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Abstract

We study the heating rate of r-process nuclei and thermalization of decay products in neutron star merger ejecta
and macronova (kilonova) light curves. Thermalization of charged decay products, i.e., electrons, α-particles, and
fission fragments, is calculated according to their injection energy. The γ-ray thermalization processes are also
properly calculated by taking the γ-ray spectrum of each decay into account. We show that the β-decay heating rate
at later times approaches a power-law decline as ∝t−2.8, which agrees with the result of Waxman et al. We present
a new analytic model to calculate macronova light curves, in which the density structure of the ejecta is accounted
for. We demonstrate that the observed bolometric light curve and temperature evolution of the macronova
associated with GW170817 are reproduced well by the β-decay heating rate with the solar r-process abundance
pattern. We interpret the break in the observed bolometric light curve around a week as a result of the diffusion
wave crossing a significant part of the ejecta rather than a thermalization break. We also show that the time-
weighted integral of the bolometric light curve (Katz integral) is useful to provide an estimate of the total r-process
mass from the observed data, which is independent of the highly uncertain radiative transfer. For the macronova in
GW170817, the ejecta mass is robustly estimated as ≈0.05 Me for Amin�72 and 85�Amin�130 with the solar
r-process abundance pattern. The code for computation of the heating rate and light curve for given initial nuclear
abundances is publicly available.

Unified Astronomy Thesaurus concepts: Compact binary stars (283); Gravitational wave astronomy (675);
R-process (1324)

1. Introduction

A neutron star merger ejects a considerable amount of
neutron-rich material at subrelativistic velocities. The physical
conditions of merger ejecta are ideal for r-process nucleosynth-
esis (Lattimer & Schramm 1974, 1976; Symbalisty &
Schramm 1982; Freiburghaus et al. 1999), and it has been
suggested as the origin of r-process elements of the solar
system (see, e.g., Thielemann et al. 2017; Hotokezaka et al.
2018 and references therein). Radioactive decay of r-process
nuclei synthesized in merger ejecta produces long-term heat,
which powers a UV/optical/IR transient, a so-called macro-
nova (kilonova) (Li & Paczyński 1998; Metzger et al. 2010).
The first binary neutron star merger event, GW170817, was
indeed accompanied by a macronova (Abbott et al. 2017).
The light curves and spectra of this macronova are largely
consistent with r-process-powered macronova models (Andreoni
et al. 2017; Arcavi et al. 2017; Coulter et al. 2017; Cowperthwaite
et al. 2017; Drout et al. 2017; Evans et al. 2017; Kasliwal et al.
2017; Pian et al. 2017; Smartt et al. 2017; Tanvir et al. 2017;
Utsumi et al. 2017; see also a recent review by Nakar 2019).

The radioactive power of β-decay of r-process nuclei
declines with time with a characteristic power law (Metzger
et al. 2010; Goriely et al. 2011; Roberts et al. 2011; Korobkin
et al. 2012; Perego et al. 2014; Wanajo et al. 2014). This
behavior results from the existence of many different β-decay
chains statistically contributing to the heat (Li & Paczyński
1998; Metzger et al. 2010; Hotokezaka et al. 2017). The exact
shape of the radioactive power, however, depends on the ejecta
composition, which is primarily determined by the initial
electron fraction. Lippuner & Roberts (2015) and Wanajo
(2018) systematically studied the radioactive power under
various ejecta conditions. In addition to β-decay, α-decay and

spontaneous fission of heavy nuclei (A220) are suggested
to predominantly power macronovae (Wanajo et al. 2014;
Hotokezaka et al. 2016; Zhu et al. 2018; Wu et al. 2019). For
instance, α-decaying nuclei with an atomic mass number
of A=222–225 (Wu et al. 2019) and spontaneous fission of
254Cf may be an important heat source of macronovae (Zhu
et al. 2018; Wu et al. 2019). Thermalization of decay products,
γ-rays, electrons, α-particles, and fission fragments also plays
important roles for the heating rate (Barnes et al. 2016;
Hotokezaka et al. 2016; Kasen & Barnes 2019; Waxman et al.
2019). Thermalization of charged particles is first considered
by Barnes et al. (2016). More recently, Kasen & Barnes
(2019) and Waxman et al. (2019) analytically showed that the
decline of the late-time heating rate has a characteristic slope.
However, there is a discrepancy between the two papers. Kasen
& Barnes (2019) obtain a slope of ≈−2.3, while Waxman et al.
(2019) obtain a steeper slope of ≈−2.8.
Deriving a macronova light curve of ejecta with known

properties (mass, composition, and velocity profiles) requires
the calculation of two ingredients: the heating rate and the
radiative transfer. The latter is highly uncertain since it is based
on the poorly constrained frequency-dependent opacity of
r-process elements (Kasen et al. 2013; Tanaka et al. 2017). The
heating rate, however, can be calculated much more accurately,
since it depends mostly on physical properties of r-process
elements that are measured by experiments. Here we revisit
the thermalization processes with the goal of improving the
accuracy of estimates of the heating rate for a given
composition and outflow structure. We improve the estimates
of the thermalization of electrons by taking into account their
experimentally measured initial energy distribution, which
makes a significant difference at late times. The γ-ray
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thermalization calculations are also improved by taking into
account the γ-ray spectrum of each decay. Moreover, previous
estimates of the opacity for γ-rays were based on results
obtained for Type Ia supernovae (SNe Ia), where the ejecta is
dominated by iron-peak elements. Here we take into account
the opacity of r-process elements for the γ-rays that are
produced during their decay. We show that this opacity can be
significantly higher than that of iron-peak elements. We
develop a publicly available numerical code4 that calculates
the heating rate for ejecta with a given composition, mass, and
velocity profile. Based on this model, we also provide an
analytic approximated model.

Analytic macronova models are often used to estimate the
ejecta mass and composition from observed light curves (Li &
Paczyński 1998; Grossman et al. 2014; Metzger 2017; Perego
et al. 2017; Villar et al. 2017; Waxman et al. 2018). However,
the analytic modelings in the literature oversimplify the photon
diffusion process in a homologously expanding ejecta. Either
the time delay between the photon production and photon
emergence or the effect of the velocity gradient is not taken into
account. We present here an analytic modeling that is capable
of accounting for both effects. Comparing the observations and
modelings of the macronova light curves, the total mass of
r-process elements produced in GW170817 is estimated as
∼0.05 Me (Cowperthwaite et al. 2017; Drout et al. 2017;
Kasliwal et al. 2017, 2019; Perego et al. 2017; Tanaka et al.
2017; Rosswog et al. 2018; Waxman et al. 2018). However,
this mass estimate involves many systematic uncertainties,
mostly due to the uncertain opacity and to a lesser extent due to
the unknown heating rate and ejecta geometry (see, e.g.,
Kawaguchi et al. 2018; Kasliwal et al. 2019). Katz et al. (2013)
show that a time-weighted integral of the bolometric light curve
provides an estimate of the 56Ni mass produced in SNe, which
depends only on the heating rate and is completely independent
of the uncertain radiative transfer. The same method can be
used to estimate the total ejecta mass of r-process elements
from macronova light curves. We use our model of the heating
rate and apply this method to the GW170817 macronova to
obtain robust limits on the total mass of r-process elements
produced.

The structure of the paper is as follows. In Section 2, we
introduce decay modes relevant to the macronova heating rate.
We describe the thermalization processes of decay products in
Section 3. We develop an analytic model to calculate the
macronova light curve and then compare light-curve models
with the observed data of the macronova associated with
GW170817 in Section 4. We use the Katz integral to estimate
the ejecta mass in Section 5. We discuss the elemental
abundance pattern of merger ejecta in Section 6 and summarize
our results in Section 7.

2. Radioactive Power

The r-process nuclei freshly synthesized in neutron star
merger ejecta are initially unstable and are disintegrated
through β-decay, α-decay, and fission. In this work, we
distinguish the radioactive power from the heating rate. The
former describes the radioactive energy generation rate in
electrons, γ-rays, α-particles, and fission fragments. The latter
means the energy deposition rate of the kinetic energy of decay
products to the thermal energy of the ejecta. In this section, we

describe the radioactive power of β-decay, α-decay, and
spontaneous fission.

2.1. β-decay

The majority of r-process nuclei are initially in the
β-unstable region. In particular, those with atomic mass
numbers of A�209 undergo β-decay and approach the
stability valley. The lifetimes of β-unstable nuclides generally
increase as they approach the stability valley. Each β-decay
releases energy of ∼0.1–10MeV in a neutrino, an electron, and
often γ-rays, where only the electrons and γ-rays are relevant to
the macronova heating rate. The total β-decay energy release in
electrons and γ-rays is approximated by »b

d-q q t0 day  (Metzger
et al. 2010; Korobkin et al. 2012; Hotokezaka et al. 2017). This
power-law behavior is a consequence of the fact that
radioactive decay of many β-unstable nuclides with different
lifetimes contributes to the heat source at different times.
Therefore, the dependence on the exact composition is not very
strong. Nevertheless, the value of q0 can vary with composition
by about an order of magnitude, where ~ - -q 10 erg s g0

10 1 1 is
a typical value, and δ is typically in the range of −1.1 to −1.4.
For a solar abundance pattern with A�85 a good analytic
approximation of the radioactive power per unit of mass by
electrons and γ-rays is

» ´b
- - -q t t4 10 erg s g , 1e,

9
day

1.3 1 1( ) ( )

» ´b g
- - -q t t8 10 erg s g . 2,

9
day

1.4 1 1( ) ( )

Since the radioactive power of the actual elemental abundances
of merger ejecta may deviate from the above approximation, in
our numerical code we solve the time evolution of β-decay
chains to get the radioactive power of each decay chain. We use
the Evaluated Nuclear Data File library (ENDF/B-VII.1;
Chadwick et al. 2011) for the injection energies and lifetimes
of β-decays relevant to the macronova heating rate (half-lives
longer than 0.1 s). Figure 1 shows the half-life and mean energy
of electrons and γ-rays for β-decay. One can clearly see that the
mean electron energy of β-decay decreases with mean life.
In this work, to calculate β-decay heating rate, we use the

solar r-process abundance pattern as the final composition of
stable elements with minimum and maximum atomic mass
numbers Amin and Amax. This assumes that the β-decay chains
dominate the final composition. This assumption holds any
realistic initial abundance pattern leading to the solar r-process
pattern. Our choices of Amin and Amax in the following
calculations are motivated by the fact that there are two kinds
of r-process sources, light and heavy, which are separated at
A∼75–90, inferred from observations of metal-poor stars (see
Section 6.1 and Nakar 2019 for details).

2.2. Alpha-decay

The r-process nuclei with 209<A250 may be disintegrated
via α-decay and end up as 206Pb, 207Pb, 208Pb, or 209Bi. Each
α-decay releases energy of∼5–10MeV in the kinetic energy of an
α-particle. Since the lifetimes of α-unstable nuclides with a larger
atomic mass number are typically longer, the first α-decay of
decay chains may act as a bottleneck. Thus, the first α-decay
is often followed immediately by several α- and β-decays.
Wu et al. (2019) show that the α-decay chains of 222Rn
(3.8 days, 23.8 MeV), 223Ra (11.4 days, 30.0 MeV), 224Ra4 https://doi.org/10.5281/zenodo.3601589
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(3.6 days, 30.9MeV), and 225Ra (14.9 days, 0.4MeV)225Ac
(10.0 days, 30.2MeV), where the half-life and the total energy
release per decay chain are shown in the parentheses, are
particularly important for the macronova heating rate. The
radioactive power of each decay chain can be approximately
estimated as

t
» ´

´

a
t a

a

-
-

-

- -

q t e
Y

E

4 10
10 10 day

30 MeV
erg s g , 3

t8
5

1

,tot 1 1⎜ ⎟
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⎝

⎞
⎠

⎛
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⎝
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( )
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

where τ is the mean life, Eα,tot is the total energy release per
decay chain, and Yα is the initial number of a parent nuclide per
nucleon. We take the mean lives, Q-values, and branching
ratios from ENDF/B-VII.1 to calculate the radioactive power
of decay chains.

2.3. Spontaneous Fission

Finally, transuranium nuclei may be disintegrated via
spontaneous fission, which releases large amounts of energy,
∼200MeV, per decay. Although the abundance of such
elements produced in merger ejecta is highly uncertain owing
to the lack of experimental data, spontaneous fission potentially
contributes to the heating rate (Wanajo et al. 2014; Barnes et al.
2016; Hotokezaka et al. 2016). The radioactive power of
spontaneous fission is roughly estimated as

t
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where Esf is the energy release per spontaneous fission and Ysf
is the initial number of a parent nuclide per nucleon. For
instance, the spontaneous fission of 254Cf is suggested as a
possible energy source of macronovae at later times (Wanajo
et al. 2014; Zhu et al. 2018; Wu et al. 2019). In addition,
Wanajo et al. (2014) suggest that 259Fm and 262Fm significantly
contribute to the heating rate. In later sections, we consider
spontaneous fission of 254Cf, neglecting the minor contribution
of β-decays of the daughter nuclei following fission.

3. Thermalization

3.1. Charged Particles

Fast-moving charged particles produced by radioactive
decay deposit their kinetic energy to the ejecta thermal energy
through collisional ionization and excitation and Coulomb
collision with thermal electrons. At early times the density of
the expanding ejecta is high enough that the collisional energy
loss occurs on timescales shorter than one dynamical time. In
this regime, the heating rate is practically the same to the
radioactive power at any given time. At later times, however,
collisional thermalization takes longer than one dynamical
time. As a result, the heating rate deviates from the radioactive
power at a given time (Barnes et al. 2016; Kasen &
Barnes 2019; Waxman et al. 2019). Our calculation is similar
to the analytic methods presented by Kasen & Barnes (2019)
and Waxman et al. (2019), but we specify the injection energies
of decay products for each decay chain, which, as we show
below, can have a significant effect on the thermalization
efficiency at late times. Note that these energies are known
rather well since at the relevant times (t103 s) all unstable
nuclides are very close to the valley of stability where there is
direct experimental data.
The collisional energy loss of decay products per unit time is

described by Kstvρ, where Kst is the stopping cross section per
unit mass in units of MeV cm2 g−1, v is the velocity of a
fast particle, and ρ is the density of the stopping medium
(see Appendix A). Figure 2 shows βKst for electrons and α-
particles, where β is the velocity normalized by the speed of
light. This quantity is a proxy of the energy-loss rate of fast
particles. The stopping power due to ionization and excitation
peaks around the energy at which the velocity of a fast particle
is approximately the orbital velocity of an atomic electron with
the mean binding energy á ñ »I Z500 50 eV corresponding to

cZ0.05 50
1 2, where Z50 is the atomic number of the stopping

medium normalized by 50. For β-decay electrons, their initial
velocities are always much faster than this velocity, so that βKst

increases as they lose energy. As one can see in Figure 2, βKst

for electrons increases very slowly with decreasing energy. For
α-particles, they are injected around the peak of the ionization
stopping power, and the stopping power of thermal electrons
starts to dominate below 0.1–1MeV. Consequently, βKst for α-
particles also slowly increases in the energy loss process. The
roughly flat spectrum of βKst of electrons and α-particles

Figure 1. Mean electron energy (left) and mean γ-ray energy (right) released in each β-decay as a function of mean lifetime. Here elements with an atomic mass
number A�85 are included. The color of each point shows the solar abundance of r-process elements. Data are taken from ENDF/B-VII.1 (Chadwick et al. 2011).
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means that the fractional energy loss due to collision occurs
faster for particles with lower energy. On the contrary, the
initial velocities of fission fragments are typically slower than
the orbital velocity of atomic electrons. The ionization stopping
power behaves as βKst∝E for energies down to ∼10MeV,
where the stopping power of thermal electrons becomes more
important (see Figure 3), implying that the fractional energy
loss of fission fragments with different energies occurs with
roughly the same rate. Note that the dependence of βKst on the
atomic number of the stopping medium is rather weak. For
instance, the difference in βKst between Xe and U is ∼20% for
electrons and ∼50% for α-particles. Thus, we use βKst of Xe in
the following calculations.

For comparison of electron thermalization to that of α-
particles and fission fragments, it is useful to define an effective
opacity as κeff=βKst/E. With this definition, a charged
particle deposits a significant fraction of its energy after
spending one dynamical time t in ejecta when the effective
optical depth is τeff=κeffρct1. The effective opacity of β-
electrons, α-particles, and fission fragments is
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respectively.
The thermalization time is defined by the time where the

effective optical depth is unity. For electrons it is
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for α-particles
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and for fission fragments

k

»

´

r

-

-

t
C M

M

v

c

85 day
0.05 0.05

10 cm g 0.1
, 11

th,sf

1 2
ej

1 2

sf,eff
2 1

1 2
0

3 2
⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠ ( )



where Mej is the ejecta mass, v0 is the minimum ejecta velocity,
and Cρ is a coefficient that depends on the ejecta velocity
profile. Note that for electrons and α-particles there is an
implicit dependence on the particle injection energy via κeff
such that tthµ

~
E−1/2.

Figure 2. Stopping power for electrons and α-particles. Here the stopping medium is chosen to be xenon, which is in the second r-process peak, as an example. The
stopping power due to ionization and excitation is taken from ESTAR and ASTAR of the NIST database (http://physics.nist.gov/Star) for electrons and α-particles,
respectively. The stopping power due to bremsstrahlung is also shown for electrons. For α-particles, the contribution of the Coulomb collision with thermal electrons
is calculated by using Bohr’s formula (Bohr 1913). Here we assume that xenon is singly ionized.

Figure 3. Same as Figure 2, but for fission fragments (Mukherji &
Srivastava 1974).
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In this work, we use a radial density profile of merger ejecta:

r r=
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The density profile corresponds to the mass profile
µ -dm d v vln k, where k=n−3. Under the most reasonable

assumption that the fast particles are trapped within the ejecta
by random magnetic fields, Cρ can be approximated using the
mass-weighted density:

òr
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ej
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which for the power-law profile we consider gives5

p
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, 15

k 2( )( )
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where w=v0/vmax, e.g., Cρ≈0.03 for n=4 (k= 1) and
w=0.25.

The thermalization time, tth, is the characteristic time at
which thermalization becomes inefficient. An accurate calcul-
ation of the thermalization at ttth requires following the time
evolution of the kinetic energy of monoenergetic charged
particles, which is solved by

r g= - - -
dE

dt
K v

E

t
3 1 , 16m cst ad( ) ( )

where γad is the adiabatic index of charged particles. The value
of the adiabatic index, γad, depends on the type of decay
products, as well as energy. α-particles and fission fragments
are always nonrelativistic; therefore, γad is 5/3. For β-decay
electrons, γad varies in between 5/3 and 4/3 because the initial
kinetic energy ranges from ≈0.1 to a few MeV. The adiabatic
index of monoenergetic electrons is given by (e.g., Nakar et al.
2008)

g = +
+ + -

p
p

p p
1

3 1 1 1
, 17ad

2

2 2
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( )
( )

where p is the electron’s momentum in units of me and c. In the
calculation presented later, we use a constant value of γad at an
initial momentum of β-electrons (see Appendix B for the
approximated solution of Equation (16)).

For ttth, charged particles do not lose their kinetic energy
within one dynamical time. In this phase, one needs to take into
account not only particles injected at t but also those injected at
earlier times, which may contribute to or even dominate the
heating rate. The heating rate at a given time t is obtained by

integrating all the contributions of nonthermal particles:

å ò b r
t
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q t dt c K E t t t
N t

; , , 18
i

t

t
i m
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i
th st ,0

i0,
( ) ( ) ( ) ( ) ( )

where βKst(Ei,0; t′, t) is obtained by solving Equation (16) for a
given initial energy Ei,0 and injected time ¢t , and Ni(t) is the
number of a radioactive element i per unit mass. Here the lower
limit of the integral t0,i corresponds to the time when the oldest
nonthermal charged particles surviving at t are produced
(Appendix B).
Figure 4 shows the heating rates of β-decay. Here we assume

the solar r-process abundance of 85�A�209 (left) and
141�A�209 (right). The former choice includes the second
r-process peak, and the latter does not. Including the second r-
process peak enhances the heating rate and results in more
radioactive power in γ-rays. The electron heating rates start to
deviate significantly from the radioactive power around 20–30
days after the merger, and after 50–80 days they reach an
asymptotic decline with a power law µ -q tth

2.8 . We find that
this transition of the heating rate occurs rather slowly compared
to the heating rate with the analytic description presented by
Barnes et al. (2016).
Figure 5 shows the heating rate and radioactive power of α-

decay and fission. For α-decay, we use the initial abundances
of α-decaying nuclei of 222�A�225 of the DZ31 model
(Wu et al. 2019). Note that this model predicts the production
of particularly large amounts of these nuclei. The late-time
heating rate of α-decay approaches∝t−2.8. For spontaneous
fission, we consider only 254Cf, and its heating rate declines as
t−3 around t∼τ and t−5 for t?τ.
This power-law behavior at later times ttth is quite

general and explained as follows. The total number of
nonthermal charged particles is approximately constant with
time for t>tth, i.e., ò tå ¢ ¢ »dt N t consti i i( ) . This is true in
the case in which many β-decay chains contribute to the
heating rate, as well as in the case in which a few decaying
species dominate the radioactive power around the thermaliza-
tion time, i.e., tτ∼tth. If one neglects the energy
dependence of βKst, the time dependence of the thermalization
rate is simply rµ µ -q t t tth

3( ) ( ) . Given the weak energy
dependence of βKst for electrons and α-particles, the time
evolution of the heating rate is approximately described as

b aµ
~

-q t t decay and decay . 19th
2.8( ) ( ‐ ‐ ) ( )

For fission products βKst drops as they cool adiabatically, and
therefore the asymptotic decay of qth is faster.
Analytic solutions of the β-decay heating rate of r-process

elements are derived by Kasen & Barnes (2019) and Waxman
et al. (2019). Kasen & Barnes (2019) provide a general formula
for the late-time heating rate and find that the heating rate
approaches µ

~
t−7/3 when neglecting the logarithmic factor of

the stopping cross section, i.e., βKst,e µ
~

E−0.5. Waxman et al.
(2019) take a proper account of this factor, obtaining βKst,e µ

~
E−0.15. With this energy dependence of the cross section they
obtain a steeper decline of the heating rate µ

~
t−2.8. We use the

complete stopping cross-section formula, with the logarithmic
factor (see Figure 2); therefore, the time dependence of our
late-time electron heating rate is µ

~
t−2.8.

Waxman et al. (2018) interpret a break in the observed
bolometric light curve of the GW170817 macronova around

5 The thermalization time of electrons obtained by plugging Equation (15)
into Equation (9) is similar to the one obtained by Waxman et al. (2018), with
one difference. Waxman et al. (2018) do not consider the maximal velocity of
the ejecta, and therefore they are missing the term (1−wk)2 in the denominator
of Equation (15). This term may be important when the velocity distribution is
flat, i.e., k<1.
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∼6 days as the thermalization break, which is a transition of the
electron heating rate from the regime of µ -q teth,

1.3 to ∝t−2.8.
This scenario requires that the thermalization break occurs at
relatively early time and that it is rather sharp. As one can see
in Figure 4, which is obtained for ejecta that is similar to the
one inferred for GW170817, the thermalization break seems to
take place on a significantly longer timescale and is too gradual
to reproduce the observed break. We discuss the break in the
observed light curve in Section 4.

3.2. Gamma-Rays

Gamma-rays are often produced by radioactive decay, and
their energy ranges from ∼0.1 to a few MeV. These γ-rays may
interact with electrons and deposit their energy to the ejecta’s
thermal energy through Compton scattering, photoelectric
absorption, and pair creation. Figure 6 shows the opacity of
r-process elements for γ-rays. Also shown is the spectral
energy distribution of γ-rays produced by β-decays. Note that
the opacity of heavy material (140�A�238) is larger by a
factor of 1.5 than that of lighter elements at low energies
0.5 MeV because photoelectric absorption is enhanced for
high-Z atoms. In addition, γ-rays are emitted at slightly lower
energies for heavier elements.

Typically γ-rays first lose their energy through Compton
scattering. The down-scattered γ-rays then may be destroyed
by photoelectric absorption. It is not trivial to evaluate the
energy deposition fraction of γ-rays. In the context of SNe Ia,
the results of Monte Carlo simulations of γ-ray transfer show
that the fraction of γ-ray energy that is deposited to the thermal
energy at any given time can be estimated rather accurately
by finding a timescale t0 (Swartz et al. 1995; Jeffery 1999;
Wygoda et al. 2019). This timescale, t0, is defined by the time
at which the effective optical depth for γ-rays is unity,
τγ,eff=1:

t k= Sg g t , 20m,eff ,eff ( ) ( )

where κγ,eff is the purely absorptive effective opacity and the
mass-weighted column density of the ejecta is

ò ò ò
r

p
r

W WS = +
¥x

xt d x
t

M

d
ds t s

,

4
, , 21m

3

ej 0
( ) ( ) ˆ

( ˆ ) ( )

= S
- -C M v t , 22ej 0

2 2 ( )

where Ŵ is the unit solid angle vector. CΣ is a constant that
depends on the structure of the ejecta and can be found by
carrying out the integral in Equation (21). For the ejecta power-
law profile that we consider (Equation (12)) the integration
should be carried out numerically. The analytic formula

» +SC w
k

w
0.1 0.003 23( )

provides a good approximation (up to a factor of order unity)
for 0<k<5 and 0.1<w<0.5, which is the most relevant
range for the merger ejecta.
The effective opacity κγ,eff accounts for the fraction of the

energy that γ-rays deposit when they propagate through a unit
of column mass density. It is averaged over the γ-rays produced
by each radioactive decay

åk k=g g gf E , 24
i

i i,eff , ( ) ( )

where fγ,i is the fraction of energy emitted in the γ-ray line i of
energy Ei and the opacity term κγ(Ei) is approximated by the
geometric mean of the mass and the energy attenuation
opacities at Ei. The values of κγ,eff are typically in a range
from ≈0.02 to ≈1 cm2 g−1 depending on the γ-ray spectrum.
As we noted above, κγ,eff of heavy elements is larger than
lighter elements, and therefore an accurate calculation requires
to specify κγ,eff for each decay for a given ejecta composition.
In Equation (6) we approximate κγ(Ei) by the geometric

mean of the mass attenuation and the energy attenuation
opacities. We would like to discuss this approximation shortly.
Opacity tables provide two types of opacities, mass attenuation
opacity, κγ,m, which is the opacity for interaction, and energy
attenuation opacity, κγ,e, which is the mass attenuation opacity
multiplied by the fraction of its energy that the γ-ray loses in a
single interaction. As evident from Figure 6, κγ,e is smaller by
up to a factor of 2 than κγ,m. The opacity used in Equation (24),
κγ, includes the fraction of energy that is lost during the
interactions of the γ-rays, and therefore κγ is lower than the
mass attenuation opacity. But the energy loss takes place also
in multiple interactions and not only in a single interaction, and
therefore κγ is higher than the energy attenuation opacity, and
thus κγ,e<κγ<κγ,m. At large optical depth the energy loss is
dominated by multiple interactions and therefore κγ≈κγ,m,

Figure 4. Radioactive power and heating rate of β-decay in electrons and γ-rays. The solar r-process abundance pattern with a minimum atomic mass number of
Amin=85 (left) and 141 (right) is assumed. Also shown in both panels is an analytic heating rate, 1010(t/day)−4/3 erg s−1 g−1. For the thermalization processes, we
assume an ejecta mass of 0.05Me, v0=0.1c, vmax=0.4c, and n=4.5.
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while at low optical depth energy deposition is dominated by a
single interaction and κγ≈κγ,e. However, both the high and
the low optical depth regimes are of no interest since in the
former energy losses are negligible and in the latter they are so
severe that electrons dominate the energy deposition by
β-decay and the contribution of γ-rays can be neglected. In
the interesting regime where τγ,eff≈1 the value of κγ should
be calculated numerically, but its value should be somewhere
between κγ,e and κγ,m. Given the uncertainty in other
parameters, such as the ejecta geometry, there is not much
added value in finding the exact value of κγ and more so as it
depends on the optical depth. Therefore, we use the approx-
imation κγ≈(κγ,eκγ,m)

1/2. Figure 7 shows the time evolution
of κγ,eff, as calculated by taking the sum in Equation (24) over
the γ-rays emitted at any given time by the entire r-process
elements (according to the specific composition), and κγ is
approximated by the geometric mean of the mass and energy
attenuation opacities. Its values around 1 day are ≈0.07 and
0.4 cm2 g−1 for 85�A�209 and 141�A�209, respectively.

The timescale t0 is estimated as

k» Sgt t , 25m0 ,eff
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Because 25%–75% of the β-decay energy (excluding neutrino)
goes to γ-rays, the heat deposition rate decreases by a factor of
∼2 on this timescale.

The fraction of the γ-ray’s energy deposited to the ejecta is
then calculated by

t» - - = - -g gf t t t1 exp 1 exp . 27,eff 0
2( ) ( ) ( ( ) ) ( )

4. Light Curve

Thermal photons created by radioactive heat diffuse out from
the ejecta and produce the macronova emission. In this process
radiation transfer with the expansion line opacity, which varies
with wavelength, is required to calculate the spectrum of

macronovae (Barnes & Kasen 2013; Kasen et al. 2013; Tanaka
& Hotokezaka 2013; Wollaeger et al. 2018; Tanaka et al.
2019). Radiation transfer simulations show that the bolometric
light curve can be approximately obtained by using a gray
opacity. For example, the opacity is ∼10 cm2 g−1 for
lanthanide-rich ejecta (Barnes & Kasen 2013; Tanaka &
Hotokezaka 2013; Tanaka et al. 2017) and ∼0.1–1 cm2 g−1 for
lanthanide-free ejecta (Kasen et al. 2015; Tanaka et al.
2017, 2019).
Semianalytic macronova models were developed in the past

by various authors (e.g., Li & Paczyński 1998; Metzger et al.
2008; Piran et al. 2013; Metzger 2017; Waxman et al. 2018).
These models use various approximations, but they are all built
on the Arnett model for SNe (Arnett 1982), and they provide
good order-of-magnitude estimates. However, one shortcoming
of these models is that they treat properly only radiation that
escapes from regions where the diffusion time is shorter than
the dynamical time. In the stratified structure of the ejecta the
contribution of deeper layers, where the diffusion time is longer
than the dynamical time, can be nonnegligible, especially at
early times. Below we present a model, which is also a variant
of the Arnett model, that takes proper account of the
contribution from these regions (see also Nakar 2019).
We model the bolometric light curve and temperature by

adding photons diffusing out from spherical mass shells, where
each mass shell is characterized by a mass mi, expansion
velocity vi, and gray opacity κi. The internal energy of each
mass shell is calculated by solving the first law of thermo-
dynamics of radiation-dominated gas:

= - + -
dE

dt

E

t
Q t L t , 28i i

i irad,( ) ( ) ( )

where Ei is the shell’s internal energy and =Q t m q ti i th( ) ( )  is
the total heating rate of the shell. The radiation luminosity of
each shell, Lrad,i, should account for the following three
different regimes: (i) the trapping regime, i.e., t<tdiff,i; (ii) the
diffusive regime where the radiation escapes over a diffusion
time, i.e., vt/c<tdiff,i<t; and (iii) the free streaming regime,
i.e., τi<1. Here τi is the optical depth from the ith shell to the
observer:

òt k r=
¥

t r r dr, 29i
v ti

( ) ( ) ( ) ( )

Figure 5. Same as Figure 4, but for α-decay (left) and spontaneous fission (right). Here we assume the initial abundance of α-decay nuclei of (Y(222Rn), Y(223Ra),
Y(224Ra), Y(225Ra))=(4.0×10−5, 2.7×10−5, 4.1×10−5, 2.7×10−5) (Wu et al. 2019). 254Cf with an initial abundance of 2.0×10−6 is used. The same ejecta
profile as in Figure 4 is used.
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and tdiff,i=τivit/c is the diffusion time. In the single-zone
approximation, the bolometric luminosity can be approximated
as L≈E/(tdiff+vt/c), where tdiff is the diffusion time
evaluated with the ejecta mass, typical opacity, and velocity
(Metzger 2017). The sum, tdiff+vt/c, provides a smooth
transition from the trapping regime to the free streaming
regime. When considering the effect of the ejecta velocity
structure, however, the single-zone approximation does not
work very well because the diffusion time of different regions
to the observer is different. In order to take this effect into
account, we calculate the radiation luminosity of each shell as
follows. A good approximation for the energy escape fraction
from each shell over one dynamical time when tdiff,i>t is
given by (Piro & Nakar 2013)

»f
t

t
erfc

2
, 30i

i
esc,

diff,⎛
⎝⎜

⎞
⎠⎟ ( )

where erfc is the complementary error function. When
tdiff,i<t, most of the radiation energy escapes, i.e., fesc,i≈1,
over a diffusion time for τi?1 and over the light-crossing
time for τi=1. Since fesc,i≈1 for tdiff,i<t, Equation (30)
provides a good approximation at all times, and the escape time
of the radiation can be approximated by

» +t t t
v t

c
min , . 31i i

i
esc, diff,( ) ( )

With these quantities, the luminosity of each shell is
approximated as

»L
f E

t
. 32i

i i

i
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Then, the bolometric luminosity is calculated by adding the
contribution of all the shells.
Figure 8 shows the bolometric light curve of the macronova

of GW170817 according to the analysis of the observation of
Waxman et al. (2018). Also shown are the blackbody
temperature data obtained by Waxman et al. (2018) and Arcavi
(2018). The bolometric luminosity shows a roughly steady
decay asµ

~
t−1 up to day 7, at which point there is a sharp break

to a steep decay as t−3. It is important to note that the analysis
is robust up to day 7 but at later times it is less certain. The
reason is that until day 7 almost the entire emission is within
the observable bands, while at later times a significant fraction
of the emission is in unobservable IR bands. Moreover, after
day 7 also the spectrum is becoming highly nonthermal,
making any extrapolation of the emission to the IR bands
uncertain. Thus, while there is most likely a break around
day 7, it is unclear that the post-break slope is as steep as t−3.
Figure 8 includes also two data points that are the IR detection
in a single band, 4.5 μm, by Spitzer (Kasliwal et al. 2019). The
spectrum at these times is clearly not thermal (there are
simultaneous nondetections at 3.6 μm) and cannot be used for a
reliable estimate of the bolometric luminosity. Therefore, we
consider here only the actual luminosity that was observed
within the Spitzer 4.5 μm band, which is a strict lower limit of
the bolometric luminosity.
Figure 8 shows also a semianalytic model of the bolometric

light curve and the evolution of temperature at the photosphere.
Here we assume a total ejecta mass of 0.05 Me composed of
r-process elements with the solar abundance of 85�A�238.
The density profile is assumed to be ρ∝v−4.5 for 0.1c<
v<0.4c. To calculate the bolometric light curve, we use
radially varying opacity of 0.5 cm2 g−1 for v>0.2c and
3 cm2 g−1 for v�0.2c. With these parameters, the calculated
light curve and temperature agree with the observed data
reasonably well, including the early peak at 0.5 days and the
break of the light curve around 1 week.6 The reason for this

Figure 6. Gamma-ray spectrum of β-decay and mass and energy attenuation coefficients of r-process material for γ-rays. The nuclear abundance pattern is assumed to
be the solar r-process abundance with mass numbers of 85�A 140 (left) and 140�A�238 (right). The γ-ray spectra at 1 day are shown.

Figure 7. Effective γ-ray opacity of r-process nuclei as a function of time for
two different compositions.

6 The blackbody temperature at ∼0.5 days depends on how to extrapolate the
ultraviolet data at 4 hr. Including the ultraviolet data reduces the temperature.
The two data points at ∼0.5 days from Arcavi (2018) in Figure 8 correspond to
with and without the ultraviolet data.
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break in our modeling can be understood by comparison of the
observed luminosity at any time to the heating rate at the same
time. At early times, the photon diffusion wave is at the outer
part of the ejecta, so that only a small fraction of the total
radioactive deposited energy diffuse out and the emergent
luminosity is lower than the total heating rate. Thus, during this
time, energy is accumulated within the ejecta, and due to
adiabatic losses, the energy in the ejecta is comparable to the
energy deposited over the last dynamical time. On a timescale
of a few days, the diffusion wave proceeds deeper in the ejecta,
so the diffusion time through most of the ejecta becomes
comparable to the dynamical time. In this phase, all the
deposited photons escape to the observer, and together with
these photons, also radiation that was deposited at earlier times
diffuses out from the ejecta, leading to a bolometric luminosity
that is higher than the instantaneous heating rate. At later times,
where the diffusion wave has crossed all the ejecta, deposited
heat escapes on time that is shorter than the dynamical time,
and the bolometric luminosity approaches the instantaneous
heating rate. Just before this last phase, there must be a phase
where the bolometric light curve declines faster than the
heating rate, corresponding to the break around 1 week in
Figure 8. The same behavior is seen in all SNe I, where after
the peak there is an episode where the bolometric luminosity
drops much faster than the 56Ni heating rate before it converges
to the late-time 56Ni tail. Note that in our model the break is
unrelated to any change in the thermalization efficiency. After a
week the contribution of the γ-rays is already negligible, while
the coupling of the electrons is still efficient. The break in the
heating rate that corresponds to inefficient electron coupling is
seen only at tth,β≈30 days. These results are different from
those of Waxman et al. (2018, 2019) that attribute the break at
day 7 to tth,β. The reason for this difference is, at least in part,
due to the fact that Waxman et al. (2018, 2019) assume that the
energy of the deposited electrons is 1 MeV, while experimental
data show that at the relevant time it is typically lower (see
Figure 1), which corresponds to a larger value of tth,β.

An interesting point that we find in the attempt to fit the data
with different compositions is that including a β-decay chain,
88Kr→88Rb→88Sr, enhances the peak luminosity, where
88Kr and 88Rb have a half-life of 2.83 hr and 17.8 minutes,
respectively. This decay chain releases ∼5MeV in electrons
and γ-rays. For example, the peak luminosity with Amin=85 is
higher by a factor of ∼2 than that with Amin=90. The high
peak luminosity of the macronova GW170817 may indicate
that this decay chain significantly contributes to the heat around
the peak.
The dependence of the heating rate on the composition may

provide some clues about the ejecta. Figure 9 shows the
bolometric light curves powered by β-decay with different
atomic mass ranges (assuming a solar abundance ratio). The
light-curve model with 85�A�140, where there are no
elements beyond the second peak, is similar to the one with
85�A�209. The reason is that the contribution of elements
with A>140 to the heating is minor. Thus, at least for heating,
these elements are not required, although the late-time
spectrum and color evolution of the macronova GW170817
suggest that the ejecta contains elements beyond the second
peak (e.g., Chornock et al. 2017). In the case that only the first-
peak elements are included (72�A�85), the luminosity is
too low to reproduce the late-time Spitzer data (see Kasliwal
et al. 2019 for details). The reason is that during the first week
the heat deposition is dominated by a single chain of the
elements with A=72 and there are no elements with a
significant contribution at late times. When heavier elements
are added, 72�A�209, the emission at late time is brighter
and marginally consistent with the strict Spitzer lower limits.
The reason for the rather low late-time heating (compared to
the case with 85�A�209) is that also here the large mass
carried by first-peak elements that do not contribute to the late-
time emission is coming on the expense of the heavier elements
that contribute to the late-time heating. Given that the Spitzer
lower limits account only for the emission seen within the
Spitzer band, it is most likely that the actual bolometric

Figure 8. Bolometric light curve and temperature evolution of the macronova associated with GW170817. The total and electron heating rates are also shown. The
temperature is evaluated at the photosphere by assuming local thermodynamic equilibrium. Here we use a total ejecta mass of 0.05 Me, the β-decay heating rate with
the solar r-process abundance (85�A�209), and the ejecta profile with n=4.5, v0=0.1c, and vmax=0.4c (see Equation (12)). The opacity is assumed to be
0.5 cm2 g−1 for v>0.2c and 3 cm2 g−1 for v�0.2c. The bolometric data are taken from Waxman et al. (2018). The Spitzer 4.5 μm detections Δν–Lν are considered
as lower limits on the bolometric luminosity (Kasliwal et al. 2019; see discussion in the text). The observed temperature is shown only up to day 7 (Arcavi 2018;
Waxman et al. 2018), when the spectrum is quasi-thermal.
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luminosity is at least a factor of a few brighter than these lower
limits, and therefore it is most likely that the ejecta did not
contain a significant fraction of the first-peak elements. Finally,
when only elements beyond the second peak are included
(140�A�209), the luminosity at early times is lower by a
factor of ∼5 than the observed data. This suggests that while
elements above the second peak are probably present in the
ejecta (based on their opacity signature), the total ejecta mass is
dominated by elements with atomic mass 85�A�140.

Figure 10 depicts the bolometric light curve and temperature
in the case that α-decay heating is included assuming the
abundances of α-decaying nuclei used for Figure 5. Because
the heating rate at later times is significantly enhanced by
the α-decay contribution, the total ejecta mass required to
fit the data is reduced to≈0.023Me. Here we use the same density
profile as above and an opacity of 0.5 cm2 g−1 for v>0.14c and
3 cm2 g−1 for v�0.14c. In this model, the light curve at
1 dayt10 days declines with∝t−1, resulting from the fact
that the α-decay heating kicks in around 2 days. Then,
the model light curve turns to decline as ∝t−2.8 owing to the
thermalization inefficiency. However, the observed light curve falls
more quickly than the model light curve, although this may be a
result of an underestimate of the observed bolometric luminosity at
t7 days.

5. Ejecta Mass Estimate Based on the Katz Integral

Estimates of the ejecta mass that uses light-curve modeling
are degenerated with the opacity, heating rate, and density
profile, as well as the outflow geometry and the viewing angle.
Katz et al. (2013) suggest a powerful method to obtain the total
mass of radioactive elements, Mrad, from observed bolometric
light-curve data, Lbol(t), as long as the heat deposition rate is
known. The following relation between the heating rate and the
bolometric light curve should be valid for all times t?tf:

ò ò¢ ¢ ¢ = ¢ ¢ ¢M t q t dt t L t dt , 33
t t

rad 0 th 0 bol· ( ) · ( ) ( )

where tf is the time where the diffusion wave crosses the entire
ejecta and the bolometric luminosity approaches the instanta-
neous heating rate, i.e., Lbol(t?tf)≈Q tth ( ) . Since the heating
rate Qth

 depends on the ejecta composition, Mrad is determined
for a given ejecta composition (see Nakar et al. 2016 for an
application to core-collapse SNe). We emphasize that this
method is fully independent of the opacity, which is the most
uncertain quantity, and it is also almost independent of the
ejecta geometry and velocity profile.7 The light curves of the
macronovae of GW170817 decline rapidly at t>7 days, and at
the same time the spectrum becomes nonthermal, suggesting
that by that time the diffusion wave crossed most of the ejecta,
and therefore the available bolometric light curve data are
sufficient in order to use this method to estimate Mrad, and
under the assumption that the ejecta is composed entirely by r-
process elements, Mej=Mrad.
Figure 11 (left) depicts the time-weighted integral of the

heating rate and bolometric luminosity. Here we use the
β-decay and α- and β-decay models shown in Figures 8 and 10.
The integral of the heating rate approaches that of bolometric
luminosity around 10 days for the β-decay model and 5 days
for the α- and β-decay model. Figure 11 (right) shows the Katz
integral as a function of the minimum atomic mass number,
where we assume the solar r-process abundance pattern with
Amin�A�209. The gray region shows the integral with the
ejecta mass of 0.05±0.01 Me at 12.5 days. Also shown as red
and blue horizontal bars are the right-hand side of
Equation (11) based on the observed bolometric data of the
macronova in GW170817 taken from Waxman et al. (2018)
and Kasliwal et al. (2017), respectively. The comparison
between these two quantities suggests that the ejecta mass in
this event is ≈0.05 Me for Amin�72 and 85�Amin�130
with the solar r-process abundance pattern.

6. Discussion

6.1. Abundance Pattern of Light r-process Elements

Here we consider the elemental abundance pattern of merger
ejecta based on a hypothesis that r-process elements of
r-process-enhanced metal-poor stars are predominantly pro-
duced by neutron star mergers. The observations of these stars
reveal that their elemental abundance patterns beyond the
second r-process peak (A140) are practically indistinguish-
able among them and in agreement with the solar pattern. The
abundances of the elements between the first and second peaks
(90A120) relative to the europium abundance are
scattered around the solar pattern within 1 dex. Notably,
r-process-enhanced metal-poor stars contain systematically less
amounts of Gd and Ge (the first r-process peak) by 1 dex than
that expected from the solar abundance pattern. If the
hypothesis is correct, these observational facts suggest that
mergers produce r-process elements with an abundance similar
to the solar pattern with a minimum atomic mass number of
75Amin90 (see Nakar 2019).
The r-process nucleosynthesis calculations show a clear

dependence of the abundance pattern on the initial electron
fraction, Ye (Korobkin et al. 2012; Perego et al. 2014; Wanajo
et al. 2014; Lippuner & Roberts 2015; Wanajo 2018). Heavy

Figure 9. Bolometric light curves for different nuclear compositions. The ejecta
mass is chosen to be 0.1Me for 141�A�209 and 0.05Me for the others. The
values of the opacity are the following: 0.3 cm2 g−1 (v>0.18c) and 3 cm2 g−1

(v�0.18c) for Amin=72, 0.5 cm2 g−1 (v>0.2c) and 3 cm2 g−1 (v�0.2c)
for Amin=85, and 0.1 cm2 g−1 (v>0.18c) and 3 cm2 g−1 (v�0.18c) for
Amin=141.

7 The only dependence on the ejecta structure is through the thermalization
time, which affects the heat deposition rate on the left-hand side of
Equation (33).
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elements beyond the second peak are produced for Ye0.2.
When Ye∼0.25, synthesized nuclei are mostly those around
the second peak. The first-peak elements are predominantly
produced for Ye0.35. Numerical simulations of dynamical
ejecta (Freiburghaus et al. 1999; Bauswein et al. 2013;
Sekiguchi et al. 2015; Foucart et al. 2016; Radice et al.
2016, 2018; Bovard et al. 2017) and disk wind (Fernández &
Metzger 2013; Metzger & Fernández 2014; Perego et al. 2014;
Fernández et al. 2015; Just et al. 2015; Fujibayashi et al. 2017;
Siegel & Metzger 2018) show that Ye is broadly distributed in a
certain atomic number range and the abundance patterns are
typically consistent with the solar pattern with a minimum
atomic mass of Amin∼80–120. Note, however, that lighter
elements are synthesized more when neutrino absorption
significantly changes the electron fraction. This occurs when
the mass of the accretion disk is sufficiently large (Just et al.
2015; Miller et al. 2019) and a long-lived massive neutron star
is formed (Metzger & Fernández 2014; Lippuner et al. 2017;
Shibata et al. 2017). Our results, which are based on the heating

rate that is needed to explain the observed light curve, suggest
that if the composition of the ejecta from GW170817 resembles
the solar abundance pattern, then Amin�85 and its mass was
dominated by elements in the range 85<A<140. This result
is consistent with the estimates of the opacity, which suggest
that a significant fraction of the ejecta was lanthanides poor and
that in the part of the ejecta that contained lanthanides the
fraction was comparable to or lower than the solar abundance
(e.g., Kasen et al. 2017; Tanaka et al. 2017; Waxman et al.
2018).

6.2. Abundance Pattern of Superheavy r-process Elements

The macronova heating rate is potentially dominated by
α-decay at later times depending on the initial abundance of
superheavy nuclei of 222�A�225 (Wu et al. 2019). For
instance, the α-decay heating rate is more powerful than
β-decay by a factor of ∼5 after 10 days when Y(AX)/Y
(Eu)∼1, where AX is 222Rn, 223Ra, 224Ra, and 225Ra. However,
the contribution of α-decay heating is still under debate since

Figure 10. Same as Figure 8, but including α-decay heating and a total ejecta mass of 0.023 Me. The initial abundance of (Y(222Rn), Y(223Ra), Y(224Ra),
Y(225Ra))=(4.0×10−5, 2.7×10−5, 4.1×10−5, 2.7×10−5).

Figure 11. Katz integral of heating rates and light curves (left) and Katz integral up to 12.5 days as a function of the minimum atomic mass number (right). The solar
r-process abundance with A�Amin is used. The total r-process mass is set to be 0.05±0.01 Me, and the ejecta velocity profile with v0=0.1c, vmax=0.4c, and
n=4.5 is used. Here we consider only β-decays as a heat source. Also shown as horizontal bars are the time-weighted integral of the observed bolometric light curve
of the macronova GW170817 (the right-hand side of Equation (33)). The bolometric data are taken from Waxman et al. (2018), spectral energy distribution
integration, and Kasliwal et al. (2017).
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different nuclear mass models predict different initial abundances
of these nuclei (Wanajo 2018; Wu et al. 2019). Here we briefly
discuss the initial abundance of α-decaying nuclei inferred
from the measurements of Pb of r-rich stars. The measured
abundance ratio of Pb to Eu of r-rich stars, Y(Pb)/Y(Eu), is ≈4
for typical r-rich stars and ≈5 for the solar r-process pattern. The
abundance of Pb created via α-decays should not exceed this
value. If all Pb results from the decay chains starting with 222Rn,
223Ra, and 224Ra, their initial abundances are Y(AX)/Y(Eu)∼1,
and this case corresponds to the upper limit on the α-decay
contribution:

a b q t q t t5 10 days . 34th, th,( ) ( ) ( ) ( ) 

In reality, however, it is more likely that Pb is created by a
larger number of decay chains. If we consider that α-decaying
elements are synthesized with a flat abundance pattern
extending up to A=250 as a zeroth-order estimate of the
production ratios (see, e.g., Eichler et al. 2015 for the
abundances of heavy nuclei after r-process), we obtain Y
(AX)/Y(Eu)∼0.12, corresponding to that the fraction of the
heating rate of α-decay to that of β-decay is about 0.6.

7. Summary

We study the radioactive power of r-process nuclei and
thermalization of γ-rays, electrons, α-particles, and fission
fragments. We calculate the coupling of the gamma-rays and
the charged particles to the ejecta material using experimental
data of the injection energies and lifetimes. We find that the
optical depth for gamma-rays depends on the ejecta composi-
tion and on the time after the merger and that it is typically
higher than the one found for 56Ni in ejecta of SNe Ia. About
1 day after the merger its average value is κγ,eff≈0.07
cm2 gr−1 for light r-process elements (A  140) and κγ,eff≈
0.4 cm2 gr−1 for heavy r-process elements (A140). For
ejecta with ∼0.05 Me of mostly light r-process elements and a
minimum velocity of about 0.1c, as inferred for the ejecta of
GW170817, the gamma-rays decouple from the ejecta after
about 2 days. We calculate the time at which the coupling of
charged particles becomes inefficient. For β and α particles this
time depends on the injection energies as Ei,0

−0.5, and since the
injection energies of β particles vary by more than an order of
magnitude between different elements, this dependence should
be taken into account. For an ejecta mass of 0.05 Me and
minimum velocity of 0.1c, we find that the β-decay heating
rate starts to deviate from the radioactive power at ∼10 days
and gradually approaches ∝t−2.8 after the thermalization time
tth,β∼55 days. We find that the asymptotic heating decay rate
after the coupling becomes inefficient is ∝t−2.8 for α and β
particles (in agreement with Waxman et al. 2019) and t−3 for
spontaneous fission (254Cf). Note that for α and fission particles
these scalings are valid on timescales not much longer than the
mean lifetime of their parent nuclei.

We wrote a code that computes the heating rate for a given
initial nuclear abundance and outflow parameters. This code
takes into account the specific gamma-ray and electron
injection energies of each element and follows their instanta-
neous heating rate numerically. The code is publicly available
at https://doi.org/10.5281/zenodo.3601589.

We also present an analytic modeling to calculate macronova
light curves arising from a homologously expanding ejecta with

a velocity gradient. Our model accounts for the photon
diffusion from different mass shells with different expansion
velocities. This light-curve modeling is also included in the
code. With the β-decay heating rate of r-process nuclei, we
demonstrate that an ejecta model composed of low-opacity
material, κ≈0.5 cm2 g−1, in the outer part and higher-
opacity material, κ≈3 cm2 g−1, in the inner part reproduces
well the macronova observations of GW170817. We interpret
the break in the observed bolometric light curve after
about 1 week as a result of the photon diffusion wave end
crossing a significant fraction of the ejecta rather than as a
result of a thermalization break as suggested by Waxman et al.
(2018).
We use the comparison between a time-weighted integral of

the heating rate and that of the observed bolometric light curve
to estimate the total mass of r-process nuclei produced in
GW170817. This method allows us to obtain an estimate of the
ejecta mass that is completely independent of the uncertain
ejecta opacity and that is only weakly dependent on the outflow
geometry. Assuming that the macronova in GW170817 is
powered by β-decay of r-process elements with solar
abundance pattern over some range of atomic masses, we
obtain a total mass of ≈0.05 Me for a minimum atomic mass
number of Amin�72 and 86�Amin�130. In the case that
Amin is outside of the above ranges, a larger ejecta mass is
required to explain the data. When the fit to the entire light
curve is also considered, we find that the late-time heating rate
suggests that the ejecta did not contain a significant fraction of
first-peak elements (i.e., Amin85). Instead, it was probably
dominated by elements at and below the second peak, i.e.,
85�A�140. The ejecta probably contained elements above
the second peak (as suggested by the IR opacity at late times),
but these elements did not have to play a major role in the
heating of the ejecta.

We thank Daniel Kasen, Shinya Wanajo, Eli Waxman, and
Meng-Ru Wu for useful discussions. K.H. is supported by the
Lyman Spitzer Jr. Fellowship at the Department of Astro-
physical Sciences, Princeton University. E.N. was partially
supported by the Israel Science Foundation (grant 1114/17)
and by an ERC consolidator grant (JetNS).

Appendix A
Stopping Power of Charged Particles

Here we describe the energy loss of fast particles due to
ionization and excitation and Coulomb collision with thermal
electrons. The stopping power for electrons due to ionization
and excitation is given by the Bethe formula:
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where E is the electron’s kinetic energy and Z2, M, and á ñI are
the atomic number, the atomic mass, and the mean excitation
energy of the stopping medium, respectively.
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The stopping power for fission fragments due to ionization
and excitation at low energies is approximated by (Mukherji &
Srivastava 1974)
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where Z1 is the atomic number of a fission fragment, A2 is the
mass number of the stopping medium, and

»f Z Z0.28 . 372 3( ) ( )
The stopping power for a charged particle moving at v in a

thermal plasma with thermal velocity vth= v< c/137 is given
by (Bohr 1913)
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where ωp is the plasma frequency and χ is the free electron
fraction. Finally, we use the ASTAR database (http://physics.
nist.gov/Star) for the stopping power for α-particles due to
ionization and excitation.

Appendix B
Energy Loss of Charged Particles in Ejecta

Equation (16) can be solved analytically (Kasen &
Barnes 2019; Waxman et al. 2019). In the following, we
describe the solutions used to calculate thermalization in this
work. Introducing dimensionless variables, ò=E/E0 and τ=
t/tth, where E0 is the initial energy and tth

2 = Cρc(κstβ)0Mej/
v Eej

3
0, Equation (16) is rewritten as

t t t
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where the stopping power at E0 is (Kstβ)0 and Kstβ=
(Kstβ)0ò

− a. If we neglect the energy dependence of xad, the
energy of a fast particle injected at τ0 is found as ( ¹a 1)
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The first part corresponds to the adiabatic energy loss, and the
second part corresponds to the collisional energy loss. For
a=1 (fission fragments), we have
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