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Abstract
We classify the Lie point symmetries for the 2+1 nonlinear generalized Kadomtsev-
Petviashvili equation by determine all the possible ( )f u functional forms where the latter
depends. For each case the one-dimensional optimal system is derived; a necessary analysis to
find all the possible similarity transformations which simplify the equation. We demonstrate our
results by constructing static and travel-wave similarity solutions. In particular the latter
solutions satisfy a second-order nonlinear ordinary differential equation which can be solved by
quadratures.

Keywords: lie symmetries, similarity solutions, Kadomtsev-Petviashvili, weakly nonlinear
waves

1. Introduction

There are many different approaches to study nonlinear
differential equations and determine analytical solutions
[1–9]. A systematic method which has been widely applied
with many interesting results was established by S. Lie at the
end of the 19th century, and it is described in his work on the
theory of transformations groups [10–12].

The main novelty of Lie’s theory is that the transfor-
mations groups which leave invariant a differential equation,
can be used to simplify the given equation. In particular, Lie
symmetries are applied to the simplification process of a
differential equation by means of reduction. There are dif-
ferences in the application of Lie symmetries between
ordinary differential equations (ODEs) and partial differential
equations (PDEs). For PDEs the application of a Lie point
symmetry through the so-called similarity transformation
leads to a differential equation with less independent variables
and of the same order. Oppositely, in the case of ODEs the
application of a Lie symmetry reduces the order of the given
differential equation by one [1, 13].

The application of the theory of transformations groups
in differential equations is not restricted to the application of

the similarity transformation. Lie symmetries can be used to
determine algebraic equivalent systems as also to provide
linearization criteria for nonlinear differential equations
[14–16]. In addition, Lie symmetries are applied in order to
construct conservation laws [17–19]; to determine new
solutions from old solutions [20] and many other applica-
tions [21].

The plethora of results which can be obtained by the Lie
symmetries for nonlinear differential equations have led to the
algebraic classification problem for differential equations. The
first algebraic classification scheme was performed by LV
Ovsiannikov in 1982, who classified all the forms of the
1+1 nonlinear PDE ( ( ) )- =u f u u 0t x x where the latter
equation admits Lie symmetries [22]. In terms of nonlinear
wave equations there are various studies on the group prop-
erties, Ames et al classified the Lie point symmetries for the
nonlinear differential equation ( ( ) )- =u f u u 0tt x x . Appli-
cations of Lie symmetries in Shallow-water equations are
presented in [23–30]; while applications of other subjects of
applied mathematics and mathematical physics are presented
in [31–42] and references therein.

In this work we focus on the algebraic classification
problem for the 2+1 nonlinear generalized Kadomtsev-
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Petviashvili (KP) equation [43]

( ) ( )e+ + + =u f u u u v 0, 1t x xxx y

( )- =v u 0, 2x y

or equivalent

( ( ) ) ( )e+ + + =u f u u u u 0, 3t x xxx x yy

where ( )f u is an arbitrary nonlinear function,
( ) ( )= =u u t x y v v t x y, , , , , , while parameter ε can be nor-

malized to ε=±1 and it measures the traverse dispersion
effects on weakly nonlinear waves.

KP equation is recovered for the linear function ( )f u and
it can be seen as the extension of the Korteveg-de Vreis
equation in higher dimensions. Nowadays KP equation is the
standard model for the description of weakly nonlinear waves
of small amplitude in various physical situations [44–46]. The
KP equation is a well-known integrable equation which has
been used as a source of integrable equations, for more details
see [47].

In [48] it was found that the KP equation can be reduced
to into the Painlevé transcendental equation of the first kind
by using the Lie invariants. The Lie symmetries and the
possible reductions of the KP equations were studied also by
S-Y Lou in [49]; while recently the Lie point symmetries of
the KP equation with time-dependent coefficients have been
determined in [50], a similar analysis with and time- and
space- dependent coefficients was performed in [51]. For
other integrable hierarchies of PDEs we refer the reader
in [52]

In the following sections we shall determine the forms of
the unknown nonlinear function ( )f u where the 2+1 non-
linear generalized KP equations (1), (2) admits Lie point
symmetries. For the different functions ( )f u we determine the
one-dimensional optimal system of the admitted Lie point
symmetries by the generalized KP equation. The determina-
tion of the optimal system is necessary in order to understand
the possible reductions of the differential equation.

For the one-dimensional system we calculate the
corresponding invariants which define the similarity trans-
formations to reduce the differential equation. The results are
presented in a tabular list. Moreover, we shall present two
examples where we show how to apply the Lie invariants and
determine similarity transformations. We shall see that for the
arbitrary functional form of ( )f u for the static solution and
the travel-wave solution the generalized KP equations (1), (2)
can be solved by quadratures. While for some specific func-
tional forms of ( )f u the solution of the original system is
described by well-known one-dimensional Newtonian sys-
tems such is the Ermakov-Pinney equation. The outline of the
paper follows.

In section 2, we present the main results of our analysis,
where we determine the Lie point symmetries for the 2+1
nonlinear generalized KP equations (1), (2) for specific forms
of ( )f u . In particular we determine the Lie point symmetries
for arbitrary function ( )f u , where additional symmetries exist
when ( ) = +f u u fk

0 and ( ) = +sf u e fu
0. For each of the

cases, the one-dimensional optimal system is calculated.
In section 3, we determine the Lie invariants for all the

one-dimensional systems. This invariants can be used to find
similarity transformations in order to the generalized KP
equation and construct similarity solutions. The similarity
transformations are applied to find static similarity solutions
or travel-wave solutions. In appendices A and B we present
the basic properties and definitions for the Lie theory and the
one-dimensional optimal system, while in appendix C we
extend our analysis and we present the Lie point symmetries
for the 3+1 nonlinear generalized KP equation [43]. Finally
in section 4, we discuss our results and we draw our
conclusions.

2. Classification of Lie symmetries

In this section we solve the algebraic classification problem
for the 2+1 nonlinear general KP equation of our con-
sideration by finding all the nonlinear functions ( )f u in which
equations (1), (2) admit Lie point symmetries. In each case
the one-dimensional optimal system is derived. The Lie the-
ory and the definition of the one-dimensional optimal system
are presented in appendices A and B respectively.

2.1. Arbitrary function f ðuÞ

For the arbitrary function ( )f u the 2+1 generalized KP
equations (1), (2) admit the following Lie point symmetries

( ) ( )e b
= ¶ = ¶ = ¶
= ¶ - ¶ + ¶ = ¶b

X X X

X t y u X t

, , ,

2 , . 4
t x y

y x v v

1 2 3

4

where function ( )b t is arbitrary.

The symmetry vector Xβ indicates that there are infinity
number of solutions of the form ( ) ( )=v t x y v t, , which
solves the KP equation. However it does not play any role in
the determination of the exact solutions, hence we shall
omit it.

As far as the rest of the symmetry vectors are concerned,
i.e. the vector fields X1,X2,X3 and X4, we calculate the
commutators which are presented in table 1. The admitted Lie
algebra is the A4,3 in the Morozov-Mubarakzyanov classifi-
cation scheme [53–56] , for more details we refer the reader in
the review article [57].

2.1.1. One-dimensional optimal system. In order to
determine the one-dimensional optimal system, the adjoint
representation and the invariants of the adjoint action should

Table 1. Commutators of the admitted Lie point symmetries for the
2+1 nonlinear KP equation for arbitrary function f (u).

[ ], X1 X2 X3 X4

X1 0 0 0 2εX3

X2 0 0 0 0
X3 0 0 0 −X2

X4 −2εX3 0 X2 0

2
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be determined. The adjoint representation of the symmetry
vectors { }X X X X, , ,1 2 3 4 is presented in table 2.

The invariants ( )f ai of the adjoint action are determined
by the set of differential equations

( ) ( )f fD =
¶
¶

C a
a

, 5i ij
k j

k

where Cij
k are the structure constants of the Lie algebra.

Therefore, from (5) and table 1 we end up with the
system of first-order partial differential equations

( )e
f f¶

¶
= -

¶
¶

=a
a

a
a

2 0, 0, 64
3

4
2

from where we infer ( )f f= a a,1 4 , that is, the invariants of
the adjoint action are the a1 and a4.

We define the generic symmetry vector

( )= + + +X a X a X a X a X , 71 1 2 2 3 3 4 4

and with the use of table 2 and of the invariants of the adjoint
representation as given in table 2 we have the following
possible cases

Case 1: a1=0,a2=0. The generic symmetry vector is

( )¢ = +X a X a X , 82 2 3 3

which gives the one-dimensional optimal system

{ } { } { }g+X X X X, , .2 3 2 3

Case 2: ¹ =a a0, 01 2 . The generic symmetry vector is

( ) = + +X a X a X a X , 91 1 2 2 3 3

from where we infer the additional one-dimensional algebras

{ } { } { } { }g d g d+ + + +X X X X X X X X, , , .1 1 2 1 3 1 2 3

Case 3: = ¹a a0, 0.1 2 The generic symmetry vector is

( )¢¢¢ = + +X a X a X a X , 102 2 3 3 4 4

where now the additional one-dimensional algebras are

{ } { } { }g d+ +X X X X X, , .4 4 2 4 3

Case 4: ¹a a 01 2 . In the generic case the additional one-
dimensional Lie algebra is found to be

{ }g+X X .1 4

Hence, the one-dimensional optimal system for the 2+1
generalized KP equations (1), (2) for arbitrary function ( )f u

consists by the Lie algebras

{ } { } { } { } { }
{ } { }
{ } { }
{ } { }

g
g d
g d g
d g

+
+ +
+ + +
+ +

X X X X X X
X X X X
X X X X X
X X X X

, , , , ,
, ,

, ,
, .

1 2 3 4 2 3

1 2 1 3

1 2 3 4 2

4 3 1 4

2.2. Power-law f ðuÞ ¼ uk + f 0

When ( )f u is a power law function, that is, ( ) = +f u u fk
0

the admitted Lie symmetries for equations (1), (2) are

( ) (
( ) ) ( ) ( )

e

b

= ¶ = ¶ = ¶
= ¶ - ¶ + ¶
= ¶ + + ¶ - ¶

+ + ¶ + ¶ = ¶b

X X X

X t y u

X u k v k t
x f t y X t

, , ,

2 ,

2 2 3
2 2 , , 11

t x y

y x v

u v t

x y v

1 2 3

4

5

0

where again ( )b t is an arbitrary function and X5 is an extra
Lie point symmetry. We observe that X5 is a scaling sym-
metry. The commutators of the admitted Lie point symmetries
are given in table 3. The admitted Lie point symmetries form
the A5,37 Lie algebra in the Patera et al classification
scheme [58].

2.2.1. One-dimensional optimal system. The invariants of
the adjoint action are determined by the system of first-order
differential equations

⎛
⎝⎜

⎞
⎠⎟ ( )e

f f f¶
¶

-
¶
¶

+
¶
¶

=a
a

a k
a

f
a

2 3 2 0, 124
3

5
1

0
2

( )f¶
¶

=k
a

0, 13
2

( )f f¶
¶

+
¶
¶

=a
a

a k
a

2 0, 144
2

4
3

( )e
f f f

-
¶
¶

+
¶
¶

+
¶
¶

=a
a

a
a

ka
a

2 0. 151
3

3
2

5
4

The latter system provides that ( )f f= a5 , which means that
a5 is the unique invariant.

Indeed when a5=0 we find the one-dimensional
optimal system of the case where ( )f u is arbitrary. However,
for ¹a 05 the additional one-dimensional algebra is found to
be the { }X5 .

In order to demonstrate it, let us consider the generic
symmetry vector

( )= + + + +Y a X a X a X a X a X , 161 1 2 2 3 3 4 4 5 5

Table 2. Adjoint representation of the admitted Lie point symmetries for the 2+1 nonlinear KP equation for arbitrary function f (u).

( ( ))eAd X Xexp i j X1 X2 X3 X4

X1 X1 X2 X3 e- +X X2 2
3 4

X2 X1 X2 X3 X4

X3 X1 X2 X3 εX2+X4

X4 X1−ε3X2+2ε2X3 X2 −εX2+X3 X4

3
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then by using the he adjoint representation of the symmetry
vectors { }X X X X X, , , ,1 2 3 4 5 as presented in table 4 we find

( ( ))
( ) ( )

( ) ( )

e

e e e
e

¢ =

= + - - + +
+ - +

Y Ad X Y

a X a X a X
a a k X a X

exp

2
, 17

4 4

1 1 4
3

4 3 2 3 4
2

3

4 5 4 4 5 5

where for a5kε=a4 it becomes

( )¢ = + ¢ + ¢ +Y a X a X a X a X . 181 1 2 2 3 3 5 5

We continue by considered the adjoint transformation

( ( )) ( )
( ) ( )

e e
e

 = ¢ = + ¢ + ¢

+ ¢ + +

Y Ad X Y a X a a X

a a k X a X

exp

2 , 19
3 3 1 1 2 3 3 2

3 5 4 3 5 5

and for 2a5ε4k=- ¢a3 it becomes

( ( )) ( )e = ¢ = +  + +Y Ad X Y a X a X X a Xexp . 203 3 1 1 2 2 3 5 5

In addition we find

( ( ))
( )

e
e

¢¢¢ =  = ¢¢¢ +
=-

Y Ad X Y a X a X
a a k

exp ,
with 3 , 21

1 1 2 2 5 5

1 5

and finally

⁗ ( ( )) ( )e a e= ¢¢¢ = ¢¢¢ = -Y Ad X Y a X a kexp , . 221 1 5 5 2 5

2.3. Exponential f ðuÞ ¼ eσu+ f 0

The last case where ( )f u is an exponential function, that is,
( ) = +sf u e fu

0, the admitted Lie point symmetries by
equations (1), (2) are

¯ ( ( ) )

( )
( )

e

s s

b

= ¶ = ¶ = ¶
= ¶ - ¶ + ¶

= ¶ + ¶ - ¶ + + ¶ + ¶

= ¶ = ¶b

X X X

X t y u

X v t x f t y

X X t

, , ,

2 ,

2 3 2 2 ,

, ,

23

t x y

y x v

u v t x y

v v

1 2 3

4

5 0

6

where ( )b t is an arbitrary function. Remark that the additional
Lie point symmetry is the X̄5 while the symmetry vector X6 is
included into the infinity number of symmetries Xβ. However,
in this case it is important to consider it separately in order to
define the closed algebra of the symmetry vectors
{ ¯ }X X X X X X, , , , ,1 2 3 4 5 6 . From the commutator of table 5 we
infer that the six Lie symmetries form the Lie algebra
{ }ÄA As5,37 1 , where ⊗s denotes semi-direct product of the
two Lie algebras, namely A5,37 and A1, see for details [58].

2.3.1. One-dimensional optimal system. In order to find the
one-dimensional optimal system for the case where ( )f u is an
exponential function. To do that we need the Adjoint
representation which is presented in tables 6 and 7. We
apply the same procedure as before, for the power-law
potential from where we find that the additional one-
dimensional algebras is again the vector field { ¯ }X5 .

The question which is raised, is about the one-
dimensional optimal system when the infinity number of
symmetries, i.e. Xβ, is included. Recall that we should reduce
the equation first from a partial differential equation into an
ordinary differential equation and the application of Xβ does
not perform such process. For that reason we have not
included it in the presentation.

We continue our analysis by applying the Lie point
symmetries in order to determine the similarity transforma-
tions and when it is feasible and to specify similarity
solutions.

3. Similarity transformations

The main application of the Lie symmetries is that similarity
transformations can be defined which can be used to simplify
the differential equation. As far as partial differential
equations are concerned the similarity transformations are
applied to reduce the number of indepedent variables. On the
contrary, in the case of ordinary differential equations the
application of similarity transformations lead to a differential
equation of lower-order. In the ideal scenario, where the
admitted Lie point symmetries are sufficient to reduce a
partial differential equation into an ordinary differential
equation and the latter equation into an algebraic equation, or
into another well-known integrable equation, with well-
known solutions; we shall say that we have found a similarity
solution for the original problem.

However, the application of a similarity transformation to
a given differential equation leads to a new differential
equation where it has different algebraic properties, that is, it
admits different Lie symmetries. There is a criterion in which
the Lie point symmetries of the original equation are also
point symmetries of the reduced equation. Consider the Lie
point symmetries X1, X2 with commutator [X1, X2]=cX2

where c may be zero. Then reduction by X1 in the original
equation results that X2 being a nonlocal symmetry for the
reduced equation; while reduction by X2 results in X1 being an
inherited Lie symmetry of the reduced differential equation
[59]. It is possible the reduced equation to admit extra Lie
point symmetries, these are called hidden symmetries and can
be used to perform further reduction [60].

Before we proceed with the application of the Lie sym-
metries to determine similarity solutions for the 2+1 non-
linear generalized KP equation, we calculate the Lie
invariants which correspond to all the above one-dimensional
Lie algebras. The Lie invariants are presented in table 8.

Table 3. Commutators of the admitted Lie point symmetries for the
2+1 nonlinear KP equation for power-law function f (u).

[ ], X1 X2 X3 X4 X5

X1 0 0 0 2εX3 - -kX kf X3 21 0 2

X2 0 0 0 0 −kX2

X3 0 0 0 −X2 −2kX3

X4 −2εX3 0 X2 0 kX4

X5 3kX1+2kf0X2 kX2 2kX3 −kX4 0

4
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3.1. Similarity solutions

We continue by applying some of the Lie invariants presented
in table 8 in order to determine similarity solutions for the
2+1 nonlinear generalized KP equation.

3.1.1. Static solution. The application of the Lie symmetry
vector X1, leads to the time-independent equation

( ) ( )e+ + =f u u u v 0, 24x xxx y

( )- =v u 0, 25x y

where ( )=u u x y, and ( )=v v x y, ; that is, the solution which
will be determined will be a static solution.

For arbitrary function ( )f u the latter equation admits the
Lie symmetry vectors X2, X3 and Xv=∂v. The latter vector
fields are reduced symmetries while Xv is the static symmetry

vector Xβ. Additional symmetry vectors exist when
( ) =f u uk and ( ) = sf u e u. The additional Lie symmetries

are the X5 and X̄5 vector fields for f0=0, respectively. We
remark that for ¹f 00 there are not additional Lie point
symmetries, that is because the vector fields X5 and X̄5

become nonlocal symmetries.
Further, reduction of the system (24), (25) with the

application of the lie symmetry X2 leads to the system
εvy=0,uy=0 with the trivial solution v=v0 and u=u0.
On the other hand, reduction with the use of the symmetry
vector X3 leads to the third-order nonlinear ODE

( ) ( )+ =f u u u 0, 26x xxx

where v=v0. Equation (26) can be integrated as follows

( ) ( )ò+ =u f u du 0, 27xx

Table 4. Adjoint representation of the admitted Lie point symmetries for the 2+1 nonlinear KP equation for power-law function f (u).

( ( ))eAd X Xexp i j X1 X2 X3 X4 X5

X1 X1 X2 X3 e- +X X2 2
3 4 3εkX1+2εkf0X2+X5

X2 X1 X2 X3 X4 e +kX X2 5

X3 X1 X2 X3 εX2+X4 2εkX3+X5

X4 X1−ε3X2+2ε2X3 X2 −εX2+X3 X4 −εkX4+X5

X5 ( )+ -e e e- - -e X e f e X1k k k3
1 0

2
2 e− kεX2

e-e Xk2
3 e kεX4 X5

Table 5. Commutators of the admitted Lie point symmetries for the 2+1 nonlinear KP equation for exponential function f (u).

[ ], X1 X2 X3 X4 X̄5 X6

X1 0 0 0 2εX3 s s- -X f X3 21 0 2 0
X2 0 0 0 0 −σX2 0
X3 0 0 0 −X2 −2σX3 0
X4 −2εX3 0 X2 0 s -X X24 6 0
X̄5 3σX1+2σf0X2 σX2 2σX3 −σX4+2X6 0 σX6

X6 0 0 0 −σX6 0 0

Table 6. Adjoint representation of the admitted Lie point symmetries for the 2+1 nonlinear KP equation for exponential function f (u).

( ( ))eAd X Xexp i j X1 X2 X3

X1 X1 X2 X3

X2 X1 X2 X3

X3 X1 X2 X3

X4 X1−ε3X2+2ε2X3 X2 e- +X X2 3

X̄5 ( )+ -se se se- - -e X f e e X13
1 0

2
2 e−σεX2 e−2σεX3

X6 X1 X2 X3

Table 7. Adjoint representation of the admitted Lie point symmetries for the 2+1 nonlinear KP equation for exponential function f (u).

( ( ))eAd X Xexp i j X4 X̄5 X6

X1 −2ε2X3+X4 ( ) ¯se + +X f X X3 21 0 2 5 X6

X2 X4 ¯se +X X2 5 X6

X3 εX2+X4 ¯se +X X2 3 5 X6

X4 X4 −σεX4+X5+2εX6 X6

X̄5 e-se see X e X24 6 X5 eσεX6

X6 X4 X5−εσX6 X6

5
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The latter equation is autonomous and can easily be integrated by
quadratures. Indeed, equation (27) becomes ( )+ F =u u 0,x

1

2
2

where we have replaced ( )ò = Ff u du u, ; that is,

( )
( )ò F

=
du

u
dx

2
. 28

As far as the classification problem for equation (27) is
concerned, that it is well-known and was performed by
Sophus Lie more than a century ago [10].

In particular there are four different families of
potentials. (A) For arbitrary function ( )F u equation (27)
admits the symmetry vector ∂x. (B)When ( ) ( )b= +F u a u n

or ( ) = ¹ -gF u e n, 0, 1, 3u equation (27) admits two Lie
point symmetries. Specifically the admitted Lie point
symmetries constitute the A2 Lie algebra in the Mubar-
akzyanov classification scheme. (C) Furthermore, when

( )
( )

=
+

F u
u c

1
3 or ( ) ( )

( )
a= + +

+
F u u c

u c

1
3 , equation (27)

describes the Ermakov-Pinney equation and it is invariant
under the elements of the ( )SL R3, Lie algebra. Finally, (D)
when ( )F u is linear, equation (27) is maximally symmetric
and admits eight Lie point symmetries. However, that case is
not the subject of study of this analysis. We note that in the
case (B) the additional symmetry is a reduced symmetry and
it is described by the vector fields X5 and X̄5.

Reduction with the Lie symmetry { }g-X X2 3 leads to the
system

( ) ( )e+ + =f u u u v 0, 29z zzz z

( )- =v u 0, 30z z

where z=y+cx. The latter system is reduced in the form of
equation (26).

3.1.2. Travel-wave solutions. The application of the Lie point
symmetries { } { }g g+ +X X X X,1 2 1 3 and { }g d+ +X X X1 2 3

provides travel-wave solutions in the directions of x, y or in
the line { }g d+ =x y 0 .

Consider reduction of the original system with the
symmetry vector { }g+X X1 2 , then it follows

( ( ) ) ( )g e- + + =f u u u v 0, 31z zzz y

( )- =v u 0, 32z y

where z=x−γt. The latter system is in the form of the static
system (24), (25), where someone replaces ( ) ( ) g -f u f u
and x z. Hence the above analysis is also applied and in
that case

The same results follow and for the rest of the reductions
which provide travel-wave solutions; therefore we omit the
presentation of the rest reductions which lead to travel-wave
solutions.

4. Conclusions

In this work, we considered a generalization of the 2+1 KP
equation which has been used for the study of weakly non-
linear waves. The generalized KP equation depends on an
unknown function ( )f u which we assumed that it is con-
strained by the Lie symmetry conditions.

For an arbitrary function ( )f u , the generalized KP
equation is invariant under the action of a four-dimensional
Lie algebra, the A4,3 Lie algebra, plus a vector field which
provides the infinity number of trivial solutions for the diff-
erential equation.

For two exact forms of ( )f u , namely ( ) = +f u u fk
0 and

( ) = +sf u e fu
0, the generalized KP equation admits from

Table 8. Lie invariants for the optimal system of the 2+1 nonlinear generalized KP equation.

Symmetry Invariants

X1 ( ) ( )x y u x y v x y, , , , ,
X2 ( ) ( )t y u t y v t y, , , , ,
X3 ( ) ( )t x u t x v t x, , , , ,
X4 ( )

( ) ( )

e e

e e

+ +

+ + +
e

t tx y U t tx y V

t tx y U t tx y

, 4 , , 4 ,

, 4 , 4
t

2 2

2 1
2

2

X2+γX3 ( ) ( )g g g- - -t y x u t y x v t y x, , , , ,
X1+γX2 ( ) ( )g g g- - -y x t u y x t v y x t, , , , ,
X1+γX3 ( ) ( )g g g- - -x y t u x y t v x y t, , , , ,
X1+γX2+δX3 ( ) ( )g d g d g d- - - - - -x t y t u x t y t v x t y t, , , , ,
X4+γX2 ( ) ( ) ( )( )z z z z= +g e

e
g
e

- - -t U t V t U t, , , , , ,x x ty

t

x

t

2 4

4 2

2

X4+γX3 ( ) ( ) ( )( )w w w w= +g e
e

g
e

- - -t U t V t U t, , , , , ,y y tx

t

y

t

2 4

4 2

2

X1+γX4

( ) ( ) ( )

x eg z

e g x z x z g x z

= -

= - + +g

y t

x t yt U V U

,

, , , , ,

2

2

3
3

2

X̄5 ( ) (( ) )

(( ) )

- -

-

- - - - - -

- -

+
x f t t yt t U x f t t yt t V

x f t t yt

, , , ,

,

0 0

0

k
k

k
1
3

2
3

2
3

1
3

2
3

2
3

1
3

2
3

X5 ( ) (( ) )

(( ) )

- - + -

-

s
- - - - -

- -

x f t t yt t U x f t t yt t V

x f t t yt

, , ln , ,

,

0
2

3 0

0

1
3

2
3

1
3

2
3

1
3

1
3

2
3
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one additional Lie point symmetry, such that the finite Lie
algebra to be the A5,37 and { }ÄA As5,37 1 respectively. We see
that for ( ) = +sf u e fu

0 the finite Lie algebra is of sixth
dimension. However, in both cases there exists the Lie point
symmetry which provides the finite number of trivial solu-
tions u=u0 and ( )=v v t . An important observation is that
for the two different functions ( )f u the two generalized KP
equations has a common subalgebra, namely A5,37 which
means that they share a common reduction process, more
general than that for arbitrary function ( )f u .

For all the different cases of ( )f u we derived the one-
dimensional optimal system and we calculated all the possible
similarity transformations which can be applied to reduce the
differential equation. We demonstrated our results by apply-
ing the similarity transformations to determine analytic
solutions which are static or travel-waves. Surprisingly, we
determined that for both types of solutions and after a further
reduction we end up with a similar second-order ordinary
differential equation, of the form

( ) ( ( )) ( )z z+ =zzX V X 0, 33

which can be solved by quadratures.
Therefore, we conclude that the generalized 2+1 KP

equation can be reduced to a classical Newtonian system,
with a central force. That is an important result since we can
see the dynamics of nonlinear waves reduce to that of clas-
sical system under the proper frame, that is, a proper simi-
larity transformation. In a future work we plan to investigate
in details the physical applications of these solutions.
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Appendix A. Lie symmetries

Consider the system of differential equations (H x u, ,i A

) ºu u, 0i
A

ij
A

, , where x i denotes the independent variables and
uA are the dependent variables.

Under the action of the one-parameter point infinitesimal
transformation

¯ ( ) ( )ex= +x x x u, , 34i i i k B

¯ ¯ ( ) ( )eh= +u u x u, , 35A A A k B

with infinitesimal generator

( ) ( ) ( )x h= ¶ + ¶x u x uX , , . 36i k B
x

A k B
ui A

the system of differential equations ( )H x u u u, , ,i A
i
A

ij
A

, , is
invariant if and only if

¯ ( ¯ ¯ ) ( ¯ ) ( )e
e

¼ - ¼
=

e

H x u H x u
lim

, , ; , ,
0, 37

A i A A i A

0

or equivalently

( ) ( )= H 0, 38X

where describes the Lie derivative with respect to the
vector field [ ]X .n Vector field [ ]X n n th-extension of Xin the
jet space { }x u u u, , ,i A

i
A

ij
A

, , is given by the following expres-
sion

( )[ ] [ ] [ ]h h= + ¶ + + ¶X X ... , 39n
u

n
u

1
i
A

ii ij in
A

...

where [ ]h n is defined as

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

¯

¯
( )

[ ] [ ]

[ ]

h h
e

h
e

= -
¶
¶

=
¶F
¶

-
- D u D

x
i, 1,

. 40

n
i

n
i i i i

j

A

1
...

0

n1 2 1

If condition (38) is true, then the generator X of the infi-
nitesimal transformation (34)–(35) is called a Lie point sym-
metry of the system of differential equations (H x u,i A, )u u, .i

A
ij
A

, ,
The Lie invariants which correspond to a given Lie point

symmetries X are found by solving the following Lagrange
system

( )
[ ] [ ]

[ ]x h h h h
= = = =

dx du du du du
... 41

i

i

A

A
i
A

i
A

ij
A

ij
A

ij j
A

n

... n

The characteristic functions ( ) ( )[ ] [ ]W x u W x u u, , , ,k k
i

0 1 and
( )[ ]W x u u u, , ,k

i ij
2

, which solve the latter Lagrange system
are called the n−th invariants of the Lie symmetry vector X.

Appendix B. One-dimensional optimal system

Let assume the n-dimensional Lie algebra Gn, with elements
X1,X2,...Xn. We shall say that the two generic vector fields

( )å å= =
= =

Z a X W b X a b, , , are constants. 42
i

n

i i
i

n

i i i i
1 1

are equivalent if and only if under the action of the Adjoint
representation it holds,

( ( )) ( ) e=
=

Ad XW Zexp 43
j i

n

i i

or

( )= =W cZ c const, , 44

where the Adjoint operator is defined as

( ( )) [ ] [ [ ]]

( )

e e e= - + +Ad X X X X X X X Xexp ,
1

2
, , ....

45

i j j i j i i j
2
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Hence, in order to perform a complete classification for
the similarity solutions of a given differential equation we
should determine all the one-dimensional indepedent sym-
metry vectors of the Lie algebra Gn. The one-dimensional
independent symmetry vectors form the so-called one-
dimensional optimal system [1].

Appendix C. The 3+1 nonlinear
generalizedKadomtsev-Petviashvili equation

The 3+1 nonlinear generalized KP equation [43] is
defined as

( ) ( )a b+ + + + =u f u u u v w 0, 46t x xxx y z

( )- =v u 0, 47x y

( )- =w u 0, 48x z

or equivalently

( ( ) ) ( )a b+ + + + =u f u u u u u 0, 49t x xxx x yy zz

where ( ) ( ) ( )= = =u u t x y z v v t x y z w w t x y z, , , , , , , , , , ,
and constants α andβ measures the transverse dispersion
effects and are normalized to ±1.

For the 3+1 generalized KP equation and for the
arbitrary function ( )f u the admitted Lie point symmetries are

( )
( )

a b
b a a b f

f af bf

= ¶ = ¶ = ¶ = ¶
= ¶ - ¶ + ¶ = ¶ - ¶ + ¶
= ¶ - ¶ + ¶ - ¶ = ¶

+ ¶ + =
¥

Y Y Y Y

Y t y u Y t z u

Y y z v w Y t y z

t y z

, , , ,

2 , 2 ,

, , ,

, , where 0.

t x y z

y x v y x w

z y w v v

w y z

1 2 3 4

5 6

7 1

2 1 2

When ( ) = +f u u fk
0 the additional Lie point sym-

metry is

( ( ) )
( )( )

= ¶ + + ¶ + ¶ + ¶ - ¶
+ + ¶ + ¶

Y k t x f t y z u

k v w

3 2 2

2 ,
t x y z u

v w

8 0

while when ( ) = +sf u e fu
0 the extra Lie point symmetry of

the 3+1 generalized KP equation is

¯ ( ( )
)

s= ¶ + + ¶ + ¶ + ¶
+ ¶ + ¶ - ¶

Y t x f t y z

v w

3 2

2 .
t x y z

v w u

8 0
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