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We study the effect of the initial-state energy variance to the short-time behavior of the Loschmidt echo (LE) in
a purely dephasing model. We find that the short-time LE behaves as a Gaussian function with the width deter-
mined by the initial-state energy variance of the interaction Hamiltonian, while it is a quartic decaying function
with the width determined by the initial-state energy variance of the commutator between the interaction Hamil-
tonian and the environmental Hamiltonian when the initial state is an eigenstate of the interaction Hamiltonian.
Furthermore, the Gaussian envelope in the temporal evolution of LE in strong coupling regime is determined by
the inband variance. We will also verify the above conclusion in the XY spin model (as environment).
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Isolating a system from environment requires
heavy resources and extreme conditions.[1−3] An ac-
tual quantum system is inevitably coupled to its sur-
rounding environment, more or less. Such open quan-
tum systems, disturbed by the environment, will lose
quantum coherence between the pointer states and ex-
perience quantum-classical transition in the temporal
evolution. Decoherence is a fundamental concept of
quantum mechanics and is a major obstacle in quan-
tum information processing that use the coherent en-
tangled states as resources, and has attracted much at-
tention in recent years. Reduced density matrix of the
system, where the environmental degrees of freedom
of the total density matrix are traced out, describe
the state of the system. Off-diagonal elements of the
reduced density matrix of the system, named as the
coherence factor in the following discussion, are often
used to analyze the degree of decoherence.[4−22] The
square of the module of the coherence factor coincides
with the Loschmidt echo, which is used to measure the
sensitivity of quantum dynamics to perturbations in
the Hamiltonian. Hence, the analysis about coherence
factor and Loschmidt echo (LE) is equivalent.

The time-energy uncertainty relation gives the
minimum for the product of the uncertainties of the
energy and time: 𝛿𝐸𝛿𝑡 > ~/2. The uncertainty of
the energy may be interpreted specifically in specific
cases. In this Letter, we show that in certain cases,
the variances of Hamiltonian in the initial state of the
environment control the time scale of the decoherence,
and thus may be interpreted as 𝛿𝐸. To be specific, the
short-time behavior (or whole decay in a certain case)
of the LE has been found to read a Gaussian function
exp(−𝛼𝑡2) with the initial state being the ground state
of the environmental Hamiltonian.[16,19] We show that
𝛼 is the variance of the effective interaction Hamilto-
nian in the initial state of the environment no mat-
ter whether the initial state of the environment is the
ground state or not. Furthermore, if the initial state of
the environment is the eigenstate of the effective inter-
action Hamiltonian, the LE will decay as exp(−𝛽𝑡4) in

short time. Here 𝛽 is the variance of the commutator
Hamiltonian between different effective environmen-
tal Hamiltonians. We also show that the time scale
of the Gaussian envelope[8,9,11,13,15,16] in the strong
coupling regime is also determined by variance of cer-
tain Hamiltonian. In the above-mentioned cases, the
speeds of the decoherence are all related to the vari-
ances of certain Hamiltonian in the initial state (i.e.,
the energy variance).

In the following, we first discuss the relation be-
tween the energy variance and the decay speed of the
LE in a simple model consisting of a two-level sys-
tem and a coupling environment. Then, we verify our
theory in a solvable 𝑋𝑌 spin chain model (as environ-
ment) with analytical and numerical results.

In the simple model mentioned above, we only as-
sume that there is no self-Hamiltonian for the sys-
tem and the decoherence is a pure dephasing pro-
cess. Hence, the total Hamiltonian of this model
is 𝐻 = 𝐻E + 𝑔𝐻I, where 𝐻E is the Hamiltonian
of the environment and 𝑔𝐻I is the interaction be-
tween the system and the environment with 𝑔 rep-
resenting the coupling strength. We assume that
the central spin is initially in a superposition state
|𝜑𝑆 (0)⟩ = 𝑐g |𝑔⟩ + 𝑐e |𝑒⟩, where |𝑔⟩ and |𝑒⟩ are eigen-
states of the system with eigenvalues −1 and +1, re-
spectively. The coefficients 𝑐g and 𝑐e satisfy the nor-
malization condition, |𝑐g|2 + |𝑐e|2 = 1. For simplicity,
we assume that the initial state of the environment
is a pure state |𝜙 (0)⟩. While the conclusions may be
easily extended to a mixed state. In the temporal evo-
lution, the state of the environment will split into two
branches |𝜙𝛼 (𝑡)⟩ = exp (−𝑖𝐻𝛼𝑡) |𝜙 (0)⟩ (𝛼 = 𝑔, 𝑒),
and the total wave function is obtained as |𝜓 (𝑡)⟩ =
𝑐g |𝑔⟩⊗ |𝜙g (𝑡)⟩+ 𝑐e |𝑒⟩ |𝜙e (𝑡)⟩. Here, the evolutions of
the two branch wave functions |𝜙𝛼 (𝑡)⟩ are driven, re-
spectively, by the two effective environmental Hamil-
tonians

𝐻g = ⟨𝑔|𝐻 |𝑔⟩ = 𝐻E − 𝑔𝐻I0 =
∑︁
𝑖

Ωg
𝑖 |𝑔𝑖⟩ ⟨𝑔𝑖| , (1)
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𝐻e = ⟨𝑒|𝐻 |𝑒⟩ = 𝐻E + 𝑔𝐻I0 =
∑︁
𝑗

Ωe
𝑗 |𝑒𝑗⟩ ⟨𝑒𝑗 | , (2)

where Ω𝛼
𝑖 (𝛼 = 𝑔, 𝑒) and |𝛼𝑖⟩ are respectively

the eigenvalues and corresponding eigenstates of the
effective environmental Hamiltonians 𝐻𝛼. 𝐻I0 =
−⟨𝑔|𝐻I |𝑔⟩ = ⟨𝑒|𝐻I |𝑒⟩ is the effective interaction
Hamiltonian. The total Hamiltonian may be rewrit-
ten as 𝐻 = |𝑔⟩ ⟨𝑔| ⊗ 𝐻g + |𝑒⟩ ⟨𝑒| ⊗ 𝐻e. As a result,
the evolved reduced density matrix of the central spin
turns out to be

𝜌 (𝑡) = TrE |𝜓 (𝑡)⟩ ⟨𝜓 (𝑡)|

=
∑︁

𝛼,𝛼′=𝑔,𝑒

𝑐𝛼𝑐
*
𝛼′ ⟨𝜙 (0)| exp

(︁
𝑖𝐻𝛼′

𝑡
)︁

exp (−𝑖𝐻𝛼𝑡) |𝜙 (0)⟩ .
(3)

It is revealed in Eq. (3) that the environment only
modulates the off-diagonal terms of 𝜌(𝑡) through the
coherence factor 𝑟(𝑡) = ⟨exp(𝑖𝐻𝛼′

𝑡) exp(−𝑖𝐻𝛼𝑡)⟩,
whereas the diagonal terms in 𝜌(𝑡) are not influenced
by the environment. Thus the coefficients remains
unity. Hereafter we use ⟨𝐴⟩ to represent the expected
value of operator 𝐴 in the initial state of the environ-
ment |𝜙(0)⟩; |𝜙(0)⟩ may be expanded in the eigenspace
of 𝐻g or 𝐻e as

|𝜙 (0)⟩ =

𝐿∑︁
𝑖=1

𝑐g𝑖 |𝑔𝑖⟩ , |𝜙 (0)⟩ =

𝐾∑︁
𝑗=1

𝑐e𝑗 |𝑒𝑗⟩ , (4)

where 𝑐g𝑖 = ⟨𝑔𝑖 |𝜙 (0)⟩, 𝑐e𝑗 = ⟨𝑒𝑗 |𝜙 (0)⟩ (𝑖 = 1, . . . , 𝐿,
𝑗 = 1, . . . ,𝐾) satisfy the relations: 𝑐g𝑖 =

∑︀
𝑗 𝑆𝑖𝑗𝑐

e
𝑗

and 𝑐e𝑗 =
∑︀

𝑖

(︀
𝑆†

)︀
𝑗𝑖
𝑐g𝑖 =

∑︀
𝑖 𝑆

*
𝑖𝑗𝑐

g
𝑖 . Here 𝑆 =∑︀

𝑖𝑗 |𝑔𝑖⟩ ⟨𝑔𝑖 |𝑒𝑗⟩ ⟨𝑒𝑗 | is the transformation matrix be-
tween the bases of |𝑔𝑖⟩ and |𝑒𝑗⟩.

The LE, which coincides with the square of the
module of the coherence factor, is defined as

𝐿 (𝑡) = |⟨exp (𝑖𝐻e𝑡) exp (−𝑖𝐻g𝑡)⟩|2 . (5)

Expanding |𝜙 (0)⟩ in the bases of |𝑔𝑖⟩ and |𝑒𝑗⟩ respec-
tively, we may rewrite the LE as

𝐿 (𝑡) =
⃒⃒⃒∑︁

𝑖𝑗

𝑝𝑖𝑗 exp (𝑖Ω𝑖𝑗𝑡)
⃒⃒⃒2
, (6)

where Ω𝑖𝑗 =
(︀
Ωe

𝑗 − Ωg
𝑖

)︀
and 𝑝𝑖𝑗 = ⟨𝑒𝑖| (𝑐e𝑖 )

*
𝑐g𝑗 |𝑔𝑗⟩ =

(𝑐e𝑖 )
*
𝑐g𝑗𝑆

†
𝑗𝑖.𝑝𝑖𝑗 satisfy the relations

∑︀
𝑗 𝑝𝑖𝑗 = 𝑝𝑖 = |𝑐g𝑖 |

2,∑︀
𝑖 𝑝𝑖𝑗 = 𝑝𝑗 =

⃒⃒
𝑐e𝑗
⃒⃒2, and

∑︀
𝑖𝑗 𝑝𝑖𝑗 = 1. To evaluate the

short time behavior of the LE, we truncate the expo-
nentials in Eq. (6) up to the order 𝑡2,

𝐿 (𝑡) ≈ 1 − 𝛼𝑡2 ≈ exp
(︀
−𝛼𝑡2

)︀
, (7)

where 𝛼 = 4𝑔2
(︁⟨︀
𝐻2

I0

⟩︀
− ⟨𝐻I0⟩2

)︁
=

∑︀
𝑖𝑗 𝑝𝑖𝑗

(︀
Ω𝑖𝑗 − Ω̄

)︀2
is the variance of the effective interaction Hamiltonian
𝐻I0 (the energy variance); Ω̄ =

∑︀
𝑖𝑗 𝑝𝑖𝑗Ω𝑖𝑗 = 2𝑔 ⟨𝐻I0⟩

is the expected value of 2𝑔𝐻I0 in the initial state of
the environment. The similar result has been derived
in Ref. [23]. Here 𝑝𝑖𝑗 may represent the “probabil-
ity" of Ω𝑖𝑗 in the probability distribution {𝑝𝑖𝑗} of the

eigenvalue variable {Ω𝑖𝑗}. From Eq. (7) we can see
that the energy variance 𝛼 controls the decay speed
of the LE in short time. Define 𝑃 = 𝐿 × 𝐾 as the
total number of the variable Ω𝑖𝑗 and 𝛽 as the coeffi-
cient of the fourth order term of 𝑡 in the expansions of
𝐿 (𝑡). As 𝑃 → ∞, usually the energy variance 𝛼→ ∞
and 𝑡0 → 0. Here 𝑡0 is the time scale in which 𝐿 (𝑡)
firstly deviates remarkably from unity. Then usually
one may expect that 𝛽𝑡4/𝛼𝑡2 → 0 within the time
𝑡0. Hence, within the time 𝑡0, the higher order terms
(≥ 4) of 𝑡 in the expansions of 𝐿 (𝑡) may be neglected.
Equation (7) is valid until 𝐿 (𝑡) firstly deviates re-
markably from unity. Furthermore, if the variables
of Ω𝑖𝑗 satisfy normal distribution, 𝐿 (𝑡) = exp

(︀
−𝛼𝑡2

)︀
will be exactly a Gaussian function. Gaussian decay
is general in the case that the effective interaction
Hamiltonian 𝐻I0 may be expressed as the sum of a se-
ries of two-level Hamiltonians.[8,9,11,13−16] The results
in the above-mentioned reference agree with Eq. (7).
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Fig. 1. The temporal evolution of 𝐿 (𝑡) as a function of
time 𝑡 for different parameters in the 𝑋𝑌 spin chain model
(as environment). The parameter values is shown in the
legend.

From Eq. (7) we can see that the energy variance
𝛼 is only determined by the initial state of the en-
vironment |𝜙 (0)⟩ and the interaction 𝑔𝐻I, but not
the environmental Hamiltonian 𝐻E. Hence, the decay
speed in short time and of Gaussian decay is inde-
pendent of the environmental Hamiltonian 𝐻E. This
conclusion is astonishing because it has been reported
that the decoherence speed is enhanced in the vicinity
of quantum critical point (QCP) of the environmental
Hamiltonian 𝐻E in many previous papers.[6,7] In fact,
speed enhancing near the QCP of the environment is a
finite size phenomenon which requires the initial state
of the environment being ground state of one of the ef-
fective environmental Hamiltonians.[9] Hence, the spe-
cial behavior near the QCP indeed originates from the
initial state of the environment, but not the environ-
mental Hamiltonian. In Fig. 1 we show the temporal
evolution of 𝐿 (𝑡) as a function of time 𝑡 for different
parameters in the 𝑋𝑌 spin chain model (as environ-
ment). The settings for Hamiltonian and parameters
is same as that in Ref. [9], where the environmental
Hamiltonian and the interaction Hamiltonian read

𝐻E = −
𝑁∑︁
𝑙=1

(︁1 + 𝛾

2
𝜎𝑥
𝑙 𝜎

𝑥
𝑙+1+

1 − 𝛾

2
𝜎𝑦
𝑙 𝜎

𝑦
𝑙+1+𝜆𝜎𝑧

𝑙

)︁
, (8)
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𝑔𝐻I = −𝑔𝜎𝑧
𝑁∑︁
𝑙=1

𝜎𝑧
𝑙 . (9)

Here 𝜎𝛼 (𝛼 = 𝑥, 𝑦, 𝑧) and 𝜎𝑧
𝑙 are the Pauli matrices

used to describe the central spin and the 𝑙th spin of
the spin chain, respectively. The effective environ-
mental Hamiltonians 𝐻e, 𝐻g and the initial Hamil-
tonian 𝐻𝑖 are defined as Eq. (8) by replacing 𝜆 with
𝜆− = 𝜆e − 𝑔, 𝜆+ = 𝜆e + 𝑔 and 𝜆𝑖, respectively. The
initial state of the environment is the ground state
of the Hamiltonian 𝐻𝑖, which may be different from
the effective environmental Hamiltonians 𝐻e and 𝐻g.
One can see from Fig. 1 that the width of the curve
is independent of 𝜆e which is related to the effective
environmental Hamiltonian. The only difference be-
tween these curves is caused by the difference of the
values of 𝜆𝑖. In fact, we have derived the analytical
expression of the energy variance 𝛼 for large 𝑁 in the
𝑋𝑌 spin chain model:

𝛼 ≈

{︃
8𝑔2𝑀
𝜆2
𝑖
, 𝜆2𝑖 > 1,

8𝑔2𝑀, 𝜆2𝑖 ,
(10)

where 2𝑀 = 𝑁 is the total spin numbers of the spin
chain. For detailed discussion one can see Ref. [9].
From Eq. (10) we can also see that the energy vari-
ance depends on the initial state of the environment
and the coupling strength, but not the effective envi-
ronmental Hamiltonians 𝐻e and 𝐻g.

Variance of the Hamiltonian in the initial state is
just the uncertainty of the energy. The energy in
the eigenstate of the Hamiltonian is completely de-
termined. Thus, the uncertainty is zero. The energy
in the initial state that can be expanded into many
eigenstates with nonzero coefficients is fairly uncer-
tain. Thus, the uncertainty is nonzero.

Using the Zassenhaus formula,[24] we can rewrite
the LE up to the fourth order as 𝐿(𝑡) ≈
|⟨exp[2𝑖𝑔𝑡𝐻I0] exp(−𝑔𝑡2[𝐻I0, 𝐻E])⟩|2. Thus, we can
immediately draw another conclusion: if the initial
state of the environment is an eigenstate of 𝐻I0, then,
up to the fourth order

𝐿 (𝑡) ≈ 1 − 𝛽𝑡4 ≈ exp
(︀
−𝛽𝑡4

)︀
, (11)

where 𝛽 = 𝑔2(⟨[𝐻I0, 𝐻E]2⟩ − ⟨[𝐻I0, 𝐻E]⟩2) is the vari-
ance of the commutator Hamiltonian 𝑔[𝐻I0, 𝐻E] in
the initial state of the environment. That is, in this
case the LE decay as a quartic function of time 𝑡
in short time. The time scale of the decay is con-
trolled by the variance of 𝑔[𝐻I0, 𝐻E]. In this case,
the LE decays much more slowly than that with the
general initial state of the environment in short time.
With [𝐻e, 𝐻g] ̸= 0, the term of 𝑡4 is always nonzero
and should not be neglected. Hence there is no ini-
tial state of the environment in which the LE de-
cays as 𝐿(𝑡) ≈ 1 − 𝛾𝑡𝑎 in short time where 𝑎 > 4.
Similar to the previous discussion, if the number of
eigenstates of [𝐻I0, 𝐻E] is very large and higher or-
der terms (≥ 6) in 𝐿(𝑡) may be neglected, then
𝐿(𝑡) will decay as a quartic function of time 𝑡 until
𝐿(𝑡) firstly deviates remarkably from unity. Further-
more, if the eigenvalues of [𝐻I0, 𝐻E] satisfy normal

distribution, 𝐿(𝑡) = exp(−𝛽𝑡4) is exact. In the 𝑋𝑌
spin chain model (8) mentioned above, [𝐻I0, 𝐻E] =
−2𝑖𝛾

∑︀
𝑙(𝜎

𝑥
𝑙 𝜎

𝑦
𝑙+1 + 𝜎𝑦

𝑙 𝜎
𝑥
𝑙+1). The eigenstates of 𝐻I0

are

|𝜙 (0)⟩ =

𝑁∏︁
𝑙=1

⊗ |↑↓⟩𝑙 . (12)

Here | ↑↓⟩𝑙 represents | ↑⟩𝑙 or | ↓⟩𝑙 that is the eigen-
state of 𝜎𝑧

𝑙 . With the initial state of the environment
being Eq. (12), we can derive the variance of [𝐻I0, 𝐻E]
in this model as follows:

𝛽 = 32𝛾2𝑔2𝑀. (13)

The ground state of the Hamiltonian 𝐻𝑖 with 𝜆𝑖 =
±∞ is just the form of Eq. (12).

In Fig. 2 we compare the temporal evolution of LE
with different initial states of the environment. The
red line is drawn with the initial state of the envi-
ronment being the ground state of the Hamiltonian
𝐻𝑖 with 𝜆𝑖 = 1.0; the black and grey lines are drawn
with the states of (12) with 𝛾 = 1.0 and 𝛾 = 0.5, re-
spectively. All the solid lines are drawn numerically
from exact analytical expression of LE.[9] The green
and blue dashed lines are drawn with Eq. (11) with
the variances calculated from Eq. (13). One can see
that LE with the initial state of the environment be-
ing eigenstates of 𝐻I0 decays much more slowly than
that with the initial state of the environment being
ground state of the Hamiltonian 𝐻𝑖 with 𝜆𝑖 = 1.0 in
short time. Furthermore, the lines from Eq. (13) fit
the lines from exact LE fairly well.
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0.0
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1.0

L
(t
)

t

Fig. 2. The temporal evolution of LE with different ini-
tial states in the 𝑋𝑌 spin chain model (as environment).
The red line is drawn with the initial state of the envi-
ronment being the ground state of the Hamiltonian 𝐻𝑖

and 𝜆𝑖 = 1.0; the black and grey lines are drawn with the
state of (12) with 𝛾 = 1.0 and 𝛾 = 0.5, respectively. All
the solid lines are drawn numerically from exact analyti-
cal expression of LE.[9] The green and blue dashed lines
are drawn with Eq. (11) with the variances calculated from
Eq. (13).

In the case of strong coupling regime, where the in-
teraction 𝑔 ≫ 1, the LE may decay with rapid oscilla-
tion under a Gaussian envelope.[8,9,11,13,15,16] Next we
will clarify that the Gaussian envelope is also related
to energy variance. In the strong coupling regime,
the eigenvalues of 𝐻e lie in some bands. The energy
gaps between different bands are much larger than
that in one band. The variance of the eigenvalues is
thus approximately equal to the variance of the aver-
age of each band (band variance), which leads to the
rapid oscillation. The variance of the gaps between
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the eigenvalues and the average of the corresponding
band (inband variance) is responsible for the envelope.
If we replace the eigenvalues in Eq. (6) with gaps be-
tween the eigenvalues and the average of the corre-
sponding band, the LE 𝐿 (𝑡) turns into a new function
𝐿′ (𝑡). The temporal evolution of 𝐿′ (𝑡) should agree
with the envelope. The time scale of the envelope is
thus controlled by the inband variance and is much
larger than that of the oscillations. In Fig. 3, we show
the temporal evolution of 𝐿 (𝑡) and 𝐿′ (𝑡) in the 𝑋𝑌
spin chain model (as environment), with the param-
eters 𝑁 = 800, 𝑔 = 500, 𝛾 = 1.0, 𝜆𝑖 = 1.0. We can
see that the curves of 𝐿′ (𝑡) agree with the envelope
of 𝐿 (𝑡) very well. In experiment, one may perform a
reversal evolution to eliminate the rapid oscillations,
which turns 𝐿 (𝑡) into 𝐿′ (𝑡).[13,15]

0 30 60 90 120
0.0
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Fig. 3. The temporal evolution of 𝐿 (𝑡) and 𝐿′ (𝑡) in the
𝑋𝑌 spin chain model (as environment), with the param-
eters 𝑁 = 800, 𝑔 = 500, 𝛾 = 1.0, 𝜆𝑖 = 1.0.

In conclusion, we have studied the role of the vari-
ance of the Hamiltonian in the initial state of the en-
vironment. It is found that the time scale of the de-
cay speed of the LE is related to the energy variance.
Specifically, we find that the decay speeds of the co-
herence factor and the LE are related to the variance
of the effective interaction Hamiltonian in the initial
state of the environment. The LE is a Gaussian func-
tion with the width determined by the energy variance
in short time (or whole decay). In this case, the de-
cay speeds of the LE in short time and of Gaussian

decay are independent of the effective environmental
Hamiltonians. If the initial state of the environment
is the eigenstate of the effective interaction Hamilto-
nian, the LE is a quartic function of time 𝑡 with the
width of the curve determined by the energy variance
of the commutators between the effective interaction
Hamiltonian 𝐻I0 and the environmental Hamiltonian
𝐻E. Furthermore, the energy variance may also be
used to explain the origin of the Gaussian envelope in
the strong coupling regime.
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