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Abstract

We herein develop a new simple model for giant planet formation that predicts the final mass of a giant planet born in
a given disk by adding the disk mass loss due to photoevaporation and a new type II migration formula to our
previous model. The proposed model provides some interesting results. First, it gives universal evolution tracks in the
diagram of planetary mass and orbital radius, which clarifies how giant planets migrate at growth in the runaway gas
accretion stage. Giant planets with a few Jupiter masses or less suffer only a slight radial migration in the runaway gas
accretion stage. Second, the final mass of giant planets is approximately given as a function of only three parameters:
the initial disk mass at the starting time of runaway gas accretion onto the planet, the mass-loss rate due to
photoevaporation, and the starting time. On the other hand, the final planet mass is almost independent of the disk
radius, viscosity, and planetary orbital radius. The obtained final planet mass is 10% of the initial disk mass. Third,
the proposed model successfully explains properties in the mass distribution of giant exoplanets with the mass
distribution of observed protoplanetary disks for a reasonable range of the mass-loss rate due to photoevaporation.

Unified Astronomy Thesaurus concepts: Exoplanet formation (492); Exoplanet dynamics (490); Extrasolar gas
giants (509)

1. Introduction

One of the main goals of the planet formation theory is to
explain the statistics of thousands of exoplanets using the
statistical properties of observed protoplanetary disks (e.g.,
Andrews et al. 2010) in a consistent manner. In the present
paper, we try to explain the masses of giant exoplanets.

In the core accretion model, giant planets are formed with
the following two growth stages in a protoplanetary disk (e.g.,
Mizuno 1980). The first stage is the formation of the planetary
solid core via accumulation of planetesimals and pebbles (e.g.,
Kokubo & Ida 2002; Lambrechts & Johansen 2014). Once the
solid core grow to the critical mass (∼10M⊕) for gravitational
collapse of its envelope, a rapid runaway accretion of the disk
gas onto the planet proceeds after a relatively slow contraction
of the envelope (e.g., Pollack et al. 1996; Ikoma et al. 2000;
Hubickyj et al. 2005), which is the second stage. In the present
paper, we focus on the latter runaway gas accretion stage of the
giant planet formation, since the final masses of the gaseous
giant planets are governed by the runaway gas accretion.
Although a fast type I planetary migration at the stage of the
solid core growth is also a serious problem in giant planet
formation (e.g., Tanaka et al. 2002; Paardekooper et al. 2011),
this first stage is out of the scope of the present study.

The formation of giant planets is governed by the gas
accretion rate onto the planets and the radial migration speed. A
massive planet with  several tens of earth masses opens a
low-density gap around its orbit in the protoplanetary disk with
the planetary torque (e.g., Lin & Papaloizou 1986; Crida et al.
2006). The disk gap considerably changes the planetary growth
and migration, as originally proposed by Lin & Papaloizou
(1986). Their original gap model assumes that almost no gas
exists inside the gap and that no mass flow across the gap
exists. Then the gap opening terminates the growth of the
planet. Because of no gap-crossing flow, the planet is locked in

the gap and migrates with the disk viscous evolution, which is
the mechanism of the original type II migration. Many studies
on planet formation have adopted the type II planetary
migration and termination of growth due to the gap.
However, two- and three-dimensional hydrodynamical

simulations showed that disk gas can easily cross the gap and
also accrete onto the planet, even for the gap created by a
Jupiter-mass planet or larger (e.g., Kley 1999; Lubow et al.
1999; Masset & Snellgrove 2001; D’Angelo et al. 2003;
Machida et al. 2010; Zhu et al. 2011). Thus, the planetary
growth continues even after the gap opening, though the low-
density gap reduces the mass accretion rate. The surface density
inside the gap was examined by recent hydrodynamical
simulations, and an empirical model of the gap surface density
is proposed (e.g., Duffell & MacFadyen 2013; Fung et al.
2014; Kanagawa et al. 2015a, 2016, 2017). Tanigawa &
Tanaka (2016, hereafter Paper II) constructed an analytic
formula for the mass accretion rate onto the planet by using the
empirical model for the gap surface density. This formula
reproduces very well the results of hydrodynamical simulations
by D’Angelo et al. (2003) and Machida et al. (2010). The
present paper also uses this formula.
The type II migration of giant planets has been problematic in

previous studies of giant planet formation (e.g., Ida & Lin 2004;
Mordasini et al. 2009; Hasegawa & Ida 2013; Bitsch et al.
2015, 2019; Ida et al. 2018). Duffell et al. (2014) found a further
faster type II migration in their hydrodynamical simulations.
Their obtained migration speeds are higher than those of the
planet-dominated type II migration based on the original model
(e.g., Armitage 2007) by a factor of 3. Their type II migration
speeds4 were confirmed by Dürmann & Kley (2015, 2017) and
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4 The migration of a gap-opening planet is still referred to as type II
migration, though the assumptions in the original model were found to be
invalid.

1

https://orcid.org/0000-0001-9659-658X
https://orcid.org/0000-0001-9659-658X
https://orcid.org/0000-0001-9659-658X
https://orcid.org/0000-0002-5964-1975
https://orcid.org/0000-0002-5964-1975
https://orcid.org/0000-0002-5964-1975
mailto:hidekazu@astr.tohoku.ac.jp
http://astrothesaurus.org/uat/492
http://astrothesaurus.org/uat/490
http://astrothesaurus.org/uat/509
http://astrothesaurus.org/uat/509
https://doi.org/10.3847/1538-4357/ab77af
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ab77af&domain=pdf&date_stamp=2020-03-13
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ab77af&domain=pdf&date_stamp=2020-03-13


Robert et al. (2018). In Paper II, however, we found that the
reduction in the disk surface density due to gas accretion onto
the planet slows down the type II migration sufficiently.
Moreover, Kanagawa et al. (2018) recently proposed a new
model for type II migration. In their new model, the planet
mainly interacts with the disk gas inside the gap, and the
planetary migration speed is proportional to the reduced surface
density in the gap. A similar idea on the type II migration was
first pointed out by D’Angelo & Lubow (2008). The new
model proposed by Kanagawa et al. reproduces very well the
results obtained from the previous hydrodynamical simulations
of type II migration (Duffell et al. 2014; Dürmann &
Kley 2015) and the simulations by Kanagawa et al. The
present paper uses their new formula for type II migration to
revise our model.

In Paper II, we also suggested that the final mass of a giant
planet should be much more massive in the minimum mass
solar nebula (MMSN) disk than the Jupiter mass. However,
we did not take into account the disk mass loss due to
photoevaporation directly. Such a dissipation effect of photo-
evaporation is required in order to explain the disk lifetime and
the rareness of the transitional disks (e.g., Clarke et al. 2001;
Alexander et al. 2014). The present paper considers the disk
mass loss due to photoevaporation, which would reduce the
final planet mass for a given disk.

Previous studies of the population synthesis of giant planets
have already examined the origin of the statistics of exoplanets
in detail (e.g., Benz et al. 2014 and papers therein; Ida et al.
2018). In order to examine the distributions of the final masses
and orbital radii of planets, they performed Monte Carlo
simulations with probability distribution functions of various
disk parameters. However, it is not clear yet what mass and
orbital radius a planet will finally have in a given disk because
of uncertainties in disk models, viscosity parameter, and
models of planetary growth and migration. Moreover, the
dependence of the final planet mass on the disk parameters
(e.g., disk mass, radius, viscosity, and mass-loss rate due to
photoevaporation) is unclear. In addition, the accurate
empirical formulae for planetary growth rate and migration
speed mentioned above were not used properly in their
population synthesis calculations.

In the present paper, we revise our simple model for giant
planet formation by including a new type II migration formula
and the disk mass loss due to photoevaporation by EUV. We
show that our new model can clearly predict the final mass of
giant planets for a given disk, despite many unfixed parameters
in current disk models.

In Section 2, we briefly describe the formulae of accretion
rate and migration speed that have already been tested through
hydrodynamical simulations. These formulae directly give
universal evolution tracks in the diagram of planetary mass and
orbital radius for the runaway gas accretion stage, although the
prediction of the final planet mass also requires the disk model.
In Section3, we present a very simple disk model that includes
the disk mass loss due to photoevaporation by EUV. Using this
simple disk model, we derive a direct expression for the
planetary growth rate. In Section4, we examine the time
evolution and final mass of giant planets for a reasonable
parameter range. Our results for the final planet mass will also
be applied to the origin of exoplanets. In Section5, we
summarize our results.

2. Models of Growth and Migration for Giant Planets

2.1. Assumptions

For giant planet formation, we adopt the core accretion
model. We focus on the stage in which the solid core of a
planet is more massive than the critical core mass (Mizuno
1980; Ikoma et al. 2000). Then, the planet grows primarily via
runaway accretion of the disk gas. In the proposed model, as an
initial condition, we assume that such a massive solid core
exists in the disk. For simplicity, we examine the growth and
migration of a single giant planet in the gaseous disk and
neglect the effect of other planets.

2.2. Growth Rate and Migration Rate of a Planet

We adopt the rate of gas accretion onto a planet modeled by
Paper II. The growth rate of the planet via the runaway gas
accretion (or the accretion rate to the planet), dM dtp , is given
by

= S
dM

dt
D . 1

p
gap ( )

The coefficient D is empirically obtained as (Tanigawa &
Watanabe 2002)
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where M* and rp are the mass of the central star and the orbital
radius of the planet, respectively. The subscript p of the scale
height h and the Keplerian angular velocity Ω indicates values
at r=rp. The surface density in the planetary gap,Sgap, is also
given by an empirical formula (e.g., Duffell & MacFadyen
2013; Kanagawa et al. 2015a, 2015b),5
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Moreover, Sout is the surface density just outside of the gap,
and α is the viscosity parameter of the disk (Shakura &
Sunyaev 1973). Note that Equation (3) derived from hydro-
dynamical simulations gives a much shallower gap than the
previous one-dimensional analytic models (e.g., Lubow &
D’Angelo 2006; Tanigawa & Ikoma 2007, hereafter Paper I).
Owing to the shallow gap, the gas accretion onto the giant
planet does not terminate, even after the gap is formed. The
mass accretion rate of Equation (1) reproduces very well the
results of hydrodynamical simulations by D’Angelo et al.
(2003) and Machida et al. (2010) for planets heavier than
10 M⊕, as shown in Figure 1 of Paper II.6

5 According to Kanagawa et al. (2018), we use the prefactor 0.04 for K, rather
than 0.034, as was used in Paper II.
6 Ginzburg & Chiang (2019) pointed out that, for planets less massive than
10 M⊕, the simulation results are well described by the three-dimensional
Bondi accretion rate rather than Equation (1). However, we are interested in
planets that have masses greater than the critical core mass (∼10 M⊕).
Equation (1) is better for those planets.
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Exactly speaking, the gap surface density of Equation (3)
represents the surface density around = r r R2p Hill rather
than the lowest value at rp for a deep gap, where RHill is the Hill
radius of the planet (e.g., Fung et al. 2014; Kanagawa et al.
2017). It would be reasonable that Equation (3) is used for the
estimates of the accretion rate and type II migration speed,
since those rates are determined by the surface densities around
= r r R2p Hill rather than that at rp (Tanigawa & Watanabe

2002; D’Angelo & Lubow 2008).
It should also be noted that a slow Kelvin–Helmholtz

contraction of the planetary envelope occurs between the stages
of the solid core growth and the runaway gas accretion (e.g.,
Pollack et al. 1996; Ikoma et al. 2000). The slow contraction of
the envelope regulates the mass accretion rate for planets with

~M Mp crit. In this slow contraction stage, Equation (1)
overestimates the mass accretion rate. The timing of the
transition from the slow contraction stage to the runaway
accretion stage, where the accretion rate of Equation (1) is
valid, can be estimated as follows. We can estimate the Kelvin–
Helmholtz contraction time for the envelope of a planet with
the mass Mp as

t
k

´
Å

-

-
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by replacing the core mass Mcore with Mp in the analytic
contraction time derived by Ikoma et al. (2000). In
Equation (5), κ is the opacity of the planetary envelope. The
opacity of κ=0.05 g cm−2 is consistent with Movshovitz &
Podolak (2008), who calculated the envelop opacity, taking
into account dust growth and sedimentation in the envelope. A
contraction time similar to Equation (5) is adopted in the
planetary population synthesis calculations (e.g., Ida &
Lin 2004; Benz et al. 2014; Ida et al. 2018). Equation (5)
can also explain the mass accretion rates obtained by
Lambrechts et al. (2019) with their three-dimensional non-
isothermal hydrodynamical simulations for Mp<100 M⊕ by
using the value of the opacity they adopted. The mass accretion
rate regulated by the slow contraction is given by tMp KH. By
equating this accretion rate with Equation (1), we can estimate
the planet mass at the transition from the slow contraction
to the runaway accretion as k -

ÅM30 0.05 cm g2 1 6 13( ) for
S = 100 g cmgas

2 and a disk aspect ratio of h/r=0.05 at 5 au.
Hence, for planets with Mp>30 M⊕, the envelope contraction
is rapid enough, and Equation (1) is valid.

The radial migration speed of the planet is generally
expressed with the torque on a planet, Γ, as

= =
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where Lp is the angular momentum of the planet. Kanagawa
et al. (2018) found that by using the gap surface density Sgap,
the torque on a planet embedded in the disk gap (i.e., the torque
of type II planetary migration) is given by an expression similar
to that for the type I torque (e.g., Tanaka et al. 2002):
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From Equations (6) and (7), the migration speed of a planet is
given by
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The migration speed for type II migration also reproduces
very well the results obtained from the previous hydrodyna-
mical simulations of type II migration (Duffell et al. 2014;
Dürmann & Kley 2015) and the simulations by Kanagawa et al.
Type II migration was previously thought to be caused by
interaction with gap edges (i.e., outside of the gap; e.g., Lin &
Papaloizou 1986, 1993; Lin et al. 1996; Armitage 2007). On
the other hand, the new, more accurate formula by Kanagawa
et al.indicates that the planet mainly interacts with the gas
inside the gap. For a less massive planet forming no gap,
Kanagawa et al.’s formula is reduced to that of type I
migration. In the present paper, we use this new formula for the
type II planetary migration speed, although Paper II basically
adopted the previous type II migration model.
The present paper does not include type III migration or

dynamical corotation torque, which appear only in very
massive disks (e.g., Masset & Papaloizou 2003; Paardekooper
2014; Pierens & Raymond 2016). Pierens & Raymond (2016)
showed with their hydrodynamical simulations that planets
experience a more rapid (outward) migration than type II due to
the dynamical corotation torque during their growth. In their
simulations, however, planets grow to about 10 MJ within
1×104 yr. Thus, it is expected that those bodies might grow to
several tens of Jupiter masses (i.e., the mass range of brown or
red dwarfs) within the typical disk lifetime of ∼106 yr.
Formation of such massive bodies is beyond the scope of the
present study.

2.3. Universal Evolution Tracks in the Mass–Orbit Diagram

In our model, the growth rate and migration speed are both
proportional to Sgap. The time evolution of the planet mass and
orbital radius depends onS tgap( ) or the disk model described in
the next section. Here we consider planetary evolution tracks in
the diagram of mass and orbital radius. Interestingly, the
evolution tracks are independent of the model of the
protoplanetary disk, as shown below.
Dividing Equation (1) by Equation (8) and using

Equation (2), we obtain a simple differential equation for the
evolution tracks,
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where the threshold mass Mth is given by
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This simple form of Equation (9) is available because dM dtp

and d r dtln p are both proportional to S-h rp p
2

gap( ) . Solving
Equation (9), we obtain an analytic expression for the universal
evolution tracks in the diagram of planetary mass and orbital
radius as
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where M0 and r0 are the initial mass and orbital radius of the
planet, respectively. We recall that the obtained evolution
tracks are completely independent of the disk model. Our
evolution tracks are independent of the disk gap model of
Equation (3), too.

Figure 1 shows the universal evolution tracks of
Equation (11) in the diagram of planet mass and orbital radius.
In Figure 1, we also plot the data of exoplanets observed by the
radial velocity method; these have a weak observational bias
compared with the radial distribution of the exoplanets
discovered by transit surveys. Planets less massive than the
threshold mass Mth ( M10 J for a solar-mass star) do not suffer
much radial migration. This is because the migration timescale
is longer than the growth time for <M Mp th. The final orbital
radius of a planet with Mth is approximately 1/5 of the initial
orbital radius. Previous studies reported a problematic rapid
type II migration in the giant planet formation, as described in
the Introduction. However, our model shows that very massive
exoplanets exceeding Mth plotted in Figure 1 can also be
formed from solid cores initially located within 20 au. Our
model succeeds in fixing the problem of type II migration in
giant planet formation.7

Slight migrations for Jupiter-mass planets or less, on the
other hand, make the origin of hot Jupiters difficult to explain.
The orbital radii of planets can be shifted by mutual

interactions between multiple planets, which are not included
in our model. As an explanation of hot Jupiters, the model that
considers planet–planet scattering followed by tidal circular-
ization (e.g., Rasio & Ford 1996; Nagasawa et al. 2008; Winn
et al. 2010) is more plausible than the model that considers type
II migration. The type I migration of solid planetary cores
before the runaway gas accretion stage can be an alternative
possible origin of hot Jupiters. Solid planetary cores can easily
migrate inward, since their growth time is expected to be much
longer than that at the runaway gas accretion stage.
A relatively large number of giant exoplanets are observed in

the radial range from 1 to 3 au in Figure 1. These crowded
exoplanets can be explained if a large number of massive solid
cores are formed from 1.5 to 4 au of protoplanetary disks. Such
massive planetary embryos may be naturally formed just
outside of the snow line, which is located at 1–3 au.
Note that the disk model affects where and how the planetary

growth terminates on an evolution track (i.e., the final mass and
location of the planet). We will discuss these items using a
simple disk model described in the next section.
It should also be noticed that the torque and migration speed

in Kanagawa et al.’s formulae (Equations (7) and (8)) can be
underestimated in the absolute values in the regime of type I
migration (i.e., for -M M10p

4
*). Although the coefficient of

the torque is fixed as −3.0 in Equation (7), the torque depends
on the radial gradients of the disk surface density and
temperature in the accurate type I formulae (e.g., Tanaka
et al. 2002; Paardekooper et al. 2011). Owing to steep radial
distributions in Σ and/or T, the accurate type I migration can
be faster than Equation (8) by a factor of 2 or 3. However, such
a possible enhancement in the migration speed would hardly
change the result of a slight migration for ~ -M M10p

4
*

because the migration timescale given by Equation (8) is about
20 times as long as the growth time at ~ -M M10p

4
*.

3. Disk Model

3.1. Self-similar Solution of Accretion Disks

Our simple disk model is based on the self-similar solution
of accretion disks with the viscosity ν being proportional to gr
(Lynden-Bell & Pringle 1974; Hartmann et al. 1998). The
temperature distribution can be more complex than a single
power law in realistic disk models. Such a complex disk model
should be examined in future work. In this simple model, we
also include the effects of photoevaporation of disk gas by
EUV radiation from the central star and gas accretion onto a
planet. We assume that the orbital radius of the planet rp and
the radial location rg, where the photoevaporation primarily
occurs, are much smaller than the disk radius. Then, the planet
and photoevaporation would have only minor effects on the
evolution of the outer part of the disk, which contains most of
the (total) disk mass. Gorti & Hollenbach (2009) suggested that
far-UV (FUV) radiation from the central star can cause rapid
erosion of the outer disk. Such strong photoevaporation by
FUV can reduce the disk mass in a relatively short time
(∼106 yr). However, since the mass-loss rate by FUV
photoevaporation is still uncertain to about an order of
magnitude (e.g., Alexander et al. 2014), we do not include
photoevaporation by FUV in our disk model.

Figure 1. Universal evolution tracks of giant planets in the mass–orbit diagram
in the runaway gas accretion stage. Our evolution tracks are completely
independent of the disk model, whereas the disk model affects the termination
of planetary growth on each track. The initial mass, M0, is set to be - M10 4

*,
and the initial orbital radii, r0, are varied from 0.31 to 20 au. The data of
exoplanets observed by the radial velocity method (http://exoplanets.org) are
also plotted. As for masses of exoplanets, the observed values of M isinp are
simply used.

7 The evolution tracks derived by Ida et al. (2018) depend on the viscosity
parameter, although they adopted the gas accretion rate of Paper II and the
migration formula of Kanagawa et al. (2018), as well as our model. By
introducing two kinds of viscosity parameters, they managed to avoid rapid
type II planetary migration. In Section 3.4, we will explain the difference in
migration prescriptions between Ida et al. and the present paper.
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At an outer part of the disk, the surface density is then
simply given by the self-similar solution,

p g n
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where n n= gr0 and the characteristic disk radius Rd is given
by
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At the intermediate disk region in which r r r R,p g d  ,
the surface density and disk accretion rate Md are approxi-
mately given by
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and we obtain the well-known relation between them as
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Note that the time evolution of the disk mass and accretion rate
are independent of the disk viscosity in Equations (14) and
(15). Then, the disk surface density is inversely proportional to
the viscosity.

We assume the disk temperature as -r280 1 au 1 2( ) K
(Hayashi et al. 1985). Then, the disk aspect ratio (i.e., the ratio
of the scale height to the radius) is given by

=
h

r

r
0.05

5 au
. 17

1 4

( )⎜ ⎟⎛
⎝

⎞
⎠

Using the parameter α, the disk viscosity is also expressed as

n a= Wh . 182 ( )

In the next section, we adopt γ=1 in the nominal case,
assuming a constant α.

3.2. Effect of Photoevaporation

In our model, we regard the mass-loss rate due to the
photoevaporation Mw as a parameter. We assume that the mass
loss due to photoevaporation occurs primarily outside the
planet orbit. Even for the case in which the photoevaporation
inside the planet orbit is not negligible, the following treatment
for photoevaporation would also be valid by considering Mw as
the mass-loss rate only outside of the planet orbit.

If no mass loss due to photoevaporation exists, then the mass
supply rate to the planet-forming inner region, Msup , is equal to
the disk accretion rate, Md . When the photoevaporation is
effective, the mass supply rate to the planet-forming region is
given by

= -M M M 19dsup w ( )  

if M Md w  . Then, the disk surface density in the planet-
forming inner region is given by

pn pn
S = =

-M M M

3 3
. 20dsup w ( )

  

The disk accretion rate decreases gradually. The time at
which planet growth stops, tend, is determined by the equation

=M 0sup , i.e.,

=M t M . 21d end w( ) ( ) 

Using Equation (15), we can rewrite Equation (21) as

g
=

-

g
g

-
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t
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t M4 2
. 22dend

0

0
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⎠⎟ 

We regard t0 as the starting time of the runaway gas accretion
onto the planet, and M td 0( ) is the disk mass at the starting time.
When g< -M t t M4 2d 0 0 w( ) ( )  , Equation (22) gives <t tend 0.
This means that runaway gas accretion onto the planet cannot
occur because of gas dissipation at the planet-forming region
before t0 due to strong photoevaporation. By integrating
Equation (19) from t0 to tend, we can also obtain the total
gaseous mass supplied to the planet-forming region from t0 up
to tend, Msup, as

ò

g
g

=
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0
w end 0
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3.3. Effects of Gas Accretion onto the Planet

Lubow & D’Angelo (2006) gave the analytic expression of
the surface density reduced by the gas accretion onto a planet
as8

pn
S =

-
r

M M

r3
. 24p

d p

p
out ( )

( )
( )

 

In the above, we used the notation Sout, which is the surface
density just outside the planetary gap. This is because the effect
of the planetary gap is not included in Equation (24). This
expression is not valid when the photoevaporation is effective.
However, we can readily include the effect of photoevaporation
in Equation (24) by simply replacing Md with Msup :

pn
S =

- -
r

M M M

r3
. 25p

d p

p
out

w( )
( )

( )
  

8 The derivation of this analytic expression is shown in AppendixB of
Paper II. Paper II also gives the radial surface density distribution.
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This is the expression of Sout including the effects of both
photoevaporation and gas accretion onto the planet. The mass
flux crossing the gap to the innermost disk is given by

- -M M Md pw   , and it is reduced by the gas accretion onto the
planet and the photoevaporation. In Figure 2, we summarize
our simple disk model.

3.4. Direct Expression for the Planetary Growth Rate

The growth rate, Mp , included in Equation (25) depends on
Sgap (orSout), as shown in Equation (1). By solving the coupled
Equations (1), (3), and (25), we obtain

pn pn
S =

+
+

¢ -
-

K

D

r

M M

r

1

1 0.04
1

3 3
26

p

d

p
gap

1
w

( ) ( )
( )

⎛
⎝⎜

⎞
⎠⎟

 

and

pn
pn

=
¢

+ ¢
-M

D r

D r
M M

3

1 3
, 27p

p

p
d w

( )
( )

( ) ( )  

where ¢D is given by

¢ =
+

D
D

K1 0.04
28( )

and D and K both depend on Mp and rp, as shown in
Equations (2) and (4). The first and second factors on the right-
hand side of Equation (26) represent the reduction factors of the
surface density due to the planetary gap and the gas accretion
onto the planet, respectively. Both factors reduce the type II
migration speed, as well as the gas accretion rate onto the
planet, since these rates are proportional to Sgap. Equation (27)
gives a direct expression for the planetary growth rate. Note
that the disk accretion rate Md is given by Equation (15) and the
orbital radius rp is dependent on Mp, as show in Equation (11).

When the ratio pn¢D 3( ) is large, the mass accretion rate Mp
is nearly equal to the supply rate -M Md w  . This means that an
insufficient mass supply rate (or a low disk accretion rate)
regulates Mp . The regulation of Mp due to a small disk accretion
rate is taken into account in many population synthesis
calculations. The regulation of Mp originated from the surface
density reduction due to the second factor in Equation (26).
This surface density reduction due to a low disk accretion rate
also slows down the type II migration, as first pointed out by
Tanigawa & Tanaka (2016). Robert et al. (2018) also found a
slowdown of type II migration due to rapid gas accretion onto
the planet in their hydrodynamical simulations. However,
recent population synthesis calculations do not yet include the
slowing mechanism, even though they include the regulation of
Mp due to a low disk accretion rate (e.g., Ida et al. 2018; Bitsch
et al. 2019; Johansen et al. 2019). Such inconsistent treatment
of the growth rate and migration speed breaks down the
universality of the evolution tracks proposed in Section 2.3.
Estimating the nondimensional ratio pn¢D 3( ) is valuable.

We consider a deep-gap case in which K0.04 1 . From
Equation (4), this corresponds to the case of relatively massive
planets having masses that satisfy

a
-

M
h r

M0.1
0.05 10

. 29p

5 2

3

1 2

J ( )⎜ ⎟ ⎜ ⎟
⎛
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⎞
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The ratio is then estimated as
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For a planet much less massive than 7 MJ (at 5 au around a solar-
mass star), pn¢D 3 1( )  , and Equation (27) gives =M Mp sup  .
That is, the gas supplied to the planet-forming region almost
perfectly accretes onto the planet. Almost-perfect accretion onto
the planet greatly reduces the mass flux across the gap.
Hydrodynamical simulations by Zhu et al. (2011) also show
similar reductions in the mass flux to the innermost disk by rapid
gas accretion onto the planet. For a planet more massive than
7 MJ, on the other hand, the first factor on the right-hand side of
Equation (27) becomes small. Then, only a minor portion accretes
onto the planet, and most of the gas flows into the innermost disk
in spite of a deep gap created by the massive planet. Although one
may expect that a deep gap might prevent the gas flow across the
gap, hydrodynamical simulations show that disk gas can easily
cross even a deep gap formed by a Jupiter-mass planet (e.g., Zhu
et al. 2011; Dürmann & Kley 2015, 2017).
Moreover, note that pn¢D 3( ) is independent of the viscosity

parameter α when K0.04 1 . Then, from Equations (9) and
(27) , we find that the time evolution rates dM dtp and dr dtp
are also independent of α. Although there still exists a large
uncertainty in the value of α, we can discuss the growth and
migration of a giant planet embedded in a protoplanetary disk
independent of α using the proposed model.9

Figure 2. Schematic diagram of the proposed simple disk model. Because of
photoevaporation with a mass-loss rate Mw , the mass supply rate to the planet-
forming region is reduced to -M Md w  . The disk accretion rate at the innermost
disk is further reduced to - -M M Md pw   due to gas accretion onto the planet.
From these disk accretion rates, the surface density distribution of this viscous
accretion disk is obtained in the proposed disk model.

9 As seen from Equation (26), the surface density in the gap, Sgap, is also
independent of α, for K0.04 1 . The ratio of S Sgap out representing the gap
depth is proportional to ν, while nS µout in Equation (24). Since these two
viscosity dependences cancel out, Sgap and Mp are almost independent of ν.
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4. Results

4.1. Final Planet Masses in Various Disks

Under our simple disk model described in the last section,
we can calculate the time evolution of the planet mass by
integrating Equation (27) with Equations (2), (4), (11), (14),
(17), (18), and (28). These equations have six parameters,
i.e., the viscosity parameter α, the mass-loss rate due to
photoevaporation Mw , the starting time of the runaway gas
accretion onto the planet t0, the initial disk mass M td 0( ), the
initial planet mass M0, and the initial orbital radius r0 of
the planet.10 As nominal values, we set a = -10 3, = ´M 60

- M10 5
* (= ÅM20 ), =r 5 au0 , and = ´t 2 10 yr0

6 . In our
model, however, the final masses of giant planets depend on α,
M0, and r0 only weakly, as will be shown in Figure 4. In the
calculation of the final planet mass, t0 and Mw are included only
in the form of the product t M0 w (e.g., Equation (22)) if we use
the normalized time t t0. Thus, we can consider this product as
a single parameter. In the nominal case, we also set γ=1,
assuming a constant α (Section 3.2). The disk observations also
suggest γ;1 (e.g., Andrews et al. 2010). The cases with
g ¹ 1 will be shown in Figure 8.

Figure 3 shows the time evolution of the planet mass via gas
accretion for various initial disk masses M td 0( ) in the case of

= -
*

-M M10 yrw
9 1˙ . Note that these planets radially migrate

along the evolution track starting from 5 au of Figure 1. The
gas accretion onto the planet terminates due to photoevapora-
tion at tend. Filled circles represent the final planet mass at tend.
The final planet mass increases with the initial disk mass. A
Jupiter-mass planet is produced in a disk with =M t M0.01d 0( ) 
for =M M*  and = - -M M10 yrw

9 1  .

In Figure 4, we check for the dependence of the time
evolution on the parameters α, M0, and r0. As predicted in
Section 3.4, we find that the dependence on the viscosity
parameter α is slight, especially for > ´ -M M3 10p

4
*. The

dependence on the initial planet mass M0 is also very weak
when M Mp 0 . The time evolution and the final value of the
planet mass are weakly dependent on r0 for -M M10p

2
*.

This is because the ratio pn¢D 3 is proportional to rp
1 4. Hence,

we can say that the dependence of the final planet mass on
these parameters is weak. As a result of the independence of α,
the final planet mass is also approximately independent of the
initial disk radius, R td 0( ), because R td 0( ) depends on α (see
Equations (13) and (18)).
Figure 5 shows the final planet mass as a function of the

initial disk mass M td 0( ) in the case of = - -M M10 yrw
9 1
*

 . If all
of the gas supplied from the outer disk perfectly accretes onto
the planet, the final planet mass is +M Msup 0, where Msup is
given by Equation (23).11 This approximate final planet mass is
also plotted.
Both lines agree well with each other for -M M10p

3
*

because the assumption of perfect accretion onto the planet is
valid for such less massive planets (see Section 3.4). For

-M M10p
2
*, on the other hand, a major part of the gas

supplied from the outer disk does not accrete onto the planet
but flows to the innermost disk. That is, the accretion onto the
planet is imperfect in this case.
Note that, for a much less massive disk with <M td 0( )

t M2 0 w (= ´ - M4 10 3
* in this case), the planet cannot grow

through gas accretion because of early gas dissipation at the
planet-forming region due to photoevaporation. Then, such
a less massive disk produces no giant planet. For =M td 0( )

M0.01 *, the final planet mass (or the supplied mass) is only

Figure 3. Time evolution of the planet mass in the runaway gas accretion stage for
various initial disk masses in the case of = - -M M10 yrw

9 1
*

 . The initial disk
masses M td 0( ) are 0.007, 0.01, 0.02, and M0.1 * in the case of = -

*
-M M10 yrw

9 1˙ .
Other parameters are set to be nominal values (see the text). Filled circles represent
the final planet mass at tend.

Figure 4. Same as Figure 3 but with one of the parameters α, M0, or r0 varied
from the nominal values for =M t 0.007d 0( ) and M0.01 *. The solid lines
represent nominal cases. For dotted lines, α is set to be 0.01. The initial planet
mass and orbital radius are 5 MEarth and 1 au for the gray dashed and dotted–
dashed lines, respectively.

10 The initial disk radius, R td 0( ), is a function of the parameters t0 and α (see
Equations (13) and (18)). For the nominal values of α and t0, R td 0( ) is 42 au.

11 Mordasini et al. (2009) also assumed perfect accretion in their population
synthesis calculations.
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approximately 10% of M td 0( ). In this case, the disk mass at tend
is approximately 70% of M td 0( ), and 20% of M td 0( ) is
dissipated by the photoevaporation.

Figure 6 shows the dependence of the final planet mass on
the initial disk mass for various mass-loss rates Mw . From this
result, we are able to determine how massive a disk is required
at t0 for each final planet mass. The required disk mass
increases with the mass-loss rate Mw for a given final planet
mass. In these mass-loss rates, the final planet mass is always
less than or equal to 20% of M td 0( ). For Jupiter-mass planets
( -M M10p

3
* ), the ratios M M tp f d, 0( ) are only 10%, 5%, and

2%, with = -M 10w
9 , ´ -3 10 9, and - M10 8

* yr
–1, respectively.

In Paper II, we expected that the final planet mass should be
comparable to the disk mass at t0. This expectation was
inaccurate because Paper II did not include photoevaporation.
Although Paper II suggested a much less massive disk than the
MMSN disk for the formation of Jupiter, our new model
requires the mass (or the surface density) of the MMSN disk for
Jupiter because of mass loss due to photoevaporation. Even for
massive disks with ~M t M0.1d 0 *( ) , the ratio M M tp f d, 0( ) does
not increase much because of the imperfect accretion onto
massive planets, as shown in Figure 5. Thus, M M tp f d, 0( ) is
always kept small by the mass loss due to photoevaporation
and imperfect accretion onto the planet.

Figure 7 shows the disk dissipation time, tend, for the planet-
forming region due to photoevaporation. The disk dissipation
time is shortened for a higher mass-loss rate Mw . For a much
lower mass-loss rate than - M10 9

* yr
–1, the disk lifetime is too

long ( ´t 2 10end
7 yr). Such a weak photoevaporation with a

rate of ´ - M3 10 10
* yr–1 would be inconsistent with the

observed disk lifetime. Moreover, too strong photoevaporation
with a rate of ´ - M3 10 8

* yr
–1 would be inconsistent. Such

strong photoevaporation would dissipate the disk before the
planetary cores grow to the critical core mass. Thus, we can say

that the mass-loss rates in Figure 6 cover the entire reasonable
range. This reasonable range of = -M 10w

9 – - M10 8
* yr–1 is

consistent with previous estimations (e.g., Armitage et al. 2003;
Mordasini et al. 2009).
Although, thus far, we have assumed γ=1 (i.e., n µ r), we

also examine the γ-dependence of the final planet mass. The
index γ also determines the radial surface density distribution
asS µ g-r . In Figure 8, we also plot the final planet masses for
γ=0 (i.e., for a flat surface density distribution) as an extreme

Figure 5. Final planet mass as a function of the initial disk mass M td 0( ) (solid
line) in the case of = - -M M10 yrw

9 1
*

 . For comparison, M td 0( ) (dashed line)
and +M Msup 0 (dotted line) are also plotted. The latter is the planet mass when
all of the gas supplied from the outer disk perfectly accretes onto the planet. All
masses are normalized by M*.

Figure 6. Same as Figure 5 but for various mass-loss rates due to
photoevaporation, Mw . The light blue, blue, and black lines represent the
cases with = -M 10w

9 , 3×10−9, and - -M10 yr8 1
* , respectively. The dotted–

dashed line is the upper mass limit of exoplanets, and the gray dotted line
indicates the most frequent mass of exoplanets in Figure 1.

Figure 7. Disk dissipation time, tend, at the planet-forming region as a function
of the initial disk mass M td 0( ) for various mass-loss rates.
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case. The flat surface density case produces planets with
relatively low masses as compared with the case of γ=1. This
is because the disk dissipation is earlier in γ=0, as shown in
Equation (22). Since the case of γ=0 would be extreme, the
γ-dependence of the final planet mass would not be so
significant.

4.2. Which Disks Produce Giant Exoplanets?

With our planet formation model, we can connect the data of
giant exoplanets to observed disk masses. In Figure 6, we also plot
two reference planet masses: the upper limit mass (0.018M*) and
most frequent mass (;0.002 M*) of giant exoplanets. These
masses are obtained from the data of exoplanets observed by the
radial velocity method (in Figure 1).

The required disk mass for the upper limit of exoplanets
is 0.1–0.2M* for the reasonable mass-loss rates of =Mw

-10 9– - M10 8
*yr

–1. The mass of the most massive observed disk
is also M0.1 * . Thus, our model succeeds in reproducing the
most massive exoplanets within the observed disk masses and
the reasonable disk mass-loss rates. It is also expected that
exoplanets with the most frequent mass might be produced in
disks with the most frequent disk mass, which is~ M0.03 * for a
relatively old star-forming region of ~10 yr6 (Andrews et al.
2010). This indicates that the disk mass-loss rate of a few

- M10 9
* yr–1 is plausible for reproducing the most frequent

exoplanets in Figure 6.
We also estimate the masses of the disks forming each

exoplanet in Figure 1 for a given mass-loss rate, Mw , using our
simple model. As for the data of exoplanets, we use the planet
mass M isinp , the orbital radius (semimajor axis) rp, and the
mass of the central star M* obtained from the radial velocity
survey data inhttp://exoplanets.org. We simply put sin i=1.

We set M0, α, and γ to be nominal values. The estimated
disk masses depend primarily on the masses of exoplanets and
the mass-loss rate Mw . As shown in Figure 4, the orbital radii of
exoplanets and the parameters ofM0 and α do not greatly affect
the estimation of disk mass. Planets less massive than M0 are

excluded from our estimations. We consider exoplanets with
>r 0.1 aup only. Disk mass estimation is performed for

three mass-loss rates of = ´ -M 3 10w
10 , ´ -3 10 9, and

´ - M3 10 8
 yr–1. The starting time of runaway gas accretion

onto planets, t0, is set to be ´2 10 yr6 .
Figure 9 shows the distributions of the estimated masses of

the disks forming each exoplanet. The disk mass is normalized
by the mass of the central star. For comparison, we also plot the
mass distribution of disks observed in the Ophiuchus star-
forming region obtained by Andrews et al. (2010). Note that
the disk masses are normalized by the masses of each central
star. The distribution obtained for = ´ -M M3 10w

9  yr–1 has
almost the same peak as the observed disks. In this case, the
maximum disk masses in our model (0.13 M*) and the
observation (0.24 M*) are also close to each other. These
results are consistent with Figure 6. The obtained distribution
has no disks with < ´ -M M0.9 10d

3
* for = ´ -M M3 10w

9 
yr–1. This is because giant planets are not formed in less
massive disks with <M t t M2d 0 0 w( )  (= M0.012  in this case)
due to early disk dissipation (see Section 3.3). Only planets of
Neptune size or less are formed in such disks.
For = ´ -M M3 10w

8  yr–1, 90% of disks have masses
greater than M0.1 *. Some are estimated as >M M0.5d *. Thus,
it is difficult to explain the origin of giant exoplanets with the
observed disks under the relatively high mass-loss rate of
´ - M3 10 8

 yr–1. For a low mass-loss rate of ´ - M3 10 10


yr–1, on the other hand, the obtained mass distribution has a
peak at ´ - M5 10 3

*, which is inconsistent with the observed
disks. This low mass-loss rate also causes a very long disk
lifetime of ´3 107 yr for massive disks with M0.07 *. In
addition, from Figure 9, therefore, we can conclude that the
mass-loss rate of ´ - M3 10 9

 yr–1 is plausible to explain giant
exoplanets with realistic disks in our simple model.

Figure 8. Dependence of the final planet mass on the disk surface density
gradient.

Figure 9. Mass distributions of model disks forming exoplanets observed by
the radial velocity survey. The disk masses at t0 are estimated using our simple
model for = ´ -M 3 10w

10 (blue), ´ -3 10 9 (green), and ´ - M3 10 8
 yr–1

(red). For other parameter settings, see the text. The disk mass is normalized by
the mass of the central star. For comparison, we also plot the mass distribution
of disks observed in the Ophiuchus star-forming region (gray) given by
Andrews et al. (2010).
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5. Summary and Discussion

We developed a new model for giant planet formation by
including the effect of photoevaporation and a new model for
type II planetary migration proposed by Kanagawa et al.
(2018). As an effect of photoevaporation, we included disk
mass loss with a constant rate outside of the planet orbit. This
mass loss dissipates the disk gas at the planet-forming region
and terminates planet growth. Our model can predict the final
mass of a giant planet produced in a given disk. Our results are
summarized as follows.

1. Our simple model gives analytical and universal evol-
ution tracks of planets growing via runaway gas accretion
in the mass–orbit diagram (Equation (11) and Figure 1)
that are completely independent of disk properties (i.e.,
the mass, radius, temperature, or viscosity). Planets with a
few Jupiter masses or less suffer only a slight radial
migration at the runaway gas accretion stage because
of their rapid growth. Even the massive exoplanet with
∼20 MJ at 3 au is formed from solid cores initially
located within 20 au. Giant exoplanets crowded around
2 au can be explained if a large number of massive solid
cores are formed from 1.5 to 4 au of protoplanetary disks.
Such massive planetary embryos may be formed just
outside of the snow line, which is located at 1–3 au.

2. We examined the time evolution and final mass of a
planet using a simple disk model including the effects of
photoevaporation and gas accretion onto the planet. The
final planet mass depends primarily on two parameters
only (Figure 6). One is the product of the starting time of
accretion onto the planet, t0, and the mass-loss rate due to
photoevaporation, and the other is the initial disk mass at
t0. The final planet mass depends only slightly on the
initial disk radius, the viscosity, the initial planet mass,
and the initial orbital radius (Figure 4). The mass-loss rate
due to photoevaporation is a parameter but is constrained
in the range of - - M10 109 8

*– yr–1 by the lifetime of the
observed disks (Figure 7).

3. Giant planets grow through the accretion of the disk gas
supplied from the outer disk. Planets of Jupiter mass or
less can capture the supplied disk gas almost perfectly.
The final masses of such small planets are given by the
total supplied mass Msup of Equation (23). For massive
planets of several Jupiter masses or larger, a major part of
the gas passes by the planet and flows into the innermost
disk (Figure 5).

4. The ratio of the final planet mass to the initial disk mass
at t0 is always 0.1 because of photoevaporation and
imperfect accretion onto the planet (Figure 6).

5. With our formation model, we can connect the data of
giant exoplanets to the observed disk masses. The most
massive exoplanet ( M20 J ) is born in the most massive
TTauri disk with ~M M0.1d * for the reasonable range
of mass-loss rate due to photoevaporation. Our model
also succeeds in explaining the most frequent mass of
giant exoplanets (~2 MJ) with the most common disk
mass with ~ M0.02 * for a disk mass-loss rate of
´ - M3 10 9

 yr–1 (Figures 6 and 9). Thus, our model
successfully explains properties in the mass distribution
of giant exoplanets with the observed mass distribution of
protoplanetary disks for a reasonable range of the mass-
loss rate due to photoevaporation.

In our simple model, we focused on the formation of a single
giant planet in each protoplanetary disk and did not consider any
interactions between multiple planets. Interactions between multiple
planets, however, can be important to explain observed giant
exoplanets. Due to their gravitational interactions, multiple gas
giant systems can be orbitally unstable. The orbital instability of
such multiple systems often produces giant planets in eccentric
orbits and ejects some planets from the system at the same time
(jumping Jupiters model; e.g., Rasio & Ford 1996; Weidenschilling
& Marzari 1996; Lin & Ida 1997). Planet–planet scattering
followed by tidal circularization can form hot Jupiters with small
orbital radii (e.g., Rasio & Ford 1996; Nagasawa et al. 2008; Winn
et al. 2010). Since our universal evolution tracks indicate
insufficient type II migration for planets of Jupiter mass or less
because of their rapid growth via runaway gas accretion (Figure 1),
the scenario of planet–planet scattering would be plausible for hot
Jupiters. The type I migration of solid planetary cores before the
runaway gas accretion stage can be an alternative possible origin of
hot Jupiters, since their growth time is expected to be much longer
than that at the runaway gas accretion stage.
Indirect interaction through gas accretion onto planets would

also be important. We consider multiple giant planets growing by
gas accretion. If the outermost giant planet has a Jupiter mass or
less, the gas accretion onto the outer planet is almost perfect
(Figure 5), and the mass supply to inner planets is significantly
reduced. Thus, only the outermost giant planet can grow with gas
accretion in this system. When the outermost giant planet
has grown to several Jupiter masses or larger, however, its gas
accretion becomes imperfect, and the inner planets can also grow.
Jupiter and Saturn are also expected to have been influenced by
such an indirect interaction in their growth stages. Once Saturn
starts runaway gas accretion, Jupiter, which is located inside
Saturn’s orbit, cannot grow further due to the perfect accretion
onto Saturn. Thus, Saturn’s runaway gas accretion should start
just after Jupiter has grown to its present mass. Such a formation
scenario for Jupiter and Saturn is suggested by our simple model.
Both direct and indirect interactions should be included in future
formation models for multiple systems of giant planets.
The empirical formula of the gas accretion rate onto a planet

used in our model might need to be improved. Our empirical
formula of the mass accretion rate has been confirmed by the
hydrodynamical simulations of D’Angelo et al. (2003) and
Machida et al. (2010), but only for Jupiter-mass planets or
smaller. Only a few hydrodynamical simulations have been
performed for gas accretion onto a giant planet much heavier
than Jupiter. Kley & Dirksen (2006) showed through their
hydrodynamical simulations that massive giant planets with
masses  M3 J strongly excite an eccentric motion of gas at the
edge of the planetary gap. Owing to the eccentric motion, the
gas accretion rate onto the planet is greatly enhanced in their
simulations with planet masses  M5 J. On the other hand,
Bodenheimer et al. (2013) obtained much lower gas accretion
rates than in our formula in their hydrodynamical simulations
with  M3 J. Further extensive hydrodynamical simulations on
gas accretion onto high-mass giant planets should be performed
in order to fix the accretion rate accurately.
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