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Soliton Molecules and Some Hybrid Solutions for the Nonlinear Schrödinger
Equation ∗
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Based on velocity resonance and Darboux transformation, soliton molecules and hybrid solutions consisting of
soliton molecules and smooth positons are derived. Two new interesting results are obtained: the first is that the
relationship between soliton molecules and smooth positons is clearly pointed out, and the second is that we find
two different interactions between smooth positons called strong interaction and weak interaction, respectively.
The strong interaction will only disappear when 𝑡 → ∞. This strong interaction can also excite some periodic
phenomena.
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The famous nonlinear Schrödinger (NLS) equa-
tion is a very important system in many technological
fields. Many studies started with the NLS equation
and then extended to other systems. In Ref. [1], au-
thors took the NLS equation as an example to illus-
trate the generation mechanism of higher-order rouge
waves. Higher-order rouge waves for a complex modi-
fied KdV system are also obtained in a similar way.[2]
In a very important recent research about the NLS
equation,[3] Wang et al. not only derived breather
positons but also clearly pointed out the relationship
between higher-order breather positons and higher-
order rouge waves. Under some conditions, the NLS

equation
𝑖𝑞𝑡 + 𝑞𝑥𝑥 + 2𝑞*𝑞2 = 0 (1)

can be derived from an Ablowitz–Kaup–Newell–Segur
system.[4] Here 𝑞 = 𝑞(𝑥, 𝑡) denotes a complex function
respect to {𝑥, 𝑡}.

The Lax pair and 𝑛-fold Darboux transformation
of Eq. (1) are shown in Refs. [3,4]. The new solution
𝑞[𝑛] can be generated by 𝑛-fold Darboux transforma-
tion from a seed solution 𝑞:[3,4]

𝑞[𝑛] = 𝑞 − 2𝑖
𝑁2𝑛

𝐷2𝑛
, (2)

with
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and Ψ 𝑗 = [𝜑𝑗1 𝜑𝑗2]
T (𝑗 = 1, 2, . . . , 2𝑛) is a set of

eigenfunctions with 𝜆 = 𝜆𝑗 . Equation (2) satisfies
some constraints as follows:

𝜆2𝑗 = 𝜆*
2𝑗−1, 𝜑2𝑗,1 = −𝜑*

2𝑗−1,2(𝜆2𝑗−1),

𝜑2𝑗,2 = 𝜑*
2𝑗−1,1(𝜆2𝑗−1), 𝑗 = 1, 2, . . . , 𝑛.

(3)

In recent years, soliton molecules have attracted

increasing attention from scholars.[5−8] Since Lou[8]

proposed the velocity resonance mechanism, re-
searchers have theoretically discovered a variety of
soliton molecules.[9,10] As far as we know, the soliton
molecules of Eq. (1) have not been discovered by other
researchers, so we mainly study the soliton molecules
and hybrid solutions consisting of soliton molecules
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and other form solutions for the NLS system.
First, molecules containing multiple solitons are

constructed through velocity resonance. We obtain
breather solutions with zero background by control-
ling the distance between solitons in the molecule.
Furthermore, the relationship between smooth posi-
ton solutions and breather solutions is explained in
detail. Finally, we mainly discuss the elastic interac-
tions between smooth positons and soliton molecules.
Two types of interactions between smooth positons are
shown in this study.

Eigenfunctions corresponding to 𝜆𝑗 can be derived
as the following form when the seed solution 𝑞 = 0:

Ψ𝑗 =

[︂
𝜑j1

𝜑j2

]︂
=

[︂
e−𝑖𝜆𝑗(2𝜆𝑗𝑡+𝑥)−𝛼

e𝑖𝜆𝑗(2𝜆𝑗𝑡+𝑥)+𝛼

]︂
. (4)

Here 𝜆𝑗 = 𝜉𝑗 + 𝑖𝜂𝑗 , and 𝛼 is a real number.
Similar to the method in Ref. [10], if the 𝑛-soliton

solution (2) with eigenfunctions (4) satisfies the veloc-
ity resonance condition

Re (𝜆1) = Re (𝜆2) = · · · = Re (𝜆𝑛) , (5)

then a molecule consisting of 𝑛 solitons can be derived.
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Fig. 1. (a) A molecule consisting of four solitons de-
cried by Eq. (2) with parameters 𝑛 = 4, 𝛼 = 10, 𝜆1 =

− 1
4
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. (b)

A molecule consisting of two solitons decried by Eq. (2)
with parameters 𝑛 = 2, 𝛼 = 2, 𝜆1 = − 𝑖

8
, 𝜆3 = 𝑖

6
. (c)

The breather solution has the same parameters as (b) but
𝛼 = 0.

Although there are molecules consisting of multi-
ple solitons in the NLS system, we find that molecules
containing two identical solitons cannot be obtained
by comparing Eq. (1) with the mKdV equation.[10]
From Figs. 1(b) and 1(c), we find that the soliton
molecule is converted to a breather solution with zero
background when the two solitons in a molecule are
close enough to each other. In other words, two soli-
tons with the same velocity (𝜆1 = 𝜉1 + 𝑖𝜂1, 𝜆2 =
𝜉1 + 𝑖𝜂2) will be converted to a breather solution 𝑞𝑏
when 𝛼 = 0:

𝑞𝑏 =
𝑁𝑏

𝐷𝑏
, (6)

with

𝑁𝑏 =4 (𝜂1 − 𝜂2)

·
[︂
𝜂1e

(4 𝑖𝜂1
2−4 𝑖𝜉1

2+16 𝜉1𝜂1+8 𝜂2𝜉1)𝑡−2 (𝑖𝜉1−2 𝜂1−𝜂2)𝑥

+𝜂1e
(4 𝑖𝜂1

2−4 𝑖𝜉1
2+16 𝜉1𝜂1−8 𝜂2𝜉1)𝑡−2 (𝑖𝜉1−2 𝜂1+𝜂2)𝑥

−𝜂2

(︁
e(4 𝑖𝜂2

2−4 𝑖𝜉1
2+8 𝜉1𝜂1)𝑡−2 (𝑖𝜉1−𝜂1)𝑥

+e(4 𝑖𝜂2
2−4 𝑖𝜉1

2+24 𝜉1𝜂1)𝑡−2 (𝑖𝜉1−3 𝜂1)𝑥
)︁]︂

(𝜂1+𝜂2) ,

𝐷𝑏 = − 4 𝜂1𝜂2e
(−4 𝑖𝜂1

2+4 𝑖𝜂2
2+16 𝜉1𝜂1)𝑡+4 𝑥𝜂1

− 4 𝜂1𝜂2e
(4 𝑖𝜂1

2−4 𝑖𝜂2
2+16 𝜉1𝜂1)𝑡+4 𝑥𝜂1

+ (𝜂1 − 𝜂2)
2
e8 (𝜂1−𝜂2)(𝑡𝜉1+𝑥/4)

+ (𝜂1 + 𝜂2)
2
e2 (4 𝑡𝜉1+𝑥)(3 𝜂1−𝜂2)

+ (𝜂1 + 𝜂2)
2
e8 (𝑡𝜉1+𝑥/4)(𝜂1+𝜂2)

+ e2 (4 𝑡𝜉1+𝑥)(3 𝜂1+𝜂2) (𝜂1 − 𝜂2)
2
.

By a tedious calculation, we find that |𝑞𝑏1| = 0
when 𝑥 → ∞, 𝑡 → ∞. This means that breather solu-
tions obtained through module resonance has the zero
background. However, breather solutions obtained by
Darboux transformation with a nonzero seed solution
do not have this characteristic.[11,12] Crests of first-
order breather solution |𝑞𝑏| satisfy the linear equation
𝑥 = 4 𝜉1𝑡.

When 𝜂1 · 𝜂2 > 0,
{︁
𝑡 = 𝜋 𝑗

2(𝜂1
2−𝜂2

2) , 𝑥 = −2𝜉 𝜋 𝑗
𝜂1

2−𝜂2
2

}︁
,

𝑗 ∈ Z corresponds to the crest of the breather solution
|𝑞𝑏|. The height of |𝑞𝑏| is 2 |𝜂1 + 𝜂2|.

When 𝜂1·𝜂2 < 0,
{︁
𝑡 = 𝜋 (2𝑗+1)

4(𝜂1
2−𝜂2

2) , 𝑥 =− 𝜉 𝜋 (2𝑗+1)
𝜂1

2−𝜂2
2

}︁
,

𝑗 ∈ Z corresponds to the crest of the breather solution
|𝑞𝑏|. The height of |𝑞𝑏| is 2 |𝜂1 − 𝜂2|.

Inspired by Ref. [3], we find that the second-order
smooth positon solution 𝑞2−𝑝 is the limit of the
breather solution 𝑞𝑏 when its period goes to infin-
ity. According to the description in the previous two
paragraphs, this means 𝜂1 → 𝜂2. The mathematical
expression of 𝑞2−𝑏 will be represented by the determi-
nant of eigenfunctions in the following part. So far,
we have clearly pointed out the relationship among
soliton molecules, breather solutions and smooth posi-
tons.
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Fig. 2. The evolution from a breather solution |𝑞𝑏| to a
second-order smooth positon |𝑞2−𝑝|: (a) a breather |𝑞𝑏| de-
scribed by Eq. (6) with parameter selections 𝜉1 = 0, 𝜂1 =
1
2
, 𝜂2 = 1

3
; (b) a breather |𝑞𝑏| described by Eq. (6) with

parameter selections 𝜉1 = 0, 𝜂1 = 1
2
, 𝜂2 = 3

7
; and (c) a

second-order smooth positon |𝑞2−𝑝| described by Eq. (6)
with parameter selections 𝜉1 = 0, 𝜂1 = 1

2
, 𝜂2 → 1

2
.
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Figure 2 clearly shows the evolution process from
a breather solution to a second-order smooth positon.
The maximum value 4 |𝜂1| of |𝑞2−𝑝| is obtained at the
origin. Similar to the conclusion in Refs. [13,14], the
dynamics properties of second-order smooth positon
|𝑞2−𝑝| for the NLS system are shown in the following.

Proposition 1: A more precise approximate trajec-
tory of second-order smooth positons are some curves
defined by

𝑥 = −4 𝜉1𝑡±
ln(4

√︀
𝜂12𝑡)

𝜂1
+

𝛼

𝜂1
, 𝑡 → ∞, (7)

𝑥 = −4 𝜉1𝑡±
ln(4

√︀
−𝜂12𝑡)

𝜂1
+

𝛼

𝜂1
, 𝑡 → −∞. (8)

Only along the trajectories of Eqs. (7) and (8), the
height 2 |𝜂1| of second-order smooth positons can be
derived.

Next, we will introduce two kinds of interac-
tions: the elastic interactions between smooth posi-
tons and soliton molecules, and the interactions be-
tween smooth positons.

Proposition 2: A hybrid of an 𝑚th-order smooth
positon and a molecule containing 𝑙 solitons has the
following form on the basics of partial velocity reso-
nance and semi-degenerate Darboux transformation:

𝑞m−l−hyb = −2𝑖
𝑁 ′

2𝑛

𝐷′
2𝑛

, (9)

with

𝑁 ′
2𝑛 =

(︂
𝜕ℎ(𝑖)

𝜕𝜖ℎ(𝑖)

⃒⃒⃒⃒
𝜖=0

(𝑁2𝑛)𝑖𝑗(𝜆𝑗 + 𝜖)

)︂
2𝑛×2𝑛

,

𝐷′
2𝑛 =

(︂
𝜕ℎ(𝑖)

𝜕𝜖ℎ(𝑖)

⃒⃒⃒⃒
𝜖=0

(𝐷2𝑛)𝑖𝑗(𝜆𝑗 + 𝜖)

)︂
2𝑛×2𝑛

,

ℎ(𝑥) =

{︂ [︀
𝑥−1
2

]︀
, 𝑥 ≤ 2𝑚,

0, 𝑥 > 2𝑚,

where 𝑛 = 𝑚 + 𝑙, 𝜆1 = 𝜆3 = · · · = 𝜆2𝑚−1. Note
𝜆2𝑚+1, · · · , 𝜆2𝑚+2𝑙−1 satisfies Eq. (5), [𝑥] denotes the
floor function of 𝑥 and 𝐷2𝑛, 𝑁2𝑛 are shown by Eq. (2).

In proposition 2, if 𝑙 = 0, then hybrid solutions
𝑞m−l−hyb will be converted to higher-order smooth
positons 𝑞𝑚−𝑝.

From Fig. 3, we can roughly observe that there
is no change except the phase shift before and after
the collision between soliton molecules and higher-
order smooth positons. According to the method
in Ref. [15], in Fig. 3(a), the trajectories of second-
order smooth positons before and after the collision
are 𝑥− inf = −𝑡− inf ± 2 ln (2

√
−𝑡− inf) + 8 + 𝜃 and

𝑥inf = −𝑡inf±2 ln
(︀
2
√
𝑡inf

)︀
+8−𝜃, 𝜃 = ln(17)

2 + ln(5)
2 , re-

spectively. Before and after the interaction, the height
of second-order smooth positon |𝑞2−𝑝| is 1.

Proposition 3: Based on the degenerate Darboux
transformation, a hybrid of an 𝑚th-order smooth posi-
ton and an 𝑙th-order smooth positon is provided by

𝑞m−l−pos = −2𝑖
𝑁 ′

2𝑛

𝐷′
2𝑛

, (10)

with

𝑁 ′
2𝑛 =

(︂
𝜕𝑔(𝑖)

𝜕𝜖𝑔(𝑖)

⃒⃒⃒⃒
𝜖=0

(𝑁2𝑛)𝑖𝑗(𝜆𝑗 + 𝜖)

)︂
2𝑛×2𝑛

,

𝐷′
2𝑛 =

(︂
𝜕𝑔(𝑖)

𝜕𝜖𝑔(𝑖)

⃒⃒⃒⃒
𝜖=0

(𝐷2𝑛)𝑖𝑗(𝜆𝑗 + 𝜖)

)︂
2𝑛×2𝑛

,

where 𝑛 = 𝑚 + 𝑙, 𝜆1 = 𝜆3 = · · · = 𝜆2𝑚−1, 𝜆2𝑚+1 =
𝜆2𝑚+3 = · · · = 𝜆2𝑚+2𝑙−1, 𝜆1 ̸= 𝜆2𝑚+1,

𝑔(𝑥) =

{︂ [︀
𝑥−1
2

]︀
, 𝑥 ≤ 𝑖 ≤ 2𝑚,[︀

𝑥−1
2

]︀
−𝑚, 2𝑚+ 1 ≤ 𝑖 ≤ 2𝑚+ 2𝑙.

Here 𝐷2𝑛, 𝑁2𝑛, Ψ𝑗 are shown by Eqs. (2) and (4).
Note that 𝐷′

2𝑛 and 𝑁 ′
2𝑛 in proposition 3 are different

from those in proposition 2.
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Fig. 3. Elastic interaction
⃒⃒
𝑞m−l−hyb

⃒⃒
between soli-

ton molecules and higher-order smooth positons: (a)⃒⃒
𝑞2−2−ℎ𝑦𝑏

⃒⃒
described by Eq. (9) with 𝜆1 = 𝜆3 = 1

4
+

𝑖
2
, 𝜆5 = 𝑖

2
, 𝜆7 = 𝑖

4
, 𝛼 = 4; (b)

⃒⃒
𝑞3−2−ℎ𝑦𝑏

⃒⃒
described by

Eq. (9) with 𝜆1 = 𝜆3 = 𝜆5 = 𝑖
2
, 𝜆7 = − 1

4
+ 𝑖

4
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2
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Fig. 4. (a) |𝑞2−2−pos| described by Eq. (10) with 𝜆1 =

𝜆3 = − 1
4
+ 𝑖

2
, 𝜆5 = 𝜆7 = 1

4
+ 𝑖

2
; (b) |𝑞2−2−pos| described

by Eq. (10) with 𝜆1 = 𝜆3 = 𝑖
2
, 𝜆5 = 𝜆7 = 3𝑖

4
.

Figure 4 clearly displays two different types of
interactions between higher-order smooth positons.
Combining propositions 1 and 3, we have the fol-
lowing conclusions: (i) When Re(𝜆1) ̸= Re(𝜆2𝑚+1),
the phenomenon shown in Fig. 4(a) will be obtained,
which is called the weak interaction. This weak inter-
action is characterized by its short duration. Before
and after this weak interaction, nothing changes ex-
cept the phase. (ii) When Re(𝜆1) = Re(𝜆2𝑚+1), the
result described in Fig. 4(b) can be generated, which
is called the strong interaction. The salient feature of
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this strong interaction is its long duration. In other
words, the strong interaction will only disappear when
|𝑡| → ∞. This strong interaction can also trigger pe-
riodic phenomena.

Compared with Ref. [10], in addition to the soli-
ton molecules and hybrid solutions consisting of soli-
ton molecules and smooth positons, two interesting
and novel results are also obtained: the connection
between soliton molecules and smooth positons is ob-
tained; two different types of interactions between
smooth positons are generated. The link between soli-
ton molecules and smooth positons has been described
clearly. Finally, we elaborate on two completely differ-
ent types of interactions called the strong interaction
and the weak interaction. Although these pictures
are very beautiful, we have some problems because
our professional ability is not very strong. By con-
straining the eigenvalues, we obtain breather solutions
with zero background in this study. Furthermore, can
higher-order rouge waves sitting on zero background
be derived? How to obtain the dynamic properties
of hybrid solutions described by proposition 3 accu-
rately? We believe that these questions will be an-
swered soon thanks to the efforts of many scholars.

The authors would like to express their sincere
thanks to Professor S.Y. Lou for his guidance and en-
couragement. The authors sincerely thank Dr. J.C.

Chen and L.H. Wang for their discussion.
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