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Abstract
Using the very basic physics principles, we have studied the implications of quantum corrections to
classical electrodynamics and the propagation of electromagnetic waves and pulses. The initial
nonlinear wave equation for the electromagnetic vector potential is solved perturbatively about the
known exact planewave solution in both the case of a polarized vacuumwithout external field, as well
as when a constantmagnetic field is applied. A nonlinear wave equationwith nonzero convective part
for the (relatively) slowly varying amplitude of the first-order perturbation has been derived. This
equation governs the propagation of electromagnetic waves with a reduced speed of light, where the
reduction is roughly proportional to the intensity of the initial pumping planewave. A systemof
coupled nonlinear wave equations for the two slowly varying amplitudes of thefirst-order
perturbation, which describe the two polarization states, has been obtained for the case of constant
magneticfield background. Further, the slowly varyingwave amplitude behavior is shown to be
similar to that of a cnoidal wave, known to describe surface gravity waves in shallowwater. It has been
demonstrated that the twowavemodes describing the two polarization states are independent, and
they propagate at different wave frequencies. This effect is usually called nonlinear birefringence.

1. Introduction

One of themost fundamental and important features of classical electrodynamics is the fact thatmacroscopically
it is a linear theory. This property ofMaxwell electrodynamics described in every standard textbook finds
remarkable validation in physics experiments and relevant applications almost daily. Put otherwise in a formal
language, the linearity of classical electrodynamics sounds like this: any superposition of two ormore
electromagnetic fields obeyingMaxwell’s equations satisfies the latter as well [1].

At the subatomic level, however, deviations from the principle of linear superposition can be expected. The
standard simplification commonly used in theoretical physics consists of the representation of a charged particle
as a localized distribution of charge. Unfortunately, this leads to the infinite growth of its electromagnetic energy
with the decrease of the localization dimensions, thus approaching a point-like distribution. To avoid infinite
self-energies of point particles, it is natural to speculate that a particular field strength saturation (upper bound)
exists. Onewell-known example of such nonlinear theories developed in the past is the theory of Born and Infeld
[2]. Classical electrodynamics cannot describe the interaction between two electromagnetic waves, whereas in
quantum electrodynamics, such a scattering of light by light is possible. The two incident planewaveswithwave
vectors k1 and k2 do notmerely add coherently, as predicted by linear superposition, but interact and (with a
small probability) transform into two different planewaves with correspondingwave vectors k3 and k4. These
results were first obtained by Euler andKockel [3] in 1935 and further elaborated byHeisenberg and Euler [4] in
1936. Interestingly enough in both Born-Infeld andHeisenberg-Euler theories of nonlinear electrodynamics in
theweak-field limit, the electric polarization P and themagnetizationM vectors are of third-order (up to leading
terms) in the electricE and themagneticBfield. This implies that the polarized quantumvacuum can be
regarded as a nonlinearmediumofKerr-type.
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In the present article, we shall investigate the properties of the nonlinearHeisenberg-Eulermodel in the
weak-field limit from a purely classical electrodynamics point of view. The reason for this is very simple: in the
smallfield approximation, the nonlinear electrodynamics ofHeisenberg-Euler and Born-Infeld are surprisingly
similar, coinciding up to scaling constants (compare equations (2) and (3) versus equations (5) and (6))
measuring the nonlinearity of the corresponding theories. For the purposes of this work, the origin of these
scaling constants, whether quantumor classical, is absolutely irrelevant and is amatter of initial choice and/or
preference. Important is the fact that in both cases themedia (be it quantumpolarized vacuum, or purely
classical one of Born-Infeld type) under consideration is of a similar type. This implies that after appropriate and
obvious reshaping of the underlying parameters, the results obtained here remain valid for both theHeisenberg-
Euler and the Born-Infeldmodels of nonlinear electrodynamics.

It seems that themanifestation of altered dispersion properties of photons in a constant, or weakly varying
electromagnetic background fields have been first studied in detail by Toll [5]. Continuous studies of the linear
dispersion properties of photons aswell as the vacuumbirefringence and dichroism in similar background
conditions have been carried out in the early 1960s [6–10], andmore recently [11–15]. In order to take into
account externalfield variations for space and time, theweak-fieldHeisenberg-Euler Lagrangianmust be
modified by including a term containing derivatives of the electromagnetic field tensor [16, 17]. These
corrections result in an additional linear term in both the polarizationP and themagnetizationM vectors, which
is proportional toE andB, respectively. The additional linear termwould yield a small correction to the
linear dispersion properties, which gives us the right to safely ignore it inwhat follows. The systematic
consideration and discussion of dispersion effects in the case of strong electromagnetic fields have been
performed in [18].

Nonlinear contributions to the scattering cross section of photons colliding elastically in the presence of an
external, static electricfield or an electromagnetic wavewith the same frequency as the colliding photons have
been obtained in themid 1960s [19, 20]. The analysis of a number of applications, inwhich nonlinear collective
effects among photonsmay play a dominant role has been initiated by Rozanov [17, 21]. Predominant here
refers to processes occurring at sufficiently strong electromagnetic fields inwhich nonlinear terms in the
polarization andmagnetization vectors begin to play a significant role. Rozanov considered the perpendicular
propagation of high-intensity laser pulses traveling in externally applied electric andmagnetic crossfields. By
choosing an initial pumping laser pulse polarized in the direction of the background fields, Rozanov obtained a
nonlinear Schrödinger equation for the slowly varying envelope of the perturbation [17]. Soljacic and Segev [22]
studied the case of a ‘beam’ resulting from the superposition of two carrier planewaves,modified by a slowly
varying envelope in the horizontal direction. They derived a nonlinear Schrödinger equation governing the
dynamics of the ‘beam’ envelope due to the crossing laser waves. Brodin et al [23] considered the propagation of
a single TE-modewithweaklymodulated amplitude between two parallel conducting planes, and as a result,
came upwith a similar nonlinear Schrödinger equation for the slowly varyingmode envelope.

Comparedwith the usual properties of variousmediawidely used in nonlinear optics, the vacuum is
characterized by both the nonlinear electric polarization and the nonlinearmagnetization simultaneously. In the
weak-field limit, these nonlinearities give rise to three and four-wavemixing, which has even been argued to be
one of the prime candidates to demonstrate themanifestation of nonlinear quantum electrodynamics effects in
laboratory conditions. There exist extensive literature on the subject, which is impossible and unnecessary to
mention here, sowe restrict ourselves to a few selected quotes [21, 24–28].

In the present article, we adopt a different approach, as compared to other works dedicated to nonlinear
wave phenomena in polarized vacuum existing in the literature. It is a simple and rather intuitive one, and is
widely used infinite and infinite degree-of-freedomdynamical systems. The perturbationmethodwe utilize
here is quite straightforward, and as a starting point, it uses the availability of an exact solution to the initial
nonlinear wave equations describing the properties of the quantum vacuum. The perturbation expansion about
the exact solution of the underlying equations is then built up to third-order, followed by the renormalization of
secular termsThus, the relevant dynamics is being split into two parts: the first one describing the fast wave
oscillations, and a second one exhibiting the nonlinear behavior of specific wave amplitudes onmuch slower
spatial and time scales.

The article is organized as follows. In the next section, we present some basics of theweak-field nonlinear
electrodynamics ofHeisenberg-Euler type. In section 3, we study the free (from external electromagnetic field)
quantumvacuum. Small perturbation about the exact planewave solution of the nonlinear wave equation for
the electromagnetic vector potential has been analysed. Employing theRenormalizationGroup (RG)method
[29, 30], we derive a nonlinear wave equation for the (relatively) slowly varying amplitude of the first-order
perturbation. An intriguing property of this equation is that it governs the propagation of electromagnetic waves
with a reduced speed of light. In section 4, we consider the case where an externalmagnetic field is applied. The
latter introduces spatial anisotropywith all the ensuing consequences. Similar to the case of polarized vacuum
without externalfield, the underlyingwave equation for the electromagnetic vector potential possesses an exact
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solution in the formof a planewavewith constant amplitude. For the analysis carried out in the present article,
we choose the circularly polarized exact solution and repeat the RGprocedure in a similarmanner as has been
done in section 3. As a result, we obtain a systemof coupled nonlinear wave equations for the two slowly varying
amplitudes of thefirst-order perturbation, which describe the two polarization states. In section 5, we present
the stationary (traveling)wave solutions of the nonlinear wave equation, thus obtained for the case of polarized
vacuumwithout externalfield. The slowly varyingwave amplitude behavior is shown to be similar to that of a
cnoidal wave, characterized by a near-periodic swell in shallowwater. Finally, in section 6we draw some
conclusions.

2. Theoreticalmodel and basic equations

InQuantumElectrodynamics, photon-photon scattering is known to be a second-order effect in terms of the
fine-structure constantαfs. For constant orweakly varyingfields it can be formulated in standard notation by
using the Lagrangian (Euler-Heisenberg Lagrangian density [31]) or theHamiltonian approach [32] in classical
field theory. The effects of the quantum electrodynamics vacuumpolarization andmagnetization introduce
(third-order)nonlinearity, such that vacuum itself can be considered a nonlinearmediumwith appropriate
constitutive relations

( )
m

= + = -D E P H B M,
1

. 10
0

Here ò0 andμ0 are the electric permittivity and themagnetic permeability of vacuum ( )m = c10 0
2 , respectively,

D andH are the electric displacement vector and the intensity of themagnetic field, respectively, whileP is the
electric polarization andM is themagnetization. The latter two quantities are third-order in E andB
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Hereme is the electron restmass, and ( )= » ´ -E m c e 1.32 10 V mS e
2 3 18 1, is the Schwinger limit above

which the electromagnetic field is expected to become nonlinear. Equations (2) and (3) indicate that the
nonlinear corrections take the same form as in nonlinear optics, where thematerial properties of opticalfibers
for example, give rise to cubic nonlinear terms inMaxwellʼs equations, so-calledKerr effect. The essential
difference however, is that quantum vacuumpolarization leads to nonlinearities in both the electric polarization
and themagnetization. Note that the effective self-interaction term is proportional to thefine structure constant
squared, which implies that field strengthsmust reach values close to the Schwinger limit until these effects
become important.

For comparison, let us adduce the corresponding expressions for the electric polarization and the
magnetization in theweak field approximation ensuing from the classical Born-Infeldmodel [33]. They are

[( ) ( · ) ] ( )= - +


b
E c B cP E E B B

2
2 , 5BI

0
2

2 2 2 2

[ ( ) ( · ) ] ( )= - - +
 c

b
E c BM B E B E

2
2 , 6BI

0
2

2
2 2 2

where the parameter b has the dimension of an electric field strength (Born and Infeld called it the absolutefield)
estimated initially as b∼3·1020 -V m 1.

ThemacroscopicMaxwell equations taking into account the vacuumpolarization andmagnetization can be
written as

· · ( ) = =D B, 0, 7f

( ) ´ = -¶ ´ - ¶ =E B H D J, , 8t t f

where ñf and Jf is the free charge and current densities, respectively.Manipulating equations (7) and (8) in an
obviousmannerwith due account of equation (1), we obtain

[ ( · ) ( )] ( ) ( )m m   = ¶ - + ¶ ´ + ¶ +  c cE P P M J , 9t t t f f0
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0
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where ( )= - ¶ c1 t
2 2 2 is thewell-knownd’Alembert operator. These are the nonlinear generalizations of

the classical wave equations for the electric and themagnetic field, often serving as a starting point in the
description of a variety of nonlinear phenomena in quantumvacuum.

Inwhat follows, however,more convenient will be the alternative formulation of nonlinear electrodynamics
in theweak-field limit. Since the second of equations (7) and thefirst of equations (8) remain unaltered as
compared to themicroscopic electrodynamics, they allow the introduction of the scalarΦ and the vector A
potentials defined in the standardmanner

( ) = - F - ¶ = ´E A B A, . 11t

Manipulating the remaining two of theMaxwell equations and taking into account the definition (1) for the
electric displacement vector and the intensity of themagnetic field, we obtain

⎜ ⎟⎛
⎝

⎞
⎠· ( ) ( )m m  - ¶ F + = - ¶ + ´ -

c
A A P M J

1
, 12t t f2 0 0

( · ) · ( )  F + ¶ = -





A P

1
. 13t

f2

0 0

In addition to the nonlinear wave equations above, one can use the Lorentz [( ) · ]¶ F + =c A1 0t
2 or the

Coulomb ( · ) =A 0 gauge condition.
Equations (12) and (13) together with equations (2) and (3) describe the nonlinear wave properties of

polarized vacuum in theweak-field limit. The case, where free electric charges ñf and currents Jf are absent will be
the starting point for our subsequent analysis. In other words, throughout the subsequent exposition only the
case of zero free electric charges ñf=0 and currents Jf=0will be considered.

3.Nonlinearwaves in polarized vacuumwithout externalfield and the nonlinear
amplitude equation

Weassume afield configuration as follows

( ) ( ) ( )= -¶ = -¶ ¶A A AE B0, , 0 , , 0, , 14t z x

which is determined by a vector potential

( ) [ ( ) ] ( )=x z t A x z tA , ; 0, , ; , 0 . 15

SinceE·B=0 in this configuration, the second terms in equations (2) and (3) depending on the scalar product
of the electric fieldE and themagneticfieldB vanish. As far as components are concerned, obviously, the vacuum
polarizationP and the vacuummagnetizationM follow the pattern ofE andB

F F ( )k k = - ¶ = - ´ P c A cM A4 , 4 , 16y t0
2 2

0
2 4

respectively. Here

F ( ) ( ) ( )= ¶ -
c

A A
1

. 17t2
2 2

It is convenient to use theCoulomb gauge, in which the scalar potentialΦ vanishes identically.
It can be verified in a straightforwardmanner that the nonlinear wave equation (12) for the vector potential

can be rewritten as

F F F( ) ( · ) ( )k k   = ¶ ¶ - + A A c A A4 4 . 18t t0 0
2 2

Note that a planewave of the form

C C ( )= +j j-A e e , 19i i
0 0 0*

where C is a constant complex amplitude, ·j w= - tk x0 0 0 is thewave phase, and thewave frequencyω0 and
thewave number k0 satisfy the dispersion relation

( ) ( )w = + = =c k k c k k, 0, 20x z y0
2 2

0
2

0
2 2

0
2

0

is an exact solution of equation (18). This property is not surprising—it immediately follows from the important
relationF F( )= =A 00 0 , which can be checked by direct substitution. Put another way, the planewave
minimizes the effectiveHeisenberg-Euler action.

Following the standard procedure of the renormalization groupmethod, we represent ( )A x z t, ; as a
perturbation expansion
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( ) ( ) ( )å=
=
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n
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0

in the formal small parameter ò. The next step consists in expanding equation (18) in the small parameter ò, and
obtaining its naive perturbation solution order by order.

3.1. First order
Thefirst-order vector potentialA1 obeys the equation

[ ] ( )( ) ( ) a= - +j d j d+ - +A AL De e , 22i i
1 1

2 2
1
2

10 0

where
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c
cD k L D, 2 , 23t1

0
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2

C∣ ∣ ( )a k= 8 , 240
2

and δ is the phase of the constant complex amplitude C. The right-hand-side of equation (22) is fast oscillating,
and can be averaged away. Thus, we obtain the first-order solution

A A ( )= +j j-A e e . 25i i
1 1 1*

Here,A is an additional constant (for the presentmoment in time) complex amplitude and ·j w= - tk x1 is
thewave phasewith ky=0. In addition, thewave frequency
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is a solution to the dispersion relation

D ⎜ ⎟⎛
⎝

⎞
⎠( ) · ( )w

w
a

w w
= - + - =

c
k

c
ck k k, 2 0. 27

2

2
2 0

0

2

An important comment is now in order. Apart from the solution (25), thefirst-order equation (22) possesses
a solution of the form (19), which has been disregarded, since it is already contained in the exact planewave
solution of the initial nonlinear wave equation. Furthermore, equation (22) can be regarded as a wave analog of
theMathieu equation. Perturbation analysis shows that the fast oscillating termproportional to ( )j d+cos 2
does not give rise to additional higher-order contribution in terms of the polarization parameterκ. In other
words, the neglection (or equivalently, the averaging procedure) of the fast oscillating term is justified up to (at
least) second-order in perturbation theory as applied to theMathieu equation (22). Further technical details can
be found in appendix.

3.2. Second order
The second-order perturbation equation for the vector potentialA2 reads as

F F F F F F( ) ( · · ) ( )k k      = ¶ ¶ + ¶ - + + + A A A c A A A A4 4 . 28t t t2 0 2 0 1 1 0
2

0 2 1 1 2
2

0 1
2

1

Substituting equations (19) and (25) into the right-hand-side of equation (28), we rewrite the latter in a detailed
form as follows

C A

( )
[( ) ( ) ] ( )( ) ( )

 a j d
k
+ +

= + + - +j j j j+ -      

A A

c c c
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8 3 e 3 e . . , 29k k k
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i
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2

2

0
2
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where

· ( )w w w
= - = - 

c
k

c
k k, . 30k k

2

2
2

0
0
2 0

The solution of the second-order perturbation equation (29) can bewritten as

C A[( ) ( ) ] ( )( ) ( )k= + - - +j j j j+ -     A c c c2 3 e 3 e . . . 31k k
i

k k
i

2 0
2

0
2 2

0
2 21 0 1 0*

Note that the second-order vector potentialA2 includes termswith combination phases of the form ( )j jei 2 1 0 .
They describe the threewavemixing and are giving rise to secular terms as will be shown below.
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3.3. Third order. Derivation of the nonlinear amplitude equation
The third-order perturbation equation for vector potentialA3 reads as

F F F

F F F F F F

( )
( · · · ) ( )

k
k         

= ¶ ¶ + ¶ + ¶
- + + + + +




A A A A

c A A A A A A

4

4 . 32
t t t t3 0 3 0 2 1 1 2

0
2

0 3 1 2 2 1 3
2

0 2
2

1 1
2

2

Unlike the second-order, where the perturbation equation possesses a unique regular solution, there are two
types of terms on the right-hand-side of the third-order equation (32). Thefirst type comprises a collection of
secular (resonant) terms, which follow the pattern of the basic wavemode in linear approximation (proportional
to je i 1). Such terms, which appear in higher orders aswell, would provide a divergent counterpart in the naive
perturbation solution. Thus, theymust be renormalized by an elegant procedure described below. The rest of the
terms contribute to the regular solution of the third-order perturbation equations, involving higher harmonics
and/or higher order harmonic combinations of themodes proportional to jei 0 and jei 1. Omitting
straightforwardly reproducible calculation’s details, wewrite down the resonant part of equation (32)

A A( ) ∣ ∣ ( ) a j d k+ + = - +j A A c c cL D2 cos 2 36 e . ., 33k
i

1 3 0 1
2

3 0
2 2 2 1

The above equation possesses an exact solution

P( ) ( ) ( )= jA x z t x z t, ; , ; e , 34i
3 3 1

where the amplitudeP ( )x z t, ;3 satisfies the equation

D D P A A[ ( ) ( ) · ] ∣ ∣ ( ) k + ¶ ¶ - = -w  i i cL 36 . 35t k k1 3 0
2 2 2

HereD( )wk, is the dispersion function defined by equation (27).
We follow an elegant approach, known as the proto RGoperator scheme [34–36], which has been proposed

in the early 2000s to free asmuch as possible the standard RG theoretical reduction from the necessity of explicit
(in themajority of cases, rather cumbersome) calculation of secular terms [see e.g. 29 and 30]. Here we present
only a brief description of the renormalization procedure; the interested reader can consult the references cited
above, where further details and other interesting applications of the proto RGoperator approach can be found.
Since, according to thefirst-order perturbative solution (25) the complex amplitudeA (regarded as a free
parameter) is constant, the solution of equation (35)will contain secular terms, whichmust be resummed
appropriately. The usual procedure to do so isfirst to define the free parameters xR, zR and τ and the
renormalized amplitudeAR according to the relationA = R, whereZ is the renormalization constant.
Omitting zero-order and second-order solutions, which are regular and thus independent of the free parameters
just introduced, we canwrite

A P P( ) ( ) [ ( ) ( )] ( )t t= + - + +j j A x z t x z x z t x z c c, ; , ; e , ; , ; e ... . .. 36R R R
i

R R
i3

3 31 1

Let ( ) tS x z, ;R R denotes the operator in the square brackets on the left-hand-side of equation (35)with x z, and
t being replaced by xR, zR and τ. Provided that ( )A x z t, ; should not depend on the renormalization parameters,
we obtain

A P A( ) ( )[ ( ∣ )] ( ) t t tS S= = - j x z A x z x z0 , ; , ; , ; e . 37R R R R R R R R
i2

3 1

Replacing back the original independent variables andmaking use of equation (35), we finally arrive at the
sought for nonlinear amplitude equation

D D A A A[ ( ) ( ) · ] ∣ ∣ ( ) k + ¶ ¶ - = -w  i i cL 36 . 38t k k1 0
2 2 2

It governs the relatively slow dynamics of thewave envelopeA and describes the formation of nonlinear waves
and coherent structures. As it will be shown in section 5 the equation just derived is a nonlinear wave equation
with a characteristic reduced light velocity.

4.Nonlinear dispersion relation in polarized vacuumwith externally applied
magneticfield

In this section, we shall analyze the case, where a constant externalmagneticfield ( )= BB , 0, 00 0 is applied
along the x-axis. Since the appliedmagnetic field introduces a special type of spatial anisotropy, we assume that
the induced electromagnetic waves propagate in the axial x-direction only. The electromagnetic field
configuration can be specified as follows
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( ) ( ) ( )= -¶ -¶ = -¶ ¶A A B A AE B0, , , , , , 39t y t z x z x y0

which is defined by an electromagnetic vector potential of the form

( ) [ ( ) ( )] ( )=x t A x t A x tA ; 0, ; , ; . 40y z

Since for planewaves this configuration yields · =E B 0, the second terms in equations (2) and (3) depending
on the scalar product of the electricfieldE and themagnetic fieldB vanish correspondingly.

It will prove convenient for the subsequent exposition to introduce a new field variable according to the
relation

A( ) ( ) ( ) ( )= +x t A x t iA x t; ; ; . 41y z

Obviously,

A A A A( ) ( ) ( )= ¶ ¶ = + ¶ ¶E B B, . 42t t x x
2 2

0
2* *

As far as components are concerned, similarly to the preceding section the vacuumpolarizationP and the
vacuummagnetizationM follow the vectorial pattern ofE andB

G G ( )k k= = - ¶ = - ¶ P P c A P c A0, 4 , 4 , 43x y t y z t z0
2 2

0
2 2

G G G ( )k k k= - = ¶ = - ¶  M c B M c A M c A4 , 4 , 4 , 44x y x z z x y0
2 4

0 0
2 4

0
2 4

respectively. Here

G A A A A( ) ( ) ( )= ¶ ¶ - ¶ ¶ -
c

B
1

. 45t t x x2 0
2* *

As it was done in the case of a polarized quantumvacuumwithout externally applied fields, we again use the
Coulomb gauge, inwhich the scalar potentialΦ vanishes identically.

It can be verified in a straightforwardmanner that the nonlinear wave equation (12) for the vector complex
potential can be rewritten as

A G A G A( ) ( ) ( )k k= ¶ ¶ - ¶ ¶  c4 4 . 46t t x x0 0
2

Again, it can be checked by direct substitution that a planewave of the form

A E P( ) ( )= +j j-e e , 47i i
0 0 0

where E is a constant complex amplitude,j w= -k x t0 0 0 is thewave phase, and thewave frequencyω0 and
thewave number k0 satisfy the dispersion relation w = c k0

2 2
0
2, is an exact solution of equation (46). In addition,

P is the polarization parameter, taking into account various planewave polarizations. The assertion that the
planewave (47) is an exact solution immediately follows from the important property G G A( )= = -B0 0 0

2. For
the sake of simplicity we consider here the case of circular polarization, that isP = 0. Since the direction of
propagation is collinear withE×B, the above simplification implies that the drivingwave propagates along the
x-axis and is polarized in the yz-plane.

Similar to the preceding section, we representA as a perturbation expansion

A A( ) ( ) ( )å=
=

¥

x t x t; ; , 48
n

n
n

0

in the formal small parameter ò. Thefirst-order vector potentialA1obeys now the equation

A A ( )( ) b= - j d+L De , 49M
i

M1
2 2

10 *

where

( ) w
b= ¶ + ¶ = G -

c
ckD L D, , 50M t x M M

0
0

2

E∣ ∣ ( )b k k= G = -  c B4 , 1 4 , 510
2

0
2

0
2

and δ is the phase of the constant complex amplitude E. Applying again the averaging procedure described in the
preceding section, we neglect the fast oscillating termon the right-hand-side of equation (49), and obtain the
first-order solution

A B B ( )= +j j
+ -

-e e . 52i i
1 1 1

Here,B are supplementary constant complex amplitudes andj w= -kx t1 is thewave phase. In addition,
( )w k is thewave frequency

( ) [ ( ) ] ( )w
bw

b w bw b=
G +

+ G G + - Gk c k k c k c k k
1

, 53
0
2

2
0 0

2 2
0
2 4

0
2 2
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which is a solution to the dispersion relation

D ( ) ( )w b= G + = k c, 0. 54M k k
2

0
2

Since themain considerations and explicit calculations in higher orders are confined in the same
mainstreamof particulars as described in detail in section 3, wewill skip them andwill present only the final
result. The sought for nonlinear amplitude equations for the slowly varyingwave amplitudesB are

D D B

B B B B

[ ( ) ( ) ]

∣ ∣ ( ) ∣ ∣ ( )



k k

+ ¶ ¶ - ¶ ¶

= - + - +

w +

- + + + 



   

i i

c c

L

24 2 4 6 , 55

M M t k M x

k
k

k
k k k k0

2 2 2
0

2

0

2
0 0

2 2

D D B

B B B B

[ ( ) ( ) ]

∣ ∣ ( ) ∣ ∣ ( )



k k

- ¶ ¶ + ¶ ¶

= - - + +

w -

+ - - - 



   

i i

c c

L

24 2 4 6 . 56

M M t k M x

k
k

k
k k k k0

2 2 2
0

2

0

2
0 0

2 2

The above equations describe the nonlinear optical anisotropy of the polarized quantumvacuumand the
presence of two intrinsic polarization states with different indices of refraction (nonlinear birefringence of the
vacuum in an externally appliedmagnetic field). In otherwords, coherent interaction of photons in the pumping
planewave causes each of the inducedwaves to acquire an effective nonlinear refractive index. Obviously, the
value of this index depends on the intensity of the pumpingwave, as well as on the amplitude of thewaves
characterized by the two polarization states. After traversing a certain distance, a circularly polarized impacting
wave is transformed into an elliptically polarizedwave of themost general form. Polarization phenomena
accompanying the interaction of two laser beams, which are due to scattering of light by light have been
considered in the past [37].

5.Nonlinear and cnoidal waves andnonlinear birefringence

It is instructive to transform equations (38), (55) and (56) in amore convenient and familiar form. Let us deal
with equation (38)first. Taking into account the translational invariance of our problem,we introduce new
spatial variables according to the relation

( )x
aw
aw

= - =
+

t cx v v k,
2

1 2
, 570

2

0
2 0

where k0 is the unit wave vector. Thismeans that the new coordinate system isfirmly fixedwith an observer
movingwith a speed v (which for realistic impact wave intensities is a small number), as defined by the second of
the above relations. In the new spatial variables defined above, the nonlinear amplitude equation (38) can be
rewritten as

D A A A A
⎡
⎣⎢

⎤
⎦⎥( )[ ( ) · ] ( · ) ( ) ∣ ∣

( )

aw
aw

aw s  ¶ ¶ + - + -
+

- + ¶ = -x x xwi
c

v v k
2

1 2

1
1 2 .

58

t g t
2 0

2

0
2 0

2
2 0

2 2 2

Here D D( )( )= - ¶w -vg k
1 is thewave group velocity [38] and

( )s k=  c36 , 59k0
2 2

is the nonlinear coupling coefficient.
Let us now assume that the vector potential (15) depends on one spatial coordinate (say the x-coordinate)

only. Thus, equation (58) acquires the form

D A A A A( ) ∣ ∣ ( )
aw

s¶ + D ¶ +
+

= -w x i v
1

1 2
, 60t p

0
2

2

where

( )
aw

= - ¶ =
+x

c
c

c1
,

1 2
. 61p t

2

1
2

2
1

0
2

In addition,Dw is a short-hand notation of the derivative of the dispersion function (27)with respect toω andΔ
v stands for the difference between the group velocity and the speed v defined by equation (57) ( )D = -v v vg .

Here is the place tomake a small diversion from themain expositionwith an important comment. The
nonlinearwave equation (60) governs the evolution of electromagneticwaveswith a reduced speedof light c1. For
sufficiently small values of theparameterα, the relative light velocity reduction ( )aw awD = + -c c 2 1 20

2
0
2 1 is

roughly proportional to the intensity of the pumping planewave (cf equation (24)). For example, at themaximum
achievable valueof the laser parameter a0=170 at ELI-NP, this decrease is of theorder of ·D ~ -c c 1.045 10 10.
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In the interstellar space,where the electromagneticwave intensity (corresponding to an equivalent laser parameter)
can beof several orders ofmagnitude greater, the corresponding reduction in the speed of light is of the order of
D ~ -c c 0.01 1.0%. This implies that the effectmentioned above is expected to becomemore profound at a
very high intensity of the impacting electromagneticfields, and could be confirmed experimentally bymonitoring
and collecting of relevant data in a supernova explosion.A similar effect, although in a different context, was
recently reported [39, 40].

In order tofind a stationarywave solution, wewill take advantage of the universal ansatz

A( ) ( ) ( )( )x z z lx= = -y xt B ut; e , , 62i t;

whereλ is a constant, and u is a constant phase velocity of the travelingwave, both to be specified in the sequel.
Substituting the above expression forA into equation (60) and separating real and imaginary parts, we obtain
two coupled differential equations relating the amplitudeB and the phaseψ. These can bewritten as

D
⎛
⎝⎜

⎞
⎠⎟ ( )( ) ( )
 y ly
y

aw l+ + ¢ - + - D ¢ =x wB
u

c
B u v B2 1 2 0, 63p

1
2 0

2

D
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥( )( ) ( ) ∣ ∣ ( )

 l y
y

aw y y s aw-  - - + + + D = - +x w x
u

c
B

c
v B B B1 2 1 2 , 642

2

1
2

2
2

1
2 0

2
0
2 2

where the prime indicates differentiationwith respect to the new variable ζ, the over-dot implies differentiation
with respect to time t and the ξ-subscript denotes differentiationwith respect to the ξ-variable.

Let us now explore the travellingwave solutions possessed by the nonlinear wave equation (60). First, we
consider the simple case, where ( )y x mz=t, .Moreover,μ is an arbitrary constant andwithout loss of
generality, we can also assume thatλ=1. The phase equation (63) simply yields a relation between the known
constants and the ones characterizing the travellingwave ansatz, which need to be determined additionally.
Thus, we have

D ( )( ) ( )m g aw- + - D =w u v2 1 2 0, 65u
2

0
2

where

( )g =
-

1

1
, 66u

u

c

2

1
2

while the amplitude equation (64) can be rewritten as

( ) ( )m s s sg aw + = - = +B B B , 1 2 . 67u
2

1
3

1
2

0
2

The above equation is thewell-knownDuffing equation, which in the case of positive σ1 (which is the case, since
σ>0) has a simple solution expressed in terms of Jacobi cosine function. Assuming that ( )z¢ = =B 0 0, the
exact solution of equation (67) can be expressed as

B [ ( ) ] ( )n z y= +B kcn , . 68e0 0

Here ( )wcn denotes the elliptic Jacobi cosine function. In addition,B ( )z= =B 00 , the frequency ν and the
ellipticmodulus ke are expressed as follows

B
B

B( )
( )n m s= + =

+ m
s

k,

2

. 69e
2

1 0
2 0

0
2 2

1

andψ0 is an arbitrary phase.Note that ν≈μ and for that reason the arbitrary parameterμ can be interpreted as
a harmonic number. Figures 1 and 2 show the typical behaviour of the nonlinear quasi-periodic wave for
harmonic numbersμ=1 andμ=3.

Next, we consider the general case of travellingwave solutions to the nonlinear wave equation, for which
( )y y z= . The phase equation (63) can bewritten as

( )y y g + ¢ ¢ - ¢ =B B B2 0, 70

where

D ( )( ) ( )g g aw= + - Dw u v1 2 . 71u
2

0
2

It possesses a first integral of the form

⎜ ⎟⎛
⎝

⎞
⎠ ( )y

g
= ¢ -C B

2
, 722
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which after being substituted into the amplitude equation (64) yields the Ermakov-Pinney equation

( )g
s + + =B B B

C

B4
. 73

2

1
3

2

3

Multiplying both sides of equation (73) by ¢B and integrating once, we obtain the first integral of the Ermakov-
Pinney equation

( )g s
= ¢ + + +W B

C

B
B B

4 2
. 742

2

2

2
2 1 4

Similar to the case worked out above, we assume that ( )z¢ = =B 0 0. Then, it can be verified by direct
substitution that the Ermakov-Pinney equation (73) possesses an exact solution in the formof a cnoidal wave

[ ( ) ]
[ ( ) ]

( )n z y
n z y

=
- +
- +

B
X k X k

k k

sn ,

1 sn ,
. 75e e

e e

2
2

3
2

0
2 2

0

The frequency ν and the ellipticmodulus ke are given by the expressions

B B

B

( ) ( )n
s

=
-

=
-
-

X
k

X

X2
, . 76e

1 0
2

3 0
2

2

0
2

3

Figure 1.Evolution in space and time of the nonlinear wave amplitudeB according to equation (68). Shownhere is thefirst harmonic
withμ=1 for a typical laser intensity parameter a0=9.06 of the pumping planewave given by equation (19).

Figure 2.Evolution in space and time of the nonlinear wave amplitudeB according to equation (68). Shownhere is the third harmonic
withμ=3 for a typical laser intensity parameter a0=9.06 of the pumping planewave given by equation (19).
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The constantsX2 andX3 entering the equations above can be expressed as follows

B B
B

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥ ( )g

s
g
s s

= - + + +X
C1

2 2 2

8
. 772,3 0

2
2

1
0
2

2

1

2 2

1 0
2

The analogywith the surface gravity waves on shallowwater is quite interesting and impressive. Despite the fact
that cnoidal waves have been proposed byKorteweg and de-Vries in 1895 and latermodified by Benjamin, Bona
andMahony in 1972 in a different context [41, 42], it is intriguing that they can play an important role inwave
propagation in polarized quantumvacuum. Another intriguing feature of the cnoidal waves is that their spatio-
temporal structure does not changemuch in terms of spatial and temporal scales with increasing the intensity of
the pumpingwave. Changes only the corresponding amplitude, which is to be expected. This important
characteristics is shown infigures 3 and 4.

Let us now turn back to equations (55) and (56) and perform the change of variables defined by
equation (57). This timewe define the translational velocity as

( )bw
bw

=
G +

cv k . 780
2

0
2 0

Figure 3.Evolution in space and time of the cnoidal wave amplitudeB according to equation (75). Shownhere is the result for a typical
laser intensity parameter a0=9.06 of the pumping planewave given by equation (19).

Figure 4.Evolution in space and time of the cnoidal wave amplitudeB according to equation (75). Shownhere is the result for a very
high laser intensity parameter a0=200 of the pumping planewave given by equation (19).
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In the new variables the coupled nonlinear equations (55) and (56) can bewritten as

D B B B B

B B

( ) ∣ ∣

( ) ∣ ∣ ( )


bw

k

k

¶ + D ¶ +
G

G +
= -

+ - +

w x + + - +

+ +





 




   

i v c

c

24

2 4 6 , 79

M t M M k

k

k
k k k k

2

0
2 0

2 2 2

0
2

0

2
0 0

2 2

D B B

B B B B

( )

∣ ∣ ( ) ∣ ∣ ( )


bw

k k

- ¶ + D ¶ +
G

G +

= - - + +

w x - -

+ - - - 







   

i v

c c24 2 4 6 , 80

M t M M

k
k

k
k k k k

2

0
2

0
2 2 2

0
2

0

2
0 0

2 2

where now

( )
bw

= - ¶ =
G

G +x
c

c
c1

, , 81M
M

t M
2

2
2

0
2

and the other notations D( )Dw v v, andM gM M are obvious and self-explanatory, in analogy to the case of
polarized vacuumwithout externalfield, which has been just considered. Equations (79) and (80) possess a
simple solution in the formof a planewave B[ ]( )= x

 
-WB ei K t with constant complex amplitudesB± . The

two frequencies W are solutions to the dispersion equations

D ( ) ( )
bw

G
G +

 W - D = Sw   v K , 82M M

2

0
2

where

( )=
W

-


c
K , 83

M

2

2
2

∣ ∣ ( ) ∣ ∣ ( )k kS = -  +  



   c B c B24 2 4 6 . 84k

k

k
k k k k0

2 2 2
0

2

0

2
0 0

2 2

Since in the general nontrivial case bothS cannot be equal to zero, wewould obtain ( ) ( )W - ¹ -W- +K K , that
is ¹- +B B*. This implies that the twowavemodesB are independent and they propagate at different
frequencies. It is well-known that birefringencemakes use of the refractive index of themedium, defined as

= W n c KM . BirefringenceΔ n is defined as the difference between the refractive indices characterizing the
two polarizations, or

⎛
⎝⎜

⎞
⎠⎟ ( )D =

W
-

W+ -
n c K

1 1
. 85M

The effect described above by taking into account that polarized vacuum in externalmagnetic field can be
considered as a nonlinearmedium is usually called nonlinear birefringence of vacuum.

6. Concluding remarks

Starting from the basics, we have studied the implications of quantum corrections to classical electrodynamics
and the propagation of electromagnetic waves and pulses. Used essentially is the property of the polarized
vacuum, that the nonlinear wave equation for the electromagnetic vector potential possesses an exact solution in
the formof a planewave in both the case of free from external fields vacuum, aswell as when a constantmagnetic
field is applied.

The initial nonlinear wave equation is solved perturbatively about the known exact planewave solution.
Following the elegant approach of the proto RGoperator, we derive a nonlinear wave equationwith a nonzero
convective part (containing first-order spatial derivative with respect to the dependent variable) for the
(relatively) slowly varying amplitude of the first-order perturbation. This equation governs the propagation of
electromagnetic waveswith a reduced speed of light. The reduction is roughly proportional to the intensity of the
pumping planewave.

An external backgroundmagnetic field introduces spatial anisotropy coercing electromagnetic pulses to
travel in the direction of the applied field. In analogy to the case of polarized vacuumwithout external field, the
initial wave equation for the electromagnetic vector potential has been analysed in detail by following the same
guidelines. In order to avoid insignificant complications in the specific calculations, we consider here the case of
a circularly polarized initial pumping planewave. The analysis of the general case of an elliptically polarized exact
solution is also possible, but with it, the technical details conceal the physical nature of the problem. Repeating
the proto RGprocedure in a similarmanner as has been done in the case of a quantumvacuumwithout
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externally appliedmagnetic field, we obtain a systemof coupled nonlinear wave equations for the two slowly
varying amplitudes of thefirst-order perturbation solution, which describe the two polarization states.

The stationary (traveling)wave solutions of the proposed nonlinear wave equationwith nonzero convective
part for the case of a polarized vacuumwithout externalfields have been obtained. The slowly varyingwave
amplitude behaviour is shown to be similar to that of a cnoidal wave, known to describe surface gravity waves in
shallowwater. It has been demonstrated that the twowavemodes describing the two polarization states are
independent, and they propagate at different wave frequencies. This effect is usually called nonlinear
birefringence.

It is worthwhile to be pointed out that our considerations are based on the leading effective interaction of
classical electromagnetic fields, which give rise to nonlinear terms in the polarizationP and themagnetizationM
vectors proportional to the cube ofE andB (involving thewell-known electromagnetic invariants). Specifically,
in one-loopHeisenberg-Euler theory this effective interaction scales as afs

2 in terms of thefine structure

constant. Sub leading corrections arising fromhigher-loop contributions and scaling as afs
3 give rise to quintic

(in E andB) terms in the corresponding expressions forP andM (see e.g. the recent [43]). Limiting oneself to the
effective interaction of second order in the fine structure constant, terms of the order afs

3 are obviously not
accounted for from the outset. Correspondingly, all the results derivedwithin this truncation can be reliably and
consistently accounted for in the fundamental physics only up to terms of this order inαfs.
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Appendix. Perturbative Analysis of theWaveAnalogue ofMathieu equation (22)

Weconsider the rapidly oscillating termon the right-hand-side of equation (22) as perturbation and rewrite the
latter accordingly

[ ] ( )( ) ( ) a= - +j d j d+ - +A AL De e , A1i i
1 1

2 2
1
2

10 0

where, once again, ò is a formal small parameter introduced tomeasure successive orders ofmagnitude in the
perturbation expansion. Similar to equation (21), we expandA1 according to the expression

( ) ( ) ( )( )å=
=

¥

A x z t A x z t, ; , ; . A2
n

n n
1

0
1

Obviously, the zero-order term ( )A1
0 is just the expression on the right-hand-side of equation (25).

Thefirst-order perturbation equation acquires the form

A A[ ] ( )( ) ( ) ( ) = - + +j j d j j d+ + - -
A c cL

2
e e . . . A3k i i

1 1
1 2 2 2 21 0 1 0

Its solution can bewritten as

A [ ] ( )( ) ( ) ( )= - - +j j d j j d+ + - -


A c c

8
e e . .. A4k

k

i i
1

1

0

2 2 2 21 0 1 0

Finally, the second-order perturbation equation can bewritten as

A A[ ][ ] ( )( ) ( ) ( ) ( ) ( ) = + - +j d j d j j d j j d+ - + + + - -


A c cL

16
e e e e . . . A5k

k

i i i i
1 1

2
2

0

2 2 2 2 2 20 0 1 0 1 0

It is straightforward to verify that resonant terms aremissing on the right-hand-side of the above equation. Its
solution contains only regular terms proportional to ( )j j d ei 4 41 0 and their complex conjugated counterpart.
This implies that the dispersion relation (27) remains unaltered by the fast oscillating term in question, which
completes the proof concerning the justification of the averaging procedure pursued in section 3.1.
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