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Abstract

We estimate the Eddington bias on weak-lensing mass measurements of shear-selected galaxy cluster samples. The
mass bias is expected to be significant because constructions of cluster samples from peaks in weak-lensing mass
maps and measurements of cluster masses from their tangential shear profiles share the same noise. We quantify
this mass bias from large sets of mock cluster samples with analytical density profiles and realistic large-scale
structure noise from ray-tracing simulations. We find that, even for peaks with signal-to-noise ratio larger than 4.0
in weak-lensing mass maps constructed in a deep survey with a high source galaxy number density of 30 arcmin−2,
derived weak-lensing masses for these shear-selected clusters are still biased high by ∼55% on average. Such a
large bias mainly originates from upscattered low-mass objects, which is an inevitable consequence of selecting
clusters with a noisy observable directly linked to the mass measurement. We also investigate the dependence of
the mass bias on different physical and observational parameters, finding that the mass bias strongly correlates with
cluster redshifts, true halo masses, and selection signal-to-noise thresholds, but having moderate dependence on
observed weak-lensing masses and survey depths. This bias, albeit considerable, can still be modeled accurately in
statistical studies of shear-selected clusters, as the intrinsic scatter around the mean bias is found to be reasonable in
size. We demonstrate that such a bias can explain the deviation in X-ray properties previously found on a shear-
selected cluster sample. Our result will be useful for turning large samples of shear-selected clusters available in
future surveys into potential probes of cosmology and cluster astrophysics.

Unified Astronomy Thesaurus concepts: Observational cosmology (1146); Galaxy clusters (584); Weak
gravitational lensing (1797)

1. Introduction

Clusters of galaxies have proven to be a sensitive probe of
cosmology (for a review, see Allen et al. 2011). The number
counts of these gravitationally collapsed structures are, in
particular, sensitive to both the geometry and the structure
formation history in our universe. The availability of clusters
across a large redshift range allows us to obtain better
constraints on dynamic parameters such as the dark energy
equation of state compared to analyses relying on a single
snapshot of the cosmic history (Weinberg et al. 2013). Modern
cluster cosmology constraints are usually derived from
complex likelihood analyses (Vikhlinin et al. 2009; Mantz
et al. 2010, 2014; Rozo et al. 2010; de Haan et al. 2016; Planck
Collaboration et al. 2016; Bocquet et al. 2019), whose success
relies heavily on one’s ability to understand the relations
between halo masses and various observables from which
cluster samples are selected.

Large cluster samples suitable for constraining cosmology
are usually selected through observables that are related to
baryonic properties of galaxy clusters. Indeed, due to the
extreme environment within these massive systems, the
swarming galaxies and the hot intracluster medium (ICM)
can be detected across a wide range of wavelengths. Modern
cluster samples are usually constructed through observations in
one of the following three wavelength regimes: with X-ray
signals (e.g., Edge et al. 1990; Gioia et al. 1990; Vikhlinin et al.
1998; Clerc et al. 2014) from the thermal bremsstrahlung, at

millimeter wavelengths (e.g., Hasselfield et al. 2013; Bleem
et al. 2015; Planck Collaboration et al. 2016) as a result of the
thermal Sunyaev–Zel’dovich effect (Sunyaev & Zeldovich
1972), and in the optical via overdensities of red galaxies (e.g.,
Gladders & Yee 2005; Koester et al. 2007; Oguri 2014; Rykoff
et al. 2016) or probing clustering directly with the matched filter
technique (e.g., Wen et al. 2009; Milkeraitis et al. 2010; Szabo
et al. 2011; Bellagamba et al. 2018). These observables are linked
to halo masses through semiempirical scaling relations. Using
these baryonic properties alone to constrain free parameters in the
scaling relations together with the cosmological parameters, a
framework known as self-calibration (Majumdar & Mohr 2004),
is usually difficult. State-of-the-art cluster cosmology analyses
require additional mass information to perform mass calibration
on these samples (e.g., Wu et al. 2010; Oguri & Takada 2011;
Huterer et al. 2015).
Weak gravitational lensing is one of the best means to provide

an accurate mass estimate (e.g., Bardeau et al. 2007; Hoekstra
2007; Hamana et al. 2009; Okabe et al. 2010; Zhang et al. 2010;
Mahdavi et al. 2013; Okabe & Smith 2016; Umetsu et al. 2016;
Dietrich et al. 2019). Measurements of shape distortions of
background galaxies, a quantity often referred to as the shear,
can be used to derive nearly unbiased projected cluster masses
on average (Clowe et al. 2004; Corless & King 2007; Becker &
Kravtsov 2011; Bahé et al. 2012). However, cluster masses
derived from weak lensing suffer from various sources of scatter
and are often of low signal-to-noise ratio (S/N). Thus, a large
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number of clusters with weak-lensing mass measurements are
still needed to reduce the uncertainties in the mass–observable
relations to provide accurate cosmological constraints.

On the other hand, recent wide and deep optical surveys
offer an opportunity to construct cluster samples in an
alternative way, that is, through identifying peaks in mass
maps reconstructed from weak-lensing shear maps (e.g.,
Wittman et al. 2001; Miyazaki et al. 2007, 2015, 2018;
Schirmer et al. 2007; Shan et al. 2012). Using these shear-
selected samples is advantageous for cosmological studies, as
they follow a more direct mass–observable relation and their
selection functions can be quantified accurately using analytical
calculations and ray-tracing simulations (Hamana et al. 2012;
Miyazaki et al. 2018).

The sample of such shear-selected clusters is also useful for
understanding the mass–observable relations better, given that
they represent a sample of clusters selected solely through their
mass distributions and their selection functions are therefore
not directly affected by complex baryon physics. For instance,
Giles et al. (2015) studied X-ray properties of shear-selected
clusters from Miyazaki et al. (2007) to find that shear-selected
clusters appeared to be X-ray underluminous for a given mass
by a factor of ∼2–3 compared with X-ray-selected clusters. A
recent paper by Miyazaki et al. (2018), who constructed a large
homogeneous sample of shear-selected clusters from the
Subaru Hyper Suprime-Cam (HSC) survey (Aihara et al.
2018), reached a similar conclusion based on analyses of
archival X-ray data and comparisons with published X-ray
catalogs. However, whether these clusters are really X-ray
underluminous or their masses are overestimated needs to be
examined more carefully first. We need to carefully quantify
the selection effects of shear-selected clusters and study their
impact on the X-ray luminosity–mass relation.

This work serves as a preparatory step for cluster studies
utilizing shear-selected clusters by investigating their mass–
observable relation under a fixed cosmology. Roughly
speaking, we explore the distribution ( ∣ )gP M z, , where
γ denotes the observable, namely, the weak-lensing shear
profile, and M and z represent the underlying halo mass and
redshift. This distribution can be decomposed into ( ∣ )g =P M z,

( ∣ ) ( ∣ )ò gP M z P M M z M, , dobs obs obs, in which the dummy vari-
able is taken to be the derived weak-lensing mass. When the
cosmology is fixed, ( ∣ )gP M z,obs depends only on the halo
profile one assumes to fit the shear profile. Thus, it suffices to
study the distribution ( ∣ )P M Mobs , which encapsulates the bias
and uncertainty of the derived weak-lensing mass. The bias and
uncertainties of cluster masses in weak-lensing analyses have
already been thoroughly studied (Clowe et al. 2004; Oguri et al.
2005; Corless & King 2007; Meneghetti et al. 2010; Becker &
Kravtsov 2011; Oguri & Hamana 2011; Bahé et al. 2012).
These results of the mass bias and scatter are often quoted
directly in cluster cosmology studies or measurements of
cluster scaling relations, albeit without considering the impact
of selection effects. Such an omission may be justified, as
previous studies are mostly based on clusters selected through
baryonic properties for which the correlation between scatter-
ing in baryonic properties and halo masses is of higher orders.
In the context of shear-selected clusters, however, such a
correlation is direct and might potentially lead to large bias if
we derive Mobs from weak-lensing shear profiles, as is
commonly done in the literature, because the selection of
peaks in mass maps and the calculation of Mobs share the same

noise, leading to significant distortions of ( ∣ )P M Mobs . Such a
bias is commonly referred to as the Eddington bias (Eddington
1913), and it is precisely the goal of this paper to characterize
this well-known bias in the context of weak-lensing surveys.
This paper is organized as follows. In Section 2, we

introduce the forward modeling framework and analyses we
adopt in order to resemble the mass bias in real observations.
Results and discussions are presented in Section 3. As an
immediate application, we discuss in Section 4 the possibility
of resolving the anomalous X-ray property found in shear-
selected clusters (Giles et al. 2015) using our results.
Conclusions are given in Section 5.

2. Methodology

To investigate bias of weak-lensing masses for shear-
selected clusters, we create mock halo catalogs and generate
observed weak-lensing mass maps assuming various survey
depths to simulate this issue in existing and future surveys.
In Section 2.1, we introduce the basic framework in which we

calculate the weak-lensing mass maps. Since the final samples
are obtained through high-S/N cuts that inevitably limit the
sample size, in order to achieve high statistical significance, we
adopt a hybrid framework, in which the analytical halo model is
combined with the uncorrelated large-scale structure (LSS) noise
from ray-tracing simulations, rather than fully resorting to
numerical simulations. This hybrid approach allows us to
simulate a large number of halos in a reasonably short timescale.
Around each simulated halo, the weak-lensing mass map is
simulated by adding the uncorrelated LSS noise and the
statistical noise to assign an S/N value to each simulated halo.
Multiple samples are obtained through adjusting the survey
depths to generate the mass map and the S/N cuts.
The treatments presented in Section 2.1 are mostly based on

calculation from first principles. In Section 2.2, we discuss the
uncertainties originating from the triaxial nature of halos. Since
such uncertainties are more complex to model from first
principles, we rely on statistical relations obtained in previous
studies to take them into account. Lastly, in Section 2.3, we derive
masses for clusters in each of these samples through a maximum
likelihood estimation. The results are presented in Section 3.

2.1. The Mock Cluster Samples

The mock samples are set up in the following eight steps,
which we describe in turn:

1. We adopt the 9 yr Wilkinson Microwave Anisotropy
Probe cosmological parameters (Hinshaw et al. 2013)9

as our input cosmology and consider a mock survey with
an area of 5000 deg2. The mock halo sample is then
generated as a Poisson realization of the halo mass
function (Tinker et al. 2008). In our calculations, we
consider cluster samples with M200c�1013 h−1 Me,
where MΔc stands for the mass enclosed within the radius
rΔc, where the average density inside isΔ times the critical
density of the universe. The redshifts of our samples range
from z=0.01 to 1.51, roughly corresponding to the range
where optical cluster-finding algorithms are able to probe.
For our particular experiment, we have created 778,651
halos in this step.

9 More specifically, we adopt the parameters given in the column
“+eCMB+BAO+H0” of Table 4 in Hinshaw et al. (2013).
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2. For each halo with mass M=M200c and redshift z=zcl
in our mock catalog, we assign to it a concentration
c=c200c from the distribution

( ∣ ) [ ¯ ( )] ( )
⎡
⎣⎢

⎤
⎦⎥ps s

= -
-

P c M z
c

c c M z
,

1

2

1
exp

ln ln ,

2
, 1

c cln

2

ln
2

where the function ¯ ( )c M z, is taken from the mass–
concentration relation in Diemer & Joyce (2019) and we
adopt σlnc=0.25, which is adequate for the redshift and
mass range considered here (B. Diemer 2020, private
communication).

3. In this step, we compute the tangential shear profile on the
sky that is due solely to the halo itself, denoted as γNFW(θ),
by assuming that the density profile of dark matter halos
follows the Navarro et al. (1997, hereafter NFW) profile

( )
( )( )

( )r
r

=
+

r
r r r r1

, 2s

s s
NFW 2

where parameters ρs and rs are computed as

( )
( ) ( )

( )r
r

=
+ - +

=
z c

c c c
r

r

c

200

3 ln 1 1
; , 3s

cl
s

cri
3

200c

with ρcri(zcl) being the critical density of the universe at
that redshift. It is then straightforward to compute γNFW(θ)
as

( )
( ) ¯ ( ) ( ) ( )

⎛
⎝⎜

⎞
⎠⎟g q

q q q
= =

DS
S

=
S < - S

S

r

D z
: : , 4

A cl
NFW

proj

cri cri

where

( ) ( ) ( )òq rS = +x x r: d . 53 NFW 3
2

proj
2

For these calculations, we use the analytic expressions
found in Wright & Brainerd (2000). The reciprocal critical
surface density is calculated as

( ) ( ) ( )
( )

( )
⎧
⎨⎪
⎩⎪

pS =-


z z G

c

D z D z z

D z
,

0 if z z ,
4 ,

otherwise,
6cl s

s cl

cl cl s

s

cri
1

2

where D(zcl) and D(zs) are angular diameter distances
between the lens and the observer and between the source
and the observer, respectively, whereas D(zcl, zs) is the
angular diameter distance between the source and the lens.
In reality, since source galaxies are distributed across a
wide range of redshifts, one should consider the ensemble
average of ( )S- z z,cl scri

1 . The distribution of source galaxies
varies from survey to survey. In order to investigate the
impact of the mass bias in different surveys, we set up a
one-parameter fiducial model for the distribution, Pgal(zs),
as a function of the number density of source galaxies ngal
following Van Waerbeke et al. (2001),

( ) ( )⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠µ - =P z z

z

z
z

n
exp ;

1

3 30
. 7s s

s
gal

2

0
0

gal
1 3

In this paper, we set up experiments for ngal=10, 20, 25,
30, 40, and 100 arcmin−2 to simulate various past and future
surveys. Figure 1 shows Pgal(zs) for these values of ngal used
in this paper. This profile can approximate the source

redshift distribution of real galaxies in, e.g., the Subaru HSC
survey (Aihara et al. 2018) well. The ensemble average of
Σcri
−1(zcl, zs) is then given by

( ) ( ) ( ) ( )òáS ñ = S-
¥

-z z z P z z, d . 8cl cl s s scri
1

0
cri

1
gal

We caution that the source redshift range of the above
integral should be chosen carefully depending on the setup
of the analysis. In weak-lensing analysis, one often selects
source galaxies behind the lens, as the foreground galaxies
add only noise but not signal. However, as we are using
this shear profile to generate a mass map and select clusters
from this map, at the point of calculating the mass map, we
have no prior knowledge of the redshift of our potential
candidates. Thus, all the quantities needed to construct the
mock mass map have to be integrated over the whole line
of sight. This subtlety needs to be dealt with carefully later
when adding the random statistical noise (see step 6 below).

4. The mass map is obtained by convolving the shear map
with a filter that maximizes the convergence signal from
massive galaxy clusters and suppresses the average LSS
contribution. Following Miyazaki et al. (2018), we
choose a truncated and compensative Gaussian filter
(Hamana et al. 2012)

( ) ( )

⎧
⎨⎪

⎩⎪

⎛
⎝⎜

⎞
⎠⎟q pq

q
q

q q
=

- - 
U

U
1

exp if ,

0 otherwise,

9G s s
2

2

2 0 out

and the respective filter for the tangential shear profile is

( ) ( ˜) ˜ ˜ ( )

( )
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⎤
⎦
⎥⎥
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q q q q
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= -

= - + -

q



Q U U
2

d

1
1 1 exp if ,

0 otherwise.
10

G G G

s s

2 0

2

2

2

2

2 out

Following Miyazaki et al. (2018), we choose the smoothing
radius θs= 0 1 5 and the truncation radius q = ¢15out . The
parameter U0 in Equation (9) is introduced to let the filter
UG be of average zero. We plot these filters in Figure 2.

Figure 1. Fiducial models (Equation (7)) of the probability density function for
source galaxies as a function of redshift with source galaxy number densities
ngal=10, 20, 25, 30, 40, and 100 arcmin−2 adopted in this paper.
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In actual weak-lensing observations, the observable for
a galaxy cluster is the reduced shear profile g(θ) derived
from the average ellipticity of background source galaxies.
Here we adopt the approximation that g(θ)≈γ(θ) for all
θ�θout. This approximation generally does not hold at
small radius, as the convergence signal is large in the
central region of the halo. However, as the reduced shear
profile will be convolved with the filter QG(θ) that down-
weights the signal from the center as shown in Figure 2, our
approximation is justified. Thus, the NFW signal NFW
assigned to each cluster is

( ) ( ) ( )òp g q q q q=
¥

 Q2 d . 11GNFW
0

NFW

5. The contamination from LSS along the line of sight is
approximated to first order by randomly painting our mock
halos onto numerical simulated density field. For this
purpose, we utilize the ray-tracing simulations presented
by Sato et al. (2009), because these ray-tracing simulations
have a relatively high angular resolution with a pixel size
of ~ ¢0.15 and thus are suited for out study focusing on
clusters of galaxies. In their work, they performed high-
resolution N-body simulations and projected particles onto
multiple lens planes. 1000 ray-tracing realizations were
then constructed through randomly shifting the underlying
density field. In each realization, light sources are placed at
zs≈0.6, 0.8, 1.0, 1.5, 2.0, and 3.0, resulting in an
ensemble of six 5 deg×5 deg weak-lensing maps to be
weighted according to the chosen source redshift distribu-
tion. For each halo in our catalog, we randomly choose a
realization with a random position on the map. The
tangential shear profile contributed from the LSS, denoted
as γLSS(θ), is then calculated as the average tangential
shear profile around that randomly chosen location and is
weighted with the probability distribution Pgal(zs) defined
in Equation (7). In short,

( ) ( )
( )

( ) ( )ò
g q

q q=
å á ñ

å

¥ Î
=

Î


P z

P z
Q d , 12z S

z z
s

z s
GLSS

0

LSS gal

S gal

s
s

s

where the angle bracket stands for the circular average in
the two-dimensional weak-lensing shear map and S is the
set of available source redshift slices.

6. Next, we estimate the statistical noise on the weak-
lensing mass maps. Two major sources of errors in

weak-lensing observations are the finiteness and the
intrinsic ellipticity of source galaxies. We denote the
variance of such an observational uncertainty as sSTAT

2 .
van Waerbeke (2000) has shown that such a variance can
be quantified as

∣ ( )∣ ( )òs
s

=
-¥

¥
 k k

n
W

2
d , 13STAT

2
2

gal

2

where s
2 is the variance characterizing the intrinsic

ellipticity of source galaxies and the factor 2 accounts for
the fact that the tangential shear is derived from one out
of two components of galaxy ellipticities, ngal is the
surface number density of source galaxies, and W(k) is
the Fourier transform of the spatial filter one adopts to
smooth the shear signal (Equation (10)). In this paper, we
adopt σò=0.4. By the Parseval–Plancherel identity and
assuming the noise to be Gaussian, the noise due to
observational uncertainty is thus

∣ ( )∣ ( )
⎛
⎝⎜

⎞
⎠⎟ò

s
p q q q~

¥
  

n
Q0,

2
2 d . 14STAT

2

gal 0

2

In practice, once we select clusters with a sufficiently
large S/N, we will be able to obtain their redshift based
on their optical counterparts. The shear profile will then
be measured with background galaxies only, to increase
the S/N. The noise in this shear profile measurement,
combined with the noise due to foreground galaxies, is
the source of the noise STAT on the mass map. Thus, the
two random noises cannot be generated independently.
Therefore, instead of using Equation (14) directly, we
first generate a random noise profile solely due to the
background galaxies, which will be used later in step 8:

( )
⎛
⎝⎜

⎞
⎠⎟g

s
~  

N
0,

2
, 15iSTAT,

bg
2

bg, i

( ) ( )ò=
¥

N A n P z zd . 16i i
z

s sbg, gal gal
cl

Here the index i runs over radial bins that are used in
creating the tangential shear profile and Ai is the area of
the ith bin. In this paper, we bin the shear profile from 0.2
to -h7 Mpc1 into 20 bins to be consistent with the
existing observational work of Miyazaki et al. (2018). As
discussed in the end of step3, STAT should be due to
noise across the whole line of sight. Thus, in addition
to gSTAT

bg , we also calculate the noise profile in the
foreground

( )
⎛
⎝⎜

⎞
⎠⎟g

s
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N
0,

2
, 17iSTAT,

fg
2

fg, i

( ) ( )ò=N A n P z zd . 18i i

z

s sfg, gal
0

gal
cl

Combining the two noise profiles and convolving this
with the desired filter, we obtain the final noise in the
mass map

( )g
g g

=
+

+

N N

N N
, 19i

i i i i

i i
STAT,

fg, STAT,
fg

bg, STAT,
bg

fg, bg,

( ( ) ) ( )å g q= Q A . 20
i

i i iSTAT STAT,

Figure 2. Truncated and compensative Gaussian filter we adopt in this paper. The
filter for the convergence (Equation (9)) is shown in red, and the corresponding
filter for the tangential shear profile (Equation (10)) is shown in blue.
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One can easily check that STAT generated as in
Equation (20) follows the distribution of Equation (14)
in the continuous limit.

7. We are now able to assign to each halo in our catalog an
observable νobs as

( )n
s

=
+ +  

, 21obs
NFW LSS STAT

STAT

which represents the S/N of a peak in the weak-lensing
mass map for that halo. Equation (21) is normalized by
σSTAT because in observations the noise is estimated from
many realizations of weak-lensing mass maps with
randomly rotated source galaxies, which eliminates the
LSS noise but retains only the statistical noise (see, e.g.,
Miyazaki et al. 2018). The shear-selected clusters are
identified as those with n nobs threshold. We vary the
value of νthreshold to investigate the mass bias as a
function of the selection criterion. Observationally,
the redshift is given by their optical counterparts. Most
of the state-of-the-art optical cluster-finding algorithms
are able to produce a pure and complete cluster sample
at low redshift and assign to them accurate photometric
redshifts. For instance, the CAMIRA algorithm (Oguri
2014), adopted by the HSC Collaboration for generating
the optical cluster catalogs, is able to estimate cluster
(photometric) redshifts to high accuracy, ( )s + z1z

0.01 for z 0.8cl (Oguri et al. 2018). Furthermore,
Miyazaki et al. (2018) have shown that peaks with high
S/N, νobs�4.7, found in HSC weak-lensing mass maps
have optical counterparts almost completely. Thus, in this
paper we assume that all peaks on the mass map are able
to find optical counterparts and can be assigned with a zcl
with a negligible error.

8. For clusters selected in the above step, we also create
mock tangential shear profiles that are used to derive
weak-lensing masses for shear-selected clusters in
Section 2.3. The main signal is the shear profile due to
the massive halo itself as described in step3. The only
difference is that instead of using all the source galaxies
along the line of sight to obtain the shear signal, we use
only background galaxies as is often done in actual
analyses. This setup alters the ensemble average of

( )S- z z,cl scri
1 from Equation (8) to

( )
( ) ( )

( )
( )

ò

ò
áS ñ =

S
-

¥ -

¥z
z z P z z

P z z

, d

d
. 22cl

z cl s s

z s s
cri

1
cri

1
gal

gal

cl

cl

This continuous signal ( )g qNFW
bg is binned into 20 bins in

physical scale as discussed in step6. Around the
same location chosen in step5, a shear profile due to
the LSS is calculated using only background sources
with zs�zcl. The statistical uncertainties only from
background galaxies generated in Equation (15) are
added to the profile. The resulting shear profile, g =iobs,

bg

( )g g g+ + = ¼i 1, , 20i i iNFW,
bg

LSS,
bg

STAT,
bg , is the mock

observable that we use to derive the weak-lensing mass
and quantify the mass bias.

To summarize, we fix a cosmology and change the input
parameters (ngal, νthreshold) to generate different shear-selected
cluster samples with observables ( { } )n g = ¼z, ,cl i iobs obs,

bg
1, ,20 that

are to be analyzed in Section 2.3. Figure 3 shows some
statistics for the catalog we created. The left panel shows the
number of clusters that are selected with νthreshold=4.7 as a
function of input ngal in comparison with the analytic
calculation performed in Appendix A of Miyazaki et al.
(2018). The sample sizes increase substantially for deeper
surveys, demonstrating the advantages of shear-selected cluster
samples in the future. On the right panel, we show the typical
level of scattering in the mass map. Since the signals from the
halos themselves are buried in the noise except for very
massive clusters, a large number of low-mass objects can be
upscattered into our selections. Thus, we can already expect to
find a considerable bias in shear-selected samples.
Lastly, we comment on the possible impacts the specific

choice of mass–concentration relation and halo density profile
might have on our mock cluster samples. The mass–
concentration relation has been heavily studied in the literature,
and a number of functional forms, calibrated with cosmological
simulations, have been proposed to describe this relation (e.g.,
Bullock et al. 2001; Macciò et al. 2008; Prada et al. 2012;
Ludlow et al. 2016; Diemer & Joyce 2019). Here we have
examined that the distribution of our observable ν is basically
unaffected under different choices of mass–concentration
relation, especially for low-mass halos. Since we expect the

Figure 3. Left:comparison between number counts of shear peaks selected with a νthreshold=4.7 cut obtained in this paper and those calculated in Appendix A of
Miyazaki et al. (2018). Right: distributions of ν for various components that are used to derive the final observed S/N of peaks, νobs, for a setup with
ngal=30 arcmin−2.
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bias to be coming from upscattered low-mass objects, we
believe that the impact from the choice of mass–concentration
relation will be negligible. Meanwhile, in this paper we work
with the NFW model to forecast the weak-lensing observable
owing to the simplicity of its lensing properties. However,
recent high-resolution cosmological simulations have found
that the halo density profiles are more accurately described by
the functional form proposed by Einasto (1965), especially at
inner radii of halos (Graham et al. 2006; Merritt et al. 2006;
Gao et al. 2008; Navarro et al. 2010). We have examined that
changing the model will only slightly vary the value of ν owing
to the shape of the filter we adopt in this paper. Moreover, the
two models nearly coincide with each other at the radius range
0.3–7 h−1 Mpc we considered when generating the shear
profile for most of our halos. Thus, we do not expect the choice
of halo density profile to affect our derived weak-lensing mass
either. On the other hand, we note that deviations from the
spherical symmetry assumption for both models might induce a
nonnegligible effect on our results. This will be discussed in the
following subsection.

2.2. Impact of the Halo Nonsphericity

In reality, dark matter halos are complex, and their density
profiles deviate from the simple NFW model we assume in
Section 2.1. One of the potentially important sources of
systematic errors comes from the triaxial shape of real halos
(Warren et al. 1992). It has been shown that a spherical
symmetric NFW fit to a triaxial halo can lead to an error larger
than 30% in mass in some cases (Oguri et al. 2005; Corless &
King 2007; Meneghetti et al. 2010; Becker & Kravtsov 2011;
Oguri & Hamana 2011; Bahé et al. 2012). It may therefore be
necessary to take these uncertainties into account.

However, addressing the triaxial nature of the halo density
profiles directly is nontrivial. Although analytic triaxial profiles
are described, for instance, in Jing & Suto (2002), statistical
properties such as the mass–concentration relation in these
frameworks are less well known among the literature. In this
paper, we make use of existing studies to characterize these
uncertainties in a statistical manner. Given a realistic halo with
a mass MTrue, letMNFW be the mass in which the corresponding
spherical NFW profile best describes the projected surface
density of the realistic halo. Becker & Kravtsov (2011)
and Bahé et al. (2012) have shown that the distribution

( ∣ )P M MNFW True is well characterized by a lognormal distribu-
tion. Therefore, we assume

( )= DM b M e , 23NFW NFW True NFW

where ( )sD ~  0,NFW NFW
2 . Previous studies such as Becker &

Kravtsov (2011) have also determined these parameters through
numerical simulations. In these simulations, both halo triaxiality
and the line-of-sight projection contributed to the value of
(bNFW, σNFW). As the line-of-sight contribution has already been
taken into account in Section 2.1, we need to separate the two
when choosing (bNFW, σNFW). Becker & Kravtsov (2011) have
shown that the value bNFW is independent of the line-of-sight
integration length and is close to unity. Meanwhile, regardless of
the halo mass or redshift, σNFW approaches 0.18 when the line-
of-sight contribution vanishes. This result is roughly consistent
with estimates of σNFW utilizing analytic triaxial profiles
presented in Oguri et al. (2005), Oguri & Blandford (2009),
and Hamana et al. (2012). Therefore, in this paper we choose

bNFW=1 and σNFW=0.18, which approximately corre-
sponded to a 20% scatter in mass.
Thus, instead of using the true mass MTrue to model the

density profile in Equations (1) and (3), for each halo we draw
an MNFW according to Equation (23) and repeat all the steps
after step 2 in Section 2.1 to forecast the weak-lensing signals.
In this way, the uncertainties due to the triaxial nature of halos
are approximately included. The mass bias from this sample is
discussed in Section 3.2.

2.3. Mass Estimation for Shear-selected Clusters

To estimate masses for shear-selected clusters, we perform a
maximum likelihood analysis on the cluster shear profile
obtained in Section 2.1 or Section 2.2. The free parameters in
our analysis are the mass M200c and the concentration c200c.
Here, we adopt a Gaussian likelihood on the observed shear
profile γobs,

({ }∣ )

( ) ( )

g g g

g g g

= - å D D

D = -

=
- CM c

M c

log ,
1

2
;

: , , 24

i c c i j i
t

ij j

i i i c c

obs,
bg

200 200 , 1
20 1

obs,
bg

NFW, 200 200

whereC is the covariance matrix and γNFW,i are the binned
analytic shear profile as described in step3 in Section 2.1. Here
we drop a constant term proportional to Cdet , as the covariance
matrix is a function of the cluster redshift only, which is fixed
in our analysis. The components of the covariance matrix are
given by

( ) ( )g g
s

d= = +C C
N

cov ,
2

, 25ij i j
i

ij ij

2

bg,
LSS,

where δij denotes the Kronecker delta and the termCLSS,ij

denotes the contribution coming from the uncorrelated LSS
(Hoekstra 2003). Here we ignoreCLSS,ij for computational
simplicity as is sometimes adopted in real observations.
In practice, we sample the physical parameters in logarithmic

space using the affine-invariant ensemble sampler (Goodman &
Weare 2010) implemented in the emcee package (Foreman-
Mackey et al. 2013). We assume a flat prior in logarithmic space:

( ) M h M13 log 16;c10 200 ( ) c0 log log 20c10 200 10 . The
best-fit parameters are extracted as the 50th percentile of
the samples excluding the burn-in period, and the uncertainties
we quote are the 16th and 84th percentiles. Figure 4 shows an
example of the mock shear profile {γobs,i} that we assign to a
typical cluster and the resulting fit.

3. Results

The important quantity that we study in this paper is the
mass bias of weak-lensing masses Mobs derived by fitting
tangential shear profiles (Section 2.3) for shear-selected
clusters. We define the mass bias b as

( )=b
M

M
: . 26obs

True

In this section, we present the mass bias as a function of
different variables by computing the median among the values
from clusters within a small bin of the respective variable. The
error bars we draw always represent the 16th and 84th
percentiles. In order to distinguish the origin of the mass bias,
in the following we first focus on results for the simplest setup
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in Section 2.1, i.e., samples without the effect of nonsphericity
discussed in Section 2.3, to see the bias due solely to the
selection, together with the statistical and LSS noises. The
results with the inclusion of triaxiality will be presented in
Section 3.2.

3.1. For Spherical Halos

To clearly see the effect of upscatter, for each shear-selected
sample, we introduce a corresponding control sample for
comparison. Suppose the given shear-selected sample is
selected with νobs�νthreshold; the control sample is then
defined as those clusters with νNFW�νthreshold. The control
samples can be viewed as a truly mass-selected sample, and
hence we expect them to be free from upscattered contami-
nants. The mass bias of these two samples will be shown in
juxtaposition in the following.

Figure 5 shows the bias as a function of the input galaxies’
number density ngal under several different selection criteria
νthreshold. Here we clearly see that the bias of each control
sample is approximately 1, while the observed samples are all
biased high, demonstrating the existence of Eddington bias in
shear-selected cluster samples. In Figure 5, the bias of the
control sample is slightly below 1 owing to the nature of the
noise profile. Although the control sample is selected with a
noise-free observable, noise is still included in the shear profile
when deriving the weak-lensing mass. Therefore, there will be
some cases where noise dominates in the observed shear
profile. Since the noise profile is flat, only a halo with very low
concentration can accommodate such a profile. In these cases,
the mass is determined by the average value of the profile,
which will usually be lower than the value of the noise-free
profile at inner radii owing to the steepness of the NFW profile,
resulting in a lower best-fit weak-lensing mass. Such events
will be rarer for larger νthreshold or ngal, and indeed, we find the
bias to be closer to 1 in these samples as can be seen in
Figure 5.

For the actual shear-selected samples, the dependencies of
bias on νthreshold or ngal are mainly affected by two factors.
Under the same selection threshold, the lower ngal samples are

selecting clusters having largerMobs, as the noise level is higher
in those samples, reducing the value of νobs for a given cluster.
Since the slope of the cluster mass function decreases as the
mass increases, this leads to a larger fraction of upscattered
objects in the lower-ngal cases. Meanwhile, a higher noise level
also allows for larger scattering. At higher νthreshold, however,
these effects become less significant. In reality, the shear-
selected samples are usually selected with a high S/N
threshold, e.g., νthreshold=4.0. Thus, in the following discus-
sion we will focus on a specific case where ngal=30 arcmin−2,
which roughly corresponds to the depth found in the Subaru
HSC survey.
The relations between the bias and mass or redshift are of the

greatest interest in our study, as these are often variables
directly used in measuring cluster scaling relations. Under-
standing the bias as a function of these variables will help us
correctly rectify the shape of scaling relations measured
through shear-selected cluster samples.
The cluster mass affects the intrinsic strength of the weak-

lensing shear signal. Lower-mass objects require a larger scatter
in order to be selected in the sample, and as a result, the mass
bias naturally increases as shown in the top panel of Figure 6.
However, as the true mass is not a direct observable, we also
show the mass bias as a function of the observed mass Mobs. It
is clear from the bottom panel of Figure 6 that there are two
populations of clusters at a given Mobs range: those that have
intrinsic mass in a similar mass range and those that are
significantly upscattered. The situation of upscattering differs
across Mobs, but the overall bias seems to be constant within a
reasonable range of Mobs. We note that in the bottom panel of
Figure 6 the apparent deviation of the mass bias for low-Mobs

objects in the control sample is artificial. Unlike the shear-
selected cluster samples, the selection on νNFW will roughly
correspond to a selection on mass, say, MTrue�M0. Therefore,
the bias b=Mobs/MTrue must be smaller than Mobs/M0. In
particular, for Mobs<M0, the bias must be smaller than 1. For
the particular control sample shown in Figure 6, 95% of the
clusters have mass larger than 1014 h−1 Me. Taking this as M0,
this upper bound, which is shown in solid blue, clearly explains
the trend we see in Figure 6.
The noise in the observed shear profile, on the other hand, is

primarily sensitive to the redshift of the lens, as the number of
source galaxies is more limited at higher redshift. This naturally
causes the mass bias to increase as a function of redshift as can
be seen in Figure 7. It is worth noting that in Figure 7 the
control sample contains no cluster with z�0.9, meaning that
the cluster candidates observed in the shear-selected sample
would not be selected if not for the large weak-lensing noise.
Therefore, we are actually selecting a sample of purely
upscattered clusters at higher redshift, and the bias naturally
becomes high in these redshift bins.
For the above results, we show the mass bias in the sample

selected with νthreshold�4.0. The mass bias as a function
of this selection criterion is shown in Figure 8. In real
observations, we often modify this lower limit to maximize the
number of clusters in the final sample. However, as we lower
the νthreshold, we should also note that we are obtaining a more
biased sample.

3.2. Inclusion of Triaxiality

It is now clear that the selection effect can cause a serious
mass bias in a shear-selected cluster sample, even if we assume

Figure 4. Example of mock tangential shear profile and the resulting fit.
Contributions from individual components g iNFW,

bg (solid gray), g iLSS,
bg (dashed),

and g iSTAT,
bg (dotted) are shown for a typical cluster in our catalog with

= -n 30 arcmingal
2. The solid red line shows the best-fit shear profile with a

68% confidence interval for this particular case. The best-fit parameters are
summarized in the inset.
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a spherical halo as an input profile. Here we include additional
scatter in mass due to halo triaxiality, which should make our
estimate of the mass bias more realistic. We include the effect
of halo triaxiality using the methodology described in
Section 2.2. Similarly to the discussions above, we only focus
on the fiducial case where ngal=30 arcmin−2.
An extra scatter in mass from triaxiality can contribute to our

results in two ways: it can flatten out the mass function and can
induce additional uncertainties in the tangential shear profile.
The number density of clusters as a function of scattered mass
is equal to the convolution of the original mass function with
the distribution function of the induced scattering. Since we are
considering a narrow lognormal scatter, the impact on the mass
function is minor. For the mock cluster sample considered in
this paper and a scatter of σNFW=0.18, the number of clusters
in the low-mass end (<1014 h−1 Me) is decreased by roughly
0.1%, and the number in the massive end (> 1014 h−1 Me) is
increased by approximately 5%. As we are concerned with

Figure 5. Mass bias (Equation (26)) as a function of galaxies’ number density ngal under three different selection criterion n n =, 3.0threshold threshold (left),
νthreshold=4.0 (middle), and νthreshold=5.0 (right). Large red circles show the results for the shear-selected samples, and small black circles show the results for the
corresponding control samples that are selected based on noise-free νNFW instead of νobs to demonstrate that the bias is indeed caused by upscattering due to the noise.
The positions of the control samples are slightly shifted rightward to avoid overlaps.

Figure 6. Mass bias (Equation (26)) as a function of true mass (top panel) and
the observed weak-lensing mass (bottom panel). In both panels, large red
circles correspond to the bias in the shear-selected cluster sample, whereas
small black circles denote the bias in the corresponding control sample as in
Figure 5. The solid blue line in the bottom panel shows the upper bound on the
mass bias for the control sample.

Figure 7. Mass bias (Equation (26)) as a function of the cluster redshift.
Symbols are the same as in Figure 6. The redshift positions for the control
sample are slightly shifted rightward to avoid overlaps.
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upscattering of low-mass objects, the portion of clusters that are
upscattered can be treated the same as before given the same
level of scattering. However, the level of scattering can increase
owing to the extra uncertainty in the shear profile. Within a
reasonable range of mass and redshift, a 20% increase in mass
will result in a ∼10% increase in νNFW. The effect from such an
additional uncertainty, however, is secondary compared to the
large statistical noise.

Figure 8 shows the increase in the mass bias after we include
the scatter due to triaxiality. Indeed, the increase in the mass
bias is more significant at higher νthreshold selection as the
triaxial scattering starts to become comparable to the statistical
noise. Quantitatively, at a given νthreshold=ν0, the level of
statistical uncertainty is of order n~ -

0
1. An additional 10%

scatter in nobs will raise the uncertainty to n~ +- 0.10
2 2 .

Equivalently, we can say that the additional scatter shifted the
mass bias to the level where ( )n n= +- -0.1threshold 0

2 2 1. This
estimate is plotted as the dotted green line in Figure 8. We find
that our simple estimate matches the results on the mock
sample quite well. For the fiducial case of = -n 30 arcmingal

2

and νthreshold=4.0, we find that the mass bias is ∼55% on
average.

One of the main purposes of this paper is to serve as a
preparatory step for cluster studies utilizing shear-selected
cluster samples. So far we are concerned with the average mass
bias, but when it comes to constraining scaling relations or
cosmological parameters, the knowledge of the scatter in

( ∣ )P M M z, clobs True is also important. Even if the mass bias is
larger in shear-selected cluster samples, tight constraints on
cluster scaling relations or cosmological parameters are still
possible if the distribution ( ∣ )P M M z, clobs True is not too
dispersed. Figure 9 shows the probability density function
(pdf) of the mass bias in a grid of MTrue and zcl for a sample
selected with νobs�4.0. We find that these distributions are
well characterized by the lognormal distribution. In the upper
left corner of each panel, we show the mean bias and the
variance in bln . The corresponding lognormal pdf based on
these parameters is overplotted. Although the mass bias is
relatively large, the scatter of the distribution at each redshift

and mass is comparable to those without a selection effect
(Becker & Kravtsov 2011; Bahé et al. 2012). Therefore, using
shear-selected samples in studies of scaling relations and
cosmological parameters might indeed benefit from the absence
of uncertainties in semiempirical mass–observable scaling
relations without introducing additional scatter.
Finally, as a validation test, we demonstrate that the mass

bias and scatter given in Figure 9, together with an analytical
description of the selection function, can be used to recover the
input halo mass function. Here we divide the cluster sample
selected with νthreshold�4.0 into four redshift bins as in
Figure 9 and count the number of clusters in 12 equally spaced
mass bins from ( ) =M h Mlog 13c10 200 to 15. The dotted
histograms in Figure 10 show the observed halo mass function
in different redshift bins. We can describe this observed mass
function with the following integration:

( ∣ ) ( ∣ )

( ) ( ∣ ) ( )

⎡
⎣⎢

⎤
⎦⎥

òn

n

=

´ ´

N

M
M z P M M z

N

M z
M z S M z M

d

d dz
, ,

d

d d
, , d , 27

obs
obs threshold obs

threshold

where the selection function ( ∣ )nS M z, threshold is given in
Equation (A9) of Miyazaki et al. (2018). In practice, we sample
the number of clusters in each mass bin Ni (i=1, K 12) with
a flat prior between 0 and 50,000 while requiring the mass
function to be strictly decreasing; we then scatter Ni according
to the respective lognormal distribution given in Figure 9 and
multiplied by the average value of the selection function in that
bin. We use a Poisson likelihood to compare with the observed
number count in each bin to find the most likely set of Ni and
reconstruct the mass function. The error bars in Figure 10 show
the reconstructed mass function in four different redshift bins,
while the solid histograms show the average density from the
input mass function of Tinker et al. (2008). Figure 10 shows
that we can well reconstruct the input mass function without
assuming its functional form at the two lower-redshift bins. At
higher redshift, the large weak-lensing noise makes the number
of observed clusters limited even for a 5000 deg2 mock sample,
making it more challenging to perfectly recover the input mass
function. Meanwhile, deviations from the lognormal distribu-
tions assumed for the mass bias at these redshift and mass bins
might also contribute to the discrepancy found in Figure 10.
Overall, however, we think that these reconstructions of mass
function still give encouraging evidence that the mass bias
derived in this work and the analytic selection function do give
a good description of shear-selected cluster samples.

4. Applications

The importance of the mass bias reflects on statistical studies
carried out with shear-selected cluster samples. Giles et al.
(2015) have found the X-ray luminosity of shear-selected
clusters to be lower compared to clusters with similar masses
selected in X-ray (e.g., Mantz et al. 2010; Mahdavi et al. 2013).
In this section we reanalyze their sample with the inclusion of
the mass bias found in Section 3 to see whether such a
discrepancy can be resolved. We emphasize that our goal here
is not to carry out a complete analysis on the scaling relation
but just to demonstrate the need for the mass bias in shear-
selected cluster samples.

Figure 8. Mass bias (Equation (26)) as a function of the selection criterion
νthreshold. The large red circles show the sample constructed in Section 2.1,
whereas the green triangles represent the sample including the modification of
halo triaxiality from Section 2.2. The dotted green line shows a quantitative
estimate of the results with halo triaxiality (see Section 3.2 for details). The
large red circles and the small black circles are slightly shifted leftward and
rightward, respectively, from the green triangles to avoid overlaps.
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Figure 9. The histograms show the probability density function (pdf) of the mass bias (Equation (26)) in a 4×4 grid in redshift and mass. The mean of the
distribution and the variance in logarithmic space are quoted in the upper left corner in each panel. In each panel, a lognormal pdf according to these two parameters is
overplotted by a solid line to see how well the distribution is described by the lognormal form. These histograms are based on an ngal=30 arcmin−2 sample selected
with a νthreshold�4.0 cut. The uncertainty due to halo triaxiality is included.

Figure 10. Reconstruction of input mass function from the observed number counts of shear-selected clusters selected in an ngal=30 arcmin−2 sample with a
νthreshold�4.0 cut. The dotted histograms show the observed number density of clusters in this sample, and the reconstructed mass functions are shown in error bars.
The true number density in each bin based on the input mass function from Tinker et al. (2008) is plotted as the solid histogram.

10

The Astrophysical Journal, 891:139 (13pp), 2020 March 10 Chen et al.



4.1. Cluster Samples

First, we briefly summarize the sample presented in Giles
et al. (2015). The cluster candidates were selected as peaks on
the 16.72 deg2 mass map in the Subaru Weak-lensing survey
(Miyazaki et al. 2007) with a νthreshold=3.69 cut. The survey
targeted 16 different fields containing X-ray data. Since each
field was observed under different seeing conditions, the
resulting surface number density of galaxies around the
cluster candidates was also different. This information is
summarized in Table 1. A total of 28 of these candidates
were spectroscopically confirmed in follow-up observations
(Hamana et al. 2009), for which weak-lensing masses
can therefore be derived. Giles et al. (2015) conducted
X-ray studies on 10 of these clusters, in which eight of them
obtained dedicated Chandra pointings and the remaining
two were observed in the COSMOS field with Chandra and in
the XMM–LSS field with XMM, respectively. The weak-
lensing and X-ray properties of these 10 clusters are given in
Table 1.

The X-ray luminosity and weak-lensing mass scaling
relation (LX–M relation) showed that the 10 shear-selected
clusters were X-ray underluminous by a factor of ∼2–3
compared with X-ray-selected clusters presented in Mahdavi
et al. (2013). A similar anomaly was also found when
comparing with the X-ray samples in Mantz et al. (2010). Giles
et al. (2015) have already presented rough estimates on the
mass bias to correct the weak-lensing mass. The discrepancies
were attributed to miscentering, selection bias, and the triaxial
nature of halos. In this paper, we have presented a more
rigorous and consistent treatment of these effects. In the
following section, we will adopt our mass bias and examine its
impact on the cluster scaling relation.

4.2. Reanalysis of LX–M Scaling Relation

Here we follow the procedure in Giles et al. (2015,
hereafter G15) to analyze the LX–M scaling relation taking
account of the mass bias. The scaling relation is described by

the following power law:

( ) ( ) ( )
⎧⎨⎩

⎫⎬⎭=-L E z L
E z M

M
, 28X

B
1

0
True

0

LM

where E(z) is the dimensionless Hubble parameter and the
parameters (L0, BLM) are to be determined from data. The pivot
mass M0 is taken to be 2×1014Me. The 10 shear-selected
clusters alone cannot provide enough constraining power to fit
(L0, BLM) simultaneously. We therefore rely on a larger sample
of X-ray-selected clusters presented in Mahdavi et al. (2013,
hereafter M13) to determine the slope BLM first. The actual data
presented here are taken from the erratum (Mahdavi et al.
2014). The cosmological parameters adopted in the two studies
are exactly the same; hence, the two samples are compared
directly. The best-fit parameters are derived using the
orthogonal distance regression (Boggs & Rogers 1990) in
order to properly take into account uncertainties on both
variables. The data in M13 give = B 2.21 0.37LM

M13 and
( )=  ´ -L 10.14 5.10 10 erg s0

M13 43 1. Fixing =B BLM LM
M13,

the shear-selected sample gives ( )=  ´L 3.23 0.770
G15

-10 erg s43 1, corresponding to a ∼1.4σ deviation from the
X-ray sample. Figure 11 shows the fitting results obtained from
the two samples. We find that our fitting result without the
correction of the mass bias is consistent with G15.
The discrepancy between G15 and M13 should be to some

extent ascribed to the mass bias in shear-selected clusters. As
the mass bias depends sensitively on the cluster redshifts but
varies little over Mobs, we add the following relation when
fitting the scaling relation:

( ) ( )=M b z M . 29clTrue obs

The weak-lensing masses Mobs for these 10 clusters were
derived in Hamana et al. (2009) following a procedure similar
to those described in Section 2.3. Therefore, here we calculate
the bias as in Section 2 with a νthreshold=3.69 selection. The

Table 1
X-Ray and Weak-lensing Properties for the 10 Clusters Presented in Giles et al.

(2015)

Cluster Name ngal zcl LX MWL,500

( )-arcmin 2 ( )-10 erg s43 1 ( )M1014

SL J0225.7–0312 46.0 0.1395 7.31±0.19 -
+1.97 0.47

0.47

SL J1000.7+0137 37.1 0.2166 4.04±0.17 -
+2.39 0.53

0.46

SL J1647.7+3455 26.4 0.2592 1.38±0.12 -
+2.00 0.79

0.67

SL J0850.5+4512 30.7 0.1935 0.78±0.14 -
+1.09 0.43

0.39

SL J1135.6+3009 29.3 0.2078 L -
+2.49 0.56

0.50

SL J1204.4–0351 23.4 0.2609 3.43±0.35 -
+1.20 0.60

0.50

SL J1335.7+3731 29.6 0.4070 3.10±0.71 -
+2.79 1.01

0.90

SL J1337.7+3800 29.6 0.1798 0.66±0.13 -
+1.24 0.39

0.36

SL J1602.8+4335 38.0 0.4155 12.7±1.14 -
+2.66 0.71

0.69

SL J1634.1+5639 28.4 0.2377 0.63±0.22 -
+0.87 0.49

0.39

Note. The ngal column represents the average surface number density of source
galaxies in the field where the cluster is observed. The zcl column is the cluster
spectroscopy redshift obtained in Hamana et al. (2009). LX denotes core-
excised bolometric X-ray luminosity, and MWL,500 denotes cluster mass M500c

derived with weak lensing.

Figure 11. Analyses of the scaling relation between X-ray luminosity LX and
cluster masses Mobs from weak lensing on the data set from Mahdavi et al.
(2013) (gray circles) and Giles et al. (2015) (filled red triangles). A direct
power-law fit to the M13 sample is shown by the dashed black line. The best-fit
slope BLM

M13 is fixed in the analyses on the G15 sample. The dashed–dotted red
line shows the direct fit to the G15 sample, whereas the solid red line represents
the corrected fit including the mass bias. The correction for each individual
cluster in G15 is shown with open red triangles.
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average surface density of source galaxies around the 10
clusters is ≈30 arcmin−2. Additional scatter due to triaxiality is
also included. Since it is customary to use the mass M500c in
X-ray studies, we recompute the mass bias changing the mass
definition from M200c to M500c in Equation (26). We note that
there are still two inconsistencies between our analyses in
Section 2.3 and those in Hamana et al. (2009): the probability
distribution of source galaxies and the cosmological parameters
assumed when deriving the weak-lensing mass are different.
Nevertheless, if we adopt ngal=30 arcmin−2, our numerical
calculation shows that Equation (7) is almost identical to the
functional form assumed in Hamana et al. (2009). The
difference in cosmological parameters induces a deviation in
angular diameter distance only by 1% within a reasonable
range of redshift. Moreover, the most significant effect from the
above-mentioned deviations is in the calculation of Σcri, which
will be canceled out in the mass bias, as we are taking the ratio
between masses. Therefore, the usage of our mass bias to this
shear-selected cluster sample is justified.

We then follow the same procedure to refit the scaling
relation to these 10 clusters. Since this sample was selected
with a rather low S/N cut, according to our results the observed
mass for each individual cluster needs to be corrected by a level
ranging from −30% to −90%. The corrected mass for each of
these clusters is shown with dotted open triangles in Figure 11.
With a fixed slope of BLM=2.21±0.37, the reanalysis on
the G15 data gives ( )=  ´ -L 7.81 1.93 10 erg s0

G15,unbias 43 1.
The tension in the intercept is reduced to ∼0.5σ after our
reanalysis. The result of the new fit is also shown in Figure 11.

We emphasize that our analysis here is far from rigorous.
Modern analyses on the scaling relation should include effects
such as the Eddington bias, the covariance between variables,
and scattering in the mass bias (for a state-of-the-art example,
see Dietrich et al. 2019). Although our analysis clearly
demonstrated that the mass bias can definitely reduce the
tension on the X-ray properties of shear-selected clusters, a
more thorough analysis on cleaner and larger shear-selected
samples such as those presented in Miyazaki et al. (2018) is
needed to draw a definitive conclusion on this issue.

5. Conclusions

We have studied the bias on masses measured with weak
lensing for shear-selected cluster samples, which are con-
structed from high-S/N peaks in weak-lensing mass maps.
Since weak-lensing mass maps that are used to define shear-
selected cluster samples and tangential shear profiles of
individual clusters that are used to measure their masses share
the same noise, including the statistical noise, the uncorrelated
structure along the line of sight, and the effect of halo
triaxiality, the mass bias on shear-selected cluster samples is
expected to be significant. We have quantified this bias
accurately using a hybrid approach where the density profile
of individual halos is modeled with a simple NFW profile yet
high-resolution ray-tracing simulations are used to model the
noise originating from the line-of-sight structure. This approach
allows us to construct large mock catalogs needed to derive the
mass bias accurately.

We have found that the mass bias is indeed significant,
particularly for shear-selected clusters constructed from the low
number density of source galaxies or from the low S/N

threshold of mass map peaks. We have investigated the
dependence of the mass bias on different parameters, including
true halo masses, cluster redshifts, and observed weak-lensing
masses. We find that the mass bias depends sensitively on cluster
redshifts such that clusters at higher redshifts have a larger mass
bias. On the other hand, the mass bias depends modestly on
observed weak-lensing masses. The halo triaxiality has a
nonnegligible impact on the mass bias, especially when the
S/N threshold or the source galaxy number density is high.
To demonstrate the impact of the mass bias on scaling

relation studies, we have applied our result to a shear-selected
cluster sample constructed by Giles et al. (2015). Although it
has been claimed, based on analyses of the scaling relation
between X-ray luminosity and mass, that shear-selected
clusters appear X-ray underluminous by a factor of ∼2–3
compared with X-ray-selected clusters, our reanalysis taking
proper account of the mass bias for shear-selected clusters has
indicated that the discrepancy is significantly reduced. This
highlights the importance of the mass bias for shear-selected
cluster samples.
Even though the mass bias is large for shear-selected cluster

samples, an important advantage of shear-selected cluster
samples over other cluster samples is that we can accurately
and robustly quantify the mean and scatter of the mass bias.
This is because the ingredients needed for calculating the mass
bias, including the density profile of clusters, the large-scale
structure noise, and halo triaxiality, are fairly well known. In
contrast, there are large uncertainties associated with cluster
galaxy populations and the physical state of the ICM, which
implies that it is difficult to robustly model selection functions
for cluster samples constructed based on baryonic properties in
clusters. One such example is the cool-core bias (Eckert et al.
2011), which modifies posterior distributions of cluster
properties such as concentration parameters, asphericity, and
the amount of substructures and hence may induce weak-
lensing mass bias in a nontrivial way, even though the effect
would be smaller than the one studied in this paper. Given the
lack of full understanding of baryonic properties in clusters, we
face the difficulty in converting these selection functions into
the mass bias. Therefore, studies of scaling relations for shear-
selected clusters, with the correction of the mass bias as done in
this paper, will help identify and quantify known and unknown
systematics inherent to scaling relations derived for optical,
X-ray, and Sunyaev–Zel’dovich cluster samples. While the
current limitation lies in the small number of shear-selected
clusters available, the ongoing Subaru HSC survey, as well as
future surveys such as Euclid (Laureijs et al. 2011) and Large
Synoptic Survey Telescope (LSST Science Collaboration et al.
2009), can construct much larger samples of shear-selected
clusters, which will be enormously useful for improving our
understanding of cluster scaling relations and hence the
reliability of cluster cosmology.
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the Python packages Numpy (Oliphant 2006) and Scipy
(Virtanen et al. 2020). Many of the cosmological and
astrophysical calculations in this work rely on the routines
wrapped up in Colossus (Diemer 2018). Plots are made
available thanks to matplotlib (Hunter 2007).
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