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Abstract
No community detection algorithm can be optimal for all possible networks, thus it is important to
identify whether the algorithm is suitable for a given network.We propose amulti-step algorithmic
solution scheme for overlapping community detection based on an advanced label propagation
process, which imitates the community formation process on social networks. Our algorithm is
parameter-free and is able to reveal the hierarchical order of communities in the graph. The unique
property of our solution scheme is self-falsifiability; an automatic quality check of the results is
conducted after the detection, and thefitness of the algorithm for the specific network is reported.
Extensive experiments show that our algorithm is self-consistent, reliable on networks of a wide range
of size and different sorts, and ismore robust than existing algorithms on both sparse and large-scale
social networks. Results further suggest that our solution schememay uncover features of networks’
intrinsic community structures.

Community detection is a central topic in network science. Pioneered byworks represented by Palla et al [1], in
recent yearsmore andmore studies focus on the detection of overlapping communities as opposed to exhaustive
communities, a division also regarded as soft-partitioning versus hard-partitioning. Besides relying on the
optimization of certainmetrics, e.g.modularity [2], conductance [3],fitness [4], or aggregativemetric based on
link prediction algorithms [5] etc, as the extensively-studied traditional approach for detecting exhaustive
communities, for overlapping communities, a lot of new tools are designed based on various ideas, including
link communities [6, 7], clique percolation [8], seed set expansion [3, 9–12], label propagation [13–16], local
spectral clusteringmethod [17], andmethods based on statistical inference, such as Infomap [18], the stochastic
blockmodel (SBM, [19, 20]; in particular,methods adopting the belief propagation algorithm [21, 22]), and
other generativemodels [23, 24].

Despite the success of different solution schemes on various application fronts, someweak points of existing
community detection algorithms could be pinned down in practice, whichwe believemight be problematic in
certain cases (see appendix A for a detailed discussion). Theseweaknesses include: (1)many solution schemes
are over-parameterized, and in some cases the tuning of parameters depends largely on unwarranted heuristics;
(2)many scalablemethods based on the seed set expansion process [2–4, 9, 25–28]may lackwell-designed
seeding strategies [10, 11, 29] and often rely on ad-hoc strategies; (3) some algorithms that claim to be local, as
opposed tomethods based on an optimization over the entire graph, in fact still optimize on the community
level and thus do not guarantee complete locality; (4) the number of communities in the graph is often pre-
determined in certain algorithms, whichmight not be a good treatment, despite its claimed advantage [30] and
the possible determination by the non-backtrackingmatrix [31]; (5) the overlapping communities revealed by
some algorithms are in fact still exhaustive in their corresponding link communities [6], which should not be an
implicit constraint imposed by algorithms; (6) inmany cases, the revealed communities do not follow any order
and instead are treated as of equal significance to the graph (‘blended’ [30]), whichmay deviate from realistic
situations; (7)most algorithms assume that all nodes in the graph should belong to at least one community,
without taking care of those isolated nodes that do not have any communitymembership [32–35]; (8)finally, a
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notification of the quality of detection results is not incorporated inmost algorithms, failing to indicate the
inevitable limited applicability of themethod.

In a recent study, Peel et al [36] showed that, community detection is such an ill-defined problem that
intrinsically no algorithm could be the optimal solution for all tasks, essentially a variant of theNo-Free-Lunch
theorem. Although this result seems tomake the probe of community detection algorithms lessmeaningful, we
argue that various streams of community detection ideas have embodied valuable beliefs for solving this
problem and it is still useful to devise new approaches that inherit and combine the successful ideas of previous
attempts. However, themost important lesson from [36] is that, as noted by point (8) in the above discussion,
when implemented on an arbitrary graph, a reliable community detection scheme should be able to indicate the
extent of its applicability on the specific network, i.e. the extent of imperfectness of its detection results.We
believe that this property of self-falsifiability is an importantmissing piece inmost existing algorithms.

Aiming at circumventing theseweaknesses, correspondingly, we formulate our integrated belief for the
overlapping community detection problem,with an emphasis on social networkswhere nodes represent human
beings. This emphasis implies that the determination of communitymembership should incorporate behavioral
features, rather than being a completelymechanical process.We conclude important insights frommultiple
streams of existing algorithms [30] and integrate them into our belief; some extra attention to propagation-
based approaches is paid, which aremissing in [30] yet play a key role to account for the dynamic nature of social
networks. The integrated belief consists of six aspects and is sketched infigure 1.

(i)Overlappedness. One node could be able to belong tomultiple communities, and its ‘strength’ in different
communities, e.g. in terms of the degree of attachment, should not be assumed to be homogeneous over its
multiplememberships.Meanwhile, the corresponding link communities derived from the nodes’ overlapping
community assignment, should not be assumed to be exhaustive. One link could belong to different
communities, such that the overlapping of communities should allow two communities to share afinite part of
their components (e.g. [37]), consisting of both nodes and edges, as opposed to the case in [6, 7].

(ii)Different roles of nodes. Depending on the roles in communities, nodes in a typical social networkmay fall
into five categories: hubs (sources), innermembers of communities, boundaries (sinks), leaf nodes, and isolated
nodes. Communities are initiated by hubs, but arefinalized by sink nodeswho set the boundaries, which are
nodes that belong tomore than one communities. Edges are not natural boundaries of communities, as implied
by (i). Isolated nodes belong to no communities; leaf nodes have only one neighbor and thus play a trivial role in
the detection process.

(iii)Behavioral locality. In social networks, it is difficult for nodes to be acknowledgedwith information
regarding the entire graph, even information regarding the other part of their communities. Therefore, in
humannetworks the decision of (elementary, as apposed to aggregated) communitymembership should be
local, following behavioral rules on nodes, instead of being derived fromany optimization standpoint.

(iv)Propagatory formulation of communities. On social networks, communities emerge along the
propagation of information and action, hencemethods imitating the propagation process (e.g. the gradient flow
[38])have the advantage in revealing community structures.Many nodes could be the source (seeds) of the
propagation, while some of them are dominated by others and only a few could be successfully identified as
hubs. During the propagation, each node should be associatedwith afinitememory [39], recording the history

Figure 1. Illustration of the integrated belief underlying the proposed detection scheme.
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of infections it receives frommultiple communities. The determination of the communitymembership aswell
as the strength of themembership emerge from the infection history.

(v)Order of communities. Communities on graphs should follow a hierarchical order [4, 26, 40–43]:
iteratively, the aggregation of small communities gives rise to bigger communities, and the entire graph is the
single ultimate community.

(vi) Self-falsifiability. The applicability of any community detection algorithm is limited [36].When
implemented on graphswith an arbitrary topology, detection algorithms should be able to quantitatively
indicate the quality of the detection results, due to their varied applicability on specific graphs. In particular, a
reliable detection algorithm is supposed to notify its potential failure on certain networks.

Based on our integrated belief, we proposed amulti-step [12, 35] algorithmic solution scheme for
overlapping community detection.Our approach is in linewith theDBSCANalgorithm [44–46], the SHRINK
algorithm [34], and the idea of gradientflow in the hierarchical landscape of complex networks [38], but having
amore transparent and better quantifiedworkflow, alongwith two new features: parameter-free, and self-
falsifiable. The framework consists of four steps. First, nodes are identifiedwith different roles in the graph based
on their centrality scores, amongwhich nodes having local centrality peaks are detected as the hubs (sources) of
end-communities. Next, a diffusive label propagation process is initiated, starting simultaneously from all hubs,
and spread on the entire graph. The determination (expansion) of end-communities converges at the end of the
propagation process. These two steps echowith the gradient flow and the identification of nodes’ role in [38].
Third, the distancematrix of end-communities is calculated, which facilitates the construction of the
community hierarchy by aggregating end-communities in an upward fashion along the distancematrix. The
entire graph becomes the ultimate community on the top of the hierarchy. In the end, the quality of the obtained
community hierarchy is automatically checked and quantitatively indicated after the detection, and suggestions
for the cutoff levels of the community hierarchy are provided. Details of the four steps of the detection scheme
are discussed in the next section. Performance of the algorithm is studied and discussed in the following sections.

Multi-step detection algorithm

Step 1: Identification of nodes’ roles. Assume a graphwithNnodes andE edges. Given the connectivitymatrix
=A aij{ }of the graph, first we calculate the centrality scores ci of each node i, andfind the set of nodes whose

centrality score is local peak, i.e. whose centrality is no less than all its neighbors. In theory, different kinds of
centralitymeasures could be used. Path-based centralities such as betweenness centrality or closeness centrality
may not be suitable for our current setting; density-basedmeasures such as degree centrality and eigenvector
centrality aremore appropriate to apply. Among these nodes that are local peaks, thosewhose centrality is strictly
greater than at least one neighbor are identified as source nodes (hubs); in the rare case, nodes having the same
centrality score as all its neighbors are considered as isolated nodes3. S is the set of hubs, each of which is the core
of an end-community, and S∣ ∣ is the number of end-communities.

Correspondingly, find the set of nodes whose centrality score is local trough, i.e. whose centrality score is
smaller than all its neighbors. Among these nodes, those that are not leaf nodes (only having one neighbor) are
identified as sinks; each node in this category has at least two neighbors that have great centrality scores who
could pass the end-community label to it (see Step 2). Since these nodes decide the stopping of the label
propagation, some of themdetermine the boundary of end-communities, while other sinks lie strictly in the
community. The remaining nodes in the graph are innermembers of communities who are neither the local
maximumnor theminimumof the score. Note that the above definitions should be distinguishedwith nodes’s
overlappedness: sinks are not always belong tomore than one community, and only those sinks lying in the
boundary of communities havemultiple communitymembership (i.e. ‘cross-overs’); in the similar sense, inner
members could also belong tomore than one communities.

Therefore, based on the centralitymeasure relative to its neighbors, each node is identifiedwith one of the
five roles: hubs (sources), sinks, innermembers, isolated nodes and leaf nodes (figure 1). Each hub defines an
end-community. Isolated nodes are very rare and sparsely distributed in the graph andwe assume that they do
not have communitymembership; they could always be allocated to neighboring communities if one seeks to
eliminate this category.

3
Except for the specific situation of ‘centrality cliques’. As an extended concept from the common ‘cliques’, this corresponds to a situation

where a group of fully connected nodes have the same centrality scores. In this case, under our definition all nodes would be identified as
isolated nodes.However, although none of them is a strict peak in centrality scores, such a clique of nodes should essentially constitute an
end-community. Therefore, in such situations one node from the centrality clique is identified as a hub, and a small value is added to its
centrality score tomake sure the propagation in the following step is successful (Step 2); this treatmentmakes no further impact. The rest of
the clique are identified as innermembers of this end-community.
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Step 2:Determination of end-communities. Assign a different community label s on each hub, and initiate a
diffusive label propagation process simultaneously starting from all hubs in S. Themembership of a specific end-
community s is represented by a tuple =x i t,s {( )}, which records that node i joins the community at time t.
Correspondingly, every node i is associatedwith an infection history (memory) tuple =h s t,i {( )} that records
the label s it receives at time t. The two tuples =X xs{ }and =H hi{ }are updated in the propagation process.
Note that the synchronization of label propagation is guaranteed in our algorithmby using t to record the
timestamps of the label infection, instead of only recording the incident source of infection, as in [39].

To thefirst order, we assume that nodes only infect their immediate neighbors. The propagation rule is: at
time t, starting fromnode iwith current community label s, for a different node j, if =a 1ij and >c ci j, add (s, t)
to hj and ( j, t) to xs, when " Ïs t h, j( ) (same as " Ïj t x, s( ) ). In otherwords, therewill be a successful infection
of the community label, if and only if the incident node’s centrality score is greater than the target node, an
immediate neighbor of it, and the infectionwill be recordedwhen this is the first time the target node received
this community label. The label propagationwill not take place between two nodes having the same centrality
score, which is consistent with our definition of isolated nodes (they are insulated fromany infection).

At each time step, the label propagationwill spread to all neighbors of the newly infected nodes (except the
infector of the previous step, since its centrality score is higher). The propagation of a certain label will stop at
those directions where the neighbors to be infected have a higher centrality score, or the neighbors are already
infected by that label (hence the infection historyH is non-repetitive). In themost extreme casewhere the
graph has a strict tree structure of centrality scores, the label propagationwill take atmost q time steps, where q is
the longest path length of the graph, and the length of the infectionmemory h is atmost -N 1. In practice, the
propagation could stop after only a few time steps, when all the communitymemberships =X xs{ } (or
equivalently, the infection history of all nodes =H hi{ }) do not change, i.e. no new community label is assigned
to any node. The propagation process is sketched in algorithm1.

H records the information of nodes’ overlapping communitymembership. For node i, if =H 1i∣ ∣ , it only
belongs to one community; if >H 1i∣ ∣ , it belongs tomore than one community and is thus a ‘cross-over’. From
X andH, we could qualify the overlappedness of communities in the graph by twometrics: (1) the average
communitymembership of all nodes (average length of the non-repetitive infection history)mh, and (2) the
average size of end-communitiesmx. The twometrics are related by:

=m
S

N
m . 1h x

∣ ∣ ( )

Notably, one advantage of recording the infection historyH is that, for nodes belonging tomultiple
communities, their strength to different communities could possibly be indicated by the infection time t: a small
t in (s, t)means that the node is near to the hub s, thus having a large strength to this community, and vice versa.

Step 3:Aggregation of small communities. Communities join each other and formbigger ones when they are
close enough.We assume that the distance between end-communities is represented by the distance of their
hubs, and thus formulate the distancematrixR0 over end-communities, where each entry r0pq is the shortest path
between two hubs p and q:

= = ÎR r d p q p q S, , , . 2pq0
0

shortest path{ } { ( )} ( )

If no path exists between p and q (in the case of sub-components; the graph is not fully connected), we set
=r dpq

0
inf (in practice, dinf is an extremely large number). The distancematrixR0 is ´S S∣ ∣ ∣ ∣, whose diagonal

elements are all 0 and off-diagonal elements are positive integers. Nowwe aggregate end-communities by
iteratively rearrange the distancematrixR0. Find two hubs (two rows in thematrix)with distance ò=1 and
replace themwith a singlemerged node in thematrix (not on the graph); for any unaddressed node, take the
maximumof the two original distances in thematrixR0 as the new distance between the node and the aggregated
newnode. Repeat until all ò=1 elements in theR0matrix are detected and replaced. This procedure iteratively
reduces the size ofR0 and update thematrix; in the end, larger communities (1-communities) are formed out of
end-communities andwe obtain the new distancematrixR1. Using the same approach, we then formulate
2-communities andR2, up to the final  dmax -community and =R d d0, ; , 0d

max maxmax [ ], where dmax is the
largest shortest path distance between the hubs in the graph, i.e. the largest element inR0. For conveniences, we
write  dmax as max and Rdmax asRmax. In the end, a hierarchy of communities is obtained through this upward
iterative aggregation of small communities, whose distances are represented by a series ofmatricesR0,
R1, ...Rmax of gradually reduced sizes. This step is summarized in algorithm 2 and illustrated infigure 3.

Note that our algorithmnaturally takes care of input graphs that are not fully connected through dinf: during
the iterative reduction ofR, once wefind that at a certain stage, all off-diagonal elements ofR equal dinf, it
suggests that the remaining communities are the sub-components and could not be further combined, and thus
the aggregation process stops, with dmax indicating the largest diameter of the subcomponents of the
unconnected graph.
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For integer ò ranging from 0 to max, a different number of communities (the size of R∣ ∣) remain at each
value of ò. The « R∣ ∣ relationship demonstrates the nature of the community hierarchy; turning points of the
slope of the « R∣ ∣curve could be used in practice to suggest the cutoff level of the obtained community
hierarchy (see Results and discussion).

Step 4:Quality check of the hierarchy. Calculate the Jaccard indexmatrix J between each pair of end-
communities whose hubs are p q, : =J jpq{ }, which is an index characterizing the similarity of two groups of

nodes. The automatic quality check of the detection results is carried out relying on the Jaccardmatrix J. In the
previous step, we aggregate small communities based on the distance of their source nodes; conceptually, one
may propose an alternative aggregation rule: iteratively aggregate small communities that have themost overlap,
indicated by the Jaccard index.However, one problem arises with this plausible treatment: itmay almost always
lead to a strictly binary hierarchy that at each step, only one big community will be formulated out of exactly two
small communities, since the Jaccard index is a real number. By contrast, our (integer-valued) distance-based
aggregation rule allows that at each stage a fewmergings take place. In other words, an overlap-basedmerging
rulewill almost always result in a hierarchywith -S 1∣ ∣ stages and therefore formulate a dendrogram, which is a
binary-tree structure [40], whereas our distance-basedmerging rule ismore flexible andmay be able to yield a
much tighter hierarchy (k-ary tree).

Algorithm1. Propagatory formulation of end-communities (Step 2).

1:InitializeX,H.
2:Input adjacencymatrix =A aij{ } and calculate nodes’ centrality scores =C ci{ }.
3:Identify the set of hubs for end-communities S (Step 1).
4:t=0
5:while <t tmax do

6: = +t t 1

7:for∀community Îs S do

8:for∀node i s.t. - Îi t x, 1 s( ) do

9:for ∀node j s.t. =a 1ij and >c ci jdo
10:if jnot in community s then

11:Add ( j, t) to xs
12:Add (s, t) to hj
13:end if
14:end for
15:end for
16:end for
17:ifH (orX)not change then
18:break
19:end if
20:endwhile
21:X,H, tfin obtained. Calculate m m,h x .

Nevertheless, we could utilize the Jaccard index to check the quality of our distance-basedmergings. Under
our distance-based rule, at eachmerging, i.e. combing two communities p q, into one p+q, the Jaccard index
jpq is not necessarily the largest element in thematrix J (i.e. p and q do not necessarily have themost overlap
among the pairing of all communities); however, to be considered a goodmerging, one idea is that it should be
satisfied that the Jaccard index between the two communities p q, to bemerged,must be larger than the index
between one community out of p q, and any other community at the current stage that is not going to be further
mergedwith p and q (i.e. whose two distances to p q, are not both the same as rpq). Thismeans that, themerging
of p and qwill be considered good (i.e. consistent with overlap-based heuristics), if and only if all the other
communities that havemore overlapwith p orwith q are going to be furthermergedwith p and q at this ò stage,
or equivalently, no community that hasmore overlap is not to bemerged.We call this condition as J–D
consistency, which is formally stated as:

> > " Î > >    


   j j j j z HR s t r r r rJ D consistency: and , . . or for a certain , 3
pq pz pq qz pz pq qz pq– ( ) ( )

where HR denotes the set of communities obtained at a certain ò level of the hierarchy (i.e. in the beginning,
=HR S;0 in the end, =HR 1

max
∣ ∣ for connected graphs). If the above J–Dconsistency is satisfied, themerging at

this step is considered as a goodmerging.Hence, by thismeans, we are able to indicate the quality of the obtained
community hierarchy (thus the quality of our detectionworkflow) by a J–Dconsistency factorΦ, which is the
number of goodmergings (condition (3) satisfied)normalized by the total number ofmergings -S 1∣ ∣ . Since
themerging events in the last round (round max) are always J–Dconsistent, they are subtracted fromboth the
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numerator and the denominator of the ratio, andwe have:

F =
å

-
=

-

-






HR HR

card J D consistent
. 41

1

0 1

max

max

( – )
∣ ∣ ∣ ∣

( )

Note thatΦ is applicable onlywhen ¹ -HR HR0 1max
∣ ∣ ∣ ∣, i.e. there are at least 3 level of communities in the

hierarchy. During themerging process, the Jaccard indexmatrix J is recalculated at each stage, and the
dimension reduction of J is in accordance with the dimension reduction ofR (algorithm2). In practice, each
merging event is associatedwith a Boolean variable indicating its J–Dconsistency, and therefore at each ò, we are
able to calculate the F at that level, which is a component of the finalΦ. The curve « F  also helps the
determination of the cutoff level of the community hierarchy (see Results).

ThemetricΦ provides the algorithmwith the desired property of self-falsifiability. If F = 1, our distance-
basedmerging rule is perfectly consistent with the overlap-based rule. A largeΦ indicates that the establishment
of the community hierarchy obtained from the detectionworkflow embodies a large proportion of good
mergings, in the sense that two communities whose hubs are shortest-distanced are also having the largest
overlap, so that the aggregation of them is double credited. By contrast, a smallΦ implies that the aggregation
processmostly consists of badmergings, inwhich the twomerging heuristics often do not coincide; therefore,
our detection schememay not be suitable for the specific graph.

It is discrete to argue that, however, the utility ofmetricΦ should not be overstated. It is not universally
applicable, as at least 3 level of communities in the hierarchy (with the last level being thewhole graph) should
exist for themetric to be useful; this condition asks that the distances between all hubs should have at least two
values.Moreover, themetric ismore useful in signaling good detection results than denoting bad ones: while a
highΦ could largely suggest great detection results according to J–Dconsistency, a smallΦ does not necessarily
indicate a bad detection, as J–Dconsistency is only characterizing a single aspect of the results.

Computational complexity
Consider the graphwithNnodes andE edges. The time complexity for calculating the centralitymeasures isO
(N) for degree centrality and O N Nlog( ( )) for eigenvector centrality. After the centrality scores of all nodes have
been obtained, at Step 1, the identification of nodes’ roles is realized by comparing each node’s centrality score to
all its neighbors; this procedure incurs a time costO(E). At Step 2 (algorithm 1), during the last iteration, every
node in every community is visited, with each visit accessing all the node’s neighbors. This corresponds to E2
visits at this (last) iteration, and therefore the entire time complexity of Step 2 is =O t E O Efin( ) ( ). Intuitively,
the propagation is always along the descent of centrality scores, so it is one-way; since labels propagate
simultaneously from all hubs, one could thus identify a topological order of all nodes (with timeO(N+E)) and
define accordingly a directed acyclic graph (DAG). Along this DAG, the propagation could be performed in a
synchronized one-pass following the topological order, and each node is visited exactly once. Overall, the time
cost isO(E). Steps 3 and 4 are carried out at the same time in algorithm 2. The time complexity of algorithm 2
depends on the dimension of thematrixR0, which is determined by the number of end-communities (i.e.
number of hubs) S∣ ∣. The ´S S∣ ∣ ∣ ∣matrixR0 gradually degenerates into the 2×2matrixRmax, with the
minimumelement in theRmatrix detected at each stage; therefore the time is upper bounded by O S 2(∣ ∣ ), as is
also the time complexity for calculating the shortest distance between the hubs of end-communities in the
formulation ofR0.

After all, the computational complexity of the entire algorithm talgo is (using degree centrality at Step 1;
assuming >E N∣ ∣ ) :

= + + + = +t O N O E O t E O S O t E O S . 5algo fin
2

fin
2( ) ( ) ( ) (∣ ∣ ) ( ) (∣ ∣ ) ( )

In practice (see Results), tfin is always very small, and one could often set up a small tmax to let the detection
finish early by cutting off nodes’membership to remote communities; this treatment will not influence thefinal
detection results inmost cases. S∣ ∣ is also very small, normally a tiny fraction ofN, and S 2∣ ∣ is unlikely to exceedN.
Therefore, the computational complexity of our algorithm is effectivelyO(E)whenusing degree centrality as the
measure (figure B1) , which is fast on real networkswhere node connections are often not dense.

Computational superiority
A few advantages of our algorithm could be highlighted in computation. First, by recording the timestamps of
the infections, the label propagation process in our framework is synchronized. This advantage prevents the
numerical error incurred by unsynchronized algorithms (e.g. the original label propagation [15]). Next, Steps 2
and 3 of the algorithm could run in parallel after Step 1, although Step 4 and the determination of the cutoff level
of communities still need to be carried out after Steps 2 and 3 are finished. Last, as demonstrated, the
computational time of our algorithm is linear with the number of edges, which is a desirable feature for its
application onmassive real-world social networks. This is achieved by (1) the one-way propagation (hubs to
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surroundings) of labels with stops at centrality sinks (Step 2), which is notably faster than existing label
propagation algorithmswithout a one-way formulation (quasi-linear with the number of edges), and (2) the
iterative dimension reduction of the distancematrix of communities, which in practice often takes only a few
steps to degenerate into thefinalmatrix.

Results

Weapplied our community detection scheme to networks of awide range of size and various sorts (table 1).
Degree centrality is used as the centralitymeasure in the detection; tests show that using eigenvector centrality
often fails to identify enough hubs for end-communities, and the computational cost for calculating eigenvector
centrality for large scale networks is often prohibitive. In our experiments, the propagation process (Step 2)
converges after a few number of iterations ( <t 22fin ) on all tested networks. Besides the proportion of nodes of
different roles, we calculate the proportion of nodes that belong tomultiple end-communities, i.e. the ‘cross-
overs’. Notably, these cross-overs are only with respect to end-communities; expectedly, with respect to
aggregated communities up in the hierarchy, the number of cross-overs would be smaller, as some of them
might no longer havemultiplememberships once small communities are aggregated.We used small real
networks (Karate club network [47], Dolphin network [48]) and synthetic networks (LFR benchmark network
[49] and Erdös Rényi (ER) randomnetwork [50]) to demonstrate the detailed procedures of our detection
scheme and show the important « D R∣ ∣and « F  relationships constructed along the formulation of the
community hierarchy (figures 2–4).We then apply the algorithm to a panel of large real networks to carry out
horizontal discriminative analysis. A number of notable features emerged from the detection results, which
demonstrated the self-consistency and robustness of our algorithms;meanwhile, a fewunexpected interesting
phenomena regarding the intrinsic structure of networks are uncovered (figures 5–6).

Algorithm2.Determination of the community hierarchy (Steps 3 and 4).

1:CalculateR0, J0. Obtain max fromR0.

2: = 0, F = 0, =HR S0 .

3:while < max do

4: = +  1

5:while truedo
6:Find the ò-element ofR, whose position is (p, q)
7:ifno ò-element found then

8:break
9:end if
10:Update the community hierarchyHR:

11:Remove the communities indexed by p and q from -HR 1.

12:Merge the two communities into a larger community p+q and add to the hierarchy.
13:Update the distancematrixR:

14:Remove the columns and rows p q,{ } from -R 1.

15:Add a new row and a new columndenoting themerged community p+q.
16: + =d r p q d r p d r q, max , , ,( ) ( ( ) ( ))
17:ifJ–Dconsistency satisfied then

18:F = F + 1

19:Record the J–Dconsistentmerging event.

20:end if
21:Update the Jaccardmatrix J.

22:endwhile
23: - R R1 , - HR HR1 , - J J1

24:CalculateΦò.

25:if all off-diagonal elements ofRò equal dinf then

26:break
27:end if
28:endwhile

Karate club network. The two centers (node#0,Mr.Hi; node#33, the officer) in the network are
successfully identified as the only twohubs (blue nodes; figure 2, left top), aroundwhich two end-communities
(obviously, the only non-trivial communities in the 2-level hierarchy) are determined (figure 2, left bottom).
Although our algorithmdetects overlapping communities while the ground truth communities of theKarate
club network are disjoint, the detection results recover the ground truth to a great extent (figure 2, right). First,
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Table 1. Summary of detection results. ‘ISO’ stands for ‘isolates’; ‘CO’ stands for ‘cross-overs’. Networks with starmarks are not fully connected. On each network, self-edges and nodeswith degree 0 are removed, a trivialmodification to
the original graph in all cases.

Network #Node #Edge #Hub #Sink #ISO #Leaf #Inner #CO tfin mh mx max Φ

Karate Club 34 78 2 16 0 1 15 17 5 1.5 25.5 2 L
Dolphin 62 159 5 12 0 9 36 38 5 2.08 25.8 4 1

LFR (3, 1.2, 0.1) 1000 2153 79 324 1 5 591 637 8 2.05 25.9 10 0.25

Facebook users 4039 88 234 5 621 0 75 3338 3081 13 2.00 1617.2 6 0.333

Enron email* 36 692 183 831 483 8640 530 11 211 15 828 32 173 16 3.65 277.2 11 0.431

Brightkite* 58 228 214 078 682 12 259 49 21 157 24 081 55 610 12 2.91 248.5 16 0.262

CA-GrQc* 5241 14 484 298 851 185 1197 2710 3470 13 3.74 65.8 13 0.308

CA-HepTh* 9875 25 973 341 2123 184 2109 5118 8197 14 8.00 231.6 15 0.232

CA-HepPh* 12 006 118 489 172 2605 170 1493 7566 5383 17 1.59 110.9 11 0.473

CA-AstroPh* 18 771 198 050 185 3909 281 1282 13 114 18 054 8 1.94 196.8 11 0.4

CA-CondMat* 23 133 93 439 442 4717 447 2373 15 154 21 134 15 9.38 490.9 13 0.286

Deezer-RO 41 773 125 826 1051 9221 5 5430 26 066 38 621 18 31.10 1236.3 17 0.119

Deezer-HU 47 538 222 887 450 10 494 0 2701 33 893 46 506 20 112.31 11 864.7 12 0.054

Deezer-HR 54 573 498 202 64 11 035 1 2330 41 143 54 455 19 40.43 34 473.1 10 0.145

FB-artist 50 515 819 090 30 14 570 0 3124 32 791 50 456 11 3.96 6673.7 10 0.214

FB-new sites 27 917 205 964 179 7762 0 2137 17 839 27 351 18 14.33 2234.4 12 0.250

FB-company 14 113 52 126 341 3602 3 2358 7809 12 758 18 25.38 1050.4 13 0.200

FB-athletes 13 866 86 811 43 4715 0 1240 7868 13 623 19 16.72 5391.7 8 0.105

FB-government 7057 89 429 15 1894 0 355 4793 7021 15 4.15 1951.8 9 0.385

FB-politician 5908 41 706 60 1845 0 600 3403 5534 14 8.03 790.3 12 0.155

FB-publicfigure 11 565 67 038 129 3239 0 1912 6285 11 101 16 6.83 612.7 13 0.268

FB-tv show 3892 17 239 153 997 0 611 2131 3036 11 3.62 92.2 17 0.291

Gowalla 196 591 950 327 1266 49 295 9 49 452 96 569 186 616 22 3.97 616.5 14 0.156

Amazon 334 863 925 872 17 837 120 277 71 25 709 170 969 180 783 14 2.30 43.2 16 0.193

DBLP 317 080 1 049 866 2965 68 403 1 43 181 202 530 294 878 25 56.1 5999.2 19 0.156

ER (p= 0.1) 50 124 5 12 0 1 32 29 5 1.94 19.4 3 0.333

ER (p= 0.01) 500 1241 47 109 0 17 327 382 7 4.03 42.9 6 0.089

ER (p= 0.001) 4956 12 301 487 1159 0 190 3120 3851 9 4.78 48.7 8 0.050

ER (p= 0.0001) 49 661 124 959 4638 11 643 1 1732 31 647 38 737 10 4.87 52.1 11 0.044
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the two overlapping communities of our results (second and fourth column) strictly contain the ground truth
(first and third column). Second, as in our detection process each community assignment is associatedwith a
timestamp, onemay decide that the earlier the node joins the community, the larger its strength to this
community is. Therefore, by abandoning the nodes that have lower strength to the communities (i.e. nodes
having large values in the timestamp), it is possible to further compare the (truncated) overlapping communities

Figure 2.Detection results on theKarate club network [47]. Left top: nodes’ different roles. Blue, red, green nodes are hubs, inner
members and sinks, respectively. Left bottom: two end-communities detected. Right: detection results comparedwith the ground
truth.

Figure 3.Detection results on theDolphin network [48]. Leftmost: 5 end-communities. Rightmost: iterative reduction of the distance
matrixR and aggregation of small communities.Middle top: nodes’ different roles and the two ò2-communities. Blue, red, green
nodes are hubs, innermembers and sinks, respectively.Middle bottom: the obtained community hierarchy and the « R∣ ∣
relationship. Tickmarks indicate the satisfaction of J–Dconsistency ofmerging events; all fourmergings are J–Dconsistent.
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with the ground truth. Specifically, when only considering the nodes that join the community before time t=2,
our detected communities deviate from the ground truth by a smallmargin (entries in red; figure 2, right).When
comparedwith the community results on this Karate club network in [38], whose ideas have common grounds
with the current study, our results demonstrated a better recovery of the ground truth. Also note that the need to

Figure 4.Detection results on the LFR benchmark network (N=1000, τ1=3, τ2=1.2,μ=0.1) [49]. (a)Nodes’ different roles.
Blue, red, green, yellow nodes are hubs, innermembers, sinks and isolated nodes, respectively. There are 17 planted communities in
the ground truth. (b)The obtained community hierarchy, built up from79 end-communities (white nodes) to the entire graph (the
red node), and « D R∣ ∣ (red) and « F  (yellow) relationships. An optimal cutoff level could be determined at ò=5, where there
are 16 detected communities. (c)Comparing the planted communities with the ò=5 detected communities, showing the precision
for hubs in themajority vote and the (adapted) recall for all nodes in the 16 pairs of detected/planted communities (see text).

Figure 5. Identification of nodes’ different roles (Step 1) and the J–Dconsistency factor (Step 4) on various networks. Random
networks shown in red; real networks in blue. (a)Φ, (b) proportion of hubs ( S N∣ ∣ ), (c) proportion of sinks, (d) proportion of inner
members.Φ and S N∣ ∣ can effectively signify randomnetworks. Interestingly, the proportion of sink nodes in the graph shows a very
small variance across all networks and centers around 25%.No similar feature exists in the proportion of either hubs or inner
members.
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add randomperturbations to the energy function (i.e. the centrality score in our case) for the gradient flow in
[38] is dismissed in our study.

Dolphin network. TheDolphin network contains 62 nodes, amongwhich 5 are identified as hubs (blue
nodes; figure 3,middle top) for the corresponding 5 end-communities (figure 3, leftmost panel). The iterative
reduction of the 5×5 distancematrixR0 and the sequential aggregation of small communities are
demonstrated in detail (figure 3, rightmost panel). Redmarks show the communities that are aggregated at each
stage of ò. The community hierarchy is obtained at the end of this iterative process (figure 3,middle bottom). In
each of the fourmerging event, the J–Dconsistency condition is satisfied (rightmarks;figure 3,middle bottom),
and thus the consistency factorΦ=1. From the « D R∣ ∣ relationship, one can see that a proper cutoff level
for communities is ò=2, and the corresponding two ò2-communities are shown. Such a cutoff is chosen
because the communitymembership does not change at the following ò=3 level, indicating that ò=2may be
a characteristic distance between communities. This example shows that local peaks on the « D R∣ ∣curve
could be considered as the cutoff level on thefinal community hierarchy.

LFR benchmark network.We applied our detection algorithm to a LFRbenchmark network of 1000 nodes
(τ1=3, τ2=1.2,μ=0.1)with 17 planted communities. Our algorithm identified 79 end-communities (blue
nodes; figure 4(a)) during a propagation process of 8 time steps. The formulated complete community hierarchy
demonstrates the gradual build-up of large communities from smaller ones (figure 4(b)). The « D R∣ ∣and
« F  relationships are obtained along the formulation of the hierarchy. It shows that from ò=4 to ò=5,

there is a trough in the change of the community hierarchy (red curve), and the J–Dconsistency factor arrives at
a local peak around ò=4 and ò=5 (yellow curve). They suggest that ò=5 is a good cutoff level, at which stage
there are 16 communities detected, indicating a good recovery of the synthetic ground truth (17 communities).
Thenwe compared the ground-true LFR communities (‘GT.’)with the detected communities at the ò=5 level
(‘Det.’).We conducted the comparison in twoways (figure 4(c)). First, for each aggregated ò=5 community
with a few hubs, we identify the planted LFR community label of each hub, and regard themajority vote of these
labels as the ground-true community label (with the#marker, figure 4(c)) of this ò=5 community; for the 16
detected ò=5 communities, we thus discover 16 corresponding planted communities out of the 17 ground
truth labels. It is shown that inmost cases different hubs froma certain ò=5 community belong to the same
ground-true LFR community, and the precision for all 79 hubswith respect to themajority vote is as high as
0.84. Second, we compare the planted LFR communities with the complete aggregated communities at ò=5.
For each pair of the detected ò=5 community and the corresponding ground-true community, we calculate the
recall factor, dividing the intersection of the two sets (∩,figure 4(c)) by theminimum size of the two sets
(underlined, figure 4(c)); in the end, the overall recall factor for all 16 pairs of communities is 0.88, suggesting a

Figure 6.Criticalmetrics of the obtained community hierarchy. (a)Average communitymembership of each node; (b) average
community size, as a proportion of the size of the network. Green: Deezer networks; orange: Facebook networks; grey: arXiv
collaboration networks. In (a), names of the Facebook network category are labeled in text; some values ofmh lie beyond the limit of
the y-axis and are shown in numbers, with arrows indicating their network indices. (c)Propagation timestep tfin (blue, left axis) and
the largest distance between end-communities òmax (red, right axis), as a function of the network size (in logarithm).
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very good overlap between the detected and the ground-truth structures. Although comparing two sets of
communities of different numbers (17 versus 16) and different conditions of overlappedness, nevertheless, this
detailed comparison and the large values of the two factors indicate that our algorithm is reliable in revealing the
LFRplanted structures. During the experiments, a number of different LFRnetworks were synthesized and
tested, including somewith overlapping communities, although the overlappedness of these generated LFR
communities are very trivial (e.g.∼10 nodes out of 500 nodes are overlapping). Various tests show that the
option of overlapping or notmakes very little difference to the detection results, and our algorithm’s
performance is in general invariant at both cases. During extensive experiments on LFR networks, our algorithm
yielded similar performances to the one demonstrated in this example; notably, the two cutoff criteria always
agreewith each other and the suggested number of communities is always close to the ground truth.

ER randomnetwork.We tested our detection algorithmonERnetworks; a reasonable community detection
method should be able to discover that these network do not contain significant community structures.Multiple
ERnetworks are synthesized, with (n, p) selected such that the number of nodes and edges of the synthetic
networks are close to themagnitude of the real networks in use, in order tomake fair comparisons (table 1).
Results show that, as desired, our detection scheme clearly separates randomnetworks from real networks,
which presumably have certain community structures embedded (figure 5). First, repeated tests show that the
proportion of hubs identified among all nodes (i.e. S N∣ ∣ ) is always significantly smaller for real networks than
randomnetworks of similar sizes (figure 5(b)), as onewould expect, since randomnetworks have a relatively flat
structure and thusmany nodeswould be identified as ‘plain hubs’. No similar distinction emerges in the
proportion of sinks and innermembers, where randomnetworks and real networks are indistinguishable from
each other (figures 5(c), (d)). Second, for randomnetworks the J–Dconsistency condition is poorlymatched;Φ
is clearly small comparedwith real networks of similar size (figure 5(a)). This suggests that, unsurprisingly, on
randomnetworks, not only is the identification of end-communities (hubs) unwarranted, but also themerging
of these end-communities not self-consistent. Onemight also be able to spot randomnetworks during the
propagation process in Step 2; real networks typically show an S-shape in the cumulative iteration time plot,
while randomnetworks have a flatter running time growth (figure B1). The two quantities S N∣ ∣ andΦ could
thus be used as the self-falsifiability benchmarks for detection results: for an arbitrary network, issue a random
network of similar size and carry out detection on the two networks; if either S N∣ ∣ orΦ in the detection result of
the original network falls below the value of that on the issued randomnetwork, one should realize that the
detection is not valid and the algorithm should be considered as not suitable for this specific graph.

Large real networks.We also tested our algorithmon a number of large real networks across awide range of
magnitude, including theDBLPnetwork andAmazon product network [51], the Enron email network [52], the
Facebook user network [53], thefive Arxiv collaboration networks [54], the recent data from two digital
platforms (Deezer, 3 networks; Facebook, 8 networks) [55], and theGowalla network and the Brightkite
network, both location-based social networks [56]. Detection results are summarized in table 1, and a few critical
metrics are visualized infigure 5 and 6. The cutoff level of the community hierarchy for large real networks could
be determined from the « D R∣ ∣and « F  relationships, in the sameway as for small networks (figure B2).
Yet It is difficult tomake further discussion on the hierarchy cutoffs based on the current information; hence we
focus on the horizontal discriminative analysis of the detection results on various networks.

One very interesting result is that the proportion of sinks, identified in Step 1, exhibits a very small variance
across all real networks that we have studied, with an average value 25.4%±6.9% (figure 5(c)). In our
definition, sinks are those nodes that stop the propagation of labels; therefore, this resultmay imply that, on
average, around 1/4 people are ‘mutes’, who do not pass on the action or information, onmany kinds of real
(social)networks. No similar phenomenon could be seen in the proportion of either hubs (figure 5(b)) or inner
members (figure 5(d)), although the proportion of innermembers show some clustering features aswell.
Moreover, although this result is surprisingly robust across various real networks, tests show that it does not
always hold true (as onewould expect) for ER randomnetworks of different (n, p) andmay depend on their
E N∣ ∣ ∣ ∣values. At the current stage, however, no structural explanation could bewarranted for this observation,
and further analysis need to be carried out to better understand this phenomenon.

The categorical data facilitate the comparison of our algorithm’s performance on (digital) social networks (3
Deezer networks, 8 Facebook networks) and on traditional (communication)networks (5 arXiv collaboration
networks). Results show that (figure 6), the average size of communitymembership (mh) and the average size of
each community (m Nx , as a proportion of the network size) of social networks (green and orange) are both
clearly greater than that of traditional networks (grey). This is consistent with empirical considerations: on
digital social networks, nodes havemore access to different communities and thus it is easier to joinmultiple
groups online than offline. Comparisons between different facebook groups are further indicative (figure 6(a)):
the average size of communitymembership is significantly smaller on artist, government and tv-shownetworks
than on politician, athlete, company and public-figure networks, which is close towhat onewould imagine in
real-world situations. Asmentioned, it is expected that our algorithmwill bemore suitable for social networks
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than traditional networks, i.e. the quality factorΦ on social networks will be larger; unfortunately, while results
clearly do not show the otherway around, thewinningmargin is relatively vague (table 1 andfigure 5(a)). Last,
for Steps 2 and 3 of the detection scheme, results show that both the propagation time tfin and the largest distance
between end-communities òmax (and the running time as well,figure B1) are in general positively correlatedwith
the network size (figure 6(c)), which is consistent with our expectations.

Comparison with other detectionmethods.We compare our detection results with the results of a fewwell-
known algorithms for overlapping community detection, including the clique percolation (Perco)method
[1, 28], the link community (HLC)method [6], the SLPA algorithm [16], and theDEMONalgorithm [14]; both
SLPA andDEMONadopt the label propagation process, which our detection scheme relies on aswell.
Recommended parameters are used for these reference algorithms: for SLPA, the iteration timestep is 20 and
r=0.1; forDEMON, òDEMON=0.25 and theminimumcommunity size is 3; for Perco, k=4 (4-clique); for
HLC, the dendrogram is cut at the threshold of themaximumpartition density for each experimented network
(from left to right on the x-axis offigure 7, the thresholds are: 0.25, 0.29, 0.34, 0.33, 0.27, 0.48, 0.29, 0.21, 0.21,
0.20, 0.13). Facebook networks (8 networks) andDeezer networks (3 networks) are used to carry out the
comparison; these two groups of networks are from the same data source. A randomnetwork ER(5e3, 1e–3) is
also initiated for the experiments.

The performance of different algorithms are shown and compared infigure 7. Generally speaking, our
algorithmdetects fewer but larger communities: among all, its results contain the smallest number of
communities with the largest average community sizemx. Note that herewe plot the number of end-
communities (hubs) in our detected hierarchy; high-level communities (ò>0) are even larger andmore scarce.
This suggests that our detection scheme identifiesmuch denser community structures on networks than the
other four algorithms. As for the proportion of cross-overs among all nodes (figure 7(c)), our algorithm
generally identifiesmore cross-overs than the other algorithms, with respect to end-communities; as discussed
earlier, such proportions are expected to dropwhenwe calculate the cross-overs with respect to high-level
communities obtained at a certain cutoff level of the hierarchy.

Tests suggest a few advantages of our detection scheme. Perco andDEMONcould not process properly on
the sparse randomERnetwork, andHLCdid not generate result on the large size network (facebook-artist) even
after a long computational time; corresponding detection results aremissing (figure 7). By contrast, our
algorithm is robust on both sparse and large-scale networks. SLPA is not deterministic, and detection results
frommultiple runs differ to a non-trivial extent; it is also not able to clearly separate randomnetworks from real
networks, at least by the number of communities detected as a fraction of the number of nodes (%of hubs),

Figure 7.Comparisonwith other detectionmethods. 8 Facebook networks and 3Deezer networks plus a sparse randomnetwork
ER(5e3, 1e–3) are used to demonstrate the performance of different algorithms, showing (a) mln x( ), (b) proportion of hubs (i.e.
number of detected communities normalized by network size), and (c)proportion of cross-overs (i.e. proportion of nodes that have
multiple communitymemberships). Fourwell-known algorithms are studied besides our algorithm: clique percolation (Perco)
[1, 28], link community (HLC) [6], SLPA [16], andDEMON [14]. Perco andDEMONcould not process properly on the sparse
randomnetwork, andHLCdid not generate result on the large-scale network (FB-artist); corresponding detection results aremissing
(NaN in thefigure). Given its special nature, link community (HLC) discoveredmore communities than the number of nodes in the
network (i.e. <S E 1∣ ∣ , but >S N 1∣ ∣ ) and thus the results are omitted in (b). Our algorithm successfully separates the random
network from real networks, a feature not retained by SLPA (black arrow in (b)). In general, our algorithmdetected fewer but larger
communities in the graph.
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which is considered as an importantmetric in the detection results of our algorithm (figure 7(b)). Perco often
assigns no community to a large portion of nodes, given the sparse existence of cliques in real networks; even so,
it foundmore communities than our algorithm,most of which are small-scale. Given its special nature, the link
communitymethod (HLC) always discoveredmore communities than the number of nodes in the network (i.e.

<S E 1∣ ∣ , but >S N 1∣ ∣ ) and thus corresponding results are omitted infigure 7(b). Both Perco andHLC
determined communities far smaller than our algorithm; they also do not exhibit consistentO(E) time
complexity, unlike SLPA andDEMON (figure B2). In a further test, we examined the performance of these
algorithms on theKarate club network, which clearly shows that our detection results are themost reliable on
this classic small network (figureD1, appendixD). In general, DEMONyields detection results closest to the
results of our algorithm, yet its inability on sparse networks (figure 7) and relatively insufficient coverage of
nodes in communities (e.g. figureD1) highlight the advantage of our newdetection scheme. Finally, none of
these reference algorithms has the ability to self-indicate its effectiveness on different networks and they all rely
on certain parameter-tuning efforts in practice. The two novel features (parameter-free and self-falsifiable) of
our solution scheme stand out.

Discussion and concluding remarks

In this study, we formulated an integrated belief for the algorithmic design of the community detection problem,
consisting of six aspects: overlappedness, different roles of nodes, behavioral locality, propagatory formulation of
communities, order of communities, and self-falsifiability. Based on the belief, we proposed amulti-step detection
scheme that tries to incorporate successful ideas of existing algorithms aswell as to obviate their exposed
weaknesses. Our solution scheme relies on nodes’ centrality scores to determine their different roles in the
graph, especially the hubs and boundaries of end-communities, and initiates a diffusive label propagation
process that tries to simulate the formation of communities on social networks. Small communities are
iteratively aggregated into large communities and at the end of the detection, a hierarchical order of overlapping
communities is established, with the entire graph sitting on the top of the hierarchy. Since there is in fact no
concrete and general definition of a community structure on graphs and communities could then only be
defined in the relative sense [36], we are attached to the belief that the old problemoffinding the best partition of
communities could be replaced by the newproblemoffinding the best cutoff level on a community hierarchy,
which could be constructed on any given graph.With this idea inmind, in this study our solution schememakes
a tentative attempt.

The label propagation process initiated in this study essentially resembles the gradientflow in [38] (with
centrality scores as the energy function), and the identification of end-communities echoes with the
identification of attraction basins in that study.However, in [38], the focus is the classification of nodes into
high-level roles and the construction of the corresponding hierarchical structure, whereas in our study, the focus
is the bottom-up aggregation and the hierarchical representation of communities. Asmentioned before, the two
studies have common groundswhile highlighting different aspects of the problem; the current study could be
viewed as complementary to [38].

Our detection algorithm is parameter-free, and therefore as a trade-off, it is not fully decisive.While
consolidated detection results of community structures are not produced by our completely objective algorithm,
we adopt a few sophisticatedmeasures that provide useful information for the determination of communities,
specifically, the cutoff level of the community hierarchy. A peak on the « D R∣ ∣curve (or equivalently, a
plateau on the « R∣ ∣curve)means that across a certain ò stage the community hierarchy barely changes,
which implies that such an ò levelmight be an appropriate candidate for the cutoff. Similarly, a peak on the
« F  curve suggests that across such ò level themerging of small communities into big ones is well-

conditioned, in terms of the defined J–Dconsistency (equation (2)); thus this ò level is also a desired cutoff. By
taking into account these two aspects, which often agree on the same ò, wemay be able to decide an appropriate
cutoff level of the community hierarchy.However, it should be noted that despite the proposed solution, the
determination of the cutoff level is far frombeing consolidated; inmany cases, subjective heuristics still need to
be called for inmaking the decision.

An important feature of our detection scheme is the automatic indication of the goodness of detection
results. As discussed in Peel et al [36], any community detection algorithmhas only a limited power in
application, inevitably not being able to conduct successful detections on networks with certain topologies.
Therefore, we believe that a reliable detection scheme should be able to notify implementers with the quality of
the detection results it yields; in particular, the scheme should be able to indicate its potential failures. Such an
automatic self-check procedure is embedded in our algorithm. By defining the concept of J–Dconsistencywhich
indicates the quality of themergings of small communities into big ones during the formation of the community
hierarchy, we invented a robustmetricΦ that quantitatively indicates the quality of detection results (whichmay
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also facilitate the determination of the best cutoff level on the community hierarchy). Although thismetric is
originated not from rootedmathematical theories but rather from engineering buildups, it is shown that the
metric is quite robust, especially in the successful separation of randomnetworks from real networks; upon this
construction, it is expected thatmore advancedmetrics in this directionwould be invented in futureworks. Self-
falsifiability and the parameter-free property are not emphasized by existing algorithms andmay be considered
as novel features of our detection scheme.

We tested our algorithmonnetworks of various sizes and kinds (figures 2–6). On small real networks (e.g.
Karate Club network, Dolphin network), our algorithm yielded very good detection results. On LFRnetworks,
our result reveals the ground truth to a great extent, and it shows that our heuristics for determining the cutoff
level of the community hierarchy are reliable. ER randomnetworks could be effectively distinguished by our
algorithm.On large-scale real networks, horizontal analysis further demonstrate the self-consistency of our
detection scheme, and a few interesting phenomena emerge from the results, which exhibits extra values of this
study beyond the algorithmic design. Specifically, an unexpected observation emerged, showing that under our
identification scheme there are always around 1/4 nodes in the graph that aremutes in the propagation of
information or action, on various types of real networks. Although this phenomenon is significant in our results,
morework needs to be done before it could be verified and generalize.

Advantages of our algorithms over existing overlapping community detection algorithms could be identified
(figure 7). Unlike the clique percolationmethod, theDEMONalgorithm and the link communitymethod, our
detection scheme is robust on both sparse networks and large-scale networks; it yields deterministic detection
results and successfully separates randomnetworks from real networks, two superior features over the SLPA
algorithm. In general, our algorithm generates fewer but larger communities than all the above algorithms,
capturing the dense community structures on the network. The comparison of different algorithms’
performance on theKarate club network provides unambiguous evidence in favor of our algorithm’s reliability.

In our detection results, the strength of nodes’membership in different communities is not assumed to be
homogenous and could possibly be indicated by utilizing the timestamp t in their infection history, which
records thefirst time the node gets exposed to community labels. The hierarchical order of communities are
maintained throughout theworkflow, thus thewhole detection process is fully transparent.We believe that
transparency is an important feature of this detection scheme, and the inclusion of timestamps in the finite
memory associatedwith each nodemakes the algorithm easy to be extended to temporal networks or high-order
networks (e.g. [57]), possibly with a refined centralitymeasure for these advanced networks [58]. Another line of
extension for this study is to replace some flexible components of the algorithm and test with alternatives, for
example, different centralitymeasures (Step 1) and alternative graph distancemeasures (Step 3). In the current
schemewe used themost commonmeasures (degree centrality, shortest path distance), but under the rapid
development of network sciences, it would be interesting to apply and test alternative ideas under our general
solution scheme in future studies.

A number of limitations exist in this study, besides what have been discussed. First, in theory, our algorithm
is not able to identify communities that are strictly contained in larger communities. Spectral clustering on the
connectivitymatrix of each determined community needs to be performed in order tofind sub-communities
strictly lyingwithin big communities. Second, althoughwe claim that the algorithm is parameter-free, a few
quantitative constraints are still implied in our solution scheme, although they are not represented by explicit
parameters. For example, we assume that nodes could only directly propagate the labels to their immediate
neighbors; this could be viewed as a dummy parameter dprop=1 (distance of infections). The choice of
centralitymeasuresmay also be viewed as a tuning procedure. Third, besides comparing on some general
metrics of the detected communities, we found it a bit difficult to compare our detection results (a hierarchy of
communities)with results obtained fromother algorithms (a certain community partition) ormore
importantly, with the ground truth, although people argue that comparing detection results with ground truths
may not be always desirable since the ground truth does not always reflect the real community structures of the
network [59]. It is plausible that we could compare the determined communities at the cutoff level of the
community hierarchywith the singular detection result of other algorithms or the ground truth, as we didwith
LFRnetworks, but it is possible thatmultiple cutoffs could be identified in the hierarchy and therefore the
comparison becomes less straightforward. Sophisticatedmetrics need to be invented to address this comparison,
or in general, to better characterize the performance of our proposed solution scheme.

Data and code availability
All network datasets used in this study could be found onNetworkx (https://networkx.github.io) and SNAP
(StanfordNetworkAnalysis Project;http://snap.stanford.edu/index.html). A Python package of the detection
algorithm is available athttps://github.com/TimothyLi0123/LZ-cd.git.
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AppendixA.Overview of overlapping community detectionmethods

The topic of community detection on graphs is extensively studied over the time and a numerous set of
algorithms have been proposed to deal with the problem. Although the research history for community
detection is not long, there has seenmultiple generations of views and ideas for this topic, and traditional
methods are quickly surpassed bymore advanced approaches. Important transitions of ideas include the
transition fromdetecting exhaustive (disjoint) communities to overlapping communities, the transition from a
deterministic definition of communities to a probabilistic definition of communities, and the transition from
relying on synthetic data and data of small real networkswithout explicit community structures to test the
algorithm, to utilizing networks with ground truth community structures, and then to further realizing the
limits of ground truth constraints in evaluating community detection results [30]. The active evolution of
community detectionmethods reflects the unconsolidated nature of the problem.

Asdiscussed in themain text, existing algorithms offer a great number of important aspects for the algorithmic
design onoverlapping community detection. Froman evolutionary perspective, those ideas constitute a
transitional logic line for thinking about the problem, andone could identifymultiple stages in the development of
solutions.Herewepresent an overviewof overlapping community detectionmethods, trying to establish
conceptual links connecting different ideas and to point out their successful insights aswell as shortcomings.

A.1. Link communities
The idea of link communities, detected by a hierarchical clustering of edges [6, 7], is based on the assumption
that vertex communitiesmay be overlapped but the corresponding link communities are always disjoint. In
otherwords, it implies that the boundaries of communities are not determined by nodes, as traditionally
assumed, but by the edges connecting them.Despite being an advanced view over hard-partitioning of nodes,
this idea is still subject to improvements since it is possible that edges also belong to different communities and
hard-partitioning on edges is still an imposed assumption. The overlapping of communities, in a broader sense,
should allow communities to share a finite part of their components, consisting of both nodes and edges. This
view of the overlappedness of communities is related to the recent discussion of ‘dominant communities’ versus
‘hidden communities’ [37], which emphasizes that detected communities are not of the same significance to the
graph andmay demonstrate different strength, essentially embodying the idea of hierarchical community
structures (see below).

A.2. Seed set expansion
Alongside the abandoning of hard-partitions, which inspired a lot ofmetric-based optimizationmethods that
directly deal with the entire graph, people gradually adopted the new belief that localitymatters in the
determination of communities. In particular, a local determination ismore consistent with the logic behind the
formulation of communities in real social networks, where nodes often do not have a clear sense of the entire
network and groupsmostly emerge from local commonalities. Adopting thismodern view, a new category of
algorithms for community detection, termed as the seed set expansion process, has been gainingmore andmore
attention. The idea is to start with finite seed sets and expand them into communities by adding/removing nodes
to/from the set if a certainmeasure of the community is improved, such asmodularity [2], conductance [3],
outwardness [25], fitness [4], significance (OSLOM, [26]), or aggregativemetric based on link prediction
algorithms [5]. One important line of seed set expansion algorithms originate from the PageRank algorithm and
expand the seed set based on a randomwalk process, as pioneered by thework of Andersen and Lang [3] and
Andersen et al [9]. Li et al [27] proposed an algorithm inwhich the seed set is determined based on clique-
detectionmethods, as cliques could essentially be viewed as communities cores [1, 28]. Kloumann andKleinberg
[11] studied different seed set expansion algorithms through a comparative analysis, focusing on the
determination of a good seed set.More recently, Gialampoukidis et al [29] proposed a core identification
strategy, an algorithmbased on theDBSCANmethod [44, 45]where two parameters are adopted: (1) ò defines
the radius of the neighborhood of a node that is considered; (2)MinPts is theminimumnumber of neighbors of
a node’s ò-neighborhood; nodes are defined as cores if they havemore thanMinPtsneighbors in their
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ò-neighborhood. Similarly, Bai et al [10]proposed an algorithm for overlapping community detection using the
nodes that are density peaks as community cores, an idea borrowed from clustering analysis [60]. Nodes with
high local density ρ and large distance δ fromother density peaks are identified in the ρ–δ plot as community
cores, aroundwhich other nodes are classified.

Wenotice that, among existing seed sed expansionmethods, a few problems arise. First, many existing
algorithmsmake ad-hoc decisions on the seed set or the community core (e.g. cliques), which often consists of
an arbitrary number of nodes. Clique percolationmethods use cliques as the seed sets, while the size of the
cliques is experimentally decided [8]. Kloumann andKleinberg [11] shows that in fact a random seed setmay
yield better performance than a seed set selecting high-degree nodes. Lancichinetti et al [4] invented the notion
of the ‘natural community’ of nodes, which essentially serves as the community cores. There is little agreement
on howmany nodes a seed set should consist, andwhat is the order for these seeds to join the set, if the set has
multiple nodes.We argue that it ismore natural to assume that inmost cases initially each seed set only contains
a single node, and all other nodes sequentially joining the set should follow a hierarchical order; only for the rare
case that neighboring nodes have completely identical topological features, could a seed set consistsmore than
one node. The second problem is that inmost existing algorithms, the expansion process is in fact still non-local:
it does not allow each node itself to decidewhether it should join a community, and inmany cases the stopping
criterion for expansion is still from an optimization standpoint. Aswementioned, in social network settings,
nodes themselves are often ignorant about the nature of the entire network, which leads to the idea of seed set
expansion;moreover,most likely nodes are also unaware of the situation of the rest of their belonged
communities: they do not know if their joining or leaving the groupwillmaximize somemetrics of the
community, and even they do, thismay not be the factor that influences their decision. Therefore, we believe that
the stopping criterion for seed set expansion is supposed to follow amore behavioral rulewhen dealingwith
humannetworks.

A.3. Label propagation
The second problem for the abovementioned seed set expansion algorithms, that they assume subsequent nodes
are attached to the communities in a static and non-local fashion, could be resolved by an advanced idea, that the
community assignment of non-core nodes is determined from a propagatory standpoint. This brings in the idea
of another line of community detectionmethods, known as label propagation algorithms, first proposed by
Raghavan et al [15] and having seen a lot of variants thereafter (for example, the speaker-listener SLPA [16], the
DEMONalgorithm [14] andmore recent designs e.g. [13]). The idea of label propagation is simple: iteratively
each node sends the label of its communitymembership to its neighbors, and at each time step the node’s
communitymembership is updated based on the information it receives from all neighbors, according to certain
decision rules (e.g. amajority vote [15] or a listener-speaker scenario [16]); and eventually, the algorithmwill
stop at convergence, i.e. there is nomore update of communitymembership on any node during the
propagation.

Webelieve that this dynamic andpropagatory point of view for community detection is important in social
network settings: nodes competewith eachother trying to expand their influence, andfinally thewinnerswill be
able to establish their communities. It ismore advanced than the traditional view that communitymembership is
a prioridetermined froma global optimization standpoint.We agree that community assignments should
definitely rely on the graph’s topology, but insteadof regressing the communitymembership to simplifiedmetrics
of the topology, itmay bemore organic (especially for social networks) to set up thepropagation and let the
dynamics decide the equilibriumconvergence. By thismeans, label propagation algorithms successfully highlight
complete locality in thedetermination of communitymemberships, as no optimization at anynon-individual level
is assumed.However, one significant problem for this approach is that the propagation could follow arbitrary
rules, and thus each proposal of a different rule for community decisionswill possibly endupwith a newalgorithm,
which suggests that the label propagation idea essentially consists of an unlimited algorithmic space. Inevitably, this
triggers debates on a gooddecision rule that processes a node’s information received fromdifferent neighbors.
Moreover, decision rules in thefirst generation of label propagation algorithmsoften select one community label
for eachnode fromall candidates and thus result in hard-partitioning; to apply label propagation inoverlapping
community detection, improved designs are to be invented.

A.4. Nodeswithmemory
The above difficulty could be overcome by a new generation of label propagation algorithms that introduce a
finitememory associatedwith each node.With thememory kernel storing the information during the
propagation (infection) process, detection algorithms are now able to carry out overlapping communities results
[39]. The idea of nodes withmemories is alignedwith the term ‘fuzzy detection’ [16]; it retainsmore information
of the propagation process than simplistic decision rules leading to hard-partitioning (e.g. themajority vote),
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although in existing designs some infection information is still compromised [39], such as the receiving order of
labels. From the node’smemory, thefinite infection history it experienced could be revealed and then used to
decide itsmultiple communitymembership. Given these considerations, we argue that thememory of nodes is
an important feature for effective overlapping community detectionmethods based on the propagation process.
Moreover, as a side note, another problemof the algorithm inGregory [39] is that it requires a pre-determined
number of communities in the graph in order to set the dimension of thememory vector, whichwe believe is not
necessary.

A.5.Multi-step detection and hierarchical structures
While seed set expansion based on label propagation process is amodern and arguably successful heuristic for
community detection, one should note that a complete seed set expansion scheme ismulti-step, and it requires
specific algorithmdesign for each step of theworkflow.Unfortunately,most previous studies focused on one
stage of seed set expansion and few efforts have beenmade on designing theworkflowof the expansion process.

Li et al [12] proposed amulti-step community discovery scheme for textual data where each node is a piece of
text. First, the seeding cores are identified using theApriori algorithm; then the detected cores aremerged based
on similarity; after the determination of cores, all other nodes are assigned to communities relying on their
connectivity conditions; and finally, a classification step is applied tomake sure that each node belongs to the
right community and false assignments are removed.Whang et al [35]proposed anothermulti-step detection
algorithmbased on seed set expansion. The algorithm consists of four stages: filtering, seeding, seed set
expansion and propagation. At the first stage the graph is pruned to core components that are densely
connected, and the peripheral structures are omitted. The seed set is determined in the next stage, aroundwhich
communities are formulated, using the spectralmethod based on the optimization of conductance, originated
fromAndersen et al [9]. The omitted peripheral structures are reinstalled to the detected communities at the
final stage.Multi-step algorithms extensively appear in the detection of hierarchical community structures (e.g.
[4, 26, 40]), which has been drawingmore andmore attention recently. The idea of hierarchical communities is
that the detection of communities should associate the partitioningwith an order of significance, possibly
through a hierarchy, instead of treating all detected communities equally, asmost existingmethods do. Sales-
Pardo et al [42] proposed amethod uncovering the hierarchical organizations of nodes based on a newnode-
affinitymetric and on searching for the localmaxima ofmodularity. Shen et al [43] designed amulti-step
algorithmnamed EAGLE to detect hierarchical and overlapping community structures, wheremaximal cliques
in the graph are used as the seed set and an agglomerative process relying onmodularitymaximization helps
establish the hierarchy. A similarmulti-step algorithmnamed SHRINKwas proposed by Sun et al [34], where
each node is assignedwith an initial label and the (multi-ary, as opposed to binary) hierarchical community
structure is gradually established bymeasuring themodularity gain ofmerging end-communities. Peixoto [41]
studied the hierarchical structure of the SBMand proposed an inference algorithm to select the bestmulti-level
hierarchicalmodel, which facilitates the formation of benchmark hierarchical SBMgraphs for testing detection
algorithms. Recently, a recursive bi-partitioning algorithm is devisedwith a top-down partitionworkflow [61],
as opposed to the agglomerative process (e.g. [34, 43]). Overall,multi-step algorithms based on certain
propagation processes that consider the hierarchical structure of communities, as emerged in this evolutionary
discussion,may contribute themodernest ideas to current community detectionmethodologies.

A.6. Isolated nodes
As a last note, it should be pointed out that the attention to the peripheral structures of the graph, besides the
densely connected cores, is non-trivial, which is relevant to the idea of ungrouped isolated nodes [35]. The belief
is that, not all nodes belong to communities; isolated nodes (noises) do exist. Gfeller et al [32] regarded them as
‘unstable nodes’ and discussed the determination of these nodes through essentially aMonte-Carlo approach by
imposing randomnoises on edgeweights. Gui et al [33] proposed a seed-set-based label propagation algorithm
that discovers ‘boundary nodes’ as opposed to ‘core nodes’, whose basic idea is similar. Sun et al [34] also
discussed the ‘hubs’ and ‘outliers’ among ‘homeless’ nodes identified in the detection process. Nevertheless, in
general the notion of isolated nodes is often neglected by existing works and people tend to assign community
memberships to all nodes in the graph.

Appendix B. Running time analysis

Comparing the running time of our algorithmon various networks, it shows that randomnetworks could
possibly be spotted during the label propagation process. The cumulative running time curve for a random
network generally does not follow an S-shape, as the case on real networks, and instead demonstrates amore
gradual growth (figure B1, left). This is because on real networks the depth of propagation, i.e. the reachability of
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end-communities (hubs) is often heterogeneously distributedwith a small tail, while on randomnetworks all
end-communities tend to have the same topological features and thus the simultaneous propagation from
different hubs ismore gradual and synchronized. However, this criterionmay lead to awrong catch since the
curves for some real (traditional)networks are also notwell S-shaped.

It shows that the total running time of the detection scheme has a quasi-linear relationshipwith the network
size (figure B1, right), demonstrating theO(E) time complexity of our algorithm (equation (5)).

For other detectionmethods, tests show that SLPA andDEMONdemonstrate a goodO(E) time complexity,
similar to our algorithm, while the running time ofHLCor Perco does not exhibit a consistent dependence on
the scale of the network (figure B2). As is acknowledged, a highly variant computational time undermines the
applicability of the detection algorithm.

Figure B1.Running time of our detection scheme on various networks. Randomnetworks are shown in red; real networks are shown
in blue. Left: cumulative running time at Step 2 as a function of the number of iterations (tfin). Both axis normalized to scale to account
for various lengths. Right: total running time (in seconds) as a function of the number of edges (log–log plot). TheO(E) time
complexity of the algorithm could be identified.

Figure B2.Running time of reference detection algorithms. In general, SLPA andDEMONexhibitO(E) time complexity; HLC and
Perco do not.
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AppendixC. Cutoff level of the community hierarchy

The determination of the cutoff level of the community hierarchy on large real networks could refer to the
« D R∣ ∣and « F  curves (figure C1), following the same heuristics explained on the LFRnetwork

(figure 4). The local peaks on these two curves indicate potential cutoff levels of ò. In practice, two peaks often
agree on the same value, which implies a good cutoff.

AppendixD. Performance of different detection algorithms on the karate club network

Different detection algorithms are tested on theKarate club network (figureD1). The SLPA algorithm is not
deterministic even on the small-scale network, and one detection result is shown.HLCdetected 20 communities
from34 nodes and 78 edges, which is clearly not satisfactory and hence the results are not shown.DEMONand
Perco yielded deterministic andmeaningful results. Comparedwith other algorithms, our detection scheme
won by a largemargin on theKarate club network; the results are reliable andmatch the ground truth to a great
extent (figure 2).

FigureC1. « D R∣ ∣ (blue) and « F  (red) curves for tested networks. Local peaks on the two curves suggest possible cutoffs.
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