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Abstract
According to the theory of scale relativity, dark matter halos can be described through a
generalized Schrödinger equation, involving a logarithmic non-linearity associated with an
effective temperature and a source of dissipation. This wave equation can be written, via the
Madelung transformation, in the form of a quantum hydrodynamic model which, once coupled
to the Poisson equation, is used herein to study the Jeans gravitational instability. We consider
the two cases of a static and uniform unperturbed background and the generalization including
the effect of Universe expansion on the zeroth-order dynamics. In each case, the stability is
ensured by the effective temperature and nonlocality effects acting against gravitational forces,
whereas the dissipation source damps the density contrast evolution without modifying the
threshold value of the Jeans wave number.
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1. Introduction

In 1933, Zwicky [1] applied the virial theorem to the Coma
Cluster and reported the evidence of unseen mass that he
called ’dunkle Materie’. Since then, Dark Matter (DM) has
received a number of observational indications. Among the
most robust indications are the measurement of the rotation
curves of spiral galaxies [2–5] as well as observations of
gravitational lensing [6], hot gas in clusters [7], and the ani-
sotropies of the Cosmic Microwave Background (CMB) [8].
Despite a Myriad of strong indications, the nature of DM
particles, although actively studied, remains at this stage
elusive.

The Cold Dark Matter (CDM) model, according to which
DM is modeled as a pressureless gas, encountered a great
success at large scales (read cosmological scales). The model
accounts for the formation of structures, with the small
objects forming at first stage and merging together to form
larger objects, i.e., hierarchical clustering. However, the
model suffers from a number of serious drawbacks at scales
less than 10 kpc [9–13]; This is the so-called CDM crisis [14].

So far, various alternatives have been suggested to solve
the CDM crisis. Among the most studied approaches the
Warm Dark Matter (WDM) model [15], in which DM

particles possess a thermal velocity, or the Fuzzy Dark Matter
(FDM) model [16, 17], in which DM is composed of ultra
light bosons. As bosons are expected to form Bose–Einstein
condensates at low temperatures, DM is described, in the
latter model, by a scalar field that can be identified with the
wave function of the condensate, whose evolution is governed
by the Gross–Pitaevskii equation. Equivalently, the dynamics
of the DM halo can be formulated in terms of a hydrodynamic
model, namely the continuity equation and of the Euler
equation, upon introducing the Madelung representation of
the wave function [18]. In doing so, the DM halo is viewed as
a non-relativistic Newtonian gas, whose density and pressure
are related by a barotropic equation of state.

Recently [19], another promising alternative to solve the
CDM crisis has been inspired by Nottaleʼs theory of scale
relativity [20, 21]. In this model, instead of the Gross–
Pitaevskii equation, DM halos are described by a generalized
Schrödinger equation, involving a logarithmic nonlinearity
associated with an effective temperature and a source of
dissipation. This wave equation emerges fundamentally from
the nondifferentiability of the trajectories of the DM particles,
whose origin may be due to ordinary quantum mechanics,
classical ergodic chaos, or to the fractal nature of spacetime at
the cosmic scale [19]. Although similar to the FDM model,
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the former model provides a serious advantage; it can
accommodate any type of particles and does not require the
DM particle to be ultralight. Note that, at present, the exis-
tence of ultralight bosons remains a hypothesis.

Similarly to the Gross–Pitaevskii equation, the latter
generalized Schrödinger equation can be written in a
hydrodynamic fashion, giving rise to a description of the
DM halo as a Newtonian gas, characterized by an effective
isothermal equation of state and a source of dissipation. The
scope of this letter is to go through such a hydrodynamic
formulation and shed light on the process of gravitational
Jeans instability in this model. We note that the investigation
of gravitational collapse in the FDM model, based on the
Gross–Pitaevskii equation, has been recently carried out in a
series of papers [22–26]. Herein, we look at the same pro-
cess within the generalized logarithmic Schrödinger
equation, that does not require to assume that DM is made of
ultralight bosons.

The letter is organized as follows: in section 2, we pre-
sent the generalized Schrödinger equation and the hydro-
dynamic model associated with. In section 3, we study the
standard Jeans mechanism [27–31], where the unperturbed
background is assumed to be characterized by a static and
uniform solution of the Newtonian gas parameters. In
section 4, we consider the effect of the Universe expansion on
the zeroth-order dynamics [32–35], in consistency with the
Friedmann equations for an homogeneous and isotropic
Universe. We summarize and present our conclusions in the
last section.

2. The model

Motivated by Nottale’s theory [21] of scale relativity, a
generalized Schrödinger equation, applying to DM halos, was
derived recently as follows [19]
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where Φ is the gravitational potential and  a coefficient,
possibly different from  m2 (ÿbeing the reduced Planck
constant and m the mass of the particles), whose value for DM
halos is = ´ - 1.02 10 m s23 2 1 [19]. The latter is related to
the nondifferentiability of the trajectories of the DM particles,
whose origin may be due to ordinary quantum mechanics,
classical ergodic chaos, or to the fractal nature of spacetime at
the cosmic scale. Besides, equation (1) involves a logarithmic
nonlinearity associated with an effective temperature T and a
source of dissipation ξ. Similarly to the Gross–Pitaevskii
equation, involved in the FDM model, equation (1) can be
written in a form of a hydrodynamic model, upon using the
Madelung transformation [18, 19],

y rº s t t er r, , , 2i tr, 2( ) ( ) ( )( )

where ρ is the density and σ the real action, that are respec-
tively related to the wave function through
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Inserting the wave function (2) into equation (1) and splitting
apart the real and imaginary parts (as usual, defining the
velocity field as u ≡ ∇σ [18, 19]), one obtains the continuity
equation and the Hamilton-Jacobi equation as follows [19]
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is a Bohm-like quantum potential. Taking the gradient of the
Hamilton-Jacobi equation, one ends up with an Euler
equation, describing the evolution of the velocity field u. The
latter, along with the continuity equation and the Newton-
Poisson equation form a closed set of equations as follows
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that shall be our ultimate model for treating the Jeans
instability. Before doing so, let us briefly draw a few remarks
on the model (6). The latter describes a Newtonian gas,
through a quantum Euler equation involving an effective
isothermal equation of State (EoS)

r=P
k T

m
7B ( )

and a damping factor, associated with the dissipation coeffi-
cient ξ. Note however that, in this model, the quantities
 k T m, B , and ξ are intrinsic properties of the spacetime:
The dissipation ξ is not due to collisions but is an intrinsic
property of the spacetime, or may characterize the friction of
the system with a Dirac-like aether [36]. Similarly, the
temperature T may represent the temperature of the vacuum if
it has fluctuations or be an intrinsic property of the fractal
spacetime. Note also that the appearance of the mass m in
equation (1) is quite artificial since the latter depends only on
the ratio k T mB . Therefore, m is not necessarily to be iden-
tified with the DM particle mass [19]. In this regard, we will
use in what follows the notation1 º ¥k T m vB

2 .

1 In [19], the author uses the notation º ¥k T m v 2B
2 . Herein, we drop the

factor 1/2 to facilitate the analogy with the standard Jeans analysis.
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3. Jeans criterion

Let us discuss in this section the Jeans mechanism as implied
by the model (6). The original Jeans procedure involves the
linearization of the Hydrodynamic equations. Despite the
approximation involved, the linear approach, beside its ped-
agogical virtue, provides worthy predictive information since
it allows for an analytical description. In these lines, let us
consider small perturbations in the form

r r dr d f f df= + = + = +u u u, , , 80 0 0 ( )

around static and uniform solution for the zeroth-order
dynamics. That is,

r f= = =uconst ., 0, const. 90 0 0 ( )

It is worth noting at this stage that, in light of the Poisson
equation, equation (9) leads to an inconsistency. Indeed,
according to the Poisson equation, a constant gravitational
potential leads to a zero density. In general, one cannot satisfy
simultaneously the condition of hydrostatic equilibrium

r r + F =p 0( ) , which implies∇Φ=0, and the Poisson
equation p r F = ¹G4 02 . The usual way to overcome this
inconsistency is to use the ‘Jeans Swindle’ by assuming that
the homogeneous density ρ0 does not contribute to the
gravitational potential, i.e., the gravitational potential is
sourced only by the fluctuations δρ around the uniform
background density ρ0. Since its first use [27] in 1902, the
Jeans swindle has become a standard trick in dealing with
gravitational systems; when measuring the mass profile of any
cosmological structure through internal kinematics, the
background density is always ignored. The trick, however,
can either be avoided [37] or justified [38, 39]; one possibility
to avoid it is to consider an inhomogeneous distribution of
matter in a finite domain [37]. Alternatively, the trick can be
justified by considering the expansion of the Universe. In this
regard, a formal justification of the Jeans swindle has been put
forward by Falco et al [39] by pointing out that the dispersion
profile measured when assuming no background and a static
universe, is exactly the same as the dispersion profile when
including both the background density and the expansion,
demonstrating therefore that the Jeans Swindle is not merely
an ad hoc trick but it is the result of correctly combining the
mean matter density and the expansion of the Universe. We
refer the interested reader to [38–40] for an elaborate dis-
cussion on the subject.

Using equation (8), and neglecting second-order terms,
the set of equations (6) becomes
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Combining equations (10) all together, one ends up with one
equation, describing the evolution of the density perturbation, as

dr dr dr x dr p r dr¶ -  +  + ¶ =¥ v G4 . 11t t
2 2 2 2 4

0 ( )

Performing a decomposition in Fourier modes, i.e.,

dr µ w -e , 12i t ik r. ( )

Equation (11) leads to the following dispersion relation
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Equation (13) has two solutions, namely
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The first term in equation (14) clearly acts as a damping, leading
to a density perturbation decreasing with time (cf equation (12)).
From another hand, the sign of w is worth examining, since it is
responsible for the Jeans instability; for w > 0, it produces an
oscillatory regime, while for w  0, it leads to density pertur-
bations evolving exponentially with time. An examination of
equation (14) shows that w changes sign for
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where w > 0 for >k k* and w  0 for k k*. Let us now
analyze the two different regimes: For w > 0 ( >k k*), one
obtains (cf equation (12)) a damped oscillatory regime

dr w~ - x
e tcos , 16t2 ( ) ( )

while for w  0 ( k k*), one has an exponential solution
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The gravitational collapse occurs if the density perturbation
grows exponentially with time and diverges for  ¥t . This
happens (choosing the positive solution), for W>0. The Jeans
wave number defines the threshold value corresponding to
W=0, which, in this case, is obtained as
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Gravitational collapse occurs for any <
~

k kJ (for wavelengths
l l p> º

~~
k2J J). Figure 1 depicts the variation of the Jeans

wave number
~
kJ with  and v∞. The effects of nonlocality, i.e.,

 together with thermal effects, i.e., v∞, appear to enhance the
value of the Jeans wave number, allowing for stability for bigger
wavelengths; the usual Jeans number being recovered for

 0. One may note that the dissipation source ξ does not
modify the Jeans wave number. It does however modify the
growth rate, i.e., equation (17). This is illustrated in figure 2 from
which one may see that the perturbation evolution is damped by
the dissipation source ξ. This is reminiscent of bulk viscosity
effects [34], accounted for through the Navier-Stokes equation,
or the effects of collisions [28], accounted for through the kinetic
approach, that act as a damping on the perturbation evolution,
keeping the Jeans wave number unaffected. It is worth dis-
cussing two different limits of equation (18), in comparison with
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other approaches discussed in the literature. First, in the limit
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It has the form of the usual Jeans number, originally derived by
Jeans [27]. It corresponds to the Jeans wave number predicted in
the CDM model [17], where the effect of the quantum force is
absent, upon identifying v∞ with the sound velocity cs. From
another hand, in the opposite limit, i.e., r p¥ v G160
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The latter corresponds to the Jeans wave number in Scalar Field
Dark Matter (SFDM) models, in the absence of self-interaction,
derived from the Schrödinger-Poisson model [41–44], upon
identifying º  m m2 , being the mass of the DM particle.

From the Jeans wave number (18), one may define [41]
the Jeans radius lº

~~
RJ J , as the effective radius of the DM

configuration at the onset of the gravitational instability, and
the Jeans mass

~
MJ as the mass inside a sphere of radius
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RJ .
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In the first limit, i.e., equation (20), one may estimate the
Jeans radius and the Jeans mass as follows
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corresponding to the CDM analysis, while for the second
case, i.e., equation (21), one obtains
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Figure 1. The Jeans wave number
~
kJ (cf equation (18)) as a function of v∞, for = 0.1, 0.5, 0.8 (left panel) and as a function of , for

=¥v 0.1, 0.2, 0.3 (right panel). We have set p r ºG4 10 .

Figure 2. wº -W Im ( ) (c.f. (17)), choosing the positive sign, as a
function of the wave number k. One may see that the dissipation
source ξ affects the perturbation evolution without modifying the
Jeans wave number

~
kJ . Parameters are set as p r = = =¥G v4 10

2 .
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This corresponds to the Schrödinger-Poisson model, where
the Jeans radius and the Jeans mass are estimated as [42–44]

p
r

r

= = ´

´
-

-

-


R

G m

m

3.57 10

meV 10 g cm
cm 28

J

3 2

0
2

1 4
12

1 2
0

24 3

1 4

⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟ ( )

and

p
r

r

=

= ´ ´-
-

-

M
h

Gm

m
M

2

3

9.532 10
meV 10 g cm

.

29

J

8 3 10 3 2

4 3 2

3 4

0
1 4

20
3 2

0
24 3

1 4

⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

( )


The main difference is that the model adopted here is inde-
pendent on the DM particle mass m. One may however int
roduce an effective mass by identifying equations (28)–(29)
with equations (26)–(27). Considering the value of

= ´ - 1.02 10 m s23 2 1 [19], the effective mass is given as
m∼2.9×10−22 eV, which corresponds to an ultralight
particle. This is in consistency with the mass ranges adopted
in the Schrödinger-Poisson model where very small particle
masses are required to reproduce realistic astrophysical results
applicable to the galactic or extragalactic scales [41]. The
present model exhibits more similarities with SFDM models,
in the presence of self-interaction, [41, 45], in which both
thermal and quantum effects come into play. In this case, one
starts from Gross-Pitaevskii-Poisson model, that is
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with p= U a m a4 ,0
2 being the coherent scattering length

(defined as the zero-energy limit of the scattering amplitude).
In this case, the nonlinearity, i.e., the term proportional to U0,
gives rise to a quantum pressure term r=p cs

2 , where cs is
the adiabatic speed of sound in the unperturbed DM fluid, that
reads as [41]
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Here again, an equivalence may be addressed between the
Gross-Pitaevskii-Poisson model and the model discussed here
upon identifying º  m2 and º¥v cs, leading to the
same Jeans wave number. The physics behind is however
quite different. While in the SFDM models, the quantum
pressure is supposed to arise from the self-interaction, in the
present model, it is understood as an intrinsic property of the

space-time, as predicted in the theory of scale relativity [19].
The main phenomenological difference between the two
models is the presence of a dissipation source ξ, absent in the
Gross-Pitaevskii-Poisson model, that acts as a damping and
modifies the density evolution (see figure 2). In this sense, the
present model can be seen as a dissipative SFDM model.

4. Expanding Universe background

In the previous section, we were considering the Jeans
mechanism within a static background (cf equation (9)).
However, the Universe is not static, but it is subject to the
Hubble expansion. Although one expects that the expansion
background does not modify substantially the Jeans criterion
[32–35], it is worth generalizing the above discussion to an
expanding Universe background, by taking into account the
Friedmann equations, describing the evolution of a homo-
geneous and isotropic universe. Considering the FLRW
metric

= -ds dt a t dℓ , 322 2 2 2( ) ( )

where a(t) is the scale factor of the Universe, the zeroth-order
solution corresponds to the evolution of a homogeneous and
isotropic Universe filled with the following source: =m
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where r and a0 are constants, whose purpose is to insure
dimensional homogeneity, and r stands for the radial coor-
dinate vector, a(t) satisfies the cosmological equation (34).
Note that, in the presence of an expanding background, the
conditions (35) do not contradict the Poisson equation and the
introduction of the Jeans swindle is no longer necessary.
Following [33, 34], we restrict ourselves to small scales
(r a ), and perform the usual perturbation technique. In the
presence of an expanding background, the model (6), after
linearization, becomes
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We perform a decomposition in Fourier modes as follows
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where k=q/a is the physical wave number, under the
wavelength reduction due to the Universe expansion a(t), and
q is the co-moving wave number. Using equation (37),
equations (36) become
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It is customary to define the density contrast as d r rº 1 0,
and split u1 into two parts, one parallel to the q direction and
one transversal. That is,
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Using equation (39), equations (38) become
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equations (40) reveal the appearance of two different types of
normal modes: One rotational mode associated with ^u1 and
one compressional mode, associated with δ and ò. One may
easily solve the first equation in equations (40) to find out that
the rotational modes, described by ^u1 , behave as

~ x^ -t e au . 41t
1 ( ) ( )

The latter are not affected by the effects of nonlocality, i.e.,
. They simply decay during the Universe expansion,
undergoing damping due to dissipation ξ. Furthermore,
combining the two last equations in equations (40), one
obtains, for the compressional modes, the following equation
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The latter reduces to the Jeans dispersion relation in the case
=a const., and considering the physical wave number
ºk q a. Note that the sign of the coefficient in front of δ

determines whether the amplitude of a density perturbation δρ

grows relative to ρ0 and the Jeans criterion is obtained by
setting this coefficient equal to zero [38], which clearly
reduces to the Jeans criterion (18) established in the previous
section.

It is worth comparing the Jeans mechanism as predicted
by the present model, i.e. Equation (42), with other models
previously reported in the literature. In particular, in the case
of the Schrödinger-Poisson model, the equation describing
the evolution of the density contrast reads as [17, 45]

d d p r d+ + - =
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c

q

a
G2 4 0, 43s
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where cs is defined as the sound velocity (31). The latter
equation is recovered as a particular limit of equation (42) if
one ignores the effects of both dissipation ξ and nonlocality
. In this case, equation (42) behaves as equation (43), with
v∞ playing the role of cs. Although the precise value of v∞ is
unknown, according to [19], v∞ can be identified with the
circular velocity at infinity. For the Medium Spiral, one may
estimate ~¥

-v 108 km s 1 (notice the different notation;

¥v 22 in [19] corresponds to ¥v
2 herein). In SFDM models

[45–48], i.e., Gross–Pitaevskii-Poisson model, where thermal
and quantum effects come into play, the evolution of the
density contrast δ is given by [45]
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Aside from dissipation, equation (44) has the same structure
as equation (42), with ¥v

2 playing the role of the temperature
in the effective isothermal EoS (see equation (7)), and

º  m2 , characterizing the effects of nonlocality. The
main difference resides in the presence of dissipation, due to
the dissipation source ξ, which is fundamentally produced by
the nature of the spacetime or a Dirac-like aether as predicted
in scale relativity [20, 21]. The effect of dissipation turns out
to modify the rotational mode, i.e., the one associated with ^u1
(see equation (41)). In SFDM models, this mode behaves as
[45] ~^ au 11 and is eliminated with the expansion of the
Universe. When the dissipation comes into play, this mode
decreases exponentially and is eliminated faster with the
expansion of the Universe. From equation (42), one may
define a time-dependent Jeans radius and Jeans mass. Fol-
lowing [49], let us consider the limit = =¥c v 0s , in which
case the Schrödinger-Poisson and Gross–Pitaevskii-Poisson
lead the same predictions. From equation (42), the time-
dependent Jeans radius can be estimated as

p
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where the current matter density r = ´2.775b

W h M Mpc10 m
11 2 3

 , the (dark + visible) matter density
parameter Ωm=0.315, h=0.673 [50]. Similarly, the Jeans
mass reads as

r»~ -M z G z155 . 47J
3 2 3 4

0
1
4( ) ( ) ( )

6

Phys. Scr. 95 (2020) 055005 K Ourabah



Since r µ -a0
3, one may estimate the Jeans mass at redshift z

as

» ´ +M z M z1.7 10 1 . 48J
7 3 4( ) ( ) ( )

For comparison, in the SFDM one has for the Jeans radius
and the Jeans mass respectively [49]
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where = -m m 10 eV22
22 . Equations (49)–(50) reduce to

equations (46)–(47) for an effective mass ~ ´ -m 2.9 10 eV22 ,
corresponding to an ultralight particle.

The novel ingredient in the model discussed here being
the presence of dissipation, it is worth examining the effect of
ξ on the evolution of the density contrast, at the beginning of
the matter dominated era; a time just after the epoch of
equality, i.e., a�aeq. In this era, the evolution of the per-
turbations can be well described within the Newtonian
approach. At this time, matter behaves like dust with zero
pressure and one has [17, 45] » ~c q a t0,s

2 2 2 3, and
r ~ -t0

2, therefore = -H t2 3 1( ) . In this case, the evolution
of density contrasts for CDM, i.e., equation (43), reduces to
[17, 45]
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which has solutions of the form

d  +t C t
C

t
, 521

2 3 2( ) ( )

where C1 and C2 are integration constants. Solutions (52)
indicate the presence of modes that disappear as time goes by
(~ t1 ), and modes that grow proportionally to the expansion
of the Universe (~ ~t a2 3 ). At this epoch ( a aeq), density
perturbations predicted by SFDM, i.e. Equation (44), behave
similarly since vq is very small throughout the evolution of the
perturbations ( - -v 10 msq

3 1 for small q [45]). The same
holds true for  q a2 2 2 in equation (42). The main difference
however is the presence of the dissipation factor ξ. In this
case, solutions of equation (42) have the form
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where xG t2 3,[ ] is the incomplete Gamma (plica) function
that behaves as x~ x-t e t3( ) for  ¥t . The dissipation term
appears clearly as a damping that modifies the evolution of
the density contrast. This is reminiscent of the bulk viscosity
effects discussed for instance in [34]. In the limit of vanishing
dissipation, i.e., ξ=0. Equation (53) reduces to
equation (52), predicted by CDM and SFDM models in this
era [45].

5. Conclusion

In this letter, we were dealing with a generalized Schrödinger
equation applying to dark matter halos, recently derived from
the Nottale’s theory of scale relativity, as a promising alter-
native to solve the Cold Dark Matter crisis [19]. The equation
involves a logarithmic non-linearity associated with an
effective temperature and a source of dissipation, associated
with the structure of spacetime. In a similar way to the Gross–
Pitaevskii equation, involved in the Fuzzy Dark Matter
model, the generalized Schrödinger equation can be written in
a form of a hydrodynamic model that exhibits dissipation, due
to the fractal nature of spacetime. Herein, we went through
such a hydrodynamic description, using a perturbative tech-
nique, and obtained the Jeans criterion implied by this model.
We studied two different cases: First, considering an unper-
turbed background characterized by a static and uniform
solution of the fluid parameters. Second, by considering the
effects of the Universe expansion on the zeroth-order
dynamics. It appears that the effects induced by the effective
temperature and nonlocality oppose to the gravitational for-
ces, while the dissipation acts as a damping without mod-
ifying the threshold value of the Jeans wave number.
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