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Abstract

The streaming instability is a popular candidate for planetesimal formation by concentrating dust particles to
trigger gravitational collapse. However, its robustness against the physical conditions expected in protoplanetary
disks is unclear. In particular, particle stirring by turbulence may impede the instability. To quantify this effect, we
develop the linear theory of the streaming instability with external turbulence modeled by gas viscosity and particle
diffusion. We find the streaming instability is sensitive to turbulence, with growth rates becoming negligible for
alpha viscosity parameters a  St1.5, where St is the particle Stokes number. We explore the effect of nonlinear
drag laws, which may be applicable to porous dust particles, and find growth rates are modestly reduced. We also
find that gas compressibility increases growth rates by reducing the effect of diffusion. We then apply the linear
theory to global models of viscous protoplanetary disks. For minimum-mass solar nebula disk models, we find the
streaming instability only grows within disk lifetimes beyond tens of astronomical units, even for centimeter-sized
particles and weak turbulence (a ~ -10 4). Our results suggest it is rather difficult to trigger the streaming
instability in nonlaminar protoplanetary disks, especially for small particles.

Unified Astronomy Thesaurus concepts: Planetesimals (1258); Exoplanet formation (492); Hydrodynamics (1963);
Planet formation (1241)

1. Introduction

The size and diversity of the exoplanet population suggest
that planet formation is an efficient process. Yet, the formation
of planetesimals—the building blocks of planets—faces several
challenges (Johansen et al. 2014). Dust in protoplanetary disks
(PPDs) begins as micron-sized particles, which can grow to
millimeter to centimeter sizes via sticking, but growth beyond
this size is impeded by bouncing or fragmentation (Blum 2018).
Dust may also be lost due to radial drift as a result of gas drag
(Whipple 1972).

It is thought that the collective self-gravity of a particle
swarm may bypass these barriers by direct gravitational
collapse into planetesimals. However, particles must first reach
high volume densities relative to the gas for direct collapse (Shi
& Chiang 2013). This condition may be attained through dust
settling, radial drift, particle traps, or other dust–gas instabilities
(Chiang & Youdin 2010; Johansen et al. 2014), such as the
“streaming instability” (SI; Youdin & Goodman 2005,
hereafter YG05).

The SI is a generic phenomenon in rotating disks of dust and
gas that can lead to dust clumping (Johansen & Youdin 2007;
Youdin & Johansen 2007; Bai & Stone 2010a, 2010b; Kowalik
et al. 2013; Yang & Johansen 2014). Although its physical
interpretation is subtle (Jacquet et al. 2011; Lin & Youdin 2017;
Squire & Hopkins 2018), direct numerical simulations show
that the SI is effective in triggering the direct gravitational
collapse of dust clumps (Johansen et al. 2009; Carrera et al.
2015; Simon et al. 2016, 2017; Schäfer et al. 2017; Nesvorný
et al. 2019), provided that dust particles have reached sufficient
size and the local dust-to-gas mass density ratio is of order
unity or larger.

Consequently, the SI is now the de facto mechanism for
planetesimal formation and is frequently applied to assess planet
formation in complex disk models (Draż̧kowska & Dullemond
2014; Armitage et al. 2016; Drążkowska et al. 2016;

Carrera et al. 2017; Ercolano et al. 2017). However, the
numerical experiments that yield the criteria for the SI are often
idealized, which may not fully account for the physical
conditions expected in real PPDs. Important effects are gas
turbulence and particle diffusion (Youdin & Johansen 2007).
PPDs can host a wide range of hydrodynamic and

magnetohydrodynamic (MHD) instabilities that drive turbu-
lence. The magnetorotational instability is a powerful mech-
anism for generating turbulence (Balbus & Hawley 1991),
although in PPDs nonideal MHD effects weaken it (e.g., Lesur
et al. 2014; Bai 2015; Simon et al. 2018). This gives room for
hydrodynamic instabilities to develop, which include the
“zombie vortex instability” (Marcus et al. 2015), “convective
overstability” (Klahr & Hubbard 2014), and “vertical shear
instability” (Nelson et al. 2013). For a recent review of these
hydrodynamic instabilities, see Fromang & Lesur (2019), Klahr
et al. (2018), Lyra & Umurhan (2019), and references therein.
The effect of the resulting turbulence on the SI has not been

explored fully. Selected shearing box simulations have
included the magnetorotational instability (e.g., Balsara et al.
2009; Johansen et al. 2011; Yang et al. 2018) or driven
turbulence (Gole et al. 2020). However, these computationally
intensive calculations prohibit a parameter study to evaluate the
efficiency of the SI in global PPDs. A first step toward this goal
is to apply linear theory to PPD models. This requires modeling
the linear SI in turbulent disks. Some effort in this direction has
been taken by Auffinger & Laibe (2018), who included a
viscous stress tensor to mimic the effects of gas turbulence.
More recently, Umurhan et al. (2019) extended the original

analysis of the SI from YG05 to include both gas viscosity and
a corresponding particle diffusion. They find the SI is then
limited to a small range of particle sizes at the turbulence
strengths expected in PPDs.
Our ultimate goal in this work is to obtain growth timescales

and characteristic length scales of the SI in realistic PPDs. This
will help us understand the relevance of the SI as a function of
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radius in PPDs. We take this opportunity to expand upon
Umurhan et al. (2019) by considering compressible gas and
exploring nonlinear drag laws. We also present complementary
calculations using a simplified “one-fluid” model of dusty gas
based on Lin & Youdin (2017) to verify some results.

This paper is organized as follows. In Section 2 we describe
the basic, two-fluid framework for studying the linear SI in
turbulent disks, including models for gas viscosity and particle
diffusion. We list the linearized equations in Section 3 and first
present results from controlled numerical experiments in
Section 4. In Section 5 we apply linear theory to assess the
efficiency of the SI in physical PPD models; finding the SI is
limited to large radii at tens of astronomical units. We
summarize our results in Section 6, including model caveats
and future directions. In the Appendix we present a simplified,
one-fluid model of dusty gas to explain some of the results
found in the full two-fluid treatment.

2. Basic Equations and Parameters

We consider a protoplanetary disk composed of gas and dust
in orbit about a central star of mass M*. We use r VP, ,g( ) to
denote the density, pressure, and velocity of the gas.

We consider a single species of dust treated as a pressureless
fluid with density and velocity r W,d( ) (Jacquet et al. 2011).
The two fluids interact via drag parameterized by a single
stopping time ts, which is prescribed below. A single-species
approximation simplifies the analysis considerably. However, it
should be noted that this likely overestimates the efficiency of
the SI, as suggested by recent generalizations of the SI to
multispecies dust in inviscid disks (Krapp et al. 2019).

We neglect disk self-gravity and magnetic fields. For
simplicity, we also neglect the vertical component of stellar
gravity and consider unstratified disks. However, in numerical
calculations we will account for stratification when choosing
physical parameter values.

In an inertial frame with cylindrical coordinates fR z, ,( )
centered on the star, this two-fluid disk is governed by the
following equations:
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where D is a constant diffusion coefficient (Morfill &
Voelk 1984), W =R GM RK

3
*( ) is the Keplerian frequency,

G is the gravitational constant, r r= d g is the local dust-to-
gas ratio, and ts is the particle stopping time. We consider
isothermal gas so that r=P cs

2
g, where = Wc Hs g K is a

prescribed sound speed and Hg is a nominal gas disk thickness.
We assume dust particles are subject to diffusion due to

turbulent stirring from the gas. In Equation (3) we thus include

a viscous stress tensor T to model gas turbulence:

r n=  +  - T V V I V
2

3
, 5g ( ) · ( )†⎡

⎣⎢
⎤
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where ν is the kinematic viscosity and I is the identity tensor.
The last term in the momentum equations models dust–gas
drag and is described below.

2.1. Local Description

We consider the local stability of the dusty disk. To do so,
we focus on a small patch of the disk and adopt the shearing
box framework (Goldreich & Lynden-Bell 1965). The shearing
box is centered at a point fR , , 00 0( ) that rotates about the star
with angular frequency W º WRK 0 0( ) , so f = W t0 0 . Cartesian
coordinates (x y z, , ) in the shearing box correspond to the

fR z, ,( ) directions in the global disk. Global curvature terms
are neglected, as are radial gradients in densities and disk
temperature.
In this frame, Keplerian rotation appears as a linear shear

flow, - W yq x0 ˆ with =q 3 2. We also define w v, as the
velocity deviations from the background Keplerian shear in the
rotating, local frame. That is,

= - - Ww W yR qx , 60( ) ˆ ( )

and similarly for v. For clarity we drop the subscript “0” below.
In terms of velocity fluctuations, the two-fluid shearing box

equations read as
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The SI only operates in the presence of a global pressure
gradient. To include this effect in a local model, we add a
constant forcing in the gas momentum Equation (10), hW xR2 2 ˆ,
where

h
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is a dimensionless measure of the global pressure gradient
(Youdin & Goodman 2005). This term causes a relative drift
between dust and gas (see Section 2.5) and is essential for the
streaming instability.
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The basic Equations (2)–(10) are the same as that in Youdin
& Johansen (2007) with the addition of gas viscosity and
particle diffusion.

2.2. Generalized Stopping Times

The magnitude of dust–gas drag is described by the stopping
time ts, which is the characteristic decay timescale for a dust
particle’s velocity relative to the gas,D º -v wv ∣ ∣. A smaller
ts indicates stronger coupling between gas and dust.

Physically, ts depends on the particle size ap, its internal
density r•, its relative drift Dv, the gas density, and the sound
speed (Whipple 1972; Weidenschilling 1977). The specific
form of t r rDa v c, , , ,p ss • g( ) depends on the particle size
relative to the mean free path of gas molecules, lmfp. Particles
with la 9 4p mfp are in the Epstein regime with

t
r
r

=
a

c
. 12

p

s
s
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g
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We remark that most studies of the SI assume an Epstein
drag law.

Particles with la 9 4p mfp enter the Stokes regime. In this
case, ts also depends on the Reynolds number defined by

nº Da vRe 2 m, where n lº c1 2m s mfp( ) is the gas molecular
viscosity:
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(Birnstiel et al. 2010). Note that l rµ 1mfp g.
One goal of this work is to examine the effect of nonlinear

drag laws, that is, when ts itself depends on the relative drift.
As such, instead of adopting different functional forms of ts
that depend on the physical conditions, we use the following
generalized form of ts:

t t
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where a b, are constant parameters, and subscript “eqm”

denotes equilibrium values.
Equation (14) encapsulates the different drag laws described

in Equations (12)–(13). For example, the Epstein regime
corresponds to = =a b1, 0, and the fully nonlinear Stokes
law for >Re 800 corresponds to = =a b 1. We find results are
insensitive to the index a because the SI does not require
compressible gas (Youdin & Goodman 2005). We thus fix
a=1 for all calculations presented below.

For convenience, we also define the Stokes number St as a
dimensionless measure of the (equilibrium) stopping time:

tº WSt . 15s,eqm ( )

For the most commonly considered case of Epstein drag, St is
equivalent to the particle size for fixed internal densities,
because cs is constant and the SI depends weakly on rg.

2.3. Gas Turbulence

We adapt the standard alpha prescription for modeling gas
turbulence (Shakura & Sunyaev 1973):
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where α is the dimensionless viscosity and ξ is a free
parameter. In practice, we take x = -1 so that the dynamic
viscosity r ng is constant to avoid viscous overstabilities (Latter
& Ogilvie 2006).

2.4. Dust Diffusion

We parameterize particle diffusion via the dimensionless
coefficient δ such that

d=D c H , 17s g ( )

and δ is related to the gas viscosity by
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+
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(Youdin & Lithwick 2007; Youdin 2011). For small particles
with St 1 , we have d a .

2.5. Two-fluid Equilibrium

The two-fluid shearing box Equations (7)–(10) admit an
axisymmetric, steady state with constant rd and rg and no
vertical velocities, = =w v 0z z . The horizontal velocity
fluctuations relative to the Keplerian flow are
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For typical disk models with h > 0 (a negative pressure
gradient), particles drift inward while gas is pushed out by the
mutual drag force.

2.6. Connection with Stratified Disks

In an unstratified disk model, the equilibrium dust-to-gas
ratio ò and dust diffusion coefficient D, which is determined by
the gas viscosity (Equations (17)–(18)), can be set indepen-
dently. Indeed, we take this approach in our initial calculations.
Physically, however, an unstratified model represents the

disk midplane, and vertical dust settling is balanced by
turbulent diffusion (e.g., Fromang & Papaloizou 2006; Stoll
& Kley 2016; Flock et al. 2017; Yang et al. 2018; Lin 2019). In
this case, ò and D are no longer independent. The characteristic

3
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dust layer thickness Hd can be modeled by

d
d

=
+

H H
St

, 24d g ( )

(Dubrulle et al. 1995; Lin 2019). The midplane dust-to-gas
ratio ò is given by
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(Johansen et al. 2014), where the local metallicity Z is
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where Sd,g are the surface densities in dust and gas,
respectively. In our self-consistent calculations, we determine
ò by specifying the metallicity Z, Stokes number St, and gas
viscosity α (and hence δ).

2.7. One-fluid Models

In addition to the full, two-fluid treatment of dusty gas
described above, we also supplement some of our calculations
with the “one-fluid” model of dusty gas first described by Laibe
& Price (2014) and Price & Laibe (2015) and further developed
by Lin & Youdin (2017). In the Appendix we extend the one-
fluid model to include dust diffusion and nonlinear drag laws
and compare it with the full two-fluid treatment.

3. Linear Problem

3.1. Perturbation Equations

We perturb the above two-fluid system with axisymmetric
Eulerian perturbations such that

r r dr s + + +k x k z texp i 27x zg g g [ ( ) ] ( )

and similarly for other variables, where kx z, are radial and
vertical wavenumbers and taken to be positive without loss
of generality; σ is the complex frequency with growth rate
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equations for the dust fluid read as
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In the above equations, the linearized viscous forces are
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(Lin & Kratter 2016), and the linearized stopping time is
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Equations (28)–(35) constitute an eigenvalue problem

s=Mq q, 40( )

where dr d dr d=q w v, , ,d d
T( ) is the eigenvector and M is the

matrix representation of the right-hand side of Equations (28)–
(35). We solve this eigenvalue problem with standard matrix
routines provided by the LAPACK package.3

3.2. Dimensionless Parameters

We solve the stability problem numerically to find the
dimensionless SI growth rate º WS s as a function of the
following parameters:

1. St: the Stokes number or particle size.
2. r r= d g: the equilibrium dust-to-gas ratio. This is

either set directly or indirectly via the total metallicity Z
(see Section 2.6).

3. α: the gas viscosity parameter, which also determines the
particle diffusion strength δ.

3 http://www.netlib.org/lapack/

4

The Astrophysical Journal, 891:132 (17pp), 2020 March 10 Chen & Lin

http://www.netlib.org/lapack/


4. b: the power-law index that determines the degree of
nonlinearity in the drag law.

5. hºK k Rx z x z, , : the dimensionless perturbation wavenumbers.

We also normalize velocities by h WR . Together with the above
normalizations, the linearized equations may be rendered
dimensionless, in which case η appears as h hW ºR cs ˆ and
becomes a measure for gas compressibility (Youdin &
Johansen 2007). We set h = 0.05ˆ unless otherwise stated.

4. Results

4.1. Epstein Drag in Inviscid Disks

We begin with a fiducial setup assuming Epstein drag
=a b, 1, 0( ) ( ) without viscosity or diffusion (a d= = 0).

This is the standard case considered in previous analytic SI
calculations (Youdin & Goodman 2005; Kowalik et al. 2013).
Following Youdin & Goodman, we fix Kz (=30 here) and
maximize growth rates over Kx. We find qualitatively similar
behavior for other fixed values of Kz. For the cases examined
below, we find the optimum Kx decreases from -O 102 3( ) at

= -St 10 4 to -O 100 1( ) at =St 1.
In Figure 1 we plot growth rates as a function of St for two

dust-to-gas ratios: a dust-poor disk with = 0.3 and a dust-rich
disk with = 3. We limit the Stokes number <St 1 because
larger particles violate the fluid approximation (Jacquet et al.
2011). To check our results, we also plot corresponding growth
rates obtained from the one-fluid framework described in the
Appendix. Our two-fluid results are consistent with earlier
calculations (Youdin & Goodman 2005; Youdin & Johansen
2007).

We find the one-fluid approximation is accurate for St 0.1
when > 1. However, for < 1, the one-fluid model only
reproduces the full two-fluid results for -St 10 3. Notice also
that the one-fluid model tends to overestimate (underestimate)
SI growth rates in dust-rich (dust-poor) disks.

4.2. Effect of Turbulence

We now examine turbulent disks by including a gas viscosity
a ¹ 0, which determines the particle diffusion coefficient δ
from Equation (18). We continue with the Epstein drag law
with = =a b1, 0. We either set the dust-to-gas ratio directly
as a free parameter or physically via the total metallicity
= S SZ d g. We discuss these approaches separately.
All results in this section are obtained from the full two-fluid

equations. In Appendix A.4 we develop a simplified analytic
model from the one-fluid approximation, which only includes
dust diffusion.

4.2.1. Fixed Local Dust-to-gas Ratios

For fixed r rd g, turbulence only takes effect through the
perturbation equations (see fixed metallicity considered later).
Figure 2 shows growth rates as a function of St for

a = - - -0, 10 , 10 , 109 8 7 for fixed Kz=30 and maximized
over Kx. Notice that even such small values of α significantly
stabilize the SI. For fixed Kz we find there exists a minimum
Stokes number, Stmin, for the SI to exist. Note that Stmin
generally increases with larger α but decreases with increasing
r rd g. This implies that in turbulent disks, larger particles or
higher dust-to-gas ratios are required for the SI. Equivalently
said, small particles are more sensitive to turbulence than larger
particles. We find the optimum radial wavenumber decreases
from ~K 10x

3 for = -St 10 4 to ~K 1x for =St 1, but is
insensitive to α. As shown below, we speculate this is due to
viscosity having a larger impact on the SI’s vertical structure
(which is fixed here) than the radial wavenumber.
Next, we optimize growth rates over Kz as well. Figure 3

shows the optimum growth rates and wavenumbers for both a
dust-poor and dust-rich disk. For a given St, growth rates fall
below W-10 6 when the turbulence exceeds some critical value
amax, which increases with St. However, unlike for fixed-Kz

calculations, here both dust-rich and dust-poor disks have
similar values of amax.
The middle and right panels of Figure 3 show the

corresponding optimum wavenumbers. As expected, increasing

Figure 1. Normalized streaming instability growth rates as a function of Stokes
number St in the full two-fluid (red) and simplified one-fluid (blue) models
using the Epstein drag law (t rµ 1s g) without viscosity or diffusion
(n = =D 0) The dust-to-gas ratio is = 0.3 (upper) and = 3 (lower). We
fix Kz=30 and plot the maximum growth rate over Kx. The one-fluid results
are obtained from solving Equations (67)–(71).

Figure 2. Streaming instability growth rates as a function of St in turbulent
disks with particle diffusion. We fix Kz=30 and optimize growth rates over
Kx. Colors of lines denote different values of the gas viscosity parameter α.
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the viscosity generally increases the SI length scales. Notice
also for fixed St and increasing viscosity that K Kz x ,
implying that turbulence smears out the SI more easily in the
vertical direction.

4.2.2. Fixed Local Metallicities

We now consider a more physical setup by fixing the total
metallicity º S SZ d g and setting the dust-to-gas ratio

r rº d g in accordance with dust settling (Equation (25)). In
this case, r rd g also depends on the Stokes number St and
particle diffusion coefficient δ, which itself is determined by the
gas viscosity α (Equation (18)). That is, the basic state now
also varies with turbulence strength.
As a fiducial case, we set Z=0.01 and plot growth rates and

optimum wavenumbers Kx z, in Figure 4, along with ò and
Hd/Hg. The dust-to-gas ratio ranges from ∼10−2 to 20, while

Figure 3. Streaming instability growth rates (left) and optimum radial and vertical wavenumbers (middle, right) as a function of gas viscosity with a corresponding
dust diffusion coefficient and Stokes number St for fixed dust-to-gas ratios = 0.3 (top) and = 3 (bottom). We truncate the plots for < W-s 10 6 .

Figure 4. Growth rates (upper left) with fixed metallicity Z=0.01 as a function of Stokes number and gas viscosity (with a corresponding particle diffusion
coefficient). The red line is an empirical fit to the maximum allowed α, beyond which growth rates become negligible (< W-10 6 ). The black dotted–dashed line
corresponds to Equation (41). The dust-to-gas ratio (upper middle) and dust scale height normalized by the gas scale height (upper right) are also shown. We also mark
some characteristic contours with black lines in these two panels, namely = 1 and =H H 0.1d g . The corresponding optimum wavenumbers, Kx, Kz, and their ratio
K Kx z, are shown in the lower left, middle, and right panels, respectively.
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H Hd g ranges from 10−3 to unity. The gap in the upper left of
the figure corresponds to ~ 1 where the SI is quenched
(Youdin & Goodman 2005); see also Appendix A.5.

As before, larger St and smaller α give higher growth rates.
The dust-rich SI (left of the gap) involves smaller wavelengths
than the dust-poor SI (right of the gap) because viscosity is
larger in the latter case. Interestingly, we find <K Kx z for the
dust-rich SI, while >K Kx z for the dust-poor SI. This implies
with high viscosity that the SI becomes vertically unstructured.

SI growth rates are only dynamical (~W) for > 1 (Youdin
& Goodman 2005). From Equation (25), this requires

d d+ >Z St 1( ) . For small St we can approximate d a .
Thus the dynamical SI is limited to

a
-

 Z

Z
Z

1
St St, 41

2

2
2 ( )

where the last equality assumes Z 1 . It should be noted that
here SI is quenched because the background dust-to-gas ratio
approaches unity as viscosity is increased from zero, as
opposed to the perturbations being stabilized by viscosity.

At fixed St, increasing α eventually pushes the system into
the dust-poor regime of the SI ( < 1), which is slower than
dynamical. Physically this is due to dust becoming vertically
mixed by gas turbulence. As viscosity increases further, the SI
is reduced to negligible growth rates.

Figure 5 shows the growth rates as a function of St and α for
other metallicities =Z 0.03, 0.05, 0.07, and 0.1. The red line
in each panel is a fit to the maximum α as a function of St.
These contour plots are essentially translations of that for
Z=0.01 (to the upper right). As expected, increasing dust
loading expands the region of the dust-rich SI. Its boundary
becomes less well approximated by Equation (41), but it is
clear that SI can persist in more turbulent disks if the overall
dust content is increased. Notice, however, that the dust-rich SI
in fact slows down with increasing Z. This is because the SI is
also quenched in the limit of gas-free disks (Youdin &
Goodman 2005).
We estimate from Figures 4–5 a maximum viscosity

a ~ Stmax
1.5 above which growth rates become negligible

(< W-10 6 ). This relation varies weakly with our choice of
minimum growth rates or metallicity. Thus, the SI is rapidly
quenched by viscosity for small particles.

4.3. Nonlinear Drag Laws

Here we consider the effect of different drag laws on the SI.
Recall from Section 2.2 that our stopping times are
parameterized as t rµ -- -w va b

s g ∣ ∣ . We find the SI is
insensitive to a. Thus, we fix a=1 and focus on the effect
of b, that is, the degree of nonlinearity. We consider drag laws
with b=0.4 and b=1.

Figure 5. Growth rates as a function of St and α for different metallicities Z. The black dotted–dashed lines correspond to Equation (41), while red lines are empirical
fits to the maximum allowed α for growth rates to remain > W-10 6 .
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4.3.1. Inviscid Disks

We first return to inviscid disks (a d= = 0) to isolate the
effect of the drag law. Figure 6 shows growth rates as a
function of Stokes number with = 0.3 and = 3 for Kz=30
and maximized over Kx. We find the optimum Kx does not vary
significantly with b.

Increasing the degree of nonlinearity reduces SI growth
rates. This effect is small in dust-poor disks, but becomes
noticeable in dust-rich disks with > 1, although still modest:
growth rates are only halved upon increasing b from zero to
unity. This is explained in Appendix A.5 using the one-fluid
model of dusty gas.

4.3.2. Viscous Disks

We now consider viscous disks and begin with fixing r rd g

in Figure 7. In the dust-poor disk with r r= 0.3d g, increasing b

has a negligible effect for St 0.1 and -St 10 2, while for
intermediate St the SI can persist to slightly higher viscosity
with increasing b. However, for r r= 3d g, we find increasing b
has noticeable effects: a larger b makes it easier for viscosity to
kill the SI and shrinks the region of instability.

We next consider fixing Z. In Figure 8, we show growth
rates with Z=0.01 as a function of Stokes number and gas
viscosity for different b. Notice the growth rate “gap” shifts
from = 1 for b=0 (see Figure 4) to = 1.4 for b=0.4 and
= 2 for b=1. This is in fact consistent with the one-fluid

model presented in Appendix A.5, for which SI growth rates
vanish when = + b1 . This explains why the region of
“red” SI modes, with dynamical growth rates, shrinks with
increasing nonlinearity: at fixed St and increasing α from zero,
ò drops to + b1 sooner with larger b. We find the maximum
allowed viscosity shifts from a ~ Stmax

1.5 (for b= 0) to a ~max
-St1.6 1.7 as b increases, so amax is not sensitive to b. The overall

pattern of growth rates does not change significantly as b
changes, so nonlinear drag laws have a limited effect.

4.4. Effect of Gas Compressibility

We briefly examine the effect of gas compressibility by
varying h hº R Hgˆ . For fixed η, that is, the global radial
pressure gradient, h µ c1 sˆ . Then larger ĥ corresponds to
smaller cs, that is, higher compressibility, and vice versa. Thus
ĥ is a measure of gas compressibility (see Youdin &
Johansen 2007 and Appendix A.4).
In inviscid disks, the linear SI is unaffected by gas

compressibility (Youdin & Goodman 2005). However, for
viscous disks, we find SI growth rates increase with gas
compressibility. This is shown in Figure 9 where growth rates
at fixed metallicities are computed for h = 0.01ˆ and 0.1 (recall
our nominal value is 0.05). A comparison between the upper
and lower panels indicates that larger compressibility leads to
higher growth rates for the same St and α. For instance, in the
case with Z=0.01, a = -10 5, and = -St 10 3, the growth rate
is less than W-10 6 with h = -10 2ˆ , while the growth rate is
about W-10 4 with h = -10 1ˆ . This is because diffusion appears
as the quantity d hº 2ˆ in the dimensionless equations (see
Appendix A.4). Thus at fixed δ, increasing ĥ diminishes the
stabilization effect of diffusion.
Similar to the cases in h = 0.05ˆ , the differences between the

left and right panels of Figure 9 suggest that a larger metallicity
expands the dust-rich SI (regions above the black dashed lines,
which represent unit ò). Although increasing gas compressi-
bility leads to faster growth, we find the maximum allowed α
still approximately scales as -St1.4 1.5 (red lines).
It is important to remember our results apply only to the

linear phase of the instability. In the nonlinear regime, Bai &
Stone (2010b) in fact find that increasing η results in weaker
particle clumping. This suggests that in reality there is an
optimum η that is a balance between linear growth and
nonlinear clumping that maximizes planetesimal formation.

5. Application to PPDs

We now apply the above linear theory to global models of
PPDs. We first extract the dimensionless input parameters from
physical disk models. To do so, we couple classic viscous
accretion disk theory (e.g., Pringle 1981) with typical disk
profiles used in the literature. We then compute growth
timescales and optimum length scales at each radius in order to
assess the role of SI in realistic PPDs. Unless otherwise stated,
we assume a central star of mass M1  with a Keplerian rotation
W µ -R 3 2 profile.

We consider the minimum-mass solar nebulae (MMSN) as
described in Chiang & Youdin (2010). These disk models have
gas surface density and midplane temperature profiles of

S =
-

-F
R

2200
au

g cm , 42g

3 2
2 ( )⎜ ⎟⎛

⎝
⎞
⎠

=
-

T
R

120
au

K, 43
3 7

( )⎜ ⎟⎛
⎝

⎞
⎠

where F is a scale factor. Assuming vertical hydrostatic
equilibrium and a vertically isothermal equation of state, the
midplane gas density and pressure scale height profiles are

r = ´ -
-

-F
R

2.7 10
au

g cm , 44g
9

39 14
3 ( )⎜ ⎟⎛

⎝
⎞
⎠

Figure 6. Streaming instability growth rates in inviscid disks as a function of
Stokes number for different drag laws with b=0 (red, linear drag), 0.4 (blue,
nonlinear drag), and 1 (green, quadratic drag) for = 0.3 (top) and = 3
(bottom).

8

The Astrophysical Journal, 891:132 (17pp), 2020 March 10 Chen & Lin



=H R
R

0.022
au

. 45g

2 7

( )⎜ ⎟⎛
⎝

⎞
⎠

We assume a constant metallicity, so the dust surface density is
given by S = SR Z Rd g( ) ( ).

Using the above model, we can compute global profiles of
RSt( ), h Rˆ ( ), ò(R), and n R( ) as required for linear theory at each

radius. We consider a single dust population of a given size and
internal density in the Epstein regime. This gives

r
= ´ - -

-
F

R a
St 1.1 10

AU g cm cm
. 46

p3 1
3 2

•
3

( )⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

Similarly, the dimensionless pressure gradient h hº WR csˆ is

h =
R

0.035
AU

. 47
2 7

ˆ ( )⎜ ⎟⎛
⎝

⎞
⎠

Thus ĥ is almost a constant.
We also compare the growth timescale with the radial drift

timescale of dust particles. The drift timescale is calculated
from the radial drift velocity in Equation (19) as

= + ´ +

-

t

F

R
F

R

yr

0.73

AU
5.8 10 1

AU
, 48

drift
17 7

5 2

4 7

( )

( )

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

where the midplane dust-to-gas ratio ò is calculated according
to Equations (24)–(25), which requires a prescription for the
disk viscosity (see below). Notice tdrift diverges at both small
and large radii, as for fixed particle sizes these correspond to

St 0 and  ¥St , respectively, which have the slowest drift
speeds.
We consider two models of the disk viscosity, n a= c Hs g,

described below, which are then used to compute Hd/Hg and
a R Z; , St,( ) from Equations (24) and (25), respectively.

5.1. Accreting Disks

In this case, we assume turbulence leads to (gas) accretion
onto the central star, and the viscosity parameter is a measure
of turbulent angular momentum transport. Far from the inner
disk boundary, we have

n
p

S
M

3
, 49g ( )



where the (gas) mass accretion M is a constant input parameter.
For the above gas disk profiles, we obtain

a = ´ - -
- -

R F
R M

M
8.8 10

AU 10 yr
. 503 1

3 7

8 1
( ) ( )⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝⎜

⎞
⎠⎟





Thus, higher accretion rates require larger α, while higher disk
masses imply smaller α. Note that the viscous accretion flow

Figure 7. Streaming instability growth rates as a function of Stokes number and viscosity for different degrees of nonlinearity in the dust–gas drag law, as
parameterized by b. The top and bottom panels show results for = 0.3 and = 3, respectively.
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has a characteristic radial velocity n~ R, but this is neglected
in our local linear analysis.

In Figure 10 we present results for a standard mass accretion
rate = - -M M10 yr8 1  , disk mass F=1, and centimeter-sized
particles with internal density -1 g cm 3. We consider a solar-
metallicity disk with Z=0.01 (top) and a dust-enriched disk
with Z=0.1 (bottom). We plot growth and dust radial drift
timescales (left); Stokes number, midplane dust-to-gas ratios,
and α viscosity values (middle); and optimum wavelengths
(right).

For both metallicities, growth within the disk lifetime
(10 yr7 ) is only possible for R 20–30 au. For Z=0.01,
growth timescales 1Myr at all radii. Increasing Z to 0.1
allows the SI to grow in 1 Myr at a few tens of
astronomical units. However, for Z=0.1 we find < 1 for
R 200 au. This is due to the turbulent stirring by gas, with

rather large viscosity values of a ~ -O 10 2( ) compared to
recent theoretical models (e.g., Bai 2015; Simon et al. 2018)
and measurements of disk turbulence (Flaherty et al.
2017, 2018). It is doubtful that such dust-poor conditions
can lead to planetesimal formation in the nonlinear regime of
the SI (Johansen et al. 2009). Furthermore, radial drift
timescales in these regions are shorter than the growth time,
implying dust may be lost to the star before significant
growth.

On the other hand, we find t tSI drift for R 400 au for
Z=0.01 and for R 100 au for Z=0.1, suggesting that
dust in the outer disk can undergo efficient SI before falling
into the host star. There is, however, some uncertainty
because in these regions St 1, which violates the fluid
treatment of dust.

We find characteristic SI length scales are of O H10 g( ) in
both cases. This is problematic in two respects. At~100 au, the
gas disk aspect ratio is ~H R 0.08g , implying a radial length
scale comparable to the disk radius, l ~ ~H R8x g . At this
scale, the global disk geometry may become important, but this
is neglected in our local stability analyses. Moreover, we find
that the vertical length scales are much larger than the dust
scale height, l H Hz g d  . The existence of such vertically
extended modes may then depend on physical conditions at the
surface of the dust layers. This issue is beyond the scope of
this work.

5.2. Nonaccreting Disks

These disk models may be considered as representing “dead
zones” in PPDs, where weak turbulence results from hydro-
dynamic instabilities but does not contribute to mass accretion
(Bai 2016). Thus we require n ¹ 0, but without a corresp-
onding radial gas flow (vR=0). This is in fact consistent with
our local models. Since we have chosen MMSN surface density
profiles, we deduce the appropriate viscosity profile as follows.
It turns out these disks have almost a constant α that may be
specified independently.
We recall from classic viscous theory that the (gas) radial

velocity is given via

nS W = S
W

R v
d

dR
R

d

dR
R

d

dR
. 51Rg

2 3
g( ) ( )⎜ ⎟⎛

⎝
⎞
⎠

(Note that this equation is also applicable to unsteady disks.)
For a Keplerian disk, we obtain

n= -
S

Sv
R

d

dR
R

3
. 52R

g
g( ) ( )

Thus, if nS Rg is constant, then vR=0. Such nonaccreting
disks have also been employed in other problems, for example,
disk–planet interaction (Paardekooper & Papaloizou 2009). We
use the above constraint to set

a a=
-

R
R

AU
, 531

1 14

( ) ( )⎜ ⎟⎛
⎝

⎞
⎠

where a1 is the viscosity coefficient at 1au and is an input
parameter.
Figure 11 shows example results in nonaccreting disks.

Here, we fix a = -101
3. We find that the SI can grow within

the disk lifetime for R 3 au, much smaller than in the
accreting disks. This is due to the smaller viscosity compared to
the nonaccreting disk above. However, as in accreting disks,
the SI grows fastest at ~R 100 au.
For Z=0.01, we find   1 for R 100 au. Here, the linear

SI grows sufficiently fast, but ò is insufficient for dust clumping
(Johansen et al. 2009). Thus we only expect the development of
axisymmetric dust rings.
On the other hand, in the Z=0.1 disk we find   1 for
R 20 au, and growth timescales are much shorter than the

disk lifetime. In this case, the SI will likely lead to planetesimal

Figure 8. Similar to Figure 7 but for fixed metallicities Z. Orange lines denote = + b1 where the gaps show. Red lines are empirical fits to the maximum allowed α

for growth rates to remain > W-10 6 .

10

The Astrophysical Journal, 891:132 (17pp), 2020 March 10 Chen & Lin



formation. The sudden increase of tSI at ~R 20 au is
associated with ò approaching unity, whence SI is quenched
(see, e.g., Appendix A.5).

In both cases, comparisons between radial drift timescales
(black) and SI growth timescales (red) are also shown. We find

t tSI drift beyond 10 au and 30 au for Z=0.01 and Z=0.1,
respectively. Here the SI can grow before dust particles are lost
to the star. Conversely, interior to these radii, SI is limited by
radial drift instead of disk lifetimes.

In either disk model, we find l ~ H Rx g  at =R 100 au,
which is consistent with the local analysis. However, vertical
wavelengths are still significantly larger than Hd. We have
attempted to restrict l  H2z d (the full dust layer thickness) for
self-consistency, but this in fact leads to growth timescales
exceeding the disk lifetime. This is because viscosity is effective
in stabilizing perturbations with such small vertical length scales.

5.3. Dust Rings around HL Tau

We now apply the above disk models to examine whether or
not the SI can explain the formation of the dust rings and gaps
observed in the PPD around HL Tau (ALMA Partnership et al.
2015). These dust rings are located between ∼13 and ∼91 au,
and adjacent rings are separated by ∼10–20 au. We require
growth timescales 1Myr for consistency with HL Tau’s
young age. Because the disk mass of HL Tau is about M0.1 
(ALMA Partnership et al. 2015), which is about 10 times larger
than MMSN, we adopt F=10 in the calculations below. We
still consider centimeter-sized particles with internal density

-1 g cm 3. Calculations with millimeter-sized particles yield
essentially no growth within the disk’s age.
For the accreting disk model, we adopt ~ - -M M10 yr7 1 

(Beck et al. 2010). However, this implies a high viscosity, with
α increasing from ~ -10 2 at 1 au to ∼0.07 at 100 au. As a
result, SI growth timescales exceed 100 Myr. We thus discard
this model.
For the nonaccreting disk model, we set a = -101

4. This is
motivated by the estimate made by Pinte et al. (2016) based on
observational constraints on the dust layer thickness in the HL
Tau disk. Results are shown for Z=0.01 and 0.1 in Figure 12.
For both cases, the fastest growth occurs near the outer disk
edge ∼100 au. Notice here that radial drift does not limit the
instability growth. (For Z=0.1, tdrift exceeds a million years,
so it is outside the plotted range.)
For Z=0.01, we find t 1MyrSI beyond ∼15 au. In these

regions, the MMSN profile gives H 0.7g  au at R=15 au.
Here, the radial wavelength is =H10 7g au, which is too small
compared to the observed ring separations. By contrast, at 100 au
the radial wavelength is =H2 16g au, which is broadly
consistent with observations. In the Z=0.1 disk, we find SI only
grows sufficiently fast for R 50 au. However, at these radii, the
radial wavelengths range between 6.7 au at 50 au to 1.6 au at
100 au, which are too small compared to observations.
From the above crude comparison, we conclude that the

Z=0.01 disk can plausibly explain dust rings observed in the
outer disk ( R 70 au where l  10x au). However, we again
find l Hz d . Additional calculations enforcing l  H2z d
resulted in decaying modes, which would play no role.

Figure 9. Growth rates of the streaming instability at fixed metallicity for different levels of gas compressibility, as measured by h = 0.01ˆ (upper panels) and h = 0.1ˆ
(lower panels). The black dotted–dashed lines in each panel correspond to Equation (41). Red lines are empirical fits to the maximum allowed α for growth rates to
remain > W-10 6 .
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In any case, because   1 in the Z=0.01 disk model, SI is
unlikely to result in planetesimal formation. This would
suggest that planetesimals cannot form via the SI in the HL
Tau disk, leaving only axisymmetric rings from the instability.

6. Summary and Discussion

In this paper, we assess the efficiency of planetesimal
formation via the streaming instability (SI) in physical models
of PPDs. To this end, we generalize the linear theory of the SI

to include disk turbulence, modeled as a gas viscosity, with a
corresponding particle stirring modeled by dust diffusion. We
also explore the modest effect of nonlinear drag laws and gas
compressibility on the SI. For the most part, we adopt the
standard two-fluid model of dusty gas, but we also verify some
calculations with a simplified, one-fluid model generalized
from Lin & Youdin (2017) to include dust diffusion.
We find the SI is sensitive to turbulence. Gas viscosity and

particle diffusion stabilize the SI and increase its characteristic
length scale, as expected on physical grounds. SI with small

Figure 10. Streaming instability as a function of radius in a minimum-mass solar nebula accreting PPD. The left panel shows growth tSI (red) and radial drift
timescales tdrift (black); the middle panel shows the Stokes number St (red), midplane dust-to-gas ratio ò (green), and viscosity α (blue); and the right panel shows the
radial and vertical wavelengths lx z, (red, green) of the SI mode, in comparison with the dust scale height Hd (blue). The horizontal dashed lines indicate =St 1
and = 1.

Figure 11. Same as Figure 10 but for nonaccreting disks parameterized by a = -101
3.
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particles is effectively stabilized by turbulence. For example, at
fixed dust-to-gas ratios for ~ -St 10 2, growth rates become
negligible for a - 10 3. We also find the SI is more easily
smeared out in the vertical direction than in the radial direction,
consistent with Umurhan et al. (2019).

In a physical disk, however, turbulence also changes the
background disk structure, namely the equilibrium dust-to-gas
ratio. Accounting for this yields two regimes: at low viscosity the
dust-to-gas ratio exceeds unity and the SI grows on dynamical
timescales, and at high viscosity the dust-to-gas ratio falls below
unity and the SI grows slowly, eventually exceeding the
timescales of interest. Our numerical results indicate a convenient
scaling for the maximum viscosity as a ~ Stmax

1.5.
We apply a linear stability analysis to global models of

PPDs. We consider the standard minimum-mass solar nebula
disk models with viscosity either chosen to yield a specified
global gas accretion rate or set independently in a nonaccreting
disk. Even considering large, centimeter-sized particles that
should favor the SI, we find the SI only grows within typical
disk lifetimes of a few megayears outside ∼10 au. The SI is
most efficient around 100 au, where growth timescales can
approach O 104( ) yr at low viscosity.

On the other hand, we consistently find that the vertical
length scales of the SI exceed the dust layer thickness. Taken at
face value, this suggests that in viscous disks the SI has little
vertical structure across the dust layer. However, only a
stratified linear stability analysis can confirm whether not there
exists vertically unstructured modes or modes that can be
confined to the dust layer (M.-K. Lin et al. 2020, in
preparation).

Our local analyses also neglect the viscosity-induced gas
accretion flow that exists in global disks. Future work should
account for this by calculating the background equilibrium flow
self-consistently. This gas accretion flow would drive an
additional relative drift between dust and gas on top of that due
to dust–gas drag. As the relative dust–gas drift is the culprit of
dust–gas instabilities, including the SI (Squire & Hopkins 2018),

we can expect a gas accretion flow to also affect the SI. We leave
this to future work.
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Appendix
One-fluid Model for Dusty Gas with Particle Diffusion

Here we describe the “one-fluid” model of dusty gas
developed by Lin & Youdin (2017), based on the earlier
studies of Laibe & Price (2014) and Price & Laibe (2015). We
extend these models by including dust diffusion, but we neglect
gas viscosity for simplicity (see Lovascio & Paardekooper 2019
for a viscous but diffusionless version of the one-fluid model).
In this description, one forgoes separate gas and dusty

variables and works with the total density

r r rº + 54d g ( )

and the center-of-mass velocity of the mixture

r r

r
º

+
U

W V
. 55

d g ( )

Furthermore, by considering small particles, one applies the
“terminal velocity approximation” (Youdin & Goodman 2005;
Jacquet et al. 2011) so that

r
- =


W V

P
t , 56

g
s ( )

where tºt fs s g is the relative stopping time and r r=fg g g is
the gas fraction. (It is simpler to work with ts in the one-fluid
framework.) As before, we consider strictly isothermal gas so

Figure 12. Streaming instability in the PPD around HL Tau, based on the nonaccreting disk model.
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that r r= = -P c c f1s s
2

g
2

d( ) , where r r=fd d is the dust
fraction.

With the above definitions and approximations, the two-fluid
Equations (1)–(4) can be combined and simplified to give

r
r

r¶
¶

+  =  U
t

DP
P

, 57· ( ) · ( )⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

r
¶
¶

+  = -  - W
U

U U R
t

P R
1

58K
2· ˆ ( )

¶
¶

+  = -  +  U U
P

t
P P c t f P . 59s

2
s d· · · ( ) ( )

Note that only three of the four evolutionary equations remain
because the dust velocity has been eliminated with the terminal
velocity approximation. Equation (59) is an effective energy
equation that results from the dust continuity Equation (2).
Terms of O ts

2( ) are neglected because of the assumption of
small particles. For the following derivations, it is convenient
to define

rº   = -  Fc t f P c t f , 60s s
2

s d
2

s d· ( ) · ( ) ( )

r
º -


F

P
. 61( )

A.1. Relative Stopping Time

We adopt the same stopping-time parameterization as the
two-fluid model (Equation (14)). The corresponding definition
of the relative stopping time is

rr

rr
=

-

-

-

-

W V

W V
t t . 62

a b

a bs s,eqm
g

1
eqm

g
1

[ ∣ ∣ ]

∣ ∣
( )

Combining Equation (56) with Equation (62) gives

r r
r r

- = -
+ -W V W Vt

P1
. 63b a b

a
1

s,eqm g
1

eqm

g

∣ ∣ [ ∣ ∣ ] ( )

It will prove useful to have an expression for rts. Using
Equation (63), we find

r r
r

= -
+

-
+


+t

a

b

b

b

P
ln 1

1
ln

1
ln const.

64

s g( )

( )

⎛
⎝⎜

⎞
⎠⎟

A.2. One-fluid Equilibrium

The one-fluid momentum equations admit axisymmetric,
steady-state equilibrium solutions with = =U U 0R Z , and

r
= W +

¶
¶fU R R

R P

R
, 652 2

K
2 ( ) ( )

h= W -R f1 2 . 662
K
2

g( ) ( )

Because h 1 , we can set = WfU R K in practice.
The steady-state continuity and effective energy Equations (57)

and (59) are generally not satisfied for arbitrary density and
pressure profiles. However, if we consider power-law disks where
the density and pressure vary on a global scale ¶ ~ R1R , then
the effective energy equation implies the background would

evolve on a timescale of WO h1 St2
K( ), where h 1 is the disk

aspect ratio. Similarly, the continuity equation gives a background
evolution timescale of d WO h1 2

K( ). These timescales are much
longer than the SI growth timescales found below. We can thus
self-consistently neglect the background evolution.

A.3. Linearized One-fluid Equations

As in the main text, we consider axisymmetric Eulerian
perturbations with spacetime dependence s + +t k R k zexp x z( )
and linearize Equations (57)–(59). We assume the radial
wavenumbers k R 1x∣ ∣  so that background density and pressure
gradients may be neglected when compared to that in the
perturbed variables. We find

s
dr
r

d d
dr
r

d
r

= - - - - + k U k U Dk
P

c
i i 1 ,

67

x R z z
s

2
2

( )

( )

⎡
⎣⎢

⎤
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sd d d= W +fU U F2 , 68R R ( )

sd d= -
W

fU U
2

, 69R ( )

sd
d
r

= -U k
P

i 70z z ( )

s
d
r r

d d
d
r

= - + +
P P

k U k Ui i , 71x R z z( ) ( )

where = +k k kx z
2 2 2 and

d
dr
r

d
r

= - -F F k
P

i . 72R R x ( )

The linearized diffusive term is

d
r

dr
r

d
r

d r
r

d
r

dr
r
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+ + -
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c

k F t f
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and linearizing Equation (64) gives
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The full expression for d is then

d
r

dr
r
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where

q º -
+
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b
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1
1. 75( )

⎛
⎝⎜

⎞
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In Figure 13 we compare growth rates from the full two-fluid
equations and the one-fluid model. We consider Epstein drag
with = =a b1, 0. For the two-fluid model, we include
particle diffusion but neglect gas viscosity. We also use the
optimum wavenumbers found in the two-fluid model in the
one-fluid calculation. We find the one-fluid model is consistent
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with the two-fluid model when diffusion is weak with
d - 10 4. The one-fluid framework produces spuriously
growing modes for larger δ, although their growth rates remain
small.

A.4. Reduced Model

We can simplify the linearized one-fluid equations to obtain
a reduced dispersion relation. It is convenient to first render the
one-fluid equations dimensionless by adopting dimensionless
parameters t h= W =K RkSt , x z x zs , , as used in the main text.
(Recall the Stokes number St is defined via the particle
stopping time t = t fs s g.) We further introduce the dimension-
less variables

s
h

º W º
W

n
D

R
i , . 76

2( )
( )

Note that the dimensionless diffusion coefficient used in the
main text is given by d hº = D c Hs g

2ˆ .
We eliminate the velocity perturbations from Equations (67)–

(71) to obtain
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z q
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where we have used the definition h= WF f R2R g K
2 , and recall

h h= WR csKˆ . The artificial coefficients z1,2 are nominally
unity but are inserted to make the following simplifications:

1. We consider incompressible gas with h 1ˆ  . This is
equivalent to setting z  01 . Note that this removes the
dependence on the gas density via the drag law.

2. We consider low-frequency modes with n 1∣ ∣  . This is
equivalent to setting z  02 .

These approximations give the dispersion relation
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. 80x
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2
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Note that for fixed δ we also require d min
- + f f n K nKSt , 1zd g

2 2[ ∣ ∣ ( )]. Equation (79) agrees with
Equation (97) of Lin & Youdin (2017) in the diffusionless limit
with Epstein drag ( = = b 0) and n 1∣ ∣  . The latter
dispersion relation was also derived by Jacquet et al. (2011)
and Laibe & Price (2014) and is consistent with the original SI
analysis of YG05.
Figure 14 compares the growth rates from this reduced

model (Equation (79)) and the full two-fluid equations as a
function of St for d = - -10 , 104 5, and 10−6. We fix r r = 3d g .
We use the optimum Kx and Kz from the two-fluid model when
solving Equation (79). We obtain excellent agreement with the
two-fluid model for weak diffusion, d - 10 5. Even for
relatively large d = -10 4 the curves are similar. We remark
that the incompressible approximation filters out spurious
modes in the one-fluid equations that appear at large δ and
small St (i.e., the lower right part of the right panel in
Figure 13).

Figure 13. Growth rates as a function of Stokes number St and dust diffusion δ computed from the two-fluid (left) and one-fluid (right) models. The optimal Kx and Kz

values found in the two-fluid model are used in the one-fluid model. Plots are truncated if growth rates are smaller than W-10 6 .
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A.5. Dust-rich, Diffusionless Solutions

We can obtain closed-form solutions to Equation (79) in the
limit of vanishing dust diffusion. We fix K f,z d and maximize
growth rates over Kx, assuming that the optimum Kx is large.
(This in turn implies a small stopping time.) Thus we
replace K Kx

2 2.
As a simplification, we neglect the quadratic term in

Equation (79). This is consistent with the final solution
obtained below if

+
+

f
b

b

12 1

12 17
. 81d

( ) ( )

Although this can only be marginally satisfied (since <f 1d ),
we find this approximation nevertheless give the correct growth
rates.

Deleting the quadratic term Equation (79), we solve the
depressed cubic

- = n n , 823 ( )

where the coefficients  , can be read off Equation (79) with
= 0. Writing m m= + n 3 , we obtain a quadratic for m3:

m m- + =

27

0. 836 3
3

( )

It turns out the last term may be effectively neglected (Lin &
Youdin 2017, their Appendix D2), so m 1 3 . This gives

= +
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=
+
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We maximize growth rates nIm( ) over Kx. Denoting the
associated quantities with *, we find

=
+
+

-n K f
b
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1 , 84z
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The maximum growth rate in Equation (84) generalizes
Equation (111) of Lin & Youdin (2017) to nonlinear drag
laws. Growth rates vanish when = + +f b b1 2d ( ) ( ), which
is equivalent to = + b1 . This can also be seen from
Equation (79): in the diffusionless limit when = + b1 , the
last term vanishes and the dispersion relation reduces to a
quadratic in n. From Equation (84) we find

¶
¶

= -
+ + - +

n

b

f n

b b f b

Im Im

2 1 2 1
. 87d

d

* *( ) ( )
( )[( ) ( )]

( )

Hence, for growing modes with >nIm 0*( ) , increasing b tends
to stabilize modes. The effect is small because nIm *( ) only
depends on b through + +b b2 1( ) ( ), which ranges between
one and two for b=0 to ¥ (see Equation (84)).
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