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Abstract

Using the very basic physics principles, we have studied the implications of quantum corrections to
classical electrodynamics and the propagation of electromagnetic waves and pulses. The initial
nonlinear wave equation for the electromagnetic vector potential is solved perturbatively about the
known exact plane wave solution in both the case of a polarized vacuum without external field, as well
as when a constant magnetic field is applied. A nonlinear wave equation with nonzero convective part
for the (relatively) slowly varying amplitude of the first-order perturbation has been derived. This
equation governs the propagation of electromagnetic waves with a reduced speed of light, where the
reduction is roughly proportional to the intensity of the initial pumping plane wave. A system of
coupled nonlinear wave equations for the two slowly varying amplitudes of the first-order
perturbation, which describe the two polarization states, has been obtained for the case of constant
magnetic field background. Further, the slowly varying wave amplitude behavior is shown to be
similar to that of a cnoidal wave, known to describe surface gravity waves in shallow water. It has been
demonstrated that the two wave modes describing the two polarization states are independent, and
they propagate at different wave frequencies. This effect is usually called nonlinear birefringence.

1. Introduction

One of the most fundamental and important features of classical electrodynamics is the fact that macroscopically
itisalinear theory. This property of Maxwell electrodynamics described in every standard textbook finds
remarkable validation in physics experiments and relevant applications almost daily. Put otherwise in a formal
language, the linearity of classical electrodynamics sounds like this: any superposition of two or more
electromagnetic fields obeying Maxwell’s equations satisfies the latter as well [1].

At the subatomic level, however, deviations from the principle of linear superposition can be expected. The
standard simplification commonly used in theoretical physics consists of the representation of a charged particle
as alocalized distribution of charge. Unfortunately, this leads to the infinite growth of its electromagnetic energy
with the decrease of the localization dimensions, thus approaching a point-like distribution. To avoid infinite
self-energies of point particles, it is natural to speculate that a particular field strength saturation (upper bound)
exists. One well-known example of such nonlinear theories developed in the past is the theory of Born and Infeld
[2]. Classical electrodynamics cannot describe the interaction between two electromagnetic waves, whereas in
quantum electrodynamics, such a scattering of light by light is possible. The two incident plane waves with wave
vectors k; and k, do not merely add coherently, as predicted by linear superposition, but interact and (with a
small probability) transform into two different plane waves with corresponding wave vectors k; and k,. These
results were first obtained by Euler and Kockel [3] in 1935 and further elaborated by Heisenberg and Euler [4] in
1936. Interestingly enough in both Born-Infeld and Heisenberg-Euler theories of nonlinear electrodynamics in
the weak-field limit, the electric polarization P and the magnetization M vectors are of third-order (up to leading
terms) in the electric E and the magnetic B field. This implies that the polarized quantum vacuum can be
regarded as a nonlinear medium of Kerr-type.

© 2020 The Author(s). Published by IOP Publishing Ltd
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In the present article, we shall investigate the properties of the nonlinear Heisenberg-Euler model in the
weak-field limit from a purely classical electrodynamics point of view. The reason for this is very simple: in the
small field approximation, the nonlinear electrodynamics of Heisenberg-Euler and Born-Infeld are surprisingly
similar, coinciding up to scaling constants (compare equations (2) and (3) versus equations (5) and (6))
measuring the nonlinearity of the corresponding theories. For the purposes of this work, the origin of these
scaling constants, whether quantum or classical, is absolutely irrelevant and is a matter of initial choice and/or
preference. Important is the fact that in both cases the media (be it quantum polarized vacuum, or purely
classical one of Born-Infeld type) under consideration is of a similar type. This implies that after appropriate and
obvious reshaping of the underlying parameters, the results obtained here remain valid for both the Heisenberg-
Euler and the Born-Infeld models of nonlinear electrodynamics.

It seems that the manifestation of altered dispersion properties of photons in a constant, or weakly varying
electromagnetic background fields have been first studied in detail by Toll [5]. Continuous studies of the linear
dispersion properties of photons as well as the vacuum birefringence and dichroism in similar background
conditions have been carried out in the early 1960s [6—10], and more recently [11-15]. In order to take into
account external field variations for space and time, the weak-field Heisenberg-Euler Lagrangian must be
modified by including a term containing derivatives of the electromagnetic field tensor [16, 17]. These
corrections result in an additional linear term in both the polarization P and the magnetization M vectors, which
is proportional to [IE and UB, respectively. The additional linear term would yield a small correction to the
linear dispersion properties, which gives us the right to safely ignore it in what follows. The systematic
consideration and discussion of dispersion effects in the case of strong electromagnetic fields have been
performed in [18].

Nonlinear contributions to the scattering cross section of photons colliding elastically in the presence of an
external, static electric field or an electromagnetic wave with the same frequency as the colliding photons have
been obtained in the mid 1960s [19, 20]. The analysis of a number of applications, in which nonlinear collective
effects among photons may play a dominant role has been initiated by Rozanov [17, 21]. Predominant here
refers to processes occurring at sufficiently strong electromagnetic fields in which nonlinear terms in the
polarization and magnetization vectors begin to play a significant role. Rozanov considered the perpendicular
propagation of high-intensity laser pulses traveling in externally applied electric and magnetic cross fields. By
choosing an initial pumping laser pulse polarized in the direction of the background fields, Rozanov obtained a
nonlinear Schrédinger equation for the slowly varying envelope of the perturbation [17]. Soljacic and Segev [22]
studied the case of a ‘beam’ resulting from the superposition of two carrier plane waves, modified by a slowly
varying envelope in the horizontal direction. They derived a nonlinear Schrodinger equation governing the
dynamics of the ‘beam’ envelope due to the crossing laser waves. Brodin et al [23] considered the propagation of
asingle TE-mode with weakly modulated amplitude between two parallel conducting planes, and as a result,
came up with a similar nonlinear Schrodinger equation for the slowly varying mode envelope.

Compared with the usual properties of various media widely used in nonlinear optics, the vacuum is
characterized by both the nonlinear electric polarization and the nonlinear magnetization simultaneously. In the
weak-field limit, these nonlinearities give rise to three and four-wave mixing, which has even been argued to be
one of the prime candidates to demonstrate the manifestation of nonlinear quantum electrodynamics effects in
laboratory conditions. There exist extensive literature on the subject, which is impossible and unnecessary to
mention here, so we restrict ourselves to a few selected quotes [21, 24-28].

In the present article, we adopt a different approach, as compared to other works dedicated to nonlinear
wave phenomena in polarized vacuum existing in the literature. It is a simple and rather intuitive one, and is
widely used in finite and infinite degree-of-freedom dynamical systems. The perturbation method we utilize
here is quite straightforward, and as a starting point, it uses the availability of an exact solution to the initial
nonlinear wave equations describing the properties of the quantum vacuum. The perturbation expansion about
the exact solution of the underlying equations is then built up to third-order, followed by the renormalization of
secular terms Thus, the relevant dynamics is being split into two parts: the first one describing the fast wave
oscillations, and a second one exhibiting the nonlinear behavior of specific wave amplitudes on much slower
spatial and time scales.

The article is organized as follows. In the next section, we present some basics of the weak-field nonlinear
electrodynamics of Heisenberg-Euler type. In section 3, we study the free (from external electromagnetic field)
quantum vacuum. Small perturbation about the exact plane wave solution of the nonlinear wave equation for
the electromagnetic vector potential has been analysed. Employing the Renormalization Group (RG) method
[29, 30], we derive a nonlinear wave equation for the (relatively) slowly varying amplitude of the first-order
perturbation. An intriguing property of this equation is that it governs the propagation of electromagnetic waves
with areduced speed of light. In section 4, we consider the case where an external magnetic field is applied. The
latter introduces spatial anisotropy with all the ensuing consequences. Similar to the case of polarized vacuum
without external field, the underlying wave equation for the electromagnetic vector potential possesses an exact
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solution in the form of a plane wave with constant amplitude. For the analysis carried out in the present article,
we choose the circularly polarized exact solution and repeat the RG procedure in a similar manner as has been
done in section 3. As a result, we obtain a system of coupled nonlinear wave equations for the two slowly varying
amplitudes of the first-order perturbation, which describe the two polarization states. In section 5, we present
the stationary (traveling) wave solutions of the nonlinear wave equation, thus obtained for the case of polarized
vacuum without external field. The slowly varying wave amplitude behavior is shown to be similar to that of a
cnoidal wave, characterized by a near-periodic swell in shallow water. Finally, in section 6 we draw some
conclusions.

2. Theoretical model and basic equations

In Quantum Electrodynamics, photon-photon scattering is known to be a second-order effect in terms of the
fine-structure constant o For constant or weakly varying fields it can be formulated in standard notation by
using the Lagrangian (Euler-Heisenberg Lagrangian density [31]) or the Hamiltonian approach [32] in classical
field theory. The effects of the quantum electrodynamics vacuum polarization and magnetization introduce
(third-order) nonlinearity, such that vacuum itself can be considered a nonlinear medium with appropriate
constitutive relations

1
D = «E + P, H= —B - M. (1)
Ho
Here ¢, and i are the electric permittivity and the magnetic permeability of vacuum (&g i1, = 1/c?), respectively,
D and H are the electric displacement vector and the intensity of the magnetic field, respectively, while P is the
electric polarization and M is the magnetization. The latter two quantities are third-order in Eand B

P = 2ke)[2(E? — ¢2BY)E + 7¢*(E - B)B], )
M = 2kejc?[—2(E? — ¢*BY)B + 7(E - B)E], 3)
where
. 205727 a1 1 . @
45mlc> 90w Ef 3 x 102 Jm™3

Here m, is the electron rest mass, and Es = m?c/(e/i) ~ 1.32 x 10'® V. m~, is the Schwinger limit above
which the electromagnetic field is expected to become nonlinear. Equations (2) and (3) indicate that the
nonlinear corrections take the same form as in nonlinear optics, where the material properties of optical fibers
for example, give rise to cubic nonlinear terms in Maxwell’s equations, so-called Kerr effect. The essential
difference however, is that quantum vacuum polarization leads to nonlinearities in both the electric polarization
and the magnetization. Note that the effective self-interaction term is proportional to the fine structure constant
squared, which implies that field strengths must reach values close to the Schwinger limit until these effects
become important.

For comparison, let us adduce the corresponding expressions for the electric polarization and the
magnetization in the weak field approximation ensuing from the classical Born-Infeld model [33]. They are

P = %[(E2 — ¢?B)E + 2c*(E - B)B], ®)
coc? 2 22
My = Z5[—(E = B)B + 2(E - B)E], (©)

where the parameter b has the dimension of an electric field strength (Born and Infeld called it the absolute field)
estimated initiallyasb ~ 3 - 10°° V. m~1.

The macroscopic Maxwell equations taking into account the vacuum polarization and magnetization can be
written as

V.D=g VB =0, )
V x E = —9,B, V xH- 9D =], 8)

where grand Jyis the free charge and current densities, respectively. Manipulating equations (7) and (8) in an
obvious manner with due account of equation (1), we obtain

OE = j1p[07P — 2V (V - P) + 0V x M)] + 11,(dJs + ¢*V 0p), ©

OB = —py[— VM + V(V - M) + 9(V x P)] — 11,V x Jj, (10)
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where [0 = V2 — (1/¢?)0? is the well-known d’Alembert operator. These are the nonlinear generalizations of
the classical wave equations for the electric and the magnetic field, often serving as a starting point in the
description of a variety of nonlinear phenomena in quantum vacuum.

In what follows, however, more convenient will be the alternative formulation of nonlinear electrodynamics
in the weak-field limit. Since the second of equations (7) and the first of equations (8) remain unaltered as
compared to the microscopic electrodynamics, they allow the introduction of the scalar ® and the vector A
potentials defined in the standard manner

E= V& — JA, B=V xA. (11)

Manipulating the remaining two of the Maxwell equations and taking into account the definition (1) for the
electric displacement vector and the intensity of the magnetic field, we obtain

OA — V(izatcb + V. A) = 1y (DR + VX M) — 1), (12)
C
VO 4+ (V- -A) = ~v.p_ (13)
€o €o

In addition to the nonlinear wave equations above, one can use the Lorentz [(1/¢*)8,® + V - A = 0]or the
Coulomb (V - A = 0) gauge condition.

Equations (12) and (13) together with equations (2) and (3) describe the nonlinear wave properties of
polarized vacuum in the weak-field limit. The case, where free electric charges orand currents Jrare absent will be
the starting point for our subsequent analysis. In other words, throughout the subsequent exposition only the
case of zero free electric charges of = 0 and currents J; = 0 will be considered.

3. Nonlinear waves in polarized vacuum without external field and the nonlinear
amplitude equation
We assume a field configuration as follows
E = (0, —0,A, 0), B = (—0,A, 0, 0A), (14)
which is determined by a vector potential
Ax, z; t) = [0, A(x, z; t), 0] (15)

Since E - B = 01in this configuration, the second terms in equations (2) and (3) depending on the scalar product
of the electric field E and the magnetic field B vanish. As far as components are concerned, obviously, the vacuum
polarization P and the vacuum magnetization M follow the pattern of Eand B

P, = —4Kejc2F DA, M = —4kejc*FV x A, (16)

respectively. Here
F = iz(atA)2 — (VA)~ (17)
c

Itis convenient to use the Coulomb gauge, in which the scalar potential ® vanishes identically.
It can be verified in a straightforward manner that the nonlinear wave equation (12) for the vector potential
can be rewritten as

A = 4key04(F 0,A) — 4kegc> (VA - VF + FV?A). (18)
Note that a plane wave of the form
Ay = G + GFe i, (19)
where % is a constant complex amplitude, ¢, = k¢ - X — wyt is the wave phase, and the wave frequency w, and
the wave number k, satisfy the dispersion relation
wi = (kg + k&) = ¢, koy = 0, (20)

is an exact solution of equation (18). This property is not surprising—it immediately follows from the important
relation 7y = % (Ay) = 0, which can be checked by direct substitution. Put another way, the plane wave
minimizes the effective Heisenberg-Euler action.

Following the standard procedure of the renormalization group method, we represent A(x, z; t) asa
perturbation expansion
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AQx, 23 1) = Y €"Ay(x, 23 1), (21)
n=0

in the formal small parameter e. The next step consists in expanding equation (18) in the small parameter €, and
obtaining its naive perturbation solution order by order.

3.1. First order
The first-order vector potential A; obeys the equation

LA = —afeXtd) 4 e 2iatd]D] A, (22)
where
—~ Wo = =2
D, = 29, + ko - V, L, =0 - 24D}, (23)
c
a = 8key |67, (24)

and 4 is the phase of the constant complex amplitude %. The right-hand-side of equation (22) is fast oscillating,
and can be averaged away. Thus, we obtain the first-order solution

A = oA + of*emio, (25)

Here, ./ is an additional constant (for the present moment in time) complex amplitudeand ¢, = k - x — wtis
the wave phase with k,=0. In addition, the wave frequency

w(k) = ;Z[Zaczwoko k4 (1 + 2awd) — 2act(ky - k). (26)
1+ 2awy

is a solution to the dispersion relation

2 2
Ik, w) = = — K+ m(M — ¢k - k) —0. 27)
C C

An important comment is now in order. Apart from the solution (25), the first-order equation (22) possesses
asolution of the form (19), which has been disregarded, since it is already contained in the exact plane wave
solution of the initial nonlinear wave equation. Furthermore, equation (22) can be regarded as a wave analog of
the Mathieu equation. Perturbation analysis shows that the fast oscillating term proportional to cos 2(¢ + )
does not give rise to additional higher-order contribution in terms of the polarization parameter x. In other
words, the neglection (or equivalently, the averaging procedure) of the fast oscillating term is justified up to (at
least) second-order in perturbation theory as applied to the Mathieu equation (22). Further technical details can
be found in appendix.

3.2.Second order
The second-order perturbation equation for the vector potential A, reads as

DAZ = 4H608t(%8tA0 + %(%Al) - 4!160C2(VA() . V:% + VA] . V.g’.i + %Von + g’_jval) (28)

Substituting equations (19) and (25) into the right-hand-side of equation (28), we rewrite the latter in a detailed
form as follows

LA, + 2a cos 2(py + 6)612A2

= 8/4:6062 Oox [(@ox + 3|:|k)CA2ei(2<P]+%) + (0o — 3|:|k)(€*&fzei(2‘p‘7%) + c.c.], (29)
where
2
Oh =< — &2, Ok = 22 _ k- k. (30)
c? c?

The solution of the second-order perturbation equation (29) can be written as
Ay = 2keoc [(0or + 300k CA%RICAte) — (Og — 30, GFat2ei %) + c.c.l. (31)

Note that the second-order vector potential A, includes terms with combination phases of the form e!¥1# ),
They describe the three wave mixing and are giving rise to secular terms as will be shown below.
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3.3. Third order. Derivation of the nonlinear amplitude equation
The third-order perturbation equation for vector potential A; reads as

UAs = 4keg0:(F30:A¢ + F70:A1 + F10:4;)
— 4rec*(VAy - VI + VA - VI + VA, - VI + VA + HV?A + AVA). (32)

Unlike the second-order, where the perturbation equation possesses a unique regular solution, there are two
types of terms on the right-hand-side of the third-order equation (32). The first type comprises a collection of
secular (resonant) terms, which follow the pattern of the basic wave mode in linear approximation (proportional
to e¥¥#1), Such terms, which appear in higher orders as well, would provide a divergent counterpart in the naive
perturbation solution. Thus, they must be renormalized by an elegant procedure described below. The rest of the
terms contribute to the regular solution of the third-order perturbation equations, involving higher harmonics
and/or higher order harmonic combinations of the modes proportional to e’ and ¢’*1. Omitting
straightforwardly reproducible calculation’s details, we write down the resonant part of equation (32)

LiA; + 2acos2(p, + 6)1312A3 = —36keoc? 2 | Pclei + c.c., (33)
The above equation possesses an exact solution

As(x, 23 1) = Ps(x, 235 t)e, (34)

where the amplitude Z5(x, z; t) satisfies the equation
(L 4 i(0.2)0; — i(ViD) - V1Ps = —36keoc? O} |.oA |2.oA. (35)

Here Z(k, w) is the dispersion function defined by equation (27).

We follow an elegant approach, known as the proto RG operator scheme [34-36], which has been proposed
in the early 2000s to free as much as possible the standard RG theoretical reduction from the necessity of explicit
(in the majority of cases, rather cumbersome) calculation of secular terms [see e.g. 29 and 30]. Here we present
only a brief description of the renormalization procedure; the interested reader can consult the references cited
above, where further details and other interesting applications of the proto RG operator approach can be found.
Since, according to the first-order perturbative solution (25) the complex amplitude .o7 (regarded as a free
parameter) is constant, the solution of equation (35) will contain secular terms, which must be resummed
appropriately. The usual procedure to do so is first to define the free parameters xg, zr and 7 and the
renormalized amplitude .o% according to the relation .o/ = ZAg, where & is the renormalization constant.
Omitting zero-order and second-order solutions, which are regular and thus independent of the free parameters
justintroduced, we can write

A(x, z; t) = elp(xp, zr; T)e¥ + €3[P5(x, 23 1) — Ps(xp, zr; T)] P14 ... +c.c.. (36)

Let (xg, zz; 7) denotes the operator in the square brackets on the left-hand-side of equation (35) with x, z and
tbeing replaced by xg, zg and 7. Provided that A (x, z; ) should not depend on the renormalization parameters,
we obtain

0= S(xp zr5 A = € Bk, 215 T)[Ar — €2Ps(xw, 215 T|-Ap) e, (37)

Replacing back the original independent variables and making use of equation (35), we finally arrive at the
sought for nonlinear amplitude equation

[T, + 1(0,2)0;, — (V@) - V] = —36reoc? D2 |.APoA. (38)

It governs the relatively slow dynamics of the wave envelope .o/ and describes the formation of nonlinear waves
and coherent structures. As it will be shown in section 5 the equation just derived is a nonlinear wave equation
with a characteristic reduced light velocity.

4. Nonlinear dispersion relation in polarized vacuum with externally applied
magnetic field

In this section, we shall analyze the case, where a constant external magnetic field By = (By, 0, 0) is applied
along the x-axis. Since the applied magnetic field introduces a special type of spatial anisotropy, we assume that
the induced electromagnetic waves propagate in the axial x-direction only. The electromagnetic field
configuration can be specified as follows
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E= (O, _8tAy) _atAZ)> B = (BO> _axAz> 8xAy)) (39)
which is defined by an electromagnetic vector potential of the form
A@x 1) = [0, Ay(xs 1), Az(x 0] (40)
Since for plane waves this configuration yields E - B = 0, the second terms in equations (2) and (3) depending
on the scalar product of the electric field E and the magnetic field B vanish correspondingly.

It will prove convenient for the subsequent exposition to introduce a new field variable according to the
relation

oA (x5 1) = A, (x5 t) + 1AL (x; 1). (41)
Obviously,
E2 = 0,5/ (0,.o4*), B? = B¢ + 0o (0c4™). (42)

As far as components are concerned, similarly to the preceding section the vacuum polarization P and the
vacuum magnetization M follow the vectorial pattern of Eand B

P.=0, P, = —4ke{c*GOA,, P = —4reic*90,A,, (43)
M, = —4reic*9B, M, = 4relc*G0.A,, M, = 74/<;6%c4g8xA},, (44)

respectively. Here
G = L0,00,8%) — 0t (Opt™) — BL. (45)
c

As it was done in the case of a polarized quantum vacuum without externally applied fields, we again use the
Coulomb gauge, in which the scalar potential ¢ vanishes identically.

It can be verified in a straightforward manner that the nonlinear wave equation (12) for the vector complex
potential can be rewritten as

O.of = 4k€y0:(90,o7) — dkeyc?0.(G0 ). (46)
Again, it can be checked by direct substitution that a plane wave of the form
<y = (e + Pe %), (47)

where & is a constant complex amplitude, ¢, = kox — wyt is the wave phase, and the wave frequency w, and
the wave number k, satisfy the dispersion relation wj = c%, is an exact solution of equation (46). In addition,
2 is the polarization parameter, taking into account various plane wave polarizations. The assertion that the
plane wave (47) is an exact solution immediately follows from the important property %, = %(.<%) = —B;. For
the sake of simplicity we consider here the case of circular polarization, thatis 2 = 0. Since the direction of
propagation is collinear with E x B, the above simplification implies that the driving wave propagates along the
x-axis and is polarized in the yz-plane.

Similar to the preceding section, we represent .27 as a perturbation expansion

JZ{(-X; t) = i En%n(x; t)’ (48)

n=0

in the formal small parameter e. The first-order vector potential .27 obeys now the equation

Ly = —Be@tODy o, (49)
where
o~ wo EN =2
DM = —6; + Ckoax, LM =TI a- ﬁDM, (50)
c
B = 4key |6V, I' =1 — 4kegc?BE, (51)

and ¢ is the phase of the constant complex amplitude &. Applying again the averaging procedure described in the
preceding section, we neglect the fast oscillating term on the right-hand-side of equation (49), and obtain the
first-order solution

A = B e+ B e, (52)

Here, %, are supplementary constant complex amplitudes and ¢, = kx — wt is the wave phase. In addition,
w (k) is the wave frequency

1
w(k) = m[ﬁczwokok + T + Bwd) — DBk, (53)
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which is a solution to the dispersion relation
Dk, w) =T Ok + B2 05, = 0. (54)

Since the main considerations and explicit calculations in higher orders are confined in the same
mainstream of particulars as described in detail in section 3, we will skip them and will present only the final
result. The sought for nonlinear amplitude equations for the slowly varying wave amplitudes 4. are

[Lar + i(0.Dm)0r — 1(0x D) O B

= —24keoc? O} | B_|* B, + 2moc2DD—k(4 02 — 6 O Oox + 02 |8, 24, (55)
0k
[Ly — i(0uZm) O + 1(0x D) Ox B-
= —24regct 07 | B 2B — szfocZDD—"(zx 07 4+ 6 O Oox + 05y 141> 4. (56)
0k

The above equations describe the nonlinear optical anisotropy of the polarized quantum vacuum and the
presence of two intrinsic polarization states with different indices of refraction (nonlinear birefringence of the
vacuum in an externally applied magnetic field). In other words, coherent interaction of photons in the pumping
plane wave causes each of the induced waves to acquire an effective nonlinear refractive index. Obviously, the
value of this index depends on the intensity of the pumping wave, as well as on the amplitude of the waves
characterized by the two polarization states. After traversing a certain distance, a circularly polarized impacting
wave is transformed into an elliptically polarized wave of the most general form. Polarization phenomena
accompanying the interaction of two laser beams, which are due to scattering of light by light have been
considered in the past [37].

5. Nonlinear and cnoidal waves and nonlinear birefringence

It is instructive to transform equations (38), (55) and (56) in a more convenient and familiar form. Let us deal
with equation (38) first. Taking into account the translational invariance of our problem, we introduce new
spatial variables according to the relation
20w)  ~
& =x— vt v=—"""l—ck,, (57)
1 + 2awj

where Kk is the unit wave vector. This means that the new coordinate system is firmly fixed with an observer
moving with a speed v (which for realistic impact wave intensities is a small number), as defined by the second of
the above relations. In the new spatial variables defined above, the nonlinear amplitude equation (38) can be
rewritten as

2
10D + (Vg — V) - Vel + | Vi — 20‘—“’02(1(0 - V)2 — i(l + 20w 0 | A = —o | A oA
1+ 2awp c?
(58)
Here v, = —(V12) (0,92)"!is the wave group velocity [38] and
o = 36repc? OF, (59)

is the nonlinear coupling coefficient.
Let us now assume that the vector potential (15) depends on one spatial coordinate (say the x-coordinate)
only. Thus, equation (58) acquires the form

9.0 + MO oA + ——— O, o = —0 |, (60)
1 + 2awy
where
~ 1 c
0, = V2 — =02, G= —— . 61
P ¢ o ! ' 1 + 20w} (61

In addition, &, is a short-hand notation of the derivative of the dispersion function (27) with respect to wand A
vstands for the difference between the group velocity and the speed v defined by equation (57) (Av = v, — v).
Here is the place to make a small diversion from the main exposition with an important comment. The
nonlinear wave equation (60) governs the evolution of electromagnetic waves with a reduced speed oflight ¢;. For
sufficiently small values of the parameter o, the relative light velocity reduction Ac/c = 2awj(1 + 2aw])is
roughly proportional to the intensity of the pumping plane wave (cf equation (24)). For example, at the maximum
achievable value of the laser parameter a, = 170 at ELI-NP, this decrease is of the order of Ac/c ~ 1.045 - 10710,

8
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In the interstellar space, where the electromagnetic wave intensity (corresponding to an equivalent laser parameter)
can be of several orders of magnitude greater, the corresponding reduction in the speed of light is of the order of
Ac/c ~ 0.01 — 1.0%. This implies that the effect mentioned above is expected to become more profound at a
very high intensity of the impacting electromagnetic fields, and could be confirmed experimentally by monitoring
and collecting of relevant data in a supernova explosion. A similar effect, although in a different context, was
recently reported [39, 40].

In order to find a stationary wave solution, we will take advantage of the universal ansatz

A (& 1) = B(()e D, C=A§ — ut, (62)
where \is a constant, and u is a constant phase velocity of the traveling wave, both to be specified in the sequel.

Substituting the above expression for .¢Z into equation (60) and separating real and imaginary parts, we obtain
two coupled differential equations relating the amplitude B and the phase . These can be written as

B ﬁp Y+ 2(z\¢5 + %)B’ — Z,(1 + 20wd)(u — \AV)B' = 0, (63)
G
s W) 2 djz , 2y (] 2 2
N— — |B" - e — — + Z,(1 + 2awp) (P + Avipe) |B = —o(1 + 20wy) |BI°B, (64)
o ¢

where the prime indicates differentiation with respect to the new variable , the over-dot implies differentiation
with respect to time ¢ and the £-subscript denotes differentiation with respect to the £-variable.

Let us now explore the travelling wave solutions possessed by the nonlinear wave equation (60). First, we
consider the simple case, where 1 (&, t) = (. Moreover, £ is an arbitrary constant and without loss of
generality, we can also assume that A = 1. The phase equation (63) simply yields a relation between the known
constants and the ones characterizing the travelling wave ansatz, which need to be determined additionally.
Thus, we have

21 — Dy2( + 20w (u — Av) = 0, (65)

where

Y= ——> (66)

while the amplitude equation (64) can be rewritten as
B" + 1i’B = —0, B, o1 = oyi(1 + 2aw}). (67)

The above equation is the well-known Duffing equation, which in the case of positive o (which is the case, since
o > 0) hasa simple solution expressed in terms of Jacobi cosine function. Assuming that B'({ = 0) = 0, the
exact solution of equation (67) can be expressed as

B = e@O n [V(C + ¢O)’ ke] (68)

Here cn (w) denotes the elliptic Jacobi cosine function. In addition, %, = B({ = 0), the frequency v and the
elliptic modulus k, are expressed as follows

B
TN N T . — (69)

2(@3 + ﬁ)
a1

and 1)y is an arbitrary phase. Note that v ~ p and for that reason the arbitrary parameter y can be interpreted as
aharmonic number. Figures 1 and 2 show the typical behaviour of the nonlinear quasi-periodic wave for
harmonic numbers ;x = 1and u = 3.

Next, we consider the general case of travelling wave solutions to the nonlinear wave equation, for which
1 = 1((). The phase equation (63) can be written as

Y'B + 2¢'B' — 4B = 0, (70)
where
v =Zya(l + 20w (u — Av). 71)
It possesses a first integral of the form
C= BZ(W — %) 72)
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Figure 1. Evolution in space and time of the nonlinear wave amplitude B according to equation (68). Shown here is the first harmonic
with ;¢ = 1 for a typical laser intensity parameter ay = 9.06 of the pumping plane wave given by equation (19).

Figure 2. Evolution in space and time of the nonlinear wave amplitude B according to equation (68). Shown here is the third harmonic
with ;¢ = 3 for a typical laser intensity parameter ay = 9.06 of the pumping plane wave given by equation (19).

which after being substituted into the amplitude equation (64) yields the Ermakov-Pinney equation
2 2
v C
B" + —B + 0B’ = —. 73

LB+ o = (73)
Multiplying both sides of equation (73) by B’ and integrating once, we obtain the first integral of the Ermakov-
Pinney equation

2 2
wep24y S L gy g (74)
B? 4 2

Similar to the case worked out above, we assume that B/({ = 0) = 0. Then, it can be verified by direct
substitution that the Ermakov-Pinney equation (73) possesses an exact solution in the form of a cnoidal wave

B— Xy — k2Xssn? [(C + o), kel
1 —kZsn? [v(C + vo), kel

The frequency v and the elliptic modulus k, are given by the expressions

2 2
yo AT =X) [ Fem X 76)
2 BE — X;

(75)

10



10P Publishing

J. Phys. Commun. 4 (2020) 025006 SITzenovetal

Figure 3. Evolution in space and time of the cnoidal wave amplitude B according to equation (75). Shown here is the result for a typical
laser intensity parameter a, = 9.06 of the pumping plane wave given by equation (19).

2. %108 ~1x10H

Figure 4. Evolution in space and time of the cnoidal wave amplitude B according to equation (75). Shown here is the result for a very
high laser intensity parameter a, = 200 of the pumping plane wave given by equation (19).

The constants X, and X; entering the equations above can be expressed as follows

1 2 2\2 8C2
Xz,az—g «@34‘;—4:\/(@64-7—) + . (77)

%} 20’1 (%} g(z)

The analogy with the surface gravity waves on shallow water is quite interesting and impressive. Despite the fact
that cnoidal waves have been proposed by Korteweg and de-Vries in 1895 and later modified by Benjamin, Bona
and Mahony in 1972 in a different context [41, 42], it is intriguing that they can play an important role in wave
propagation in polarized quantum vacuum. Another intriguing feature of the cnoidal waves is that their spatio-
temporal structure does not change much in terms of spatial and temporal scales with increasing the intensity of
the pumping wave. Changes only the corresponding amplitude, which is to be expected. This important
characteristics is shown in figures 3 and 4.

Let us now turn back to equations (55) and (56) and perform the change of variables defined by
equation (57). This time we define the translational velocity as

_ Bt g

V= c 78
F+ﬁw% 0 78

11
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In the new variables the coupled nonlinear equations (55) and (56) can be written as

2

iDyo(0; + Avi0e) By + Oy B, = —24keoc 2 | B_|* B,

[ + Bw}
n zHEOCZDD—k(z; 2 — 6 O Ot + T2 |2 4., 79)
ok
9, + Avyd g
—1D,(0r + Av, B+ ——Uy 8-
Mo (O M O¢) T+ G2 M
= —24kegc? O} | B P A — 2/%60c2DD—k(4 OF 4+ 6 O Oox + O5) 12124, (80)
0k
where now
~ 1 T'c
[l =V2——82, oznM=————\ 81

and the other notations (%, Ve and Avy) are obvious and self-explanatory, in analogy to the case of
polarized vacuum without external field, which has been just considered. Equations (79) and (80) possess a
simple solution in the form of a plane wave [#; = B,e/®¢~2:)]with constant complex amplitudes B, . The
two frequencies )., are solutions to the dispersion equations

2
Fiz Ui £+ Zmo(Qe — AvyK) = Xy, (82)
I' + Bwy
where

2
0. =% g (83)

™
Yo = —24keoc? OF |B:] + 2moc2§—"(4 0 + 6 O Oox + 03,) |B]? (84)

0k

Since in the general nontrivial case both > cannot be equal to zero, we would obtain _(—K) = —Q, (K), that
is B_ = B.Thisimplies that the two wave modes %, are independent and they propagate at different
frequencies. It is well-known that birefringence makes use of the refractive index of the medium, defined as

ny = K /.. Birefringence A nis defined as the difference between the refractive indices characterizing the
two polarizations, or

An = ¢y K L—L (85)
Q. Q

The effect described above by taking into account that polarized vacuum in external magnetic field can be

considered as a nonlinear medium is usually called nonlinear birefringence of vacuum.

6. Concluding remarks

Starting from the basics, we have studied the implications of quantum corrections to classical electrodynamics
and the propagation of electromagnetic waves and pulses. Used essentially is the property of the polarized
vacuum, that the nonlinear wave equation for the electromagnetic vector potential possesses an exact solution in
the form of a plane wave in both the case of free from external fields vacuum, as well as when a constant magnetic
field is applied.

The initial nonlinear wave equation is solved perturbatively about the known exact plane wave solution.
Following the elegant approach of the proto RG operator, we derive a nonlinear wave equation with a nonzero
convective part (containing first-order spatial derivative with respect to the dependent variable) for the
(relatively) slowly varying amplitude of the first-order perturbation. This equation governs the propagation of
electromagnetic waves with a reduced speed of light. The reduction is roughly proportional to the intensity of the
pumping plane wave.

An external background magnetic field introduces spatial anisotropy coercing electromagnetic pulses to
travel in the direction of the applied field. In analogy to the case of polarized vacuum without external field, the
initial wave equation for the electromagnetic vector potential has been analysed in detail by following the same
guidelines. In order to avoid insignificant complications in the specific calculations, we consider here the case of
acircularly polarized initial pumping plane wave. The analysis of the general case of an elliptically polarized exact
solution is also possible, but with it, the technical details conceal the physical nature of the problem. Repeating
the proto RG procedure in a similar manner as has been done in the case of a quantum vacuum without

12
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externally applied magnetic field, we obtain a system of coupled nonlinear wave equations for the two slowly
varying amplitudes of the first-order perturbation solution, which describe the two polarization states.

The stationary (traveling) wave solutions of the proposed nonlinear wave equation with nonzero convective
part for the case of a polarized vacuum without external fields have been obtained. The slowly varying wave
amplitude behaviour is shown to be similar to that of a cnoidal wave, known to describe surface gravity waves in
shallow water. It has been demonstrated that the two wave modes describing the two polarization states are
independent, and they propagate at different wave frequencies. This effect is usually called nonlinear
birefringence.

It is worthwhile to be pointed out that our considerations are based on the leading effective interaction of
classical electromagnetic fields, which give rise to nonlinear terms in the polarization P and the magnetization M
vectors proportional to the cube of E and B (involving the well-known electromagnetic invariants). Specifically,
in one-loop Heisenberg-Euler theory this effective interaction scales as ozfcs in terms of the fine structure
constant. Sub leading corrections arising from higher-loop contributions and scaling as a}s give rise to quintic
(in Eand B) terms in the corresponding expressions for P and M (see e.g. the recent [43]). Limiting oneself to the
effective interaction of second order in the fine structure constant, terms of the order af}s are obviously not
accounted for from the outset. Correspondingly, all the results derived within this truncation can be reliably and
consistently accounted for in the fundamental physics only up to terms of this order in a;.
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Appendix. Perturbative Analysis of the Wave Analogue of Mathieu equation (22)

We consider the rapidly oscillating term on the right-hand-side of equation (22) as perturbation and rewrite the
latter accordingly

-~

LA = —ea[e?it® 4 e~2itO DA, (A1)

where, once again, e is a formal small parameter introduced to measure successive orders of magnitude in the
perturbation expansion. Similar to equation (21), we expand A; according to the expression

oo
Al zt) = €A (x, z; 1), (A2)
n=0
Obviously, the zero-order term A is just the expression on the right-hand-side of equation (25).

The first-order perturbation equation acquires the form
T A Lk 10 5 i (¢ —2¢0y—26
LAY = - —[o/elH2020) 4 ofei=220720) 4 cc]. (A3)
2

Its solution can be written as

AW — _DE‘Z“ [eiort 2020 _ eile=20-20] 4 e, (Ad)
0k

Finally, the second-order perturbation equation can be written as

2
i1A1(2) _ %[ezi(%—o—ﬁ) + e—zi(tpo—o—(i)] [&/ei(%+2¢0+2§) — ofeile=20)=28) | c.c.]. (A5)
0k

Itis straightforward to verify that resonant terms are missing on the right-hand-side of the above equation. Its
solution contains only regular terms proportional to e/(#1*4+49) and their complex conjugated counterpart.
This implies that the dispersion relation (27) remains unaltered by the fast oscillating term in question, which
completes the proof concerning the justification of the averaging procedure pursued in section 3.1.
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