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Abstract

In astronomy, it is important to categorize celestial bodies by classifying collected spectral data. The currently
available methods present unsatisfactory spectral classification accuracy and incur high computing costs. We
propose a celestial spectral classification network based on a residual and attention based convolutional network
(RAC-Net). In this network, convolution operations can extract shallow and deep features of spectral data and
classify them without relying on redshifts. The residual mechanism can augment the depth of the network and
make training more efficient. The attention mechanism allows the network to focus on specific bands and specific
features, rendering the learning more targeted. To evaluate the performance of the RAC-Net, we conducted a
comparative test using a celestial spectral data set that consisted of 70,000 spectra collected by the large sky area
multi-object fiber spectroscopic telescope. The experimental results showed that the classification accuracy of our
network was up to 98.92%. Compared with the leading one-dimensional, convolutional neural network 1D
SSCNN model, the RAC-Net presented higher classification accuracy and fewer network parameters.
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1. Introduction

Human beings have been continuously exploring the
universe. With the assistance of high-performance, astronom-
ical telescopes, such as the Sloan digital sky survey
(York 2000), the global astrometric interferometer for astro-
physics (Perryman et al. 2001), and the large sky area multi-
object fiber spectroscopic telescope (LAMOST) (Cui et al.
2012), it is possible to observe deeper parts of the universe.
Although these telescopes can simultaneously observe thou-
sands of celestial objects and collect spectra for research, the
massive amounts of data cannot be effectively processed using
traditional methods, because they normally present poor
processing efficiency and accuracy. Fortunately, deep learning
methods have provided us with solutions in the past decade;
with deep learning, we can process these massive astronomical
spectral data efficiently and accurately.

Currently available spectral classification methods can be
roughly divided into two categories: pattern matching and
machine learning methods (Corbally et al. 1994; Liu et al.
2015). The pattern matching method consists of finding highly

recognizable spectral band features in the spectrum data and
matching those features with typically known spectra by
minimizing metric distances or maximizing similarities
between them (Garrison 1984; LaSala 1994). The machine
learning method consists of automatically learning all the
features in the spectra and acquiring the relevant knowledge to
then classify unknown spectra (Ball & Brunner 2010).

Presently, astronomers typically adopt the Morgan &
Keenan (MK) classification method (Morgan & Keenan 1973),
which divides stars into seven categories based on their
temperature. A common step in processing spectra is to
associate the spectrum with the MK class and then estimate the
stellar astrophysical parameters. However, the traditional MK
classification method requires manual or semi-manual compar-
ison of spectra, which is inefficient and unreliable.

For high dimensional data, reducing the dimension while
retaining useful information could decrease computing costs
while keeping higher accuracy. Techniques, such as principal
component analysis (PCA) and fisher matrix provide a linear
method for reducing the dimension of the data. Jiang et al.
(2013) discovered new cataclysmic variables by means of PCA
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and the support vector machine (SVM) method. However, Liu
et al. (2015) argued that MK automatic classification based on
SVM is relatively poor in performance, and the way of directly
classifying stars using line indices is possibly a more adequate
choice.

The aforementioned methods, nonetheless, do not capture
the nonlinear characteristics of the celestial spectra accurately;
therefore, nonlinear methods, such as nonlinear PCA, informa-
tion bottleneck (Slonim et al. 2001), and artificial neural
networks (ANNs) have been proposed. Since the publication of
von Hippel et al. (1994) and Singh et al. (1998), ANNs began
to play an important role in astronomy. Vieira & Ponz (1998)
used ANNs and self-organizing maps to obtain good correla-
tions compared with the ground-truth from manual classifica-
tion. In Bailer-Jones (1997), stellar parameters (such as
effective temperature and surface gravity) were successfully
obtained from the spectrum by ANNs. Wang et al. (2016)
proposed a fast, layer-wise learning algorithm based on ANNs
that increased classification accuracy to 0.8232.

In 2006, Hinton introduced the concept of deep learning
(Hinton et al. 2006), which has made positive contributions in
various fields. Fabbro et al. (2018) constructed deep neural
networks and obtained a root mean square error of 0.04 when
predicting stellar parameters. Pasquet-Itam & Pasquet (2018)
achieved a precision of 0.988 in the detection of quasars by
means of a deep learning approach. Hon et al. (2017) used a
one-dimensional, convolutional neural network to classify red
giant stars with an accuracy of 99%. Liu et al. (2019)
established a nine-layer, convolutional network and attained an
accuracy of 90%, 93%, and 97% in the classification of F, G,
and K stars, respectively.

However, there are still problems to overcome in the
available deep learning methods for classifying spectra; first,
most of the models are not deep enough, which leads to
insufficient extraction of features. In general, the deeper the
model, the more in-depth features can be extracted; none-
theless, deeper models have drawbacks, such as gradient
dispersion or explosion that could increase the difficulty of the
training model. Second, the large number of parameters needed
result in high computing costs. Third, the training of the model
lacks pertinence, i.e., there is not enough attention to important
spectral bands during the training.

In this study we investigate a residual and attention based
convolutional network (RAC-Net), in which residual (He et al.
2016) and attention mechanisms (Chen et al. 2017; Vaswani
et al. 2017; Hu et al. 2018; Woo et al. 2018) are introduced.
The residual mechanism solves the problem of vanishing or
exploding gradients by employing shortcut connections
between the inputs and outputs of the residual block; this
could also reduce the parameter quantity of the model. In
addition, the attention mechanism improves the pertinence of
the model during training; it can automatically pay the attention
to the features that benefit classification results while ignoring
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invalid features, so that the interpretability of the model is
enhanced.

This paper is organized into the following sections: In
Section 2, we will explain our data and methods. The
experimental results and comparisons with other models are
presented in Section 3. Finally, Section 4 is our conclusion,
where we will discuss the advantages and disadvantages of
RAC-Net.

2. Materials and Methods
2.1. Data Set Description

We used spectral data from LAMOST, which is publicly
available on LAMOSTs official data website.® Each spectrum
consists of approximately 3800 dimensional data with a
wavelength ranging from 3690 to 9100 A. In the training data
set, each spectrum had a corresponding label including a main
class (STAR, GALAXY, QSO, or UNKNOWN) and a subclass
(MK class). The spectral resolution was approximately 1800
(Cui et al. 2012). The elements in the UNKNOWN class refer
to bad quality spectra with low confidence in template
matching, and are, therefore, not classified under the other
three categories. In this study, we used 70,000 pieces of
spectral data to construct three data sets. The training and test
sets in each data set had a division ratio of 8:2 and were
randomly divided.

2.2. Data Preprocessing

In machine learning methods, data pre-processing is very
important. Our data pre-processing method was divided into
the following three steps: (1) One-hot encoding for labels. For
the four celestial objects (STAR, GALAXY, QSO, and
UNKNOWN), by using one-hot encoding method in machine
learning methods (Hu et al. 2018), we encode them into
“0001,” “0010,” “0100,” and “0100,” respectively. The same
operation was performed for the MK class labels. (2) Flux
Standardization. Flux standardization was used to normalize
spectral values between 0 and 1 based on the flux intensity of
each spectrum. This operation ensures that the attenuation of
celestial light during propagation does not affect the learning of
the model (Li et al. 2007). The specific formula for flux
standardization is shown in Equation (1):

x= 2 (1)

[lxll2

where x; represents the ith spectral sample in the data set, and
||x|| represents the two-norm of the sample, i.e., the flux of the
spectrum.

(3) Data Augmentation. The collected spectral data presented
an uneven distribution; 90% of the objects were included in the
STAR class, whereas the QSO class was the class with the

6 http://dr5.lamost.org/
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Figure 1. Framework of the RAC-Net.
(A color version of this figure is available in the online journal.)

fewest elements (1%). This would have been unfavorable for
classification, as the learning of the model would have focused
on the STAR class data while ignoring the other classes. To
tackle this problem, we performed data augmentation by down-
sampling the STAR class data and up-sampling the other three
classes. Further, we added random Gaussian noise into the
resampled data to enhance the variability of training data. We
used a similar approach to resample the data set for MK class
classification in order to keep the data balanced.

2.3. Framework of the RAC-Net

The framework of the RAC-Net is shown in Figure 1. This
network consisted of three essential components: data pre-
processing, training, and classification. First, the data pre-
processing component performed data enhancement, encoding,
and standardization operations, as discussed in Section 2.2.
Afterwards, the focus was put on the second component (the
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training component), in which the required knowledge for
classification was learned from the labels by minimizing the
loss of the real label and the predicted result. After this step, our
supervised learning-based model could classify unlabeled
spectra with high accuracy and efficiency without any prior
knowledge on astronomy. Finally, the classification component
classified the unlabeled spectral data by using the completed
RAC-Net. There were three core parts in the RAC-Net: the
convolutional network, the residual block, and the attention
block. These three parts are addressed in Sections 2.4-2.6.

2.4. Convolutional Network

Artificial neural networks can be divided into input, hidden,
and output layers. Among them, the more hidden layers, the
deeper the model and the more valuable the features that can be
extracted. As these hidden layers continue to stack, the
nonlinear activation functions in the neurons are also constantly
nested to form more complex nonlinear functions. Training is
the continuous process of fitting these nonlinear functions to
the data-label mapping function.

In the hidden layers, we used convolution to extract local
information of the data and therefore, identify local features of
the spectra. This operation was performed by sliding the
convolution filter over the data and computing the inner
product with it; the more similar the spectral data was to that of
the filter, the stronger the resulting response was. Convolution
filters with different shapes were used on each hidden layer to
extract different local features. The convolution operation of
our RAC-Net is shown in Equation (2):

!
Yie©,L—1+1) Zf[zxi+j * ¢+ b] )

j=0

where L and [ represent the length of the spectrum data x and
the convolution filter parameter ¢ and b represents the offset
after the convolution operation, and f(.) represents the
nonlinear activation function. We used the ReLU function,
which is shown in Equation (3). The variable y represents the
result of the data after a convolution operation. An example of
a specific convolution operation is shown in Figure 2.

ReLU (x) = max(x, 0). 3)

As can be seen in Figure 2, a local feature of a spectrum can
be converted into a sequence, such as [3, 2, —1, 2, 0, 0, —1, 2],
and then a filter, such as [—1, 2, 0], can be used to slide over it.
By observing the resulting sequence, [1, —4, 5, —2, 0, —2], it
can be seen that, when the filter slides to the third element of
the sequence, the response reaches a maximum, indicating that
the local feature and the position have been extracted. This
local feature extracting method can be also used to reduce the
influence of redshift on the spectrum because the redshift effect
consists of a distance movement in the infrared direction, while
the convolution operation sliding over the spectral data depends
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Figure 2. Representation of the convolution operation applied to input spectra.
(A color version of this figure is available in the online journal.)

on the relative relationship between neighbor elements, and not
on absolute relationships. Therefore, redshift has less influence
on feature extraction when convolution filters are used.

The convolutional layer output, i.e., the convolutional
feature, is processed by the fully connected (FC) layer. This
layer performs a global analysis on the convolutional feature,
and its output corresponds to the classification result of the
spectrum. The operation of the FC layer is represented in
Equation (4):

Y;, = softmax(W x y; + b), 4)

where Y; , represents the probability that the ith datum belongs
to category n, W is the parameter of the FC layer network, y; is
the convolutional feature of the ith datum, and b is an offset
parameter. The expression of the softmax(.), function is
presented in Equation (5):

softmax(x), = L 5)

K
D k—o€™

where K is the length of the spectrum data x.
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In the training process, we used the backpropagation (BP)
algorithm to adjust the parameters of the model. The steps of
the BP algorithm were as follows: first, the training data was
forwarded to all the layers, and the loss was calculated by
comparing the predicted label with the true label. Then, the loss
was propagated backward to all the layers, and the parameters
of each layer were adjusted by the gradient descent method.
The loss function used as the cross-entropy loss function, as
shown in Equation (6):

4
loss; = =Y ¥, log(¥5e (6)

n=1

where Y/ represents the nth value of true label of the ith
datum. Since our labeling system was based on one-hot
encoding, each true label consisted of a four-digit number in
which the corresponding value was “1” and the others values

were “0.”

2.5. Residual Block

In deep learning, the deeper the model, the closer the
outcome is to the true label. However, in actual operations,
with the depth augmentation, the vanishing gradient and the
exploding gradient would appear, which are the main factors
that hinder the model learning. Vanishing gradient and
exploding gradient refer to situations in which the gradient
information used for transmission is too small or too large in
the process of network parameter adjustment, leading to the
failure of network training.

In the training process of the model, the BP algorithm was
used to propagate the loss backward. The parameters were
adjusted by following the chain rule, in which the gradient of
the nonlinear activation function has to be continuously
propagated. As the activation function of each layer was
nonlinear rather than linear function, the multiplication of the
gradient led to vanishing or exploding phenomena in the
propagation process when the number of network layers
increased. Therefore, to solve the problem of gradient
dispersion and gradient explosion in the deep learning model,
He et al. (2016) proposed the use of a residual mechanism
performed by the residual block. A residual block is composed
of several convolutional layers; however, in contrast to the
traditional structure, a shortcut connection is added between the
input and output of the block. The structure of residual block in
our RAC-Net is shown in Figure 3.

In Figure 3, input_x is directly transmitted to the output by

the shortcut connection. The output is
H(input_x) = F(input_x) + input_x. When
F(input_x) = 0, then H(input_x) = input_x, which is

the identity map. Therefore, the residual block changes the
learning target from a complete output to the so-called residual:
F(input_x) = H(input_x) — input_x. This structure pre-
sents three benefits:



Publications of the Astronomical Society of the Pacific, 132:044503 (10pp), 2020 April

Input x

I Convolutional layer I

F(input x) I Convolutional layer I

l

I Convolutional layer I

la

Shortcut connection

H(input x) = F(input_x) + input x
Input x

'

Figure 3. Residual block structure in RAC-Net.

(1) Instead of being multiplied by the activation function, the
gradients propagated backward from the deeper layer can
be passed directly to the shallower layer via the shortcut
connections so that the gradient does not vanish or
explode.

(2) When the output of a certain layer has reached the
optimal result, the subsequent layers can be directly
trained as, so that the subsequent layers become the
identity map. Therefore, the complexity of the model can
be adjusted to be optimal.

(3) From the perspective of celestial spectral data, the depth
of the model is greatly augmented by using the residual
block. In consequence, the fitted function becomes more
consistent with the characteristics of celestial spec-
tral data.

2.6. Attention Block

The attention block allows our RAC-Net to focus on certain
features. When we are observing a particular situation (i.e., a
picture), the degree of attention we put on the “target” (i.e., the
runner in the picture) is different from that we put on the
background; our attention would be always focused on the
runner, which is often the most important local feature of the
scene. Similarly, in spectral data, different bands carry different
information. In the process of light propagation, spectral
information is greatly affected by the background of the
universe and the Earth’s atmosphere, particularly in certain
specific bands. If we could find the bands that are severely
affected, we would pay less attention to these bands. That is,
we would pay more attention to important bands and improve
the performance of the model.

In convolution operations, each convolution filter produces a
channel. Traditional convolutional networks treat different
channels as if they contributed equally to the subsequent
classification results. However, as what presented in Hu et al.
(2018), Woo et al. (2018), different channels carry different
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characteristics: while some of these features contribute greatly
to classification, others only provide small contributions.
Moreover, some features can have a negative impact. There-
fore, we introduced an attention block to assign weight to
different channels and thus allocate a higher weight to
important channels. The structure of channel attention is
shown in the left half of Figure 4.

The attention mechanism was implemented by employing
attention blocks. In an attention block, the state of the data can
be divided into eight stages as shown in the right half of
Figure 4. In Stage 1, a convolution operation is performed on
the input spectrum, resulting in ¢ channels (Stage 2). The
MaxPooling and AveragePooling are respectively the operation
of taking the maximum value and the average value on the
features after convolution.Then the MaxPooling and Average-
Pooling functions operate on these ¢ channels, resulting in two
vectors with lengths equal to ¢ (Stage 3), as described in
Equations (7) and (8)

w ™ = max(y,.) 7

1
W[’:iverage — lz yl,c (8)
l i=0

where y, . represents the data with length / and channel ¢ in
Stage 2. The variables wi™* and w28 are vectors generated
after MaxPooling and AveragePooling, respectively, and
correspond to the two cuboids produced in Stage 3.

Further, the two vectors from Stage 3 are concatenated to one

vector w,. in Stage 4, as presented in Equation (9):

ngerage] . (9)

We = [w.™,

Subsequently, the initial weight W, is sent to an FC network.
After learning and adjustment, the output is the final weight
w2, which is the attention weight (Stage 5) described in

Equation (10):
Wi = f(W % w. + b). (10)

At the RepeatVector operation, the attention weight is
extended to an attention matrix with / * ¢ dimension in Stage 6.

In Stage 7, the attention matrix is multiplied by the
convolution data from Stage 2 according to Equation (11),
and the product y,,, is the output of the attention block (Stage
8).

Your = Wit * Voo (11

2.7. Experimental Setting

We used three data sets in our experiment. Data set 1 was
made up of 40,000 spectra of STAR, GALAXY, QSO, and
UNKNOWN, in which the number elements for each class was
10,000. Data set 2 was based on Data set 1, but without 10,000
spectra whose class was UNKNOWN (Data set 2 had 30,000
spectra equally distributed among three classes). Data set 3 was
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Figure 4. Attention block structure in RAC-Net.
(A color version of this figure is available in the online journal.)
Table 1
Experimental Data Sets

Data Sets Class 1 Class 2 Class 3 Class 4
Data set 1 STAR:10 000 GALAXY:10 000 QSO0:10 000 UNKNOWN:10 000
Data set 2 STAR:10 000 GALAXY:10 000 QS0:10 000 UNKNOWN:0
Data set 3 F:10 000 G:10 000 K:10 000

Note. Data taken from the LAMOST.

the data for MK classification; it consisted of three classes (F,
G and K) with 10,000 spectra each. The composition of each
data set is shown in Table 1.

The construction procedure of the RAC-Net is presented
gradually in Figures 5-7. There were two types of blocks in our
RAC-Net: residual blocks and attention blocks. Residual
blocks consisted of three convolution layers and one attention
block. The hidden layer of the model consisted of eight residual
blocks. The number of convolution filters per convolutional
layer incremented layer by layer to extract as many deep
features as possible. After the convolutional layers, the
convolution features were sent to an FC layer of 128 neurons,
in which the neurons were randomly put in a dormant state
(such as the gray neurons in Figure 5) with a probability of 0.5
to prevent over-fitting (Labach et al. 2019).

The model for the RAC-Net was created using Python 3.5 as
the programming language and the Keras deep learning

framework. The CPU used was an Intel® Core™ i7-4790
CPU @ 3.60 GHz, the RAM memory was 8 GB, and the hard
disk was a 256 GB solid-state drive.

3. Results and Discussion
3.1. Performance of the Convolutional Network (C-Net)

We first built a plain network, C-Net, that consisted of eight
convolutional layers and max-pooling layers. The structure of
the C-Net is shown in Figure 5. The number and size of
convolution filters were consistent with our RAC-Net. Data set
1 was used to compare the classification accuracy of the C-Net
with those of the normal FC network in Zou et al. (2019).

As it can be observed in Table 2, the classification accuracy
of the C-Net was higher than that of the FC network,
particularly for the UNKNOWN class. This was observed for
the classification accuracy for four classes and their average
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Figure 5. Structure of the C-Net.
(A color version of this figure is available in the online journal.)
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Figure 6. Structure of the residual based convolutional network (RC-Net).
(A color version of this figure is available in the online journal.)

accuracy. Compared with the C-Net, it was difficult for the FC
network to identify the characteristics of the UNKNOWN
class. This shows that the convolutional network was more
capable of identifying spectral features than the FC network.

3.2. Performance of the Residual Block (RC-Net)

Based on the C-Net of Section 3.1, we replaced three
convolutional layers with a residual block to optimize the deep

64*3 64*3

I 1*1 Convolutional filters

I Pooling layers

128*3 1283

@ Activated hidden neurons

O Dormant neurons

© Output neurons

convolutional network and created the RC-Net (Figure 6). To
compare our model with the one-dimensional, convolutional
neural network (1D SSCNN) model (Liu et al. 2019), we
separately conducted comparison experiments on three data
sets. The experimental results are shown in Table 3.

Overall, the three models performed better on Data set 2.
There are two reasons behind this phenomenon: first, by
comparing the results for Data set 2 with those for Data set 1, it
can be seen that the performance of the models was improved
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Figure 7. Structure of the residual based convolutional network (RC-Net).
(A color version of this figure is available in the online journal.)
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Table 2
Classification Accuracy of the FC Network and the C-Net for Different Classes

Model STAR GALAXY QSO UNKNOWN Average Accuracy

FC network 91.38% 83.43% 85.65% 48.17% 77.13%

C-Net 91.50% 94.41% 90.16% 79.91% 88.75%

Note. The bold value in table indicates the model with the best performance.

Table 3 Table 4
Classification Accuracy of the C-Net, the 1D SSCNN, and the RC-Net Classification Accuracy of the C-Net, the 1D SSCNN, and the RC-Net

Model Data Set 1 Data Set 2 Data Set 3 Model Parameters Data Set 1 Data Set 2 Data Set 3

C-Net 88.75% 98.58% 91.97% 1D SSCNN 5.18M 92.85% 98.45% 92.33%

1D SSCNN 92.85% 98.45% 92.33% C-Net 2.89M 88.75% 98.58% 91.97%

RC-Net 93.33% 98.81% 93.07% RC-Net 0.388M 93.33% 98.81% 93.07%
RAC-Net 0.623M 93.52% 98.92% 93.25%

significantly  after removing the interference class
UNKNOWN. As the quality of the UNKNOWN class data
contained in Data set 1 was poor, this data interfered greatly
with the model’s learning for the other three categories.
Second, by comparing the results for Data set 2 with those for
Data set 3, it can be seen that the classification for celestial
classes is easier than that for MK classes. In addition, our RC-
Net performed better than the C-Net with the same depth. This
was because the residual block allowed the model to be better
trained.

3.3. Performance of the Attention Block (RAC-Net)

We constructed our RAC-Net as shown in Figure 7 and
compared its performance with that of other models. The
experimental results on accuracy are shown in Table 4.

As can be seen in Table 4, after we inserted the attention
blocks, the accuracy was improved by approximately 0.2%
compared with the results presented in Section 3.2. This was
similar to the improvement effect promoted by the attention
mechanism reported in other papers (Hu et al. 2018; Woo et al.
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Figure 8. Effect of redshift on classification accuracy for Data set 3.
(A color version of this figure is available in the online journal.)

2018). The reason why the improvement caused by the
attention mechanism was not high might have been that the
contribution of different channels to classification accuracy was
close.

In addition, the number of parameters in our model was
approximately 623,000, which is only 12% of that of the 1D
SSCNN model. Therefore, the experiments empirically show
that the RAC-Net is an effective model to improve the
performance of the 1D SSCNN model using fewer parameters.

3.4. Performance Under Different Redshift Conditions

The characteristics of spectra change under the influence of
the redshift effect. As for the pattern matching method
(Garrison 1984; LaSala 1994), redshift would affect the
classification results. In comparison with these methods,
redshift conditions have less influence on our RAC-Net, which
can complete the classification without knowing the redshift
effect. Figure 8 shows the classification accuracy for Data set 3
under different redshift values.

It can be observed from Figure 8 that when we use high-
redshift data from GALAXY or QSO classes, the classification
accuracy decreases significantly. This is because the spectrum
is stretched when the redshift effect is intense enough, leading
to the complete change of the wavelength meaning in the whole
observation band.

4. Conclusions

In this paper, we proposed a deep convolutional network
(RAC-Net) by introducing residual and attention blocks to a
plain network. Owing to the properties of the convolution
operation, the RAC-Net was capable of classifying spectra
without considering redshift. Residual blocks overcame the
difficulties related to vanishing gradients and exploding
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gradients and extracted more deep features than plain networks.
Attention blocks increased the focus of the RAC-Net on the
features that contribute more important information, and thus
made the RAC-Net pay more attention to important channels.
In addition, the total computing cost is expected to decrease
owing to the reduced number of parameters of the RAC-Net.

In conclusion, the experiments showed that the RAC-Net has
some advantages over other models on different data sets.
However, our model still presents limitations when dealing
with data containing UNKNOWN type elements. This is
because the model is sensitive to noise. Therefore, the noise is
misinterpreted by the RAC-Net as a feature to be learned,
which would disturb the training on normal features. Moreover,
the classification of GALAXY or QSO classes with the
presence of high redshift is still a challenge because the
wavelength meaning of input spectra is distorted. Subsequent
work will focus on finding a superior model to identify outlier
spectra and classify high-redshift data.
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