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Abstract. With an energy scale that can be as high as 10'4 GeV, inflation may provide a
unique probe of high-energy physics. Both scalar and tensor fluctuations generated during
this early accelerated expansion contain crucial information about the particle content of the
primordial universe. The advent of ground- and space-based interferometers enables us to
probe primordial physics at length-scales much smaller than current CMB constraints. One
key prediction of single-field slow-roll inflation is a red-tilted gravitational wave spectrum,
currently inaccessible at interferometer scales. Interferometers probe directly inflationary
physics that deviates from the minimal scenario and in particular additional particle content
with sizeable couplings to the inflaton field. We adopt here an effective description for
such fields and focus on the case of extra spin-2 fields. We find that time-dependent sound
speeds for the helicity-2 modes can generate primordial gravitational waves with a blue-tilted
spectrum, potentially detectable at interferometer scales.
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1 Introduction

The resolution of a number of early puzzles in the “hot big-bang” model has secured a central
role for inflation in the cosmological standard model. An early phase of accelerated expansion
accounts for the nearly uniform temperature observed in the cosmic microwave background
(CMB) and provides the seeds for structure formation. The simplest implementation of the
inflationary mechanism consists of a scalar field slowly rolling down its potential to produce a
sufficiently long expansion. Measurements of the CMB radiation constrain primordial scalar
fluctuations around the inflating FLRW background to be nearly Gaussian and almost scale-
invariant (at large scales). Pending a detection of the primordial tensor signal, upper limits
exist on the gravitational waves spectrum, including a tensor-to-scalar ratio of r < 0.056 [1].

Single-field slow-roll inflation is just one of several scenarios compatible with current
observations. Indeed, plenty of multi-field realizations can be found in the literature. String
theory, for example, can accommodate a rich inflationary particle content including compact-
ification moduli, axions, gauge fields, Kaluza-Klein modes [2].

Upon requiring that the mass of the main field driving inflation is small enough to
guarantee about 60 e-folds of expansion, any extra particle content can in principle cover a
wide mass range. Very massive fields m > H are typically integrated out, although one may
look for remnants [3-10] of such fields in late-time observables. Cosmological probes are more
sensitive to lighter (i.e. more long-lived) particles, those satisfying m < H, which will be the
main focus of this work. It proves useful to organize any extra content according to the mass
and the spin of each given particle. Primordial correlators such as the bispectrum store, in
their squeezed (and generalizations thereof) configuration, key information on the mass and
the spin of particles that mediate the corresponding interactions. Intriguingly, spinning fields
generate a richer dynamics, including for example an extra angular dependence [11, 12] (see
also [13]) that may be searched for by current and up-coming experiments.



As one considers the requirement of a consistent and predictive theory of spinning fields
in (quasi) de Sitter, the allowed mass range is dramatically reduced. Starting with s = 2,
unitarity bounds [14] force massive! particles to satisfy inequalities of the schematic form
m 2 H, to the detriment of the observational prospects for signatures corresponding to
spinning fields. Given that the inflationary background is not exactly de Sitter, one may
hope that unitarity is less demanding on an FLRW background. This specific question has
been addressed, for the case of extra spin-2 fields, in [15]: although weakened in FLRW, a
consistent cosmological evolution leads to a unitarity (or “Higuchi”) bound of the same form.
In the absence of fine-tuning, the bound is no weaker than about one order of magnitude w.r.t.
the pure dS case. Intuitively, this is expected in view of the fact that one can continuously
go from FLRW to dS.

The one implicit assumption in the above results is that the extra fields are minimally
coupled, i.e. only coupled through gravity to each other and to the inflaton field. There lies the
key on how to drastically weaken unitarity bounds. Indeed, the latter stem from identifying
unitary representations of the de Sitter isometry group. However, the inflationary background
breaks dS isometries (the very same isometries at the heart of unitarity requirements) and so
will any field with sizable coupling to the inflaton. Unitarity bounds are much weakened as
a result of such non-minimal couplings and a much more interesting phenomenology ensues.
This is not surprising: direct coupling to a light field (the inflaton, in this case) makes much
more efficient the energy exchange and enables heavier modes to become effectively lighter
and considerably more long-lived.

In this work we aim to explore the signatures associated to the presence of extra particle
content non-minimally coupled to the inflaton field. When considering extra fields it is
important to first verify that direct coupling does not lead to instabilities, or ghostly degrees
of freedom (see e.g. [16]). There is an extra difficulty when it comes to higher spin (s > 2)
theories in that a fully non-linear Lagrangian formulation is still missing [17, 18]. The massive
s = 2 case is special in that a ghost-free fully non-linear formulation exists [19, 20] and has
been used in the context of inflation [21-23] (see also [24] and references therein for an
approach with a related model).

In this work we shall adopt a specific approach [25] to non-minimal coupling during
inflation which is the natural generalization of the effective field theory (EFT) of single field
(or clock) inflation of [26]. This is an EFT for the fluctuations around a given FLRW solution.
The advantage intrinsic to this formalism is that the EFT will span almost the entire space
of possible signatures, yet it is possible to implement several consistency checks so that the
theory is free of well-known pathologies such as e.g. gradient instabilities [25].

We will focus in particular on the gravity sector of an inflationary theory with extra
spinning fields. The degrees of freedom associated to spinning particles can source gravita-
tional waves (GW) already at linear order, and the fact that these extra modes can be light
enhances their (integrated) effect on late-time observables. Remarkably, the sourced contri-
bution can be the leading one and may dramatically alter the properties of the signal w.r.t.
the vacuum dominated scenario.? Indeed, in contradistinction to the slightly red-tilted GW
signal of single-field slow-roll models, multi-field set-ups enable a (strong) scale dependence in
the tensor power spectrum, spanning from bump-like features to a purely blue-tilted signal.
We first review how an extra spin-2 field can source the GW spectrum at tree level [25] and

1t is crucial to note here that the bound applies to minimally (i.e. gravitationally) coupled fields.
2In single-field slow-roll inflation the leading contribution to the primordial GW power spectrum stems
from the homogeneous solution to the wave equation.



then show how a time-dependent speed of sound for the extra modes delivers a blue-tilted
spectrum? at reach for the Laser Interferometer Space Antenna (LISA). We combine bounds
from the model inner consistency checks with those originating from (i) the upper limit on
the tensor-to-scalar ratio r at CMB scales and scalar/mixed non-Gaussianities in the same
regime (ii) ultracompact minihalos, (iii) primordial black holes, (iv) big bang nucleosynthesis,
and (v) the Laser Interferometer Gravitational-Wave Observatory (LIGO).

This work is organized as follows. In section 2 we briefly review the effective theory
approach and derive the scalar and tensor spectral indices in the case of time-dependent
sound speeds for the helicity modes of an extra spin-2 field. In section 3 we discuss the
theoretical requirements on the EFT Lagrangian parameters alongside current experimental
constraints. These are later employed in section 4 to define current exclusion limits on the
parameter space and to explore LISA detection and constraining power on this very general
set-up. We conclude with section 5.

2 The effective theory approach

The unitarity bounds that prohibit a large fraction of the mass range for fields with spin
s > 2 stem from the common notion of particles as unitary irreducible representations of the
spacetime isometry group. The fact that inflation does not correspond to dS, but rather to
quasi-de Sitter background, points to a natural way around stringent unitarity requirements.
The inflaton itself breaks dS isometries for the simple reason that inflation needs a “clock”
for the accelerated expansion to eventually come to an end. Demanding unitarity on extra
fields in quasi dS space turns out to enforce qualitatively similar constraints to the de Sitter
case as long as the extra content is only minimally, i.e. gravitationally, coupled to the inflaton
field. The key step is then to directly couple spinning particles to the inflaton. This has been
implemented in several well-known (classes of) models, including axion-inflation.

Given a specific set-up one can then work out the corresponding effects of non-minimal
coupling on late-time observables. In this work we shall adopt a different perspective, namely
that of [25], which is an extension of the works in [26, 29]. The set-up of [26] uses the
Stueckleberg trick to make manifest the goldstone boson of the (spontaneously) broken time-
reparametrization invariance. For sufficiently high energy, the dynamics of the system if fully
captured by the goldstone boson 7, related to the curvature fluctuations ¢ by ( ~ —Hw. It
is then natural to consider extra fields in this framework [29].

The extension to extra spinning fields is somewhat more complex. It relies on the
fact that one can classify the extra field content, as is typical in the case of non-linearly
realised symmetries, as representations of the unbroken group. The unbroken symmetries
being rotations, it is straightforward that particles of different spin will have a different
description (as a three-vector, a three-tensor and so on). In the case of interest for us, that
of an extra spin-2, the five propagating degrees of freedom are described by the traceless
symmetric tensor X% which is “embedded” as the four-tensor ¥#¥, whose (0,0) and (0,1)
components are:

8i7r8j7r

oy
(14 7)2

1+7

»00 — DI » = — D)L (2.1)
The effectively light states described by ¥ have their couplings with the inflaton prescribed
by the fact that broken symmetries are non-linearly realized. An explicit example is provided

3See also e.g. [27, 28] for more work on time-varying sound speed for the tensor modes.



in the quadratic and cubic interactions for o = a?%% below:

SD 8(2) +S~(2) +S~(3)

free int int

= i/dt dza’ [(dij)2 — a7 2(9;07%)? — g(c% — 3)a"2(9;0")? — m2(0ij)2]
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where €; = —H/HQ, m is the mass of the spin-2 field and 7. = \/2¢; H Mp) 7 is the canoni-
cally normalized goldstone boson, linearly related to (. Note that non-linear diffs also dictate
couplings with tensor fluctuations v;;, canonically normalized as v“;; = Mpy7y;;. The quan-
tity p is a coupling constant with mass dimension one, and the sound speeds for the 0, 1
and 2-helicity components of o are indicated as cg, ¢; and co. These satisfy the following
relation [25]:

1 3
A =-c2+ . (2.3)

4 4
The interactions in Si(ri) generate tree-level contributions to the scalar and tensor power
spectra, whose amplitudes are sensitive to the sound speeds (¢, ¢2), and to the magnitude
of the p/H coupling. In this work, we shall allow for a time-dependence in the sound speeds
and explore its implications at the level of the power spectra. The scale-dependence for the
scalar and tensor power spectra is given by:

(o)

(v)
HQ kO -1 H2 Cc(l/) P 2 E\ ™ —1
k) — kel - — 2.4
Pe(k) 82 M3 €1 (k:*> + 8m2M3B 2 <H> <l€*) ’ (2.42)

(v) (o)
2H? [ k\™ 2H2 C,(v) [ p\* [ k\™
k)= ——= | — X — — 2.4b
PR = (5) + S (5) (5) (2.40)
where k, is a pivot scale set at 0.05 Mpc~!. The first contribution on the right-hand side

of eq. (2.4a) is due to vacuum fluctuations, the second one is sourced by o (similary for
eq. (2.4b)). The scalar and tensor spectral indices are given by

n —1==2 —e, (2.5a)
- m? 1(0
n{?) —1 =2 — 2wsy — el (5‘V InC¢(v) —2In co) , (2.5Db)
ni”) = —2¢; , (2.5¢)
2
(o) _ m 1/0
n, = —2vsy — 726, ((’31/ InC,(v) —2In 02> . (2.5d)

In the above, v = 1/9/4 — (m/H)?, €;+1 = €;/(He;) and the time-dependence of the sound
speeds is described in terms of the parameters s, = ¢,/(Hcy), with n = 0,1,2. We take the
parameter p to be a constant. The functions C¢(v) and C,(v) can be computed analytically

for ¢ < 1 and ¢a < 1 [25] and are represented in figures 1 and 2 in the mass range
v e [3/5,7/5].



Figure 1. C¢(v).
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Figure 2. C,(v).

3 Current and future bounds

Let us elaborate on the bounds on the scalar and tensor power spectra that are employed
in section 4 to constrain the parameter space of the effective Lagrangian. We refer the
interested reader to a similar analysis carried out in [30]. There, the starting point is the
specific model in [31] (see also [32, 33]), with an additional feature: the time-dependence
of the speed of sound for the scalar spectator field has been switched on. In what follows,
theoretical requirements and experimental constraints will be combined to draw the current
exclusion regions in the (p/H, |s2|) plane of the EFT Lagrangian parameter space and to
identify LISA’s constraining power.

3.1 Consistency requirements

Besides being generally defined in the (0, 1] interval, the sound speeds in the EFT framework
are subject to additional theoretical (and observational) constraints. One such bound, ¢, 2>
1073, arises from perturbativity requirements, in particular from requiring that the one loop
o-sourced corrections are smaller than the tree-level power spectra [25].

General consistency of the perturbative treatment also traslates into bounds on the
coupling constants, p/H < /€ and p/H < 1 (weak-mixing regime). These ensure that s?

int
can be treated as a (small) correction to the kinetic Lagrangian.



An additional constraint on p/H is imposed in order to avoid gradient instabilities:

P 2

7 <yVad- (3.1)
Eq. (3.1) automatically ensures that also the previous two conditions on p/H are satisfied,
given that ¢cg < 1 and €; < 1. It is also important to point out that the expressions of the

power spectra reported in eqs. (2.4) are only accurate [25] in the regime

pLm, (3.2a)

@[)2 > Nzk) , (3.2b)

where N (k) is the number of e-folds between the horizon crossing time of the mode with
wavenumber k£ and the end of inflation. The conditions in (3.2) ensure that the perturbative
result for the tensor power spectrum coincides with the one derived from a non-perturbative
treatment of the (v — o) mixing.

3.2 Observational bounds on the scalar sector

The two and three-point statistics of scalar perturbations are constrained on large scales by
measurement of CMB anisotropies. Constraints on scalar non-Gaussianity on these scales
give rise to a lower bound on the sound speeds of the order ¢, > 1072 [25]. As to the two-
point statistics, Planck data [1] yield a power spectrum amplitude A; = 2.101 x 1079, and a
tilt ng = 0.9649, where

k ns—1

Pk (k) = A, <k> : (3.3)

*
In the following we will assume, for simplicity, that on large scales the scalar power spectrum
is dominated by the vacuum contribution; according to eq. (2.4a) this implies

2v
p €16
— K
H Ce(v)

(3.4)

k=k,

As it will become clearer in the next section, within the spin-2 field mass range considered in
this work eq. (3.4) and the gradient instability condition (3.1) are nearly equivalent. When
eq. (3.4) holds, €; can be deduced from the value of As; upon fixing the Hubble rate. One
can further verify that, given the above conditions, Planck constraints on the tilt are easily
satisfied. To this aim, we compute the EFT Lagrangian prediction for the parameters in (3.3):

tot

cE]ET e

H2

k pu—
Pe(k) 82 M3 €1

where n° = —2¢; — €3 + a|p=p, , with
Ce(v) (py? 2
co?e (ﬁ) m 1 0
o= % |:—62 + 261 — 2vsg — e, ((91/ InCe¢(v) —2Inco || - (3.6)
+ 2”61 (H
Using the observed value of the tilt to fix e = —2¢; — (ns — 1), one concludes that the

condition @ <« —2¢; — €5 puts a bound on the parameter space which is automatically



satisfied if eq. (3.4) holds, and provided we span the range of masses and sound speeds used
throughout our analysis.

The amplitude of the scalar fluctuations is constrained on small scales by CMB spectral
distortions, primordial black holes (PBH) and ultra-compact mini-halos (UCMH). Spectral
distortions can be generated by dissipation of primordial perturbations through photon dif-
fusion and are relevant in the 1 — 10* Mpc™! range [34]. PBH may have formed from the
collapse of (large) density perturbations and therefore constraints on their abundance result
into bounds on the primordial scalar power spectrum [35-37]. These are several orders of
magnitude weaker compared with CMB bounds, however they are important in that they
span significantly more orders of magnitude in scales (see [38] for an updated analysis). We
verified that both spectral distortions and PBH constraints produce less stringent bounds
on the parameter space of our EFT Lagrangian than those obtained by implementing the
gradient instability condition. These will therefore not be included in the final plots.

UCMH are dense dark matter structures that can form from large density perturbations
right after matter-radiation equality [39]. While many of the constraints on their abundance
depend on assumptions regarding the nature of the dark matter particles, more general
constraints can be obtained by accounting for gravitational effects, in particular lensing
time-delay in pulsar timing. For this reason we apply UCMH constraints at a scale kycmn =
3 x 10° Mpc~!. The value of the bound depends on whether one assumes a constant or
a scale and redshift-dependent Opin (dmin being the minimal value of the density contrast
that is required to form the UCMH structure). In the scale-independent case the bound is
given by Pr(kuycmm) < 3 X 10~8. If instead a scale-dependence is allowed the corresponding
bound [40] is Pr(kucmu) < 1075, In section 4 we implement both and refer to them as
“UCMH (9§ const)” and “UCMH (6 scale dep)”.

3.3 Observational bounds on the tensor sector

The current upper limit on the tensor-to-scalar ratio is given by r < 0.056, at a pivot scale
k, = 0.002Mpc~! [1]. For the set-up under scrutiny, this bound gives

v o —10
P (k) + P (k) < 1.3 x 10710, (3.7)

where the superscripts (v) and (o) indicate respectively the vacuum and sourced contributions
in eq. (2.4b). For each configuration analyzed in section 4, characterized by fixed values of
{H, m} and initial conditions for the sound speeds, eq. (3.7) will generate an exclusion line
in the (p/H, |s2|) plane. In the case of a tensor power spectrum dominated by vacuum
fluctuations on large scales, the constraint on r corresponds to a maximum value H™®* =
6.13x10' GeV for the Hubble rate during inflation. In section 4 we will derive exclusion limits
on the parameter space for the following values: H = {10'2GeV, 1013 GeV, 6.1 x 10'3 GeV}.

In addition to constraints on the tensor power spectrum, measurements of CMB
anisotropies reflect on tensor non-Gaussianity in the form of a lower bound on the helicity-2
sound speed, co > 1072 [41]. This bound will restrict the range of possible values for the
initial (i.e. large-scale) ca.

Inflationary tensor fluctuations contribute to the present gravitational waves energy
density, Qaw, as follows

1

Qcw(k,m0) = 3 (

k
aoHy

>2Pv(k) T2 (k, 10) . (3.8)



Here quantities with the label “0” are evaluated at present time, 7 is the conformal time,
Hp = 100hkm/s/Mpc is the Hubble rate today (in the following we use h = 0.674 [42]),
and T'(k, 19) the transfer function. We consider a standard reheating scenario where inflation
is initially followed by a matter-dominated phase and, once reheating is completed, the
universe becomes radiation-dominated. In this context the transfer function is given by (see
e.g. [30, 43])

kTo eq

3 g1 (k k kO’
T(k, 7o) = 31(”’)\/1.0 + 1.36(k> + 2.50<k> , (3.9)
eq

where Q,,, = 0.315 [42] is the matter energy-density today, ji (k7o) is the first spherical Bessel
function and keq = 7.1 X 1072 Q,, h2 Mpc~! is the horizon scale at radiation-matter equality.
We assume the standard ACDM cosmological model, with Qg and €, negligible, so that

o0 d
T :/ : . (3.10)
0 CLQH() \/QA+Qm(1+Z>3

Existing bounds on Qgw(k), besides those from CMB anisotropies, are provided by pulsar
timing arrays (PTA), advanced LIGO, big-bang nucleosynthesis, and by the CMB monopole.

Data from the second observing run of advanced LIGO, combined with the results of
the first run, can be used to place upper limits on Qgw for a background which is frequency-
independent in the LIGO frequency band. The bound is given by [44]

Qaw < 6.0 x 1078, (3.11)

As for all bounds listed in this section, we translate this limit into a constraint in the
(p/H, |s2|) space. In particular, for each configuration tested in section 4, we replace the
expression of the tensor power spectrum (2.4b) into eq. (3.8), and derive the LIGO exclusion
line from (3.11).%

Measurements of the abundance of the primordial light elements constrain the number
of effective massless degrees of freedom at the onset of nucleosynthesis. This bound is weaker
than the LIGO constraint (3.11). It can be verified that for a monotonically growing pri-
mordial power spectrum as Pﬂ(f), the BBN exclusion line always sits above the LIGO line in
the (p/H, |s2|) plane. The same conclusion applies to the CMB monopole and PTA bounds,
which are therefore not represented in the plots of section 4.

Besides existing observational bounds on Qaw, we also consider LISA expected sensitiv-
ity limits. The duration of the mission will be 4 years, with a possible 6-year extension, and
LISA arms will be 2.5 x 10 Km long. The data taking efficiency of the mission is expected to
be ~ 75% of the nominal time, because of operations needed for the antenna mantainance.
As a result, the 4-year mission will effectively produce 3 years of data. The most updated
LISA strain sensitivity curve can be found in [45], where the power law sensitivity curve
is derived following [46], for a signal-to-noise ratio SNR = 10. In the following, we pick
as reference scale for LISA the one that minimizes the sensitivity curve calculated in [45],
krisa ~ 1.79 x 102 Mpc_l, which corresponds to a sensitivity value Qpga ~ 4.12 x 10713,
In order to be detectable by LISA, the energy-density associated with a gravitational wave

4In principle, we should use a bound from a specific search for the spin—2 signal in LIGO data. However,
as shown in section 4, the LIGO bound is never the strongest one in the parameter space, hence we find it
safe to use the constraint given on a flat signal.
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Figure 3. Sketch of Ny ~ 60 e-folds of inflationary expansion (H = 10'2 Gev), where we high-
light relevant stages corresponding to experimental bounds discussed in section 3. The LISA line is
highlighted in blue.
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Table 1. table displaying some of the phenomenologically interesting solutions of eq. (4.1). The
fourth column indicates the signs of the solutions. The cases highlighted in yellow are analysed in
sections 4.1, 4.2 and 4.3.

mode must overcome LISA’s sensitivity curve at the same scale, Qagw(k) > Qrisa (k). This
condition is used to generate the LISA line in (p/H, |s2|) plane (see plots in section 4).

We provide in figure 3 a pictorial representation of Ny, =~ 60 e-folds of inflationary
expansion for H = 10'2GeV and highlight the stages at which the relevant scales left
the horizon.

4 Examples of time-dependent sound speeds

The parameters s, = ¢,/(Hcy), where n = 0, 1,2 for the helicity 0, 1 and 2 of o, quantify
the time-dependence of the sound speeds. From eq. (2.3) one finds

40% lcg
= -8 — ——=2589. 4.1
50 3¢ ! 30(2)82 (4.1)

In table 1, we report some of the solutions to (4.1). A negative (positive) s, produces a de-
creasing (increasing) sound speed for the corresponding helicity, hence a power spectrum that
grows (decreases) towards small scales. For tensor perturbations, this implies the existence
of a gravitational wave signal potentially detectable with interferometers. The solutions with
s9 < 0, which we shall refer to as (1.a), (2.a), and (3.a), are highlighted in yellow in table 1.

Naturally, we anticipate that the region of parameter space corresponding instead to an
enhanced scalar power spectrum at small scales, sy < 0, will be more constrained, given also
the absence of gradient instabilities enforced by eq. (3.1).



4.1 Case (1.a): constant c;

Let us consider the solution {sy = —%%32 >0, s1 =0, s < 0}. In addition, let us assume
so = constant for simplicity. The time evolution of ¢y reads

Co(t) = cop 2N 1) | (4.2)
where N(t, t;) = fti H(t')dt" is the number of e-folds between a given reference time t;

(we take this to be the time at which our current observable universe exited the horizon)
and t, with cg; = co(t;). We consider benchmark values cg; = {102,107, 1}. This set of
initial conditions lies comfortably within the range allowed by perturbativity requirements
(c2 2 1073) and CMB constraints on non-Gaussianity (cg > 1072). Enforcing perturbativity
throughout the scales results in a lower limit for so. Given that our k regime of interest is
that where the expressions in eq. (2.4) are a good approximation for the power spectra, this
identifies, via eq. (3.2b), an upper value for k that we indicate as kr. We obtain |so|™** by
requiring that ca(kp) saturates the perturbativity bound.

In the configuration (1.a), ¢ is constant and ¢y increases as inflation proceeds. Using
eq. (2.3) one obtains the time-evolution of ¢

4 1

co(k) = gc% — gCQ(k)Q . (4.3)

Requiring ¢y to be a real quantity, alongside the perturbativity and subluminality con-
ditions on the sound speeds throughout their evolution, defines, for each cy; value, the corre-
sponding range for ¢;. One can easily verify that values of ¢; in the interval [0.55,0.85] are
allowed for all chosen cy; values. We proceed by selecting a number of sample values for the
set in {H, m/H, ci1, co;} and applying the constraints described in section 3 to obtain (cur-
rent and future) exclusion lines in the (p/H, |s2|) plane. Let us point out that, rather than
describing the time-evolution of ¢y(k) using the leading-order term in its Taylor expansion
(as would be the case for the expression in (2.4a)), we derive the exact scale dependence of
the power spectrum by using eq. (4.3) directly.

We consider the masses m/H = {1.37, 1.12, 0.54}, identify in each plot the strongest
among all the bounds and shade with its corresponding color the area of parameter space
that is excluded. We also shade in blue the area which would be excluded by LISA in case
of detection.

We show in figure 4 the parameter space associated to configurations that are within
reach for LISA. Among the mass values of the spin-2 particle which we test, the lowest,
m/H = 0.54, allows for a detectable signal. This reflects the fact that, the lighter the spin-2,
the stronger its effect on the tensor power spectrum at small scales.

4.2 Case (2.a): constant cg

2
Let us now consider the solution {syp = 0, s; = %2—332 < 0, s = constant < 0}. The time-
1

evolution of ¢ is similar to case (1.a), ¢g is constant and ¢; decreases in time as

3 1
c1(k) =/~ + —ca(k)? . (4.4)

4 4
One can verify that values cg = {1072,107%,1} and cg; = {1072,1071, 1} guarantee sublumi-
nal propagation also for the helicity-1 mode, in addition to preserving perturbativity bounds.
We consider a number of sample configurations {H, m/H, cy, cz;} and represent in figure 5

the constraints on the parameter space for those that are potentially observable with LISA.
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Figure 4. Case (1.a). We consider the (p/H, |s2|) plane of the effective theory parameter space for
some of the configurations that can be probed with LISA. We identify the strongest bounds among
those considered and shade with the corresponding color the area of parameter space that is (or
would be, in the case of detection by LISA) excluded. Top left (a): the configuration {H = 6.1 x
1013 GeV, m/H = 0.54, ¢; = 0.55, co; = 1} is displayed. Top right (b): {H = 6.1 x 1013 GeV, m/H =
0.54, ¢; = 0.85, cg; = 1}. Bottom (c¢): {H = 103 GeV, m/H = 0.54, ¢; = 0.85, cz; = 0.1}. Bounds
discussed in section 3 that are weaker than p/H < 1/3 are not captured by figure 4 or the following
plots, they have nevertheless been taken into account in our analysis.

4.3 Case (3.a): monotonically decreasing sound speeds

We explore here the solution {sy = s; = sy = s < 0}: in this case all the sound speeds
decrease over time, and we capture their dynamics by means of eq. (4.2). For simplicity, we
focus on the initial conditions cg; = ¢1; = c9; = 1. In this case also the scalar power spectrum
is blue-tilted. It is straightforward to conclude that in this case none of the configurations
{H, m/H} tested corresponds to a signal above the sensitivity limits of LISA. Indeed, what
is behind the most stringent constrain in this case is the fact that ¢y decreases with time.
As a consequence, the line representing the gradient instabilities bound of eq. (3.1) bends
downwards (i.e. the bound gets stronger) in the (p/H, |s2|) plane as |sa| = |sg| increases,
preventing any crossing with the LISA curve.

4.4 Additional remarks

Before drawing our conclusions, we remind the reader that an upper bound is imposed on
|s2| in each configuration from theoretical consistency. This limits the region accessible
to interferometers: the lines representing LIGO and LISA bounds bend downwards as |sz|
increases.

It is also worth remarking that the parameter space of some of the configurations an-
alyzed for cases (1.a) and (2.a) ends up being rather similar (see table 2). This should not
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Figure 5. Case (2.a). The (p/H,|sz2|) plane for configurations at reach with LISA. In the top panel
(a), the configuration {H = 103 GeV, m/H = 0.54, ¢y = 1, co; = 0.1} is displayed; in the bottom
panel (b) we show the plot corresponding to {H = 6.1 x 1013 GeV, m/H = 0.54, co = 1, co; = 1}.
Conventions for colors and line codes are as in figure 4.

Case (1.a), figure 4 Case (2.a), figure 5
(b){H =6.1 x 1013 GeV, ¢; =0.85, c2; =1} | (b) {H =6.1 x 1013 GeV, cg =1, cg; = 1}
(c) {H =103 GeV, ¢; = 0.85, cy; = 0.1} (a) {H =101 GeV, ¢g =1, cg; = 0.1}

Table 2. Configurations that select a similar portion of parameter space are listed on the same row
of the table; all the samples are characterized by the choice m/H = 0.54.

come as a surprise in light of eq. (2.3). We also stress that we have focused our analy-
sis mainly (i) on two specific observables, namely scalar and tensor power spectra, and (ii)
considered a bi-dimensional sub-region of the entire parameter space, the (p/H, |s2|) plane.
Extending the dimensionality of the parameter space that is being probed and exploring the
non-Gaussian profile of scalar/mixed/tensor interactions will enhance the characterization of
the extra particle content in the EFT Lagrangian. We leave this to future work.

As for the sp < 0 < sy scenario, which corresponds to a blue(red)-tilted scalar(tensor)
power spectrum, the growth of the scalar spectrum on small scales is reduced upon demanding
the absence of gradient instabilities and complying with the bound on the tensor-to-scalar
ratio r < 0.056.

These limits turn out to be stronger than those that arise from PBH and UCMH. For
completeness, we also list in table 3 and plot in figure 6 the configurations whose parameter
space can only be marginally surveyed by LISA.

- 12 —



Case (1.a) Case (2.a)
H =103 GeV, ¢; =0.55, co; = 0.1 H =108 GeV, ¢y =1, cg; = 0.01
H=108GeV,cp=1,cy =1
H=06.1x10"GeV, cyg=0.1, cp; =1

Table 3. Configurations for which LISA can only marginally survey the parameter space.

H=10"GeV, ¢1=0.55,c,=0.1 H=6.1x10"3GeV,cp=0.1,c,=1
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Figure 6. The (p/H,|s2|) parameter space for samples from cases (l.a) and (2.a) which can be
marginally surveyed by LISA. Conventions for colors and line codes are as in figure 4.

5 Conclusions

In this work we have explored the possibility of a GW signal at interferometer scales due to
the presence of extra fields during inflation. The existence of content beyond the minimal
single-field scenario is well-motivated from the top-down perspective [2]. Within this set, are
there compelling models supporting in particular a tensor signal detectable at small scales?
One interesting example is provided by so-called axion-inflation models [47]. The appeal
of such set-ups lies in their ability to solve the n-problem: an approximate shift symmetry,
for example in the “natural inflation” model of [48], protect the inflaton mass from large
quantum corrections. Extensions of the set-up in [48] have been motivated by the need
to accommodate a sub-Planckian® axion decay constant f. Among the most interesting

®The reasons [47] for why this is desirable are manifold: (i) the expectation that all global symmetries
(including the aforementioned shift symmetry) are broken at the Planck scale; (ii) the near-absence of string
theory constructions accommodating axions with a (super-)Planckian decay constant. One might point also
out that a similar requirement emerges in the context of the swampland program (see e.g. [49]).
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proposals to emerge from these efforts are those non-minimally coupling the axion-inflaton
with gauge fields without losing the naturalness of the original proposal. The information of
interest to the present discussion is that the coupling in such theories is typically implemented
through a Chern-Simons (CS) term. As a result of the CS coupling, the GW spectrum can
be blue or exhibit bump-like features that peak at small scales [50-58].

Having identified a class of models that delivers a signal detectable by LIGO and/or,
in the near future, the LISA interferometer, it is natural to ask whether several more multi-
field set-ups, sharing this very same property, await discovery. One proven way to scan all
that is possible, at least from the late-time signatures perspective, is to employ an effective
theory approach. We have done so by adopting the approach of [25] and focusing on the phe-
nomenology corresponding to the presence of an extra spin-2 field. The key to a sufficiently
large signal at small scales is choosing an appropriate time-dependence for the sound speed
of the helicity-2 mode, c2(t). The existence of a time-dependence may be interpreted as due
to a departure, in field space, from the adiabatic trajectory [3]. We have shown that a small
and constant sy = ¢o/(Hcg) corresponds to a signal to which LISA would be sensitive and
that, at the same time, cannot be ruled out by LIGO/VIRGO. It would be interesting to
explore other possibilities for the functional form of co; we leave this to future work. It is
important to stress that a considerable region of parameter space has not been ruled out by
existing data, but by the requirement [25] that the dynamics does not run into a gradient
instability. This goes to show that it is the interplay between model building & observational
requirements to act as the most powerful filter towards a viable cosmology.

The potential to detect a primordial signal must be confronted with our ability to: (i)
distinguish it from astrophysical sources; (ii) identify signatures that are specific to certain
(classes of) inflationary models. To address such issues one ought to characterize as much as
possible the signal at small scales, and also consider cross-correlations with other cosmological
probes. Given our results on the power spectrum, it is natural to think of non-Gaussianities
as the next logical step. It has recently been shown that crucial information on the strength
of primordial interactions is at least indirectly accessible at small scales [59], and even once
propagation effects are taken into account [60]. A necessary ingredient to access the infor-
mation via the quadrupolar anisotropies of [59] is a non-zero, and ideally large, component
of the tensor bispectrum in the squeezed configuration. The presence of light extra fields
in the inflationary set-up we have been studying supports precisely such a scenario. Fur-
thermore, the contribution in the squeezed configuration mediated by the extra content will
break consistency relations and therefore deliver a signal that is immediately physical. We
shall elaborate more on the subject in upcoming work [61].
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