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Abstract
We present a new fitting technique based on the parametric bootstrap method,
which relies on the idea of producing artificial measurements using the estimated
probability distribution of the experimental data. In order to investigate the main
properties of this technique, we develop a toy model and we analyze several
fitting conditions with a comparison of our results to the ones obtained using
both the standard χ2 minimization procedure and a Bayesian approach. Fur-
thermore, we investigate the effect of the data systematic uncertainties both on
the probability distribution of the fit parameters and on the shape of the expected
goodness-of-fit distribution. Our conclusion is that, when systematic uncertain-
ties are included in the analysis, only the bootstrap procedure is able to provide
reliable confidence intervals and p-values, thus improving the results given by
the standard χ2 minimization approach. Our technique is then applied to an
actual physics process, the real Compton scattering off the proton, thus con-
firming both the portability and the validity of the bootstrap-based fit method.

Keywords: Monte Carlo method, parametric bootstrap, least squares, Compton
scattering

(Some figures may appear in colour only in the online journal)

1. A brief summary of a best-fit procedure

The main goal of a best-fit procedure is the estimate of some unknown parameters, which a
given model depends on. The more commonly used algorithm is the so-called least squares
method, which is based on the function:
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where Ei are the experimental values, σi are their corresponding statistical uncertainties in root
mean square (rms) units and Ti are given by a theoretical model depending on the set of
unknown parameters q to be evaluated from the data. The optimal parameter set q̂ is the one
that minimizes cstand

2 and this solution can be written as:
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Even though this procedure is commonly used in several scientific domains, its practical
implementation often presents problems. One of them is the inclusion of the systematic
uncertainties associated to the experimental data. If we consider the very simple case of a
scaling factor parameter common to all data, the usual way to proceed is to modify
equation (1) as follows (see, for instance, [1]):
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Here f is a normalization factor to be treated as an additional fit parameter and σsys is its
estimated uncertainty (in rms units). However this equation is strictly valid only in the case of
Gaussian systematic uncertainties, since

( ) ( ) ( )q qc = - f f, 2 ln , , 4mod
2

where the Likelihood function ( )q f, is the product of the normal distributions with mean
and standard deviations given by the experimental data multiplied by the normal distribution
modeling the common systematic scale uncertainty, i.e.:
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Moreover, especially with a large data base, this solution becomes unpractical since a
different normalization parameter is needed for each subset and σsys may as well change from
point to point. Furthermore, when non-Gaussian and/or correlated uncertainties are present,
as in the previous case, the cmin

2 value does not generally follow the standard χ2-distribution,
since it is not a sum of squared, independent, standard Gaussian random variables4. The
evaluation of the goodness of fit then becomes quite difficult, since the χ2 test cannot be used.

The model T may also not only depend on the parameter set θ, but also on some
additional, non-fitted (nuisance) parameters y evaluated from experimental data, that can be
written under the form:

¯ ( )y y s=  y. 6f

Here, ȳ andsy are their estimated values and uncertainties (in rms units), respectively. In this
case, another critical feature is to evaluate the effect of sy on the final fit results. The total
uncertainty on the fit parameters should be written as the sum of the pure contribution coming
from the minimization itself and the uncertainty related to the effect of sy on the fit
parameters. This last contribution can be evaluated according to the (linearly approximated)
uncertainty propagation as

4 One exception is when both statistical and correlated systematic Gaussian uncertainties are present. In this case
equation (3) can be replaced by the Mahalanobis distance, which can be shown to follow a χ2 distribution (see, for
instance, [2]).
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where the indexes a, b run over the components ofq, while c, d on the components ofy. The
quantity q̂d abextra, thus includes both the covariances and the variances, obtained when ºa b.
Furthermore, the terms in round brackets can be evaluated as
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However, if the analytical structure of the model is complicated, the term ( ) ( )y¶ ¶T y could
be hard to be obtained, even numerically, thus requiring the application of a different strategy.

Our new method is able to solve all these problems in a straightforward way and, even if
we apply it within the least squares framework, it can, in principle, also be used with other
minimization schemes, as the Maximum Likelihood (ML) approach.

The manuscript is organized as follows. In section 2 we give a general outline of our new
method and we describe in detail its more relevant features by considering a general example
of a fit of data with both statistical and systematic uncertainties. In sections 3 and 4 we
perform an accurate check of the new method using two different toy models and simulated
data. The results thus obtained under different fit conditions are also compared both to the
ones coming form the standard χ2

fit procedure and to the ones obtained using, as an
alternative approach, the Hierarchical Bayesian Model (HBM) described in [3].

In section 5 we apply our method to an actual physics process, the real taking into
account both the statistical Compton scattering off the proton. Here we briefly summarize the
results that have already been published (see [4]) and complement them with additional
information by giving an estimated of the experimental biases of the fitted data and by
evaluating the expected goodness-of-fit distribution both with the exclusion and the inclusion
of the systematic uncertainties in the fit procedure. Finally, our conclusions are drawn in
section 6.

2. Outline of the new method

Our new method is based on the parametric bootstrap technique (see, for instance, [5] and
references therein). It requires, for each point Ei, measured at a given set of known parameters
x, the knowledge of the probability density function ( )xp of its evaluated uncertainty. The
core idea is to assume each single Ei to be the ML estimate of its true and unknown value i.
In this case, the density ( )xp E, i is taken as an approximation of the true density ( )xp , i :

( ) ( ) ( )x xp p E, , . 9i i

Then a random bootstrap sample ¼E E E,b b
n
b

1 2 is generated, for each Ei, according to p(x,
Ei). Using this sample, an estimate of the true model parameters qb is obtained using the
standard minimization tools (simplex, gradient, ...) applied to the function given in
equation (1).

Repeating this bootstrap cycle a (very) large number nb of times, we get a sample
ˆ ˆ ˆq q q¼,

b b
n
b

1 2 b
from which we are finally able to reconstruct the true probability distributions

for every fit parameter. For instance, the sample mean and the sample standard deviation are
given as:
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2.1. A general example

As a general example, we consider the case of a database composed by different and inde-
pendent subsets and with a total of n experimental points having both statistical and sys-
tematic uncertainties independent of each other. The best estimate of the true value i of each
experimental point can then be written as:

( )s s E , 11i i i
stat sys

where si
stat and si

sys are the standard deviations of the statistical and systematic uncertainties,
respectively.

Now we suppose to have Gaussian-distributed statistical uncertainties and, to be in the
same conditions as in equation (3), we also assume that all the points of each subset have the
same scaling factor uncertainty Δ. This parameter is different for each subset and represents
the half width of a uniform distribution5. In the first step of our procedure, each artificial
bootstrap ‘measurement’ is assumed to be Gaussian distributed around a given experimental
data point with a standard deviation given by its statistical uncertainty (see equation (11)).
Then, all bootstrapped points of a given subset are shifted by the same random quantity
uniformly distributed within the estimated systematic uncertainty interval.

If we define a cycle as when the number of bootstrapped points are equal to the total
number of points in the considered experimental set, the bootstrap sampling can be finally
described for each subset k as:

( )( ) ( )d g s= + + " = ¼ E k n1 1, , , 12lj k j i lj m s,

where lj is a generic bootstrapped point with the index l running over the number of data
points in each subset (nk) and the index j indicates the jth bootstrap cycle. The γlj parameters
are sampled from the standard Gaussian distribution [ ] 0, 1 , while the δk, j are random
numbers uniformly distributed as [ ]-D +D ,k k , being ±Δk the percentage systematic
uncertainty of each subset k (k runs from 1 to the number of the different data subsets ns). If
only statistical uncertainties have been taken into account, the systematic sources can be
easily excluded from this procedure by just imposing d º " = ¼k n0 1, ,k j s, .

After a complete cycle and once defined:
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the minimization procedure is performed on the function:
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with the index i running over the total number of data points n, and all the fit results are
stored. The main advantages of the adopted technique are:

1. the straightforward inclusion of systematic uncertainties in the minimization procedure,
as shown in equation (12). This feature allows us to reduce the overall number of fit

5 These assumptions are just reasonable choices and they can be easily changed to deal with every specific situation.
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parameters with respect to the modified χ2 procedure, where a normalization factor for
each data set is left as free parameters (see equation (3));

2. any kind of uncertainty distribution of the experimental data can be easily implemented;
3. the probability distributions of the fit parameters are not assumed a priori, but are directly

evaluated from the distributions assigned to the experimental data;
4. the uncertainty on the fit parameters can be estimated also when the used mathematical

minimization algorithm does not provide them as, for example, in the case of the simplex
method.

When additional model parameters y are present (see equation (6)) and their probability
distribution ( )y syg , is known, their uncertainties can be easily included in this algorithm by
sampling at every cycle an additional random variable yj distributed as ( )y syg , . The
minimization function of equation (14) is accordingly generalized as:
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2.2. The meaning of bχ2
b;j in parametric bootstrap

The value of ĉb j,
2 given in equation (16) cannot be treated as the standard ĉ2 value commonly

used to assess the goodness of a fit in the standard procedure, i.e.
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due to the artificial statistical fluctuations inherent to each bootstrapped sampling.
In the following, we will find the connection between ĉb j,

2 and ĉ2. After introducing the
following definitions
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we can rewrite the ( ˆ )y qT ,i j j term of equation (16) as

( ˆ ) ( )[ ( ˆ ) ( )] ( )y q y qd s h= + - +T T, 1 , . 19i j j ij i i ij ij

The òij parameter, once summed over i, quantifies the difference between the model evaluated
at the global best values of the fitting parameters q̂ and the model evaluated at the jth best
values of q (i.e.q̂j), taking into account both the statistical and systematic uncertainties. The
ηij term is related to the effect that the uncertainties on the additional parameter set y have on
the model evaluation of the generic observable Ei. Thanks to the previous formalism, we can
rewrite equation (16) as
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Thanks to the decomposition given in equation (20), from the ĉb j,
2 parameter we can isolate

and identify: (i) the pure squared Gaussian term ( gåi ij
2); (ii) the main contribution related to

the difference between the best evaluation of the model parameters obtained at the end of each
bootstrap cycle and at the end of the full procedure (å i ij

2); (iii) the term containing the effect
of the error due to the uncertainties on the additional model parameters (å Fi ij); and (iv) a
parameter with the mixed contributions due to the non-quadratic and η-independent
terms (å Di ij).

Inverting the decomposition of equation (20), we can get the evaluation of ĉ2 in the
bootstrap framework. Within the small numerical approximations introduced by the Monte
Carlo procedure, after each bootstrap cycle such a value has to be identical to the one that can
be directly computed from equation (17) at the very end of the bootstrap procedure. This
cross-check is crucial for the auto-consistency of the fitting method: if
ˆ ˆ ( )c c g¹ - å + å + å + å F Db j i ij i ij i ij i ij

2
,

2 2 2 , there could be some mistakes in the sampling
scheme or in the minimization procedure.

2.3. Evaluation of the expected goodness-of-fit distribution

Once the analytical form of the minimization function and the decomposition of its minimum
value have been established, it is still necessary to determine a goodness-of-fit distribution,
from which the associated p-value have to be computed. This procedure is detailed below.

Within this framework, the expected distribution can be evaluated assuming the model
( ˆ )y qT ,i to be correct and by considering an ideal situation in which the experimental points

are exactly the values predicted by our model.
The sampling procedure outlined above (see equation (12)) can then be repeated repla-

cing each experimental data with ( ˆ )y qT ,i . We thus obtain:

( )( ( ˆ ) ) ( )y qd g s= + + T1 , . 22ij ij i ij i

The minimization function can then be defined as:
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and we denote its minimum value after the jth cycle as:
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The sampled parametersyj are exactly the same as in equation (15), while the fit values of the
parameters at every bootstrap cycle are, in general, different from the ones obtained from the
fit of the bootstrapped data: for this reason we use the symbol q̂¢j instead of q̂j. According to
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this notation, we can apply the same decomposition as before, thus defining
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where ĉth
2 is defined as in equation (17), replacing Ei with ( ˆ )y qT ,i . This parameter is

identically zero by construction, but we explicitly leave this decomposition as a cross-check6

since, within the small numerical approximations introduced by the procedure itself, we
should obtain:
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It is interesting to notice that in equation (26) the sensitivity of the theoretical model on the
additional parameters set y is confined in the term F¢ij, which includes the dependence on h¢ij.
This allows us to define the unbiased theoretical distribution for the ĉ2 value, which does not
include the effect of the (y y- j) difference. This feature corresponds to the definition of the
following minimization function
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This new parameter is independent on any model or assumption about the probability
distribution functions of the experimental data. The meaning of the different components of
the ĉ jth,

2 parameter given in equation (26) is the same as the one described for ĉb j,
2 at the end of

section 2.2.
When systematic uncertainties are not taken into account and the effect of the yj para-

meters can be neglected, the bootstrapped values of equation (22) are sampled from the
Gaussian distribution [ ( ˆ ) ]y q s T , ,i i

2 and ĉ jth,
2 (see equation (26)) is basically a sum of the

squares of the independent standard Gaussian variables γij. The small additional corrections
due to the å ¢i ij

2 and å ¢Di ij terms can introduce a tiny model-dependent distortion to this
simple picture, as it will be discussed later.

On the other hand, when systematic uncertainties are included in the fit procedure, these
values are generated from the convolution [ ] [ ( ˆ ) ]y q s-D D  T, , ,k k i i

2* . The terms å ¢i ij
2

6 We will discuss this point later, in the comments related to table 2.
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and å ¢Di ij cannot thus be ignored, and an appreciable distortion is introduced to the standard
χ2-distribution.

The theoretical distribution reconstructed from the ĉu j,
2 values can then be written as:
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For the sake of completeness, we list all the terms of equations (20) and (26), divided by the
number of degrees of freedom ndof, i.e.
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since they will be used later in the text.
From a sufficiently high number of bootstrap replicas, we can reconstruct the expected

goodness-of-fit distribution ( )cp th
2 . Once ( )cp th

2 is empirically evaluated, we are able to
compute the p-value associated to the fit results using the two-sided χ2 test defined as:

‐ { ( ) ( )
( ) ( )

=
<

-
 

  
p value

CDF if CDF 0.5,
1 CDF if CDF 0.5,

where  is the value of the cr
2 value obtained at the end of the fit and

( ) ( ) ( )ò c c=
-¥




pCDF d . 32th
2

th
2

In the following, we will omit the  dependence in the cumulative distribution
functions CDFs.

Using all the parameters defined in equation (31), some important cross-checks about the
validity of the overall procedure can be performed:

1. the expected value of Φr should be small when the uncertainties of additional parameters
sety do not give a relevant contribution to the final fit results. On the contrary, when the
Φr term is not small, we can get some hints on how to deal with the y parameters: (i) we
should fit them or (ii) we should reduce the uncertainties of the y terms with a more
accurate evaluation.

2. the probability distribution of gr
2 has to exactly follow the χ2-distribution, otherwise the

used pseudo-random number generator could be not good enough.

J. Phys. G: Nucl. Part. Phys. 47 (2020) 054001 P Pedroni and S Sconfietti

8



3. A simplistic model to describe the new method

3.1. Implementation

In order to investigate and check the features of the bootstrap-based fitting technique, we
implemented a toy model using simulated random data from the Breit–Wigner (BW) dis-
tribution, that can be written as:

( )
( )

( )m
p m

G =
G

G
- + G

x I
I

x
BW ; , , , 33

2

2 2

where I is an overall scale factor, μ is the peak position and Γ specifies the half-width at half-
maximum. This function is chosen since it plays an important role in physics, being often
used to model resonance phenomena, and it is also strongly non linear in the parameters
space.

In order to generate our simulated data, we sample a variable ξ from a uniform dis-
tribution [ ] 0, 1 and we use the well-known cumulative inversion method to obtain a value
for x which is distributed according to BW(x; I, μ, Γ). The chosen values for the μ, Γ, and I
parameters of equation (33) are:

( )m = G = =I0, 1, 250. 340 0 0

Using this procedure, 30 000 simulated events were generated and those falling within
the x interval [−4, 4] were equally divided into three different subsets and grouped into the
100-bin histogram shown in figure 1.

If, for each subset, we denote by Bi and σB,i the content and the statistical uncertainty of
the ith histogram bin, the bootstrapped data are given by equation (12), where the exper-
imental values Ei and σi are replaced by Bi and σB,i, i.e.

( )[ ] ( )d g s= + + B1 . 35ij ij i ij B i,

We are able now to implement our new fit method and to check it in different conditions:

1. 3 fit parameters (I, μ and Γ), labeled as Fit3p;

Figure 1. Simulated data from the Breit–Wigner distribution. They are separated into
the three subsets denoted by the different point styles.
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2. 2 fit parameters (I and Γ), and one fixed parameter (μ=μ0), labeled as Fit2p+1f;
3. 2 fit parameters (I and Γ), and one sampled parameter ( [ ]m m sÎ m ,0

2
0
), labeled as

Fit2p+1s . The sm0
term is chosen as k/100, where k=3, 20 in order to investigate how

the size of the uncertainties on y affects the fit results.

We also assume that each subset is affected by uniformly distributed systematic scale
uncertainty with: Δ1=0.04, Δ2=0.06 and Δ3=0.03.

The number N of bootstrap replicas to be generated is evaluated in the Fit3p case, and
without the inclusion of systematic uncertainties, with the goal to to obtain a relative precision
er�5% (in rms units) on the central values of all fit parameters. Under these conditions, as
shown in figure 2, the μ parameter has, for a given N, the highest er value and reaches the
required precision at N;10 000.

For each condition, the fit is then performed with 10 000 bootstrap replicas both without
and with the inclusion of the systematic uncertainties. In the first case we simply set δij=0 in
equations (12) and (35), while in the second one we add the superscript ′ to every fit
condition.

3.2. Fit results

The final results of the fit performed under all the conditions described above are displayed in
table 1 and the obtained distributions of the fit parameters are shown in figures 3 and 4. The

Figure 2. Relative error er (in rms units) on the central values of the fit parameters I (a),
μ (b) and Γ (c) as a function of the number of bootstrap cycles N.
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probability distribution for the fit parameter I are also shown in figure 5 for the Fit(′)3p cases
and compared to best-fit Gaussian distributions. The expected values (labeled as [ ] ... ) and
the distributions of the different components of ĉb j,

2 and ĉ jth,
2 (see equation (31) for notation)

are given in table 2 and figures 6–9, respectively. Finally, the CDFs of the expected goodness-
of-fit distributions are displayed in figures 10 and 11, respectively. In the following a detailed
discussion of all these results is given.

Figure 3. Probability distributions for the fit parameters of the simulated data for the Fit
(′)3p (upper panels) and Fit(′)2p+1f (lower panels) configurations. From left to right: the
scale factor I, the mean μ and the width Γ. The red (black) points indicate the inclusion
(exclusion) of the systematic uncertainties in the fit procedure. Open black (red) circles
for Fit(′)3p; open black (red) pentagons for Fit(′)2p+1f. In the Fit(′)2p+1f case, the mean
value μ is not fitted but kept fixed to zero.

Table 1. Results from the fit applied to the simulated data in the different conditions
described in the text. Each p-value is calculated from the expected goodness-of-fit
distribution, which is reconstructed in the framework of the bootstrap technique. The
superscript ′ denotes the inclusion of systematic uncertainties in the fit procedure.

DATA

Fitting conditions I μ (10−3) Γ (10−1) ĉr
2 p-value

Fit3p -
+247.0 1.5

1.4
-
+1.8 7.6

7.1 9.8±0.1 0.98 45%
¢Fit p3 -

+247.0 4.2
4.0

-
+1.8 7.7

7.1 9.8±0.1 0.98 35%

Fit2p+1f -
+247.0 1.5

1.4 Fixed 9.8±0.1 0.98 43%
¢ +Fit p f2 1 -

+247.0 4.2
4.0 Fixed 9.8±0.1 0.98 34%

Fit2p+1s (3%) -
+247.0 1.5

1.4 Sampled 9.8±0.1 0.98 43%
¢ +Fit p s2 1 (3%) -

+247.0 4.3
3.9 Sampled 9.8±0.1 0.98 34%

Fit2p+1s (20%) -
+243.0 5.0

4.2 Sampled -
+10.0 0.3

0.2 1.05 25%
¢ +Fit p s2 1 (20%) -

+242.0 6.2
5.9 Sampled -

+10.0 0.3
0.2 1.05 19%
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3.2.1. Fit3p. As a first consistency check, we compare the results obtained in this condition,
shown in first line of table 1, to the results from the standard fit procedure (see equations (1)
and (2)), which gives:

( ) · ( ) · ˆ
( )

m c=  =  G =  =- -I 247.0 1.5, 1.7 7.4 10 , 9.8 0.1 10 , 0.98.

36
r

3 1 2

All these values are in very good agreement with the numerical results of table 1. The only
small difference is the asymmetry of the bootstrapped 1-σ interval for I and μ. This feature is
due to both the finite number of replicas (10 000) and to the finite number of bins (100) of the
histograms used for the evaluation of the CDF for the goodness-of-fit distribution.

Such a difference can be reduced by increasing the number of bootstrap cycles and of the
classes used for the CDFs generation. As an example, when using 100 000 replicas and 200-
bin histograms, we obtain exactly the same confidence intervals as in the standard procedure.

This approximation can also be taken under control by examining the empirical
probability distribution functions shown by the black open dots of figure 3 (upper panels).
Using a standard best-fit procedure, we checked that they follow a Gaussian distribution, in
agreement with statistical expectations (see, for instance, [6]). As an example, the probability
distribution of the fit parameter I obtained with 100 000 bootstrap replicas is shown in the left
plot of figure 5 and compared to the best-fit Gaussian distribution. Using the output fit
parameters, we obtain exactly the same 1-σ range given in equation (36).

The expected values and the distributions of the different components of ĉb j,
2 (see

equation (20)), are given in the first line of table 2 (upper part) and in the upper panel of
figure 6 (black curves), respectively. The statistical fluctuations of ĉb j,

2 are almost entirely due

Figure 4. Probability distributions for the fit parameters of the simulated data for the Fit
(′)2p+1s (3%) (upper panels) and Fit(′)2p+1s (20%) (lower panels) configurations. From
left to right: the scale factor I and the width Γ. The red (black) points indicate the
inclusion (exclusion) of the systematic uncertainties in the fit procedure. Open black
(red) squares for Fit(′)2p+1s(3%) ; open black (red) triangles for Fit(′)2p+1s(20%). The
mean value μ is not shown here, being sampled from its known value μ0.
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Table 2. The expected values, labeled as [ ] ... of the different components of ĉb j,
2 and ĉ jth,

2 are given in the upper and lower panels, respectively. See

equation (31) for notation.

DATA

Fitting conditions [ ˆ ]c r
2 [ ]g r

2 [ ] r
2 [ ] Dr [ ]F r

Fit3p 0.98 1.01±0.08 (9.92±8.18)·10−3 (−2.0±11.6)·10−2 0
¢Fit p3 0.98 1.01±0.08 (5.55±3.67)·10−2 (−2.0±11.9)·10−2 0

Fit2p+1f 0.98 1.01±0.08 (6.59±6.65)·10−3 (−1.3±11.5)·10−2 0
¢ +Fit p f2 1 0.98 1.01±0.08 (5.20±3.63)·10−2 (−1.3±11.8)·10−2 0

Fit2p+1s (3%) 0.98 1.01±0.08 (6.76±6.70)·10−3 (−1.2±11.5)·10−2 (5.32±7.99)·10−2

¢ +Fit p s2 1 (3%) 0.98 1.01±0.08 (5.15±3.58)·10−2 (−1.2±11.8)·10−2 (5.32±7.99)·10−2

Fit2p+1s (20%) 1.05 1.01±0.08 (11.3±32.4)·10−2 (−1.5±20.4)·10−2 2.00±2.47
Fit2p+1s′ (20%) 1.05 1.01±0.08 (15.6±32.2)·10−2 (−1.8±20.9)·10−2 2.00±2.47

MODEL

Fitting conditions [ ˆ ]c th
2 [ ]g r

2 [ ]¢ r
2 [ ]¢ Dr [ ]F¢ r

Fit3p  (10−6 ) 1.01±0.08 (9.96±8.20)·10−3 (−1.99±1.64)·10−2 0
Fit3p′ ( )- 10 4 1.01±0.08 (5.66±3.75)·10−2 (−2.00±3.02)·10−2 0

Fit2p+1f ( )- 10 7 1.01±0.08 (6.61±6.67)·10−3 (−1.32±1.33)·10−2 0
¢ +Fit p f2 1 ( )- 10 4 1.01±0.08 (5.32±3.71)·10−2 (−1.34±2.86)·10−2 0

Fit2p+1s (3%) ( )- 10 5 1.01±0.08 (6.78±6.72)·10−3 (−1.34±1.33)·10−2 (5.46±8.16)·10−2

¢ +Fit p s2 1 (3%) ( )- 10 4 1.01±0.08 (5.26±3.67)·10−2 (−1.39±2.83)·10−2 (5.46±8.15)·10−2

Fit2p+1s (20%) ( )- 10 1 1.01±0.08 (11.0±31.6)·10−2 (−1.6±16.4)·10−2 1.97±2.43
¢ +Fit p s2 1 (20%) ( )- 10 1 1.01±0.08 (15.4±31.4)·10−2 (−1.9±17.0)·10−2 1.97±2.43

J.
P
hys.

G
:
N
ucl.

P
art.

P
hys.

47
(2020)

054001
P
P
edroniand

S
S
confietti

13



to the gr
2 term, since the contributions given by  r

2 and Dr are quite small and the values of

[ ] r
2 and [ ] Dr are O (10−2) and almost negligible.
In the ĉ jth,

2 case (see equation (26) and figure 7), the term [ ˆ ]c 2 is numerically very close
to zero (see table 2) and its distribution coincides with the reduced χ2-distribution, as
expected from equation (30), due to the quite small and almost opposite values of [ ]¢ and

[ ]¢ Dr . This result is shown by the black points in the left plot of figure 10.

Figure 6. Decomposition of the ĉb j,
2 parameter in the Fit3p configuration when

systematic uncertainties are excluded (black curves) and included (red curves). Upper
panel (from left to right): ĉr

2, cb
2 and gr

2 components. Lower panel (from left to right):
 r

2, Dr and Φr components. See text (and, in particular, equation (31), tables 1 and 2) for
the notation and the expected values of the different components. Black and red lines
exactly overlap for the constant ĉr

2 and Φr components.

Figure 5. Probability distributions for the fit parameter I, obtained with 100 000
bootstrap cycles and 100 histogram bins under the Fit3p (left panel), ¢Fit p3 (central
panel) and ¢Fit p3 with · D3 k (right panel) configurations. These distributions are

compared to the best-fit Gaussian curves (blue solid curves) and the corresponding ĉr
2

values are also given at the bottom of each plot.
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All these properties fully confirm the considerations outlined in sections 2.2 and 2.3.

3.2.2. Fit′3p. Due to the functional form of the BW distribution in equation (33), a common
scale uncertainty only affects the uncertainty of I and does not influence the estimate of the
other parameters μ and Γ, as shown in the second line of table 1 and in figure 3 (top panels).

We can compare these results to the ones obtained using the cmod
2 function of

equation (3), leaving the normalization factors for each subset as additional free parameters:

⎪ ⎪
⎪ ⎪
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where s = D =k3 , 1, 2, 3k k
sys . In this case we obtain:

( ) · ( ) · ˆ
( )

m c=  =  G =  =- -I 246.7 3.5, 1.7 7.5 10 , 9.8 0.1 10 , 0.99.

38
r

3 1 2

These results are very similar to the ones obtained under the ¢Fit p3 configuration. The slightly
smaller uncertainty on I is mainly due to the fact that, as previously discussed, equation (37)
should only be applied in the case of Gaussian systematic uncertainties.

This underestimation can be clearly seen if we closely examine the probability
distribution for the fit parameter I, the only one that is significantly affected by the inclusion
of the systematic uncertainties in the fit procedure. This study is also interesting since we
cannot make any general assumption about its functional form and our method empirically
provides its shape.

The obtained distribution with 100 000 bootstrap cycles is shown in the central plot of
figure 5, where we can clearly notice a significant deviation from the pure Gaussian shape
obtained when systematic uncertainties are neglected (left plot of of figure 5). The simple

Figure 7. Decomposition of the ĉ jth,
2 parameter in the Fit3p configuration when

systematic uncertainties are excluded (black curves) and included (red curves). Upper
panel (from left to right): ĉ rth,

2 , cth
2 and gr

2 components. Lower panel (from left to right):

¢ r
2, ¢Dr and F¢r components. See text (and, in particular, equation (31), tables 1 and 2)

for the notation and the expected values of the different components. Black and red
lines exactly overlap for the constant ĉ rth,

2 and F¢r components.
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Gaussian best-fit (solid blue line) gives for I the same confidence interval of equation (38),
thus underestimating the true rms value. Such a discrepancy becomes more relevant as the
value of Δk is artificially increased, as shown in right plot of figure 5. This behavior can be
qualitatively explained by the fact that, given the sampling defined in equation (12), the
distribution of the I parameter results from the convolution of a uniform and a Gaussian
function, with its shape depending on the Δk/σi ratio.

Within the frequentist framework, the correct solution can be found using the ML
approach and by finding the parameter values that maximize:

⎧
⎨⎪
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As an alternative, the HBM model (see [3]) can also be used. In this framework, unif can
be rewritten as:

( ∣ ) ( ) ( )q pº  f fE , , 40iunif

where ( ∣ )q fE ,i is the probability to obtain the experimental data for a given set of model
parameter values and ( )p f is the prior distribution for the parameters f . When a uniform non-
informative prior distribution is taken for the other fit parameters θ, we can write:

( ∣ ) ( )q µ fp E, , 41i unif

where ( ∣ )q fp E, i is the posterior probability of a specific set of model parameter given
the data.

Under these conditions, the 68% Bayesian credible intervals for the fit parameters
obtained from HBM and using a Markov chain Monte Carlo procedure7 are:

( ) · ( ) · ( )m= = G = -
+

-
+ - -I 246.6 , 1.7 10 , 9.8 0.1 10 . 424.1

4.0
7.0
6.6 3 1

These values are in very good agreement with the ones given in table 1 and also the
distributions for all the fit parameters are the same as the ones shown in figure 3 and in the
central plot of figure 5. All these conclusions give an important consistency check on the
validity of our fit procedure.

Similarly to it, the HBM approach has also a very flexible implementation and can be
used to easily model and reproduce a wide variety of uncertainty distributions. However, our
method takes into account the effect of the systematic uncertainties without the need of
additional fit parameters. This feature can give a sizable advantage in all those cases where a
significantly large number of these parameters should be included in the fit procedure.

Finally, If we examine the ĉb j,
2 decomposition (red curves in the upper panel of figure 6)

we note that there are additional statistical fluctuations due to the increased dispersion of the
 r

2 distribution (see also table 2), even if [ ˆ ]c 2 has the same value as in the Fit3p case. All this
agrees to the results obtained with the cmod

2 procedure.
Due to the correlations between the data caused by the systematic uncertainties, the

expected goodness-of-fit distribution is now different from the reduced χ2-distribution. This
feature can be clearly seen in a quantitative way in figure 7 (red curves), where both the ¢ r

2

and the ¢Dr term now give a significant contribution to ĉ jth,
2 , thus distorting the effect of the

predominant gr
2 term. All these results are consistent with the considerations outlined in 2.3

7 We run 12 000 iterations and discard the first 2000 ‘burn-in’ draws.
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(see, in particular, equation (30)). The size of this distortion depends both on the magnitude of
the systematic uncertainties and on the analytical structure of the model T.

The CDF for the goodness-of-fit distribution is shown by the red dots of figure 10 (left
panel) and the resulting p-value (see table 1) is significantly different from the Fit3p case. All
these considerations signal that this crucial fit parameter cannot be correctly evaluated within
the cmod

2 framework when the normalization uncertainties follow a distribution that differs
substantially from the Gaussian one.

3.2.3. Fit2p+1f. As expected, all the results obtained in this case, both with and without the
inclusion of the systematic uncertainties, are basically the same as in the Fit(′)3p conditions
(see tables 1 and 2). They will be used as a benchmark to compare the results of the Fit(′)2p+1s

conditions to quantitatively investigate the effects on the fit results given by the uncertainties
related to additional model parameters.

3.2.4. Fit2p+1s. The results obtained when s =m 3%
0

(fifth and sixth lines of tables 1 and 2,
upper and lower parts of figures 8 and 11, left panel) are very similar to the ones obtained in
the Fit(′)2p+1f conditions. The only relevant difference is the non-zero value of the [ ]F
parameter. However, due to the small uncertainty assigned to the μ0 parameter, its effect is
almost negligible. Also the probability distributions of the fit parameters I and Γ are still
compatible with a Gaussian function.

On the contrary, the fit results significantly change when sm0
is large and equal to 20%, as

shown in the seventh and eighth lines of table 1 and table 2, upper and lower parts, figures 9
and 11, right panel.

The probability distributions of the fit parameters I and Γ are strongly asymmetric and
significantly different from all the previous cases. The F¢r term gives a sizable contribution to
ĉ jth,

2 with a significant distortion of the goodness-of-fit distribution. Also the effect on the data
systematic uncertainties is strongly reduced, as shown in figure 11, due to the effect of the
relevant uncertainty on μ0. As previously mentioned (see section 2.3), in this case it would be
more meaningful to add μ as an additional fit parameter.

Figure 8. Decomposition of the ĉ jth,
2 parameter in the Fit2p+1s (3%) configuration when

systematic excluded (black curves) and included (red curves). Upper panel (from left to
right): ĉ rth,

2 , cth
2 and gr

2 components. Lower panel (from left to right): ¢ r
2, ¢Dr and Φ′

components. See text for the notation.
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We finally notice that in the HBM framework there is no need to choose between this and
Fit(′)3p condition. Any prior knowledge of μ, such as the one incorporated in Fit(′)2p+1s, can
be added to the Bayesian prior function π defined in equation (41) and the final fit results will
account for this additional information.

3.3. An additional complication: data with a systematic offset

We showed in the previous sections how to deal with the systematic uncertainties associated
to the experimental data. However, we implicitly assumed that the data themselves are not
affected by any intrinsic offset. We now make a step further and outline a strategy that allow
us to deal with a priori unknown systematic offset of the data themselves.

Within our toy model, we assume that each data set has an unknown multiplicative offset
dk* lying inside the estimated uncertainty interval [ ]-D D,k k . We then fix d = 3%1* , d = 4%2*
and d = -2%3* and artificially rescale all the points of the kth subset (k=1, 2, 3) according
to ( )d= +E E1i i* * and ( )s d s= +1i i* * .

If now we apply the bootstrap method in the Fit3p and ¢Fit p3 conditions, we obtain,
respectively:

( ) ·
( ) · ˆ

( ) ·

( ) · ˆ ( )

m

c

m

c

= = 

G =  = - =

¢ =  =

G =  = - =

-
+ -

-

-
+ -

-

I

p

I

p

Fit : 250.7 , 1.9 7.4 10 ,

9.8 0.1 10 , 1.07, value 19%,

Fit : 250.7 4.0, 1.9 10 ,

9.8 0.1 10 , 1.07, value 30%. 43

p

r

p

r

3 1.5
1.4 3

1 2

3 7.6
7.2 3

1 2

Both the central values and the uncertainty intervals of the fit parameters are basically
unchanged from the previous results given in table 1, but the ĉr

2 value is now larger than
before. Also the expected goodness-of-fit distribution, when systematic uncertainties are not
taken into account, is different form the reduced χ2-distribution. This effect is already visible
in figure 12 and, as expected, the discrepancy increases when ∣ ∣dk* increases.

Figure 9. Decomposition of the ĉ jth,
2 parameter for the Fit2p+1s (20%) configuration

when systematic excluded (black curves) and included (red curves). Upper panel (from
left to right): ĉ rth,

2 , cth
2 and gr

2 components. Lower panel (from left to right): ¢ r
2, ¢Dr and

Φ′ components. See text for the notation.
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If the model T correctly reproduces the data, we can use the bootstrap framework also to
estimate the unknown data offset with the following procedure:

1. Apply the bootstrap fit in the Fit3p condition and allow the parameter δij to span a range
wider than [−Δk, Δk] only for one chosen set8 and assuming that all other data sets do
have any systematic offset. This choice is (at least partially) justified when several
different and independent subsets have to be taken into account, since, in this case, the
overall effect of the different biases should be small due to compensation effects.

2. The study of the behavior of the ĉb j,
2 parameter as a function of δij allows one to find the

value d̃ that gives the minimum value of [ ˆ ( )]c d b j ij,
2 . Such a value can be taken as an

estimate of the true, unknown data offset.
3. Repeat the previous steps for each single subset to empirically evaluate all their different

offsets.

The results of this strategy, where we choose to consider the offset only on set 1, are
shown in figure 13(a) and table 3, from which we can see that ˜ d d= - -3.1% 1*. By
generating a sufficiently high number of points, the intrinsic error on d̃ can be made arbitrarily
small (in our case it is of the order of 10−7).

This result means that if we want to force set 1 to be in good agreement with set 2 and set
3, we need to shift all its points back to their starting values, i.e. rescaling them by a
factor d- 1*.

This procedure is equivalent to use equation (37) and considering only the set 1 as
affected by systematic uncertainties, i.e.

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎛
⎝⎜

⎞
⎠⎟ ( )å åc

s s s
=

-
+

-
+

-f E T

f

E T f 1
, 44i i

i

i i

i
mod,1
2

set 1

1

1

2

set 2, set 3

2
1

1
sys

2

thus obtaining ( )  d- = f1 2.60 1.16 %1 1*, as expected.
Applying this strategy to subsets 2 and 3, we obtain the results shown in figures 13(b)

and (c) and table 3. They are compared to the results of the cmod
2 approach both when the fk

parameters are fitted one by one and when they are all fitted simultaneously (see
equation (37)). Even if the d̃k parameters are not directly fitted in our procedure, their
uncertainty intervals can be assigned using the so-called MINOS method [6], i.e. by finding
the values of d̃k that cause [ ˆ ]c b j,

2 to vary by one unit. The numerical values of all these

intervals are found to be coincident with the uncertainties resulting from the cmod
2 approach.

Table 3. Estimated offset values for each subset: results from the bootstrap (third
column) and from the cmod

2 method when the normalization factors fk are fitted one-by
one (fourth column) or simultaneously (last column).

Set
number Known sys. Bootstrap

c rmod,
2 (one-

by-one)

c rmod,
2

(simultaneous)
dk* (%) d̃- k (%) 1− fk (%) 1−fk (%)

1 3.0 3.1 2.2±1.1 2.6±1.5
2 4.0 3.8 3.2±1.1 3.3±1.6
3 −2.0 −6.2 −4.1±1.0 −2.1±1.4

8 This wider interval allows to deal with the case of a systematic offset larger than the quoted systematic uncertainty
interval. In our case, we fix [ ]d Î - 1 2, 1 2ij .
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From all these results, we can see that:

1. The offsets of subsets 1 and 2 are well determined by this strategy, while there is a
significant discrepancy between d̃3 and d- 3*. This disagreement is due to the fact that, as
previously noted, when we estimate d3*, we are implicitly assuming that the other two
subsets are not affected by any systematics, while they are both rescaled by the positive
parameters d1* and d2*, respectively. On the other hand, when we try to estimate d1* or d2*,
the other two subsets are rescaled according to systematics of different signs, thus
introducing a compensation that allows us to (almost) correctly determine their value.

2. The fit parameters obtained with the cmod
2 procedure, i.e.

( ) · ˆ ( )m c=  =  G =  =-I 247.7 3.6, 1.7 7.5 10 , 0.98 0.01, 1.01, 45r
3

mod,
2

are, within their estimated uncertainties, in agreement with the ¢Fit p3 results shown in
table 1. However, we are not able to give a reliable p-value, since, as previously
mentioned, the correlations among the data of each subset induced by the systematic
uncertainties give a goodness-of-fit distribution different from the reduced χ2-function.

The bootstrap-based estimates of the real systematic offsets can be included into the
fitting procedure in several ways. For instance, two alternative approaches are:

1. rescale all the data points and their statistical uncertainties by a factor ( ˜ )d+1 k and
perform a single minimization with the standard χ2 procedure. We then obtain:

( ) ·
( ) · ˆ ( )

m

c

=  = 

G =  = - =

-

-

I

p

250.1 1.5, 1.4 7.5 10 ,

9.8 0.1 10 , 1.01, value 46%; 46r

3

1
mod,
2

2. rescale the experimental data as described in the previous point and then apply the
bootstrap fitting technique, setting δij=0 in equation (12). We now get:

( ) ·
( ) · ˆ ( )

m

c

=  = 

G =  = - =

-

-

I

p

250.1 1.5, 1.6 7.4 10 ,

9.8 0.1 10 , 1.01, value 45%. 47r

3

1
mod,
2

The results obtained in both the previous cases are very close, as expected, to the ones
previously obtained in the Fit3p condition.

4. A simplistic model with asymmetric statistical uncertainties

4.1. Implementation

To provide an additional check of our new technique, we also apply our method to the case of
asymmetric statistical uncertainties. This situation, that could be for instance due to a non-
uniform background subtraction, is hardly treatable within the standard χ2 procedure.

To apply our method, we assume to have an experimental uncertainty distribution f (x)
described by the skew-Gaussian distribution (see, for instance, [7, 8]):

( ) ( ) ( ) ( ) ( ) ( ) ( )òw l l= =
l

-¥
f x g z G z G z g t t2 ; d , 48

z
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where:

( ) [ ] ( )x
w

=
-

~ z
x

g z; 0, 1 . 49

This function generalizes the usual Gaussian distribution to accommodate a certain
amount of skewness. It is specified by 3 real-valued parameters: location (ξ), scale (ω>0)
and shape (λ) with the usual Gaussian distribution corresponding to (λ=0). For each
experimental point Ei, the λ, ξ and ω parameters were chosen to be;

( )l x wd
p

w s
p

= - = - = -E
d

3;
2

, 1
2

, 50i i

where l l= +d 1 2 . In this way we obtain9:

[ ] [ ] ( ) ( )s= = x E x; Var . 51i i
stat 2

As an example, the skew-Gaussian distribution having zero mean, unit variance and
λ=−3 is shown in figure 14 and compared to [ ] 0, 1 .

This particular functional form was chosen since, even if it is asymmetric, we have:

⎜ ⎟⎛
⎝

⎞
⎠ ( )x

w
c

-
~

x
, 52

2
2

independent of the value of λ. To a good approximation, the same relation also holds for
[( ) ]s-x Ei i

2 because, in our case Ei;ξ and σi;ω (see equation (50)). This property then
allows us to cross-check and validate the results we will obtain in this case with the ones
found in the previous section.

4.2. A generalized bootstrap formalism for bχ2
b;j

In the previous case, the bootstrap sampling can be written as (see equations (12) and (13)):

( )( ) ( )d= + + E s1 , 53ij ij i ij

where sij is distributed according to a skew-Gaussian function having mean zero and variance
( )si

exp 2 . Using this notation, we can basically adopt almost the same decomposition shown in
section 2.2. After introducing:

( )r
s

º
s

, 54ij
ij

i

we only need to rewrite equation (21) as:
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, , 55

ij ij ij
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ij ij i i

ij ij ij ij ij
i

i i
2

where all the other parameters are defined as previously. After this small modification,
the decomposition of ĉb j,

2 can be written in the same way as in equation (20), i.e.

9 As discussed in [9, 10], the best way to present experimental results with asymmetric uncertainties is to give mean
value and standard deviation.
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ˆ ˆ ˜ ˜ ( )å å å åc c r= + + + + F D . 56b j
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ij
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ij,
2 2 2 2

A very similar decomposition also holds for ĉ jth,
2 :

ˆ ˆ ˜ ˜ ( )å å å åc c r= + ¢ + ¢ + ¢ + F¢ D . 57j
i

ij
i

ij
i

ij
i

ijth,
2

th
2 2 2

Thus allowing to rewrite all the components of equation (31) in the case of an asymmetric
statistical error, with an obvious meaning for the F̃¢r , ˜ ¢Dr and r¢r parameters.

Figure 10. CDFs for the ĉr
2 parameter in the Fit3p (left panel) and Fit2p+1f

configurations (right panel), when systematic uncertainties are included (red points)
or discarded (black points). The solid blue line is the CDF of the reduced χ2-
distribution.

Figure 11. CDFs for the ĉr
2 parameter in the Fit2p+1s (3%) (left panel) and Fit2p+1s

(20%) (right panel) configurations, when systematic uncertainties are included (red
points) or discarded (black points). The solid blue line is a the CDF of a reduced χ2

distribution.

Table 4.Results from the fit with skew-Gaussian statistical uncertainties in the Fit3p and
¢Fit p3 configurations.

DATA

Fitting conditions I μ (10−3) Γ (10−1) ĉr
2 p-value

Fit3p -
+247.0 1.5

1.4
-
+1.8 7.6

7.1 9.8±0.1 0.98 45%
¢Fit p3 -

+247.0 4.2
4.0

-
+1.8 7.7

7.1 9.8±0.1 0.98 35%
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In this way, our bootstrap formalism can then be easily adapted to deal with any
uncertainty distribution.

4.3. Results

The results of the fit performed under the Fit(′)3p condition are displayed in table 4 and the
corresponding distributions for ĉ jth,

2 and the CDFs of the expected goodness-of-fit distribu-
tions are shown in figures 15 and 16, respectively. As expected, due to the symmetry
properties of the skew-Gaussian function (see equation (52) and comments to it), all these
results results are basically coincident with the ones shown in table 1, figures 7 and 10
(left plot).

Figure 12. CDFs for the ĉr
2 parameter in the ¢Fit p3 (red points) and Fit3p (black points)

configurations. The solid blue line is a the CDF of a reduced χ2 distribution.

Table 5. Angular and energy coverage of the available experimental data on unpolar-
ized cross section for proton RCS at Eγ�150 MeV.

Set label References First author Points number qlab (°) Eγ (MeV)

1 [16] Oxley 4 70–150 ;60
2 [17] Hyman 12 50, 90 55–95
3 [18] Goldansky 5 75–150 55–80
4 [19] Bernardini 2 ;135 ;140
5 [20] Pugh 16 50–135 40–120
6 [21, 22] Baranov 3 90, 150 80–110
7 [21, 22] Baranov 4 90, 150 80–110
8 [23] Federspiel 16 60, 135 30–90
9 [24] Zieger 2 180 100, 130
10 [25] Hallin 13 45–135 130–150
11 [26] MacGibbon 8 90, 135 95–145
12 [26] MacGibbon 10 90, 135 95–145
13 [27] Olmos de Leon 55 60–155 60–150
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This very good agreement gives us confidence in the capability of our method to also
correctly deal with asymmetric distributions.

5. An application of the method: fit of real Compton scattering (RCS) data

In this section we show an application of the bootstrap-based fitting method described in this
work to an actual physics case: the extraction of the proton dipole scalar polarizabilities from
the RCS data, using fixed-t subtracted dispersion relations [4, 11]. In the RCS process, a real
photon scatters off a proton, whose internal structure is probed when the photon energy is at
least a few tens of MeV. The RCS differential cross section can be expressed, once the
scattering angle and energy are fixed, in terms of 6 parameters, defined as the dipole scalar
electric (aE1) and magnetic (bM1) polarizabilities, and 4 vector spin-dependent polarizabilities
(
gs). For a detailed description of RCS and the dispersion relation framework, the reader is
addressed to [12–15] and references therein. For the purposes of this work, it is sufficient to
recall that the RCS differential cross section dσ/dΩ can be written, once the photon scattering
energy (Eγ) and angle (qlab) are fixed, as function of these 6 parameters, i.e.
 ( )s a b gWd d , ,E M s1 1 . The experimental set used for the fit is made of 150 data collected at
Eγ�150MeV, and divided into 13 independent subsets as shown in table 5.

In [4] the bootstrap-based technique outlined in this work has already been applied to
extract aE1 and bM1 from the fit of the RCS data listed above. In one of the cases analyzed in

Figure 13. The [ ˆ ]c b j,
2 value as a function of δij. The black points are from the bootstrap

technique, fitted with a fourth-order polynomial fit (yellow line). In each plot, the d̃
value is represented by the vertical green line, compared to the known −δ* value (red
line). The numerical results are given for subset 1 (a), 2 (b) and 3 (c).
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[4], only the difference ( )a b-E M1 1 between the electric and magnetic polarizabilities was left
as free parameter. The values of (aE1 + bM1) and of the remaining 4 spin-dependent polar-
izabilities

gs were taken from the existing experimental estimates and the corresponding
uncertainties were propagated into the fit procedure according to equation (15). This analysis
gives as final result (see [4]):

( ) ( )
( )

a b= ´ = ´ - =-
+ -

-
+ - p12.03 10 fm , 1.77 10 fm , value 12%.

58
E M1 0.54

0.48 4 3
1 0.54

0.52 4 3

Figure 14. The probability density function of the skew-Gaussian distribution having
zero mean, unit variance and λ=−3 (blue line) is compared to [ ] 0, 1 (red line).

Figure 15. Decomposition of the ĉ jth,
2 parameter with skew-Gaussian statistical

uncertainties and in the Fit3p configuration when systematic uncertainties are excluded
(black curves) and included (red curves). Upper panel (from left to right): ĉ rth,

2 , cth
2 and

rr
2 components. Lower panel (from left to right): ¢ r

2, ˜ ¢Dr and F̃¢r components. See text

for the notation. Black and red lines exactly overlap for the constant ĉ rth,
2 and F̃¢r

components.

J. Phys. G: Nucl. Part. Phys. 47 (2020) 054001 P Pedroni and S Sconfietti

25



As an additional information about these fit outcomes, we show the estimate of the offset for
each subset in the bootstrap framework (section 5.1) and the reconstructed goodness-of-fit
distribution obtained in the fit conditions described above both with and without the inclusion
of the systematic uncertainties (section 5.2).

5.1. Evaluation of the experimental bias

In this work, we adopt the same conditions as in [4] and we apply the strategy discussed in
section 3.3 to evaluate the offset values of the different subsets. The results of this analysis are
shown in figures 17 and 18.

Some comments are in order here:

1. the subsets with very small number of points, or with points lying in kinematical regions
not very sensitive to the fit parameter (aE1 − bM1), basically show a flat distribution. This
means that the value of the systematic offset does not have a significant impact on the
final fit results;

2. for the majority of the subsets, the estimated systematic offset lies inside the published
range10, thus cross-checking the validity of the method;

3. as mentioned before, this technique is model-dependent; for this reason, we do not
recommend to use it to automatically discard data from the whole set. Even if the fit
model T is correct, when the evaluated offset value is outside the estimated systematic
uncertainty interval, an ad hoc procedure is needed to correctly deal with each
specific case.

In table 6 the different values of the d̃k parameters determined for all the subsets are listed
and compared to the ( fk−1) parameters evaluated with the minimization of the modified χ2

function (see equation (3)). As done in section 3.3, the uncertainty intervals of the d̃k para-
meters can be estimated from the MINOS method. Also in this case we get very similar
results as those obtained with the cmod

2 approach.

Figure 16. CDFs for the ĉr
2 parameter in the ¢Fit p3 (red points) and Fit3p (black points)

configurations with skew-Gaussian statistical uncertainties. The solid blue line is a the
CDF of a reduced χ2 distribution.

10 For more details, see the references quoted in table 5.
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The good agreement between these two sets of values gives a further indication of the
correctness and validity of our new method. As noticed before, the offset estimate is now
enough reliable due to the rather large number of data subsets.

Using the evaluated d̃k values, we can then rescale all the points of each subset by their
estimated systematic offset and finally perform the bootstrap sampling taking only into
account their statistical uncertainties, i.e.

( ˜ )( ) ( )d g s= + + E1 , 59ij k i ij i

where the only random numbers are the standard Gaussian variables γij.
The results thus obtained for aE1 and bM1 (in the usual units of -10 fm4 3, adopted from

here on) are:

Figure 17. Estimate of −δ* for data subsets from 1 to 6. In each plot, the black points
are the results of the preliminary bootstrap cycle, the yellow curve gives the result of
the quartic polynomial fit, the red curves are set at ±Δk and the green line is set at −δ*.
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Figure 18. Estimate of −δ* for data subsets from 7 to 13. In each plot, the black points
are the results of the preliminary bootstrap cycle, the yellow curve gives the result of
the quartic polynomial fit, the red curves are set at ±Δk and the green line is set at −δ*.
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ˆ ( )a b c=  =  = - =p12.08 0.24, 1.69 0.24, 0.9, value 20%, 60E M r1 1
2

which are statistically consistent with the values that can be evaluated from a standard χ2
fit

discarding all the systematic uncertainties, i.e.

ˆ ( )a b c=  =  = - =p11.99 0.31, 1.81 0.31, 1.25, value 2%. 61E M r1 1
2

If, on the other hand, we minimize the cmod
2 function given in equation (3), we get:

ˆ ( )a b c=  =  =11.94 0.40, 1.86 0.40, 1.26, 62E M r1 1 mod,
2

which are, again, almost identical to the results obtained in the two previous cases.
It is noteworthy to observe that the statistical significance of the results substantially

improves after the data rescaling (see equations (60) and (61)). As already discussed in this
work, the p-value cannot be determined for the results given in equation (62), where the cmod

2

procedure is used.

5.2. RCS: goodness-of-fit distribution

As mentioned before, in the RCS analysis of [4] five parameters are sampled from their
experimental estimates, while just one, i.e. the (aE1 − bM1) difference, is left as free para-
meter.11 This setting is quite similar to the previously described Fit2p+1s case. Thus, after
introducing the notations Fit1p+5s ( ¢ +Fit p s1 5 ) for the exclusion (inclusion) of systematic
uncertainties in the bootstrap sampling procedure, we can evaluate both the CDFs and the
different components of ĉ jth,

2 (see equation (31)).
In the cumulative goodness-of-fit probability distribution shown in figure 19, the dist-

ortion caused by the inclusion of the systematic uncertainties is clearly visible. It is also
interesting to note that, at odds with the results previously obtained with the toy model, the
expected goodness-of-fit distribution is not the reduced χ2-function, even when the sys-
tematic uncertainties are excluded from the fit. As already noticed in section 3.3, this feature
can be related to the non-negligible offsets present in the different data subsets. This effect
can also be quantified with the [ ]¢ r

2 and [ ]¢ Dr terms, which are not small enough to be
ignored, even when only the statistical uncertainties are included in the analysis.

The expected values and the probability distributions of ĉ jth,
2 are then given in table 7 and

figure 20, respectively, both switching on and off the systematic uncertainties. From the
numerical values of table 7, we can conclude that:

Table 6. Estimate of the experimental offset for each data subset (labeled with k) used
in the RCS analysis: results from the cmod

2 method ( fk−1) are compared to the results
of the bootstrap method (d̃k).

k fk−1 (%) d̃k (%) k fk−1 (%) d̃k (%)

1 7.5±2.3 8.6 8 0.0±1.9 −0.4
2 −0.6±4.8 −2.0 9 −4.7±3.6 −11.6
3 −4.5±2.1 −5.6 10 −5.7±2.5 −9.2
4 −2.5±6.5 −5.6 11 −0.4±2.8 −1.7
5 3.0±4.3 3.7 12 −0.7±2.4 −2.6
6 −0.3±0.9 −2.9 13 −0.1±1.3 −2.1
7 7.5±2.4 14.8

11 In [4] this fitting condition is labeled as Fit 1 and Fit 1′, where the ′ superscript stands for the inclusion of
systematic uncertainties in the bootstrap sampling.
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1. the uncertainties on the fit parameter cannot be small, due to the relatively large values of
the [ ]¢ r

2 and [ ]¢ Dr ;
2. the sampling of the additional nuisance parameters is under control, being the [ ]F r

small;
3. the systematic uncertainties have a sizable effect on the fit uncertainties, being the [ ]¢ r

2

term increased by a factor 5 as soon as they are included in the procedure.

6. Conclusions

We presented a new fitting technique based on the parametric bootstrap method and we
developed two different toy models to completely analyze and cross-check its main features
using the results obtained both with the standard χ2 procedures and a HBM. Furthermore, we
applied the fitting technique to an actual physics process, i.e. the RCS off the proton [4], thus
confirming the portability of the technique itself.

We showed that this new technique offers several advantages when compared to the
other procedures. The systematic uncertainties can be taken into account in a straightforward
way without the need of additional fit parameters and with a very flexible implementation of
any probability distribution. Furthermore, the probability distributions of the fit parameters
are not assumed to be a priori Gaussian, but are empirically obtained by the procedure itself.
Another advantage with respect to the standard best-fit methods is that the uncertainties on
additional nuisance parameters can be easily taken into account, without resorting to the
approximated, and often complicated to be implemented, error-propagation formula.

The bootstrap framework provides also an estimate of the overall offset of a given data
set, giving results that are in very good agreement with the ones obtained from the standard
cmod

2 method. This feature can be used as an indication about the quality of the data points,
but it should not be used as a fitting strategy by itself.

Figure 19. CDFs for the ĉ jth,
2 parameter in the Fit1p+5s (black points) and ¢ +Fit p s1 5 (red

points) conditions, compared to the CDF of the reduced χ2-distribution (solid blue
curve). Seetable 7 for the meaning of the symbols.
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Table 7. Decomposition of the ĉth j,
2 parameter, with the notation of equation (31), referred to the analysis of RCS proton data [4].

MODEL

Fitting conditions [ ˆ ]c r
2 [ ]g r

2 [ ]¢ r
2 [ ]¢ Dr [ ]F

Fit1p+5s 10−6 1.01±0.11 (2.09±2.97)·10−2 (−1.30±2.75)·10−2 (3.62±7.66)·10−2

¢ +Fit p s1 5 10−6 1.01±0.11 (10.3±4.8)·10−2 (−1.35±5.36)·10−2 (3.62±7.86)·10−2
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Furthermore, our fitting technique provides the correct p-value when systematic uncer-
tainties are present and in all other cases when the goodness-of-fit distribution is not the
reduced χ2-distribution.

All these benefits come with one drawback: a relevant number of artificial bootstrap
‘measurements’ has to be generated in order to well approximate both the (unknown) true
probability distributions of the fit parameters and the fit p-value. Apart from this computa-
tional limitation, common to all the Monte Carlo-based methods, the previous considerations
lead us to encourage the use of this technique.
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