

for this equation, which is Y = (YQ,Y0,Y1, Ỹ1, · · · ,YN , ỸN)
ᵀ with each component given 

in equations (30) and (31). Then, a general solution T  can be written as T = αb+ Y . 
Particularly, the first component in Y  is zero, i.e. YQ  =  0. If we regard TQ as a unde-
termined constant, the undetermined constant should be restricted to α = TQ/bQ in the 
consideration of the first component in T , Y  and b. Equation (40) holds therefore. That 
is exactly what we have done.

In this way, considering whether the terms proportional to TQ in equations (37) and 
(39) can cancel out is to examine exactly the performance of Xk s. It is easy to see such 
terms in the former equation sum up to NωsTQ, if we take Xk as a substitution for Ck 
in equation (37) and compare the coecients with those in equation (23). The latter 
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equation (39), leads to a summation of Xk s and X̃k s, which is NωsTQ as well. As a 
result, terms proportional to TQ cancel out.

Due to these two cancellations, we finally derive the explicit expression for eective 
diusion constant in the stationary-state limit,

D = D1 +D2 −D3

= −
N−1∑
k=0

sk −
N−1∑
k=1

s̃k +
V

2
N − V

[
Y0 +

N∑
k=1

(Yk + Ỹk)

]
,

� (41)

where Yk has already been obtained in equation (30), Ỹk follows equation (31) and

sk =
k∑

i=1

ai , s̃k =
k∑

i=2

ãi.

See appendix A for more details.

4. Properties of polymer translocation across membrane

To further understand the analytical results and get an intuition about the transloca-
tion process of polymer chains across a membrane, extensive numerical explorations 
are carried out according to explicit results given in equations (35) and (41). Instead of 
general analysis with respect to each transition rate, particular attention is paid to a 
special case where ωf0 = ωf1 = ωf = ωb ≡ w, due to the fact that the forward/backward  
diusion of a polymer chain essentially comes from Brownian fluctuations. This means 
that it is the binding of chaperones that rectifies the diusion of polymer chain to a 
directional motion on average. In fact, results remain valid even if the polymer chain 
undergoes a biased random walk when crossing the membrane. Note that both the 
binding and unbinding of chaperones are extremely fast compared to the forward/
backward diusion of a polymer chain. In all calculations below, we always keep the 
binding/unbinding rate of a chaperone at least 2 orders of magnitude higher than the 
forward/backward diusion rate.

Numerical results on mean translocation velocity V  are displayed in figure 2. When 
trailing binding sites (i.e. binding sites of a polymer chain lying in the target region) are 
occupied with chaperones in large probability, the polymer chain with a larger forward/
backward diusion rate will pass through the pore more rapidly, since its backward 
motion is hindered by chaperones. So translocation velocity increases with the diusion 
rate w. This rise, however, will not last indefinitely, since for suciently large diusion 
rate w, the translocation velocity will be limited by the binding/unbinding process of 
chaperones as well as the finite starting rate ωs and ending rate ωe. See figure 2(a).

It means that there is an upper limit for mean velocity V  as diusion rate w tends to 
infinity, see figure 2(a). Besides, we notice that a longer polymer chain employs greater 
mean velocity, provided large diusion rate w and high ratio ωa/ωd. This matches the 
fact that the pretty slow initiation process and termination process, acting as restric-
tions, produce greater impact on the overall mean velocity of a shorter polymer chain.

https://doi.org/10.1088/1742-5468/ab633d
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From another perspective, we consider the mean dwell time t for some transloca-
tion, which is

t =
N

V
= W1 +W2S̃

1−N +W3N .� (42)

Here, the numerator N is the length of a polymer chain and the denominator V  is the 
mean velocity of translocation. It reflects the eect of binding sites’ number on poly-
mers of fixed length. According to the definition of constant S, if the diusion rate w 
is low, S increases almost linearly with w, while W1,W2,W3 are all insensitive to the 
low diusion rate w. Therefore, equation (42) indicates that the relation between dwell 
time t and diusion rate w follows power law approximately, when the polymer chain 
diuses at a low diusion rate w. See figure 2(b).

The dependence of mean velocity V  on the ratio of binding/unbinding rate of a 
chaperone is presented in figure 2(c). With high ratio ωa/ωd, the binding site lying in 
the target region will be more likely to be occupied with a chaperone, which will, then, 
help rectify the forward/backward diusion. That is, high binding/unbinding ratio 
speeds up the translocation of a polymer chain. The dependence of mean velocity on 
ratio ωa/ωd displays similar performance to that on diusion rate w, as is shown in 
figures 2(a) and (c). If the ratio ωa/ωd is large enough, mean translocation velocity V  
increases with the length N of a polymer chain and vice versa. See figure 2(c) and the 
inset. This is because the longer a polymer chain is, the less influence is likely to be 
exerted through the relatively low starting rate ωs and ending rate ωe. Conversely, low 
ratio ωa/ωd leads to the slow translocation of the main body part of a polymer chain, 
and the relatively large starting rate ωs as well as ending rate ωe plays a more active 
role in promoting the overall mean translocation velocity V  of a shorter polymer chain. 
It means that the mean velocity will decrease with the growth of the polymer length N.

Note that, experimental binding/unbinding ratio is approximate to 833.3 [27]. 
Figure  2(c) shows that the velocity V  is almost independent of ratio ωa/ωd when 
ωa/ωd � 833.3, implying that the translocation process is limited by the forward/back-
ward diusion rate w as well as starting rate ωs and ending rate ωe. Moreover, the plots 
in figures 2(a) and (b) show that, for diusion rate w larger than 1000 s−1, mean veloc-
ity V  is also insensitive to the change of rate w. Therefore, the translocation of polymer 
chain is limited merely by the starting and the ending process when ωa/ωd � 833.3 and 
diusion rate w � 1000 s−1. Obviously, velocity V  increases with both rate ωs and rate 
ωe, see figure 1(d) or equations (19), (35). Note that, in figures 2(a) and (b), the ratio 
ωa/ωd is always kept 833.3.

The dependence of dwell time t on length N of a polymer chain, with dierent val-
ues of ratio ωa/ωd, is plotted in figure 2(d). One can easily find that t increases almost 
linearly with N, especially for large binding/unbinding ratio ωa/ωd. It can been seen 
in equation (42) as well. Meanwhile, figure 2(d) also shows that dwell time t decreases 
with the ratio ωa/ωd, since a polymer chain requires high mean velocity V  provided 
with a great binding/unbinding ratio ωa/ωd. See figure 2(c) and the definition of t given 
in equation (42).

The discussion above on mean velocity V  provides a chief description of the dynam-
ics of polymer translocation across a membrane, but it is not sucient for many biolog-
ically relevant cases, especially when the polymer chain is not long. In these situations, 
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figure 3(a) show that, for high diusion rate w, diusion constant D increases with both 
the ratio ωa/ωd and the polymer length N, when the polymer is not long. At the same 
time, diusion constant D tends to its lower limit or upper limit monotonically as the 
ratio ωa/ωd tends to 0 or infinity, respectively. However, something interesting happens 
as diusion rate w goes down approaching the starting rate ωs and ending rate ωe. The 
plots in figure 3(b) show that, for such cases, D will no longer change monotonically 
with rate ωa/ωd. Neither will it increase with the polymer length N. With a particular 
value of ratio ωa/ωd = 833.3 [27], the dependence of D on diusion rate w is plotted 
in figure 3(c), where the eective diusion constant D increases with w as expected. 
Besides, the saturation level for eective diusion constant D rises with the polymer 
length N, as long as the polymer chain is not too long.

(a) (b)

(c) (d)

Figure 2.  Dependence of (a) mean velocity V  and (b) mean dwell time t on forward/
backward diusion rate w, where the fast binding rate ωa = 1000× 108 s−1 and the 
unbinding rate ωd = 1.2× 108 s−1, keeping their ratio ωd/ωa = 0.0012 [27]. (c) Mean 
velocity V  as a function of binding/unbinding ratio ωa/ωd with the inset displaying 
the detail in enlarged scale. (d) Mean dwell time t of translocation as a function 
of the length of polymer chain with dierent ratio of the binding/unbinding rate. 
Left axis: solid line and dashed line. Right axis: dotted line and dash dotted line. 
In (c) and (d), the diusion rate is kept w = 102 s−1 and the unbinding rate ωd is 
kept of order 108. Thus, the binding/unbinding process is more than 2 orders of 
magnitude faster than the diusion process. Other parameters used in calculations 
are ωs = ωe = 1 s−1.
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eective diusion constant D show almost the same behavior. Both of them increase 
significantly when the parameter, either forward/backward diusion rate w or binding/
unbinding ratio ωa/ωd, varies within some range. With the parameter varying beyond 
this range, however, mean velocity V  and eective diusion constant D both stay 
almost constant. The reason is that the dynamics of translocation process is regulated 
jointly by several factors. Besides diusion rate w along with the ratio ωa/ωd, these fac-
tors include starting rate ωs and ending rate ωe. See figure 1. When the corresponding 
parameter, rate w or ωa/ωd, varies within an appropriate range, the translocation pro-
cess of a polymer is dominated by its diusion process and the binding/unbinding pro-
cess of a chaperone, and the mean velocity or diusion constant changes significantly 
with the parameter, rate w or ratio ωa/ωd. Otherwise, the dynamics of translocation 

(a) (b)

(c) (d)

Figure 3.  Eective diusion constant D as a function of the ratio ωa/ωd is displayed 
in (a) and (b). The diusion rate used in (a) is w = 102 s−1, while calculations in 
(b) are carried out with lower diusion rates. w = 1 s−1 in (b) and w = 10 s−1 in 
inset. (c) Dependence of D on the diusion rate w, with ratio ωa/ωd = 833.3 as is 
given in [27]. (d) The randomness, r ≡ 2D/NV , as a function of the length N of 
a polymer chain. Several cases with dierent values of diusion rate w and ratio 
ωa/ωd are considered. Detailed instructions on parameters are listed in the legend. 
Similar to figure 2, ωd is held of order 108 s−1 to make the binding/unbinding 
process of a chaperone much faster than the forward/backward diusion process 
of a polymer chain. Other parameters used in calculations are ωs = 1 s−1 and 
ωe = 1 s−1.
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will be limited by rate ωs and ωe, and therefore is almost independent of the rate w 
and ratio ωa/ωd. In other words, the translocation of a polymer chain across a mem-
brane consists of several kinetics, namely initiation, termination, binding/unbinding 
of chaperones and forward/backward diusion of a polymer chain. For a given set of 
parameters, the overall translocation process may be limited by only one or some of 
them, with others fast enough to be neglected. But the limit process may be switched 
from one to another, with the change of one or some parameter values.

It is also noteworthy to compare the degree of fluctuations of this stochastic process. 
An important dimensionless function to evaluate this quantity is randomness, which is 
defined as [37, 38]

r =
2D/N2

V/N
=

2D

NV
.

The plots in figure 3(d) show that the randomness r always decreases with the polymer 
length N. With the ratio ωa/ωd = 833.3 [27], r increases with the forward/backward 
diusion rate w. Our results also suggest a decrease of r with the number of binding 
sites N. A rapid decay in randomness r can be observed on the condition of a low 
diusion rate w, whereas the length of a polymer reduces r slightly, but almost linearly, 
as long as the diusion rate w is high.

5. Conclusions and remarks

The Brownian ratchet builds a general framework describing how diusive motion is 
rectified by chemical energy. Particularly, the chaperone-assisted translocation of poly-
mer chains across a membrane constitutes a fine example of how directed motion can 
emerge from random diusion, where the binding and unbinding of chaperones plays a 
prominent role.

In this paper, a theoretical model is presented mapping the process of translocation 
across membrane into the discrete motions of a membrane on the polymer chain, where 
the probability of finding membrane at some site of polymer chain is governed by usual 
master equations. With this model, the mean velocity and eective diusion constant 
of translocation process can be derived explicitly, allowing us to discuss the dynamics 
of translocation across membrane much more eciently.

Based on the exact expressions, detailed discussions on particular cases are pre-
sented, where the polymer chain is assumed to diuse freely around the nanopore 
embedded in a membrane if there is no chaperone molecule. Our results show that 
both the increase of forward/backward diusion rate w of polymer chains and the 
rise in binding/unbinding rate ratio ωa/ωd of chaperones raise the mean translocation 
velocity monotonically to a polymer length dependent limit. With large diusion rate 
w or great ratio ωa/ωd, the mean velocity increases with the length of polymer chain, 
while opposite performance can be observed when w or ωa/ωd stays at a low level. The 
eective diusion constant also increases with the diusion rate w, but it will exhibit 
complicated properties when regarded as a function of ratio ωa/ωd. Meanwhile, the 
randomness decreases monotonically with the length of a polymer chain.
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For most of biological processes in living cells, mean velocity together with eective 
diusion constant is usually sucient to describe the basic dynamic properties. 
Nevertheless, higher order moments, or higher cumulants, can be obtained as well, 
simply via the same methods in this paper. Meanwhile, all of the transition rates are 
assumed to be independent of the site of a polymer chain in our discussion. But in a 
promoted model with site-dependent transition rates, explicit expressions for mean 
velocity and eective diusion constant can still be obtained sketching the key idea of 
this study.

Appendix. Derivation of effective diffusion constant equation (41)

Since the final expression for diusion constant D does not depend on the undetermined 
constant TQ, we let TQ  =  0, which indicates that both Xks and X̃ks are equal to zero. 
At the same time, Yk follows equation (30) and Ỹk follows (31).

With equation (24),
Z0 = −a0 − ωbb1,

Z1 = −a1 −
ωd

ωd + ωf1

ã1 −Rb2 + ωfb0,

Zk = −ak −
ωf1

ωd + ωf1

ãk−1 −
ωd

ωd + ωf1

ãk −Rbk+1 + Sbk−1,

(k = 2, · · · ,N − 1).

� (A.1)

In the stationary-state limit, equations (37)–(39) turn to

D1 = ωfY0 + ωf0

N−1∑
k=1

Yk + ωf1

N−1∑
k=1

Ỹk − ωb

N∑
k=1

Yk,� (A.2)

D2 =
1

2

[
ωfb0 + ωf0

N−1∑
k=1

bk + ωf1

N−1∑
k=1

b̃k + ωb

N∑
k=1

bk

]
,� (A.3)

and

−D3 = −A

[
Y0 +

N∑
k=1

(Yk + Ỹk)

]
.� (A.4)

Take equation (29) into equation (A.2),

D1 = (ωfY0 − ωbY1) +
N−1∑
k=1

(SYk −RYk+1)−
ωf1

ωd + ωf1

N−1∑
k=1

ãk

− (1− q)ωb
ωf1

ωd + ωf1

N−1∑
k=1

bk+1 ,

= − ωf1

ωd + ωf1

N−1∑
k=1

ãk − (1− q)ωb
ωf1

ωd + ωf1

N−1∑
k=1

bk+1 +
N−1∑
k=0

rk.

�

(A.5)
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With the definition of rk, we have

r0 =Z0 = −a0 − ωbb1,

r1 =
1∑

i=0

Zi = −
1∑

i=0

ai −
ωf1

ωd + ωf1

ã1 −Rb2 + ωsbQ ,

rk =
k∑

i=0

Zi = −
k∑

i=0

ai −
k−1∑
i=1

ãi −
ωf1

ωd + ωf1

ãk −Rbk+1 + kωsbQ,

(k = 2, · · · ,N − 1).

� (A.6)

Then,

N−1∑
k=0

rk =− ωd

ωd + ωf1

N−1∑
k=1

ãk −R
N∑
k=1

bk − ωbb1

+ ωsbQ

N−1∑
k=1

k −
N−1∑
k=0

k∑
i=0

ai −
N−2∑
k=1

k∑
i=1

ãi .

�

(A.7)

Note that the summation of the first term in equation (A.5) and that in equation (A.7) 
is

− ωf1

ωd + ωf1

N−1∑
k=1

ãk −
ωd

ωd + ωf1

N−1∑
k=1

ãk = −
N−1∑
i=1

ãi ,

and the summation of terms related to bk in these two equations equals

−ωb

N∑
k=1

bk +
1

2
N(N − 1)ωsbQ.

Then

D1 = −
N−1∑
k=0

sk −
N−1∑
k=1

s̃k − ωb

N∑
k=1

bk +
1

2
N(N − 1)ωsbQ ,� (A.8)

where

sk =
k∑

i=0

ai, s̃k =
k∑

i=1

ãi.

For equation (A.3),

D2 =
1

2

[
ωfb0 + ωf0

N−1∑
k=1

bk + ωf1

N−1∑
k=1

b̃k − ωb

N∑
k=1

bk + 2ωb

N∑
k=1

bk

]

=ωb

N∑
k=1

bk +
1

2
V .

� (A.9)

With (35), the summation of equations (A.8), (A.9) and (A.4) can be written as
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D = D1 +D2 −D3

= −
N−1∑
k=0

sk −
N−1∑
k=1

s̃k +N
V

2
− V

[
Y0 +

N∑
k=1

(Yk + Ỹk)

]
,

� (A.10)

which is exactly equation (41).
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