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Abstract

QMCPACK is an open source quantum Monte Carlo package for ab initio electronic structure
calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and
some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include

variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater—Jastrow type trial
wavefunctions in conjunction with a sophisticated optimizer capable of optimizing tens of
thousands of parameters. The orbital space auxiliary-field quantum Monte Carlo method is
also implemented, enabling cross validation between different highly accurate methods. The
code is specifically optimized for calculations with large numbers of electrons on the latest
high performance computing architectures, including multicore central processing unit and
graphical processing unit systems. We detail the program’s capabilities, outline its structure,
and give examples of its use in current research calculations. The package is available at

http://qmcpack.org.

Keywords: quantum Monte Carlo, electronic structure, quantum chemistry

(Some figures may appear in colour only in the online journal)

1. Introduction

An accurate solution of the many-body Schrédinger equa-
tion is a grand challenge for physics and chemistry®. The
great difficulty of obtaining accurate yet tractable solu-
tions has led to the development of many complementary
methods, each bearing unique approximations, limitations,
and assumptions. Today, the electronic structure of periodic
condensed matter systems is most commonly obtained using
density functional theory (DFT), while for isolated molecules
many-body quantum chemical techniques can also be applied
[1, 2]. With these techniques, obtaining systematically improv-
able and increasingly accurate results for general systems is
a major challenge. With DFT, the challenge lies in deriving
accurate approximations to and constraints on the exact den-
sity functional, such as the recent approximate SCAN func-
tional [3]. For this reason, a systematically improvable DFT
is a challenging theory and therefore progress is slow. In
quantum chemistry, the most accurate methods are system-
atically improvable but scale poorly with system size. They

25 This manuscript has been authored by UT-Battelle, LLC under Contract
No. DE-ACO05- 000R22725 with the US Department of Energy. The United
States Government retains and the publisher, by accepting the article for
publication, acknowledges that the United States Government retains a non-
exclusive, paid-up, irrevocable, world-wide license to publish or reproduce
the published form of this manuscript, or allow others to do so, for United
States Government purposes. The Department of Energy will provide public
access to these results of federally sponsored research in accordance with
the DOE Public Access Plan (http://energy.gov/downloads/doe-public-
access-plan).

are not well developed for periodic systems with hundreds of
electrons, and, in particular, are not yet suitable for describing
metallic states. Other many-body methods, such as GW and
dynamical mean-field theory (DMFT), are limited by their
approximations. GW is systematically affected by a pertur-
bative treatment of the electron—electron interaction. DMFT,
mostly used for ‘correlated’ electronic systems, suffers from
the local nature of its self energy despite being non-pertuba-
tive, particularly when applied to low-dimensional systems
and/or to systems where a strong Hubbard repulsion is not the
only relevant contribution in the interaction.

Quantum Monte Carlo (QMC) methods provide an alterna-
tive route to solutions of the many-body Schrodinger equa-
tion via stochastic sampling [4]. By sampling the many-body
wavefunction or its projection, QMC methods largely avoid
the need to perform numerical integrals that scale poorly with
system size. Further, QMC methods and implementations
generally invoke controllable approximations. Although com-
putationally expensive compared to DFT, QMC methods can
be systematically improved and give nearly exact results in
some cases. This was most notably performed for the homo-
geneous electron gas in 1980 [5]. Besides their stochasticity,
the key distinctions between QMC and most other electronic
structure methods is that (1) for QMC the approximations are
few and well specified, and (2) QMC usually requires a ‘trial
wavefunction’ as input. The trial wavefunction is typically
constructed from the results of less costly methods, e.g. DFT
or small quantum chemical calculation, and improved via sub-
sequent optimization. QMC methods can be directly applied
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to materials and chemical problems of interest as with any
other electronic structure method but also serve as an impor-
tant validation tool to assess and improve the approximations
of less costly methods by providing reference benchmark data.

QMC methods have been applied to isolated molecules
as well as insulating, semiconducting, and metallic phases
of condensed matter. Complex molecules [6-8], liquids [9],
molecular solids [10, 11], solids [12] and defect properties
of materials [13—17] have been studied at clamped nuclear
geometries. Molecular dynamics calculations driven by
QMC nuclear forces, and calculations beyond the Born—
Oppenheimer approximation are also possible, e.g. [18-20].
The majority of results have been obtained with approaches
that operate in real space, using variational Monte Carlo
(VMC) and diffusion Monte Carlo (DMC) [21-26]. Whereas
QMC methods that sample the many-body wavefunction
in real space have been in use for decades, there are an
increasing number of attractive methods that can be imple-
mented in a basis of atomic orbitals, such as auxiliary-field
(AFQMC) [27-29], Monte Carlo configuration interaction
(MCCI) [30, 31] and full-configuration interaction QMC
(FCIQMC) [32]. Both real-space and basis approaches have
different strengths and weaknesses. For example, more accu-
rate multiple-projector pseudopotentials and frozen core
approaches are readily implemented in AFQMC [33, 34] and
FCIQMC, but these methods are generally thought to have
a higher computational cost compared to real-space QMC.
Most significantly, the increasing diversity of QMC methods
with different approximations will enable cross-validation of
electronic structure schemes for challenging chemical, phys-
ical and materials problems, and help guide improvements in
the methodology.

OMCPACK implements a variety of real-space solvers and
a complementary, recently developed AFQMC solver. The
package is open source and openly developed. QMCPACK is
implemented in modern C+ 4, making strong use of object
orientated and template-based generic programming tech-
niques to facilitate high modularity, a separation of func-
tionalities, and significant code reuse. A special emphasis
has been given to performance, capability, and stability for
large production calculations. A state-of-the-art wavefunc-
tion optimization algorithm capable of optimizing tens
of thousands of parameters enables the most accurate and
sophisticated wavefunctions to be utilized [35]. The latest
size-consistent algorithms for pseudopotential evaluation
[36] and time step [7, 11] are implemented. The code is
highly optimized for modern high-performance computer
architectures via extensive vectorization, careful considera-
tion of memory layouts and access patterns [37], efficient
OpenMP threading, and an implementation for graphics pro-
cessing units (GPUs) using NVIDIA’s CUDA. A significant
effort is underway to improve the code for exascale archi-
tectures with a single common code base. QMC methods
are particularly attractive for these future systems due to the
relatively low data movement required. This combination
of capabilities and activities helps to distinguish QMCPACK

from other QMC codes such as QWALK [38], CASINO
[39], CHAMP [40], and TurboRVB [41].

In this article, we give an overview of the features and
capabilities of the QMCPACK package. To indicate the future
development pathways, we outline a number of challenges for
QMC methods, including development of consistent many-
body pseudopotentials, the addition of spin—orbit interac-
tions to QMC Hamiltonians, and the challenge of exascale
computing.

2. Open source and open development

OMCPACK is open source and distributed under the open
source initiative [42] approved University of Illinois/National
Center for Supercomputing Applications (NCSA) open source
license. The main project website http:/qmcpack.org links to
versioned releases and the development source code. This also
includes a substantial manual detailing installation instructions,
examples for workstation through to supercomputer installa-
tions, and detailed methodology and input parameter descrip-
tions. The source code includes a substantial test framework
(>300 tests) including unit and integration tests that are used
to help validate the implementation and test new installations.

OMCPACK is also openly developed. The latest source code
and updates are coordinated via GitHub, https://github.com/
QMCPACK/qmcpack. This site provides version controlled
source code, a wiki describing development practices, issue
(ticket) tracking, and a contribution review framework (pull
request reviews). The project follows the ‘git flow’ branching
and development model.

Contributions from new developers are encouraged and
follow exactly the same mechanism as for established devel-
opers. For example, the ‘finite difference linear response’
method [43] was recently contributed and underwent several
updates to maximize compatibility with the existing source
code. The full discussion history of contributions is also avail-
able. The open development process, with full change history
available, allows contributions to be clearly identified and
credit accurately assigned. The source code change history
can be tracked to the earliest days of QMCPACK.

All proposed changes to QMCPACK automatically undergo
continuous integration testing which allows the contributions
to be run on different architectures and with different soft-
ware versions than might have been used for development,
e.g. different processor manufacturers, GPUs, or compilers.
This allows for rapid feedback and reduces risk that signifi-
cant bugs are introduced.

Development directions are set in part based on requests
from users and experience applying QMCPACK to tuto-
rial through to research level problems. Besides contacting
the developers directly or using GitHub, a discussion group
(‘OMCPACK Google group’) provides a method to make sug-
gestions or obtain support. For example, requests to interface
QMCPACK with additional electronic structure or quantum
chemistry packages that will enable new science applications
or solve an existing problem will be given priority.
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3. Code structure

QMCPACK is architected in a modular and generic structure,
aiming to facilitate the maximum reuse of source code and to
appropriately abstract key organizational and functional con-
cepts. For example, as detailed below, all the different comp-
onents of a trial wavefunction utilize a common base class and
provide an identical interface to the different QMC methods.
This allows any newly contributed wavefunction component
to become immediately available to all the QMC methods.

Extensive use is made of C++ generic and template
programming to minimize reimplementation of common
functionality. For example, the numerical precision is param-
eterized, with single, double and mixed precision available
largely from a single source definition, and widely used
functionality such as one- to three-dimensional splines are
accessed through a common interface.

In the following we give a high-level outline of the major
abstractions and components in the application. In practice
and due to the large range of functionality implemented,
QMCPACK consists of over 200 classes. To aid developers,
the manual (http://docs.qmcpack.org) provides additional
guidance while the Doxygen tool is used to produce docu-
mentation to help track functionality and interdependencies.
Currently this is automatically generated from the latest
development source and published at http://docs.qmcpack.
org/doxygen/doxy/.

At a high level, QMCPACK consists of the following major
abstractions and areas of functionality shown in figure 1.

(a) QMCMain. The topmost level of the application is
responsible for parallel setup and initially parsing the
input XML. Each XML section is handed to the appro-
priate functionality to setup the Hamiltonian or run a
QMC calculation. Notably, the input driver persists
walkers from section to section. A single QMCPACK input
file can therefore describe a single simple VMC run, or
considerably more complex and powerful workflows
invoking VMC, wavefunction optimization, and produc-
tion DMC calculations at a range of time steps. The user
can choose the appropriate modality for their research.

(b) QMC Dirivers. These implement major QMC methods
such as VMC, wavefunction optimization, and reptation.
Orbital space methods such as AFQMC, described in
section 13, are also implemented here. Due to the levels
of abstraction, the drivers have no dependencies on the
specifics of the trial wavefunction that are in use.

(c) Walkers and particles. Classes handle the state informa-
tion for each walker, including the lists of particles that
are updated by the Monte Carlo. Common infrastructure
for computing minimum images in periodic boundary
conditions is provided here. Walkers carry additional state
information depending on the enabled Hamiltonian and
observables so that appropriate statistics can be reported.

(d) Hamiltonians. The Hamiltonian used in QMCPACK is
described by the input XML. This enables model system
calculations as well as first principles calculations to be
performed. Beyond Born—Oppenheimer simulations are

also supported, with the ionic positions a non-constant
part of the Hamiltonian. The kinetic, bare electron—ion,
pseudopotential, electron—electron and ion—-ion Coulomb
terms are implemented at this level.

(e) Observables. Quantities that are not critical to the
evaluation of the Hamiltonian are termed observables
and potentially include the density, density matrices, and
momentum distribution.

(f) Wavefunctions. The trial wavefunctions are implemented
as a product of different wavefunction components. This
includes single and multiple Slater determinants, and one,
two, and three-body Jastrow terms. Specialized wave-
functions such as backflow and antisymmetrized geminal
product wavefunctions are also implemented here.

(g) Single particle orbitals. Orbitals from plane-wave, spline,
and gaussian basis sets are evaluated for use in e.g. Slater
determinant components of the wavefunction. Specialty
basis sets are also implemented, e.g. the plane-wave based
homogeneous electron gas, and the hybrid augmented-
plane wave basis set combining interstitial plane-waves
and atomic-core centred spherical harmonic expansions.

(h) Standard libraries. Where available, standardized imple-
mentations and libraries are used for parallelization
(MPI), I/O (HDFS5, libxml2), linear algebra (BLAS/
LAPACK), and Fourier transforms (FFTW).

4. Performance and parallel scaling

Due to the high computational cost of QMC methods, the
OMCPACK implementations have been heavily optimized to
obtain a high on-node performance and a high distributed par-
allel efficiency. Nevertheless, obtaining a highly performing
and efficient simulation remains an important responsibility
of the user because a considered choice of QMC methods,
algorithms, accurate trial wavefunctions, and overall statistics
can significantly reduce the computational cost.

Many electronic structure methods obtain high computa-
tional efficiency—a high fraction of theoretical floating point
performance—via use of dense linear algebra such as matrix
multiplication. Real space QMC methods are noteworthy for
the relative lack of dense linear algebra and a focus on particle-
like operations, such as computing inter-particle distances or
evaluating small polynomial functions of particle position. In
this regard parts of QMC are similar to a classical molecular
dynamics code.

To obtain high on-node performance, QMCPACK’s imple-
mentations are optimized to vectorize efficiently and to make
efficient use of modern memory hierarchies and maximize in-
cache data reuse. For example, while historically QMC codes
have tended to avoid recomputing values, for some operations
it is now faster to compute properties on the fly. This also
reduces the memory requirements of the application. We have
recently completed extensive analysis and reimplementation
of the core compute kernels of the application, more than
doubling the speed of many calculations on modern multicore
processors [37]. The performance obtained for several key
kernels is shown in figure 2. To improve the computational
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QMC Drivers

Hamiltonian & Observables

Wavefunction Components

Single Particle Orbitals

Parallel, Numerical, and I/0 libraries

Figure 1. High-level overview of the structure of QMCPACK. For simplicity many smaller components are not shown. This includes the
particle classes, distance tables, and the branching and load balancing classes. The ‘..." indicate additional high-level functionality is
available. Dependencies between components flow from top to bottom, except for the libraries which are used by all component of the

application.
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Figure 2. Computational performance of key kernels in QMCPACK for an NiO 32 atom cell on Intel Knights Landing processors. By using
a Structure of Arrays (SoA) layout and improving the implemented algorithms, higher arithmetic intensity (Al) is obtained compared to
the Array of Structures (AoS) data layout used exclusively in older versions of QMCPACK. A significantly higher overall performance,
measured in GFLOPS, is obtained in the new implementation.

efficiency of the largest calculations with thousands of elec-
trons where the Slater determinant update cost is significant,
we have recently proposed a delayed update algorithm that
enables increased use of matrix—matrix multiplication [44].
High parallel scalability is determined by exploiting par-
allelization at two levels. First, on node parallelization is

achieved through OpenMP threading, or CUDA on GPUs.
This allows common read-only data such as trial wavefunc-
tion coefficients to be shared between threads, reducing
overall memory usage. Each OpenMP thread updates one or
more walkers, and multiple walkers can be assigned to each
GPU. The second level of parallelization is obtained via MPI.
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Figure 3. Parallel scaling of QMCPACK on two architectures for DMC calculations of a NiO 128 atom cell with 1536 valence electrons.
Titan nodes have a single GPU each, and these runs used 512000 total walkers. Each Blue Gene Q node has a 16 core processor, and these

runs used 458 752 total walkers.

For simulations with a variable number of QMC walkers, load
balancing is performed by default at every step. Asynchronous
messaging is used to reduce the time to load balance all the
walkers across all the nodes, but in the current implementation
a global reduction is still required to compute the ensemble
average energy needed for load balancing. As shown in
figure 3, even for modest calculations the scalability is suffi-
cient to fully utilize the largest supercomputers. The first level
of parallelization within each node reduces the total volume
of MPI messaging because the load balancing only needs to
be performed at the per-node level. Options to adjust the load
balancing frequency and alternative algorithms such as sto-
chastic reconfiguration [45] are available.

5. Real space QMC methods

5.1. Introduction

The main production algorithms in QMCPACK use methods
based on Monte Carlo sampling of electron positions in real
space to produce highly accurate estimates of the many-body
ground-state wavefunction |®g) and its associated properties.
Note that QMC also has complementary orbital space-based
approaches that work within second quantization, as described
in section 13.

VMC and DMC are the most commonly applied real-space
QMC methods. Within VMC, the simplest scheme, Monte
Carlo sampling is used to obtain estimates of the energy of a
trial wavefunction

Evmc = /fopr (1)

In DMC, the ground-state wavefunction is obtained by projec-
tion of the imaginary time Schrodinger equation

ov

0B

to long time, where 5 = it and has units of imaginary time.
(Hartree units are used here and throughout, except where

= HY 2)

noted.) Crucial to both methods is an accurate trial or guiding
wavefunction. Clearly, in VMC the trial wavefunction com-
pletely determines the accuracy and statistical efficiency of
the result. In DMC it is the nodal surface of the trial wavefunc-
tion that determines the accuracy, while the overall trial wave-
function determines the statistical efficiency. The full range of
supported trial wavefunctions is described in section 6.

The real-space methods use a Hamiltonian within the
Born—Oppenheimer approximation (BOA):

o1 , 1 1 o
i i#j

iJ

where the lower case indices and positions r; refer to the elec-
trons, and the upper case indices and positions R; refer to the
ions. In order, the terms in (3) correspond to the kinetic energy
of the electrons, the potential energy of the electrons, and the
potential energy due to interactions between electrons and
ions. The energy contribution due to the Coulomb interactions
of the atoms is constant within the BOA, and is computed by
an Ewald sum. Further details are given in section 8

For technical reasons, in the following we will work with
the ‘importance sampled’ Schrodinger equation, which can be
obtained from the imaginary time Schrodinger equation by
rewriting it in terms of f(r,3) = ¥r(r)¥(r, B).

of
or

= Lf(r. ) )

=V - (V =F(r)) = (Ep(r) — E)] (5, 8)  (5)

where Uz (r) is the trial wavefunction, F(r) = 2V log Uz(r)
is the ‘wavefunction force’, and E7(r) = U7(r) ' HU(r) is
the “local energy’. L is the ‘importance- sampled Hamiltonian’
operator. To help future discussion, we split L into a ‘drift/dif-
fusion” operator K and a ‘branching’ operator E, given by

>0
I

SV (V —F(r) ©

E

— (Er(r) — E7). (N
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One advantage of working with the physical Hamiltonian
as opposed to an auxiliary problem (as in Kohn—Sham DFT),
is that the variational theorem of quantum mechanics holds,
which states that for a trial wavefunction ¥y,

_ (Ur|H|W7) _ (Ur|EL(F)|Yr)

B = 21wy (7|07

The strict equality holds if W7 is the ground-state of H. A
corollary is that the variance of the trial wavefunction also
obeys the following:

> Ey. (8)

2 _ (Ul — (Ew,)*[9r)
= > 0.
o (U7 |Wy) ©)

The variational principle is significant, since it gives us
a well-defined metric for which wavefunctions are better or
worse approximations to the ground state. This can be turned
into an actual algorithm by parameterizing families of wave-
function ansatz with parameters ¢. One can then minimize
equation (8) with respect to ¢ to obtain a best estimate for the
state.

5.2. Variational Monte Carlo

The oldest approach for dealing with the Schrodinger equa-
tion for realistic systems involves writing an approximation
for the ground-state wavefunction and evaluating expectation
values. There are two ingredients in this procedure: evaluating
equation (8) for some set of variational parameters ¢, and then
minimizing. The optimization procedure is covered in detail
in section 10.

The energy expectation value in equation (8), as well as all
physical expectation values, are integrals of a form that are
amenable to Metropolis Monte Carlo sampling. Thus, we can
evaluate equation (8) (for example) by the following:

E [ dr|U(r)PE,
YT [ dr| ()

N, is the number of samples and ¢ is a Gaussian-distributed
statistical error whose variance scales like 1/+/Ny. We write
the sample configurations as r(#;) to emphasize that metrop-
olis Monte Carlo generates samples sequentially via a random
walk along a Markov chain. To parallelize the algorithm, mul-
tiple independent Markov chains or ‘walkers’ are used.

© _ ;SEI:EL(r(n)) 6 (10)

5.2.1 Trial moves. QMCPACK supports VMC trial moves with
and without drift. This means that the move r — r’ is drawn
from the transition probability distribution given by:

1 (r' —r — 2A7F(r))?
(dmar)ve P T At ‘
(11)

For drift based moves, F(r) is taken to be the same wave-
function force as appears in equation (4). For moves without
drift, F(r) = 0. In the absence of pathologies in the trial
wavefunction, the use of the drift term is almost always more
efficient.

T(r—r,7)=

In addition to drift or no-drift based moves, the code sup-
ports particle-by-particle or all-electron moves. All-electron
moves are conceptually the simplest. One proposes the move
r—r =r+ A by drawing the 3N, dimensional vector
A from the distribution in equation (11). This move is then
accepted or rejected with probability:

N [Wr(r)]? T(r' = 1)
A(r — r') = min (1.0, T (OE T(r r’)) . (12)

In contrast, particle-by-particle moves work by iterating
sequentially over all electrons. Considering an electron i at
position r;. A particle-by-particle move is executed by first
drawing a new position for electron i from the following prob-
ability distribution.

1

T(l‘o,...,l‘i—>l‘;,...,l‘N[):W
(r'; — r; — 2A7F;(r))*
X exp (— Ny . (13)

Then, the move is accepted or rejected using a similar accep-
tance probability as in equation (12). Particle-by-particle
moves are typically favored over all-electron moves, due to
their higher statistical and numerical efficiencies in practice.
However, all-electron moves may be competitive for small
systems or for sophisticated trial wavefunctions where single
particle moves can not be cheaply evaluated numerically.

5.3. Projector Monte Carlo

One can substantially improve upon the accuracy of VMC
by using projector Monte Carlo methods such as DMC.
The ‘projector’ is the formal solution of the imaginary time
Schrodinger equation G(j3) = exp(—f3H), and has the very
desirable property that given any trial wavefunction |¥r)
which is non-orthogonal to the ground-state wavefunction,
one can obtain the ground-state |®g) by the following:
lim G(B)|¥r) = e PE0|d,).

Jim, (14)

For efficiency reasons, we consider the projector G(r, r',3)
associated with the importance sampled Schrodinger equa-
tion. For realistic systems, it is exceedingly rare to have exact
analytic expressions for the projector. However, we can solve

for the Green’s function G(T) of equation (4) approximately
for short times 7. Solving the drift/diffusion equations and rate

equations independently in the short-time limits, one uses the
symmetric Trotter formula:

exp (T(A + B)) = exp <§B> exp (TA) exp (gf?) +0(7%)
15)

to stitch these independent solutions together into an approxi-

mate solution for the importance sampled Green’s function:

Gr.v', 1) = (|G(H)|F') = Gpo(r. 1, 7)Gy(r. ', 7) + O(72).
(16)
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Gpp(r,r’,7) is the Green’s function for the drift/diffusion
operator A,V - (V — F(r)). Assuming that F(r) is slowly var-
ying, its solution is given by:

(r —r — 2A7F(r))?

é 2 l, =
oo(r, 1, 7) A\t

1
e (-
a7

The Green’s function for the local energy operator is:

GB(I', I'/, 7') = PO exp (—;(EL(I') —|— EL(I‘/) — 2ET)T .
(18)
Near the nodes of Ur(r) and near bare ions, singularities
render the ‘slowly-varying’ approximation used in equa-
tion (17) invalid. Improved drift-diffusion projectors have
been derived which have been shown to reduce the time step
error [46]. QMCPACK implements drift rescaling based on
proximity to the nodal surface, following the prescription in
[46] for single-electron and all-electron moves. Rescaling
based on proximity to bare ions is not yet implemented.

5.4. Diffusion Monte Carlo

Diffusion Monte Carlo works by stochastically simulating
the imaginary-time evolution of an initially prepared state
f(r,0) = |¥z(r)|>. This is done by exploiting the math-
ematical correspondence between Fokker—Planck equa-
tions for the evolution of probability distributions, and
Langevin equations describing the stochastic evolution of
particle trajectories. To shift to a Langevin picture, we rep-
resent an initial state f(r,0) by an ensemble of N, walkers
{ro(0),r(0),...,ry,—1(0)} distributed according to f(r,0).
Assume each walker also has an associated weight w;(3) where
w;(0) = 1.0. We consider the action of the short-time Green’s
function G(r, r’, 7) on this distribution.

The action of the drift-diffusion propagator can be simu-
lated with a random drift-diffusion step, given by:

r(B+7) =r(8) + 2A7F(x(8)) + V2ArE.  (19)

Here, £ is a 3N, dimensional Gaussian random vector with
unit variance. Once a new position generated, the Gg(r,r’, 7)
contribution is dealt with by updating the walker weight w;(3)
with the following formula:

w(B+ 1) =w(B)Gp(r(B),r(8+ 1), 7). (20)

Expectation values of local observables .A(r) over the dis-
tribution f(r, ) are obtained by a weighted average:

Yy wilB)A(5))
Z{Qo_ "wi(B)
Implementing everything discussed up to this point results
in ‘pure diffusion’ Monte Carlo. However, due to the exponen-
tial growth/decay of the walker weights with (3, the efficiency
of this method decays exponentially with the projection time.
‘Branching’ diffusion Monte Carlo circumvents this problem
by implementing equation (20) stochastically through the rep-
lication/removal of walkers. For each walker i, M; copies of
the walker are made after the drift/diffusion step according

(A)r(B) =

2n

to the formula M; = INT(w;(8 + 7) + £), where § is a uniform
random number between 0 and 1. The weights of these M;
walkers are renormalized and the copies then proceed to the
next time step. Notice that M; = 0 implies that the walker is
killed.

To avoid a walker population explosion or collapse, prac-
tical DMC simulations adjust E7 dynamically to keep the pop-
ulation finite and stable. In QMCPACK this is achieved using
either a variable number of walkers combined with the above
population control, or via a fixed walker count scheme (‘sto-
chastic reconfiguration’ [45]). Both schemes can potentially
introduce a ‘population control bias’ that must be checked
and controlled for, particularly for small populations. To min-
imize or check for bias, the population should be as large as
possible, should be allowed to fluctuate significantly, and the
simulation run for a long time.

To correctly simulate Fermionic systems and avoid a col-
lapse of the propagated wavefunction to a Bosonic solution,
the ‘fixed-node approximation’ is implemented. This con-
strains the projected solution to the nodal surface of the trial
wavefunction, thereby preserving Fermionicity. Proposed
moves that result in a nodal crossing are detected through the
change in sign of the wavefunction and are rejected. This is
usually the most significant approximation made, and requires
accurate trial wavefunctions.

Finally, we note that several important modifications for
production calculations: QMCPACK implements the ‘small
time-step error’ algorithm due to Umrigar et al [46], where the
drift term is modified near wavefunction nodes and effective
time step introduced to improve the time step convergence of
the algorithm. The recently proposed size-consistent variation
[7, 11] is also implemented. This is particularly effective for
computing energy differences between very different sized-
systems, such as absorption energies or the formation energies
of molecular crystals [11].

5.5. Reptation Monte Carlo

Reptation Monte Carlo is constructed by exploiting the
Feynman path-integral formulation of Schrodinger’s equa-
tion [47]. Its primary advantages over DMC are its ability to
estimate observables over pure distributions in polynomial
time, and lack of population bias and control issues. Consider
the ground-state ‘partition function’:

fz(ﬁ) = <\IJT‘67’BH|\IIT>- (22)
First, we split e ?# into n segments each spanning an imagi-
nary time 7 = /3/n. After inserting n + 1 position space reso-
lutions of the identity and rewriting the resulting expression in
terms of the importance sampled projector, we find that Z(3)
can be written as:

Z(B) = /dr(to) ...dr(t,)P[X]e” S0 Lome (r(#)x(ti41)) (23)

PIX] = [¥7(x(t0))*Gpp (x(to). ¥(t1)) - . . Gop(X(ta—1).¥(a))
24
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Lpymc(r,v') = % (Er(r) + EL(r') — 2Er). (25)

X is shorthand for a ‘path’ X = (r(z),...,r(t,)). The
reader will recognize Z(f) as a path integral. Lpyc is called
the ‘link action’, which when summed over ¢, gives the action
for the path X. P[X] is the probability of a walker which is ini-
tially distributed according to |¥7(r)|? executing the directed
random walk from r(#y) to r(z,) along the path X.

All reptation moves in QMCPACK use the ‘bounce algo-
rithm’ [48]. For proposed moves, the improved propagators
described in the DMC section are directly used in reptation.
In addition to nodal drift-rescaling, we incorporate the DMC
effective time step and energy filtering methods directly into
the link-action, which helps to significantly reduce ergodicity
problems associated with reptiles getting stuck in low energy
regions of configuration space. In the event that reptiles still
get stuck, the age of all reptile beads is accumulated. If a bead
exceeds some specified age, the entire reptile is forced to
propagate for n steps without rejection and then re-equilibrate.

Since P[X] cancels out of the reptile accept/reject step, any
all-electron move which is a valid VMC configuration is sup-
ported in RMC. In addition to traditional all-electron moves,
QMCPACK also supports reptile proposals which are built
from a sequence of N, particle-by-particle moves. Reptile
moves proposed with these ‘particle-by-particle’ moves
exhibit higher acceptance ratios than the traditional all-elec-
tron moves, and are thus favored if memory is available.

Propagation in RMC is supported for all-electron, local,
and semi-local pseudopotential Hamiltonians. The fixed-node
constraint is enforced by rejecting proposed node crossings
and immediately bouncing.

Since the random walk of each reptile is totally inde-
pendent of other reptiles, RMC is straightforwardly parallel-
ized. In addition to generic MPI parallelization, QMCPACK ’s
RMC driver is able to place one reptile per OpenMP thread on
shared memory systems.

6. Trial wavefunctions

Within QMC methods, the goal of the trial wavefunction is
to represent the true Fermionic many-body wavefunction of
the studied system as accurately as possible, including all
the correlated electron physics. Due to the large number of
evaluations of the wavefunction values and derivatives during
the Monte Carlo sampling, it is also important that the trial
wavefunction be computationally cheap enough and use little
enough memory in order to be practical. These are different
considerations from those applied in DFT and in the more
closely related quantum chemical methods, leading to dif-
ferent preferences.

Several different trial wavefunction forms are imple-
mented in QMCPACK, with varying suitability for solid state
and molecular systems, and different trade-offs between acc-
uracy, memory usage, and number of parameters. The most
common form is the multi-determinant Slater—Jastrow form
section 6.1, where the orbitals in each determinant are evalu-
ated using either real-space splines or a Gaussian basis set

section 6.2. The orbitals are usually obtained from a mean-
field method and imported to QMCPACK. The determinantal
part ensures that the trial wavefunction is properly antisym-
metric with respect to exchange of electron positions, i.e.
Fermionic. Additional correlations are incorporated via a
symmetric real-space Jastrow factor section 7. The Jastrow
factor is usually obtained via optimization entirely within
OMCPACK, as described in section 10.

6.1. Multi-determinant Slater—Jastrow form

For the vast majority of molecular and solid-state studies, the
trial wavefunction is written as the product of an antisym-
metric function and a symmetric Jastrow function

M
Ur =Y aD!D}e, (26)
i=1

where the N electron trial wavefunction Uy is expanded in a
weighted sum of products of up and down spin determinants,
D. These are in turn multiplied by a real-space Jastrow factor,
J. When exponentiated, this factor is nodeless and the nodes
of the trial wavefunction are therefore purely determined
by the determinantal parts. A single product of up-spin and
down-spin determinants would correspond to a mean-field or
Hartree—Fock starting point. Larger determinantal sums can
be obtained, e.g. from multi-configuration self-consistent field
quantum chemical calculations, CIPSI section 13.3, or be
constructed based on physical or chemical reasoning. Excited
states may be constructed by manipulating the occupancy of
the Slater determinants in the input, e.g. to create an exciton.
Wavefunctions with greater or fewer electrons than the neutral
ground state may be similarly prepared to compute electronic
affinities or ionization potentials.

Due to the potentially large computational cost in evalu-
ating the trial wavefunction, QMCPACK uses previously
computed data and optimized methods to avoid full recom-
putation wherever effective and practical. For single electron
moves, QMCPACK uses the Sherman—Morrison algorithm,
as described in [49]. For large calculations with thousands
of electrons, the delayed update scheme of [44] is currently
being implemented. For calculations with multiple determi-
nants, OMCPACK implements the ‘table method’ of Clark et al
[50]. This exploits the relationship between largely similar
determinants to cheaply compute the determinant values while
only requiring the full N> memory cost of a single determi-
nant. This enables, e.g. molecular calculations that approach
or even reach ‘chemical accuracy’ to be performed [51]. To
date, calculations with up to 0(10° determinants have been
performed (see section 13.3), with larger calculations clearly
possible [52].

6.2. Orbitals

The single-particle orbitals in the Slater determinants are
generally determined by another electronic structure code
and imported into QMCPACK for calculations. QMCPACK
has an easily extensible mechanism for adding new ways of
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representing single-particle orbitals. This can be particularly
useful when addressing model systems or performing special-
ized tests. For example, QMCPACK supports specialty homo-
geneous electron gas and plane-wave based wavefunctions,
and for work on spherical quantum dots, radial numerical
functions [53]. However, by far the most common sources of
orbitals are plane-wave based from Quantum Espresso (QE)
[54, 55], and Gaussian based from the GAMESS code [56].
Converters from these codes are provided and can straightfor-
wardly be extended to other methodologically related codes.

6.2.1. B-spline basis sets. For calculations involving peri-
odic boundary conditions, the standard route is to first perform
a DFT calculation using QE and to then import the plane-
wave coefficients into QMCPACK. Finite molecular systems
can also be studied by adding a considerable vacuum region.
QMCPACK then allows the boundary conditions to be made
aperiodic, even for orbitals originally based on plane-waves.

Although the single-particle orbitals can be evaluated
directly in the plane-wave basis, this requires evaluating each
plane-wave for every orbital and is thus very expensive: the
cost grows with the number of plane-waves. For this reason,
the single-particle orbitals are usually converted into a uniform
3D B-spline representation in real-space. As implemented, this
requires a constant 64 coefficients to be accessed in memory
to evaluate each single-particle wavefunction regardless of the
size of the underlying basis. These operations are optimized
to vectorize very well on current computer architectures, ena-
bling the orbital evaluation to run very efficiently.

The principal downside of a B-spline basis is memory
consumption, particularly for large simulation cells. Naively,
the memory cost scales as O(N?). For larger calculations the
B-spline tables can easily grow to tens or even hundreds of
gigabytes, potentially exceeding available memory. Currently
OMCPACK shares the B-spline table among all processors on
a node (or GPU), but memory limitations can still constrain
the calculations that can be performed. In the case of super-
cell calculations, QMCPACK can exploit Bloch’s theorem to
reduce the demand. To save additional memory, the spline
coefficients may also be stored in single precision, halving
the amount of memory required compared to the full double
precision used in the originating plane-wave code. However,
memory usage of B-splines remains a problem for large simu-
lation cells.

To further reduce memory costs, QMCPACK can utilize a
hybrid basis set composed of radial splines times spherical
harmonics near the atoms and B-splines elsewhere in space
[57, 58]. This is similar to the augmented plane-wave schemes
used by some DFT implementations. The scheme allows for
the high frequency components of the trial wavefunction near
the atomic nuclei to be represented by a compact radial func-
tion and the smoother part of the wavefunction in the inter-
stitial regions to be represented by a much coarser B-spline
table. The hybrid basis can reduce memory use by a factor of
four to eight compared to the standard B-spline representation
while maintaining accuracy. Obtaining the hybrid representa-
tion from a plane-wave basis requires an initial computation-
ally costly conversion.

10

6.2.2. Gaussian basis sets. For molecular systems, one typi-
cally uses a Gaussian basis set to represent the single-particle
orbitals. QMCPACK supports standard quantum chemical basis
sets including contractions and for arbitrary angular momenta.
Atomic or natural orbitals can therefore be directly imported
from standard quantum chemistry codes. Interfaces currently
exist to GAMESS [56], quantum package [59], and for pack-
ages supporting the MOLDEN format. Interfacing requires
converting the output of the intended package to QMCPACK’s
XML or HDF5 format. For all-electron calculations, a cusp
correction scheme is implemented to enforce the electron-
nuclear cusp.

6.2.3. Specialized basis sets. Besides the B-spline and
Gaussian basis sets described above, QMCPACK implements
several additional specialized basis sets for specific prob-
lems. This includes Slater trial orbitals, the homogeneous
electron gas, and radial numerical functions for atomic
calculations. Due to the flexible internal architecture, orbitals
can be expressed in any combination of these functions. For
example, in [60], it was proposed to save memory by stor-
ing orbitals on different sets of B-spline tables based on their
kinetic energy. This scheme did not require any source code
modifications.

6.3. Backflow wavefunctions

Improvement of the nodal surface can be achieved through
backflow wavefunctions, complementing the multidetermi-
nant route. The formal justification for backflow wavefunc-
tions rests on the homogeneous electron gas and Fermi liquid
theory [61]. Backflow appears promising for bulk applications
[62], and has also been shown to aid in capturing dynamical
correlations in molecular systems when used in conjunction
with multideterminant wavefunctions [63].

Backflow wavefunctions are constructed from determi-
nantal wavefunctions as follows. Instead of evaluating the
Slater matrix M; = ¢;(x;) at the bare electron coordinates r;,
we evaluate it at new quasiparticle coordinates M;; = ¢;(q;).
The ‘backflow transformation’ from r; — q; is defined as:

Q. =ri. + Y > (I, — 1) (r, — ).

asBiajp

27

In QMCPACK, the n®#(r) are short-ranged, spherically sym-
metric functions represented by fully optimizable B-splines.
QMCPACK allows for separate optimization of same-spin,
opposite-spin, and electron-ion terms. Currently, backflow is
fully supported only with single determinant wavefunctions,
but it can be used in both bulk and molecular systems.

7. Jastrow factors

Jastrow factors [64] are included in the trial wavefunction to
improve the representation of the many-body wavefunction.
This non-negative Bosonic factor is in principle an arbitrary
function of all electron and ionic positions, but in prac-
tical calculations are most commonly built from functions
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systematically incorporating one, two, and three-body cor-
relations. Notably, the Jastrow factor can readily satisfy the
electron—electron and electron—nucleus cusp conditions [65,
66], which are very slow to converge in the multidetermi-
nant expansions commonly used in quantum chemistry. The
improved representation of the many-body wavefunction nat-
urally reduces the statistical variance of the local energy and
also improves the quality of the DMC projection operator [67,
68], which is useful in the context of timestep and nonlocal
pseudopotential localization errors.
The Bosonic ground state for N particles can be written

(28)

with J symmetric and where R denotes all the particle posi-
tions. For fermions, the fixed-node [69, 70] (or fixed-phase
[71]) wavefunction that arises from DMC projection has a
related form. In this case, a Jastrow wavefunction appears
as a prefactor [72] modifying the local structure of the input
Fermionic trial wavefunction, ®7 to account for many-body
correlations:

Uy = e /(R

(29)

The Jastrow factor can be formally represented in a many-
body expansion

1
J = Zul(l‘m’)—l- 5

L1
6

\IIFN = efj(R) (I)T(R) .

Z (Y ois Toj)

oo’ij

Z MS(rO-i, ra/j, l‘o//k) _|_ e

oo'a'ijk

(30)

with each n-body term u, being symmetric under particle
exchange.

The one-body term is approximated in QMCPACK as a sum
over atom-centered s-wave type functions that depend on the
local ionic species 1

ui (roi) = Z“ol(|roi —T1ul) (31)
Ip

with r;, being the position of the pth ion of species I. The
dependence on spin is optional.

The two-body term is approximated as a spin-dependent
liquid-like factor (the electron—electron term) optionally with
a second factor that additionally depends on the ionic coordi-
nates (the electron—electron—ion term)

MZ(rJi, ra/j) = uo’o’(|rai - rd’j|)
+ Y oot ([Voi = 1, s = Trpl, [ = X0,

" (32)
In each case, the up-up and down-down terms are constrained
to be equal.

A wide range of options are available for the one-dimen-
sional electron—ion (#,) and electron—electron (u, /) Jastrow
correlation functions including B-splines, first and second-
order Padé functions, long and short ranged Yukawa func-
tions, and various short-ranged functions suitable for model
helium. The most commonly used choice for either correla-
tion function is a one-dimensional cubic B-spline

1

M r
u(r) = mzz;)mea (rc i m) (33)
where B3(x) denotes a cardinal cubic B-spline function defined
on the interval x € [—3,1) (centered at x = —1), {p,} are the
control points, and r, is the cutoff radius. The last M control
points (p; . .. py) comprise the optimizable parameters while
Po is determined by the cusp condition

2M Ou

Po=D2 re orl|_y

(34)

The Jastrow cutoffs should be selected in the region of non-
vanishing density in open boundary conditions. In periodic
boundary conditions the cutoffs must be smaller than the sim-
ulation cell Wigner—Seitz radius.

The three-body electron—electron—ion correlation function
(uy47) currently used in QMCPACK is identical to the one pro-
posed in [73]:

My Mo M.

M,
L m n
uao’l(rol’ro’laraa/): § E E YemnT o1V o' 17607

£=0 m=0 n=0

<(ra=5) 0 (m-3)

re re
X N\ o —

3

3) e(=3) @
Here M,; and M,, are the maximum polynomial orders of the
electron-ion and electron—electron distances, respectively,
{~emn} are the optimizable parameters (modulo constraints),
r.1s a cutoff radius, and r,, are the distances between electrons
or ions a and b. i.e. the correlation function is only a function
of the interparticle distances and not a more complex function
of the particle positions, r. As indicated by the © functions,
correlations are set to zero beyond a distance of 7./2 in either
of the electron—ion distances and the largest meaningful elec-
tron—electron distance is r.. This is the highest-order Jastrow
correlation function currently implemented.

Today, solid state applications of QMCPACK usually utilize
one and two-body B-spline Jastrow functions, with calcul-
ations on heavier elements often also using the three-body
term described above. While there are not yet any comprehen-
sive comparisons between the different forms of the Jastrow
factor in current use, this choice appears to give very similar
accuracy to other forms. Experience with atoms and mol-
ecules is similar. In the future, should systematic studies find
a new form of Jastrow factor to be more efficient or effective,
it can be rapidly introduced due to the object oriented nature
of the application.

8. Hamiltonian

The Hamiltonian is represented in QMCPACK as a sum of
abstract components
i=Y"#,
n

(36)
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with each component implemented as a class. The function-
ality of all Hamiltonian component classes is dictated by a
shared base class. The primary shared characteristic of each
component is the evaluation of its contribution to the local
energy

EL = ZEL,,, EL,, = \I’;]I:In\IJT.

n

(37)

In QMC algorithms, the local energy (as well as other observ-
ables) is collected after all Monte Carlo walkers have advanced
one step in configuration space.

Possibly uniquely, the Hamiltonian that is solved is speci-
fied in the QMCPACK input. This makes QMCPACK suitable for
model studies as well as ab initio calculations. The most gen-
eral Hamiltonian that can currently be handled by QMCPACK
is non-relativistic with pairwise interactions between quantum
(electrons or nuclei) or classical (nuclei only) particles and
possibly external fields

H= Z T, + Z Vg + Z Ve + Z Ve + Z Vet 4 Z Vex
q c

a#q’ qc c#c! q
(38)

Here ¢ and ¢ denote the species of quantum and classical par-
ticles, respectively.

While non-adiabatic (multiple quantum species) and
model-potential (e.g. low-temperature helium) calculations
are possible, we focus the remainder of the discussion to the
most typical case: electronic structure problems within the
Born—Oppenheimer (clamped nuclei) approximation [74]. In
this case, the many body Hamiltonian is (in atomic units)

H= — % Z Vl.z + Z Ve (T4, rj) + Z Zvez(l‘i, l‘m)
i i<j i I
+ Z O (Trps T per) 39

yman

where i and j sum over electron indices and I denotes the yith
ion with species 1.

OMCPACK supports all-electron and pseudopotential
calculations in both open and periodic boundary conditions.
The choice of ion core and boundary conditions affects the
potential terms and we now briefly review these forms. For
all-electron calculations in open boundary conditions, all of
the interaction potential terms are related simply to the bare
Coulomb interaction vc(r) = 1/r

(
Uee(rhrj) 'Uc(|l'i - rj|)
Vet (i X)) = —Zjve (v — 1)

O (Capis Xrrper) = ZiZpoc ([0 = Xpr]).

(40)
In periodic boundary conditions, the long-ranged part of

each potential contributes an infinite number of terms due to

the series of image cells filling all of the space.

(41)

o0
o(r] —1|) — Zv(|r1 —r,+n'L)).
n=0

Sums of this type are evaluated via the Ewald summation
technique [75]. An optimized breakup [76] into long and
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short-ranged contributions is used to minimize computational
effort.

With the introduction of semi-local pseudopotentials, the
electron—ion term takes the form

et (Tis T11) = Vioe(|1i — 11,1]) + Z Yom) [oe(|1; = 17,1])

m
—Oroce (7 = 11,))] (Yem| (42)
where all of the non-local channel terms vanish beyond cutoff
radii that may be unique to each channel and the local part
approaches —Zg/r in the long distance limit (Zeg is the
effective core charge presented by the pseudopotential). The
evaluation of the local energy for semi-local pseudopoten-
tials follows the algorithm laid out by Mitas et al [77] with a
12-point angular integration used by default.

In DMC calculations, the semi-local potentials are evalu-
ated within the locality approximation [77], or the more recent
‘t-moves’ approximations [36, 78] that restore the variational
principle the the DMC algorithm. In particular, the algorithm
of [36] restores size-extensivity.

9. Boundary conditions

QMCPACK accommodates both periodic and open boundary
conditions in one, two or three dimensions, including mixed
boundary conditions. After the pseudopotential and fixed-
node approximations in QMC, the choice of boundary con-
ditions imposes another set of approximations onto a system
that must be treated with care.

9.1 Long-range interactions

The long-ranged Coulombic interactions of the electrons
and ions must be handled with care in order to ensure that
the potential energy does not diverge when using periodic
boundary conditions. In QMCPACK, the interparticle interac-
tions are computed using an optimized implementation [76]
of the well-known strategy of decomposing the interactions
into short and long ranged components, and performing sums
over the former and latter in real and reciprocal space, respec-
tively [75].

9.2. Twist-averaged boundary conditions

Bloch’s theorem demonstrates how a finite wavefunction can
be used to simulate an infinite lattice within periodic boundary
conditions by incorporating the following symmetry:

U(r; + Ly, 12, ...,Ty) = eiK'Lm\Il(rl,rz, coosIy) (43)

where K is a vector in reciprocal space, L, is a lattice vector
of the supercell, and ©,, = KL, is the ‘twist angle’ [2].
For pure periodic boundary conditions (in which © = 0),
systems converge slowly to their thermodynamic limit due to
shell effects and quantization of momentum [79]. Therefore,
to improve convergence speed and accuracy, one should
average over many simulations done with different twist
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angles, a scheme called ‘twist-averaged boundary conditions’.
In QMCPACK, the averaging is done in post-processing, using
e.g. gmca section 14.1 and/or Nexus section 15.

10. Optimization

In all real-space quantum Monte Carlo calculations, opti-
mizing the wavefunction significantly improves both the
accuracy and efficiency of computation. However, it is
very difficult to directly adopt deterministic minimization
approaches due to the stochastic nature of quantities with
Monte Carlo. Thanks to major algorithmic improvements, it is
now feasible to optimize up to tens of thousands of parameters
in a wavefunction for a large solid or molecule. QMCPACK
implements multiple optimizers based on the state-of-the-
art linear method with several techniques, described below,
improving its robustness, efficiency and capability.

10.1.The linear method

QMCPACK optimizes trial functions using an implementation
of the linear method (LM) [80] that includes modifications to
improve stability in the face of variables of greatly differing
stiffnesses, facilitate the optimization of excited states, and
reducing the memory footprint when optimizing large num-
bers of variational parameters. The LM is sometime referred
to as ‘energy minimization’, although the approach is more
general. The LM gets its name from the way that it employs a
linear expansion of the wavefunction,

Ny
®) =) o),
=0 (44)

where |U?) for y € {1,2,3,...} is the derivative of the trial
function |¥) with respect to its yth variational parameter and

|W%) = | W), within an expanded energy expression,
L. (D|H|D)
E@) = L
© = o) 43)

Using this linear approximation to how the energy changes
with the variational parameters, minimizing E with respect
to ¢ can be achieved by solving the generalized eigenvalue
problem

Ny

N,
< (U H| D) \le|\If>
=FE
Z (U|W) & = Z \I'|\I/ (46)
y= y=0
or, written in matrix-vector notation,
H=ESZ¢ 47)

the matrix elements for which are evaluated by Monte Carlo
integration [81, 82] in direct analogy to how VMC evalu-
ates the energy. If one assumes the improved trial function
|®) is similar to the previous trial function |¥'), which implies
that the ratio ¢,/cp is small for all x € {1,2,3,...}, then
a reasonable approximation to |®) can be had by replacing
Iy = piy + ¢y /co for each variational parameter fi, in |¥). As
for other optimization methods that compute an update based
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on some local approximation to the target function, such as
Newton—Raphson, this process is then repeated until further
updates no longer lower the energy.

10.2.Stabilizing the linear method

In practice, it is important to implement an analogue to the
trust radius schemes common to Newton—Raphson in order
to ensure that the solution of equation (46) does not corre-
spond to an unreasonably long step in variable space, or, put
another way, to ensure that the ratio ¢, /co is not too large. The
LM optimizer in QMCPACK supports two mechanisms for pre-
venting too-large updates: a diagonal shift a as employed in
the original algorithm [80] as well as an overlap-based shift 3
that becomes important when parameters of greatly different
stiffnesses are present. Using these shifts, the Hamiltonian
matrix is modified to become

H — H + oA + 8B, (48)

where A and B provide stabilization via the original and
overlap shifts, respectively. As in the original method,
QMCPACK uses Ay, = dy(1 — 0x0) and the adjustable shift
strength « to effectively raise the energy along each direction
of change while leaving the current wavefunction |¥°) = |¥)
unaffected.

While the original shifting scheme has been effective in
many cases, it can struggle if two different variational param-
eters produce wavefunction derivatives of vastly different
sizes. For example, imagine a two-variable wavefunction
whose overlap matrix evaluates to

1 0 0
S=10 1 0 (49)
0 0 10°

. ~ 1o .
Performing the usual 7 = (S?)¢ transformation to produce a
standard eigenvalue problem (with 3 set to zero for now) gives
us

0
0|7=Ew. (50)

S O
S L O

106

—|

We see that, if we were to make « large enough to significantly
penalize the second variable direction, the first direction would
be penalized so much that it would essentially become a fixed
parameter.

The purpose of the overlap shift is to resolve this issue by
adding an energy penalty based on the norm of the part of ¢
corresponding to directions orthogonal to the current wave-
function |¥), which would correctly penalize steps along
directions of large derivative norms more than those along
directions of small derivative norms. This goal is accom-
plished by the definitions

Oy = 5)@’

Ty = (1= d.00,0) [QTSQ]

- 5x0(1 - 5y())SOy (51)

(52)
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B=(Q")'TQ!

in which Q transforms into a basis in which all update direc-
tions are orthogonal to the current wavefunction |¥) (this
transformation is equivalent to that of equation (24) of [81]).
T is the overlap matrix in this basis with its first element
zeroed out so that the current wavefunction is not penalized.
Finally, the inverses of Q and its adjoint transform us back to
the basis of the original generalized eigenvalue problem so
that the effect of the overlap shift cay be written in the form
of equation (48). Note that, in practice, it is not necessary to
construct B explicitly, as QMCPACK solves the generalized
eigenvalue equation by iterative Krylov subspace expansion,
during which the Krylov basis (whose first vector is always
|¥)) is kept orthonormal by the Gram—Schmidt procedure. In
this Krylov basis, applying the overlap shift involves merely
adding [ to the diagonal of the subspace Hamiltonian matrix
(except, of course, to the first element corresponding to |U)).
This Krylov approach also has the benefit of ensuring that
the overall update is orthogonal to the current wavefunction,
which is related to norm-conservation and was found to be
desirable by the LM’s original developers [80-82].

Although like most trust-radius schemes the optimal
choices for o and 3 are somewhat heuristic, QMCPACK auto-
matically adjusts them after each iteration of the LM by solving
for the updates generated by three different sets of shifts and
retaining the shift that gave the best update, as determined by
a correlated-sampling comparison of their energies on a fresh
sample. For maximum efficiency in regimes where optim-
ization is not difficult but sampling is expensive, QMCPACK
retains the ability to run in a single-shift, no-second-sample
mode. When running instead in multi-shift mode, we have
observed that successful optimizations often result with the
simple initial choice of o = 3 = 1. In principle, however,
one might expect o < 3 to be more effective, because when
the 3 shift is filling the role of limiting the update size, « is
only needed to penalize (hopefully rare) linear dependencies
between update directions that 3, being overlap-based, cannot
address.

(53)

10.3.0ptimizing for excited states

QMCPACK’s current LM optimization engine supports
both standard energy minimization and the minimization
of a recently introduced [83] excited state target function,
(U|(w — H)| W) /(U|(w — H)?|T), whose global minimum is
the exact energy eigenstate immediately above the targeted
energy w. Although this technology is a very recent develop-
ment and will doubtless evolve in time as the science behind
excited state targeting matures, we felt it important to make an
early version of it available to the community. Optimization
proceeds in much the same way as for a ground state, with the
user specifying w and the stabilization shifts « and 3 and the
LM repeatedly solving generalized eigenvalue equations anal-
ogous to equation (46) to generate wavefunction updates.
Additional methods for automatically selecting and updating
w have been developed [84]. For details into this targeting
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function and how it is optimized, we refer the reader to the
original publication [83].

10.4.Handling large parameter sets

One important limitation of the LM comes when the number
of variational parameters rises to 10000 or more, at which
point the contributions to H and S made by each Markov
chain become cumbersome to store in memory, especially
when running one Markov chain per core on a large parallel
system in which per-core memory is limited. QMCPACK cur-
rently addresses this memory bottleneck using the blocked
LM [35], a recent algorithm that separates the variable space
into blocks, estimates the most important variable-change
directions within each block, and then uses these directions
to construct a reduced and vastly more memory efficient LM
eigenvalue problem to generate an update direction in the
overall variable space. Like excited state targeting, this is a
new feature that can be expected to evolve in time, and has
been made openly available to the community in the spirit of
rapid dissemination. As of this writing, it has not been widely
tested outside of the work in its original publication [35], but
in time we expect to have a clearer picture of its capabilities.

10.5.Multi-objective optimization

QMCPACK also supports optimizing variational parameters
based on not only the total energy but also variance. In certain
situations, the best target object may not be the energy only
but a cost function mixing both energy and variance which
reduces to zero when the wavefunction is exact. The cost func-
tion can be any linear combination of energy and variance.
QMCPACK picks the optimal parameter set corresponding to
the minimal value of a quartic function fitting the cost func-
tion evaluated on seven shifts by correlated-sampling.

11. Observables

A broad range of observables and estimators are available in
QMCPACK. In this section we describe the total number den-
sity (density), number density resolved by particle spin (spin-
density), spherically averaged pair correlation function (gofr),
static structure factor (sk), energy density (energydensity),
one body reduced density matrix (dmlb) and force (Forces)
estimators. These estimators can be evaluated for the entire
run (e.g. all VMC and DMC sections) when added to the
Hamiltonian section in the input file, or applied to a specific
section. Higher order density matrix quantities for calculating
quantum entanglement have also been studied previously, e.g.
[85-87].

11.1. Density and spin density

The particle number density operator is given by

iy = Z d(r—r;).

(54)
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Figure 4. Left: electron density of (Ff:(H20)6)2+ cluster in a 10 A box using 100 x 100 x 100 grid points, based on calculations in [92].
Right: electron density of TiO; in a grid of 80 x 80 x 80 grid points, based on calculations in [93].

This estimator accumulates the number density on a uniform
histogram grid over the simulation cell. The value obtained
for a grid cell ¢ with volume 2. is then the average number of
particles in that cell

ne = /dR|\I!|2/QCer§(r—ri).

When using periodic boundary conditions, the density will be
collected for the cell (or supercell) defined by the simulation.
When using non-periodic boundary conditions, a cell has to
be defined in order to set a grid. It is then recommended to
center the system (molecule) in the middle of the defined cell.
The collected data is stored in HDFS format in a .szat.hS5 file.
Using Nexus section 15, one can use the gqdens tool to extract
the data in a xxsf format readable with visualization tools
such as XCrysDens [88, 89] or VESTA [90]. Examples of
density plots are shown in figure 4. Similar to the density, the
spin-density estimator can be also collected for each indepen-
dent spin, as shown and analyzed in [91] for magnetic states
in Ti407.

(55)

11.2. Pair correlation function
The functional form of the species-resolved radial pair cor-
relation function operator is

Ny Ny

\%
g (1) = 17NN, Z Z 6(r = [ri, — 1y,

is=1js=1

). (56)

Here N; is the number of particles of species s and V is the
supercell volume. If s = s, then the sum is restricted so that
I 7é Js-

An estimate of g, (r) is obtained as a radial histogram with
a set of N, uniform bins of width dr. This can be expressed

analytically as
N, Ny r+6r/2
/1:— or/2

gss’(r)_m;jzzlg

):
(57)

dr’é(r' — |rsi — l'slj
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where the radial position r is restricted to reside at the bin
centers 6r/2,30r/2,. . ..

11.3. Static structure factor

Let py = Zj ¢ be the Fourier space electron density, with
r; being the coordinate of the jth electron. k is a wavevector
commensurate with the simulation cell. The static electron
structure factor S(k) can be measured at all commensurate k
such that |k| < (LR_DIM_CUTOFF)r.. N° is the number of
electrons, LR_DIM CUTOFF is the optimized breakup param-
eter, and r, is the Wigner—Seitz radius. It is defined as follows:

1
S(k) = 2 (Pwpic)- (58)
11.4. Energy density estimator
An energy density operator, 5,, satisfies
/ dré, = H, (59)

where the integral is over all space and H is the Hamiltonian.
In QMCPACK, the energy density is split into kinetic and
potential components

&E=T,+V, (60)
with each component given by
L1
T = 5 Zi:a(r_ rl)pz
. r—r)+0(r—15)._,,
V,:Z ( )2 ( ’)v (ri,1;)
i<j
or—r)+6(r—">p).;, -
+Ze: ( )2 ( Z)v’(ri,re)
O(r—ry) +0(r—1,) ... -
+Z ( 5) 5 ( )T)H(l'g,l'm)
t<m 61)
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Here r; and 1, represent electron and ion positions, respec-
tively, p; is a single electron momentum operator, and
v (r;x;), 09 (r;,¥p), 0'(F,T,) are the electron—electron,
electron—ion, and ion—ion pair potential operators (including
non-local pseudopotentials, if present). This form of the energy
density is size-consistent, i.e. the partially integrated energy
density operators of well separated atoms gives the isolated
Hamiltonians of the respective atoms. For periodic systems
with twist averaged boundary conditions, the energy density
is formally correct only for either a set of supercell k-points
that correspond to real-valued wavefunctions, or a k-point set
that has inversion symmetry around a k-point having a real-
valued wavefunction. For more information about the energy
density, see [94].

The energy density can be accumulated on piecewise uni-
form three dimensional grids in generalized Cartesian, cylin-
drical, or spherical coordinates. The energy density integrated
within Voronoi volumes centered on ion positions is also
available. The total particle number density is also accumu-
lated on the same grids by the energy density estimator for
convenience so that related quantities, such as the regional
energy per particle, can be computed easily.

11.5. One-body density matrix

The N-body density matrix in DMC is py = |\IIT><\IIFN| (for
VMG, substitute Uy for ¥py). The one body reduced density
matrix (IRDM) is obtained by tracing out all particle coordi-

nates but one:
n = E Tar
n

In the formula above, the sum is over all electron indices
and Trg, (x) = [ dR,(R,| % |R,) With Ry = [F1, s Tyt B, s Ty
When the sum is restricted over spin up or down electrons,
one obtains a density matrix for each spin species. The IRDM
computed by QMCPACK is partitioned in this way.

In real space, the matrix elements of the IRDM are

ni(r,r') = (rji ')y = Z/an\I/T(r, R,) U5y (F,R,).
' (63)
A more efficient and compact representation of the IRDM

is obtained by expanding in single particle orbitals, e.g. from
a Hartree—Fock or DFT calculation, {¢;}:

<¢l|n1|¢j>

/ dRU}y (R) U7 (R Z / dr), —-m 2 \1/

Ur) (T )

ny(i,))

i(ry)";(xn).

(64)

The integration over r’ in equation (64) is inefficient when

one is also interested in obtaining matrices involving ener-

getic quantities, such as the energy density matrix [94] or the

related and more well known Generalized Fock matrix. For
this reason, we compute: [94]
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n

¢,(r,1) i(r,).
(65)

11.6. Forces

For all-electron calculations, naively estimating the bare
Coulomb Hellman-Feynman force with quantum Monte
Carlo suffers from a fatal problem: while the expectation
value of this estimator is well defined, the 1//2 divergence
causes the variance to be infinite, meaning we can not obtain
a meaningful error bar for this quantity. There are several
schemes to circumvent this. For all-electron calculations,
QMCPACK can currently calculate forces and stress using the
Chiesa estimator [95] in both open and periodic boundary
conditions. Implementation details and validation of forces
in periodic boundary conditions can be found in [96]. In the
future, pseudopotential forces will be supported, and methods
to reduce the variance of existing estimators are currently
being explored.

12. Forward-walking estimators

Forward-walking is a method by which one can sample the
pure fixed-node distribution (®g|®Pp). Specifically, one mul-
tiplies each walker’s DMC mixed estimate for the observable

OR)T7(R
0. o8tn 4.

factor for any walker R is proportional to the total number
of descendants the walker will have after a sufficiently long
projection time (3.

To forward-walk on an observable, one declares a generic
forward-walking estimator within a Hamiltonian block, and
then specifies the observables to forward-walk on and for-
ward-walking parameters.

by the weighting factor

This weighting

13. Orbital space QMC methods

13.1. Introduction

In addition to real-space QMC methods, QMCPACK also sup-
ports orbital-space QMC approaches for the study of atomic,
molecular and solid-state systems. AFQMC is implemented
internally, while interfaces to selected configuration inter-
action (SCI) methods have been developed. [97-100] The
starting point of orbital-space approaches is the Hamiltonian
in second quantization, typically defined by

H= Zh,jc ¢+ = Z V,Jklc c CiCrs

1,1kl

(66)

where ¢f(¢;) are the creation (annihilation) operators for
spinors associated with a given single particle basis set, with
associated one- and two-electron matrix elements given by h;;
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and V. The choice of the single particle basis along with
the calculation of the appropriate Hamiltonian matrix ele-
ments must be performed by a separate electronic structure
package. The Hamiltonian matrix elements are expected in
the FCIDUMP format used by codes including Molpro [101],
PySCF [102] and VASP [103-105]. The calculations are typi-
cally performed on a single particle basis defined by the solu-
tion of a Hartree—Fock or DFT calculation. Both finite and
periodic calculations are possible.

13.2. Auxiliary-field quantum Monte Carlo (AFQMC)

The fundamental idea behind AFQMC is identical to that
of DMC, namely that the propagation of many-body states
in imaginary time leads to the lowest eigenstate of the
Hamiltonian with non-zero overlap [27]. In contrast with
DMC, AFQMC operates in the Hilbert space of non-orthog-
onal Slater determinants and uses the Hubbard—Stratonovich
transformation [106, 107] to express the short-time approx-
imation of the propagator as an integral over propagators
that contain only one-body terms. The application of one-
body propagators to walkers in the algorithm (represented by
Slater determinants) leads to rotations of the corresponding
Slater determinants that define a random walk, similar to
the random walk in real-space followed by walkers in DMC
[108]. QMCPACK implements the constrained-path algorithm
of Zhang and Krakauer with the phaseless approximation
[27, 109]. Similar to the algorithm of Zhang and Krakauer,
we use importance sampling and force-bias to improve the
sampling efficiency of the algorithm. For a complete descrip-
tion of the implemented algorithm, see the lecture notes on
AFQMC by Zhang in the open-access book [28] and [29].
The AFQMC implementation in QMCPACK attempts to
minimize the memory requirements of the calculation, while
increasing the performance of the associated computations.
This is done by a combination of: (1) distributed sparse
representations of large data structures (e.g. two-electron
integrals), (2) efficient use of shared-memory on multi-core
architectures, (3) combination of efficient BLAS and sparse-
BLAS routines for all major computations, and (4) an effi-
cient distributed algorithm for walker propagation. Notice
that the code is able to distribute the work associated with
the propagation of a walker over many nodes, enabling access
to systems with thousands of basis functions with a full ab
initio representation. Both single determinant as well as
multi-determinant trial wave-functions are implemented. In
the case of multi-determinant expansions, both orthogonal
as well as non-orthogonal expansions are efficiently imple-
mented. For orthogonal expansions, a fast algorithm based on
the Sherman—Morrison—Woodbury formula is implemented
which leads to a modest increase in computing time for deter-
minant expansions involving even many thousands of terms.

13.3. Selected Cl and CIPSI wavefunction interface

As discussed previously, a direct path towards improving
the accuracy of a QMC calculation is through a better trial
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Figure 5. The C,0,H3;N molecule. The colors red, gray, blue
and white correspond to oxygen, carbon, nitrogen, and hydrogen

respectively. The geometry is from the heterocyclic rings database
[122].

wavefunction. One approach is to use selected CI methods
such as CIPSI (configuration interaction using a perturbative
selection done iteratively), or the recently developed adaptive
sampling CI (ASCI) [99] and heat bath CI (HBCI) [100]. The
principle behind selected CI methods was first published in
1955 by Nesbet [97]. The first calculations on atoms were per-
formed by Diner, Malrieu and Claverie [110] in 1967. Many
advances have since been made with selected CI techniques,
and it has been applied widely to atomic, molecular and peri-
odic systems [111-118]. The method is based on an iterative
process during which a wavefunction is improved at each step.
During each iteration, the current wavefunction is used in con-
junction with the Hamiltonian to find important contributions
that will be added to the wavefunction in the next iteration. In
most selected CI approaches, the importance of a contribution
is determined from a many body perturbation theory estimate.
A full description of CIPSI, its algorithms, and results on
various systems can be found in [98, 119, 120]. A descrip-
tion of new improvements to selected CI techniques that have
been demonstrated with ASCI and HBCI can be found in [99,
100]. The CIPSI method [98, 119-121] is implemented in the
Quantum Package (QP) code [59] developed by the Caffarel
group. QMCPACK does not implement CIPSI, but is able to use
output from the QP code via tight integration.

In the following we use the C,O,H3N molecule, figure 5,
to illustrate the use of CIPSI to obtain an improved trial wave-
function. The C,0,H;3;N molecule is part of the cycloreversion
of heterocyclic rings database [122], for which the geom-
etry was optimized with DFT using the B3LYP function in
a 6-31G basis set. Orbitals are represented within the aug-
ccpVTZ basis set. The energetics of this molecule are known
to have a strong dependence on the choice of functional in
DFT simulations [122]. Diagnostics based on coupled cluster
theory (CC) with single, double, and peturbative triple exci-
tations (CCSD(T)) [123] suggest a multireference character
[124], a known problem for these techniques [125]. The multi-
reference capability of DMC-CIPSI makes it an ideal tool for
treating difficult systems with large static correlations.

The FCI space for C,O,HsN in aug-ccpVTZ is approxi-
mately 10% determinants. Fortunately, using all of these
determinants is not necessary to converge a QMC calculation
to chemical accuracy. We truncate determinants based on their
magnitudes with a user defined threshold e [119], which allows
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Table 1. Energies in Hartree of C;O,H3N as a function of the number of determinants Ny in the trial wavefunction obtained using
CIPSI(E), CIPSI(E + PT2) and DMC. CIPSI(E) is the variational energy, while CIPSI(E + PT2) includes perturbative corrections.

Net CIPSI(E) CIPSI(E + PT2) DMC
1 —281.6729 —283.0063 —283.070(1)
239 —281.7423 —282.9063 —283.073(1)
44539 —282.0802 —282.7339 —283.078(1)
541380 —282.2951 —282.6772 —283.088(1)
908128 —282.4029 —282.6775 —283.089(1)
-283.065
< 283.070fF % .
Lz N
=, -283.075| |
o 1 %
2 og3os0f I " ]
m N
E
% -283.085| R
=) N
-283.090| % """" % g
_283095 | | | | | | | |
PBE PBEO B3LYP Hartree CIPSI CIPSI CIPSI  CIPSI
Fock 239 44539 541380 908128

Source of Trial Wavefunction

Figure 6. DMC energy of C,0,H;3N using different trial wavefunctions. Using the aug-ccpVTZ basis, wavefunctions are generated
from Hartree—Fock, PBE, and hybrid functionals PBEO and B3LYP. Multideterminant CIPSI trial wavefunctions contain up to 908 128
determinants, as indicated. The dashed line is a guide to the eye and indicates the systematic improvement of the CIPSI wavefunctions.

the wavefunction to be evaluated in QMCPACK with a cost
growing as v/Nye, where Nye, is the number of determinants.
Truncation values of 1073, 10~%, 107> and 10~° result in wave-
functions of 239, 44539, 541380 and 908 128 determinants,
respectively. For each truncated wavefunction we optimize
one, two and three-body Jastrow factors with VMC. To isolate
the improvement of the nodal surface when adding determi-
nants from CIPSI, the coefficients of the determinants were
not optimized, although this could result in a further improve-
ment in the wavefunctions. DMC results are extrapolated to
a zero time-step using time-steps of 7 = 0.001, 0.0008 and
0.0005.

DMC results in table 1 show that the DMC results are conv-
erged close to 0.001 Ha, or better than chemical accuracy of
1 kcal mol ™!, by around 500000 determiants. Figure 6 shows
the energy as a function of different single-determinant trial
wavefunctions as well as multideterminant wavefunctions
generated with CIPSI. The latter show a systematic improve-
ment of the nodal surface as a function of the number of deter-
minants. However, it is also interesting to note that in this case
the single determinant B3LYP results are quite accurate, high-
lighting the importance of orbital selection and optimization
to improve efficiency [126].

14. Utilities

14.1. Averaging quantities in the MC data

QMCPACK includes the gmca Python-based tool to average
quantities in the output files and aid in performing statistical
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analysis. Given the name of an output file, qmca will compute
the average of each quantity in the file. Results of separate
simulations can also be aggregated, such as for different twists
(twist averaging), multiple steps (autocorrelation analysis) or
multiple Jastrow parameters (Jastrow optimization).

In addition to all the quantities computed by QMCPACK,
gmca computes the data variance and efficiency. qmca also
allows visualizing the evolution of MC quantities over the
course of the simulation by a frace offering a quick picture
of whether the random walk had expected behavior as in
example figure 7.

14.2. Wavefunction converters

An important step before running a QMC calculation is to
obtain the trial wavefunction from another electronic struc-
ture or quantum chemical code and convert it into a format
readable by OQMCPACK. In addition to the large set of con-
verters available through Nexus, QMCPACK comes with two
converters upon compilation. Connections to other codes will
be developed on request.

convertdgmc: When compiling QMCPACK, an extra binary
called convertdqmc is also created. convert4qmc manages
gaussian trial wavefunctions from codes such as GAMESS
[127], VSVB [128] or quantum package [59]. convert4dgqmc
handles the conversion of single determinant, multidetermi-
nants (CASSCF, CI, CIPSI), numerical and Gaussian basis
sets. The output file generated can be either in an XML or
HDF5 format. convert4qmec allows the user to add mul-
tiple option to the wavefunction such as a Jastrow function



J. Phys.: Condens. Matter 30 (2018) 195901

J Kim et al

Trace of LocalEnergy

s000
0.0t
>
2
[}
[=
w —-0.5
©
19
S
-1.0
-1.5}¢
0 100 200 300 400 500
samples

Figure 7. Screenshot of qmca trace analysis. The solid black line
connects the values of the local energy at each Monte Carlo block
(labeled ‘samples’). The average value is marked with a horizontal,
solid red line. One standard deviation above and below the average
are marked with horizontal, dashed red lines. The trace of this run is
largely centered around the average with no large-scale oscillations
or major shifts, indicating a good quality Monte Carlo run.

(two-body, three-body or Pade), cusp conditions, or limit the
number of determinants to include.

pw2gmcpack: When using a plane-wave trial wavefunction
from the PWSCEF code in the QE suite [54, 55], pw2qmcpack.x
is used. Source code patches are included with QMCPACK to
produce the pw2qmcpack.x binary for specific QE versions,
necessary to collect and write the wavefunction in the correct
format for QMCPACK.

15. Workflow automation using Nexus

Completing the research project path from project conception
to polished results requires a great amount of computational
and researcher effort. Much of the effort stems from the fact
that obtaining even single, non-production energies from
QMC is a multi-stage process requiring orbital generation
(e.g. with a DFT code), orbital file format conversion, Jastrow
optimization via VMC, subsequent DMC projection, and later
analysis. This process must usually be repeated many times
to ensure convergence of the results with respect to system
size, k-point mesh, B-spline mesh, and DMC timestep, as
well as for the different solids or molecules of interest. Often
this entire process must be performed first in the validation of
pseudopotentials (e.g. via atomic or dimer calculations). As a
further complication, the appropriate computational environ-
ment—or host computer—can vary with the stage in the chain
from small clusters for DFT work, mid-size machines for
wavefunction optimization, and sometimes very large super-
computing resources for DMC or AFQMC. Simplifying the
management of these processes is of key importance to mini-
mize the full time to solution for QMC.

Scientific workflow automation tools have been used with
much success in the electronic structure community to reduce
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both the burden on the researcher and to reduce the propaga-
tion of human error with improved systematization. Packaged
with QMCPACK is an automation tool, called Nexus [129],
which has been tailored to the computational workflows of
QMC. The system handles several steps in the simulation pro-
cess typically requiring human involvement such as atomic
structure manipulation, input file and job submission script
generation, batch job monitoring and error detection, selection
of optimized wavefunctions, and post-processing of statistical
data. Nexus also handles the flow of information between sim-
ulations in a workflow chain, such as passing on the relaxed
atomic structure, orbital file information, and optimal Jastrow
parameters to subsequent simulations that require them. The
system is suitable for both exploratory and production QMC
calculations spanning multiple machines, including those
approaching a high-throughput style.

Nexus is written in Python following an object-oriented
approach to allow extensibility to multiple simulation codes
and host execution environments. Nexus currently has inter-
faces to QE [54, 55], GAMESS [56, 127], VASP [103, 104,
130, 131], QMCPACK, and a number of associated post-pro-
cessing and file conversion tools. Nexus does not require
access to the internet or to an installed database to run, instead
operating only via the filesystem. Nexus is therefore suitable
for the widest range of computer environments. Supported
machine environments include standard Linux workstations
as well as high performance computers. Explicit support
exists for systems at the National Energy Research Scientific
Computing Center, the Oak Ridge Leadership Computing
Facility, the Argonne Leadership Computing Facility, Sandia
National Laboratories high-performance computing resources,
the NCSA, the Texas Advanced Computing Center, the Center
for Computational Innovations at Rensselaer Polytechnic
Institute, and the Leibniz Supercomputing Centre. Variations
in the job submission and monitoring environments at each
institution necessitate specific extensions to ensure operability
across this wide range of resources.

Users interact with Nexus by writing short Python scripts
that generally resemble input files. Use of such ‘input files’
allow the user to spend more time on project design rather
than execution and naturally comprise both a record of calcul-
ations performed and a means to fully reproduce them. Nexus
has been used extensively in summer schools on QMCPACK
and recent research papers. An additional benefit of the work-
flows is the greatly improved ability to reproduce the calcul-
ations at a later date, and to speed up related research projects
through reuse.

16. Examples

In the following we give examples of recent applications of
QMCPACK to illustrate the insights achievable with the cur-
rently implemented QMC algorithms and to highlight use
of specific features of the application. A molecular example,
where the trial wavefunction is systematically converged
using CIPSI is given in section 13.3.
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16.1. Black phosphorus

Black phosphorus (BP) has enormous potential for techno-
logical applications because it is layered like graphite and can
be exfoliated to form a 2D material that is naturally a semi-
conductor. There are some technical complications in making
devices due to effects such as the degradation of the material
when exposed to air or water. Ab initio calculations can help
understand such processes and act as a laboratory in which
to test mitigation strategies. However, the interaction between
the BP layers was thought to be dispersive in nature. Non-
covalent interactions are a classically difficult case to treat
with density functional based approaches, while, QMC has
been shown to perform as well as the most accurate quantum
chemical methods while also being applicable to extended
and larger systems [132-134]. We employed QMCPACK to
calculate the interaction between BP layers as well as the bulk
material [135]. We found that in one particular arrangement
the interaction between the layers was very well reproduced
by one van der Waals (vdW)-corrected DFT functional, but
as soon as the stacking between the layers was changed, the
functional’s performance degraded.

In order to understand this phenomenon, we looked at
the change in the charge density induced by the presence of
nearby layers of BP. Classically, one might expect very little
change in the charge density due to a vdW interaction, and this
property is rigorously upheld by various vdW-corrected DFT
functionals. However, we found a large charge reorganization
caused by the presence of nearby BP layers and of a character
that was different than that predicted by DFT.

This study took advantage of QMCPACK’s ability to handle
mixed boundary conditions section 9. For BP monolayers and
bilayers, we used periodic boundary conditions parallel to the
layers, but open boundary conditions perpendicular to them.
Also, we found the interaction energies were very sensitive
to finite size effects, and the ability to perform calculation
on many different supercells of the material was crucial to
determine their exact form. The B-spline representation was
used for the orbitals in the trial wavefunctions section 6.2.1.
Finally, the ability of the code to evaluate the charge density
from the calculation was crucial.

16.2. Bilayer a-graphyne

Carbon can form two-dimensional sheets of sp—sp*-hybrid-
ized atoms, a-graphyne. Its existence was predicted three
decades ago [136] and has recently received a great deal of
attention because of its intriguing potential as a new Dirac
material [137-139]. Among various available forms of a
graphyne-based structures, a bilayer a-graphyne consisting of
two stacked two-dimensional hexagonal lattices can be ener-
getically stabilized in two different stacking modes (AB and
Ab mode) out of a total of six available modes; note that the
a-graphyne hexagons are much larger than those of graphene.
While an AB mode has been predicted to exhibit electronic
properties similar to those of an AB bilayer of graphene,
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Table 2. Equilibrium interlayer distance Ry (A) and binding
energies Ej, (meV/atom) for an Ab and AB bilayer a-graphyne
using DMC and various vdW-corrected DFT functionals [141].
AEjp_p indicates the binding energy difference between AB and
Ab a-graphyne.

a-graphyne(AB) a-graphyne(Ab)

Method Ry E, Ry E, AEjp_ap
DFT-D2  3.25 13.4 3.37 13.6 —-0.2
vdW-DF 347 19.8 3.64 18.5 1.3
rVV10 3.27 17.9 341 17.8 0.1
DMC 3.24(1) 23.2(2) 3.43(2) 22.3(3) 0.9(4)

Ab-stacked graphyne is expected to possess split Dirac cones
at the Fermi level, and its gaps can be opened with and applied
electric field normal to the surface [140]. Theoretical predic-
tions of these electronic properties of bilayer graphynes were
made by using first-principle DFT methods [140]. However,
DFT studies failed to suggest which of the AB and Ab
stacking mode is the most energetically stable one because
of the approximate description of vdW forces within the non-
interacting Kohn—Sham scheme. As seen in table 2, computed
interlayer distances and binding energies obtained from DFT
calculations are strongly scattered depending on which spe-
cific exchange-correlation functional was used.

In order to establish which stacking mode is the most stable
one, DMC calculations, that include without any approx-
imations the long-range vdW interactions, were performed
to compute the equilibrium interlayer distance and binding
energy for Ab and AB bilayer graphyne [141]. DMC equi-
librium binding energy for the AB stacking mode (23.2(2)
meV/atom) is estimated to be slightly larger than that for
Ab stacking mode (22.3(3) meV/atom), which suggests that
the AB-stacked bilayer is energetically favored over the Ab
stacking mode. In comparing the DMC results with results
from vdW-corrected DFT functionals, including the pairwise
correction of Grimme (DFT-D2) [142, 143], self-consistent
non-local vdW functional (vdW-DF) [144], and simplified
non-local vdW-correction (rVV10) [145], it was found that
those significantly underestimate the interlayer binding ener-
gies for both stacking modes (see figure 8).

Itisinteresting to find which vdW-corrected DFT functional
most accurately describe the weak interlayer vdW interaction
in bilayer a-graphynes by comparing the DFT results to the
DMC ones. As table 2 shows, there is no vdW-corrected DFT
functional that achieves good accuracy for both interlayer
distance and binding energy. However, the rVV10 functional
produces almost identical equilibrium interlayer distances as
DMC, and the vdW-DF results for interlayer binding energies
and AE4p_p are the closest ones to the DMC results for both
stacking modes. Therefore, one may conclude that rVV10 can
provide well-optimized vdW geometries for low-dimensional
carbon allotropes, while vdW-DF gives the best vdW ener-
getics among the various vdW-corrected DFT functionals
investigated here.
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Figure 8. Interlayer binding energy for (a) AB, and (b) Ab stacking mode of a bilayer a-graphyne using various DFT XC functionals and
DMC as function of interlayer distance R. The dotted lines indicate a Morse function fit. Reprinted with permission from [141]. Copyright

2017 American Chemical Society.
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Figure 9. The Helmholtz free energy of rutile, anatase and brookite as a function of temperature. All the values are shifted by the
calculated Helmholtz free energy of anatase at 0 K. The energy differences between brookite and rutile at 0400 K, and between anatase and
rutile at 450-850 K are provided in the insets (a) and (b). The energy of brookite is always larger than that of the other two solids, while the
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16.3. Titanium dioxide (TiOy)

The row 3 and row 4 transition metals are extremely useful
elements for a number of applications, ranging from magnetic
applications to solar cells and catalysis. The reason for their
versatility is the partially filled d-shell, which gives rise to a
number of oxidation and spin states. The 3d electronic states
are also rather localized and give rise to relatively strong elec-
tronic correlations, especially in the transition metal oxides,
such as NiO and TiO,. This has as a consequence that standard
computational approaches using density functional theory
within the local density approximation (LDA) or the general-
ized gradient approximation (GGA) are inadequate and fre-
quently give incorrect results.
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TiO, occurs in a variety of polymorphs. Three of those
occur naturally: rutile, anatase and brookite. Rutile is the
most abundant one and is used as a white pigment as well
as an opacifier and an ultraviolet radiation absorber, while
anatase is the most photocatalytically active polymorph
[146, 147].

In spite of the prevalence and many applications of TiO,,
it is very difficult to determine which of the polymorphs is
the most stable one. Experimental studies have indicated that
rutile is the most stable structure, and anatase and brookite
are metastable. However, the enthalpy differences between the
polymorphs are very small, of the order of 1 mHa per formula
unit, making precise determinations very difficult [148—155].
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Electronic structure calculations using a broad range of
local and gradient corrected functionals give anatase as the
lowest-energy polymorph, and thereafter brookite and rutile
[156, 157], in supposed disagreement with experiments.
DFT + U can give the apparent correct ordering of the poly-
morphs for a sufficiently large U value [158, 159]. Hybrid
functionals can also give the correct energetic ordering of
the polymorphs, but only using very large fractions of exact
exchange [159].

In two recent studies [93, 160], diffusion Monte Carlo
calculations were used to examine TiO, polymorphs with
the goal of determining the energetic ordering at zero and
finite temperatures. Both studies gave the result that anatase
is the most stable polymorph at 0K, with very small energy
differences between rutile and brookite. Finite-temperature
Helmholtz free energies were then calculated by including
phonon contributions based on DFT phonon calculations. The
results in both studies were very similar: the finite-temperature
contributions from lattice vibrations drove the free energy of
the rutile polymorph to be the smallest at temperatures above
approximately 650K (see figure 9). These two studies may
finally resolve the question of the most stable polymorphs of
TiO,: at 0K, anatase is the most stable one, while lattice vibra-
tions drive a transition from anatase to rutile at about 650 K.

16.4. The Magnéli phase Ti,O;

Because of its many oxidation states, titanium can form
a variety of stoichiometrically different oxides. One par-
ticular set are the Magnéli phases with the generic formula
Ti2,O(2,—1)- These form ordered crystals with diminishing
band gaps with increasing n. In particular, Ti;O; forms a
magnetic semiconductor at temperatures below 120K [161,
162]. DFT finds multiple low energy states, but the ordering
depends on the functional used.

DMC calculations [91] found the same energetic ordering
of the lowest three states as the DFT calculations by Zhong
et al [163], but with larger energy separations. A detailed
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examination of the spin densities and local moments on the
Ti** ions showed that the DFT methods actually gave very
good representations of the total moments. However, the
orbital alignments were different in DMC, especially in the
FM state. This certainly will give rise to different energy dif-
ferences compared to DFT as the energy differences between
the states can rather accurately be attributed to Heisenberg
exchange between the magnetic Ti ions, which will differ with
the different orbital alignments.

16.5. Vanadium dioxide (VO,)

VO has a rich phase diagram which can be exploited in novel
device applications. At ambient pressure, the unstrained VO,
undergoes a metal to insulator transition (MIT) at T, ~ 341
K from the low temperature monoclinic M1 phase to the high
temperature rutile (R) phase [164—166]. This phase transition
has been studied rather extensively, in part due to the on-going
debate on the driving mechanism of this MIT. The challenge
in describing this material is often related to the representa-
tion of electron correlations in this strongly correlated elec-
tron material [167—173]. Commonly, experimental studies are
accompanied with density functional theory (DFT) calcul-
ations for better understanding. Additionally, DFT has been
used in isolation to provide insight into the mechanism of the
MIT [174-177]. However, the failings of DFT in this context
are also well known [178-180]. If functional development led
to systematic improvement [181], this should be measurable
in both the total energy and the electron density; the two prop-
erties that the exact functional must perfectly reproduce.

Recent QMC calculations of VO, were used as a reference
in assessing various DFT formulations [182]. Supercells of
48 atoms were used to model the antiferromagnetic ground
state of the M1 and R phases, and a 3 x 3 x 3 grid was used
in twist-averaging. The QMC calculations used LDA + U
orbitals for the nodes, where the optimized U-value of 3.5eV
was obtained from DMC as the value that minimized the vari-
ational DMC energy.
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Table 3. Values of lattice constant (a), bulk modulus (By), and
cohesive energy (E.on) for AFM-II type NiO obtained from a Vinet
fit of the equation of state computed using GGA + U and DMC at
U = Ugp and a 16-atom type I AFM NiO supercell.

Method a(A) By (GPa) E.on (eV/f.u.)
GGA + U 4234 192 8.54

DMC 4.161(7) 218(14) 9.54(5)
Experiment® 4.17 145-206 9.5

*[184].

Table 4. DMC formation energies of a K dopant (Ey) NiO under
O-rich condition, and optical gap (E,) for NiO and K-doped NiO in
a 64-atom supercell [183]. Energies are in eV.

Method E«(K) E, (NiO) E, (KNiO)

GGA 1.9 1.4 0.7

GGA +U 0.6 3.6 2.9

DMC 1.3(3) 5.8(3) 4.8(4)
5.0(7)*

Exp. — 4.323 3.7-3.93

* Optical gap calculated in a 128 atoms supercell.

° [185-188].

¢ [189].

In general, it was observed that the best description of ener-
getics between the structural phases did not correspond to the
best accuracy in the charge density. An accurate spin density
was found to lead to a correct energetic ordering of the dif-
ferent magnetic states. However, local, semilocal, and meta-
GGA functionals tend to erroneously favor demagnetization
of the vanadium sites, which can be reconciled in terms of
the self-interaction error. The metrics used also revealed the
limitations in the description of correlated 3d-orbital physics
present in currently available functionals. This is evident, e.g.
in the density metrics shown in figure 10, where spatial vari-
ations in the electron density with respect to DMC reference
are shown; the extrapolated estimator is used as the DMC
reference.

16.6. NiO and potassium-doped NiO

Nickel oxide is the poster-child for correlated transition
metal oxides. It has a simple rocksalt structure and is at low
temperatures a Type II antiferromagnetic insulator. Not only
is NiO interesting as a prototypical correlated transition metal
oxide, but it is typically a p-type semiconductor, one of a very
small number of p-type oxides, because as-deposited NiO
typically has a Ni deficiency. Stoichiometric NiO can also be
p-doped with suitable monovalent elements, e.g. with Li or
K. This brings the basic questions of what are the energetics
of vacancies or substitutional dopants in NiO, and how do
their descriptions in DFT-based calculations differ from those
based on QMC?

DMC calculations [183] were performed on 64-atom
supercells with a single substitutional K dopant or Ni or O
vacancies. DMC results for ground state properties were in
very good agreement with experiments, compared to the DFT
results (see table 3). There was also a large difference in defect
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creation energies, with DFT energies underestimating them
table 4. The optical gaps were also underestimated by DFT, as
expected. DMC calculations of the optical gap were larger, in
fact much larger than experimental values. Calculations of the
gap using a 128-atom supercell reduced the gap, but the vari-
ance was large enough for this size cell that the reduction of
the gap for the larger supercell was not statistically significant.
In any case, the gap calculations indicate that finite-size cor-
rections can be significant in DMC gap calculations and also
point to the need for improved excited state methodologies
in QMC calculations of solids, where the errors are currently
larger than for ground states.

16.7 Pseudopotential development and testing

Testing pseudopotentials is an important part of QMC due
to (i) the historic challenge of developing accurate pseudo-
potentials for many-body methods such as QMC and his-
torical reuse of DFT or Hartree—Fock-derived potentials, and
(i) the importance of checking any biases unique to QMC
such as the T-moves and locality approximations in DMC.
Comparing atomic properties such as ionization potentials,
and dimer properties such as bond lengths and binding
energies obtained by DMC with experimental or quantum
chemical results, provides a robust, inexpensive, and trans-
ferable test of pseudopotential quality. Recently, QMCPACK
and Nexus [129] were used jointly to validate a collection
of newly developed pseudopotentials for the early-row trans-
ition metals (Sc—Zn) [190].

DMC calculations were performed for five atomic charge
states (ranging from neutral to 4+) and at nine transition
metal-oxygen dimer bond lengths for each species. Orbitals
were generated with QE using the experimental spin multi-
plicity within LDA [5, 191] or HSE [192, 193] for atoms and
LDA for dimers. Two-body Jastrow functions were optimized
at each atomic charge state and at the equilibrium geometry
for dimers. Subsequent DMC calculations were performed
with both T-moves and the locality approximation to assess
the affect of pseudopotential localization errors. This large
number of calculations is best handled using workflow soft-
ware such as Nexus.

The resulting DMC atomic ionization potentials and
dimer bond lengths, binding energies and vibration fre-
quencies were compared with prior DMC results using
Gaussian-based Hartree—Fock [194-196] pseudopotentials,
all electron quantum chemistry results using MRCI [197,
198] and CCSD(T) [199-201] approaches, and experiment.
On essential all measures, the various theoretical approaches
performed similarly well compared with experiment. The
current pseudopotential DMC results were within 0.2eV of
experiment on average for atomic ionization potentials and
dimer binding energies, with the T-moves and locality approx-
imation generally agreeing to 0.05eV for these energy differ-
ences. Equilibrium bond lengths were found to be within 0.5%
of the experimental values, while the more sensitive vibration
frequencies agreed to around 3%. This work as well as sub-
sequent studies have verified the quality of the new potentials
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for QMC studies of transition metal containing systems, but
further improvements are desirable section 17.1.

17. Future extensions and challenges

171 Pseudopotentials

The atomic core energies scale quadratically with the nuclear
charge, Z, while the valence energies stay essentially constant
across all chemical elements. The energy fluctuations from the
core therefore dominate any QMC calculation and, indeed, the
overall cost is oc Z% with a between 5.5 and 6.5 [202, 203]. It
is therefore highly desirable to construct an effective, valence-
only Hamiltonian with the atomic cores removed. In fact, a
related problem is encountered also in one-particle calcul-
ations with plane-waves. For that matter, even in many-body
calculations with heavy atoms fully correlating the core(s)
would eventually dominate the calculations regardless of the
employed method.

Pseudopotentials (PPs) and the closely related effec-
tive core potentials (ECPs) have been used in condensed
matter calculations as well as in basis set quantum chemical
calculations for several decades [1]. At the very basic level,
the atomic cores and corresponding degrees of freedom are
replaced by PPs/ECPs operators that mimic the action of
the core states on the valence electrons. Traditional PP/ECP
constructions are based on one-particle solutions of the atom
and typically involve norm conservation/shape consistency so
that the pseudo-orbitals match the true original all-electron
orbitals outside some appropriate core radius. Many advances
for ECPs/PPs have been proposed that generalize, make more
efficient, improve or more accurately reproduce the true
atomic properties, e.g. [204-207]. For QMC calculations,
one improvement that has been used to improve the transfer-
ability has been based on fitting Hartree—Fock or Dirac—Fock
energy differences for a set of atomic and ionic excitations.
Furthermore, many-body constructions have been suggested
by means of reproducing the (correlated) one-particle den-
sity matrices beyond a certain radius or by improving upon
DFT solution for a given atom using many-body perturbation
theory.

Despite all these elaborate and sophisticated efforts, at pre-
sent, PPs remain a very laborious part of QMC studies. The
main reason is that QMC often reaches accuracy beyond and
sometimes well beyond the accuracy of traditional and even
currently most advanced PP/ECP constructions. Additional
complications come from dealing with the non-locality in the
QMC framework that introduces further complications and
demands on quality of the trial wavefunctions. As a result, PP/
ECP for every element has to be painstakingly retested and
benchmarked anew and if the inaccuracies sufficiently bias the
valence properties of interest, one has to go back to square
one and construct a more accurate PP/ECP. Furthermore, tech-
niques in DFT that use solid state results to improve transfer-
ability, e.g. [208], are not practical in QMC because of the
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computational cost of the large supercells required to conv-
erge finite size errors.

To overcome these highly technical but important barriers
it is desirable to develop a new generation of PPs/ECPs based
on correlated constructions from the outset, provide high acc-
uracy that would not limit the subsequent QMC results, and
also be efficiently used in QMC. In addition, one would like to
have flexibility in choosing the core-valence partitioning and
transferability not only at ambient (equilibrium) conditions
but also at high pressures, non-equilibrium conformations and
other broader set of conditions.

The goal is therefore not only to reproduce the proper-
ties of the atom within one-particle theory and then hope for
best in many-body calculation. Our effort would be focused
on reproducing the true many-body properties of the orig-
inal system(s), i.e. atom(s), in a variety of settings. For this
purpose, we plan to derive new generation of PPs/ECPs
that would be based on a number of new criteria targeted to
uphold its accuracy and fidelity to the true original many-body
Hamiltonian. In particular,

(i) we plan to construct an atomic ECP operator that will
match a subset of the many-body spectrum as close as
possible to the original atomic Hamiltonian. This will
involve a set of states that have the largest weights in
molecular, surface, solid or other chemical settings;

(i1) include more options for multiple core-valence parti-
tioning whenever appropriate;

(iii) express PPS/ECPs in a simple representations/forms
that enable their use with multiple methods ranging
from traditional DFT and plane wave-based packages to
many-body approaches based on stochastic and explicit
expansions in basis set methods;

(iv) try to capture all of the relevant physics that is feasible
at the current state-of-the-art, e.g. impact of correlated
cores together with correlated valence, describe relativity
with the best available account of correlation, explicit
treatment of spin—orbit effects, etc.

Clearly this is an ambitious plan that will require significant
effort and time, and as such it is almost a never ending task
(since it is almost always possible to slightly improve upon
the previous version). Nevertheless, we believe that equally
important is the adoption of new standards: many-body
instead of one-particle framework, testing and benchmarking
by a multitude of methods that cross-validate the quality of the
PPs/ECPs, and systematic documentation and improvements
so that PPs/ECPs can be used without endless retesting and
with true many-body quality of the corresponding operators
shown upfront. To-date, explicitly correlated ECPs have been
developed for a selection of first and second row elements
[209], with future developments for the rest of the periodic
table underway.

These developments will be collected on a new community
website, http://pseudopotentiallibrary.org, that will be used for
storing the data and will also include tests and benchmarks.
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The PPs/ECPs will also be available as a part of the QMCPACK
package. 1 [0?
= ——|=— +1 70
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172. Spin—orbit interaction

Until now, almost all electronic structure QMC calculations
have been carried out with spins of individual electrons being
fixed, up or down. This is easy to justify for Hamiltonians
without explicit spin operators. Such Hamiltonians commute
with any spin, so that up or down orientations are conserved
and the solution of the many-body problem is therefore con-
fined to the space of spatial coordinates, and spin states are
imposed as a symmetry (e.g. a triplet state). Many interesting
phenomena involve the interaction between the spin and spa-
tial degrees of freedom, such as the spin—orbit interaction.
Recently, dynamic spins as quantum variables has been real-
ized in DMC in order to treat such interactions directly, see
[210] and [211]. We plan to implement dynamic spins into
QMCPACK, and a brief outline of the necessary changes are
outlined below.

In order to implement spin-dependent operators, spin vari-
ables need to be introduced as dynamic quantum variables.
This requires a change from one-particle orbitals to one-par-
ticle spinors

Xn(rinsi) = apl () x T (s:) + Bk (x)xH(s:)  (67)

where the spatial orbitals can be different for the spin up
and down channels. The spin functions ™) take on dis-
crete values in the minimal spin representation, namely
V'(1/2) = xH(-1/2) = 1 and X (~1/2) = x*(1/2) = 0.
The simplest antisymmetric wavefunctionis then a single deter-
minant of the one-particle spinors, rather than the product of
spin-up and spin-down determinants. In order to increase
the efficiency of sampling the spin degrees of freedom, the
spinors will be represented using a continuous (overcomplete)
representation

XT(U (si) = eLisi

where s; € (0,27). These explicitly varying spins result in
complex wavefunctions, for which we must abandon the
fixed-node approximation that applies to real-valued wave-
functions. By writing the many-body wavefunction in terms
of an amplitude and phase ¥ = pexp [i®], the real part of the
Schrodinger equation becomes

(68)
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(69)
where W is Re [¢~'W¥] and W is any nonlocal operator
such as a PP. Since we do not know the exact phase, we
approximate it by the use of a trial phase using the fixed-phase
approximation [71]. Since p is positive-definite, there is no
nodal surface and the DMC algorithm is seemingly the same
as for Bosonic ground states with an additional potential pro-
vided by the trial phase.

Sampling of the spin variables can be achieved by intro-
ducing a spin ‘kinetic energy’, namely
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such that it annihilates an arbitrary spinor and does not con-
tribute to the total energy. However, the introduction of this
operator modifies the DMC Green’s function to include a dif-
fusion and drift term for the spin variables S = (s1, 52, . . ., Sy)-
The i, is a spin mass, which can be interpreted as a time step
for the spin variable propagation.

Once the spins are treated as variables rather than static
labels, spin-dependent Hamiltonians can be treated. For
the spin—orbit integration, a generalization of the non-local
operators used in QMC calculations is necessary. Relativistic
quantum chemistry calculations utilize the semi-local form

4172 j

W; = Z Z Z Wi (ri) | Gjm) (Gjm;]

0 j=—|t—1/2| m=—j

(71)

for fully relativistic PPs that include scalar-relativistic and
spin—orbit effects [212]. Utilizing the spin representation
introduced above, the contribution from the non-local PP
is inherently complex. When evaluating the localization of

the PP with the trial wavefunction Re [\I!; ]W\IIT], one will
encounter terms such as (Q2s|¢jm), where (2 is the solid-angle

and s is the spin variable for an individual electron. These
terms are given as

(Qslt,j=0+1/2,m) ==+ WYe,m_l/z(ﬂ)e
(Fm+1/2 s
+ WYe,erl/z(Q)e o

(72)
By summing over each electron and ion and taking the real
part, one obtains the contribution to the local energy from
the complex non-local PP in the locality approximation. As
is described in [211], a generalization to the Casula T-moves
[36, 78] has been constructed for complex non-local opera-
tors such as the relativistic PPs above, and will also be
included.

17.3. Adapting to trends in high performance computing

Predicting details about future high performance computing
architectures is difficult, but some general trends can be
observed that should motivate application design decisions in
an effort of increasing forward portability. As Moore’s Law
and Dennard scaling slow due to physical limitations, recent
strategies for gaining performance have largely consisted of
increasing the parallel capability of hardware. However, the
time and power costs of moving data during program execu-
tion also limits the traditional increase in parallelism by
scaling out commodity-type nodes and connecting them by
a high performance interconnect. As a result, parallelism is
being added both at the overall system level as before, and
also within the processors by increasing thread count, and
within the node by adding specialized compute accelerators
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such as GPUs, FPGAs, etc. Besides increasingly complex
compute hierarchies, memory is also becoming hierarchical
and more complex, e.g. with the addition of non-volatile
memory and various types of on-package high-bandwidth
memories. Although the traditional memory structure already
involved multi-level caches and system RAM, this complexity
was almost entirely managed by the hardware controllers
and compilers. However, as the memory hierarchy deepens,
it could become necessary for the application developer to
more actively manage its usage to realize desired performance
increases. Adapting to these changes is very important for
QMC because the high computational cost often results in
the methods being run on the latest supercomputers with the
newest architectures.

While QMC methods have considerable natural parallelism
that makes maintaining parallel efficiency fairly straightfor-
ward on most traditional hardware, the real desire is to reduce
the overall time to solution for any given problem of interest.
This means that simply mapping more walkers to more avail-
able threads does not scale indefinitely for our purposes, and a
multifaceted strategy is needed to leverage increasingly com-
plex modern computer architectures. The emergence of GPU-
based HPC architectures around half a decade ago indicated
that maintaining high performance was no longer ‘business
as usual’.

In order to take advantage of the massive increase in the
number of lightweight threads that were offered by GPUs, the
parallel strategy in QMCPACK was re-mapped from walker-
based parallelism to particle-based parallelism. However, as
compute accelerators get more powerful with an increasing
number of available threads, and more powerful threads have
their own vectorization capabilities, additional parallelism
must be exploited. For example, so that multiple threads
can be assigned to a single particle within each walker when
working on compute intensive operations such as the inverse
matrix update and Jastrow function calculations. Meanwhile,
the natural parallelism present in the Monte Carlo method
cannot be abandoned, as it will always be desirable to use
more walkers. For this piece of the strategy to continue to be
viable, better protocols for equilibration are needed to ensure
that the overall time to solution can continue to be reduced.

It is common for HPC application developers to strive for
a forward portable design to minimize the effort required in
adapting their code to new architectures. With the trend for
increasing complexity and a variety of compute and memory
architecture configurations, a flexible application design is as
important as ever for attaining good ‘performance portabil-
ity’—the ability to run efficiently on significantly different
architectures, e.g. conventional processors, GPUs, and poten-
tially even FPGAs.

OMCPACK is being actively developed to adopt to the
changing computational landscape. In particular, to (i) run
efficiently on systems with fewer ‘fat” nodes with deeper
heterogeneous compute capabilities as well as systems with
a larger number of more homogeneous ‘thin’ nodes by sup-
porting multiple granularities of computation, (ii) accom-
modating multiple types of fine-grained multi-threading and
vectorization to fully utilize the processors and compute
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accelerators, and (iii) make effective use of the increasingly
complex memory hierarchy. To facilitate this task, simpli-
fied ‘miniapps’ have been developed for real space QMC
and AFQMC. These are distributed via https://github.com/
QMCPACK. The miniapps encapsulate the main operations
of each method while avoiding the full complexity of the
main application and enabling use as testbeds for different
programming models and middleware layers that help treat
the above complexities. In the long term, we hope for a future
C++ standard that provides a migration path to an effective
and portable solution.

18. Summary

We have described the current capabilities of the open source
and openly developed OMCPACK quantum Monte Carlo
package. The methods implemented enable full many-body
electronic structure calculations to be performed for a wide
range of molecular to periodic condensed matter systems,
including metals, and using either all-electrons or pseudo-
potentials in the Hamiltonian. By solving the Schrodinger
equation using statistical methods, large and complex systems
can be studied to unprecedented accuracy, including systems
where other electronic structure methods have difficulty.
OMCPACK contains both real space and orbital space
quantum Monte Carlo algorithms. Both classes of algorithm
involve only limited and well-controlled approximations
and can potentially be systematically converged to give near
exact results. By virtue of the different approximations and
convergence routes involved, these enable cross-validation
between the methods and promise to significantly strengthen
predictions where very different methodologies agree. The
methods are well suited to today’s supercomputers and the
architectural trends towards exascale computing. Both the
parallel scalability and on-node numerical performance of
QMCPACK are state of the art, minimizing time to scientific
solution. Updates are planned to take full advantage of the
trends in high-performance computing in a performance-port-
able manner. Due to the rapid development in the fundamental
quantum Monte Carlo algorithms and methodology, we plan
to continue to extend QMCPACK to incorporate the best new
methods from the current authors as well as those developed
or contributed by the wider quantum Monte Carlo community.
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