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Abstract

We construct a new equation of state (EOS) for numerical simulations of core-collapse supernovae and neutron-
star mergers based on an extended relativistic mean-field model with a small symmetry energy slope L, which is
compatible with both experimental nuclear data and recent observations of neutron stars. The new EOS table
(EOS4) based on the extended TM1 (TM1e) model with L=40MeV is designed in the same tabular form and
compared with the commonly used Shen EOS (EOS2) based on the original TM1 model with =L 110.8 MeV.
This is convenient and useful for performing numerical simulations and examining the influences of symmetry
energy and its density dependence on astrophysical phenomena. In comparison with the TM1 model used in EOS2,
the TM1e model provides a similar maximum neutron-star mass but smaller radius and tidal deformability for a
1.4Me neutron star, which is more consistent with current constraints. By comparing the phase diagram and
thermodynamic quantities between EOS4 and EOS2, it is found that the TM1e model predicts a relatively larger
region of nonuniform matter and softer EOS for neutron-rich matter. Significant differences between EOS4
and EOS2 are observed in the case with low proton fraction, while the properties of symmetric matter remain
unchanged.

Unified Astronomy Thesaurus concepts: Core-collapse supernovae (304); Neutron stars (1108); Compact
objects (288)

1. Introduction

The equation of state (EOS) is a critical input for astrophysical
simulations such as core-collapse supernovae and neutron-star
mergers, which require information over wide ranges of
temperature, proton fraction, and baryon density. The EOS should
include reasonable descriptions for both nonuniform matter at
subsaturation densities and uniform matter at high densities. Due
to the complex phase structure of stellar matter, it is not an easy
task to construct the EOS covering the full range of thermo-
dynamic conditions. Currently, there is a set of EOSs available for
supernova simulations, which have been summarized in the
review by Oertel et al. (2017). One of the most commonly used
EOSs is that of Lattimer & Swesty (1991), which was based on
the compressible liquid-drop model with a Skyrme force. Another
commonly used EOS is often referred to as the Shen EOS (Shen
et al. 1998a, 1998b, 2011), which used a relativistic mean-field
(RMF) model and Thomas–Fermi (TF) approximation with a
parameterized nucleon distribution for the description of nonuni-
form matter. Both EOSs employed the so-called single nucleus
approximation (SNA), where only a single representative nucleus
was considered instead of an ensemble of nuclei. It was shown
that SNA could adequately describe the thermodynamics of the
system (Burrows & Lattimer 1984). Recently, EOS tables were
developed beyond the SNA by including multiple nuclei in
nuclear statistical equilibrium (NSE) based on some RMF or
Skyrme parameterizations (Hempel & Schaffner-Bielich 2010;
Furusawa et al. 2011, 2013, 2017a; Steiner et al. 2013; Schneider
et al. 2017). In Shen et al. (2011a, 2011b), the authors employed a
hybrid approach for constructing EOS tables, where NSE was
used at low densities and SNA was adopted at intermediate
densities near the transition to uniform matter. It is known that
considering detailed nuclear composition plays an important role
in determining the electron-capture rates and neutrino-matter

interactions, but it has less influence on thermodynamic quantities
of dense matter. In addition, microscopic approaches based on
realistic nuclear forces have also been applied to construct the
EOS tables for astrophysical simulations (Furusawa et al. 2017b;
Togashi et al. 2017). In Schneider et al. (2019), the authors
developed the EOS tables based on the Skyrme-type parameter-
ization of the nuclear force, where the parameters were tuned to
reproduce the Akmal, Pandharipande, and Ravenhall EOS.
The recent developments in astrophysical observations provide

quantitative constraints on the EOS of dense matter. One strong
constraint comes from the mass measurements of massive pulsars,
PSR J1614-2230 (Demorest et al. 2010; Fonseca et al. 2016), PSR
J0348+0432 (Antoniadis et al. 2013), and PSR J0740+6620
(Cromartie et al. 2020), which requires the maximum neutron-star
mass to be larger than ∼2Me. Another constraint is provided by
the radius estimations from quiescent low-mass X-ray binaries and
objects with photospheric radius expansion bursts, which suggest
small neutron-star radii, but it has much larger uncertainties than
the mass measurements (Fortin et al. 2015). Furthermore, the first
detection of gravitational waves from a binary neutron-star merger,
known as GW 170817, provides an upper limit on the tidal
deformability of neutron stars (Abbott et al. 2017, 2018), which
implies small neutron-star radii also (Fattoyev et al. 2018; Most
et al. 2018). More recently, the second detection of gravitational
waves, GW 190425, was reported by LIGO and Virgo
Collaborations (Abbott et al. 2020), which implies a rather large
total mass of the binary system of -

+ M3.4 0.1
0.3 and may offer

valuable information for the EOS at high densities. The recent
observations by Neutron Star Interior Composition Explorer
(NICER) for PSR J0030+0451 provided a simultaneous measure-
ment of the mass and radius of a neutron star. From independent
analyses of the NICER data on PSR J0030+0451, Riley et al.
(2019) reported a mass of -

+ M1.34 0.16
0.15 with an equatorial radius of
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-
+12.71 1.19

1.14 km, while Miller et al. (2019) reported a mass of

-
+ M1.44 0.14

0.15 with a radius of -
+13.02 1.06

1.24 km. It is interesting to
notice that constraints on the neutron-star radii from various
observations are consistent with each other.

At present, some available EOS tables for supernova
simulations are inconsistent with these constraints. The EOS
based on the FSU parameterization predicts a maximum
neutron-star mass of only 1.75Me, which was improved by
introducing an additional phenomenological pressure at high
densities (Shen et al. 2011a). The RMF parameterizations, NL3
and TM1, lead to too large neutron-star radii in comparison with
the extracted values from astrophysical observations (Oertel
et al. 2017). In our previous work (Shen et al. 2011), the EOS
tables (EOS2 and EOS3) were constructed by employing the
TM1 model, while the nonuniform matter was described in the
TF approximation with a parameterized nucleon distribution. In
EOS2, only nucleonic degrees of freedom were taken into
account, while additional contributions from Λ hyperons were
included at high densities in EOS3. The TM1 model can provide
a satisfactory description for finite nuclei and a maximum
neutron-star mass of 2.18Me with nucleonic degrees of freedom
only, but the resulting neutron-star radii seem to be too large
(Sugahara & Toki 1994; Shen et al. 1998a). Therefore, we would
like to improve our EOS table in order to be consistent with all
available constraints from astrophysical observations.

It is well known that the neutron-star radius is closely related to
the density dependence of nuclear symmetry energy (Horowitz &
Piekarewicz 2001). There exists a positive correlation between the
slope parameter L of the symmetry energy and the neutron-star
radius (Alam et al. 2016). Since the TM1 model has a rather large
slope parameter L=110.8MeV, it predicts too large radii for
neutron stars as compared to the estimations from astrophysical
observations. In the present work, we prefer to employ an
extended version of the TM1 model with L=40MeV (hereafter
referred to as the TM1e model), where an additional ω–ρ coupling
term is introduced to modify the density dependence of the
symmetry energy (Bao et al. 2014a). By adjusting simultaneously
two parameters associated to the ρ meson in the TM1e model, we
achieve the slope parameter L=40MeV at saturation density and
the same symmetry energy as the original TM1 model at a density
of 0.11 fm−3. It is noteworthy that the TM1e and original TM1
models have the same isoscalar properties and fixed symmetry
energy at 0.11 fm−3, so that both models can provide very similar
descriptions of stable nuclei. There are also other extended TM1
models for varying the symmetry energy slope L by including the
ω–ρ or σ–ρ coupling term (Providência & Rabhi 2013; Pais &
Providência 2016), where the coupling constants associated to the
ρ meson are adjusted to yield the same symmetry energy as the
original TM1 model at a density of 0.1 fm−3. In our TM1e model,
we prefer to fix the symmetry energy at the density of 0.11 fm−3,
since this choice can provide almost unchanged binding energy
of 208Pb for different L (see Figure1 of Bao et al. 2014a).
Furthermore, the TM1e model predicts much smaller neutron-star
radii than the original TM1 model due to the difference in the
slope parameter L. It is found that the TM1e model yields a radius
of 13.1 km for a canonical 1.4Me neutron star, while the
corresponding value of the original TM1 model is as large as
14.2 km (Ji et al. 2019). According to the constraints based on
astrophysical observations and terrestrial nuclear experiments
(Birkhan et al. 2017; Oertel et al. 2017; Tews et al. 2017), the
slope parameter L=40MeV of the TM1e model is more favored
than L=110.8MeV of the original TM1 model. Moreover, the

neutron-star radius in the TM1e model is well within the new
observational data by NICER.
We have two aims in this article. The first is to construct a new

EOS table (hereafter referred to as EOS4) for numerical
simulations of core-collapse supernovae and neutron-star mergers
based on the TM1e model, which is compatible with both
experimental nuclear data and recent observations of neutron stars.
The second is to make a detailed comparison between the new
EOS4 and previous EOS2 in Shen et al. (2011), so that we can
examine the influences of symmetry energy and its slope on
various aspects of the EOS for astrophysical simulations. We
emphasize that both EOS4 and EOS2 are constructed using the
same treatment for nonuniform matter and uniform matter with
nucleonic degrees of freedom, but employ different RMF models
for nuclear interaction. Since the TM1e and TM1 models have the
same properties of symmetric nuclear matter but different
behavior of symmetry energy, the differences between these
two EOS tables are solely due to different density dependence of
symmetry energy. For convenience in use and comparison, the
new EOS4 is designed in the same tabular form covering the full
range of temperature, proton fraction, and baryon density as
described in Shen et al. (2011). For simplicity, only nucleonic
degrees of freedom are taken into account in EOS4, while the
appearance of hyperons and/or quarks at high densities is
neglected. By applying the new EOS4 together with EOS2 in
astrophysical simulations, it is possible to estimate the effects of
symmetry energy and its density dependence on core-collapse
supernovae, black hole formation, and binary neutron-star merger.
This paper is arranged as follows. In Section 2, we briefly

describe the framework for building the EOS table. In Section 3,
we discuss and compare the new EOS4 with previous EOS2 by
examining the phase diagram, compositions, and thermody-
namic quantities. Section 4 is devoted to a summary.

2. Formalism

For making the article self-contained, we give a brief
description of the RMF model and TF approximation used for
constructing the EOS table.

2.1. RMF Model

We employ the RMF model with an extended TM1
parameterization, namely the TM1e model, to describe the
nuclear system, where nucleons interact through the exchange
of various mesons including the isoscalar–scalar meson σ,
isoscalar–vector meson ω, and isovector–vector meson ρ (Bao
et al. 2014a; Bao & Shen 2014b). The nucleonic Lagrangian
density reads
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where Wμν and Raμν denote the antisymmetric field tensors for
ωμ and ρaμ, respectively.3 Under the mean-field approximation,
the meson fields are treated as classical fields and the field
operators are replaced by their expectation values. In a static
uniform system, the nonzero components are s s= á ñ, w w= á ñ0 ,
and r r= á ñ30 . We derive the equations of motion for mesons and
the Dirac equation for nucleons, which are coupled with each
other and could be solved self-consistently.

Compared with the original TM1 model adopted in Shen et al.
(2011), an additional ω–ρ coupling term is introduced in the
Lagrangian density (1), which plays a crucial role in determining
the density dependence of the symmetry energy (Horowitz &
Piekarewicz 2001; Cavagnoli et al. 2011; Providência &
Rabhi 2013; Bao et al. 2014a; Bao & Shen 2014b). By adjusting
the coupling constants, gρ and Λv, it is possible to control the
behavior of symmetry energy and its density dependence. In the
TM1e model, the slope parameter L=40MeV and the symmetry
energy Esym=31.38MeV at saturation density are obtained,
which fall well within the constraints from various observations
(Oertel et al. 2017). The corresponding values in the original TM1
model are L=110.8MeV and Esym=36.89MeV, which are
rather large and disfavored by recent astrophysical observations. In
Table 1, we present the coupling constants of the TM1e and TM1
models for completeness. It is shown that only gρ and Λv related
to isovector parts are different, while all other parameters remain
the same. It is noteworthy that the TM1e model provides the same
isoscalar saturation properties and similar binding energies of
finite nuclei as the original TM1 model, whereas the density
dependence of symmetry energy is very different. In Figure 1, we

plot the energy per baryon E/A of symmetric nuclear matter and
neutron matter as a function of the baryon number density nB. It is
shown that the behavior of symmetric nuclear matter is exactly the
same between the TM1e and TM1 models, while significant
differences are observed in neutron matter. This is related to
different density dependence of symmetry energy between these
two models, which is displayed in Figure 2. One can see that the
symmetry energy Esym in the TM1e model is slightly larger at low
densities and much smaller at high densities than that in the
original TM1 model. It is interesting and convenient to explore the
influence of symmetry energy and its density dependence on the
properties of the EOS for supernova simulations by using these
two models.
For the TF calculations of nonuniform matter, we need to

input the energy density and entropy density of uniform nuclear
matter, which are given in the TM1e model by
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Table 1
Coupling Constants of the TM1e and TM1 Models

Model gσ gω gρ g2 (fm
−1) g3 c3 Lv

TM1e 10.0289 12.6139 13.9714 −7.2325 0.6183 71.3075 0.0429
TM1 10.0289 12.6139 9.2644 −7.2325 0.6183 71.3075 0.0000

Figure 1. Energy per baryon E/A of symmetric nuclear matter and neutron matter
as a function of the baryon number density nB in the TM1e and TM1 models.

Figure 2. Symmetry energy Esym as a function of the baryon number density
nB in the TM1e and TM1 models.

3 Note that the coupling constant for isovector–vector meson, gρ, is different
by a factor of 2 from the one in Shen et al. (2011). We follow here the
convention of Bao & Shen (2014b).

3
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Here M*=M+gσσ is the effective nucleon mass. +fi
k and -fi

k

( =i p n, ) denote, respectively, the occupation probabilities of
nucleon and antinucleon at momentum k, which are given by
the Fermi–Dirac distribution,

{ [( ) ]} ( ) n= + +
-f k M T1 exp , 4i

k
i

2 2 1*

with the kinetic part of the chemical potential νi related to the
chemical potential μi as

( )n m w t r= - -w
r

g
g

2
. 5i i i3

The number density of protons (i= p) or neutrons (i= n) is
calculated by
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Using the results of the TM1e model as input in the TF
calculation, we compute the average free energy density of
nonuniform matter, and compare it with the one of uniform
matter. At a given temperature T, proton fraction Yp, and
baryon mass density ρB, the thermodynamically stable state is
the one having the lowest free energy density. We determine
the stable state and the phase transition between nonuniform
matter and uniform matter by minimizing the free energy
density.

2.2. TF Approximation

At the low temperature and subnuclear density region, heavy
nuclei are formed in order to lower the free energy of the system.
For the description of nonuniform matter, we employ the TF
approximation with a parameterized nucleon distribution, which
was developed by Oyamatsu (1993) and used in our previous
works (Shen et al. 1998b, 2011). The nonuniform matter is
modeled as a mixture of a single species of heavy nuclei, alpha
particles, and free nucleons outside nuclei, while the leptons are
approximated as an ideal relativistic gas separately. The
spherical nuclei are arranged in a body-centered-cubic (BCC)
lattice to minimize the Coulomb lattice energy (Oyamatsu 1993),
while the Wigner–Seitz cell is introduced to simplify the
calculation of free energy. It is likely that nonspherical nuclei,
known as pasta phases, may appear as the density approaches the
phase transition to uniform matter (Avancini et al. 2010; Pais &
Stone 2012; Okamoto et al. 2013; Bao & Shen 2015). The
appearance of pasta phases can smooth the transition to uniform
matter (see, e.g., Furusawa et al. 2013), but the effects on
thermodynamic quantities in the EOS table are rather small. For
simplicity, we consider only spherical configuration in con-
structing the EOS table.

In the Wigner–Seitz cell, a spherical heavy nucleus is located
at the center, while free nucleons and alpha particles exist
outside the nucleus. Each cell is assumed to be charge neutral
and the background electron gas is uniform. The density
distribution of particle i (i= p, n, or α) in the cell is assumed to
have the form
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where r denotes the distance from the center of the cell. Rcell is
the radius of the cell, which is related to the cell volume Vcell

and the lattice constant a by p= = =V a R N n4 3cell
3

cell
3

B B

with NB and nB being the baryon number per cell and the
average baryon number density, respectively. The baryon mass
density is defined as ρB=munB with mu=931.494MeV
being the atomic mass unit. For nonuniform matter at given
temperature T, proton fraction Yp, and baryon mass density ρB,
the thermodynamically stable state is the one with the lowest
free energy density, f=Fcell/Vcell. The free energy per cell
Fcell is given by

( ) ( )= + + -F E E E TS , 8cell bulk surf Coul cell

where the bulk energy Ebulk and entropy Scell are computed by
performing integrations over the cell. The local energy and
entropy densities can be expressed as the sum of contributions
from nucleons and alpha particles. We use the RMF results of
the TM1e model for the contributions of nucleons, while the
alpha particles are treated as an ideal Boltzmann gas. To
describe the dissolution of alpha particles at high densities, the
excluded-volume correction is taken into account as described
in Shen et al. (2011). For performing numerical integrations of
Ebulk and Scell, we use the tabulated results of the TM1e model
given by Equations (2) and(3) as input in the TF calculation,
and then the corresponding local densities contributed by
nucleons are computed from the input table using a linear
interpolation procedure. The input table is designed to include
871 grid points for the baryon number density nB and 1001 grid
points for the proton fraction Yp, so that the linear interpolation
can be used with good accuracy. As for the contribution of
alpha particles, it is calculated within the ideal-gas approx-
imation, where the alpha-particle binding energy Bα=
28.3MeV is taken into account (Lattimer & Swesty 1991; Shen
et al. 2011). Generally, the number density of alpha particles is
rather small, and therefore, the ideal-gas approximation can
provide a reasonable description for alpha particles.
In Equation (8), Esurf represents the surface energy due to the

inhomogeneity of nucleon distributions. We use the simple
form as

∣ ( ( ) ( ) )∣ ( )ò=  +E F n r n r d r, 9n psurf
cell

0
2 3

where the parameter =F 70 MeV fm0
5 is the same as that

adopted in Shen EOS with the original TM1 model, which was
determined in Shen et al. (1998a) by performing the TF
calculation for finite nuclei so as to reproduce the gross
properties of nuclear masses and charge radii, as described in
the appendix of Oyamatsu (1993). The reason why we use the
same value of F0 in the new EOS4 is because the TM1e model
can predict very similar properties of finite nuclei as the
original TM1 model (see Table 2 below), and hence the TF
calculation in the TM1e model with =F 70 MeV fm0

5 is able
to reproduce similar gross properties of nuclear masses and
charge radii. The Coulomb energy per cell ECoul is given by
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where f(r) denotes the electrostatic potential calculated in the
Wigner–Seitz approximation and !EC is the correction term for
the BCC lattice (Oyamatsu 1993; Shen et al. 2011).

At given temperature T, proton fraction Yp, and baryon mass
density ρB, we perform the minimization of the free energy
density with respect to independent variables in the parameter-
ized TF approximation. To avoid the presence of too many
parameters in the minimization procedure, we use the same
parameters Rp and tp for both proton and alpha-particle
distribution functions. Furthermore, =an 0in is adopted, so
that alpha particles disappear at the center of the nucleus. In
principle, the nucleon distribution in the Wigner–Seitz cell can
be determined in a self-consistently TF approximation, where
the set of coupled equations is solved by the iteration method in
coordinate space (Zhang & Shen 2014). However, the self-
consistent TF calculation requires much more computational
effort than the parameterized TF approximation. In our
previous work (Zhang & Shen 2014), we made a detailed
comparison between the self-consistent TF approximation and
the parameterized TF approximation, which showed that the
differences in thermodynamic quantities between these two
methods are negligible and would not affect the general
behavior of the EOS. Therefore, we prefer to employ the
parameterized TF approximation in the present calculation.
Furthermore, it is also helpful for examining the effects of
symmetry energy by comparing EOS4 with EOS2 based on the
same method.

After the thermodynamically favorable state is determined in
the minimization procedure, we calculate the thermodynamic
quantities like the pressure and chemical potentials from the
free energy per baryon ( )F T Y n, ,p b over the full range of the
EOS table by the thermodynamic relations:
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where np=YpnB and ( )= -n Y n1n p B are the average number
densities of protons and neutrons, respectively. The final EOS
table contains not only thermodynamic quantities but also
compositions of matter and other information. For convenience
in use and comparison, the new EOS4 is designed to have the
same tabular form as EOS2, while the definitions of the physical
quantities in the EOS table have been given in Appendix A of
Shen et al. (2011).
Compared to the treatment of nonuniform matter in Shen et al.

(2011), the results of the TM1e model are used as input in the TF
calculation of EOS4, instead of the original TM1 model used in
EOS2. The different density dependence of symmetry energy
between TM1e (L= 40MeV) and TM1 (L=110.8MeV) would
lead to more significant effects in the low Yp region. It is interesting
to make a detailed comparison between EOS4 and EOS2, so that
we can explore the influences of symmetry energy and its density
dependence on properties of the EOS for astrophysical simulations.

3. Results

We construct the new EOS4 based on the TM1e model with
L=40MeV covering a wide range of temperature T, proton
fraction Yp, and baryon mass density ρB for numerical
simulations of core-collapse supernovae and neutron-star
mergers. For convenience in practical use, we provide the
new EOS4 in the same tabular form within the ranges as given
in Table1 of Shen et al. (2011). All physical quantities
included in the EOS table have been defined in Appendix A of
Shen et al. (2011). Compared to the EOS2 based on the original
TM1 model in Shen et al. (2011), the new EOS4 is more
compatible with both experimental nuclear data and recent
observations of neutron stars. In Table 2, we present some
properties of nuclear symmetry energy, finite nuclei, and
neutron stars, so as to examine the compatibility of the models
with current constraints and experimental data. It is shown that
the results of finite nuclei in the TM1e and TM1 models are

Table 2
Properties of Symmetry Energy, Finite Nuclei, and Neutron Stars in the TM1e and TM1 Models

EOS4(TM1e) EOS2(TM1) Constraints

Symmetry energy Esym (MeV) 31.38 36.89 31.7±3.2 (Oertel et al. 2017)
L (MeV) 40 110.8 58.7±28.1 (Oertel et al. 2017)

Finite nuclei (RMF) E/A (208Pb) (MeV) 7.88 7.88 7.87 (Audi et al. 2003)
rc (

208Pb) (fm) 5.56 5.54 5.50 (Angeli & Marinova 2013)
rnp (208Pb) (fm) 0.16 0.27 -

+0.33 0.18
0.16 (Abrahamyan et al. 2012)

Finite nuclei (TF) E/A (208Pb) (MeV) 8.05 8.08 7.87 (Audi et al. 2003)
rc (

208Pb) (fm) 5.68 5.65 5.50 (Angeli & Marinova 2013)
rnp (208Pb) (fm) 0.10 0.21 -

+0.33 0.18
0.16 (Abrahamyan et al. 2012)

Neutron stars Mmax (Me) 2.12 2.18 1.928±0.017 (Fonseca et al. 2016)
2.01±0.04 (Antoniadis et al. 2013)

-
+2.14 0.09

0.10 (Cromartie et al. 2020)
R1.4 (km) 13.1 14.2 < <R10.5 13.31.4 (Abbott et al. 2018)

12.0<R1.4<13.45 (Most et al. 2018)
Λ1.4 652 1047 < 800 (Abbott et al. 2017)

-
+190 120

390 (Abbott et al. 2018)

Note. Esym and L are the nuclear symmetry energy and its slope parameter at saturation density, respectively. The binding energy per nucleon E/A, charge radius rc,
and neutron-skin thicknessrnp of

208Pb obtained in the RMF approach and TF approximation are compared with the experimental data in the last column.Mmax is the
maximum mass of neutron stars, while R1.4 and Λ1.4 denote the radius and tidal deformability for a 1.4Me neutron star, respectively.
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very similar to each other and in good agreement with
experimental data. On the other hand, the TM1e model
provides much smaller radius and tidal deformability for a
1.4Me neutron star, which is more consistent with the current
constraints. It is reasonable that different behaviors of the
symmetry energy between these two models have more
pronounced effects for neutron-rich objects like neutron stars.
More detailed properties of neutron stars obtained in the TM1e
model have been reported in our recent study (Ji et al. 2019).

To build the EOS table for astrophysical simulations, we
perform the free energy minimization at each T, Yp, and ρB for
both nonuniform matter and uniform matter. The thermo-
dynamically favorable state is the one with the lowest free
energy density among all configurations considered. The phase
transition is determined by comparing the free energy density
between nonuniform matter and uniform matter. In Figure 3,
we show the phase diagram in the ρB–T plane for Yp=0.1,
0.3, and 0.5 obtained in EOS4 (red solid lines) which is
compared with that of EOS2 (blue dashed lines). One can see
that the nonuniform matter phase with heavy nuclei can exist
only at low temperature and subnuclear density region. At low
densities, the uniform matter consists of a free nucleon gas
together with a small fraction of alpha particles. As the density
increases, heavy nuclei are formed in the nonuniform matter
phase to lower the free energy. When the density is beyond
~ -10 g cm14.1 3, heavy nuclei dissolve and the favorable state
becomes the uniform nuclear matter. The density range of the
nonuniform matter phase depends on both T and Yp. As the
temperature increases, the onset density of nonuniform matter
increases significantly, while the transition from nonuniform
matter to uniform matter is almost independent of T. When the
temperature reaches the critical value Tc, the nonuniform matter
phase disappears completely, i.e., heavy nuclei cannot be
formed at T>Tc.

It is interesting to note the effects of symmetry energy on the
boundary of nonuniform matter. For the case of Yp=0.5
shown in the top panel of Figure 3, there is no visible
difference between EOS4(TM1e) and EOS2(TM1) due to the
same isoscalar properties in the two models. For the case of
Yp=0.1 shown in the bottom panel, the critical temperature Tc
in EOS4(TM1e) is significantly higher than the one obtained in
EOS2(TM1). Furthermore, the transition density to uniform
matter in EOS4(TM1e) is slightly larger than that in EOS2
(TM1). This is consistent with the correlation between the
symmetry energy slope and the crust-core transition density of
neutron stars (Bao & Shen 2015). In Figure 4, we show the
density range of nonuniform matter as a function of Yp at
T=10MeV. It is seen that there is a clear difference between
EOS4(TM1e) and EOS2(TM1) in the low Yp region, where the
behavior of symmetry energy plays an important role in
determining the properties of neutron-rich matter. One can see
that heavy nuclei do not appear in EOS2(TM1) at T=10MeV
for Yp<0.15, whereas the nonuniform matter phase exists
until Yp∼0.04 in EOS4(TM1e). Similar effects of the
symmetry energy and its slope on the phase diagram were
also observed in Togashi et al. (2017), where the authors
constructed the EOS table using a nonrelativistic variational
method based on realistic nuclear forces. It is interesting to find
this similarity for both nonrelativistic and relativistic many-
body frameworks with small L values.

In Figure 5, we show the fractions of neutrons, protons,
alpha particles, and heavy nuclei as a function of the baryon

mass density ρB for Yp=0.1 at T=1, 4, and 10MeV. At
low densities, the matter is a uniform gas of neutrons and
protons together with a small fraction of alpha particles. The
alpha-particle fraction Xα increases with increasing ρB before
the formation of heavy nuclei, but it rapidly decreases in
the nonuniform matter where heavy nuclei use up most of the
nucleons. When the density increases beyond ~ -10 g cm14.1 3,
heavy nuclei dissolve and the matter is composed of uniform
neutrons and protons. In general, the results of EOS2 (thin
lines) are just slightly different from those of EOS4 (thick
lines). In the case of T=10MeV (top panel), heavy nuclei do
not appear in EOS2 with the TM1 model, but alpha particles
exist at intermediate densities. This is different from the results
of EOS4, where heavy nuclei are formed in the density range

r - 10 10 g cm13.6
B

14.0 3 with the TM1e model. Due to
the formation of heavy nuclei, Xn and Xp in this density range
are quite different between EOS4 and EOS2.
In nonuniform matter, the properties of heavy nuclei are

determined by minimizing the free energy density in the
parameterized TF approximation. We display in Figure 6
the resulting density distributions of protons and neutrons inside
the Wigner–Seitz cell for the case of T=1MeV and Yp=0.1 at
r = -10 g cmB

13.8 3. The radius of the Wigner–Seitz cell is
indicated by the hatch, while the radius of the heavy nucleus is
shown by the dashed–dotted line. The results obtained in EOS4
(red solid lines) are compared with those of EOS2 (blue dashed

Figure 3. Phase diagram in the ρB–T plane for Yp=0.1, 0.3, and 0.5. The
shaded region corresponds to the nonuniform matter phase where heavy nuclei
are formed.
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lines). It is shown that both the cell radius Rcell and the neutron
radius Rn (i.e., the radius of the heavy nucleus) obtained in EOS4
are larger than those in EOS2. Furthermore, the neutron-skin

thickness, Rn−Rp, is relatively small in the case of EOS4. This is
because the TM1e model used in EOS4 has a smaller symmetry
energy slope L=40MeV than the value of L=110.8MeV in the
TM1 model of EOS2. It is well known that the neutron-skin
thickness of finite nuclei is positively correlated to the symmetry
energy slope L. On the other hand, the density distributions, nn and
np, are also largely affected by the symmetry energy slope L. The
dripped neutron density nn

out of EOS4 is smaller than that of
EOS2, while the neutron density at the center nn

in is much larger.
This tendency can be understood from different behaviors of the
symmetry energy between TM1e and TM1 models. As shown in
Figure 2, the TM1e model has larger Esym at low densities but
smaller Esym at high densities compared to the TM1 model.
Therefore, the TM1e model results in relatively larger nn

in and
smaller nn

out than the TM1 model. It is seen that the density
gradient in EOS4 is larger than that in EOS2, which leads to larger
surface energy and nuclear radius. A similar behavior was also
reported in Togashi et al. (2017), where the authors used the model
with small L based on realistic nuclear forces and compared to
the results of EOS2. In Figures 7 and 8, we show, respectively,
the nuclear mass number A and charge number Z as a function
of the baryon mass density ρB at T=1MeV for Yp=0.5, 0.3,
and 0.1. It is seen that both A and Z weakly depend on ρB at low
densities and rapidly increase before the transition to uniform
matter. There are significant differences between EOS4 and EOS2
for small Yp. The values of A and Z obtained in EOS4 are larger
than those of EOS2. This is because the TM1e model with a small
L results in a large nuclear radius as shown in Figure 6, which
implies more protons and neutrons are bound inside the heavy
nucleus. The differences of heavy nuclei between EOS4 and EOS2
may affect the neutrino transport and emission in core-collapse
supernovae, which need to be explored in further studies.
It is essential to discuss the effects of symmetry energy on

the thermodynamic quantities in the EOS table. In Figure 9, we
show the free energy per baryon F as a function of the baryon
mass density ρB for Yp=0.1 and 0.5 at T=1 and 10MeV.
The results in EOS4(TM1e) are shown by solid lines, while
those in EOS2(TM1) are displayed by dashed lines for

Figure 4. Phase diagram in the ρB–Yp plane at T=10 MeV. The shaded region
corresponds to the nonuniform matter phase where heavy nuclei are formed.

Figure 5. Fraction of neutrons (green dashed–dotted line), protons (red dotted
line), alpha particles (blue dashed line), and heavy nuclei (black solid line) as a
function of the baryon mass density ρB for Yp=0.1 at T=1, 4, and 10 MeV. The
results obtained in EOS4(TM1e) and EOS2(TM1) are shown by thick and thin
lines, respectively.

Figure 6. Density distributions of protons and neutrons inside the Wigner–Seitz
cell for the case of T=1 MeV and Yp=0.1 at r = -10 g cmB

13.8 3. The results
obtained in EOS4 (red solid lines) are compared with those of EOS2 (blue dashed
lines). The radius of the Wigner–Seitz cell is indicated by the hatch, while the
radius of the heavy nucleus is shown by the dashed–dotted line.
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comparison. There is almost no difference between EOS4 and
EOS2 for the case of Yp=0.5 due to the same isoscalar
properties of the two models. In the case of Yp=0.1, the
values of F in EOS4 are smaller than those in EOS2, and their
difference increases with increasing ρB. This is because the
TM1e model has smaller symmetry energy than the TM1
model at high densities, which leads to smaller free energy in
neutron-rich matter. Comparing the cases between T=1MeV
and T=10MeV, the tendencies of the free energy are very
similar to each other. This implies that the dependence of the
symmetry energy effect on T is rather weak. We plot in
Figure 10 the pressure p as a function of ρB for Yp=0.1 and
0.5 at T=1 and 10MeV. The pressure is calculated from the
derivative of the free energy, as given in Equation (11). Due to
the formation of heavy nuclei in nonuniform matter, the
pressure has a rapid drop as shown in the case of Yp=0.5 in
the top panel (note that this drop does not appear when
contributions from leptons and photons are added). In contrast,
the pressure for Yp=0.1 is very smooth due to less fraction of
heavy nuclei. It is noticed that there is a clear discontinuity in
EOS4(TM1e) around the phase transition to uniform matter
~ -10 g cm14.2 3 for the case of Yp=0.1 and T=1MeV. In
fact, this discontinuity is also found in other cases (see, e.g.,
Figure7 of Shen et al. 1998b and Figure 14 of Togashi et al.
2017). This is because the phase transition is determined by
minimizing the free energy, and as a result, the free energy
shown in Figure 9 is a smooth function of the density.
However, the pressure calculated from the first derivative of the
free energy may exhibit a discontinuity at the first-order phase
transition (Pais et al. 2014). Compared to the results of EOS2
shown by the dashed lines, the pressure of uniform matter

beyond ~ -10 g cm14.1 3 in EOS4 for Yp=0.1 is relatively
small, so the discontinuity is more obvious in this case.
Generally, the pressure at high densities obtained in EOS4 is
lower than that in EOS2, which is a result of small density

Figure 7. Nuclear mass number A as a function of the baryon mass density ρB
at T=1 MeV for Yp=0.5, 0.3, and 0.1. The results obtained in EOS4 (red
solid lines) are compared with those of EOS2 (blue dashed lines).

Figure 8. Charge number Z as a function of the baryon mass density rB at
T=1 MeV for Yp=0.5, 0.3, and 0.1. The results obtained in EOS4 (red solid
lines) are compared with those of EOS2 (blue dashed lines).

Figure 9. Free energy per baryon F as a function of the baryon mass density ρB
with Yp=0.1 and 0.5 at T=1 and 10 MeV. The results obtained in EOS4 (red
solid lines) are compared with those of EOS2 (blue dashed lines).
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dependence of symmetry energy in the TM1e model. There-
fore, the new EOS4 is softer than EOS2 due to different
behaviors of the symmetry energy between these two models.
In Figure 11, we show the entropy per baryon S as a function of
ρB for Yp=0.1 and 0.5 at T=1 and 10MeV. At T=1MeV,
the values of S for Yp=0.5 are much smaller than those for
Yp=0.1. This is because most of the nucleons exist inside
heavy nuclei for the case of Yp=0.5, while there is a large
fraction of free neutrons for Yp=0.1 as shown in Figure 5. At
T=10MeV, the difference of S between Yp=0.5 and

Yp=0.1 is relatively small, because the formation of heavy
nuclei becomes less important as the temperature increases. It is
found that the difference of symmetry energy between TM1e
and TM1 models has minor influence on the entropy, and as a
result, the behavior of S obtained in EOS4 is very similar to that
in EOS2. Generally, the TM1e model with L=40MeV leads
to visible differences in EOS4 from EOS2 for Yp�0.3, and the
difference increases as the matter becomes more neutron-rich.

4. Summary

In this work, we constructed a new EOS table (EOS4) based
on an extended TM1 model with L=40MeV (referred to as
the TM1e model) for astrophysical simulations of core-collapse
supernovae and neutron-star mergers. Following the method
described in our previous study (Shen et al. 2011), we
employed the TF approximation with a parameterized nucleon
distribution for the description of nonuniform matter, which is
modeled as a mixture of a single species of heavy nuclei, alpha
particles, and free nucleons outside nuclei. At given temper-
ature T, proton fraction Yp, and baryon mass density ρB, we
perform the minimization of the free energy density with
respect to independent variables involved, so as to determine
the thermodynamically stable state with the lowest free energy.
For convenience in use and comparison, the new EOS4 was
designed in the same tabular form as the previous version
EOS2 presented in Shen et al. (2011). Now, both EOS4 and
EOS2 are available at http://my.nankai.edu.cn/wlxy/sh_en/
list.htm, http://user.numazu-ct.ac.jp/~sumi/eos/index.html,
and doi:10.5281/zenodo.3612487.
The main difference between the new EOS4 in this work and

the previous EOS2 in Shen et al. (2011) is that the TM1e model
with a small slope parameter L=40MeV was used in EOS4
instead of the original TM1 model with L=110.8MeV
adopted in EOS2. The different behaviors of the symmetry
energy between TM1e and TM1 lead to visible impacts on
various aspects of the EOS for astrophysical simulations,
especially in the neutron-rich region. The effects of the
symmetry energy and its slope observed in this work are
consistent with those reported in Togashi et al. (2017).
The present work was motivated by recent developments in

astrophysical observations, such as the binary neutron-star merger
GW 170817, which provided new constraints on the tidal
deformability and radii of neutron stars. It is likely that the TM1
model with L=110.8MeV used in EOS2 predicts too large
neutron-star radii compared to the current observations. Therefore,
we prefer to revise our EOS table by employing the TM1e model
with L=40MeV, which could provide a much smaller neutron-
star radius. It is well known that the neutron-star radius is
positively correlated to the symmetry energy slope L. By
introducing an additional ω–ρ coupling term, it is possible to
modify the density dependence of the symmetry energy according
to the constraints from astrophysical observations and terrestrial
nuclear experiments. In the TM1e model, we adjusted simulta-
neously two parameters associated to the ρ meson, and as a result,
the slope parameter L=40MeV and the symmetry energy
Esym=31.38MeV at saturation density were achieved, which fall
well within the constraints from various observations. It is
noteworthy that the TM1e model provides the same properties
of symmetric nuclear matter and similar binding energies of finite
nuclei as the original TM1 model, whereas the density dependence
of the symmetry energy is very different. This choice allows us to

Figure 10. Same as Figure 9, but for pressure p.

Figure 11. Same as Figure 9, but for entropy per baryon S.
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explore the effect solely from the symmetry energy without
interference of the isoscalar part.

To examine the effect of symmetry energy, we made a detailed
comparison between the new EOS4 and previous EOS2. It was
found that the TM1e model used in EOS4 could predict a
relatively larger region of nonuniform matter and softer EOS in
the neutron-rich region compared with the original TM1 model
used in EOS2. In the case of EOS4, the critical temperature, where
the nonuniform matter phase disappears completely, is clearly
higher than the one in EOS2 for the case of low Yp. Furthermore,
the transition density to uniform matter in EOS4 is slightly larger
than that in EOS2. In nonuniform matter, the mass number A and
charge number Z of heavy nuclei obtained in EOS4 were found to
be larger than those of EOS2. We also found noticeable
differences in the thermodynamic quantities like the free energy
and pressure, especially for neutron-rich matter at high densities.
All these differences between EOS4 and EOS2 become more
significant as Yp decreases. This is because the TM1e and TM1
models have the same isoscalar properties but different density
dependence of the symmetry energy.

It is interesting and important to explore the effects of symmetry
energy on astrophysical phenomena such as core-collapse super-
novae and neutron-star mergers. In our recent work (Sumiyoshi
et al. 2019), we have studied the influence of symmetry energy and
its density dependence in numerical simulations of gravitational
collapse of massive stars and cooling of protoneutron stars by
using a hybrid EOS, where the TM1e model was adopted for
uniform matter at densities above ~ -10 g cm14 3 combined with
the previous EOS2 of nonuniform matter at low densities. While
the TM1e EOS at high densities is shown to have major effects
on the birth of neutron stars in neutron-rich regions, the full table of
TM1e EOS including the part of low densities will have influence
on collapse and bounce of supernova cores, by nontrivial feedback
through compositional changes with neutrino reactions, thereby the
outcome of the (non)explosion and the compact object formation.
The numerical simulation of core-collapse supernovae and the
analysis of symmetry energy effects using the new EOS4 are
currently underway.
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