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Abstract
Recentworks have shown that generic localHamiltonians can be efficiently inferred from local
measurements performed on their eigenstates or thermal states. Realistic quantum systems are often
affected by dissipation and decoherence due to coupling to an external environment. This raises the
questionwhether the steady states of such open quantum systems contain sufficient information
allowing for full and efficient reconstruction of the system’s dynamics.Wefind that such a
reconstruction is possible for generic localMarkovian dynamics.We propose a recoverymethod that
uses only localmeasurements; for systemswith finite-range interactions, themethod recovers the
Lindbladian acting on each spatial domain using only observableswithin that domain.Wenumerically
study the accuracy of the reconstruction as a function of the number ofmeasurements, type of open-
systemdynamics and system size. Interestingly, we show that couplings to external environments can
in fact facilitate the reconstruction ofHamiltonians composed of commuting terms.

1. Introduction

The development of quantum simulators and computation devices has rapidly progressed over the last few years
[1]. These developments span amultitude of physical platforms, including ultracold atoms [2–5], trapped ions
[6–8], photonic circuits [9–12], Josephson junction arrays [13–17] andmore, reaching ever larger complexity.
The growth in the complexity of these systems calls for efficientmethods to characterize and verify their
dynamics. The resources required by thesemethods, whether classical computations or quantum
measurements, should scale polynomially with the number of degrees of freedom in the system.

An isolatedquantumsystemcanbe characterizedby learning its underlyingHamiltonian.This canbe achieved
bymonitoring thedynamics that theHamiltonian generates [18–31], or bymeasuring local observables in oneof its
eigenstates or thermal states [32–40].However, realistic quantumsystems arenever fully isolated. This raises theneed
formethods to characterize thedynamics of open quantum systemswhich are coupled to external environments.

Previousworkshave recovered thedynamicsof openquantumsystemsby tracking their time evolution [41–47, 18,
48–51].However, thepossibility of recoveringopen systemdynamics from their steady stateshasnotbeenaddressed.

We focus on open quantum systems evolving underMarkovian and local dynamics, for which the evolution
can be described by the Lindbladmaster equation formalism [52, 53]:
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where eachHj, Lj is a local operator. Throughout this paper, a local operatorwill be defined as acting on atmost k
spatially contiguous degrees of freedom (e.g. spins).While theHamiltonian termsHj areHermitian, the Lj
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operators, known as the ‘jump operators’, are generically not. A steady state ρs of  is defined by ( )r r= = 0s s .
Suppose thatwe preparemany copies of ρs andmeasure expectation values of local observables in the state ρs.
Can  be recovered using the data obtained from thesemeasurements?

Parameter counting suggests this should be possible. The number of parameters describing a local
Lindbladian scales polynomially with the system size, similarly to aHamiltonian.On the other hand, a quantum
state is described by exponentiallymany parameters. Thus, the steady state of a local Lindbladianmay potentially
contain sufficient information for inferring the dynamics that generated it.

However, steady states of Lindbladians differ from eigenstates and thermal states of localHamiltonians.
EveryHamiltonian commutes with the densitymatrix corresponding to each of its eigenstates ∣ ∣ñá i i . In
contrast, generic Lindbladians have only a single steady state [54]. Dissipation can cause this unique steady state
to be highlymixed, possibly reducing its information content. As an extreme example, the steady state of any
Lindbladianwhose jumpoperators Lj are all Hermitian is the fullymixed state r µ , fromwhich there is no
hope to recover the Lindbladian. Does this impose a fundamental difficulty to Lindbladian reconstruction?Or
do the steady states of localmany-body dissipative dynamics generically bear clear signatures of the preceding
dynamics? Can these dynamics be extracted efficiently and accurately?

In this work, we study this question by providing an efficient algorithm for learning the dynamics of local
Lindbladians from their steady states. Extending themethods of [40], our algorithm exploits strong constraints
that locality imprints on the steady states of generic local Lindbladians. Using this algorithm, we (i) explore
which types of Lindbladians can be accurately reconstructed from their steady states, (ii) study numerically and
analytically the system-size scaling of the reconstruction accuracy, and (iii) show that coupling to a bath can in
fact facilitate the reconstruction of certain classes ofHamiltonians, which pose a challenge formethods based on
their eigenstates orGibbs states.

2. Algorithm

Webegin by choosing a basis of localHermitian operators for the unitary dynamics { }hi , and a basis of local
operator pairs for the dissipative dynamics {( )}l l,r s . Expanding the dynamics in this operator basis (see
appendix A.1), equation (1) becomes
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with real coefficients cj, and crs forming a complex-valued positive semidefinitematrix. The locality of the
Lindbladian restricts the pairs of non-zero elements of crs; for instance, if the jump operators Lj are on-site, crs
vanishes whenever l l,r s act on different sites. Our goal is to infer the values of the non-zero coefficients cj, crs.

To this end, we identify a set of local constraints that apply to any steady state ρs of . Since ρs is a steady state,
the expectation value ( )rá ñ =A ATr s

def
of any observablemust be time-independent

( ) ( )r =ATr 0. 3s

Plugging in equation (2) and using the cyclic properties of the trace, ( ) ( )=ABC CABTr Tr and
( [ ]) ( [ ])=A B C C A BTr , Tr , , we obtain the linear constraint
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where the expectation values are takenwith respect to the steady state ρs. For any operatorA, equation (4) yields a
linear equation for the parameters cj and crs.Wewill use a set of constraint operators { }An to obtain a systemof
linear equations for the Lindbladian coefficients.

Importantly, assuming that localAn operators are chosen, the constraints derived from equation (4) are local
in twoways. First, these constraints involve only local observables, which are easier tomeasure inmost
experimental settings. Second, if theAn operators act only within a given region, they commutewith all the
Lindblad terms that are supported outside that region. This allows to recover the Lindbladian of a region from
measurements of that region alone.

We now introduce a convenient notation for representing the constraints derived from equation (4).We
concatenate theHamiltonian parameters cj and the dissipative parameters crs into a single vector


c . In this

notation, equation (4) takes the form

( )
 

=k c 0 5
T

for a corresponding vector of expectation values

k . Since crs isHermitian, its upper and lower parts are

redundant; each pair of off-diagonal elements contributes only a single pair of real parameters,
( )= +c c cRe rs rs sr

1

2
and ( )= -c c cIm rs rs sr

1

2i
. Thus,


c is a real vector with four types of elements: Hamiltonian

2

New J. Phys. 22 (2020) 032001



coefficients cj, diagonal dissipative coefficients cr r, , and the real and imaginary parts of the off-diagonal
dissipative coefficients crs for >r s.

Repeating this procedure for a set of constraints { } =An n
N

1, we obtain a homogeneous systemof linear
equations for the coefficients of the true Lindbladian

( )
=Kc 0, 6

whereK is an ´N M matrix of expectation values (see appendix A.2), withN the number of constraints andM
the number of unknown parameters. Each of its rows corresponds to a constraint operatorAn, and each column
to a differentHamiltonian termor jumpoperator appearing in equation (2).

Assuming that wemeasuredK at a steady state of a local Lindbladian, the vector

c corresponding to that

Lindbladianmust lie in the kernel ofK. If the steady state is shared by a family of Lindbladians, the kernel will be
spanned by thewhole family (see appendix A.3 for the example of the fullymixed state). If the steady state
corresponds to a unique local Lindbladian, the kernel ofKwill become one-dimensional once sufficientlymany
constraints are used.We expect this to occurwhen the number of equations reaches the number of unknowns,
revealing the true Lindbladian parameters up to an overallmultiplicative constant.When a Lindbladian has
multiple steady states, any of themmay be used for the reconstruction; however, the reconstruction qualitymay
depend on the steady state used.

Thus, if the elements ofK are known exactly, ourmethod recovers a unique Lindbladianwhenever the
equation


=Kc 0 has a unique solution. Put differently, the spectrumof singular values ofKmust contain a

single zero. In practice, the elements ofK are only known to a finite precision due tomeasurement noise. The
spectrumofK determines the difficulty, or noise sensitivity, of the Lindbladian reconstruction.

Suppose that each observable is onlymeasured to an additive error > 04. For themeasuredK, the equation
=Kc 0will likely not have an exact solution. As an approximate solution, we take the normalized coefficient

vector ˆ ∣∣ ∣∣ 
=c c c thatminimizes ∣∣ ˆ∣∣Kc , i.e. the eigenvector of K KT with smallest eigenvalue. Since the

Lindbladian is only recovered up to amultiplicative scalar, wemeasure the reconstruction error d by the L2
distance between the normalized coefficient vectors ĉ of the recovered Lindbladian and the true Lindbladian,

∣∣ˆ ˆ ∣∣ ( )D = -c c . 7recovered true 2

Using perturbation theory, we estimated in [40] the reconstruction error due to independent randomnoisewith
standard deviation ò added to each element ofK
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>

- , 8
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m
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where lm are the eigenvalues of K KT 5 (i.e. the squared singular values ofK ).

3. Results

3.1. Recovery of random local Lindbladians
Weapply ourmethod for the reconstruction of random local Lindbladians from their respective steady states.
We start by focusing on chains of L = 6 spins with random local interactions and dissipation.We consider
Lindbladians of the form given in equation (1)with localHamiltonian terms

( )å ås s s= +
a

a
a

a b
a b

a b

= =
+H c c , 9j j j j j j

1

3

,
, 1

3

, , 1

and on-site jump operators Lj given by
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a
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,

Wechoose open boundary conditions =a bc 0L, , , and draw the remainingHamiltonian coefficients from a
Gaussian distributionwith zeromean and unit variance, setting the energy scale for what follows. The real and
imaginary parts of the dissipative coefficients adj, are similarly drawn fromaGaussian distribution, withmean

zero and standard deviation a =D
1

2
.

We obtain the steady state of each randomLindbladian  by exactly diagonalizing it as a superoperator.We
then attempt to recover  using an increasing numberN of constraintsAn.We start with all the constraintsAn

acting on single sites and nearest neighbors, and add constraints supported on three consecutive sites in random

4
For example, if each observable ismeasured experimentally using ns copies of ρs, its expectation value is knownup to randomnoise of

order ~ n1 s .
5
In particular, the reconstruction error is dominated by the gap l1 of the constraintmatrix, since lD - Mest 1

1 .
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order. To assess the reconstruction difficulty in practical settings, we add to eachmeasured observable a small,
independent, Gaussian noise withmean zero and standard deviation = - 10 4.We then compute the
reconstruction errorΔ due to themeasurement noise ò.

As soon as the number of constraints approaches the number of unknowns, the reconstruction errorΔ
drops, andwe obtain a good apparoximation of the Lindbladian (figure 1(a)). The error decreases with the
number of constraints, following the estimate of equation (8).We verified numerically that the reconstruction
errorΔ follows the estimate of equation (8) over several orders ofmagnitudes of themeasurement noise ò, as
long asD - 10 2 (figure 1(a) inset).

3.2. Effect of dissipation type and strength
Next, we study how the accuracy of themethod depends on the type and strength of the dissipative terms
appearing in the Lindbladian. First, we vary themagnitude aD of the dissipative terms appearig in equation (10)
relative to theHamiltonian terms.We repeat the recovery experiment on the steady states of these different
dynamics, using all 3-local constraintsAn.Wefind that the accuracy of themethod improves upon addingweak
dissipation to aHamiltonian; the recovery is optimal when the dissipative terms are comparable inmagnitude to
theHamiltonian terms (figure 1(b), red). Due to our choice of single-site jumpoperators, steady states at the
strong dissipation limit approach product states. Since any product state is a steady state ofmany different
Lindbladians, the reconstruction error diverges for a  ¥;D this divergence of the error is curedwhen two-site
nearest-neighbor jumpoperators are added (see appendix B.1).

In practical situations, the jumpoperators Ljmay be unknown even if theHamiltonian is well-characterized.
We can incorporate prior knowledge about theHamiltonian by turning equation (4) into the non-homogeneous
constraint

[ ] [ ] [ ] ( )† †å á + ñ = á ñ
c

l A l l A l A H
2

, , i , , 11
r s

rs
r s r s

,

where theRHS is directly obtained bymeasurements. The dissipative coefficients crs are then obtained by solving
a systemof non-homogeneous linear equations (see appendix A.4). Figure 1(b) shows that recoverywith such
prior knowledge of theHamiltonian achieves a lower reconstruction error of the Lindbladian (green curve).
Since the recovery with prior knowledge leaves no ambiguity in themagnitude of the Lindbladian, we can also
compare the dynamics generated by the true and recovered Lindbladians starting from afixed initial state;
indeed, we find an excellent agreement (figure B2).

Next, we study the interplay of different dissipation types.We consider a Lindbladian which consists of
single-site jump operators of two kinds:

Figure 1.Reconstruction of Lindbladians from their steady states.We generated steady states of random local Lindbladians on chains
of L = 6 spins andmeasured local observables given by equation (4) for a set of constraint operators { } =An n

N
1.We then recovered the

Lindbladians from these observables by solving equation (6), adding a small randommeasurement noise of order = - 10 4 to each
observable, and computed the errorΔ in the recovered Lindbladians (see equation (7)). (a)Reconstruction error (Δ) of random
Lindbladians (equations (9), (10)) as a function of the number of constraints (red; shaded area indicates error bars). Recovery
succeeded once the number of constraintsN approached the number of unknownsM (hereM = 117); its accuracy improved asmore
constraints were added, following the estimateDest (dashed line) of equation (8). Here, the ratio between themagnitudes of the
Hamiltonian and dissipationwas fixed to a =D

1

2
. Inset: the error-to-noise ratioD  with all 3-local constraints as a function of the

measurement noisemagnitude ò. The error followed the prediction of equation (8) as long as D 1. (b)Reconstruction error as a
function of the dissipation strength aD. Here we used all constraintsAn acting on up to 3 consecutive sites. Addition ofweak
dissipation improved the Lindbladian recovery, whichwas optimal at a » 0.5D . A lower reconstruction errorwas achievedwhen the
Hamiltonianwas known (green;Dprior). (c)Dependence of the reconstruction error on the type of dissipation.We used the same
ensemble of randomHamiltonians, with dissipation given by equation (12), andαL interpolating between loss and dephasing.When
dissipation is almost entirely due to dephasing, a  0L , the steady state is close to being fullymixed; consequently, recovery improves
with increasing loss (increasingαL). All results were averaged over 300 randomLindbladians, with error bars indicating one standard
deviation;means and standard deviations were calculated after taking the log.
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( ) ( )a s a s= = --L L, 1 , 12j L L j j D L j
z

, ,

where ( )s s s= -- ix ydef 1

2
. The ‘loss’ Lj L, relaxes the system towards a pure steady state, e.g. due to loss of

particles; the ‘dephasing’ Lj D, scrambles relative phases between pure states in a specific basis.We tune the
parameter a 0 1L to interpolate the relative weights of the loss and dephasing. In addition,  contains
Hamiltonian terms of the form (9), with coefficients drawn from aGaussian distributionwith zeromean and
unit variance.We then attempt to recover both theHamiltonian and the jump operators from the steady state of
 using all 3-local constraintsAn, without assuming that the formof the on-site jump operators is known.

Wefind that reconstruction of strongly dephasing Lindbladians is hard (figure 1(c)). This is expected: for
a 1L , the steady state is close to a fullymixed state, compatible with any LindbladianwithHermitian jump

operators. As the loss intensifies, ∣∣ ( )∣∣ aµ ;L
2 correspondingly, figure 1(c) shows that the reconstruction error

decreases as a-
L

2 (see also appendix B.4), indicating that the steady state becomesmore informative.

3.3. Loss facilitates learning of commuting hamiltonians
Motivated by the insight that loss can lead to non-trivial steady states, we investigate whether dissipation can aid
in learningHamiltonians that could not be recovered from their own steady states. In particular, we consider
classical Hamiltonianswith randomnearest-neighbor interactions in the X-basis alone,

( )å ås s s= +
=

L

=

L-

+H b J , 13cl
x

j
j j

x

j
j j

x
i
x

1 1

1

1

whose coefficients are drawn from aGaussian distributionwith zeromean and unit variance. Any state ρ
diagonal in the X-basis is a steady state ofHcl

x , revealing no information about its coefficients.We therefore add
on-site jump operators

( )s= -L 2 , 14j j

so that the dynamics of  are comprised ofHamiltonian dynamics in theX basis and loss in theZ basis.We then
attempt to recoverH from the steady state of , assuming that the jumpoperators Lj are known.

Wefind that the addition of controlled loss facilitates efficient learning of the classicalHamiltonians of
equation (13). Due to the small number of unknowns, single-site constraint operators s j

y, s j
z are sufficient to

recoverH (s j
x are not required as they commutewithH).Moreover, the reconstruction is very robust: when

nearest-neighbor constraints are added, the accuracy of the recoveredHamiltonian approaches the
measurement accuracy (figure 2).

3.4. System-size scaling
Finally, we demonstrate that ourmethod can recover Lindbladians on long spin chains. Various approaches
have been proposed for computing steady states of large-scale open quantum systems usingmatrix product
operators [55–57]. In this work, we have used the variationalMPOapproach of [56], which iteratively finds the
densitymatrix with the smallest-magnitude eigenvalue of . Using this approach, we obtain steady states of the

Figure 2. Loss facilitates learning of commutingHamiltonians: error in the reconstruction of classical Hamiltonians from steady states
of dissipative dynamics, as a function of the number of constraintsN.We generate randomclassical IsingHamiltonians on a one-
dimensional chainwith L = 6 spins (equation (13)).While theseHamiltonians are impossible to learn from a generic steady state, the
addition of loss s= -L 2j j allows to extract their coupling parameters. Due to the small number of unknowns (onlyM = 11
Hamiltonian terms), recovery is easy, and single-site constraint operators suffice (dashed vertical line; corresponds to 2-local
measured observables).
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randomLindbladians considered in equations (9), (10) on chains with L = 100 spins (see appendix C for
details).

To study the system-size scaling of ourmethod, we focus on subsystems of increasing sizes.We beginwith
the 6 leftmost spins and add 4 spins in each step, eventually covering thewhole chain.We then attempt to
recover the Lindbladian of each of these subsystems fromobservables within that subsystemonly, using all
3-local constraints.

We employ two different approaches for recovering the full Lindbladians of these increasingly large
subsystems. In thefirst approach, we partition the subsystem to overlapping patches of 6 spins, and recover the
Lindbladian on each patch independently. The recovery does not determine the overall scale factor of the
Lindbladian on the patch; we therefore re-scale the coefficients of neighboring patches according to the
coefficients of their shared terms (see appendixD). In the second approach, we apply ourmethod directly on the
whole subsystem, forming a large constraintmatrixKwhich growswith the subsystem size.

Both approaches successfully recover the full-systemLindbladian using the same set ofmeasurements. Here
we do not addmeasurement noise; the error in a single patch (» -10 6) is controlled by the numerical precision of
theMPO steady state. Due to the uncertainty in the coefficients shared between each pair of patches, the normof
the recovered Lindbladian performs a randomwalk, leading to a total error growing as the square root of the
number of patches (figure 3, left; see appendixD for analysis). Namely, the error grows as the square root of
system size, ( )LO

1
2 .Wefind the same square root system-size scaling of the reconstruction error in the second,

direct approach (figure 3, right).
These findings suggest that in order to recover the dynamics of a systemof lengthΛ to a fixed accuracy, each

observable should bemeasured to an accuracy of ( )L-O
1
2 . In other words, each observable should bemeasured

( )= Ln Os times. The number of observables required scales also as ( )LO ; however, since they are all local, each
copy of the steady state ρs can be used tomeasure ( )LO observables. Thus, we expect that ( )= Ln Os copies of ρs
overall suffice.

4. Conclusions

Near-term intermediate-scale quantumdevices [1] are invariably subject to noise and coupled to their
environments.While tomographicmethods can characterize noises acting on a few isolated qubits [58, 59],
cross-talk between qubits necessitates holisticmethods that identify the sources of error in an entire device [60].

Our results suggest that the noises acting on quantumdevicesmay be efficiently characterized from
measurements of their steady states. Left to themselves, quantumdevices naturally reach their steady states at
times longer than their typical relaxation and decoherence timescales. If in addition to single-qubit dissipation,
the qubits are also coupled by aHamiltonian or affected by correlated dissipation, we find that their steady state
would be informative enough to recover both theHamiltonian and the dissipative processes.

Figure 3.Reconstruction of Lindbladians on large spin chains: system-size scaling of the reconstruction error.We obtained the steady
states of the randomLindbladians described in equations (9), (10) onΛ=100 spins. (left)Werecovered the Lindbladians on spatial
patches of 6 spins, with overlaps of 2 sites between consecutive patches.We used all constraints supported on up to 3 consecutive sites
in the interior of each patch (middle 4 sites for bulk patches).We then stitched consecutive patches to obtain the full Lindbladian on
subsystems of increasing length. The reconstruction error increasedwith system size (red line), following the predicted square-root
scalingwith the number of patches (dashed line). (right)As a different approach, we built a single large constraintmatrix for each
subsystem, and obtained the error as a function of subsystem size; this approach yielded a slightly smaller reconstruction error, still
scaling as the square root of subsystem size (dashed line).
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In addition to scalability, our approach to characterizing dynamics through their steady states offers a few
advantages. It does not require precise control of either state initialization ormeasurement time. It is
independent on the dimensionality of the localHilbert space, and is effective also for bosonic systemswith an
infinite-dimensional localHilbert space. As shown infigure 2, addition of controlled terms can allow learning of
Hamiltonians consisting of commuting terms, such as those corresponding to topological quantum error-
correcting codes [61].

Having demonstrated that open quantum systemdynamics can generically be learned from their steady
states, it is important to obtain rigorous bounds on the number ofmeasurements required for the learning
process. Such bounds could be obtained by identifying conditions under which our constraintmatrix is
guaranteed to be gapped. It could also be interesting to study ourmethod as ameans to certify quantum states
prepared as the steady states of given quantumdynamics. Finally, adapting ourmethod to the setting of
quantum circuitsmay yieldmeans to certify, characterize and benchmark quantumdevices.
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AppendixA.Details of the recovery algorithm

A.1. Expanding the Lindblad dynamics in afixed set of operators: derivation of 2
Formally, to derive equation (2) from equation (1), wefirst expand each localHamiltonian term in afixed basis
of local operators

( )( )å=H c h , A1j
i

i
j

i

so that the unitary evolution termbecomes

[ ] [ ] ( )å år r=H c h, , A2
j

j
i

i i
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( )( )å=c c . A3i
j

i
j

Similarly, we expand each jump operator in afixed basis of local operators

( )( )å=L c l , A4j
i

r
j

r

so that the dissipative dynamicsmay be rewritten as
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r
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s
j *

forms a positive semi-definitematrix by definition.
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A.2. Exact formof the constraintmatrix
As derived in equations (4)–(6), the elements of the constraintmatrixK are expectation values of different
observables. The explicit formof the element Kn m, varies, depending on the term in the expansion of the
Lindbladian in equation (2)which corresponds to the indexm: (i) coefficients cj ofHamiltonian terms; (ii)
diagonal entries of thematrix of dissipative coefficients crr; (iii) the real part of the off-diagonal dissipative
coefficients +c cRe ;rs sr

1

2
(iv) the imaginary part of the off-diagonal dissipative coefficients -c cRe rs sr

1

2i
.

Explicitly, thematrix elements Kn m, are given by (see alsofigure A1):

⎧

⎨
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⎩
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,
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2 ,

A.3. Equation 4 for a fullymixed state
From equation (1) it is clear that the fullymixed steady state r µ is a steady state of any Lindbladianwith
Hermitian jump operators †=L Lj j (in fact, it is sufficient that the jump operators are normal, [ ]† =L L, 0j j ). Let
us see how this reflects in equation (4).

If the dissipators Lj are real, we can expand them (see equation (A4)) in a basis ofHermitian local operators
†=l lr r using real coefficients; subsequently, the coefficientmatrix crswill be real and symmetric. At a fullymixed

state, the expectation value of any operator is proportional to its trace, and equation (4) becomes

( [ ]) ([ ] [ ]) ( )å å- + + =c A h
c

l A l l A lTr i ,
2

Tr , , 0. A7
i

i i
r s

rs
r s r s

,

Since commutators are traceless [ ] = - =A B AB BATr , Tr Tr 0, thefirst part vanishes; in otherwords, the
fullymixed state is a steady state of anyHamiltonian.Wenownote that the second term is antisymmetric in
«r s: using the cyclic properties of the trace =AB BATr Tr and ( [ ]) ( [ ])=A B C C A BTr , Tr ,

Figure A1.Top: we concatenate theHamiltonian coefficients

ch and thematrix of dissipative coefficientsCd into a long vector of

coefficients for the Lindblad evolution.Off-diagonal entries ofCd are split into their real and imaginary parts (blue andmagenta,
correspondingly). Bottom: the constraintmatrix is composed of a vertical block corresponding toHamiltonian termsKh, and a
vertical block corresponding to dissipative termsKd. Entries corresponding toHamiltonian terms are given by their commutators
with the constraint operators (red); the formula for the dissipative entries varies between the diagonal entries of the dissipativematrix
Cd (green), and the real (blue) and imaginary (magenta) entries ofCd.
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([ ] ) ( [ ]) ( )+l A l l A lTr , Tr , A8r s r s

([ ] ) ( [ ]) ( )= +l l A A l lTr , Tr , A9s r s r

([ ] ) ( )= l l A2 Tr , , A10s r

which is antisymmmetric to «r s due to the commutator. On the other hand, crs is symmetric, so the sumover
r s, vanishes:

([ ] ) ( )å =c l l ATr , 0. A11
r s

rs s r
,

Thus, the fullymixed state obeys equation (4) for any constraint operatorA if the jump operators Lj are
Hermitian.

A.4. Recoverywith prior knowledge
If some part of the dynamics is known to high accuracy, equation (4) can be turned into a non-homogenous
equation. For instance, if theHamiltonian is known but the dissipators are not, we obtain equation (11). Using a
set of constraint operators { } =An n

N
1, we obtain the systemof equations

( ) 
=K c b , A12l l

whereKl is the constraintmatrix of the dissipative operators alone, and cl are their corresponding coefficients;
the vector


b is given by

[ ] ( )= á ñb A Hi , . A13n n

Equation (A12) is then solved using least squares.

Appendix B. Error analysis

B.1. Recovery of strongly dissipating Lindbladians
Infigure 1(b), it appears that the recovery error diverges when the relativemagnitude of the dissipative terms is
large a > 1D .We conjectured that this divergence does not indicate that recovery is generically impossible in the
limit of strong dissipation; rather, it is an artifact of the choice of strictly single-site dissipationwe simulated.

To verify this conjecture, we added nearest-neighbor jumpoperators to our randomLindbladians

( )å s s s s s= + +
a

a
a

=
+ +L d d d , B1j j j j x x j

x
j
x

j y y j
y

j
y

1

3

, , , 1 , , 1

with all coefficients drawn from aGaussian distributionwithmean zero and standard deviation a ;D for the
Hamiltonian terms, we used the same randomnearest-neighbor interactions of equation (9).We then recovered
these Lindbladians from their steady states, assuming that the formof the jump operators is known but their
coefficients are not.We found that the reconstruction error of these Lindbladians saturates at large aD (figure
B1, blue); thus, the divergence of the reconstruction error is curedwhen entangling jumpoperators are added.

B.2. Recovery error: results versus expectation
The recovery errorΔwefind infigure 1(a) is slightly higher (by a factor of»1.25) than the estimate of
equation (8), derived in [40]. In contrast to our results in this work, the recovery error obtained in [40]was lower
than the prediction of the same estimate, which is indeed expected to be pessimistic due to the use of Jensen’s
inequality.

We believe the difference is due to the different noisemodel used in both papers: here we add noise to each
measured observable, while in [40]we added independent noise to each of the entries ofK (evenwhen they
contain the same observable). This is because in [40], wewished to test the theoretical validity of the error
estimate. The estimate assumes that the noise in each entry of the constraintmatrixK is independent, andwe
thus added an independent randomnoise to each of its entries. Realistically though, noise is incurred in each
measured observable. Sincemany different entries ofK feature the same observable, this introduces correlations
between the noise in different entries.

B.3. Accuracy of the reconstructed dynamics
To assess howwell the recovered dynamics approximate the true dynamics, we compared the time evolution
generated by the recovered and true Lindbladians starting from afixed initial state.We focused on random
Lindbladianswith a relative dissipationmagnitude a =D

1

2
and a knownHamiltonian, exactly as infigure 1(b)

(green line). The knowledge of theHamiltonian allows to recover the Lindbladian exactly (including its overall
magnitude), allowing ameaningful comparison of time dynamics.
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We initialized the system in a product state with all spins up

( ) ∣ ∣ ( ) r =   ñá   0 , B2

and computed its evolution under the true Lindbladian ( )r t and under the recovered Lindbladian ( )r trec . At
each point in time, we compared these two states by the average trace distance between their reduced density
matrices on pairs of consecutive sites

( ) ( ) ( )( ) ( )år r r r=
L - =

L-
+ +D D,

1

1
, , B3

i

i i i i
loc rec

1

1
, 1

rec
, 1

where ( )( )
⧹{ }r r= LTri j

i j
,

, is the reduced densitymatrix on sites i j, , and the trace distance

( ) ∣∣ ∣∣ ( )r s r s= -D ,
1

2
B41

bounds the difference in the expectation value of any POVMelement. Thus, ( )r rD ,loc rec is aworst-casemeasure
for the difference between local observables in the two states.

As shown infigure B2, themean local trace distance peaks at a value below 10−3 for short times. It then
decreases to ·» -2 10 4, which is approximately themeasurement accuracy taken for the reconstruction. This is
not surprising in retrospect: at long times, rrec is the steady state of the recovered Lindbladian, whichwas chosen
such that themeasured local observables would correspond to its steady state.

Figure B1. Entangling jumpoperators facilitate learning of strongly dissipative dynamics. Reconstruction error as a function of
dissipation strength aD of Lindbladianswith nearest-neighborHamiltonian terms (equation (9)); for the dissipation, we took either
strictly single-site jumpoperators (red), as inmain text (equation (10)); or both single-site andnearest-neighbor jumpoperators
(blue) (equation (B1)). The divergence of the error at the strong dissipation limit is curedwhen nearest-neighbor jumpoperators are
added.Here, we added a smaller noise than in themain text ( = - 10 8 rather than 10−4) to probe the behavior at large values of aD.

Figure B2.The accuracy of the evolution generated by the reconstructed dynamics as a function of time.We initialize the system in a
product state with all spins up.We thenmeasure the deviation between its evolution by the true dynamics ( )r t and its evolution by the
recovered dynamics rrec by themean local trace distance (red curve, see equation (B3)). For comparison, we also show themean local
trace distance between the true dynamics and the fullymixed state (green curve).
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B.4. Scaling of the reconstruction errorwith relative weight of loss in the dissipation
Weargued that figure 1(c) confirms the theoretical expectation that the reconstruction error scale as a-

L
2 when

theweight of loss relative to dephasingαL (see equation (12)) is small. However, the curve infigure 1(c) did not
show a clear power law for smallαL, since the reconstruction error approached large values of order 1.We thus
repeated these simulationswithweakermeasurement noise ( = - 10 8 compared to = - 10 4 in themain text),
and verified this power law over a wider range ofαL (figure B3).

AppendixC. Computing the steady state using variationalmatrix product operators

The steady state of the Lindbladian can be obtained by computing the eigenstate of the Lindblad operator 
corresponding to eigenvalue 0 (the systemwe studied has no degeneracy) [55, 56]. Internally the density
operator ρ is reorganized into a long vector and treated similarly to the state vector of a unitary system.Weuse
the variationalmatrix product operator algorithmproposed in [56], where the iterative procedure to search for
the steady state is done in the sameway as the unitary case, except that one keeps the eigenstate corresponding to
the eigenvaluewith smallestmagnitude instead of smallest algebraic value. For a systemwith 100 spins, we have
usedD=100 number of states (bond dimension) for our simulations.We obtained a steady state with
eigenvalue of the order 10−8, and residual ∣∣ ∣∣r » - 10 5. To check the convergence against differentDs, we have
done another simulationwithD=150, and compared the local observables sá ñj

z , obtaining amean error

∣ ∣s så á ñ - á ñ L »=
L

= =
-10j j

z
D j

z
D1 100 150

9.We also compared the distances between the reduced density

matrices with a patching size 6, and a patching spacing 4, and obtained amean error of the order of 10−8.

AppendixD. Stitching up recovered patches

Recall that the Lindbladian on each patch is only recovered up to amultiplicative scalar. Supposewe recover the
Lindbladian of two overlapping patches andwish to ‘stitch’ them together into one Linbladian acting on the joint
patch. In the absence of noise, the recovered Lindbladians of thefirst two patches would be given by

⎧⎨⎩
· ·
· ·

( )
 
 

+
¢ +
 
 

c c

c c ,
D1

l l m m

m m r r

wherem is the vectorof terms [hj andpairs ( )]l l,r s actingon theoverlapping regionof the twopatches; for the analysis
below,weassume that each individual recoveredLindbladian is normalized: ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣   

+ = ¢ + =c c c c 1l m m r
2 2 2 2 .

The coefficients
¢c c,m m of theoverlapping regionwill generically differ since theLindbladianoneachpatch isonly

recoveredup to amultiplicative scalar.We thereforeuse theseoverlapping coefficients todetermine the relative scaleof
the twopatches, bymultiplying theLindbladianof the secondpatchbya factorof ∣∣ ∣∣

∣∣ ∣∣


¢
c

c
m

m
:

Figure B3.Reconstruction error as a function of relative weight of loss in the dissipationαL.We repeated the simulations offigure 1(c)
with lowermeasurement noise = - 10 8 over awider range ofαL. The dashed line follows the equation = y x50 2, confirming the
theoretical expectation for the scaling of the reconstruction error with aD.
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· · ∣∣ ∣∣
∣∣ ∣∣

· ( )  



= + +

¢
   c c

c

c
c . D2l l m m

m

m
r rstitched

In fact, we also need tofix the relative signs of the two patches using a similar factor of
( )
( )


¢
c

c

sign

sign
m

m
, where the sign can

be determined e.g. according to the coefficient of afixed shared term.While this last detail is crucial for the
stitching process, it does not contribute to the recovery error due to noise, as long as the error in each patch is
small relative to its size, so that no coefficient flips its sign.

To recover the Lindbladian of a sequence of patches ¼ n1, , , we repeat this procedure iteratively and obtain

( )( ) ( )å=
=

  , D3n

j

n
n

stitched
1

patch

where

· · ( )( )  
= +  c c , D4patch

1
1 1 1,2 1,2

with 1,2 denoting the terms acting on the overlapping region of the first two patches. For any >j 1

⎛
⎝⎜

⎞
⎠⎟

∣∣ ∣∣
∣∣ ∣∣

( · · ) ( )( )



 =
¢

+
=

-
+

+
+ +  

c

c
c c . D5j

i

j
i i

i i
j j j j j jpatch

1

1
, 1

, 1
, 1 , 1

If each individual patch is recovered perfectly up to a correspondingmultiplicative scalar, this procedure yields
the full systemLindbladian up to a single overallmultiplicative scalar. However, noise introduces error in the
recovered Lindbladian of each individual patch:

   
d+c cj j j.

Error in each individual patch affects the overall stitched Lindbladian in twoways. One effect is a rotation of

each patch with respect to its true value, the j component pointing to
 

d+cj j rather than

cj. Since this error is

additive, it is absorbed in the normalization of  ;stitched assuming that the error is approximately uniform across

patches, ∣∣ ∣∣

d d»j , it leads to an overall error of order δ in the total stitched, which is independent of the number

of patches.
A second effect caused by the errors in the recovery of individual patches is a stretch of each patch. This effect

is induced through the errors’ effect on the relative scale factor
∣∣ ∣∣
∣∣ ∣∣


 =

-
¢
+

+i
j c

c1
1 i i

i i

, 1

, 1
. Assuming that the errors of the

different patches

dj are independent, this scale factor performs amultiplicative randomwalk,fluctuating from

its true value by a deviation of order dj . This ismost easily seen by taking a log:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

∣∣ ∣∣

∣∣ ∣∣

∣∣ ∣∣
∣∣ ∣∣

( )
 

 

 

d

d

+

¢ + ¢
-

¢=

-
+ +

+ + =

-
+

+

c

c

c

c
log log D6

i

j
i i i i

i i i i i

j
i i

i i1

1
, 1 , 1

, 1 , 1 1

1
, 1

, 1

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

∣∣ ∣∣
∣∣ ∣∣

∣∣ ∣∣
∣∣ ∣∣

( )
 


 

å
d d

=
+

-
¢ + ¢
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-
+ +

+

+ +

+

c

c

c

c
log log . D7

i

j
i i i i

i i

i i i i

i i1

1
, 1 , 1

, 1

, 1 , 1

, 1

Tofirst order in δ, each of these is an independent randomvariable with zeromean and standard deviation of
order δ:

∣∣ ∣∣
∣∣ ∣∣

( ˆ · ( ) ˆ ·

 


 

d

d d d

+

= + + »

+ +

+

+ + + +

c

c

c O c

log

log 1

i i i i

i i

i i i i i i i i

, 1 , 1

, 1

, 1 , 1
2

, 1 , 1

where ˆ ∣∣ ∣∣ 
=+ + +c c ci i i i i i, 1 , 1 , 1 . Therefore, the ratio between the true scale factor and its noisy version is given by

d̃e , where d̃ is the random variable given by equation (D7). Its standard deviation scales as d dj n , where n
is the total number of patches.While the order d2 correction is always positive, resulting in a drift, it sums up
across the patches to ( )dO n 2 , and is therefore higher order in dn . Thus, as long as dn 1, the Lindbladian
on each patch is stretched by a factor of atmost d»  n1 , leading to a total recovery error of order dn . This
explains the square root scaling of the error with system size seen infigure 3.
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