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Abstract

No community detection algorithm can be optimal for all possible networks, thus it is important to
identify whether the algorithm is suitable for a given network. We propose a multi-step algorithmic
solution scheme for overlapping community detection based on an advanced label propagation
process, which imitates the community formation process on social networks. Our algorithm is
parameter-free and is able to reveal the hierarchical order of communities in the graph. The unique
property of our solution scheme is self-falsifiability; an automatic quality check of the results is
conducted after the detection, and the fitness of the algorithm for the specific network is reported.
Extensive experiments show that our algorithm is self-consistent, reliable on networks of a wide range
of size and different sorts, and is more robust than existing algorithms on both sparse and large-scale
social networks. Results further suggest that our solution scheme may uncover features of networks’
intrinsic community structures.

Community detection is a central topic in network science. Pioneered by works represented by Pallaeral[1], in
recent years more and more studies focus on the detection of overlapping communities as opposed to exhaustive
communities, a division also regarded as soft-partitioning versus hard-partitioning. Besides relying on the
optimization of certain metrics, e.g. modularity [2], conductance [3], fitness [4], or aggregative metric based on
link prediction algorithms [5] etc, as the extensively-studied traditional approach for detecting exhaustive
communities, for overlapping communities, a lot of new tools are designed based on various ideas, including
link communities [6, 7], clique percolation [8], seed set expansion [3, 9—12], label propagation [13-16], local
spectral clustering method [17], and methods based on statistical inference, such as Infomap [18], the stochastic
block model (SBM, [19, 20]; in particular, methods adopting the belief propagation algorithm [21, 22]), and
other generative models [23, 24].

Despite the success of different solution schemes on various application fronts, some weak points of existing
community detection algorithms could be pinned down in practice, which we believe might be problematic in
certain cases (see appendix A for a detailed discussion). These weaknesses include: (1) many solution schemes
are over-parameterized, and in some cases the tuning of parameters depends largely on unwarranted heuristics;
(2) many scalable methods based on the seed set expansion process [2—4, 9, 25-28] may lack well-designed
seeding strategies [10, 11, 29] and often rely on ad-hoc strategies; (3) some algorithms that claim to be local, as
opposed to methods based on an optimization over the entire graph, in fact still optimize on the community
level and thus do not guarantee complete locality; (4) the number of communities in the graph is often pre-
determined in certain algorithms, which might not be a good treatment, despite its claimed advantage [30] and
the possible determination by the non-backtracking matrix [31]; (5) the overlapping communities revealed by
some algorithms are in fact still exhaustive in their corresponding link communities [6], which should not be an
implicit constraint imposed by algorithms; (6) in many cases, the revealed communities do not follow any order
and instead are treated as of equal significance to the graph (‘blended’ [30]), which may deviate from realistic
situations; (7) most algorithms assume that all nodes in the graph should belong to at least one community,
without taking care of those isolated nodes that do not have any community membership [32-35]; (8) finally, a
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Figure 1. [llustration of the integrated belief underlying the proposed detection scheme.

notification of the quality of detection results is not incorporated in most algorithms, failing to indicate the
inevitable limited applicability of the method.

In arecent study, Peel et al [36] showed that, community detection is such an ill-defined problem that
intrinsically no algorithm could be the optimal solution for all tasks, essentially a variant of the No-Free-Lunch
theorem. Although this result seems to make the probe of community detection algorithms less meaningful, we
argue that various streams of community detection ideas have embodied valuable beliefs for solving this
problem and it is still useful to devise new approaches that inherit and combine the successful ideas of previous
attempts. However, the most important lesson from [36] is that, as noted by point (8) in the above discussion,
when implemented on an arbitrary graph, a reliable community detection scheme should be able to indicate the
extent of its applicability on the specific network, i.e. the extent of imperfectness of its detection results. We
believe that this property of self-falsifiability is an important missing piece in most existing algorithms.

Aiming at circumventing these weaknesses, correspondingly, we formulate our integrated belief for the
overlapping community detection problem, with an emphasis on social networks where nodes represent human
beings. This emphasis implies that the determination of community membership should incorporate behavioral
features, rather than being a completely mechanical process. We conclude important insights from multiple
streams of existing algorithms [30] and integrate them into our belief; some extra attention to propagation-
based approaches is paid, which are missing in [30] yet play a key role to account for the dynamic nature of social
networks. The integrated belief consists of six aspects and is sketched in figure 1.

(i) Overlappedness. One node could be able to belong to multiple communities, and its ‘strength’ in different
communities, e.g. in terms of the degree of attachment, should not be assumed to be homogeneous over its
multiple memberships. Meanwhile, the corresponding link communities derived from the nodes’ overlapping
community assignment, should not be assumed to be exhaustive. One link could belong to different
communities, such that the overlapping of communities should allow two communities to share a finite part of
their components (e.g. [37]), consisting of both nodes and edges, as opposed to the case in [6, 7].

(ii) Different roles of nodes. Depending on the roles in communities, nodes in a typical social network may fall
into five categories: hubs (sources), inner members of communities, boundaries (sinks), leaf nodes, and isolated
nodes. Communities are initiated by hubs, but are finalized by sink nodes who set the boundaries, which are
nodes that belong to more than one communities. Edges are not natural boundaries of communities, as implied
by (i). Isolated nodes belong to no communities; leaf nodes have only one neighbor and thus play a trivial role in
the detection process.

(iil) Behavioral locality. In social networks, it is difficult for nodes to be acknowledged with information
regarding the entire graph, even information regarding the other part of their communities. Therefore, in
human networks the decision of (elementary, as apposed to aggregated) community membership should be
local, following behavioral rules on nodes, instead of being derived from any optimization standpoint.

(iv) Propagatory formulation of communities. On social networks, communities emerge along the
propagation of information and action, hence methods imitating the propagation process (e.g. the gradient flow
[38]) have the advantage in revealing community structures. Many nodes could be the source (seeds) of the
propagation, while some of them are dominated by others and only a few could be successfully identified as
hubs. During the propagation, each node should be associated with a finite memory [39], recording the history
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of infections it receives from multiple communities. The determination of the community membership as well
as the strength of the membership emerge from the infection history.

(v) Order of communities. Communities on graphs should follow a hierarchical order [4, 26, 40—43]:
iteratively, the aggregation of small communities gives rise to bigger communities, and the entire graph is the
single ultimate community.

(vi) Self-falsifiability. The applicability of any community detection algorithm is limited [36]. When
implemented on graphs with an arbitrary topology, detection algorithms should be able to quantitatively
indicate the quality of the detection results, due to their varied applicability on specific graphs. In particular, a
reliable detection algorithm is supposed to notify its potential failure on certain networks.

Based on our integrated belief, we proposed a multi-step [12, 35] algorithmic solution scheme for
overlapping community detection. Our approach is in line with the DBSCAN algorithm [44—46], the SHRINK
algorithm [34], and the idea of gradient flow in the hierarchical landscape of complex networks [38], but having
amore transparent and better quantified workflow, along with two new features: parameter-free, and self-
falsifiable. The framework consists of four steps. First, nodes are identified with different roles in the graph based
on their centrality scores, among which nodes having local centrality peaks are detected as the hubs (sources) of
end-communities. Next, a diffusive label propagation process is initiated, starting simultaneously from all hubs,
and spread on the entire graph. The determination (expansion) of end-communities converges at the end of the
propagation process. These two steps echo with the gradient flow and the identification of nodes’ role in [38].
Third, the distance matrix of end-communities is calculated, which facilitates the construction of the
community hierarchy by aggregating end-communities in an upward fashion along the distance matrix. The
entire graph becomes the ultimate community on the top of the hierarchy. In the end, the quality of the obtained
community hierarchy is automatically checked and quantitatively indicated after the detection, and suggestions
for the cutoff levels of the community hierarchy are provided. Details of the four steps of the detection scheme
are discussed in the next section. Performance of the algorithm is studied and discussed in the following sections.

Multi-step detection algorithm

Step 1: Identification of nodes’ roles. Assume a graph with N nodes and E edges. Given the connectivity matrix

A = {aj;} of the graph, first we calculate the centrality scores ¢; of each node i, and find the set of nodes whose
centrality score is local peak, i.e. whose centrality is o less than all its neighbors. In theory, different kinds of
centrality measures could be used. Path-based centralities such as betweenness centrality or closeness centrality
may not be suitable for our current setting; density-based measures such as degree centrality and eigenvector
centrality are more appropriate to apply. Among these nodes that are local peaks, those whose centrality is strictly
greater than at least one neighbor are identified as source nodes (hubs); in the rare case, nodes having the same
centrality score as all its neighbors are considered as isolated nodes”. S is the set of hubs, each of which is the core
of an end-community, and | S| is the number of end-communities.

Correspondingly, find the set of nodes whose centrality score is local trough, i.e. whose centrality score is
smaller than all its neighbors. Among these nodes, those that are not leaf nodes (only having one neighbor) are
identified as sinks; each node in this category has at least two neighbors that have great centrality scores who
could pass the end-community label to it (see Step 2). Since these nodes decide the stopping of the label
propagation, some of them determine the boundary of end-communities, while other sinks lie strictly in the
community. The remaining nodes in the graph are inner members of communities who are neither the local
maximum nor the minimum of the score. Note that the above definitions should be distinguished with nodes’s
overlappedness: sinks are not always belong to more than one community, and only those sinks lying in the
boundary of communities have multiple community membership (i.e. ‘cross-overs’); in the similar sense, inner
members could also belong to more than one communities.

Therefore, based on the centrality measure relative to its neighbors, each node is identified with one of the
five roles: hubs (sources), sinks, inner members, isolated nodes and leaf nodes (figure 1). Each hub defines an
end-community. Isolated nodes are very rare and sparsely distributed in the graph and we assume that they do
not have community membership; they could always be allocated to neighboring communities if one seeks to
eliminate this category.

? Except for the specific situation of ‘centrality cliques’. As an extended concept from the common ‘cliques’, this corresponds to a situation
where a group of fully connected nodes have the same centrality scores. In this case, under our definition all nodes would be identified as
isolated nodes. However, although none of them is a strict peak in centrality scores, such a clique of nodes should essentially constitute an
end-community. Therefore, in such situations one node from the centrality clique is identified as a hub, and a small value is added to its
centrality score to make sure the propagation in the following step is successful (Step 2); this treatment makes no further impact. The rest of
the clique are identified as inner members of this end-community.
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Step 2: Determination of end-communities. Assign a different community label s on each hub, and initiate a
diffusive label propagation process simultaneously starting from all hubs in S. The membership of a specific end-
community sis represented by a tuple x; = {(i, t)}, which records that node i joins the community at time ¢.
Correspondingly, every node i is associated with an infection history (memory) tuple h; = {(s, ¢)} thatrecords
the label sit receives at time . The two tuples X = {x,} and H = {h;} are updated in the propagation process.
Note that the synchronization of label propagation is guaranteed in our algorithm by using ¢ to record the
timestamps of the label infection, instead of only recording the incident source of infection, as in [39].

To the first order, we assume that nodes only infect their immediate neighbors. The propagation rule is: at
time ¢, starting from node i with current community label s, for a different node j, if a;; = 1and ¢; > ¢j,add (s, ?)
to hjand (j, t) to x,, when (s, V't) & hj(sameas (j, V1) & x,). In other words, there will be a successful infection
of the community label, if and only if the incident node’s centrality score is greater than the target node, an
immediate neighbor of it, and the infection will be recorded when this is the first time the target node received
this community label. The label propagation will not take place between two nodes having the same centrality
score, which is consistent with our definition of isolated nodes (they are insulated from any infection).

At each time step, the label propagation will spread to all neighbors of the newly infected nodes (except the
infector of the previous step, since its centrality score is higher). The propagation of a certain label will stop at
those directions where the neighbors to be infected have a higher centrality score, or the neighbors are already
infected by that label (hence the infection history H is non-repetitive). In the most extreme case where the
graph has a strict tree structure of centrality scores, the label propagation will take at most g time steps, where g is
the longest path length of the graph, and the length of the infection memory hisat most N — 1.In practice, the
propagation could stop after only a few time steps, when all the community memberships X = {x,} (or
equivalently, the infection history of all nodes H = {;}) do not change, i.e. no new community label is assigned
to any node. The propagation process is sketched in algorithm 1.

Hrecords the information of nodes’ overlapping community membership. For node i, if |H;| = 1,itonly
belongs to one community; if |H;| > 1, it belongs to more than one community and is thus a ‘cross-over’. From
Xand H, we could qualify the overlappedness of communities in the graph by two metrics: (1) the average
community membership of all nodes (average length of the non-repetitive infection history) m;,, and (2) the
average size of end-communities m,. The two metrics are related by:

my = % My. (1)

Notably, one advantage of recording the infection history H is that, for nodes belonging to multiple
communities, their strength to different communities could possibly be indicated by the infection time #: a small
tin (s, £) means that the node is near to the hub s, thus having a large strength to this community, and vice versa.

Step 3: Aggregation of small communities. Communities join each other and form bigger ones when they are
close enough. We assume that the distance between end-communities is represented by the distance of their
hubs, and thus formulate the distance matrix Ry over end-communities, where each entry rgq is the shortest path
between two hubs p and g:

RO = {rgq} = {dshortest path(py q)}: b, q c S. (2)

If no path exists between p and g (in the case of sub-components; the graph is not fully connected), we set
rgq = djy¢ (in practice, di,¢is an extremely large number). The distance matrix Ry is |S| X |S|, whose diagonal
elements are all 0 and off-diagonal elements are positive integers. Now we aggregate end-communities by
iteratively rearrange the distance matrix Ry. Find two hubs (two rows in the matrix) with distance e = 1and
replace them with a single merged node in the matrix (not on the graph); for any unaddressed node, take the
maximum of the two original distances in the matrix Ry as the new distance between the node and the aggregated
new node. Repeat until all ¢ = 1 elements in the Ry matrix are detected and replaced. This procedure iteratively
reduces the size of Ry and update the matrix; in the end, larger communities (¢;-communities) are formed out of
end-communities and we obtain the new distance matrix R;. Using the same approach, we then formulate
€;-communities and Ry, up to the final € jm -community and R = [0, d™*; d™*, 0], where d™**is the
largest shortest path distance between the hubs in the graph, i.e. the largest element in Ry. For conveniences, we
Write € jmex as €max and R as Ryax. In the end, a hierarchy of communities is obtained through this upward
iterative aggregation of small communities, whose distances are represented by a series of matrices R,

Ry, ... Ryax of gradually reduced sizes. This step is summarized in algorithm 2 and illustrated in figure 3.

Note that our algorithm naturally takes care of input graphs that are not fully connected through d;,¢: during
the iterative reduction of R, once we find that at a certain stage, all off-diagonal elements of R equal d;g, it
suggests that the remaining communities are the sub-components and could not be further combined, and thus
the aggregation process stops, with d,,, indicating the largest diameter of the subcomponents of the
unconnected graph.
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For integer € ranging from € to €x, a different number of communities (the size of R, |) remain at each
value of e. The ¢ < |R,|relationship demonstrates the nature of the community hierarchy; turning points of the
slope of the € <~ |R,|curve could be used in practice to suggest the cutofflevel of the obtained community
hierarchy (see Results and discussion).

Step 4: Quality check of the hierarchy. Calculate the Jaccard index matrix J between each pair of end-
communities whose hubs are p, g: J = {j, }, whichis an index characterizing the similarity of two groups of
nodes. The automatic quality check of the detection results is carried out relying on the Jaccard matrix J. In the
previous step, we aggregate small communities based on the distance of their source nodes; conceptually, one
may propose an alternative aggregation rule: iteratively aggregate small communities that have the most overlap,
indicated by the Jaccard index. However, one problem arises with this plausible treatment: it may almost always
lead to a strictly binary hierarchy that at each step, only one big community will be formulated out of exactly two
small communities, since the Jaccard index is a real number. By contrast, our (integer-valued) distance-based
aggregation rule allows that at each stage a few mergings take place. In other words, an overlap-based merging
rule will almost always result in a hierarchy with |S| — 1 stages and therefore formulate a dendrogram, whichisa
binary-tree structure [40], whereas our distance-based merging rule is more flexible and may be able to yield a
much tighter hierarchy (k-ary tree).

Algorithm 1. Propagatory formulation of end-communities (Step 2).

1: Initialize X, H.

2: Inputadjacency matrix A = {a;;} and calculate nodes’ centrality scores C = {c;}.
3: Identify the set of hubs for end-communities S (Step 1).
4:t=0

5: while t < t,,x do

6: t=t+1

7: forV community s € S do

8: forV nodeis.t. (i, t — 1) € x,do

9: forV nodejs.t. a; = land ¢; > ¢; do
10: if jnotin community s then
11: Add (j, t) to x,

12: Add (s, ) to h;

13: endif

14: end for

15: end for

16: end for

17: if H (or X) not change then

18: break

19: end if

20: end while

21: X, H, tj;,, obtained. Calculate m,, m,.

Nevertheless, we could utilize the Jaccard index to check the quality of our distance-based mergings. Under
our distance-based rule, at each merging, i.e. combing two communities p, g into one p + ¢, the Jaccard index
Jpqis not necessarily the largest element in the matrix J (i.e. p and g do not necessarily have the most overlap
among the pairing of all communities); however, to be considered a good merging, one idea is that it should be
satisfied that the Jaccard index between the two communities p, g to be merged, must be larger than the index
between one community out of p, g and any other community at the current stage that is not going to be further
merged with pand g (i.e. whose two distances to p, q are not both the same as r,;). This means that, the merging
of p and g will be considered good (i.e. consistent with overlap-based heuristics), if and only if all the other
communities that have more overlap with p or with g are going to be further merged with p and g at this e stage,
or equivalently, no community that has more overlap is not to be merged. We call this condition as J-D
consistency, which is formally stated as:

J-D consistency: j;q > j;z and j;q > j;z, Vz € HR. st.ry, > rp, or 1o, > 1y, (for a certain €), (3)

where HR, denotes the set of communities obtained at a certain € level of the hierarchy (i.e. in the beginning,
HR, = S;intheend, |HR,, | = 1for connected graphs). If the above J-D consistency is satisfied, the merging at
this step is considered as a good merging. Hence, by this means, we are able to indicate the quality of the obtained
community hierarchy (thus the quality of our detection workflow) by a J-D consistency factor ®, which is the
number of good mergings (condition (3) satisfied) normalized by the total number of mergings |S| — 1. Since
the merging events in the last round (round e,y are always J-D consistent, they are subtracted from both the
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numerator and the denominator of the ratio, and we have:

S ~lcard(J-D consistent),

P = == . 4
|HRo| — |HR,, 1l

Note that ® is applicable only when |HR| = |HR,,_ _1|,i.e. there are atleast 3 level of communities in the
hierarchy. During the merging process, the Jaccard index matrix J is recalculated at each stage, and the
dimension reduction of J is in accordance with the dimension reduction of R (algorithm 2). In practice, each
merging event is associated with a Boolean variable indicating its J-D consistency, and therefore at each €, we are
able to calculate the &, at that level, which is a component of the final ®. The curve ¢ «<» @, also helps the
determination of the cutofflevel of the community hierarchy (see Results).

The metric ® provides the algorithm with the desired property of self-falsifiability. If & = 1, our distance-
based merging rule is perfectly consistent with the overlap-based rule. A large ® indicates that the establishment
of the community hierarchy obtained from the detection workflow embodies a large proportion of good
mergings, in the sense that two communities whose hubs are shortest-distanced are also having the largest
overlap, so that the aggregation of them is double credited. By contrast, a small ® implies that the aggregation
process mostly consists of bad mergings, in which the two merging heuristics often do not coincide; therefore,
our detection scheme may not be suitable for the specific graph.

Itis discrete to argue that, however, the utility of metric ® should not be overstated. Itis not universally
applicable, as atleast 3 level of communities in the hierarchy (with the last level being the whole graph) should
exist for the metric to be useful; this condition asks that the distances between all hubs should have at least two
values. Moreover, the metric is more useful in signaling good detection results than denoting bad ones: while a
high ® could largely suggest great detection results according to J-D consistency, a small & does not necessarily
indicate a bad detection, as J-D consistency is only characterizing a single aspect of the results.

Computational complexity
Consider the graph with N nodes and E edges. The time complexity for calculating the centrality measures is O
(N) for degree centrality and O (N log(IN)) for eigenvector centrality. After the centrality scores of all nodes have
been obtained, at Step 1, the identification of nodes’ roles is realized by comparing each node’s centrality score to
all its neighbors; this procedure incurs a time cost O(E). At Step 2 (algorithm 1), during the last iteration, every
node in every community is visited, with each visit accessing all the node’s neighbors. This corresponds to 2E
visits at this (last) iteration, and therefore the entire time complexity of Step 2 is O (5, E) = O(E). Intuitively,
the propagation is always along the descent of centrality scores, so it is one-way; since labels propagate
simultaneously from all hubs, one could thus identify a topological order of all nodes (with time O(N+E)) and
define accordingly a directed acyclic graph (DAG). Along this DAG, the propagation could be performedina
synchronized one-pass following the topological order, and each node is visited exactly once. Overall, the time
costis O(E). Steps 3 and 4 are carried out at the same time in algorithm 2. The time complexity of algorithm 2
depends on the dimension of the matrix Ry, which is determined by the number of end-communities (i.e.
number of hubs) |S]. The |S| x |S| matrix Ry gradually degenerates into the 2 x 2 matrix Ry,,, with the
minimum element in the R matrix detected at each stage; therefore the time is upper bounded by O(|S|?), as is
also the time complexity for calculating the shortest distance between the hubs of end-communities in the
formulation of R,,.

After all, the computational complexity of the entire algorithm t,)4, is (using degree centrality at Step 1;
assuming |[E| > N ):

tago = O(N) + O(E) + O(tsnE) + O(ISI*) = O(tsnE) + O(ISP). ©)

In practice (see Results), tg, is always very small, and one could often set up a small #,,,,, to let the detection
finish early by cutting off nodes’ membership to remote communities; this treatment will not influence the final
detection results in most cases. |S| is also very small, normally a tiny fraction of N, and |S[* is unlikely to exceed N.
Therefore, the computational complexity of our algorithm is effectively O(E) when using degree centrality as the
measure (figure B1) , which is fast on real networks where node connections are often not dense.

Computational superiority

A few advantages of our algorithm could be highlighted in computation. First, by recording the timestamps of
the infections, the label propagation process in our framework is synchronized. This advantage prevents the
numerical error incurred by unsynchronized algorithms (e.g. the original label propagation [15]). Next, Steps 2
and 3 of the algorithm could run in parallel after Step 1, although Step 4 and the determination of the cutofflevel
of communities still need to be carried out after Steps 2 and 3 are finished. Last, as demonstrated, the
computational time of our algorithm is linear with the number of edges, which is a desirable feature for its
application on massive real-world social networks. This is achieved by (1) the one-way propagation (hubs to
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surroundings) of labels with stops at centrality sinks (Step 2), which is notably faster than existing label
propagation algorithms without a one-way formulation (quasi-linear with the number of edges), and (2) the
iterative dimension reduction of the distance matrix of communities, which in practice often takes only a few
steps to degenerate into the final matrix.

Results

We applied our community detection scheme to networks of a wide range of size and various sorts (table 1).
Degree centrality is used as the centrality measure in the detection; tests show that using eigenvector centrality
often fails to identify enough hubs for end-communities, and the computational cost for calculating eigenvector
centrality for large scale networks is often prohibitive. In our experiments, the propagation process (Step 2)
converges after a few number of iterations (f5, < 22) on all tested networks. Besides the proportion of nodes of
different roles, we calculate the proportion of nodes that belong to multiple end-communities, i.e. the ‘cross-
overs’. Notably, these cross-overs are only with respect to end-communities; expectedly, with respect to
aggregated communities up in the hierarchy, the number of cross-overs would be smaller, as some of them
might no longer have multiple memberships once small communities are aggregated. We used small real
networks (Karate club network [47], Dolphin network [48]) and synthetic networks (LFR benchmark network
[49] and Erd6s Rényi (ER) random network [50]) to demonstrate the detailed procedures of our detection
scheme and show the important ¢ <= A|R.|and ¢ < &. relationships constructed along the formulation of the
community hierarchy (figures 2—4). We then apply the algorithm to a panel of large real networks to carry out
horizontal discriminative analysis. A number of notable features emerged from the detection results, which
demonstrated the self-consistency and robustness of our algorithms; meanwhile, a few unexpected interesting
phenomena regarding the intrinsic structure of networks are uncovered (figures 5-6).

Algorithm 2. Determination of the community hierarchy (Steps 3 and 4).

1: Calculate Ry, Jo. Obtain €, from R,
2: ¢=0,9 =0, HRy = S.

3: while € < €. do

4: e=¢€e+1

5 while true do

6 Find the e-element of R, whose position is (p, q)

7: if no e-element found then

8 break

9 end if

10: Update the community hierarchy HR:

11: Remove the communities indexed by pand q from HR,_;.

12: Merge the two communities into a larger community p + gand add to the hierarchy.
13: Update the distance matrix R:

14: Remove the columns and rows {p, g} from R,_;.

15: Add anew row and a new column denoting the merged community p + q.
16: d(r, p + q) = max(d(r, p), d(r, q))

17: if J-D consistency satisfied then

18: =0+ 1

19: Record the J-D consistent merging event.

20: endif

21: Update the Jaccard matrix J.

22: end while

23: Re-1— R, HR—y — HR., Jeo1 — Je

24: Calculate @..

25: ifall off-diagonal elements of R, equal d;,,sthen

26: break
27: end if
28: end while

Karate club network. The two centers (node #0, Mr. Hi; node #33, the officer) in the network are
successfully identified as the only two hubs (blue nodes; figure 2, left top), around which two end-communities
(obviously, the only non-trivial communities in the 2-level hierarchy) are determined (figure 2, left bottom).
Although our algorithm detects overlapping communities while the ground truth communities of the Karate
club network are disjoint, the detection results recover the ground truth to a great extent (figure 2, right). First,
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Table 1. Summary of detection results. ‘ISO’ stands for ‘isolates’; ‘CO’ stands for ‘cross-overs’. Networks with star marks are not fully connected. On each network, self-edges and nodes with degree 0 are removed, a trivial modification to
the original graph in all cases.

Network #Node #Edge #Hub #Sink #ISO #Leaf #Inner #CO thn my, My Emax P
Karate Club 34 78 2 16 0 1 15 17 5 1.5 25.5 2

Dolphin 62 159 5 12 0 9 36 38 5 2.08 25.8 4 1
LFR(3,1.2,0.1) 1000 2153 79 324 1 5 591 637 8 2.05 25.9 10 0.25
Facebook users 4039 88 234 5 621 0 75 3338 3081 13 2.00 1617.2 6 0.333
Enron email* 36 692 183 831 483 8640 530 11211 15 828 32173 16 3.65 277.2 11 0.431
Brightkite” 58 228 214 078 682 12 259 49 21 157 24 081 55610 12 291 248.5 16 0.262
CA-GrQc”* 5241 14 484 298 851 185 1197 2710 3470 13 3.74 65.8 13 0.308
CA-HepTh* 9875 25973 341 2123 184 2109 5118 8197 14 8.00 231.6 15 0.232
CA-HepPh* 12 006 118 489 172 2605 170 1493 7566 5383 17 1.59 110.9 11 0.473
CA-AstroPh* 18 771 198 050 185 3909 281 1282 13114 18 054 8 1.94 196.8 11 0.4
CA-CondMat* 23133 93 439 442 4717 447 2373 15154 21134 15 9.38 490.9 13 0.286
Deezer-RO 41773 125 826 1051 9221 5 5430 26 066 38 621 18 31.10 1236.3 17 0.119
Deezer-HU 47 538 222 887 450 10 494 0 2701 33893 46 506 20 112.31 11 864.7 12 0.054
Deezer-HR 54573 498 202 64 11 035 1 2330 41143 54 455 19 40.43 34 473.1 10 0.145
FB-artist 50 515 819 090 30 14 570 0 3124 32791 50 456 11 3.96 6673.7 10 0.214
FB-new sites 27917 205 964 179 7762 0 2137 17 839 27 351 18 14.33 2234.4 12 0.250
FB-company 14113 52 126 341 3602 3 2358 7809 12758 18 25.38 1050.4 13 0.200
FB-athletes 13 866 86 811 43 4715 0 1240 7868 13 623 19 16.72 5391.7 8 0.105
FB-government 7057 89 429 15 1894 0 355 4793 7021 15 4.15 1951.8 9 0.385
FB-politician 5908 41 706 60 1845 0 600 3403 5534 14 8.03 790.3 12 0.155
FB-public figure 11 565 67 038 129 3239 0 1912 6285 11 101 16 6.83 612.7 13 0.268
FB-tv show 3892 17 239 153 997 0 611 2131 3036 11 3.62 92.2 17 0.291
Gowalla 196 591 950 327 1266 49 295 9 49 452 96 569 186 616 22 3.97 616.5 14 0.156
Amazon 334 863 925 872 17 837 120 277 71 25709 170 969 180 783 14 2.30 43.2 16 0.193
DBLP 317 080 1 049 866 2965 68 403 1 43 181 202 530 294 878 25 56.1 5999.2 19 0.156
ER(p=0.1) 50 124 5 12 0 1 32 29 5 1.94 19.4 3 0.333
ER(p=0.01) 500 1241 47 109 0 17 327 382 7 4.03 429 6 0.089
ER(p=10.001) 4956 12 301 487 1159 0 190 3120 3851 9 4.78 48.7 8 0.050
ER (p =0.0001) 49 661 124 959 4638 11 643 1 1732 31647 38 737 10 4.87 52.1 11 0.044
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Real | Dt.ed || Real | Dt.ed
Mr.Hi | Mr.Hi || officer | officer
0 0(0) 33 33(0)
1 1(1) 32 32(D)
2 2(1) 31 31(1)
3 3() 30 30(1)
4 4() 29 29 (1)
5
6
7

SO | 28 [ 28()
6() | 27 [27(1)
() |26 | 26(1)
8 8(1) | 25 |25(2)
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24(2) 19 (1)
25(2) 2(2)
27(2) 13)
28(2) 31(3)
30(2) 7(3)

12 (4)

17 (4)

21 (4)

Figure 2. Detection results on the Karate club network [47]. Left top: nodes’ different roles. Blue, red, green nodes are hubs, inner

members and sinks, respectively. Left bottom: two end-communities detected. Right: detection results compared with the ground
truth.
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Figure 3. Detection results on the Dolphin network [48]. Leftmost: 5 end-communities. Rightmost: iterative reduction of the distance
matrix R and aggregation of small communities. Middle top: nodes’ different roles and the two ¢,-communities. Blue, red, green
nodes are hubs, inner members and sinks, respectively. Middle bottom: the obtained community hierarchy and the € < |R|
relationship. Tick marks indicate the satisfaction of J-D consistency of merging events; all four mergings are J-D consistent.

the two overlapping communities of our results (second and fourth column) strictly contain the ground truth
(first and third column). Second, as in our detection process each community assignment is associated with a
timestamp, one may decide that the earlier the node joins the community, the larger its strength to this
community is. Therefore, by abandoning the nodes that have lower strength to the communities (i.e. nodes
having large values in the timestamp), it is possible to further compare the (truncated) overlapping communities
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LFR (n = 1000)

7=3,1,=12,p=0.1

# planted communities: 17
# € = 5 communities: 16

7"\
\\5,_‘
e b eoggan 20 g
e S T —
o L o 20 0.5 54
3@* h Aao 2 4 5 6 71 8 9 |0[l

Det. Ground Truth Pre. |Det.| | |GT,| Rec.
A |[8, 8] #8 1 20 90 18 0.90
B | [16,16] #16 1 9 21 9 1
C | [14,14,14] #14 1 19 28 16 0.84
D | [10,10] #10 1 24 22 21 0.95
E |[12,12,12] #12 1 41 45 33 0.80
F |[13,17,17,17] 07 | 075 102 | 59 53 | 0s0
G [[7,7.7.7 #7 1 25 28 25 1
H |[9,12,9,9] #9 0.75 52 31 31 1

] [1,1,1,1,1,1, 1511 # 1 301 11 109 0.95
) [13,13,13,13,13,13] #3 1 48 62 40 0.83
K |[11,5,5,5] # 075 156 97 97 1
L |[16,8,17,4,17,2,2,2] |#2 0.38 437 62 30 0.48
M | [15,15,15,15,15,15] #15 1 39 37 37 1
N |[3,3,3,3,3,6,3] # 0.86 83 17 64 0.83
0 |[6,6,6,6,6,6, 6] #6 1 68 54 48 0.89
P |[3,8,11,8,2,2,8,8,8] |#8 0.56 219 90 75 0.83
Precision in the majority vote (hubs): 0.84 Adjusted Recall (all): 0.88

Figure 4. Detection results on the LFR benchmark network (N = 1000, 7y = 3,7, = 1.2, u = 0.1) [49]. (a) Nodes’ different roles.
Blue, red, green, yellow nodes are hubs, inner members, sinks and isolated nodes, respectively. There are 17 planted communities in
the ground truth. (b) The obtained community hierarchy, built up from 79 end-communities (white nodes) to the entire graph (the
rednode),and € < A|R,|(red)and ¢ < & (yellow) relationships. An optimal cutofflevel could be determined at e = 5, where there
are 16 detected communities. (c) Comparing the planted communities with the ¢ = 5 detected communities, showing the precision
for hubs in the majority vote and the (adapted) recall for all nodes in the 16 pairs of detected /planted communities (see text).
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Figure 5. Identification of nodes’ different roles (Step 1) and the J-D consistency factor (Step 4) on various networks. Random
networks shown in red; real networks in blue. (a) ®, (b) proportion of hubs (|S|/N), (c) proportion of sinks, (d) proportion of inner
members. ® and |S|/N can effectively signify random networks. Interestingly, the proportion of sink nodes in the graph shows a very
small variance across all networks and centers around 25%. No similar feature exists in the proportion of either hubs or inner
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with the ground truth. Specifically, when only considering the nodes that join the community before time t = 2,

our detected communities deviate from the ground truth by a small margin (entries in red; figure 2, right). When

compared with the community results on this Karate club network in [38], whose ideas have common grounds
with the current study, our results demonstrated a better recovery of the ground truth. Also note that the need to
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Figure 6. Critical metrics of the obtained community hierarchy. (a) Average community membership of each node; (b) average
community size, as a proportion of the size of the network. Green: Deezer networks; orange: Facebook networks; grey: arXiv
collaboration networks. In (a), names of the Facebook network category are labeled in text; some values of 1, lie beyond the limit of
the y-axis and are shown in numbers, with arrows indicating their network indices. (c) Propagation timestep tg,, (blue, left axis) and
the largest distance between end-communities €, (red, right axis), as a function of the network size (in logarithm).

add random perturbations to the energy function (i.e. the centrality score in our case) for the gradient flow in

[38] is dismissed in our study.

Dolphin network. The Dolphin network contains 62 nodes, among which 5 are identified as hubs (blue
nodes; figure 3, middle top) for the corresponding 5 end-communities (figure 3, leftmost panel). The iterative

reduction of the 5 x 5 distance matrix R, and the sequential aggregation of small communities are

demonstrated in detail (figure 3, rightmost panel). Red marks show the communities that are aggregated at each
stage of e. The community hierarchy is obtained at the end of this iterative process (figure 3, middle bottom). In
each of the four merging event, the J-D consistency condition is satisfied (right marks; figure 3, middle bottom),
and thus the consistency factor & = 1. From the ¢ <+ A|R,]|relationship, one can see that a proper cutoff level
for communities is ¢ = 2, and the corresponding two €;-communities are shown. Such a cutoffis chosen
because the community membership does not change at the following e = 3 level, indicating that e = 2 maybe
a characteristic distance between communities. This example shows that local peaks on the € <» AR, | curve
could be considered as the cutofflevel on the final community hierarchy.
LER benchmark network. We applied our detection algorithm to a LFR benchmark network of 1000 nodes
(1 = 3,7, = 1.2, u = 0.1) with 17 planted communities. Our algorithm identified 79 end-communities (blue
nodes; figure 4(a)) during a propagation process of 8 time steps. The formulated complete community hierarchy
demonstrates the gradual build-up of large communities from smaller ones (figure 4(b)). The ¢ <» A|R.|and
€ <> @ relationships are obtained along the formulation of the hierarchy. It shows that frome = 4toe = 5,
there is a trough in the change of the community hierarchy (red curve), and the J-D consistency factor arrives at
alocal peak around e = 4 and € = 5 (yellow curve). They suggest that ¢ = 5isa good cutofflevel, at which stage
there are 16 communities detected, indicating a good recovery of the synthetic ground truth (17 communities).
Then we compared the ground-true LFR communities (‘GT.”) with the detected communities at the e = 51evel
(‘Det.”). We conducted the comparison in two ways (figure 4(¢)). First, for each aggregated ¢ = 5 community
with a few hubs, we identify the planted LFR community label of each hub, and regard the majority vote of these
labels as the ground-true community label (with the # marker, figure 4(c)) of this € = 5 community; for the 16
detected ¢ = 5 communities, we thus discover 16 corresponding planted communities out of the 17 ground
truth labels. It is shown that in most cases different hubs from a certain ¢ = 5 community belong to the same
ground-true LFR community, and the precision for all 79 hubs with respect to the majority vote is as high as
0.84. Second, we compare the planted LFR communities with the complete aggregated communities ate = 5.
For each pair of the detected ¢ = 5 community and the corresponding ground-true community, we calculate the
recall factor, dividing the intersection of the two sets (N, figure 4(c)) by the minimum size of the two sets
(underlined, figure 4(c)); in the end, the overall recall factor for all 16 pairs of communities is 0.88, suggesting a
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very good overlap between the detected and the ground-truth structures. Although comparing two sets of
communities of different numbers (17 versus 16) and different conditions of overlappedness, nevertheless, this
detailed comparison and the large values of the two factors indicate that our algorithm is reliable in revealing the
LFR planted structures. During the experiments, a number of different LFR networks were synthesized and
tested, including some with overlapping communities, although the overlappedness of these generated LFR
communities are very trivial (e.g. ~10 nodes out of 500 nodes are overlapping). Various tests show that the
option of overlapping or not makes very little difference to the detection results, and our algorithm’s
performance is in general invariant at both cases. During extensive experiments on LFR networks, our algorithm
yielded similar performances to the one demonstrated in this example; notably, the two cutoff criteria always
agree with each other and the suggested number of communities is always close to the ground truth.

ER random network. We tested our detection algorithm on ER networks; a reasonable community detection
method should be able to discover that these network do not contain significant community structures. Multiple
ER networks are synthesized, with (, p) selected such that the number of nodes and edges of the synthetic
networks are close to the magnitude of the real networks in use, in order to make fair comparisons (table 1).
Results show that, as desired, our detection scheme clearly separates random networks from real networks,
which presumably have certain community structures embedded (figure 5). First, repeated tests show that the
proportion of hubs identified among all nodes (i.e. | S| /N) is always significantly smaller for real networks than
random networks of similar sizes (figure 5(b)), as one would expect, since random networks have a relatively flat
structure and thus many nodes would be identified as ‘plain hubs’. No similar distinction emerges in the
proportion of sinks and inner members, where random networks and real networks are indistinguishable from
each other (figures 5(c), (d)). Second, for random networks the J-D consistency condition is poorly matched; ®
is clearly small compared with real networks of similar size (figure 5(a)). This suggests that, unsurprisingly, on
random networks, not only is the identification of end-communities (hubs) unwarranted, but also the merging
of these end-communities not self-consistent. One might also be able to spot random networks during the
propagation process in Step 2; real networks typically show an S-shape in the cumulative iteration time plot,
while random networks have a flatter running time growth (figure B1). The two quantities |S| /N and ® could
thus be used as the self-falsifiability benchmarks for detection results: for an arbitrary network, issue arandom
network of similar size and carry out detection on the two networks; if either |S| /N or ® in the detection result of
the original network falls below the value of that on the issued random network, one should realize that the
detection is not valid and the algorithm should be considered as not suitable for this specific graph.

Large real networks. We also tested our algorithm on a number of large real networks across a wide range of
magnitude, including the DBLP network and Amazon product network [51], the Enron email network [52], the
Facebook user network [53], the five Arxiv collaboration networks [54], the recent data from two digital
platforms (Deezer, 3 networks; Facebook, 8 networks) [55], and the Gowalla network and the Brightkite
network, both location-based social networks [56]. Detection results are summarized in table 1, and a few critical
metrics are visualized in figure 5 and 6. The cutofflevel of the community hierarchy for large real networks could
be determined from the € <> A|R.|and € «<» &, relationships, in the same way as for small networks (figure B2).
YetItis difficult to make further discussion on the hierarchy cutoffs based on the current information; hence we
focus on the horizontal discriminative analysis of the detection results on various networks.

One very interesting result is that the proportion of sinks, identified in Step 1, exhibits a very small variance
across all real networks that we have studied, with an average value 25.4% =+ 6.9% (figure 5(c)). In our
definition, sinks are those nodes that stop the propagation of labels; therefore, this result may imply that, on
average, around 1/4 people are ‘mutes’, who do not pass on the action or information, on many kinds of real
(social) networks. No similar phenomenon could be seen in the proportion of either hubs (figure 5(b)) or inner
members (figure 5(d)), although the proportion of inner members show some clustering features as well.
Moreover, although this result is surprisingly robust across various real networks, tests show that it does not
always hold true (as one would expect) for ER random networks of different (1, p) and may depend on their
|E|/|N| values. At the current stage, however, no structural explanation could be warranted for this observation,
and further analysis need to be carried out to better understand this phenomenon.

The categorical data facilitate the comparison of our algorithm’s performance on (digital) social networks (3
Deezer networks, 8 Facebook networks) and on traditional (communication) networks (5 arXiv collaboration
networks). Results show that (figure 6), the average size of community membership (#1;,) and the average size of
each community (m, /N, as a proportion of the network size) of social networks (green and orange) are both
clearly greater than that of traditional networks (grey). This is consistent with empirical considerations: on
digital social networks, nodes have more access to different communities and thus it is easier to join multiple
groups online than offline. Comparisons between different facebook groups are further indicative (figure 6(a)):
the average size of community membership is significantly smaller on artist, government and tv-show networks
than on politician, athlete, company and public-figure networks, which is close to what one would imagine in
real-world situations. As mentioned, it is expected that our algorithm will be more suitable for social networks
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Figure 7. Comparison with other detection methods. 8 Facebook networks and 3 Deezer networks plus a sparse random network
ER(5€3, 1e-3) are used to demonstrate the performance of different algorithms, showing (a) In(m,), (b) proportion of hubs (i.e.
number of detected communities normalized by network size), and (c) proportion of cross-overs (i.e. proportion of nodes that have
multiple community memberships). Four well-known algorithms are studied besides our algorithm: clique percolation (Perco)

[1, 28], link community (HLC) [6], SLPA [16],and DEMON [14]. Perco and DEMON could not process properly on the sparse
random network, and HLC did not generate result on the large-scale network (FB-artist); corresponding detection results are missing
(NaN in the figure). Given its special nature, link community (HLC) discovered more communities than the number of nodes in the
network (i.e. |S|/E < 1,but |S|/N > 1)and thus the results are omitted in (b). Our algorithm successfully separates the random
network from real networks, a feature not retained by SLPA (black arrow in (b)). In general, our algorithm detected fewer but larger
communities in the graph.

than traditional networks, i.e. the quality factor ® on social networks will be larger; unfortunately, while results
clearly do not show the other way around, the winning margin is relatively vague (table 1 and figure 5(a)). Last,
for Steps 2 and 3 of the detection scheme, results show that both the propagation time #3,, and the largest distance
between end-communities €,,, (and the running time as well, figure B1) are in general positively correlated with
the network size (figure 6(c)), which is consistent with our expectations.

Comparison with other detection methods. We compare our detection results with the results of a few well-
known algorithms for overlapping community detection, including the clique percolation (Perco) method
[1, 28], the link community (HLC) method [6], the SLPA algorithm [16], and the DEMON algorithm [14]; both
SLPA and DEMON adopt the label propagation process, which our detection scheme relies on as well.
Recommended parameters are used for these reference algorithms: for SLPA, the iteration timestep is 20 and
r = 0.1; for DEMON, epgpon = 0.25 and the minimum community size is 3; for Perco, k = 4 (4-clique); for
HLC, the dendrogram is cut at the threshold of the maximum partition density for each experimented network
(from left to right on the x-axis of figure 7, the thresholds are: 0.25, 0.29, 0.34, 0.33,0.27, 0.48,0.29,0.21,0.21,
0.20, 0.13). Facebook networks (8 networks) and Deezer networks (3 networks) are used to carry out the
comparison; these two groups of networks are from the same data source. A random network ER(5e3, 1e-3) is
also initiated for the experiments.

The performance of different algorithms are shown and compared in figure 7. Generally speaking, our
algorithm detects fewer but larger communities: among all, its results contain the smallest number of
communities with the largest average community size m,. Note that here we plot the number of end-
communities (hubs) in our detected hierarchy; high-level communities (¢ > 0) are even larger and more scarce.
This suggests that our detection scheme identifies much denser community structures on networks than the
other four algorithms. As for the proportion of cross-overs among all nodes (figure 7(c)), our algorithm
generally identifies more cross-overs than the other algorithms, with respect to end-communities; as discussed
earlier, such proportions are expected to drop when we calculate the cross-overs with respect to high-level
communities obtained at a certain cutoff level of the hierarchy.

Tests suggest a few advantages of our detection scheme. Perco and DEMON could not process properly on
the sparse random ER network, and HLC did not generate result on the large size network (facebook-artist) even
after along computational time; corresponding detection results are missing (figure 7). By contrast, our
algorithm is robust on both sparse and large-scale networks. SLPA is not deterministic, and detection results
from multiple runs differ to a non-trivial extent; it is also not able to clearly separate random networks from real
networks, at least by the number of communities detected as a fraction of the number of nodes (% of hubs),
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which is considered as an important metric in the detection results of our algorithm (figure 7(b)). Perco often
assigns no community to a large portion of nodes, given the sparse existence of cliques in real networks; even so,
it found more communities than our algorithm, most of which are small-scale. Given its special nature, the link
community method (HLC) always discovered more communities than the number of nodes in the network (i.e.
[SI/E < 1,but|S|/N > 1)and thus corresponding results are omitted in figure 7(b). Both Perco and HLC
determined communities far smaller than our algorithm; they also do not exhibit consistent O(E) time
complexity, unlike SLPA and DEMON (figure B2). In a further test, we examined the performance of these
algorithms on the Karate club network, which clearly shows that our detection results are the most reliable on
this classic small network (figure D1, appendix D). In general, DEMON yields detection results closest to the
results of our algorithm, yet its inability on sparse networks (figure 7) and relatively insufficient coverage of
nodes in communities (e.g. figure D1) highlight the advantage of our new detection scheme. Finally, none of
these reference algorithms has the ability to self-indicate its effectiveness on different networks and they all rely
on certain parameter-tuning efforts in practice. The two novel features (parameter-free and self-falsifiable) of
our solution scheme stand out.

Discussion and concluding remarks

In this study, we formulated an integrated belief for the algorithmic design of the community detection problem,
consisting of six aspects: overlappedness, different roles of nodes, behavioral locality, propagatory formulation of
communities, order of communities, and self-falsifiability. Based on the belief, we proposed a multi-step detection
scheme that tries to incorporate successful ideas of existing algorithms as well as to obviate their exposed
weaknesses. Our solution scheme relies on nodes’ centrality scores to determine their different roles in the
graph, especially the hubs and boundaries of end-communities, and initiates a diffusive label propagation
process that tries to simulate the formation of communities on social networks. Small communities are
iteratively aggregated into large communities and at the end of the detection, a hierarchical order of overlapping
communities is established, with the entire graph sitting on the top of the hierarchy. Since there is in fact no
concrete and general definition of a community structure on graphs and communities could then only be
defined in the relative sense [36], we are attached to the belief that the old problem of finding the best partition of
communities could be replaced by the new problem of finding the best cutofflevel on a community hierarchy,
which could be constructed on any given graph. With this idea in mind, in this study our solution scheme makes
atentative attempt.

The label propagation process initiated in this study essentially resembles the gradient flow in [38] (with
centrality scores as the energy function), and the identification of end-communities echoes with the
identification of attraction basins in that study. However, in [38], the focus is the classification of nodes into
high-level roles and the construction of the corresponding hierarchical structure, whereas in our study, the focus
is the bottom-up aggregation and the hierarchical representation of communities. As mentioned before, the two
studies have common grounds while highlighting different aspects of the problem; the current study could be
viewed as complementary to [38].

Our detection algorithm is parameter-free, and therefore as a trade-off, it is not fully decisive. While
consolidated detection results of community structures are not produced by our completely objective algorithm,
we adopt a few sophisticated measures that provide useful information for the determination of communities,
specifically, the cutofflevel of the community hierarchy. A peak on the € < A|R,| curve (or equivalently, a
plateau on the € <> |R.| curve) means that across a certain e stage the community hierarchy barely changes,
which implies that such an € level might be an appropriate candidate for the cutoff. Similarly, a peak on the
€ < &, curve suggests that across such € level the merging of small communities into big ones is well-
conditioned, in terms of the defined J-D consistency (equation (2)); thus this € level is also a desired cutoff. By
taking into account these two aspects, which often agree on the same ¢, we may be able to decide an appropriate
cutofflevel of the community hierarchy. However, it should be noted that despite the proposed solution, the
determination of the cutofflevel is far from being consolidated; in many cases, subjective heuristics still need to
be called for in making the decision.

An important feature of our detection scheme is the automatic indication of the goodness of detection
results. As discussed in Peel et al [36], any community detection algorithm has only a limited power in
application, inevitably not being able to conduct successful detections on networks with certain topologies.
Therefore, we believe that a reliable detection scheme should be able to notify implementers with the quality of
the detection results it yields; in particular, the scheme should be able to indicate its potential failures. Such an
automatic self-check procedure is embedded in our algorithm. By defining the concept of J-D consistency which
indicates the quality of the mergings of small communities into big ones during the formation of the community
hierarchy, we invented a robust metric @ that quantitatively indicates the quality of detection results (which may
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also facilitate the determination of the best cutoff level on the community hierarchy). Although this metric is
originated not from rooted mathematical theories but rather from engineering buildups, it is shown that the
metric is quite robust, especially in the successful separation of random networks from real networks; upon this
construction, it is expected that more advanced metrics in this direction would be invented in future works. Self-
falsifiability and the parameter-free property are not emphasized by existing algorithms and may be considered
as novel features of our detection scheme.

We tested our algorithm on networks of various sizes and kinds (figures 2—6). On small real networks (e.g.
Karate Club network, Dolphin network), our algorithm yielded very good detection results. On LFR networks,
our result reveals the ground truth to a great extent, and it shows that our heuristics for determining the cutoff
level of the community hierarchy are reliable. ER random networks could be effectively distinguished by our
algorithm. On large-scale real networks, horizontal analysis further demonstrate the self-consistency of our
detection scheme, and a few interesting phenomena emerge from the results, which exhibits extra values of this
study beyond the algorithmic design. Specifically, an unexpected observation emerged, showing that under our
identification scheme there are always around 1/4 nodes in the graph that are mutes in the propagation of
information or action, on various types of real networks. Although this phenomenon is significant in our results,
more work needs to be done before it could be verified and generalize.

Advantages of our algorithms over existing overlapping community detection algorithms could be identified
(figure 7). Unlike the clique percolation method, the DEMON algorithm and the link community method, our
detection scheme is robust on both sparse networks and large-scale networks; it yields deterministic detection
results and successfully separates random networks from real networks, two superior features over the SLPA
algorithm. In general, our algorithm generates fewer but larger communities than all the above algorithms,
capturing the dense community structures on the network. The comparison of different algorithms’
performance on the Karate club network provides unambiguous evidence in favor of our algorithm’s reliability.

In our detection results, the strength of nodes’ membership in different communities is not assumed to be
homogenous and could possibly be indicated by utilizing the timestamp ¢ in their infection history, which
records the first time the node gets exposed to community labels. The hierarchical order of communities are
maintained throughout the workflow, thus the whole detection process is fully transparent. We believe that
transparency is an important feature of this detection scheme, and the inclusion of timestamps in the finite
memory associated with each node makes the algorithm easy to be extended to temporal networks or high-order
networks (e.g. [57]), possibly with a refined centrality measure for these advanced networks [58]. Another line of
extension for this study is to replace some flexible components of the algorithm and test with alternatives, for
example, different centrality measures (Step 1) and alternative graph distance measures (Step 3). In the current
scheme we used the most common measures (degree centrality, shortest path distance), but under the rapid
development of network sciences, it would be interesting to apply and test alternative ideas under our general
solution scheme in future studies.

A number of limitations exist in this study, besides what have been discussed. First, in theory, our algorithm
is not able to identify communities that are strictly contained in larger communities. Spectral clustering on the
connectivity matrix of each determined community needs to be performed in order to find sub-communities
strictly lying within big communities. Second, although we claim that the algorithm is parameter-free, a few
quantitative constraints are still implied in our solution scheme, although they are not represented by explicit
parameters. For example, we assume that nodes could only directly propagate the labels to their immediate
neighbors; this could be viewed as a dummy parameter d,,,, = 1 (distance of infections). The choice of
centrality measures may also be viewed as a tuning procedure. Third, besides comparing on some general
metrics of the detected communities, we found it a bit difficult to compare our detection results (a hierarchy of
communities) with results obtained from other algorithms (a certain community partition) or more
importantly, with the ground truth, although people argue that comparing detection results with ground truths
may not be always desirable since the ground truth does not always reflect the real community structures of the
network [59]. Itis plausible that we could compare the determined communities at the cutofflevel of the
community hierarchy with the singular detection result of other algorithms or the ground truth, as we did with
LFR networks, but it is possible that multiple cutoffs could be identified in the hierarchy and therefore the
comparison becomes less straightforward. Sophisticated metrics need to be invented to address this comparison,
or in general, to better characterize the performance of our proposed solution scheme.

Data and code availability

All network datasets used in this study could be found on Networkx (https://networkx.github.io) and SNAP
(Stanford Network Analysis Project; http://snap.stanford.edu/index.html). A Python package of the detection
algorithm is available at https://github.com/TimothyLi0123 /LZ-cd.git.
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Appendix A. Overview of overlapping community detection methods

The topic of community detection on graphs is extensively studied over the time and a numerous set of
algorithms have been proposed to deal with the problem. Although the research history for community
detection is not long, there has seen multiple generations of views and ideas for this topic, and traditional
methods are quickly surpassed by more advanced approaches. Important transitions of ideas include the
transition from detecting exhaustive (disjoint) communities to overlapping communities, the transition froma
deterministic definition of communities to a probabilistic definition of communities, and the transition from
relying on synthetic data and data of small real networks without explicit community structures to test the
algorithm, to utilizing networks with ground truth community structures, and then to further realizing the
limits of ground truth constraints in evaluating community detection results [30]. The active evolution of
community detection methods reflects the unconsolidated nature of the problem.

As discussed in the main text, existing algorithms offer a great number of important aspects for the algorithmic
design on overlapping community detection. From an evolutionary perspective, those ideas constitute a
transitional logic line for thinking about the problem, and one could identify multiple stages in the development of
solutions. Here we present an overview of overlapping community detection methods, trying to establish
conceptual links connecting different ideas and to point out their successful insights as well as shortcomings.

A.1.Link communities

The idea of link communities, detected by a hierarchical clustering of edges [6, 7], is based on the assumption
that vertex communities may be overlapped but the corresponding link communities are always disjoint. In
other words, it implies that the boundaries of communities are not determined by nodes, as traditionally
assumed, but by the edges connecting them. Despite being an advanced view over hard-partitioning of nodes,
this idea is still subject to improvements since it is possible that edges also belong to different communities and
hard-partitioning on edges is still an imposed assumption. The overlapping of communities, in a broader sense,
should allow communities to share a finite part of their components, consisting of both nodes and edges. This
view of the overlappedness of communities is related to the recent discussion of ‘dominant communities’ versus
‘hidden communities’ [37], which emphasizes that detected communities are not of the same significance to the
graph and may demonstrate different strength, essentially embodying the idea of hierarchical community
structures (see below).

A.2.Seed set expansion

Alongside the abandoning of hard-partitions, which inspired a lot of metric-based optimization methods that
directly deal with the entire graph, people gradually adopted the new belief that locality matters in the
determination of communities. In particular, a local determination is more consistent with the logic behind the
formulation of communities in real social networks, where nodes often do not have a clear sense of the entire
network and groups mostly emerge from local commonalities. Adopting this modern view, a new category of
algorithms for community detection, termed as the seed set expansion process, has been gaining more and more
attention. The idea is to start with finite seed sets and expand them into communities by adding/removing nodes
to/from the set if a certain measure of the community is improved, such as modularity [2], conductance [3],
outwardness [25], fitness [4], significance (OSLOM, [26]), or aggregative metric based on link prediction
algorithms [5]. One important line of seed set expansion algorithms originate from the PageRank algorithm and
expand the seed set based on a random walk process, as pioneered by the work of Andersen and Lang [3] and
Andersen et al [9]. Liet al [27] proposed an algorithm in which the seed set is determined based on clique-
detection methods, as cliques could essentially be viewed as communities cores [1, 28]. Kloumann and Kleinberg
[11] studied different seed set expansion algorithms through a comparative analysis, focusing on the
determination of a good seed set. More recently, Gialampoukidis et al [29] proposed a core identification
strategy, an algorithm based on the DBSCAN method [44, 45] where two parameters are adopted: (1) € defines
the radius of the neighborhood of a node that is considered; (2) MinPts is the minimum number of neighbors of
anode’s e-neighborhood; nodes are defined as cores if they have more than MinPts neighbors in their
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e-neighborhood. Similarly, Bai et al[10] proposed an algorithm for overlapping community detection using the
nodes that are density peaks as community cores, an idea borrowed from clustering analysis [60]. Nodes with
high local density p and large distance 6 from other density peaks are identified in the p—6 plot as community
cores, around which other nodes are classified.

We notice that, among existing seed sed expansion methods, a few problems arise. First, many existing
algorithms make ad-hoc decisions on the seed set or the community core (e.g. cliques), which often consists of
an arbitrary number of nodes. Clique percolation methods use cliques as the seed sets, while the size of the
cliques is experimentally decided [8]. Kloumann and Kleinberg [11] shows that in fact a random seed set may
yield better performance than a seed set selecting high-degree nodes. Lancichinetti et al [4] invented the notion
of the ‘natural community’ of nodes, which essentially serves as the community cores. There is little agreement
on how many nodes a seed set should consist, and what is the order for these seeds to join the set, if the set has
multiple nodes. We argue that it is more natural to assume that in most cases initially each seed set only contains
asingle node, and all other nodes sequentially joining the set should follow a hierarchical order; only for the rare
case that neighboring nodes have completely identical topological features, could a seed set consists more than
one node. The second problem is that in most existing algorithms, the expansion process is in fact still non-local:
it does not allow each node itselfto decide whether it should join a community, and in many cases the stopping
criterion for expansion is still from an optimization standpoint. As we mentioned, in social network settings,
nodes themselves are often ignorant about the nature of the entire network, which leads to the idea of seed set
expansion; moreover, most likely nodes are also unaware of the situation of the rest of their belonged
communities: they do not know if their joining or leaving the group will maximize some metrics of the
community, and even they do, this may not be the factor that influences their decision. Therefore, we believe that
the stopping criterion for seed set expansion is supposed to follow a more behavioral rule when dealing with
human networks.

A.3.Label propagation

The second problem for the abovementioned seed set expansion algorithms, that they assume subsequent nodes
are attached to the communities in a static and non-local fashion, could be resolved by an advanced idea, that the
community assignment of non-core nodes is determined from a propagatory standpoint. This brings in the idea
of another line of community detection methods, known as label propagation algorithms, first proposed by
Raghavan et al [15] and having seen a lot of variants thereafter (for example, the speaker-listener SLPA [16], the
DEMON algorithm [14] and more recent designs e.g. [13]). The idea of label propagation is simple: iteratively
each node sends the label of its community membership to its neighbors, and at each time step the node’s
community membership is updated based on the information it receives from all neighbors, according to certain
decision rules (e.g. a majority vote [ 15] or a listener-speaker scenario [ 16]); and eventually, the algorithm will
stop at convergence, i.e. there is no more update of community membership on any node during the
propagation.

We believe that this dynamic and propagatory point of view for community detection is important in social
network settings: nodes compete with each other trying to expand their influence, and finally the winners will be
able to establish their communities. It is more advanced than the traditional view that community membership is
a priori determined from a global optimization standpoint. We agree that community assignments should
definitely rely on the graph’s topology, but instead of regressing the community membership to simplified metrics
of the topology, it may be more organic (especially for social networks) to set up the propagation and let the
dynamics decide the equilibrium convergence. By this means, label propagation algorithms successfully highlight
completelocality in the determination of community memberships, as no optimization at any non-individual level
isassumed. However, one significant problem for this approach is that the propagation could follow arbitrary
rules, and thus each proposal of a different rule for community decisions will possibly end up with a new algorithm,
which suggests that the label propagation idea essentially consists of an unlimited algorithmic space. Inevitably, this
triggers debates on a good decision rule that processes a node’s information received from different neighbors.
Moreover, decision rules in the first generation of label propagation algorithms often select one community label
for each node from all candidates and thus result in hard-partitioning; to apply label propagation in overlapping
community detection, improved designs are to be invented.

A.4.Nodes with memory

The above difficulty could be overcome by a new generation of label propagation algorithms that introduce a
finite memory associated with each node. With the memory kernel storing the information during the
propagation (infection) process, detection algorithms are now able to carry out overlapping communities results
[39]. The idea of nodes with memories is aligned with the term ‘fuzzy detection’ [16]; it retains more information
of the propagation process than simplistic decision rules leading to hard-partitioning (e.g. the majority vote),
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although in existing designs some infection information is still compromised [39], such as the receiving order of
labels. From the node’s memory, the finite infection history it experienced could be revealed and then used to
decide its multiple community membership. Given these considerations, we argue that the memory of nodes is
an important feature for effective overlapping community detection methods based on the propagation process.
Moreover, as a side note, another problem of the algorithm in Gregory [39] is that it requires a pre-determined
number of communities in the graph in order to set the dimension of the memory vector, which we believe is not
necessary.

A.5. Multi-step detection and hierarchical structures
While seed set expansion based on label propagation process is a modern and arguably successful heuristic for
community detection, one should note that a complete seed set expansion scheme is multi-step, and it requires
specific algorithm design for each step of the workflow. Unfortunately, most previous studies focused on one
stage of seed set expansion and few efforts have been made on designing the workflow of the expansion process.
Lietal[12] proposed a multi-step community discovery scheme for textual data where each node is a piece of
text. First, the seeding cores are identified using the Apriori algorithm; then the detected cores are merged based
on similarity; after the determination of cores, all other nodes are assigned to communities relying on their
connectivity conditions; and finally, a classification step is applied to make sure that each node belongs to the
right community and false assignments are removed. Whang et al [35] proposed another multi-step detection
algorithm based on seed set expansion. The algorithm consists of four stages: filtering, seeding, seed set
expansion and propagation. At the first stage the graph is pruned to core components that are densely
connected, and the peripheral structures are omitted. The seed set is determined in the next stage, around which
communities are formulated, using the spectral method based on the optimization of conductance, originated
from Andersen et al [9]. The omitted peripheral structures are reinstalled to the detected communities at the
final stage. Multi-step algorithms extensively appear in the detection of hierarchical community structures (e.g.
[4, 26, 40]), which has been drawing more and more attention recently. The idea of hierarchical communities is
that the detection of communities should associate the partitioning with an order of significance, possibly
through a hierarchy, instead of treating all detected communities equally, as most existing methods do. Sales-
Pardo et al[42] proposed a method uncovering the hierarchical organizations of nodes based on a new node-
affinity metric and on searching for the local maxima of modularity. Shen et al [43] designed a multi-step
algorithm named EAGLE to detect hierarchical and overlapping community structures, where maximal cliques
in the graph are used as the seed set and an agglomerative process relying on modularity maximization helps
establish the hierarchy. A similar multi-step algorithm named SHRINK was proposed by Sun et al [34], where
each node is assigned with an initial label and the (multi-ary, as opposed to binary) hierarchical community
structure is gradually established by measuring the modularity gain of merging end-communities. Peixoto [41]
studied the hierarchical structure of the SBM and proposed an inference algorithm to select the best multi-level
hierarchical model, which facilitates the formation of benchmark hierarchical SBM graphs for testing detection
algorithms. Recently, a recursive bi-partitioning algorithm is devised with a top-down partition workflow [61],
as opposed to the agglomerative process (e.g. [34, 43]). Overall, multi-step algorithms based on certain
propagation processes that consider the hierarchical structure of communities, as emerged in this evolutionary
discussion, may contribute the modernest ideas to current community detection methodologies.

A.6.Isolated nodes

Asalast note, it should be pointed out that the attention to the peripheral structures of the graph, besides the
densely connected cores, is non-trivial, which is relevant to the idea of ungrouped isolated nodes [35]. The belief
is that, not all nodes belong to communities; isolated nodes (noises) do exist. Gfeller et al [32] regarded them as
‘unstable nodes’ and discussed the determination of these nodes through essentially a Monte-Carlo approach by
imposing random noises on edge weights. Gui et al [33] proposed a seed-set-based label propagation algorithm
that discovers ‘boundary nodes’ as opposed to ‘core nodes’, whose basic idea is similar. Sun et al [34] also
discussed the ‘hubs’ and ‘outliers’ among ‘homeless’ nodes identified in the detection process. Nevertheless, in
general the notion of isolated nodes is often neglected by existing works and people tend to assign community
memberships to all nodes in the graph.

Appendix B. Running time analysis

Comparing the running time of our algorithm on various networks, it shows that random networks could
possibly be spotted during the label propagation process. The cumulative running time curve for a random
network generally does not follow an S-shape, as the case on real networks, and instead demonstrates a more
gradual growth (figure B1, left). This is because on real networks the depth of propagation, i.e. the reachability of
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Figure B1. Running time of our detection scheme on various networks. Random networks are shown in red; real networks are shown
in blue. Left: cumulative running time at Step 2 as a function of the number of iterations (¢5,). Both axis normalized to scale to account
for various lengths. Right: total running time (in seconds) as a function of the number of edges (log-log plot). The O(E) time
complexity of the algorithm could be identified.

5r 7r 7r 6.5
.
45+ d 65" g 6L 6f ;
al 6l 5l 55}
5 i 5
=35" 55 4+
o Ini
E ; 4 4.5¢
= 3 5 3+
=2
c i 4
s ]
S25¢ e 45+ 2+
o 35¢
g2t 4t 1)
= I 3r
15+ 35} or 251
= 3 ; 2f 4
o
05 L L I} 25 L L I} _2 L L I} 15 L L I}
10 12 14 10 12 14 10 12 14 10 12 14
log(E) log(E) log(E) log(E)

Figure B2. Running time of reference detection algorithms. In general, SLPA and DEMON exhibit O(E) time complexity; HLC and
Perco do not.

end-communities (hubs) is often heterogeneously distributed with a small tail, while on random networks all
end-communities tend to have the same topological features and thus the simultaneous propagation from
different hubs is more gradual and synchronized. However, this criterion may lead to a wrong catch since the
curves for some real (traditional) networks are also not well S-shaped.

It shows that the total running time of the detection scheme has a quasi-linear relationship with the network
size (figure B1, right), demonstrating the O(E) time complexity of our algorithm (equation (5)).

For other detection methods, tests show that SLPA and DEMON demonstrate a good O(E) time complexity,
similar to our algorithm, while the running time of HLC or Perco does not exhibit a consistent dependence on
the scale of the network (figure B2). As is acknowledged, a highly variant computational time undermines the
applicability of the detection algorithm.
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Figure Cl. € <- A|R,| (blue) and € < @, (red) curves for tested networks. Local peaks on the two curves suggest possible cutoffs.

Appendix C. Cutofflevel of the community hierarchy

The determination of the cutofflevel of the community hierarchy on large real networks could refer to the

€ < A|R.|and ¢ < @, curves (figure C1), following the same heuristics explained on the LFR network
(figure 4). The local peaks on these two curves indicate potential cutoff levels of €. In practice, two peaks often
agree on the same value, which implies a good cutoff.

Appendix D. Performance of different detection algorithms on the karate club network

Different detection algorithms are tested on the Karate club network (figure D1). The SLPA algorithm is not
deterministic even on the small-scale network, and one detection result is shown. HLC detected 20 communities
from 34 nodes and 78 edges, which is clearly not satisfactory and hence the results are not shown. DEMON and
Perco yielded deterministic and meaningful results. Compared with other algorithms, our detection scheme
won by a large margin on the Karate club network; the results are reliable and match the ground truth to a great
extent (figure 2).
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(a) SLPA

(b) DEMON

(d) our algorithm

Figure D1. Community detection results of SLPA, DEMON, Perco and our algorithm on the Karate club network. HLC detected 20
communities on the network and the results are not shown.
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