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Abstract

Recent works have shown that generic local Hamiltonians can be efficiently inferred from local
measurements performed on their eigenstates or thermal states. Realistic quantum systems are often
affected by dissipation and decoherence due to coupling to an external environment. This raises the
question whether the steady states of such open quantum systems contain sufficient information
allowing for full and efficient reconstruction of the system’s dynamics. We find that such a
reconstruction is possible for generic local Markovian dynamics. We propose a recovery method that
uses only local measurements; for systems with finite-range interactions, the method recovers the
Lindbladian acting on each spatial domain using only observables within that domain. We numerically
study the accuracy of the reconstruction as a function of the number of measurements, type of open-
system dynamics and system size. Interestingly, we show that couplings to external environments can
in fact facilitate the reconstruction of Hamiltonians composed of commuting terms.

1. Introduction

The development of quantum simulators and computation devices has rapidly progressed over the last few years
[1]. These developments span a multitude of physical platforms, including ultracold atoms [2—-5], trapped ions
[6-8], photonic circuits [9—12], Josephson junction arrays [ 13—17] and more, reaching ever larger complexity.
The growth in the complexity of these systems calls for efficient methods to characterize and verify their
dynamics. The resources required by these methods, whether classical computations or quantum
measurements, should scale polynomially with the number of degrees of freedom in the system.

Anisolated quantum system can be characterized by learning its underlying Hamiltonian. This can be achieved
by monitoring the dynamics that the Hamiltonian generates [18—31], or by measuring local observables in one of its
eigenstates or thermal states [32—40]. However, realistic quantum systems are never fully isolated. This raises the need
for methods to characterize the dynamics of open quantum systems which are coupled to external environments.

Previous works have recovered the dynamics of open quantum systems by tracking their time evolution [41—47, 18,
48-51]. However, the possibility of recovering open system dynamics from their steady states has not been addressed.

We focus on open quantum systems evolving under Markovian and local dynamics, for which the evolution
can be described by the Lindblad master equation formalism [52, 53]:

p=L(p)
= =i Hy pl + 5o, L)1 + Ly, oL, (1)

where each Hj, L;is alocal operator. Throughout this paper, alocal operator will be defined as acting on at most k
spatially contiguous degrees of freedom (e.g. spins). While the Hamiltonian terms H;are Hermitian, the L;
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operators, known as the jump operators’, are generically not. A steady state p; of £ is defined by p, = L(p,) = 0.
Suppose that we prepare many copies of p, and measure expectation values of local observables in the state p;.
Can £ be recovered using the data obtained from these measurements?

Parameter counting suggests this should be possible. The number of parameters describing a local
Lindbladian scales polynomially with the system size, similarly to a Hamiltonian. On the other hand, a quantum
state is described by exponentially many parameters. Thus, the steady state of alocal Lindbladian may potentially
contain sufficient information for inferring the dynamics that generated it.

However, steady states of Lindbladians differ from eigenstates and thermal states of local Hamiltonians.
Every Hamiltonian commutes with the density matrix corresponding to each of its eigenstates | ¢;) (. In
contrast, generic Lindbladians have only a single steady state [54]. Dissipation can cause this unique steady state
to be highly mixed, possibly reducing its information content. As an extreme example, the steady state of any
Lindbladian whose jump operators L;are all Hermitian is the fully mixed state p o 1, from which there is no
hope to recover the Lindbladian. Does this impose a fundamental difficulty to Lindbladian reconstruction? Or
do the steady states of local many-body dissipative dynamics generically bear clear signatures of the preceding
dynamics? Can these dynamics be extracted efficiently and accurately?

In this work, we study this question by providing an efficient algorithm for learning the dynamics of local
Lindbladians from their steady states. Extending the methods of [40], our algorithm exploits strong constraints
that locality imprints on the steady states of generic local Lindbladians. Using this algorithm, we (i) explore
which types of Lindbladians can be accurately reconstructed from their steady states, (ii) study numerically and
analytically the system-size scaling of the reconstruction accuracy, and (iii) show that coupling to a bath can in
fact facilitate the reconstruction of certain classes of Hamiltonians, which pose a challenge for methods based on
their eigenstates or Gibbs states.

2. Algorithm

We begin by choosing a basis of local Hermitian operators for the unitary dynamics { 4;}, and a basis of local
operator pairs for the dissipative dynamics {(J,, I;)}. Expanding the dynamics in this operator basis (see
appendix A.1), equation (1) becomes

p= i cilhi pl + 3 %([lrp, 151+ [, pliD), @)

with real coefficients cj, and c,, forming a complex-valued positive semidefinite matrix. The locality of the
Lindbladian restricts the pairs of non-zero elements of ¢,; for instance, if the jump operators L;are on-site, ¢,
vanishes whenever /,, [; act on different sites. Our goal is to infer the values of the non-zero coefficients ¢;, ¢,s.

To this end, we identify a set of local constraints that apply to any steady state p, of L. Since p;is a steady state,

the expectation value (A) &y (Ap,) of any observable must be time-independent
Tr(Ap,) = 0. 3

Plugging in equation (2) and using the cyclic properties of the trace, Tr (ABC) = Tr (CAB) and
Tr(A[B, C]) = Tr(C[A, B]), we obtain the linear constraint

= ilA, hil) + 32 (1, AL+ LA, ) =0, @
i r,s
where the expectation values are taken with respect to the steady state p;. For any operator A, equation (4) yields a
linear equation for the parameters c;and c,. We will use a set of constraint operators {A,, } to obtain a system of
linear equations for the Lindbladian coefficients.

Importantly, assuming thatlocal A, operators are chosen, the constraints derived from equation (4) are local
in two ways. First, these constraints involve only local observables, which are easier to measure in most
experimental settings. Second, if the A,, operators act only within a given region, they commute with all the
Lindblad terms that are supported outside that region. This allows to recover the Lindbladian of a region from
measurements of that region alone.

We now introduce a convenient notation for representing the constraints derived from equation (4). We
concatenate the Hamiltonian parameters ¢; and the dissipative parameters ¢, into a single vector ¢. In this
notation, equation (4) takes the form

K'e=0 ()
for a corresponding vector of expectation values k. Since ¢rs1s Hermitian, its upper and lower parts are
redundant; each pair of off-diagonal elements contributes only a single pair of real parameters,

Rec, = %(crS + ¢,)and Imc,; = %(c,s — ¢g). Thus, ¢ is areal vector with four types of elements: Hamiltonian
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coefficients c;, diagonal dissipative coefficients c,,,, and the real and imaginary parts of the off-diagonal
dissipative coefficients ¢,  for r > s.

Repeating this procedure for a set of constraints { A, })_;, we obtain a homogeneous system of linear
equations for the coefficients of the true Lindbladian

K¢ =0, (6)

where Kisan N x M matrix of expectation values (see appendix A.2), with N the number of constraints and M
the number of unknown parameters. Each of its rows corresponds to a constraint operator A,,, and each column
to a different Hamiltonian term or jump operator appearing in equation (2).

Assuming that we measured K at a steady state of a local Lindbladian, the vector ¢ corresponding to that
Lindbladian must lie in the kernel of K. If the steady state is shared by a family of Lindbladians, the kernel will be
spanned by the whole family (see appendix A.3 for the example of the fully mixed state). If the steady state
corresponds to a unique local Lindbladian, the kernel of K will become one-dimensional once sufficiently many
constraints are used. We expect this to occur when the number of equations reaches the number of unknowns,
revealing the true Lindbladian parameters up to an overall multiplicative constant. When a Lindbladian has
multiple steady states, any of them may be used for the reconstruction; however, the reconstruction quality may
depend on the steady state used.

Thus, if the elements of K are known exactly, our method recovers a unique Lindbladian whenever the
equation K¢ = 0 has a unique solution. Put differently, the spectrum of singular values of K must contain a
single zero. In practice, the elements of K are only known to a finite precision due to measurement noise. The
spectrum of K determines the difficulty, or noise sensitivity, of the Lindbladian reconstruction.

Suppose that each observable is only measured to an additive error ¢ > 0°. For the measured K, the equation
K¢ = 0 willlikely not have an exact solution. As an approximate solution, we take the normalized coefficient
vector ¢ = ¢/||¢|| that minimizes || K¢||, i.e. the eigenvector of KTK with smallest eigenvalue. Since the
Lindbladian is only recovered up to a multiplicative scalar, we measure the reconstruction error ¢ by the L,
distance between the normalized coefficient vectors ¢ of the recovered Lindbladian and the true Lindbladian,

A= ||6rec0vered - 6true”Z- (7)

Using perturbation theory, we estimated in [40] the reconstruction error due to independent random noise with
standard deviation e added to each element of K

Aest — ¢ Z /\;1’ (8)
m>0

where )\, are the eigenvalues of K'K ° (i.e. the squared singular values of K ).

3. Results

3.1. Recovery of random local Lindbladians

We apply our method for the reconstruction of random local Lindbladians from their respective steady states.
We start by focusing on chains of A = 6 spins with random local interactions and dissipation. We consider
Lindbladians of the form given in equation (1) with local Hamiltonian terms

3 3
8
Hj =3 a0 + 32 00050500 )
a=1 a,B=1

and on-site jump operators L; given by
3
Li= )" dj.0oS. (10)
a=1

We choose open boundary conditions ¢ 3 = 0, and draw the remaining Hamiltonian coefficients from a
Gaussian distribution with zero mean and unit variance, setting the energy scale for what follows. The real and
imaginary parts of the dissipative coefficients d; , are similarly drawn from a Gaussian distribution, with mean
zero and standard deviation oy = %

We obtain the steady state of each random Lindbladian £ by exactly diagonalizing it as a superoperator. We
then attempt to recover £ using an increasing number N of constraints A,,. We start with all the constraints A,

acting on single sites and nearest neighbors, and add constraints supported on three consecutive sites in random

For example, if each observable is measured experimentally using 1, copies of p;, its expectation value is known up to random noise of
order € ~ 1/ /1;.

5 . . . . . . -
In particular, the reconstruction error is dominated by the gap ), of the constraint matrix, since Ay < € M.
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Figure 1. Reconstruction of Lindbladians from their steady states. We generated steady states of random local Lindbladians on chains
of A = 6 spins and measured local observables given by equation (4) for a set of constraint operators {A, })_ ;. We then recovered the
Lindbladians from these observables by solving equation (6), adding a small random measurement noise of order ¢ = 10~ to each
observable, and computed the error A in the recovered Lindbladians (see equation (7)). (a) Reconstruction error (A) of random
Lindbladians (equations (9), (10)) as a function of the number of constraints (red; shaded area indicates error bars). Recovery
succeeded once the number of constraints N approached the number of unknowns M (here M = 117); its accuracy improved as more
constraints were added, following the estimate A®' (dashed line) of equation (8). Here, the ratio between the magnitudes of the
Hamiltonian and dissipation was fixed to ap = % Inset: the error-to-noise ratio A /¢ with all 3-local constraints as a function of the

measurement noise magnitude . The error followed the prediction of equation (8) aslongas A < 1. (b) Reconstruction error asa
function of the dissipation strength ap. Here we used all constraints A,, acting on up to 3 consecutive sites. Addition of weak
dissipation improved the Lindbladian recovery, which was optimal at ap & 0.5. A lower reconstruction error was achieved when the
Hamiltonian was known (green; APTor), (¢) Dependence of the reconstruction error on the type of dissipation. We used the same
ensemble of random Hamiltonians, with dissipation given by equation (12), and «; interpolating between loss and dephasing. When
dissipation is almost entirely due to dephasing, oy — 0, the steady state is close to being fully mixed; consequently, recovery improves
with increasing loss (increasing a;r). All results were averaged over 300 random Lindbladians, with error bars indicating one standard
deviation; means and standard deviations were calculated after taking the log.

order. To assess the reconstruction difficulty in practical settings, we add to each measured observable a small,
independent, Gaussian noise with mean zero and standard deviation ¢ = 10~%. We then compute the
reconstruction error A due to the measurement noise €.

As soon as the number of constraints approaches the number of unknowns, the reconstruction error A
drops, and we obtain a good apparoximation of the Lindbladian (figure 1(a)). The error decreases with the
number of constraints, following the estimate of equation (8). We verified numerically that the reconstruction
error A follows the estimate of equation (8) over several orders of magnitudes of the measurement noise €, as
longas A < 1072 (figure 1(a) inset).

3.2. Effect of dissipation type and strength
Next, we study how the accuracy of the method depends on the type and strength of the dissipative terms
appearing in the Lindbladian. First, we vary the magnitude ap of the dissipative terms appearig in equation (10)
relative to the Hamiltonian terms. We repeat the recovery experiment on the steady states of these different
dynamics, using all 3-local constraints A,,. We find that the accuracy of the method improves upon adding weak
dissipation to a Hamiltonian; the recovery is optimal when the dissipative terms are comparable in magnitude to
the Hamiltonian terms (figure 1(b), red). Due to our choice of single-site jump operators, steady states at the
strong dissipation limit approach product states. Since any product state is a steady state of many different
Lindbladians, the reconstruction error diverges for ap — o0; this divergence of the error is cured when two-site
nearest-neighbor jump operators are added (see appendix B.1).

In practical situations, the jump operators L; may be unknown even if the Hamiltonian is well-characterized.
We can incorporate prior knowledge about the Hamiltonian by turning equation (4) into the non-homogeneous
constraint

Crs

> 7<[lr, AllY + LIA, 1T]) = (i[A, H]), (11)

1,s

where the RHS is directly obtained by measurements. The dissipative coefficients ¢, are then obtained by solving
asystem of non-homogeneous linear equations (see appendix A.4). Figure 1(b) shows that recovery with such
prior knowledge of the Hamiltonian achieves a lower reconstruction error of the Lindbladian (green curve).
Since the recovery with prior knowledge leaves no ambiguity in the magnitude of the Lindbladian, we can also
compare the dynamics generated by the true and recovered Lindbladians starting from a fixed initial state;
indeed, we find an excellent agreement (figure B2).

Next, we study the interplay of different dissipation types. We consider a Lindbladian £ which consists of
single-site jump operators of two kinds:
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Figure 2. Loss facilitates learning of commuting Hamiltonians: error in the reconstruction of classical Hamiltonians from steady states
of dissipative dynamics, as a function of the number of constraints N. We generate random classical Ising Hamiltonians on a one-
dimensional chainwith A = 6 spins (equation (13)). While these Hamiltonians are impossible to learn from a generic steady state, the
addition ofloss L; = 207 allows to extract their coupling parameters. Due to the small number of unknowns (only M = 11
Hamiltonian terms), recovery is easy, and single-site constraint operators suffice (dashed vertical line; corresponds to 2-local
measured observables).

Liir=ar0;, Lip=(1— ay)oj, (12)

def . I3 >
where 0~ = %(a" — i0”). The ‘loss’ L; | relaxes the system towards a pure steady state, e.g. due to loss of

particles; the ‘dephasing’ L; p scrambles relative phases between pure states in a specific basis. We tune the
parameter 0 < oy < 1to interpolate the relative weights of the loss and dephasing. In addition, £ contains
Hamiltonian terms of the form (9), with coefficients drawn from a Gaussian distribution with zero mean and
unit variance. We then attempt to recover both the Hamiltonian and the jump operators from the steady state of
L using all 3-local constraints A,,, without assuming that the form of the on-site jump operators is known.

We find that reconstruction of strongly dephasing Lindbladians is hard (figure 1(c)). This is expected: for
o < 1, the steady state is close to a fully mixed state, compatible with any Lindbladian with Hermitian jump
operators. As the loss intensifies, || £(1)|| o o?; correspondingly, figure 1(c) shows that the reconstruction error
decreases as o 2 (see also appendix B.4), indicating that the steady state becomes more informative.

3.3. Loss facilitates learning of commuting hamiltonians

Motivated by the insight that loss can lead to non-trivial steady states, we investigate whether dissipation can aid
in learning Hamiltonians that could not be recovered from their own steady states. In particular, we consider
classical Hamiltonians with random nearest-neighbor interactions in the X-basis alone,

A A—-1
c);:ijU?"f' Z]JU}CU?H’ (13)
i=1 i=1

whose coefficients are drawn from a Gaussian distribution with zero mean and unit variance. Any state p
diagonal in the X-basis is a steady state of Hy, revealing no information about its coefficients. We therefore add
on-site jump operators

L= 20;, (14)

so that the dynamics of £ are comprised of Hamiltonian dynamics in the X basis and loss in the Zbasis. We then
attempt to recover H from the steady state of £, assuming that the jump operators L;are known.

We find that the addition of controlled loss facilitates efficient learning of the classical Hamiltonians of
equation (13). Due to the small number of unknowns, single-site constraint operators ¢, 0;‘» are sufficient to
recover H (0} are not required as they commute with H). Moreover, the reconstruction is very robust: when
nearest-neighbor constraints are added, the accuracy of the recovered Hamiltonian approaches the
measurement accuracy (figure 2).

3.4. System-size scaling

Finally, we demonstrate that our method can recover Lindbladians on long spin chains. Various approaches
have been proposed for computing steady states of large-scale open quantum systems using matrix product
operators [55-57]. In this work, we have used the variational MPO approach of [56], which iteratively finds the
density matrix with the smallest-magnitude eigenvalue of L. Using this approach, we obtain steady states of the
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Figure 3. Reconstruction of Lindbladians on large spin chains: system-size scaling of the reconstruction error. We obtained the steady
states of the random Lindbladians described in equations (9), (10) on A = 100 spins. (left) We recovered the Lindbladians on spatial
patches of 6 spins, with overlaps of 2 sites between consecutive patches. We used all constraints supported on up to 3 consecutive sites
in the interior of each patch (middle 4 sites for bulk patches). We then stitched consecutive patches to obtain the full Lindbladian on
subsystems of increasing length. The reconstruction error increased with system size (red line), following the predicted square-root
scaling with the number of patches (dashed line). (right) As a different approach, we built a single large constraint matrix for each
subsystem, and obtained the error as a function of subsystem size; this approach yielded a slightly smaller reconstruction error, still
scaling as the square root of subsystem size (dashed line).

random Lindbladians considered in equations (9), (10) on chains with A = 100 spins (see appendix C for
details).

To study the system-size scaling of our method, we focus on subsystems of increasing sizes. We begin with
the 6 leftmost spins and add 4 spins in each step, eventually covering the whole chain. We then attempt to
recover the Lindbladian of each of these subsystems from observables within that subsystem only, using all
3-local constraints.

We employ two different approaches for recovering the full Lindbladians of these increasingly large
subsystems. In the first approach, we partition the subsystem to overlapping patches of 6 spins, and recover the
Lindbladian on each patch independently. The recovery does not determine the overall scale factor of the
Lindbladian on the patch; we therefore re-scale the coefficients of neighboring patches according to the
coefficients of their shared terms (see appendix D). In the second approach, we apply our method directly on the
whole subsystem, forming a large constraint matrix K which grows with the subsystem size.

Both approaches successfully recover the full-system Lindbladian using the same set of measurements. Here
we do not add measurement noise; the error in a single patch (=107°) is controlled by the numerical precision of
the MPO steady state. Due to the uncertainty in the coefficients shared between each pair of patches, the norm of
the recovered Lindbladian performs a random walk, leading to a total error growing as the square root of the
number of patches (figure 3, left; see appendix D for analysis). Namely, the error grows as the square root of
system size, O (Az). We find the same square root system-size scaling of the reconstruction error in the second,
direct approach (figure 3, right).

These findings suggest that in order to recover the dynamics of a system of length A to a fixed accuracy, each
observable should be measured to an accuracy of O (A?). In other words, each observable should be measured
ny = O(A) times. The number of observables required scales also as O (A); however, since they are all local, each
copy of the steady state p, can be used to measure O (A) observables. Thus, we expect that n, = O(A) copies of p;
overall suffice.

4. Conclusions

Near-term intermediate-scale quantum devices [1] are invariably subject to noise and coupled to their
environments. While tomographic methods can characterize noises acting on a few isolated qubits [58, 59],
cross-talk between qubits necessitates holistic methods that identify the sources of error in an entire device [60].

Our results suggest that the noises acting on quantum devices may be efficiently characterized from
measurements of their steady states. Left to themselves, quantum devices naturally reach their steady states at
times longer than their typical relaxation and decoherence timescales. If in addition to single-qubit dissipation,
the qubits are also coupled by a Hamiltonian or affected by correlated dissipation, we find that their steady state
would be informative enough to recover both the Hamiltonian and the dissipative processes.

6
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In addition to scalability, our approach to characterizing dynamics through their steady states offers a few
advantages. It does not require precise control of either state initialization or measurement time. It is
independent on the dimensionality of the local Hilbert space, and is effective also for bosonic systems with an
infinite-dimensional local Hilbert space. As shown in figure 2, addition of controlled terms can allow learning of
Hamiltonians consisting of commuting terms, such as those corresponding to topological quantum error-
correcting codes [61].

Having demonstrated that open quantum system dynamics can generically be learned from their steady
states, it is important to obtain rigorous bounds on the number of measurements required for the learning
process. Such bounds could be obtained by identifying conditions under which our constraint matrix is
guaranteed to be gapped. It could also be interesting to study our method as a means to certify quantum states
prepared as the steady states of given quantum dynamics. Finally, adapting our method to the setting of
quantum circuits may yield means to certify, characterize and benchmark quantum devices.
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Appendix A. Details of the recovery algorithm

A.1. Expanding the Lindblad dynamics in a fixed set of operators: derivation of 2
Formally, to derive equation (2) from equation (1), we first expand each local Hamiltonian term in a fixed basis
oflocal operators

Hy =3¢/ h;, (A1)
i
so that the unitary evolution term becomes
YoH), pl =Y cilhis p] (A2)
j i
with
ci=>.c. (A3)
j

Similarly, we expand each jump operator in a fixed basis of local operators

Li=Y" 9, (A4)
i
so that the dissipative dynamics may be rewritten as

1
S 2iLip L1 + [Lj, pL]])

Crs

=3, 7([14% 11 + (1, pli),

where

e =2, ¢ () (A5)
j

forms a positive semi-definite matrix by definition.

7
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Figure Al. Top: we concatenate the Hamiltonian coefficients ¢, and the matrix of dissipative coefficients C,into along vector of
coefficients for the Lindblad evolution. Off-diagonal entries of C, are split into their real and imaginary parts (blue and magenta,
correspondingly). Bottom: the constraint matrix is composed of a vertical block corresponding to Hamiltonian terms Kj,, and a
vertical block corresponding to dissipative terms K. Entries corresponding to Hamiltonian terms are given by their commutators
with the constraint operators (red); the formula for the dissipative entries varies between the diagonal entries of the dissipative matrix
C, (green), and the real (blue) and imaginary (magenta) entries of C,.

A.2. Exact form of the constraint matrix

As derived in equations (4)—(6), the elements of the constraint matrix K are expectation values of different
observables. The explicit form of the element K,, ,,, varies, depending on the term in the expansion of the
Lindbladian in equation (2) which corresponds to the index : (i) coefficients ¢; of Hamiltonian terms; (ii)
diagonal entries of the matrix of dissipative coefficients c,,; (iii) the real part of the off-diagonal dissipative
coefficients % Rec,s + ¢4; (iv) the imaginary part of the off-diagonal dissipative coefficients % Rec,; — ¢
Explicitly, the matrix elements K, ,, are given by (see also figure A1):

Kn,m:
—(i[An, hjl) ¢
Sl AL + LA, 11) Cr

Al
S A + LTAL 1) + {r < s) Recr>s (Ao

2 A+ LA K1) = {r o s) Tergr>s.

A.3.Equation 4 for a fully mixed state
From equation (1) itis clear that the fully mixed steady state p oc 1is a steady state of any Lindbladian with
Hermitian jump operators L; = L]T (in fact, itis sufficient that the jump operators are normal, [L;, LJT] = 0). Let
us see how this reflects in equation (4).

If the dissipators L;are real, we can expand them (see equation (A4)) in a basis of Hermitian local operators
I, = 1] using real coefficients; subsequently, the coefficient matrix c,, will be real and symmetric. At a fully mixed
state, the expectation value of any operator is proportional to its trace, and equation (4) becomes

~> e TeGlA, b)) + 3 % Tr([l,, Al + I[A, L) = 0. (A7)

r,s

Since commutators are traceless Tr [A, B] = Tr AB — Tr BA = 0, the first part vanishes; in other words, the
fully mixed state is a steady state of any Hamiltonian. We now note that the second term is antisymmetric in
r < s:using the cyclic properties of the trace Tr AB = Tr BA and Tr (A[B, C]) = Tr(C[A, B])

8
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Tr([ln A] ls) + Tr (lr [A) ls]) (AS)
= Tr([ls: lr]A) + Tr (A [lsa lr]) (A9)
=2Tr ([l I;]14), (A10)

which is antisymmmetric to r <+ s due to the commutator. On the other hand, ¢, is symmetric, so the sum over
r, s vanishes:
Z Crs Tr([lS) lr]A) =0. (A11)
7,8
Thus, the fully mixed state obeys equation (4) for any constraint operator A if the jump operators L;are
Hermitian.

A.4. Recovery with prior knowledge
If some part of the dynamics is known to high accuracy, equation (4) can be turned into a non-homogenous
equation. For instance, if the Hamiltonian is known but the dissipators are not, we obtain equation (11). Usinga
set of constraint operators {A, }__;, we obtain the system of equations

Kig =b, (A12)
where K;is the constraint matrix of the dissipative operators alone, and ¢; are their corresponding coefficients;
the vector b is given by

b, = (ilA,, HI). (A13)

Equation (A12) is then solved using least squares.

Appendix B. Error analysis

B.1. Recovery of strongly dissipating Lindbladians
In figure 1(b), it appears that the recovery error diverges when the relative magnitude of the dissipative terms is
large ap > 1. We conjectured that this divergence does not indicate that recovery is generically impossible in the
limit of strong dissipation; rather, it is an artifact of the choice of strictly single-site dissipation we simulated.

To verify this conjecture, we added nearest-neighbor jump operators to our random Lindbladians

3
_ g X% Y
Li= ) dja0f + djxx0507, + djyy0; 05415 (BD)
a=1

with all coefficients drawn from a Gaussian distribution with mean zero and standard deviation ap; for the
Hamiltonian terms, we used the same random nearest-neighbor interactions of equation (9). We then recovered
these Lindbladians from their steady states, assuming that the form of the jump operators is known but their
coefficients are not. We found that the reconstruction error of these Lindbladians saturates at large oy (figure

B1, blue); thus, the divergence of the reconstruction error is cured when entangling jump operators are added.

B.2. Recovery error: results versus expectation

The recovery error A we find in figure 1(a) is slightly higher (by a factor of ~1.25) than the estimate of

equation (8), derived in [40]. In contrast to our results in this work, the recovery error obtained in [40] was lower
than the prediction of the same estimate, which is indeed expected to be pessimistic due to the use of Jensen’s
inequality.

We believe the difference is due to the different noise model used in both papers: here we add noise to each
measured observable, while in [40] we added independent noise to each of the entries of K (even when they
contain the same observable). This is because in [40], we wished to test the theoretical validity of the error
estimate. The estimate assumes that the noise in each entry of the constraint matrix K is independent, and we
thus added an independent random noise to each of its entries. Realistically though, noise is incurred in each
measured observable. Since many different entries of K feature the same observable, this introduces correlations
between the noise in different entries.

B.3. Accuracy of the reconstructed dynamics

To assess how well the recovered dynamics approximate the true dynamics, we compared the time evolution
generated by the recovered and true Lindbladians starting from a fixed initial state. We focused on random
Lindbladians with a relative dissipation magnitude ap = % and aknown Hamiltonian, exactly as in figure 1(b)
(green line). The knowledge of the Hamiltonian allows to recover the Lindbladian exactly (including its overall
magnitude), allowing a meaningful comparison of time dynamics.
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Figure B1. Entangling jump operators facilitate learning of strongly dissipative dynamics. Reconstruction error as a function of
dissipation strength oy of Lindbladians with nearest-neighbor Hamiltonian terms (equation (9)); for the dissipation, we took either
strictly single-site jump operators (red), as in main text (equation (10)); or both single-site and nearest-neighbor jump operators
(blue) (equation (B1)). The divergence of the error at the strong dissipation limit is cured when nearest-neighbor jump operators are
added. Here, we added a smaller noise than in the main text (¢ = 10~® rather than 10~ *) to probe the behavior at large values of ay.

100
8 \
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Z1071;
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c 10—3,
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104 : .
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Figure B2. The accuracy of the evolution generated by the reconstructed dynamics as a function of time. We initialize the system in a
product state with all spins up. We then measure the deviation between its evolution by the true dynamics p(f) and its evolution by the
recovered dynamics p,.. by the mean local trace distance (red curve, see equation (B3)). For comparison, we also show the mean local
trace distance between the true dynamics and the fully mixed state (green curve).

We initialized the system in a product state with all spins up
p@O=11TT--D(TT- 11 (B2)

and computed its evolution under the true Lindbladian p(#) and under the recovered Lindbladian p,,(f). At
each point in time, we compared these two states by the average trace distance between their reduced density
matrices on pairs of consecutive sites

A-1
> D(p®h, plith), (B3)

Dloc(p) prec) = A1 2

where p() = Try\ (5 (p) is the reduced density matrix onsites 7, j, and the trace distance
1
D(p, o) = Ellp —olh (B4)

bounds the difference in the expectation value of any POVM element. Thus, Dioc(p, p,..) is @ worst-case measure
for the difference between local observables in the two states.

As shown in figure B2, the mean local trace distance peaks at a value below 102 for short times. It then
decreases to ~2 - 1074, which is approximately the measurement accuracy taken for the reconstruction. This is
not surprising in retrospect: atlong times, g, is the steady state of the recovered Lindbladian, which was chosen
such that the measured local observables would correspond to its steady state.
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Figure B3. Reconstruction error as a function of relative weight of loss in the dissipation «;;. We repeated the simulations of figure 1(c)
with lower measurement noise ¢ = 10~ over a wider range of «;. The dashed line follows the equation y = 50¢ /x?, confirming the
theoretical expectation for the scaling of the reconstruction error with ayp.

B.4. Scaling of the reconstruction error with relative weight of loss in the dissipation

We argued that figure 1(c) confirms the theoretical expectation that the reconstruction error scale as a7 > when
the weight of loss relative to dephasing o (see equation (12)) is small. However, the curve in figure 1(c) did not
show a clear power law for small a;, since the reconstruction error approached large values of order 1. We thus
repeated these simulations with weaker measurement noise (¢ = 108 compared to ¢ = 10~ in the main text),
and verified this power law over a wider range of o (figure B3).

Appendix C. Computing the steady state using variational matrix product operators

The steady state of the Lindbladian can be obtained by computing the eigenstate of the Lindblad operator £
corresponding to eigenvalue 0 (the system we studied has no degeneracy) [55, 56]. Internally the density
operator p is reorganized into a long vector and treated similarly to the state vector of a unitary system. We use
the variational matrix product operator algorithm proposed in [56], where the iterative procedure to search for
the steady state is done in the same way as the unitary case, except that one keeps the eigenstate corresponding to
the eigenvalue with smallest magnitude instead of smallest algebraic value. For a system with 100 spins, we have
used D = 100 number of states (bond dimension) for our simulations. We obtained a steady state with
eigenvalue of the order 10~% and residual || £p|| &~ 107°. To check the convergence against different Ds, we have
done another simulation with D = 150, and compared the local observables (aj ), obtaining a mean error

Z?: | (Uj-)D: 100 — (oj}D: 150] / A = 107°. Wealso compared the distances between the reduced density
matrices with a patching size 6, and a patching spacing 4, and obtained a mean error of the order of 10~°.

Appendix D. Stitching up recovered patches

Recall that the Lindbladian on each patch is only recovered up to a multiplicative scalar. Suppose we recover the
Lindbladian of two overlapping patches and wish to ‘stitch’ them together into one Linbladian acting on the joint
patch. In the absence of noise, the recovered Lindbladians of the first two patches would be given by

(D)

¢G-Lr+Cu- Ly
Er/r;"cm+zr'£r:

where L, is the vector of terms [/2;and pairs (I, ;)] acting on the overlapping region of the two patches; for the analysis
below, we assume that each individual recovered Lindbladian is normalized: ||¢||> + [|S,4> = |ICLIP + IS = 1.
The coefficients c,,, ¢,, of the overlapping region will generically differ since the Lindbladian on each patch is only
recovered up to a multiplicative scalar. We therefore use these overlapping coefficients to determine the relative scale of
the two patches, by multiplying the Lindbladian of the second patch by a factor of el

=/ .
1 ll
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c z
»Cstltched - Cl »Cl + Cm »C + ::ﬂrlﬂ“ . »Cr- (DZ)

In fact, we also need to fix the relative signs of the two patches using a similar factor of - Slgn(c’")

gn(cy)
be determined e.g. according to the coefficient of a fixed shared term. While this last detall is crucial for the
stitching process, it does not contribute to the recovery error due to noise, as long as the error in each patch is
small relative to its size, so that no coefficient flips its sign.

To recover the Lindbladian of a sequence of patches 1,...,n, we repeat this procedure iteratively and obtain

, where the sign can

tltched Z ‘Cpatch’ (D3)
where
‘C(pla)tch =qa-Li+ay L (D4)
with £ ; denoting the terms acting on the overlapping region of the first two patches. Forany j > 1
o (7 Bl - B,
Lpatch = H (Cj : Ej + Cjj+1- Ej,j+1). (D5)
i=1 ”Cr z+1”

If each individual patch is recovered perfectly up to a corresponding multiplicative scalar, this procedure yields
the full system Lindbladian up to a single overall multiplicative scalar. However, noise introduces error in the
recovered Lindbladian of each individual patch: ¢; — ¢; + ;5;

Error in each individual patch affects the overall stitched Lindbladian in two ways. One effect is a rotation of
each Ly with respect to its true value, the £; component pointing to ¢; + 25; rather than ¢j. Since this error is
additive, itis absorbed in the normalization of Lg;cpeq; assuming that the error is approximately uniform across
patches, | |5}| | & 6, itleads to an overall error of order 6 in the total Lg;cheq, which is independent of the number
of patches.

A second effect caused by the errors in the recovery of individual patches is a stretch of each L. This effect

-1 ||c,,+1||

isinduced through the errors’ effect on the relative scale factor [T/_, N

Assumlng that the errors of the

different patches 3] are independent, this scale factor performs a multiplicatlve random walk, fluctuating from
its true value by a deviation of order \/j 0. This is most easily seen by taking alog:

2 181 + Sl 2@l
+1 1,1+1 1t+1
log H — |~ log H (D6)
=1 € + 8l Pl | AT
. =/
_ = lo ||Ci,i+1+ 3i,i+1|| o ||Cz iv1 t O ill (D7)
i=1 [ il ||C;z+1||

To first order in 6, each of these is an independent random variable with zero mean and standard deviation of
order &:

[ICiiv1 + Oiipll
[1€;,i 11l
=log(1 + &jis1- biir1+ O(6?) & &ig1 - biisr
where ¢; ;1 = €;;11/]|¢;iv1]|- Therefore, the ratio between the true scale factor and its noisy version is given by
¢°, where 4 is the random variable given by equation (D7). Its standard deviation scales as \/; 6 < Jnéb,wheren
is the total number of patches. While the order 62 correction is always positive, resulting in a drift, it sums up
across the patches to O (n6?), and is therefore higher order in /7 8. Thus, aslongas vz § < 1, the Lindbladian

on each patch is stretched by a factor of at most ~1 + /1 8, leading to a total recovery error of order /7 6. This
explains the square root scaling of the error with system size seen in figure 3.
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