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Abstract

CrossMark

The aim of the present article is to investigate the influence of gravity and slip velocity on the
steady flow of blood through an inclined catheterized blood vessel. The constitutive relation of
Herschel-Bulkley fluid is utilized to capture the non-Newtonian characteristics of the blood. The
effects of catheter radius, yield stress, slip velocity and the inclination angle on the velocity, flow
rate, wall shear stress and resistance to the flow are analyzed in detail. The expression of velocity
is evaluated numerically by using Regula falsi method. The variation of different flow variables
corresponding to the involved geometric and rheologic parameters is shown through graphs. It is
shown that the velocity decreases as the yield stress attains higher values. The yield stress
enhances the impedance and wall shear stress. Increase in the catheter radius reduces the wall
shear stress and resistive impedance. The study also reveals that the impedance for horizontal

blood vessel is higher as compared to the vertical blood vessel.

Keywords: catheterized inclined artery, slip condition, yield planes, Herschel-Bulkley fluid,

resistance to flow

1. Introduction

In the current times with the advancement of coronary balloon
angioplasty, the utilization of catheters of several sizes has been
considerably increased. Catheterization is a procedure used to
insert a long thin elastic tube in the blood vessels. Angiography is
the type of heart catheter procedure for the diagnosis of heart
related diseases. The presence of the catheter in the artery forms
an annular region between the arterial wall and the catheter wall.
As the small catheter is inserted in an artery, the frictional
resistance is increased within the artery. Hence the flow field is
altered and pressure distribution is modified. The purpose of
catheters includes accurately measurement of pressure gradient,
and clearing of occlusions from the walls of the diseased artery
[1]. Back [2] measured the resistance to the flow in case of
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Newtonian flow of blood. He reported that even a very small size
of angioplasty guide-wire leads to sizable increase in flow
resistance. The pressure or pressure gradient recorded by a
transducer attached to the catheter will differ from that of an
uncatheterized artery and it is essential to know the catheter
induced error. Recently, the relationship between flow patterns
and atheroma formation has been studied by using coronary
catheter probes in conjunction with computational fluid
dynamics [3].

The estimates of wall shear stress were studied by Back and
Denton [4] and its scientific importance is discussed in coronary
angioplasty. In routine animal experiments and scientific studies,
the arterial flow velocityflow rate and blood pressure/pressure
gradient measurements in the required part of the arterial net-
work is generally achieved using a suitable catheter-tool device
(such as a catheter tip flow meter or catheter transducer system).
Catheters are also utilized in diagnostic procedures (e.g.
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intravascular ultrasound, X-ray angiography) as well as in the
healing techniques (e.g. balloon angioplasty) of several arterial
diseases. Back [1] and Back er al [5] investigated the main
hemodynamic features like the pressure drop, resistance and wall
shear stress in coronary catheterized arteries under typical as
well as the clinical state of a stenosis present. Blood has been
considered as a Newtonian fluid in all the above studies. But it is
renowned that, being deferment of cells, blood acts as a non-
Newtonian fluid through its flow in narrow blood vessels and at
low shear rates. In small blood vessels, the pulsatile flow of
blood was studied by Aroesty and Gross [6] and their theory was
extended by Chaturani and Ponnalagar Samy [7] to investigate
pulsatile blood flow by modeling blood as a Casson fluid in
stenosed arteries.

The catheterization effects on several flow properties in
an artery which is curved was investigated by Tiwari and
Jayaraman [8] and Karahalios [9] considering blood as a
Newtonian fluid. When a catheter is injected into a narrow
artery, the changed flow pattern was investigated by Dash
et al [10] and the frictional growth in the artery caused by
catheterization was estimated by using the Casson model for
blood. Dash er al [11] used toroidal coordinate system to
study the steady Newtonian flow of blood in stenotic cathe-
terized curved artery. Daripa et al [12] have studied numeri-
cally using a fast algorithm the pulsatile blood flow in an
eccentric catheterized artery considering blood alike a type of
Newtonian fluid. Vajravelu et al [13] have investigated the
peristaltic transport of blood in an inclined tube by blood of
modeling as Herschel-Bulkley fluid. Sankar and Hemalatha
[14] used perturbation method to study the pulsatile flow of
Herschel-Bulkley across the arteries with catheterized.

Spanner et al [15] stated that the blood follows Casson
fluid equation only in the bounded range, but at very low and
very high shear rate and that there is no division between the
Herschel- Bulkley plots and Casson plots over the range of
experimental data where the Casson plot is valid. It is noted
that the model of Casson fluid can be applied for usual shear
rates C < 10/s in tubes of smaller diameter. However, the
model of Herschel-Bulkley, fluid can be applied in very
narrow arteries at yet a lower shear rate of flow where the 6 as
yield stress is high [15, 16]. As the Herschel-Bulkley
equation includes one more parameter than the Casson
equation, it would be estimated that the use of the Herschel—
Bulkley equation gives more detailed evidence about blood
properties. Moreover, the Herschel-Bulkley fluid equation
can be used to explain the behavior of power law fluid,
Newtonian and Bingham fluid by reading suitable values of
the parameters.

It has been indicated by both Scott Blair [17] and lida
[18] that model of Herschel-Bulkley is more suitable and
farther common for a blood flow although it is likely to model
the same flow by both Herschel-Bulkley fluid and Casson
fluid concluded the range in which both models are accep-
table. Scott Blair [17] has indicated that the sum of the
squares of the differences between the examined and esti-
mated the shear stress values was lowest for Herschel—-
Bulkley than Casson fluid model, but the investigation is
more complicated for fluid of Herschel-Bulkley. lida [18]

testified that the velocity is usually explained by the two
models accurately in the arterioles taking a diameter less than
100 pm. Zaman et al [19] examined the unsteady blood flow
in a catheterized stenotic artery including post stenotic dila-
tation in a micropolar hemodynamics model.

Recently, Abbas et al [20, 21] comparatively studied the
flow of blood by using the Herschel-Bulkley fluid model
through the arteries having single symmetric, overlapping and
multi-triangular stenosis. They pointed out that the shape of
the stenosis has significant effect on the flow variables. Chitra
and Karthikeyan [22] explored the effects of slip velocity and
permeability wall of the artery by considering the Herschel—
Bulkley fluid model. Maruthi Prasad, and Radhakrishna-
macharya [23] analyzed the influence of various parameter on
the shear stress and resistance to the flow for Herschel-
Bulkley fluid in an inclined artery having non-uniform cross
section. Some useful studies regarding the flow of different
non-Newtonian fluid models are referenced in the literature
[24-30]. Motivated by the above discussion an attempt has
been made to highlight the effects of slip velocity on the
different flow variables in case of steady flow of blood
through a catheterized artery. The Herschel-Bulkley fluid
model is utilized for the representation of rheological beha-
vior of the blood. We have make use of the technique
introduced by Sankar and Hemalatha [30] and extend their
findings by incorporating the effects of inclined blood vessel
and the slip boundary condition.

The present article is organized as: section 2 deals with
the formulation of the problem with appropriate assumptions.
In section 3, the flow problem is non-dimensionalized and is
solved by using numerical techniques. Section 4 comprises
with the effects of catheterization on velocity, wall shear
stress, the rate of flow and impedance for distinct values of
the parameters for Herschel-Bulkley fluid mode and the
results for power law and Bingham fluid are discussed as the
special case of Herschel-Bulkley fluid.

2. Formulation of the problem

Consider the flow of blood in an inclined artery in which a
coaxially catheter is inserted. The artery is shaped as a circular
rigid tube having radius R. The blood is modeled by Herschel-
Bulkley fluid the radius of catheter is chosen to be kR (k < 1).
The flow is supposed to be steady, laminar, axially symmetric
and fully developed. There is a slip condition acting on the wall
of the artery. The cylindrical polar coordinates (r, ¢, z), where z
and r are the axial and radial coordinates and ¢ is termed as the
azimuthal angle, shown in figure 1.

It is also indicated that the magnitude of radial velocity is
negligibly small and can be neglected for low Reynolds
number flow and the pressure gradient is a function of z
alone. In this case, the momentum equation shortens to

8_p:_li(7_ F) + pg sint, kR < 7 < R, (1)
0z Fdr
where 7 denotes the shear stress, p symbolizes the pressure, p
symbolizes the density, g denotes the gravitational force and
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Figure 1. Geometry of catheterized inclined artery.

1 is the inclination angle of the artery. The constitutive
equation for Herschel-Bulkley fluid in general form is given
as [14]

0
‘ P ‘ = (l’T—l - Tv)”, for |,7—| 2 Tv’ (2)

<

=

it
oF

where 7, is the known as yield stress, i is called the axial
velocity, n is termed as the power index and 7 is the well-
known viscosity coefficient having dimension (ML~'T—2)"T,
for Herschel-Bulkley fluid. When strain rate and shear stress
have signs opposite to each other and when |7| > 7,, the
corresponding form of these relations can be written as

=0, for|7| = 7, 3)

77% = (7] = 7)", for o >0and7 <0 4
or or
- Oii ~
=—(|7] = 7)", for — < Oand 7 > 0. (5)
orF
Fo
above constltutlve equation can be Wntten as
Oii nty oii
7— =|7"|1 — — |, if |7| > 5 and — > 0, 6
el II( ITI) i I o7 (6)
Oii T o
'—:—T”l——,1f 7,and — <0 (7
57 |71 ( B I) 7| > 7 and == 7
=0if 7] < %. 8)

When slip boundary condition on the wall of the artery is
applied, equations (1) and (6)—(8) can be solved as given by
i(F = kR) =0, 9)
i(7 = R) = aj, (10)

where a; is the slip velocity.

3. Solution of the problem

Let 7 is the coefficient of viscosity for Herschel-Bulkley
fluid given as

—\n—1
i
n= " - . 11
n=rp ( R) an
The following non-dimensional variables are used:
u T I3 Z
u :—,T:—,TZE,Z:E,
Uo U
: ( R )
P 2
Re = puck g _ Mo~ (12)
1% gR
The pressure gradient in this case can be written as:
d
. A (13)

dz 5
Non-dimensional form of the momentum equation (1) is
given by

—p, + li(m _R sint, k<r<1. (14)
Y ordr b

r

The non-dimensional form of the constitutive equations (6)—
®) is

u _ |T|"(1 - ﬁ), if |7] > 0 and % >0
r

15
or |7 (15)

@:—|7-|”1—ﬂ,if|7'|29anda—u<0 (16)
r |7 or

=0, if|7| < 0, 17
where
R_
g= 0 (18)
Hto

is the yield stress in non-dimensional form. The boundary
conditions (9), (10) reduce to

u(r=%k) =0, 19)
u(r=1) = U,. (20)
Integration of equation (14) gives
_ b R Gy E @1)
2 f2 r
where ¢ is called constant of integration. From

equations (15)—(17), it is obvious that the flow is in three
regions (as in figure 1) one for k < r < 1, in which the main
core has smooth velocity profile and thus creates the plug
flow area. The shear stress in the plug flow area does not
exceed the yield stress and the fluid streamlines are moving
with same velocities, so the flow is not sheared. For mathe-
matical demonstration, suppose this plug flow area be define
by )\1 < r< )\2, where k < Al, )\2 < 1, )\1 and )\2 are inde-
finite quantities to be calculated. From the continuous shear
stress alongside the boundary of the plug core flow area, we
have
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77_';*:)\1 =0= Tlr:)\z- (22)
Using the above equation (22) in (13), we get
) R.1 . )
¢ =p,(X) + ——=siny(X), (23)
52
where
X = A). (24)

Substitution of equation (23) in (21) yield the shear stress is

r=22 o0y + Bl gnper - 2, (25)
r 12
Using equations (25) and (22) we have
0
(A2 — A) = — = a; (say), (26)

s

where ay is the plug core area’s width. In three regions, the
terms for the velocity can be attained from equations (25) and
(15)—(17) and the boundary condition (19), (20) given by

(N — r? R, 1
() — pt A o)y Red
u (r)_prk [( . )+ fzsmw

2 2\ \!
x(/\ r))dr
r

r r
)\2 . }"2 n—1
X ( ) dr|whenk <r < )\ 27)
r
u,(r) = constant, when A < r < A (28)
1 2 _ 2
utt ) = U +p”f X + R 1 sin v
§ r r fr 2
2 _ v2\Y
X (r A )) dr
r
1 2y
— noy f ! + &l Sin rl/)
r r f;, 2
}"2 _ )\2 n—1
X ( ) dr|when M, <r <1, (29)
r

where plug flow velocity is denoted by u,. As oy = 0, when
there is no yield stress (6 = 0), equations (27) and (29) give
the velocity profile for a fluid of power law in a catheterized
tube. This corresponds with the result noted by Kapur [31].
When the inclination angle ¢ =0 ¢ = 0, the resultant
equations (27) and (29) corresponds to the results studied by
Sankar [30]. Throughout the flow field, continuity of the

distribution of velocity precedes to the condition
utr=M)=u,=u"(r = X) (30)

which leads to

-Uy=0.
€29

Using X2 = (A \,) and equation (26), the equation (31) les-
sens to the integral form equation in )\; given by

n A )\I(Al+ﬁs)_r2 &l .
pfk(( - )+f2smw

r

y ( A+ B rz)] &

,
_n ! r2_ )\1(>\1+6s) &l :
)2 Az(( . )4—fr251n1p
y ( - A1<Al+ﬂs>))”dr
r

B M A+ B) =) R
nasl‘[; (( . )+f2s1n¢

x ( MO+ ) — rz))"ldr

r

—fl (rz_Al(A1+ﬂs))+&l
A r 52

2 r

" ( rr— N (N + ﬁs)))nldrl ~ Uy =0

sin v

(32)

r

The above equation (32) is numerically solved for ) by
applying Regula-Falsi method. Trapezoidal rule is used to
evaluate the integrals in equation (32). When ) is known,
equation (26) is used to determine A,. The relations of
velocity can be attained from equations (27)—(29) and
applying equation (24). The steady flow rate Q, is given by
(30]

1 e 22yt
Qs=8fk rudr:4ps[£C {nﬂs( . )
2 _ 2\ 1 2 _ e\

_(/\ r)}ﬂdwr {(r )\)

r A r

2 2 n—1
nﬂs(r )\) }rzdr}.
r

In the artery, the wall shear stress is determined from
equation (25) with » = 1 and given as

(33)
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Figure 2. Variation of yield plane locations with € as yield stress for
distinct values of pressure gradient p, while k = 0.5, = 0.1,

n =095, Uy = 0.005, ¢ = 45° and R, /f, = 0.2.

mw=p(1 — ) + %%sin@b(l — ). (34)

The 7,, as wall shear stress, for fixed value of p, depends on A
which sequentially depends on 6 and k. In the artery, the per
unit length frictional resistance is given as [20]

A=D

35
Oy G

4. Results and discussions

The purpose of the present analysis is to comprehend the
blood flow through a catheterized inclined artery and to
introduce the prominent aspects of the flow pattern and to
evaluate the flow resistance due to the existence of a catheter
in a small artery by assuming the constitutive equation of the
flow is supposed to be steady. This model has a key advan-
tage that it includes the Newtonian model and fluid of power
law model as specific cases, so that in current analysis, blood
flow modeling by fluids without yield stress through larger
arteries can also be attained. Sankar [30] reported that the
value of yield stress of blood for normal human being lies
between 0.04 and 0.06 but it is higher in the diseased con-
dition so we have taken the values of yield stress between 0
and 0.3. Also the values of catheter radius are chosen from 0.1
to 0.7 to accommodate all types of the catheters. The values
of the power law index are chosen to be 0.95 (for n < 1) and
1.05 (forn > 1).

Figure 2 shows the ) and A, as yield plane position with ¢
as yield stress for distinct values of pressure gradient with
n =095, = 45°, k = 0.3, and the ratio of R, and f, is 0.2.
for a certain value of r, k, ¥, and 0, the width is k of the plug
core area decreases and the value of )\; increases with increases
pressure gradient p,.

Figure 3 is plotted to show the variation of axial velocity
for distinct values of  with n = 0.95. It is observed that the
velocity decreases by increasing the yield stress parameter 6.
It is also evident from the figure that the velocity in case of
power law fluid model is higher than those for Newtonian and
Herschel-Bulkley fluid. Figure 4 is depicted to show the

0.10

#=03,025,02,015, 0.1, 0.05, Newronian fluid , 0.0
0.08 \

0.06 e v

U

0.04

0.02

0.00
0.5 0.6 0.7 0.8 0.9 1.0

7

Figure 3. Velocity profile for distinct values of § as yield stress with k =
0.5and p, =1, n = 0.95, ¢ = 45°, Up = 0.005 and R, /f. = 0.2.
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0.00 . . . .
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Figure 4. Velocity profile for distinct values of  as yield stress with
p=1,k=05,U,=0.005 ¢ =45, n=105and R, /f. = 0.2

0.10
Uy =00, 001,002,003, 005
0.08 %
0.06
- N
0.04
0.02
0.004
0.5 0.6 0.7 08 0.9 1.0

7

Figure 5. Velocity profile for distinct values of slip parameter
withk =0.5,p =1,0=0.1,n=095,¢ =45 and R, /f. = 0.2.

distribution of axial velocity for different values of 6 with
n = 1.05. It is remarkable to note that the Newtonian fluid
velocity is higher in the present case while the velocities of
power law fluid and Herschel-Bulkley fluid are compara-
tively smaller.

Figure 5 reveals the influence of the slip velocity on the
radial distribution of the axial velocity. It is observed that the
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Figure 6. Velocity profile for distinct values inclination angle ¢ with
=05,p=10=0.1,n=0095 U, =0.005 and R, /f, = 0.2.
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Figure 7. Velocity profile for several fluids with p, = 1, k = 0.5,
Up = 0.005, ) = 45° and R, /f. = 0.2

magnitude of the axial velocity increases by increasing the
slip velocity. The variation of the velocity with the inclination
parameter ¢ is shown in figure 6. Figure 6 also shows that our
results are in good agreement with the results reported by
Sankar [30]. Increase in the velocity is noted for the
increasing value of . Figure 7 is constructed to highlight the
effects of slip velocity on different fluids. The figure shows
that the velocity of power law is maximum while for Bing-
ham fluid it is minimum. Figure 8 shows the plug core
velocity variation with respect to catheter ratio & for distinct
values of yield stress 6 with n = 0.95 and ¢ = 45°. For each
value of 8, when k increases from 0 to 0.15 the plug flow
velocity reduces rapidly and when k varies from 0.15 to 0.7,
the velocity reduces gradually. The plug flow velocity equals
to zero for § = 0.2 and when k is approximately 0.45. The
change in the flow rate with respect to yield stress parameter 6
for distinct values of catheter radius ratio k& and unit pressure
gradient are indicated in figure 9. The rate of flow reduces
approximately linearly with respect to 6. Figure 9 also illus-
trates the change of steady flow rate with respect to the yield
stress 6 for a several values of catheter radius ratio k. The
figure shows that the flow rate reduces approximately linearly
with respect to 6. Also any growth in the catheter radius k
reduces the flow rate. This is due to the fact that the angular
flow area decreases by increasing k.

0.5
0.4
6 =02, 0.1, 0.05, Newtonian fluid
0.3 :
‘--Q‘ \
02}
0.1
0.00 . . . " P e AT
00 0.1 02 03 04 05 06 07

Figure 8. Change the flow of plug velocity with k as catheter radius
ratio for distinct values of 6 as yield stress with p, = 1, n = 0.95,
1 = 45°, Uy = 0.005 and R, /f, = 0.2.

k=07,05 03,00

0.8
06
0.4 p
. O A e
00 s e . - =
005 010 015 020 025 030
g

Figure 9. Change the rate of flow with 6 as yield stress for distinct
values of k as catheter radius ratio with p, = 1, n = 0.95, i) = 45°,
Up = 0.005 and R, /f, = 0.2.

Change in the steady flow rate with respect to pressure
gradient p, for distinct values of 6 are shown in figure 10. It is
observed that the # has comparable effect on the variation of
steady flow rate. The yield stress 6 has positive influence on
the steady flow rate. These effects are more prominent for
higher value of p,. Figure 11 highlights the influence of power
law index n on the steady flow rate plotted with respect to
different values of pressure gradient. The figure show that the
flow rate decreases by increasing n are more comparable for
higher value of p,.

The variation of the flow rate verses pressure gradient for
distinct values of U, is displayed in the figure 12. From the
figure it is noted that the value of the flow rate increase by
decreasing value of slip parameter U, for a specified pressure
gradient p,. The change in the flow rate verses, p, for distinct
values of ¢ is displayed in the figure 13. It is noted that
increase in the inclination angle results in the higher values of
the flow rate for a specified p, gradient of pressure. Figure 14
indicates the wall shear stress variations for distinct values of
yield stress 6. For a specified pressure gradient p,, it is seen
that the catheter radius ratio k is increased as the walls shear
stress is decreased. The wall shear stress increases slightly for
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Figure 10. Change the rate of flow with p, as pressure gradient for

distinct values of yield stress § with catheter radius ratio k = 0.4,
n =095 U =45 U,=0.005 and R, /f. = 0.2.

n=105,095, 1

o .

(B8]
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Figure 11. Change the rate of flow with p, as pressure gradient for
distinct values of n with catheter radius ratio k = 0.5, 6 = 0.3,
1 = 45°, Uy = 0.005 and R, /f, = 0.2.
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Figure 12. Change the rate of flow with p, as pressure gradient for

distinct values of slip parameter U, with catheter radius ratio
k=05,n=0956=0.1,¢%=45°and R, /f, = 0.2.

a fixed catheter radius as the yield stress 6 increases.
Figure 15 shows the wall shear stress variations with catheter
radius ratio k for distinct values of inclination angle . It is
observed that for the increasing values of inclination angle v/,
there is negligible increment in the wall shear stress for a

o
[}
FS
N
oo

10

Ds

Figure 13. Change in the rate of flow with p, as pressure gradient for

distinct values of inclination angle i) with catheter radius ratio
k=05,n=0956=0.1, U= 0.005 and R, /f. = 0.2.

Figure 14. Change the wall shear stress with k as catheter radius ratio
for distinct values of 6 as yield stress with p, = 1, n = 0.95,
1 =45°, Uy = 0.005 and R, /f. = 0.2.

Figure 15. Change the wall shear stress with k as catheter radius ratio
for distinct values of inclination angle ¢ with p, = 1, n = 0.95,
0 =0.3,U,=0.005and R, /f, =0.2.

specified value of catheter radius ratio k. Figure 16 shows the
change in the wall shear stress with respect to catheter radius
ratio k for distinct values of slip parameter Uj. It is observed
that the wall shear stress grows and decreases by increasing
the slip parameter Uj.
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k
Figure 16. Change the wall shear stress with k as catheter radius ratio

for distinct values of slip parameter Uy with p, = 1, n = 0.95,
0 =03, =45 and R, /f. =0.2.

s

= 0.0, Newtonian fluid , 0.1,0.2, 0.3
»

5

0.4 0.

0.3
k

Figure 17. Change in the resistance due to friction with k as catheter
radius ratio for distinct values of § as yield stress with p, = 1,
n =095, ¢ = 45°, Uy = 0.005 and R, /f, = 0.2.

Figure 17 shows the profiles of resistance to the flow
with respect to catheter radius for various values of yield
stress 6 by fixing n = 0.95. The resistance to the flow for
Herschel-Bulkley is greater as compared to the Newtonian
and power law fluid. Also the frictional resistance for New-
tonian fluid is negligibly higher than that of power law fluid.

Figure 18 shows the change in resistance to the flow with
respect to catheter radius ratio k for distinct values of yield
stress # by fixing n = 1.05. The resistance to the flow for
Herschel-Bulkley is greater as compared to the Newtonian
and power law fluid. Also the resistance to the flow for
Newtonian fluid is negligibly lower than that of power law
fluid. Figure 19 shows the plots of resistance to the flow with
respect to catheter radius k for chosen values of inclination
angle 1. It is noticed that the resistance to the flow decreases
by increasing the inclination angle . The effects are more
prominent for higher values of k.

Figure 20 shows the change in resistance to the flow with
respect to catheter radius for distinct values of slip parameter
Up. Tt is noticed that the resistance to the flow increased by

70§
60}

6 = Newtonian fluid , 0.0, 0.1, 0.2, 0.3

Figure 18. Change in the resistance due to friction with k as catheter
radius ratio for distinct values of ¢ as yield stress with p, = 1,
n = 1.05, ¢ = 45°, Uy = 0.005 and R, /f, = 0.2.

Figure 19. Change in the resistance due to friction with k as catheter
radius ratio for distinct values of inclination angle ¢ with p, =1,
n= 105,60 =03, Uy = 0.005 and R, /f. = 0.2.
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Figure 20. Change in the resistance due to friction with k as catheter
radius ratio for distinct values of slip parameter Uy with p, = 1,
n=10560=03,1¢ =45 and R, /f, = 0.2.

increasing the slip parameter Uj. The effects are more pro-
minent for higher values of k.

The data for velocity change with slip parameter U, for
n = 0.95 and n = 1.05 and the change between these values
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Table 1. Variation of velocity with slip parameter Uy with » = 0.65,
k=05,¢v=45,p =1,0=0.1,R,/f. = 0.2, when n = 0.95
and n = 1.05.

() n = 0.95 n=105 Difference
0.000 0.0462163 0.0405909  0.0562 54
0.005 0.0534642 0.0479657 0.0549 85
0.01 0.0607035 0.0553404  0.0536 31
0.02  0.0751582 0.0700883  0.0506 99
0.03 0.089 5844 0.084 8328  0.0475 16
0.05 0.118 36 0.114305  0.0040 55

Table 2. Variation of velocity with inclination angle 1) with
r=0.65k=05U0,=0005p =1,0=0.1,R,/f. =02, when
n = 0.75 and n = 0.95.

1 n=0.75 n=095  Difference
0° 0.064 3604  0.0472225 0.017 1379
15°  0.0657925 0.0509556 0.014 8369
30°  0.067 1179 0.0523059 0.013 8120
45°  0.0682491 0.0534642 0.014 7849
60° 0.0691133 0.0543521 0.0147612

are presented in table 1. We observed that there is not con-
siderably of difference in the variation of velocities when
Uy = 0.05 forn = 0.95 and n = 1.05, hence a parallel pattern
is observed. So typical values of power index n are taken
when n < 1 as 0.95 and 1.05 when n > 1. The data for dis-
tinction of velocity with inclination angle i for n = 0.95 and
n = 1.05 and the change between these values are presented
in table 2. It is noticed that the flow velocity for n = 0.75 and
n = 0.95 increases for increasing inclination angle ¢ but the
variation in the difference of the velocities is very small.

5. Conclusions

In this paper the influence of non-Newtonian nature of blood
and catheterization on the steady flow of blood through a
uniform a inclined artery has been studied. The variation of
velocity, wall shear stress, resistance of flow with respect to
involved parameters is analyzed mathematically and is
expressed in terms of graphs. The following conclusions have
been obtained based on the graphical and tabular results.

* When the yield stress is increased, the plug core area
width is increased and the velocity is decreased.

* The Herschel-Bulkley experiences lower velocity as
compared to that of power law fluid.

* The flow rate shows direct relation with the pressure
gradient p, while the inverse relationship of flow rate is
observed with the catheter radius ratio k and yield stress 6.
Also slip velocity parameter U, and the inclination
parameter ¢/ enhance the flow rate.

* Wall shear stress shows direct relationship with the yield
stress 6 but the situation reversed for slip parameter Uj.

* The resistance to the flow for a specific value of p and n
increases with growing yield stress 6 as well as growing
catheter radius as anticipated. Also it shows decreasing
trend for higher values of inclination parameter .

¢ The values of resistance to the flow for Herschel-Bulkley
fluid are greater than those of power law fluid and least
for Bingham fluid.
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