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Growth Control of High-Performance InAs/GaSb Type-II Superlattices via
Optimizing the In/Ga Beam-Equivalent Pressure Ratio ∗
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The performance of type-II superlattice (T2SL) long-wavelength infrared devices is limited by crystalline quality
of T2SLs. We optimize the process of growing molecular beam epitaxy deposition T2SL epi-layers on GaSb (100)
to improve the material properties. Samples with identical structure but diverse In/Ga beam-equivalent pressure
(BEP) ratio are studied by various methods, including high-resolution x-ray diffraction, atomic force microscopy
and high-resolution transmission electron microscopy. We find that appropriately increasing the In/Ga BEP ratio
contributes to improving the quality of T2SLs, but too large In BEP will much more easily cause a local strain,
which can lead to more InSb islands in the InSb interfaces. The InSb islands melt in the InSb interfaces caused by
the change of chemical potential of In atoms may result in the “nail" defects covering the whole T2SLs, especially
the interfaces of GaSb-on-InAs. When the In/Ga BEP ratio is about 1, the T2SL material possesses a lower
full width at half maximum of +1 first-order satellite peak, much smoother surface and excellently larger area
uniformity.

PACS: 73.21.Cd, 73.21.Ac, 73.61.Ey, 73.63.Hs DOI: 10.1088/0256-307X/37/3/037301

Since they were first presented by Sai-Halasz in
1977,[1] type-II superlattices (T2SL) have received
interest from researchers because they promise to
be an excellent material system for infrared photo-
detectors.[2−5] Compared with other material sys-
tems, T2SL materials have many advantages such
as unique band structure engineering, suppressed
Auger recombination,[6] excellent spatial uniformity,[7]
large electron effective mass, and covering 3µm to
30µm.[8−12] Recently, the T2SL long-wavelength in-
frared (LWIR) infrared focal plane array (FPA) has
been developed, and significant progress in device
performance, closing to the one of the Hg1−𝑥Cd𝑥Te
FPAs.[13,14]

Although InAs/GaSb T2SL infrared detectors
have achieved a competitive performance, the state-of-
the-art efficiency is still far away from its optimal one.
To further improve device performances, some strate-
gies, which include designing and preparing new T2SL
materials,[15,16] developing novel structures,[5,17,18]
optimizing device preparation,[2,16,19] and enhancing
packaging technologies,[11] have been proposed. Par-
ticularly, enhancement of the crystalline quality of
T2SL materials plays a pivotal role among these ap-
proaches. It is generally accepted that less defect
density in high-quality T2SL materials possesses the
longer minority carrier lifetime due to suppressing
the Shockley-Read-Hall (SRH) recombination.[20−22]

Furthermore, much work so far has focused on the
growth temperature, the V/III beam-equivalent pres-
sure (BEP) ratio and the Sb/As BEP ratio to gain the
preferable interface between the InAs and GaSb lay-
ers, thus accomplishing high-quality InAs/GaSb T2SL
materials.[23−26] It is noteworthy that only very lit-
tle investigation on optimizing the In/Ga BEP ra-
tio has been employed in pursuit of the preferential
InAs/GaSb T2SL interface.

In this work, we demonstrate that high-quality
InAs/GaSb T2SL materials could be achieved by the
optimization of the In/Ga BEP ratio in the process of
growth. We perform comprehensive analyses of nail
defects corresponding to InAs/GaSb T2SL materials
prepared in different In/Ga BEP ratios using the high-
resolution x-ray diffraction (HRXRD), the atomic
force microscopy (AFM) and the high-resolution
transmission electron microscopy (HRTEM). Probing
the interplay between the morphology and the defects
enables us to improve the understanding of the role
of In/Ga BEP ratios in the preparation of InAs/GaSb
T2SLs and helps to yield high-quality materials.

In our experiment, the InAs/GaSb T2SL materials
were grown on n-type epi-ready GaSb(001) substrates
by an RIBER 412 molecular beam epitaxy (MBE) sys-
tem, which was equipped with dual-filament Knudsen
cells for III elemental solid sources of Ga and In and
valved cracker cells for both As and Sb. The temper-
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atures of As and Sb cracking zones were set at 850∘C
and 800∘C, respectively, resulting in the most of V
fluxes comprised of As2 and Sb2. Firstly, a 0.5µm
GaSb buffer was grown at 530∘C. Then 100 periods
of superlattices (SL), a period incorporated with 12
monolayers (MLs) of InAs and 7 MLs of GaSb, were
doped at 390∘C. The V/III BEP ratio was set at 4
for both InAs and GaSb except sample D whose V/III
BEP ratio was set at 4 for both InAs and InSb. The
valve of As cell was kept to be close except we needed
to grow InAs layers to control the As-background pres-

sure for Gasb layers and interface layers. In previous
research, InSb interface layers were beneficial for the
optical quality.[27,28] As a result all the interface layers
of SLs were InSb forced interfaces in order to balance
the stress, by a special shutter sequence. The GaSb
growth rate was kept to be constant (0.5 ML/s), corre-
sponding to Ga BEP of 4.5× 10−7 Torr, and changed
InAs growth rate as 0.2 ML/s, 0.3 ML/s and 0.4ML/s,
corresponding In BEP of 2.7 × 10−7, 4.1 × 10−7,
6.7 × 10−7 Torr, respectively. The more growth de-
tails are shown in Table 1.

Table 1. The growth details of four samples.

Sample Ga flux (Torr) Sb flux (Torr) In flux (Torr) As flux (Torr) In/Ga BEP
A 4.5× 10−7 1.8× 10−6 2.7× 10−7 1.1× 10−6 0.5
B 4.5× 10−7 1.8× 10−6 4.1× 10−7 1.6× 10−6 0.9
C 4.5× 10−7 1.8× 10−6 6.7× 10−7 2.7× 10−6 1.5
D 4.5× 10−7 2.7× 10−6 6.7× 10−7 2.7× 10−6 1.5
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Fig. 1. (a) FWHM of +1 first-order satellite peak of the
samples, (b) lattice mismatch of the samples, (c) high-
resolution x-ray diffraction (HRXRD) for the samples.

The quality of samples was described by the Jor-
dan valley high-resolution x-ray diffraction. As shown
in Fig. 1(a), each sample’s full width at half maxi-
mum (FWHM) of the first-order satellite peak is be-
low 40 arcsec. The lattice mismatch of every sample is
below 600 ppm from Fig. 1(b), which means that the
strain of the whole structure is almost balanced. Fig-
ure 1(c) illustrates that the x-ray diffraction curves
of all the samples have a large number of diffraction
satellites, which indicate a favorable quality of sam-
ples. Compared the curves of Fig. 1(a) with Fig. 1(b),
although sample B has a bigger mismatch 590.3 ppm,
it still possesses the lowest FWHM of +1 first-order
satellite peak (26.77 arcsec, which is shown on the top
left corner of Fig. 1(c)). It can be seen that a higher
growth rate is propitious to the quality of SL materi-
als, which is consistent with the previous report.[28]
However, if continue increasing the growth rate of

InAs, the materials quality will be inhibited. At this
stage, it can be guessed that this phenomenon may
be caused by too high In BEP, leading some In atoms
gathered on the interface.
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Fig. 2. (a) The rms roughness for 2 × 2µm2 scans, (b)
the rms roughness for 10 × 10µm2 area, (c) the AFM
image of 10 × 10µm2 for sample B, (d) the AFM im-
age of 10 × 10µm2 for sample C, (e) the AFM image
of 10 × 10µm2 for sample D, (f) the AFM image of
30× 30µm2 for sample C.

We obtain the rms roughness of a 2 × 2µm2 area
for samples A, B, C and D all below 0.3 nm, which
signifies the roughness of elevation is under one layer.
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This result well accounts for the consequence of the
FWHM of first-order satellite peak. All of the sam-
ples have a smooth surface in a relatively small area
from the curve in Fig. 2.(a). However, the results of
the samples are dramatically different, with a view
to a lager region. The values of rms roughness over
a 10 × 10µm2 area for samples A, B, C and D are
1.08 nm, 0.37 nm, 32.00 nm and 22 nm, respectively.
Sample B exhibits the best homogeneity among the
four samples, because its rms roughness only has lit-
tle increase with the test area expanded. Clear atomic
steps can be seen on the surfaces of sample B from
Fig. 2(c). The AFM images of 10×10µm2 for samples
C and D are shown in Figs. 2(d) and 2(e). Obviously,
the AFM image of sample D is very similar to sample
C. However, the results of samples C and D are ob-
servably different from the data of the smaller region.
There are a lot of very deep holes in the epitaxial lay-
ers resulting in this conspicuous difference. The depth
of holes can reach 130 nm at least. This type of deep
holes was not an idiographic phenomenon, but nearly
outright covering the surface of sample C, as shown
in Fig. 2(f). This type of defect, which looks like a
“nail", may be caused by the local strains within the
superlattices.[29]
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Fig. 3. (a) HRTEM image of sample B, (b) HRTEM im-
age in larger scans area of sample B, (c) HRTEM images
of sample C, (d) HRTEM image of the defect of sample C.

By the HRTEM images of sample B, the
InAs/GaSb T2SLs have distinct and sharp bound-
aries, identical width of each layer, and less GaSb or
InAs layer diffusing into the other layer. Meanwhile,
there is no dislocation at all. Figure 3(c) shows an
HRTEM image of the region far away from the defects
of sample C. Although the boundaries are still distinct,
it is more rough and tumble than sample B. There
are several obvious dark-line defects, as displayed in
Fig. 3(d). These defects originate from the interface
of the T2SL-GaSb buffer layer, and the initial two
thread-like defects continue on splitting during going

through the whole T2SL layers.
The mismatch between InSb and GaSb is 7.8%,

therefore the critical thickness is only one monolayer.
The InSb islands were likely to be formed when the
InSb interfaces were grown. The stress-strain relations
can be written as[30]

𝜀𝑖𝑗 =
1

𝐸
[(1 + 𝜈)− 𝜈𝛿𝑖𝑗𝜎𝑛𝑛], (1)

where 𝜀 is indicative of the strain tensor, and 𝐸 re-
veals the Young modulus, and 𝜎 is the stress, and 𝜈
exhibits the Poisson ratio. The stress-strain relations
make the chemical potential of In atoms in InSb is-
lands exhibit a difference.[31] When a thin GaSb layer
is covered on the InSb islands, In atoms exit a ther-
modynamically favored tendency, will escape from the
InSb islands and cover the free GaSb surface.[31] This
thermodynamic process will increase confusion degree
of the interface, especially the interfaces of GaSb on
InAs. Even though the strain of the whole structure
is balanced, there still exists a local strain area, espe-
cially in the interfaces of GaSb on InAs. With increas-
ing thickness of T2SLs, this local strain may continue
magnifying, leading to the nail defects.

In summary, we have reported the optimization
of In/Ga BEP ratios during growth of InAs/GaSb
T2SLs. The structure of 12 ML InAs and 7 ML GaSb
T2SLs is studied by HRXRD, AFM and HRTEM. Ac-
cording to the results of these tests, when the In/Ga
BEP ratio is about 1, the T2SL material possesses a
lower FWHM of +1 first-order satellite peak, much
smoother surface and excellently larger area unifor-
mity. When the In/Ga BEP ratio is under 1, then fix-
ing the GaSb growth rate, appropriately increasing the
InAs growth rate can improve the quality of T2SLs. If
continue increasing the In BEP, a local strain will oc-
cur much more easily, so that more InSb islands will
be self-assembled in the interface. The InSb islands
melt in the InSb interfaces caused by the change of
chemical potential of In atoms may result in the nail
defects covering the whole T2SLs, especially in the
interfaces of GaSb on InAs.
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