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Abstract

We present a uniform transiting exoplanet candidate list for Campaign 5 of the K2 mission. This catalog contains
75 planets with seven multi-planet systems (five double, one triple, and one quadruple planet system). Within the
range of our search, we find eight previously undetected candidates, with the remaining 67 candidates overlapping
51% of the study of Kruse et al. that manually vets candidates from Campaign 5. In order to vet our potential transit
signals, we introduce the Exoplanet Detection Identification Vetter (EDI-Vetter), which is a fully automated
program able to determine whether a transit signal should be labeled as a false positive or a planet candidate. This
automation allows us to create a statistically uniform catalog, ideal for measurements of planet occurrence rate.
When tested, the vetting software is able to ensure that our sample is 94.2% reliable against systematic false
positives. Additionally, we inject artificial transits at the light-curve level of the raw K2 data and find that the
maximum completeness of our pipeline is 70% before vetting and 60% after vetting. For convenience of future
studies of occurrence rate, we include measurements of stellar noise (CDPP) and the three-transit window function
for each target. This study is part of a larger survey of the K2 data set and the methodology that will be applied to
the entirety of that set.

Unified Astronomy Thesaurus concepts: Exoplanet catalogs (488); Planetary science (1255); Astronomy data
analysis (1858)

Supporting material: data behind figure, machine-readable tables

1. Introduction

The Kepler spacecraft was launched in 2009 and has found
over 4000 transiting exoplanet candidates. The original mission
lasted four years and collected photometric data on more than
150,000 stars in a 116 deg2 patch of the sky (Koch et al. 2010;
Borucki 2016). As intended, the fixed position and continuous
(29.42 minute cadence) photometry provided the ideal condi-
tions for transit detection and studies of occurrence rate (see,
e.g., Youdin 2011; Howard et al. 2012; Dong & Zhu 2013;
Dressing & Charbonneau 2013, 2015; Petigura et al. 2013;
Burke et al. 2015; Mulders et al. 2015, 2018). With the final
announcement of Data Release 25 (DR25; Thompson et al.
2018) and data from Gaia Data Release 2 (DR2; Gaia
Collaboration et al. 2018), additional studies have been
conducted using improved stellar parameters (Bryson et al.
2019; Hardegree-Ullman et al. 2019; Hsu et al. 2019; Zink
et al. 2019a; Zink & Hansen 2019), providing a baseline
measurement for the occurrence of Galactic exoplanets.

Upon the failure of two reaction wheels, the spacecraft was
no longer able to remain focused on the same field for extended
periods of time, thus concluding the original mission. However,
the spacecraft was able to take photometric data despite the
telescope’s pointing issues. With the telescope now looking at
different fields of the Galaxy for shorter periods of the time
(<80 days), the K2 mission was born (Howell et al. 2014; Van
Cleve et al. 2016). The K2 mission continued for 18 complete
campaigns (fields) along the ecliptic, before the spacecraft

eventually ran out of fuel. Each campaign delivered a unique
glimpse at a different part of the ecliptic plane, providing the
opportunity to consider how these differences in Galactic
latitude, metallicity, and stellar age (Rizzuto et al. 2018) may
play a role in the occurrence of exoplanets. Making measure-
ments of occurrence rate with K2 will also allow us to combine
data from Kepler to increase our sample size for global
measurements of occurrence rate.
Several groups have constructed catalogs of different K2

fields, yielding over 800 new exoplanet candidates (Adams et al.
2016; Barros et al. 2016; Crossfield et al. 2016; Pope et al. 2016;
Vanderburg et al. 2016; Dressing et al. 2017; Livingston et al.
2018; Mayo et al. 2018; Petigura et al. 2018; Yu et al. 2018;
Kruse et al. 2019; Zink et al. 2019b). Almost all of these catalogs
have been focused on Campaigns 1–10, leaving a vast trove of
unexamined data in Campaigns 11–18. Furthermore, vetting
of the K2 transit signals has been almost entirely done by eye.
Many of the pointing issues the spacecraft experienced created
artificial dips that mimic transit signals. K2 data are considerably
less well-behaved than the Kepler data as a result of this pointing
jitter, leading to many systematic false positives (FPs) with high
signal-to-noise ratio (S/N). Previous vetting software used for
the Kepler catalogs, which were not tailored to these systematics,
could have difficulty isolating these FPs, but they are easily
detected by human examination. This lack of automation
and repeatability, thus far, makes calculations of K2 planet
occurrence difficult to perform.
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One notable attempt to automate the search of K2 data was
performed by Kostov et al. (2019), where previously detected
candidates were vetted in a partly automated fashion
(automated metrics prioritized candidates, which could then
be verified with human examination). However, this method
still requires some human interaction, making measurements of
completeness and reliability difficult to achieve. Dattilo et al.
(2019) made further progress in automating K2 planet
detections by using a convolutional neural network to classify
signals. Despite high classification accuracy, the software still
requires human supervision.

It is essential for any calculation of planet occurrence that we
know, and can account for, the biases to which the empirical
sample is subjected. The automated pipeline for Kepler was
able to directly measure various metrics that can account for
this lack of completeness (Mullally et al. 2015; Coughlin et al.
2016; Thompson et al. 2018). To test how good the pipeline is
at recovering transit signals, previous studies have injected
artificial transit signals into the light curves and measured the
number of signals recovered by the automated pipeline
(Christiansen et al. 2013, 2015; Christiansen 2017). This gave
a direct measure of pipeline detection efficiency. Burke &
Catanzarite (2017a) provided a measure of the target window
function (the probability that a signal will provide three transits
within the window of data available) and the 1σ depth function
(which is a measure of the stellar noise given the transit
duration). Both of these tools help us to calculate the
probability of detecting a given transiting exoplanet. Without
these metrics, strong assumptions about a catalog must be made
in order to produce any measure of occurrence, and any
conclusions should be taken with caution. Finally, to determine
how pure the DR25 candidate sample was, reliability tests were
performed by both inverting and scrambling the light curves
and testing the pipeline for FPs (Thompson et al. 2018). Using
a fully automated pipeline is the only way to achieve an
accurate measure of systematic reliability.

Using the Kepler data set as a baseline detectable planet
population, Dotson et al. (2019) estimates that K2 should yield
1317±261 detectable planets. However, the Kepler field may
be intrinsically unique, distorting such estimates. With all the
current K2 candidates detected through non-automated vetting
processes, it remains difficult to estimate what fraction of the
potential candidates have been found. In this paper we provide
a fully automated K2 pipeline and candidate sample for
Campaign 5. We select Campaign 5 for testing because this
field has the largest known sample of K2 planet candidates
(246, as of 2019 October 7), allowing us to tune the vetting
metrics to maximize our planet yield. This paper presents a
methodology that is in the process of being applied to all the
K2 campaigns. In Section 2 we discuss how our pipeline takes
the raw flux data and removes the noise from the spacecraft
before searching for and finding transit-like signals. In
Section 3 we introduce our fully automated vetting software,
which has been optimized for K2 systematics. In Section 4 we
present our measure of stellar noise for each target. In Section 5
we inject artificial transit-like signals into the light curves in
order to measure the completeness of our pipeline. In Section 6
we present the results of our pipeline reliability test. In
Section 7 the results of our window function measurements are
presented. In Section 8 we present our list of fully vetted
candidates. In Section 9 we provide concluding remarks on our
pipeline and candidate list.

2. Data Processing

In the following section we will discuss how our pipeline
takes the raw photometric data and converts them into usable
transit signals. In brief, the target pixel files are downloaded
from MAST (Campaign 5, Data Releases 31) and processed
with the EVEREST Python package (Luger et al. 2016, 2018).
The light curves then undergo two Gaussian process (GP)
regressions and a harmonic signal removal. Finally, the fully
detrended data are examined for transit signals using the
TERRA software (Petigura et al. 2013).

2.1. EVEREST

The K2 data set provides unique systematics that make the
detection of exoplanets more difficult than that of the original
Kepler mission. The spacecraft thrusters and roll cause
periodic fluctuations in the photometric data. In a preliminary
study, we compared different K2 detrending software: K2SFF
(Vanderburg & Johnson 2014), K2PHOT (Petigura et al. 2013),
and EVEREST7 (Luger et al. 2016, 2018). We found that all of
these algorithms had different performance issues and strengths.
The DAVE vetting software (Kostov et al. 2019) considers
several different detrended light curves simultaneously for each
target, but such a task is computationally expensive when
considering the desire to directly execute each detrending
algorithm. We found that the EVEREST software provided good
minimization of signal rms and the most user-friendly software
for removal of spacecraft fluctuation. In overview, EVEREST
uses the calibrated pixel-level data to produce time-series
photometric light curves and corrects for systematic noise in
those light curves by examining pixel-level correlations. All the
K2 Campaigns have been processed with EVEREST (however,
the calibrated pixel-level data files are currently being
reprocessed as part of the K2 Global Uniform Reprocessing
Effort,8 warranting an updated processing with EVEREST).
Light curves with EVEREST processing are publicly accessible.9

However, to ensure a uniform treatment, we undertook the task
of reprocessing the Campaign 5 light curves with EVEREST,
using the K2SFF aperture #15, as suggested by Luger et al.
(2018). This aperture uses a model of the Kepler pixel response
function to determine the size and shape of the target aperture
(Bryson et al. 2010; Vanderburg & Johnson 2014). This gave us
the ability to later inject signals into the raw flux data (at the
light-curve level) before EVEREST processing (see Section 5).
By directly running EVEREST on the calibrated pixel-level data
(downloaded from MAST),10 we could ensure that the transit
injection recovery is processed using the exact same conditions
as those of the candidate sample.
On average, EVEREST masks about 8% of the light curve due

to spacecraft anomalies or outliers. Occasionally, EVEREST will
remove a large fraction of the data points within a light curve
because the excessive noise is seen as numerous outliers. We
remove targets where more that 50% of the light curve is
masked. This severe masking only occurs in 37 of the Campaign
5 light curves, in most cases where the target is near the edge of
the CCD. These 37 targets represent a very small fraction of the
25,040 light curves considered for this campaign.

7 https://rodluger.github.io/everest/
8 https://keplerscience.arc.nasa.gov/k2-uniform-global-reprocessing-
underway.html
9 https://archive.stsci.edu/hlsp/everest
10 https://archive.stsci.edu/k2/
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2.2. GP and Harmonic Detrending

The EVEREST software removes the systematics caused by
the thrusters and roll of the spacecraft, but an additional global
detrending is needed to flatten the light curves. We achieve this
through GP regression and harmonic removal.

The first step in detrending is to establish the white noise
level (σ). It is important that the detrending knows what is
signal versus noise, and an accurate σ value will help to
achieve this goal. In well-behaved flat light curves this is an
easy task, and σ is the standard deviation of the normalized
flux. However, if the time series contains correlated noise,
the standard method will artificially increase the measured
uncertainty. To complicate this even further, deep transit
signals or a large number of outliers can again inflate the rms.
We use the median absolute deviation (MAD), which is a
measure of the distance of the median absolute value from the
median value in the time series. This value can be scaled to
estimate σ for the time series:

s =
F

»
-

MAD

3 4
1.4826 MAD 1MAD 1( )

( )

where Φ−1(3/4) is the normal inverse cumulative distribution
function evaluated at a probability of 3/4. This measure of σ is
far more robust to outliers and transit signals. However, light
curves that require significant red-noise removal will still
inflate the inferred σ value. To limit this issue we break the
light curve into bins of width 1 day, because the daily flux trend
should be minimal. We measure the σMAD value for each of
these bins and take the median σMAD value from these bins as
our measured value for σ. It is important to note that stellar
variability on a scale of <1 day can still inflate our measured σ

value, but this effect is insignificant when looking for long-
term trends, as is done here.

One challenge of GP detrending is that GPs can fit real
transit signals. A thorough discussion of this issue can be found
in Hippke et al. (2019), with several alternative detrending
methods which we hope to consider in future iterations of our
pipeline. To avoid this issue, we attempt to mask outliers and
potential transits. We again bin the time series by intervals of
single days. Within each bin we look for points that exceed
3σMAD from the median of each bin. These points are only
masked for the detrending process and unmasked for the rest of
our pipeline. By manually adjusting the threshold, we found
that a 3σ clipping was sufficient to mask most significant
transits. Additionally, any transit existing below this limit was
likely to be seen as noise by the GP and therefore not removed.
An additional restriction we place on our GP is that we do not
allow it to choose detrending periods <5 days. Periods shorter
than this are more prone to overfitting transit signals because
the transit duration is often a significant fraction of a day.
Putting this limitation in place decreases our chances of
modifying the transit depth. We discuss this issue more
thoroughly in Section 8.

To implement our GP regression the pipeline uses PyMC3
(Salvatier et al. 2015) with a wrapper built by the Exoplanet
software (Foreman-Mackey et al. 2019). Our detrending uses
the “Rotation,” kernel which is a combination of two simple
harmonic oscillators, meant to mimic stellar rotation/noise.
Our pipeline uses this GP detrending in two steps: First, it
looks for long-term trends (periods >10 days and general flux
drifting), then after removing the long-term trends, it looks for

short-term trends (5 days < period < 10 days) and subtracts the
best fit GP. However, stellar oscillations can also exist on very
short timescales (often <0.5 days). Any attempt to remove
these oscillations with a GP will almost certainly remove
transits as well, thus a harmonic fitter is used to address this
issue.
Unlike a GP, a harmonic fitter does not have the flexibility to

fit and remove long-period transits. It can only affect the
signals with strong similarities to a sine function, and the long
periods of flat baseline between transits make this unlikely.
This can become problematic when one has a system with
multiple transiting planets, decreasing the gaps between transits
and mimicking a sine curve (Christiansen et al. 2013; Zink
et al. 2019a). Additionally, short-period giant planets can also
be affected by this harmonic removal process, by either
decreasing the transit depth or removing the signal completely.
By choosing an upper limit of 0.5 days for our harmonic fitter,
we minimize such occurrences. We begin by unmasking the
GP σ-clipped data and searching for the strongest periodic
signal below 0.5 days using a Lomb–Scargle periodogram. We
then use a χ2

fitting algorithm to measure the amplitude (A) of
the signal. It is important that we do not introduce additional
noise into the data set, so we require A>10σA before
removing the harmonic signal. We found in practice that this
limit rarely overfit the data, but we address such possibilities in
our vetting metrics (Section 3.9). In Figure 1 we show how the
raw flux data will change at each step of our light-curve
processing.
Looking at our GP and harmonic fitter, there is an apparent

gap in our considered period range for detrending (0.5days
<period < 5 days). Any attempt made to fit this period range
either introduced additional artificial signals into our data or
artificially reduced transit depths. Fortunately, most stars have
rotational periods >5 days (McQuillan et al. 2013) and most
variable stars oscillate at periods <0.5 days, indicating that few
non-planetary periodic signals occupy this parameter space.
Additionally, our vetting algorithm rejects any signals found
with such harmonic features, minimizing the possibility of an
FP detection (Section 3.9).

Figure 1. Top: the raw target pixel file data for EPIC 211422469. Middle: the
data after processing with the EVEREST detrending software. Bottom: the light
curve after an additional processing from our GP and harmonic fitter routine.
The corresponding rms values are shown, in units of parts per million (ppm), to
illustrate how each step will condense the noise of the light curve.
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2.3. TERRA

Once the light curve has been fully processed, we begin our
search for threshold crossing events (TCEs). These are signals
with at least three transit-like events that reach or exceed a
specific statistical significance. We discuss our process of
selecting this threshold in the next Section (2.4). To search for
these signals, we use the TERRA search algorithm (Petigura
et al. 2013). This software begins by masking outliers and then
uses a finely spaced grid-based search algorithm to find the
event with the largest S/N in phase-folded period space of the
light curve. This 3D grid search provides a measure of period
(P), the transit duration (tdur), the transit ephemeris (t0), and
S/N. For transiting planets detected by the Kepler pipeline,
S/N is measured using the multiple event statistic (MES;
Jenkins 2002), which indicates the strength of the whitened
signal assuming a linear ephemeris. We will use MES in
reference to the strength of the signal henceforth.11

To recover systems with more than one transiting exoplanet,
we consider the five signals with the largest MES in the light
curve. We do not expect many systems to contain more than
five distinct detectable transits within a period of 38 days
(Kepler-80 and TRAPPIST-1 are currently the only known
exceptions). However, Kruse et al. (2019) found evidence for
one such system (EPIC 210965800) with six planets in
Campaign 4 of K2. We acknowledge that we may lose some
of these higher multiplicity systems by limiting our search to
five planets, but such a restriction is necessary to minimize our
computational cost. After the largest MES signal has been
detected, we then mask 2.5×the transit duration (1.25tdur on
either side of the predicted transit midpoint), allowing the next
largest signal to be detected. This process continues until either
five TCEs have been found, or the largest MES value is less
than the detection threshold. Zink et al. (2019a) showed that
this type of masking will make higher multiplicity systems
more difficult to detect, because nearby transits have the
potential of being partially or fully hidden by this type of
masking. However, removing the signal with a transit model is
impractical. A majority of the signals are FPs that do not match
well with the transit model. Thus, subtracting the best fit model
will not actually remove the signal, but rather morph the data so
that the grid search continues to detect the same anomaly
repeatedly. In addition, any poorly fit real transit signal will not
be completely removed through model subtraction, making
smaller MES signals very difficult to find. Therefore, masking
is the only way to ensure that the previous signal is not being
re-detected at each iteration of multiplicity (m). To minimize
the effects of masking we choose to remove only 2.5×the
transit duration, whereas the Kepler pipeline used a mask of
3×the transit duration, which should decrease the probability
of masking neighboring transits.

Searching for transits, we limit the search range of the orbital
period to [0.5, 38] days. The upper limit of 38 days is set by the
span of the data (nominally 74.84 days for Campaign 5), which
permits the existence of three transits within the given window.
The lower limit was set to minimize contamination from the
abundance of harmonic signals that exist at periods <0.5 days
(TERRA can detect signals with sufficient MES and periods
<0.5 days at a multiple of the true period, but in practice

we found that these are more often FPs than true planets).
Additionally, we wanted to minimize the probability of
finding signals artificially introduced by the harmonic fitter
(Section 2.2). Finally, of the over 4000 confirmed exoplanets,
only 15 have orbital periods <0.5 days (0.37%), including six
planets found in the K2 fields. Thus, limiting our search should
have a small effect on the extracted period population. Users
concerned with the occurrence of ultrashort-period (USP)
planets are encouraged to perform their own custom search.

2.4. Selecting a TCE Limit

The Kepler pipeline used a default TCE limit of 7.1σ
(Jenkins et al. 2002). Any signal that produces a MES value of
this magnitude or greater was considered for vetting. Assuming
Gaussian statistics, this limit would only allow one false alarm
signal through in the entirety of the Kepler mission. However,
the distribution of TCEs has long tails, where false alarm
detections are more common at 7.1σ than originally expected.
Kepler found, on average, that 16% of the targets produce a
�7.1σ event (198,706 light curves; 32,534 TCEs), and a
majority of them were later classified as FPs (Thompson et al.
2018).12

K2 photometry contains far more outliers than Kepler prime
photometry, so we tested different MES thresholds to look at
the occurrence of TCEs at each limit (Figure 2). The number of
TCEs appears to match well with an exponential distribution,
and the multiplicity of TCE occurrence does not appear to be
affected by a difference in MES threshold. The number of
“First TCE” detections, where we only consider the first TCE
trigger for each light curve, is roughly 50% of the “All TCE”
detections at each of the tested thresholds. This indicates that a
light curve where a TCE was triggered was likely to trigger
more than one TCE. If this ratio changed significantly at each
tested threshold, an argument could be made to select a

Figure 2.MES threshold plotted against the average number of TCEs found for
each light curve in Campaign 5. Many of the light curves will produce more
than one TCE, thus the yellow bars (All TCE) represent the total number of
detected TCEs divided by the number of light curves searched. The blue bars
(First TCE) only consider the first TCE found in each light curve. The red line
represents the best fit exponential to the All TCE bars. We select the threshold
(8.68) where the average light curve will contain 0.2 TCEs.

11 We note that the SES and MES used by TERRA and Kepler project
Transiting Planet Search (TPS) are analogous, but not strictly equivalent.
Differences in the detailed constructions of these statistics may be found by
comparing Jenkins et al. (2010) and Petigura et al. (2013).

12 In reality Kepler detected TCEs in about 8% of the light curves. A large
fraction of these light curves contained multiple TCEs, inflating the average.
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threshold at some level of similarity between the two values.
Since no clear convergence occurs, we select a threshold (from
our exponential fit) in which on average 20% of the light curves
will contain a TCE (8.68σ; determined by the fit exponential
function). Since our threshold is higher than the Kepler 7.1σ,
we sacrifice some sensitivity in order minimize the number of
false alarm signals (Thompson et al. 2018 found that reliability
significantly increased for signals with MES >8 for the Kepler
pipeline). Previous studies have selected even higher thresholds
(9σ; Kruse et al. 2019), which indicates that our survey will be
able to detect smaller and noisier signals at the cost of a higher
FP rate.

2.4.1. Skye Excess TCE Identification

One test implemented by Thompson et al. (2018) was the
“Skye” metric. Inspired by this metric, we performed a similar
analysis, in which we counted up the number of TCEs (NTCE)
found at each cadence (cadences considered detected are within
the transit duration of the TCE). If all cadences contributed
equally to the correlated noise in the light curves, the number of
TCEs found at each cadence should be uniform. Any cadences
that trigger an abnormally large NTCE were likely faulty and
likely to cause FPs, warranting a global removal of this cadence
from the time series. Such cadences have been found to be
prolific in the K2 data set, because systematic outliers
(due to the pointing jitters) commonly cause false TCE
triggering. By manually tuning the threshold across different
detrending software, we found that a 5σ threshold provided
the best clipping. Thus, we considered a cadence faulty if

s- >N Nmed 5 NTCE TCE TCE( ) , where sNTCE is measured using
the MAD estimator in Equation (1). We find no cadences that
exceed this limit in Campaign 5, but in a preliminary study we
found several faulty cadences in the K2phot Campaign 5 light
curves (Petigura et al. 2015). It appears that the EVEREST
software is proficient in removing such cadences. However, we
will continue to search for faulty cadences in future campaigns.
Figure 3 shows the number of TCEs per cadence, indicating a
near-constant distribution.

The numbers of TCEs produced in each period are shown in
Figure 3. Two points clearly stand out: 0.75 and 2 days. These
two periods correspond to the frequency of various operations

carried out by the spacecraft (Van Cleve et al. 2016). 0.5 and
0.75 days correspond to the second and third harmonics of the
thruster firing, which occurs every six hours. Few TCEs are
observed at the second harmonic because it sits on the
minimum period threshold. Some fraction of the potential
TCEs would have been detected below 0.5 days and are now
being detected at the next harmonic of 0.75 days. This
operation realigned the telescope after drift caused by solar
radiation pressure. Although EVEREST masks these data
points, the neighboring cadences can cause outliers. Thus, the
harmonics of 0.25 days lead to an overabundance of TCEs
where these outliers all line up. The jump at two days in
Figure 3 corresponds to the frequency of reaction wheel
momentum resaturations (known as the “Resat” period).
Although many of the cadences were masked by EVEREST,
the surrounding cadences can, again, cause a TCE. Our outlier
vetting metric is proficient in removing these artificial signals
(see Section 3.3)

2.5. Prioritizing Reliability over Completeness

We selected parameters for our pipeline that maximize the
completeness and the reliability of our sample. Adopting the
philosophy of the Kepler DR25 catalog (Thompson et al.
2018), we willingly allow some known planet candidates to
achieve an FP label in order create a uniformly vetted, highly
reliable catalog. The parameters described in Section 3 have
been tuned to minimize such misclassification, without
allowing additional FPs through. We hope to maintain these
same parameters across all campaigns, so that an aggregate
calculation of occurrence using all 18 campaigns can be made
seamlessly.

3. EDI-Vetter

One of the more difficult tasks in any automated transit
search is the vetting process. This is the final defense against
transit FPs and must be robust against many different types of
light-curve anomalies. Automated vetting processes have been
created for the Kepler pipeline (McCauliff et al. 2015;
Thompson et al. 2018), but the K2 data set is far noisier and
additional tests are required. We build upon the criteria used by

Figure 3. Left: the number of TCEs as a function of cadence. The blue dotted line represents 5σ above the median value. We find no cadences that exceed this limit,
and therefore do not apply any additional masking. The red lines indicate the cadences in which a thruster firing occurred. Right: the number of TCEs as a function of
period. There are 150 uniform bins in log space. The outlier bins have been labeled to indicate their corresponding cause.
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the RoboVetter (Thompson et al. 2018) to create EDI-
Vetter (Zink 2019), which is more robust to the issues
unique to the K2 data set. A user-friendly version of this
software is made publicly available on GitHub.13 Here we
discuss the metrics EDI-Vetter uses to ensure our that
candidate list is pure with high reliability.

To begin, our software uses the maximum likelihood
parameters found by TERRA to fit a transit model to the
detected TCE signal. Using the affine invariant sampler of
Goodman & Weare (2010), as implemented in Python by
Foreman-Mackey et al. (2013) (emcee), and the batman
transit model (Mandel & Agol 2002; Kreidberg 2015), we
confirm that the TERRA values found a global maximum
likelihood and determine the maximum likelihood of additional
transit parameters. We produce our transit model with the
batman Python package (Kreidberg 2015). Using 100 semi-
independent walkers, 250 burn-in steps, and 100 parameter test
steps (35,000 total steps; 10,000 test samples), we estimate the
maximum likelihood and uncertainty for the transit ephemeris
(t0), the radius ratio (Rpl/Rå), the impact parameter (b), the
signal period (P), the ratio of semimajor axis to stellar radius
(apl), the transit duration (tdur), and the transit depth. We
assume a circular orbit and derive two quadratic limb darkening
coefficients using the stellar parameters available on ExoFOP14

(Huber et al. 2016) along with the ATLAS model table for
Kepler bandpass limb darkening coefficients from Claret &
Bloemen (2011). According to the literature for emcee,15 50
times the integrated autocorrelation time (τ) is the lowest limit
at which the Markov Chain Monte Carlo (MCMC) sampler
results can be trusted. We find τ∼ 50 samples for our five-
parameter model, indicating that we should require at least
2500 samples before our results can be considered meaningful.
Clearly, the 10,000 samples taken by our MCMC sampler is
near this lower limit and likely insufficient for a thorough
parameter estimation, but we sacrifice some accuracy to
significantly improve the computational speed of our software.
For vetted candidates we run a more thorough parameter
estimation as described in Section 8.

In the next 13 Sections 3.1–3.13 we provide a detailed
description of the filters used by EDI-Vetter as shown in
Figure 4.

3.1. Previous Planet Check

This test ensures that the detected TCE is not a repeat of a
previous signal (Section 3.2.2 of Coughlin et al. 2016). TCE
recurrence is common for FPs, where masking is inefficient at
removing the entirety of the light-curve anomaly. Additionally,
true signals that have periods misidentified by some integer
multiple will produce multiple TCE signals. This test helps
remove such redundancies. If the pipeline finds more than one
TCE for a given light curve, this test will be enacted in
decreasing signal detection order, i.e., the first signal detected
will not be subject to this test, the second signal will be tested
against the first, and the third signal will be tested against the
first and the second signals.

We define DP as the separation in periods, normalized by
the shorter of the two periods:

D =
-

P
P P

P
2B A

A
( )

where PA and PB represent the shorter and longer periods
respectively. To then determine the offset from the nearest
integer multiple, δP is calculated:

d = D - DP P Pround 3∣ ( )∣ ( )

where the round() function will round to the nearest integer
value. We can then determine how statistically significant (σP)
a period separation is using the erfcinv() (inverse complemen-
tary error function):

s d= P2 erfcinv 4P ( ) ( )

where larger δP values will produce small σP values. For
consideration as a candidate we require signals with a high
detection order (signals found after the first signal within the
light curve) to be separated with σP�2 for candidate
consideration. If a signal matches with a previous detection
with σP>2, it is likely a repeated detection. However, we also
must consider the case of resonant systems, where integer
period separations are common. To avoid falsely eliminating
such systems, we also consider the ephemeris separation for the
two signals (Δt0):

D =
-

t
t t

t
5A B

0
0 0

dur

∣ ∣ ( )

where tdur is the transit duration of the signal in question and t0A
and t0B are the ephemeris times for the first transit within the
data set. IfΔt0 is large (�1) andΔP is small (�2), it is possible
that the signals are from a resonant orbit. The caveat to this is
the case where the signal with the higher detection order
is fitting to the secondary eclipse of the transit. To ensure this is

Figure 4. A schematic of our K2 pipeline. The section numbers correspond to
the detailed description of the EDI-Vetter metric.

13 https://github.com/jonzink/EDI-Vetter/
14 https://exofop.ipac.caltech.edu
15 https://emcee.readthedocs.io/en/latest/tutorials/autocorr/
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not the case ΔSE1 and ΔSE2 are calculated:

D =
- +

D =
- -

t t P

t
t t P

t

SE
2

SE
2

. 6

A B A

A B A

1
0 0

dur

2
0 0

dur

∣ ∣

∣ ∣ ( )

Again, a small ΔSE1 or ΔSE2 (<1) indicates that the higher
order detection is likely fitting to the secondary eclipse. This
metric will only be sensitive to eclipsing binaries with a
circular orbit, where the secondary eclipse is at a phase of 0.5.
Future iterations of this pipeline will consider non-circular
orbits in this metric.

All of these metrics are assuming that the previous planet
was a real signal. If the previous detection was deemed an FP
and σP>2, this signal is likely just a repeated detection from
an undermasked anomaly. Thus, the signal will be flagged as
an FP.

For clarity, we summarize here the full process in which a
signal will be classified as an FP. If σP>2 and the previous
signal was deemed an FP, this detection will be flagged as an
FP. If σP>2 and Δt0<1, this detection will be flagged as an
FP. If σP>2 and ΔSE1<1 or ΔSE2<1, this detection will
be flagged as an FP. Otherwise, this signal will continue to be
considered for candidacy.

3.2. Binary Blending

In this metric we seek to identify cases where the signal is
due to an eclipsing binary, either from the target or from a
nearby source, but with such a large impact parameter and/or
dilution from the third light source that the observed depth is
comparable to that of a transiting planet. During the original
Kepler mission, flux contamination from nearby sources was
ruled out by fitting the pixel response function model (Bryson
et al. 2010) to the star in and out of transit, looking for offsets
in the photocenter of the light (the centroid). If statistically
significant differences appeared, the target was considered
contaminated (Mullally 2017). Two scenarios could result in
such a shift. First, contamination from a source within a few
arcseconds of the primary target would produce this type of
shift during transit. Second, a very deep transit signal from a
nearby eclipsing binary could contaminate a static light curve,
causing a shift during transit. Such methods are difficult to
apply to K2 because of the roll experienced by the telescope,
which moves the target image across several pixels. Using
cadences with similar roll angles, the DAVE software is able to
recoup some of this detection ability (Kostov et al. 2019).
However, the shorter data span of each K2 campaign, and the
lack of similar data on roll angle, makes finding these statistical
differences more difficult. Instead, we use the Gaia DR2
data set (Gaia Collaboration et al. 2018) to look for flux
contamination from nearby sources.

Gaia can resolve nearby sources down to 1 for G-band
Δmag3 (Ziegler et al. 2018). Since the K2 pixel scale is
3 98, we can achieve sub-pixel resolution using cross-
matching alone. We utilize the gaia-kepler.fun16 cross-match
database with a 20″ search radius to look for these
contaminants. To ensure we have correctly matched the target
star, we require the “phot_g_mean_mag” parameter to be
within 1 magnitude of the assigned “k2_kepmag.” These

values are often almost indistinguishable because the Gaia G
band and Kepler band probe nearly the same wavelength range.
If this criterion is not met, we check the next closest source
within the 20″ search radius to see if it meets this criterion. This
process will continue until a target of the correct magnitude is
found or all of the sources in the 20″ search radius have been
tested. If no source is within this 1 magnitude limit, we will
select the source that provides the closest magnitude match.
This closest-match scenario was applied to 301 of the C5
targets (1.2% of the total tested targets).
As used for the EVEREST pipeline (Luger et al. 2018), we

adopted aperture #15 from the K2SFF catalog (Vanderburg &
Johnson 2014). Using the size of the aperture, we can
determine the amount of flux contamination from neighboring
binaries. Often the apertures select pixels in a circular manner
around the target, but in cases where additional point sources
are nearby, the aperture may be elongated, capturing additional
flux from the nearby source. To account for this possible
elongation, we consider flux contamination within this radius
(Δap):

p
D =  +

N
ap 3. 98 1 7

pix ( )

where Npix is the number of pixels for the given aperture. This
Δap is likely overestimating the flux contamination for many
of the well-behaved apertures, where the aperture is large and
circular, but it is important in order to ensure high reliability.
To determine the amount of flux contamination, we compute
the flux ratio for the nearest potential contaminating source
(FRatio

Gaia ):

= =
D
-



F

F
F 10 8Gaia

neighbor Ratio mGaia
2.5 ( )

where Fneighbor is the expected flux from the nearby source,
Få is the expected flux from the target star, and ΔmGaia is
the difference in magnitude between the target source and the
possible contaminant in the Gaia G band. To determine the
impact of this external source on our target, we calculate the ratio
of total flux to the target flux FGaia

Tot( ):

= = + ++ D -D





F 1 1 erf 9Gaia

F F

F

F dTot
2

ap

2 . 55 2
Gaiacont
Ratio ( )( ) ( )

where Fcont is the fraction of flux from Fneighbor within the
aperture of the target and Δd represents the angular distance
between the target and the contaminating source. Using the
error function in this method assumes a 1D Gaussian point-
spread function (PSF) with a standard deviation of 2 55
(corresponding to the 6″ FWHM of the Kepler PSF). The 1D
assumption will certainly overestimate the amount of flux
contamination, but this cautious approach will improve our
reliability against astrophysical FPs. For targets with multiple
neighboring stars we consider the flux contamination from all
the sources within a 20″ radius of the source.
One limitation to this approach is that our search limit is

bound by the 20″ search radius of the gaia-kepler.fun cross-
match. In some rare instances, an aperture will extend beyond
this radius (Npix> 78). Upon visual inspection, most of these
targets are in very crowded fields with several stars within a
single aperture. Implementing this aperture limit, we remove 54
targets from our search. Additionally, contaminating sources16 https://gaia-kepler.fun
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can also exist beyond the 20″ search radius. To help account for
these cases, we also use the J-band photometry of the Two
Micron All Sky Survey (2MASS). Pulling from ExoFOP (see
footnote 14), which provides 2MASS cross-matches beyond
20″, we calculate Equation (8) for 2MASS and find the
potential contamination F2MASS

Tot( ):

= + +
D - D


F

F d
1

4
1 erf

ap

2. 55 2
. 102MASS

Tot 2MASS
Ratio

( )
⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

Here, it is important to note that we assume the flux
contamination will be half as strong as a similar contaminant
in the Gaia band. This is to account for the fact the 2MASS
J-band photometry cannot be directly compared to the expected
K2 flux. Howard et al. (2012) suggests a flux ratio of ∼1/4 for
a J-band to K-band conversion, but we choose 1/2 to err on the
side of overestimating potential contamination. We find that
F2MASS

Tot is usually very close to unity; only in extreme cases
where the J-band contamination is significant, and =F 1Gaia

Tot ,
will the 2MASS flux ratio play a role.

To determine the impact of this flux contamination on our
source, we consider how FGaia

Tot and F2MASS
Tot affect the inferred

planet radius. One of the biggest concern with binary
contamination is the potential to decrease the transit depth
and falsely present an eclipsing binary as a planet candidate.
Additionally, in systems with a transiting planet, the planet
radius is derived from the depth of the measured transit. When
flux from an additional star is present, the depth of the transit
will be diluted and result in an underestimation of the planet
radius (Ciardi et al. 2017; Fulton et al. 2017; Matson et al.
2018). We adopt the same requirements on radius and impact
parameter as suggested by Batalha et al. (2013), but now
include a correction for flux contamination:

+


R

R
F F bmax , 1.04 11Gaia

Pl Tot
2MASS
Tot( ) ( )

where b is the impact parameter and RPl/Rå is the radius ratio
fit to the transit in question. The max function chooses the
higher of the two flux ratios. This ensures that we do not
double-count the flux contamination from a source. The median
FTot value for targets in Campaign 5 is 1.00003, indicating that
most targets are well isolated. Any signal that exceeds the
provided limit (Equation (11)) will be flagged as an FP. This
method of FP flagging allows us to remain agnostic to the
stellar parameters. Additionally, we put an upper limit on
RPl/Rå. Any TCE found with RPl/Rå>0.3 will automatically
be flagged as an FP. This limit is imposed to eliminate eclipsing
binaries with low impact parameter.

3.3. Transit Outliers

One common issue seen in many of the TCEs found in the
K2 light curves is the chance alignment of several outliers. This
metric is aimed to identify when such cases occur. The general
increase in noise caused by the spacecraft roll motion and
thruster firing caused a significant number of outliers to occur
in the flux data set. Many of these are removed by the
EVEREST processing, but occasionally a few will make it
through (evidence of this can be seen in the right panel of
Figure 3). When this occurs, the TCE search is likely to find a
period where the outliers line up when phase-folded. These

chance alignment signals are hard to distinguish with
previously developed vetting tools, but easy to spot by eye.
Here we present a unique test to eliminate these anomalies.
We use the best fit model to subtract the signal from the

folded data set. We first check to see whether the in-transit
residuals have a larger variance (σTran) than the rest of the light
curve (σBase). However, this calculation is complicated by larger
MES signals. We found that many high-MES transit signals will
produce larger variances in the residuals because of either poor
fitting or poor detrending. Fortunately, many of these chance
alignment outliers produce a low MES signal. Thus, we deem
any transit residual with s s> ´ -0.461 MES 2Tran Base( ) an
FP. This threshold was tuned in correspondence to an acceptable
increase of 2× the in-transit rms at the detection limit and
4×the rms at MES=13. In Figure 5 we show two signals—
one that passed this test and one that failed.
We often find that several aligned outliers will trigger a TCE,

but retain a low σTran due to a larger number of non-outlier
baseline flux measurements included in the σTran calculation.
To account for these cases, we count up the number of in-
transit cadences that produce outliers (residual >3σBase) in the
transit residuals. If this number (Out) exceeds the following
limits, the signal is deemed an FP:

< >
> ´ +

Nif MES 40: Out
else: Out 0.3 MES 4 12

Tran

( )

where NTran is the number of transits. Equation (12) allows, on
average, one outlier per transit for signals with MES < 40. For
stronger signals, outliers are more likely to be triggered due to
poor model fitting. This problem becomes more significant as
MES increases, thus we use the linear function of MES as a
threshold for these cases. This function was tuned to allow 16
outliers at MES=40 and 25 outliers at MES=70. This
metric performs well against outlier alignments, but has a mild
tendency of flagging high-MES, but poorly detrended, planets
as FP. This is the unfortunate cost of attaining a high-reliability
catalog.

3.4. Individual Transit Check

Much of this part of our pipeline is derived from the
“Marshall” test (Mullally et al. 2016). For clarity we will
briefly describe how this test works. We look at each transit
within the light curve individually. Each transit detected is then
fit to four potential models:

t t

=
= +

= + -
= + - - +

b

13

f t y

f t y S t

f t y S t e

f t y S t S t

Flat

Logistic

1 Logistic exponential

2 2 Double logistic

t

0

0

0

0

( )

( )
( ) ( )
( ) ( )( ) -
( ) ( ) ( ) -/ /

where y0 is a constant offset and τ and β are tunable parameters
(see Figure1 of Mullally et al. 2016 for reference). We also do
not fit an additional GP (as noted in the original Marshall test)
because the light curves have already experienced several GP
fitters. The function S(t) is a logistic function given as

=
+ g -

S t
d

e1
14

t t0
( ) ( )( )
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where t0, γ, and d are all tunable parameters. These functions
are meant to replicate possible FP signals. To gauge the success
of each fit, we calculate the Bayesian information criterion
(BIC) for each function. This value is meant to mimic the
Bayesian evidence of a Gaussian likelihood, and penalizes for
increasing the number of tunable parameters. We also calculate
the BIC for our best fit transit model. If the BIC value for any
of the previously noted functions is 10 less than the transit BIC
( + <BIC 10 BICf t Transit( ) ) and MES/ >N 4Tran (this criter-
ion ensures that the expected single transit signal strength is
large enough to provide a meaningful model fit), we mask that
transit signal. However, the requirement of MES/ >N 4Tran

is ignored for the model with constant y0.
We also consider the number of unmasked points in each

transit. If more than 50% of cadences within the transit duration
are masked, the entire transit is masked. This ensures that a
significant fraction of the transit data is available. Here we treat
all parts of the transit signal equally, but in reality the egress
and ingress are more important for candidacy. We consider this
further in Section 3.10. The current test has the potential to
mask several transits. To see how this affects the signal we
reanalyze the light curve to see whether the transit still has
three observable transits and MES�8.68. If the signal now
fails to meet either of these requirements, it is flagged as an FP.

Looking at the single event statistics (SES) of each transit, we
can determine whether a single transit is dominating the MES. In
an ideal case SES=MES/ NTran . EDI-Vetter will look for
SES values that exceed 80% of the overall MES value. In the
scenario where only three transits exist we would not expect any
transit to exceed ∼60%, thus 80% provides an unlikely natural
occurrence. As performed in Section 3.2.4 of Coughlin et al.
(2016) and Section A.3.5 of Thompson et al. (2018), this test will
help eliminate single transit outliers that pushed the MES over the
TCE limit. It is not robust to chance alignments of multiple transit
outliers as addressed in Section 3.3. If this limit (SES>0.8MES)
is exceeded, the signal is deemed an FP by the pipeline.

One potential issue with this test is that a true planet transit
that falls on a systematic feature could inflate the SES beyond
this threshold, triggering an FP flag. In testing, this was not an
apparent issue, but it is something we will continue to monitor
as we move forward with the other campaigns.

3.5. Even/Odd Transit Test

This classic test will look for cases where the transit primary
and secondary eclipses are folded on top of each other. This
will occur when the secondary eclipse depth is a significant
fraction of the primary one and the orbit is circular so that the
secondary eclipse occurs at a phase of 0.5. We would only
expect such similarity between transit depths for eclipsing
binaries. Thus, when we find overfolded light curves of this
nature, we flag them as FPs.
To perform this test, we separate the phase-foldings into

even and odd transits (i.e., every other transit in one group and
the remainder in the other group). The transits are then refit,
holding P constant. We compare the inferred values of R
(radius ratio) from each group (odd versus even) to look for
statistical differences (Z):

s s
=

-

-
Z

R R
15

R R

even odd

2 2
even odd

( )

where the σ values correspond to the labeled R fit uncertainties.
We select Z>5 for FP flagging.
One notable issue arises when the true period of the signal is

twice the period detected, folding baseline data on top of the
transit signal. This will be flagged as FP despite being a true
planet signal. Cases where this occurs will be identified in
Section 3.12 and rerun at the correct period folding.
One of the main complications of this test are the cases

where one of the transits (usually near the end or beginning of
the campaign) is poorly detrended. If this occurs in a true signal
with very few transits (NTran�5), one of the two groups can
be significantly pulled by this faulty transit and cause this flag
to be falsely triggered. Many of the known high-MES
candidates not found by our pipeline fall victim to this
flagging. This problem can be easily spotted by eye, but
remains difficult to remove automatically.

3.6. Uniqueness Test

This metric identifies cases where the phase-folded light
curve appears to produce several transit-like dips. This type of
noisy light curve is unlikely to reveal a real planet signal, but
rather highlights the systematic issues of the spacecraft.
We base this metric on the “model-shift uniqueness test”

Figure 5. Left: a TCE with a period of 0.5 days, likely caused by the alignment of measurements made near thruster firings. The large in-transit rms (σTran) is an
indicator that the signal is an FP. This TCE was rejected using the outlier variance test. Right: EPIC 211331236.01 with a period of 5.4 days. The in-transit deviations
match well with the out-of-transit fluctuations. Thus, this signal was not removed by our outlier variance test.
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(Mullally et al. 2015; Rowe et al. 2015; Coughlin et al. 2016;
Thompson et al. 2018). Here, we provide a brief explanation of
this test. For a thorough explanation, we refer interested readers
to Coughlin (2017).

The first step in this process is to fold the light curve
according to the period of the signal in question. The light
curve should remain folded on this period for the entirety of
this test. To determine whether a signal is unique to the light
curve, it is first important to mask the detected signal from the
light curve and any possible secondary eclipse. This is done by
masking the largest signal (MES1) and the second largest signal
(MES2) in the light curve, given that the second largest signal is
within 50% of the transit duration (tdur) of the expected
secondary eclipse location. If the signal MES2 is not within the
expected secondary eclipse window, the third largest signal
(with the same tdur) is assigned to MES2 before masking. This
allows the second largest signal to remain in the light curve for
detection as MES3. We can then measure the red noise within
the period-folded data. This is achieved by fitting a transit
model to each flux point with a fixed width of the original
signal duration (tdur). We simplify this process by using a box-
shaped transit, where the best fit depth can be analytically
shown to be the mean of the selected points. This simplification
significantly increases the speed of our processing. If the light
curve has no red noise, these averaged depth values will have a
standard deviation (σRed) of the order of the light curve noise
(σLC); otherwise it will be much larger. We then calculate the
ratio of these two values (FRed):

s s=F . 16Red Red LC ( )

Additionally, we want to determine the strength of the third
largest signal (MES3) within the light curve, and then the
largest flux brightening signal (the largest signal found when
the light curve is inverted: MES4).

For statistical comparison, we consider the threshold in
which a signal is statistically significant under the assumption
of Gaussian noise:

=
´

F
t

P N
2 erfcinv 171

dur

TCE
( )

⎛
⎝⎜

⎞
⎠⎟

where P is the period in which the light curve has been folded,
and NTCE is the number of TCEs expected in the entire
campaign. In an effort to ensure high reliability, we select
NTCE=25,000, or roughly one TCE per light curve. Here
P/tdur represents the number of events in each light curve and
NTCE is the number of light curves considered. For the
statistical significance within a single light curve, we consider
the threshold as follows:

=F
t

P
2 erfcinv . 182

dur ( )⎜ ⎟⎛
⎝

⎞
⎠

We consider a signal viable for further vetting if all the
following inequalities are satisfied:

-
- -
- -





F F
F
F

MES 1
MES MES 2
MES MES 3. 19

1 1 red

2 1 3

2 1 4

( )
( )
( ) ( )

If any of the previous equations is false, the signal is flagged as
an FP (see Figure 19 of Coughlin 2017 for reference). The
inequality threshold values are based on those provided in

Thompson et al. (2018), but have been manually tuned to suit
the needs of this pipeline.
We also consider the significance of the secondary eclipse

detected within the folded light curve. If the phase of
the secondary eclipse falls within 0.5tdur of t0+P/2,
and - - >FMES MES 01 2 2 , the secondary eclipse appears
genuine and warrants further testing in Section 3.7. This
signal will be flagged with a secondary eclipse flag. It is
important to note that this test will only be sensitive to
companions with near-circular orbits, where the secondary
eclipse occurs at or near a phase of 0.5. Future iterations of the
pipeline will consider eccentric orbits. If the secondary eclipse
does not fall at or near a phase of 0.5, the signal is deemed an
FP due to lack of uniqueness if all of the following
inequalities are satisfied:

- >
- - >
- - >

F F
F
F

MES 1
MES MES 0
MES MES 0. 20

2 red 1

2 3 2

2 4 2 ( )

If any of the previous equations is false, the signal will be
further vetted for candidacy. If the secondary eclipse is not
astrophysical, the inequalities in Equation (20) make certain
that the original MES1 signal is still sufficiently unique.

3.7. Check for Secondary Eclipse

Apparent secondary eclipses are often the hallmark of an
eclipsing binary. However, such events can also be seen for
certain transiting hot-Jupiter-like planets. In the previous
section, we discussed the criteria for a secondary eclipse to
be considered statistically significant. If the TCE was flagged
as a secondary eclipse candidate, we consider several metrics
before determining how to classify the signal.
Inspired by the framework of Section A.3.2 in Thompson

et al. (2018), we begin by fitting a transit model to the
secondary eclipse in question. If the depth of the secondary
eclipse in that model is greater than 10% of the depth of the
initial transit, the radius ratio of the secondary eclipse is
statistically significant ( s>R 2 RSE SE), and the initial impact
parameter of the transit b�0.8, then the TCE is flagged as an
FP. The large secondary eclipse and high impact parameter are
indicators that the transit is likely a grazing eclipsing binary. If
the signal fails to meet any of the listed criteria, the TCE
remains labeled as a secondary eclipse candidate and continues
for further vetting. Such cases are likely transiting hot-Jupiters
reflecting a significant amount of light. It is possible that a well
aligned eclipsing binary with a low impact parameter could
potentially slip through this metric, but the occurrence of such
an event would likely produce a large enough transit depth to
trigger the metrics discussed in Section 3.2.

3.8. Ephemeris Wandering

The ephemeris value (t0) found by the grid TCE search
(TERRA) will be very similar to the value determined by the
transit model fitting if the signal is a true planet candidate. In
cases where the two values differ significantly, the signal is
likely very asymmetric and does not fit well with the transit
model. To avoid these contaminants, we flag all signals as FP if
Dt0∣ ∣ between the grid search and the model fitting is greater
than 0.5tdur.
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3.9. Harmonic Test

Sinusoidal stellar variability is a common trigger for TCE
search algorithms. In Section 2.2 we attempted to detrend such
periodicity, but our limits of P<0.5 days for the harmonic
fitter and P>5 days for the GP fitter create a window in which
a sinusoidal signal can sneak in. Furthermore, cases where the
sinusoidal signal is not completely removed can cause TCE
triggering. To eliminate such contamination, we fit several sine
curves to test for such FPs.

When testing the possible harmonic functions, we fit a sine
curve to the data while holding fixed the period and allowing
the phase and amplitude (Asin) to vary. We attempt to fit six
different harmonic periods: P (the TCE period), P/2, 2P, tdur
(the transit duration), 2tdur, and 4tdur. These potential periods
represent the most notorious harmonics found mimicking
a TCE.

When considering how well the sine curves fit the data, it is
important to only consider the Asin value. Any attempt to use
the BIC value, as done in Section 3.4, can cause one to
misclassify hot-Jupiters, which can naturally produce strong
sinusoidal oscillations within the folded light curve. If any of
the tested periods produce s >A 50Asin sin , the signal is labeled
an FP. In cases where the harmonic signal is caused by a hot-
Jupiter, the primary and secondary eclipses will reduce the sine
signal strength below 50σ. Furthermore, a large amplitude in
itself may be an indicator that the oscillations are of stellar
origin. Our second test checks to see whether any of the Asin

values are larger than 90% of the fit transit depth and
s >A 2Asin sin , ensuring the signal is real. If this criterion is

met, the signal is classified as an FP. Large Asin values
correspond to a harmonic that is contributing to a large fraction
of the signal depth and is likely the cause of the TCE.

As mentioned in Section 2.2, part of our preprocessing attempts
to fit harmonic trends in the light curve. To account for the
possibility of artificially introducing a signal that could be detected
as a TCE, we calculate the power (PowTCE) of a Lomb–Scargle
periodogram at the transit period (P), and then search for the
largest signal (Powmax) with a period less than the transit period
but greater than twice the cadence spacing. The goal here is to
determine whether the TCE is some integer multiplier of the initial
harmonic fitter. If > +Pow Pow 0.5max TCE( ) and the Powmax

signal is found with a period less than 0.5 days, the TCE is
deemed an FP.

3.10. Phase Coverage Test

With the significant processing required to detrend the K2 light
curves, on average ∼2% of the data are masked out on any given
light curve due to systematic issues causing flux outliers.
Although the test performed in Section 3.4 will remove transits
that have less than 50% phase coverage, it is still possible for
phase-folded data to contain large gaps in the transit signal. This
occurs when all the masked portions of the light curve line up in
phase space. This is especially common for planets with periods
that are near integer multipliers of the K2 cadence. It is difficult to
properly vet such cases, because the transit appears incomplete

and prone to FP contamination. Thus, we have developed a metric
for flagging TCEs with such gaps.
Chance outlier alignments lack an important trait: they do

not have a pronounced ingress and egress. To capitalize on this
feature, we require more phase coverage during these periods
than during the transit midpoint. The phase-folded gap
allowance (h tmid( )) is as follows:

f =
- - -

t
t t t t

t

round
21mid

mid 0 mid 0

dur
( ) ( ) ( ) ( )

where tmid is the midpoint between the nearest-neighbor
measurements in the phase-folded time series, t0 is the
ephemeris time, tdur is the duration of the fit transit, and tcad
is the cadence of the light curve (nominally 0.0204 days). η(t)
provides an allowance of tcad during ingress and egress and a
value of 2tcad at the ephemeris. h tmid( ) quickly becomes very
large for tmid values beyond tdur (h f = - = t1, 1 10 cad( ) ), but
still requires some baseline coverage immediately before
ingress and after egress. If hD >t tmid mid( ) (where Dtmid is
the temporal spacing between the two measurements that define
tmid) for any value of tmid, the TCE is flagged as an FP. This
metric will flag TCEs with large gaps in the phase-folded
transit signal. As mentioned in Section 2.4.1, the EVEREST
software masks many of the cadences of spacecraft operation,
but the neighboring cadences can occasionally produce outliers
that line up to form TCEs. Such cases will produce gaps in the
phase-folded transit signal and be flagged as an FP by this
metric.
Additionally, to ensure large gaps do not exist in the transit

phase coverage, similar to what was done in Section A.3.7.1 of
Thompson et al. (2018), we implement a requirement of a
minimum 70% in transit phase coverage. Any TCE that
contains phase-folded temporal gaps larger than t0.3 dur will be
flagged as an FP.

3.11. Limits on Period and Transit Duration

As mentioned in Section 2.2, we used a harmonic fitter to
remove stellar noise at periods less than 0.5 days. To avoid
contamination caused by the introduction of this harmonic, we
limit our sample to P�0.5 days. This limit has been enforced
on TERRA in Section 2.3, but such grid search algorithms can
still provide detections beyond this limit by slightly mis-
identifying the true transit period. Furthermore, TCEs found
with periods very near 0.5 days can move below this limit
when implementing the parameter search method of EDI-
Vetter. We strictly enforce this limit by again checking that
P�0.5 days; otherwise the TCE is deemed an FP.
Another common FP is when a stellar oscillation has a short

period (<1 day) falling in the forbidden detrending window
(noted in Section 2.2). In addition to our harmonic test
(Section 2.2), a symptom of a sine-wave TCE is a very long tdur
when compared to the signal period. Thus any TCEs with
tdur/P>0.1 are flagged as FPs. This also ensures that the
planetary parameters remain physical. Any transit with

h f f f= ´ - + -
¥

 
t

t t t16 8 2 ; if 1 t 1,
; else

22mid
cad mid

4
mid

2
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tdur/P>0.1 will be orbiting very near the surface of the star
(apl<3 Rå).

We acknowledge that ultrashort-period planets (Sanchis-
Ojeda et al. 2014; Adams et al. 2016) will certainly be rejected
by the discussed cuts. However, all attempts made to capture
these missed planets introduced a significant number of FPs
into our candidate sample, negating our goal of high reliability.
Again, readers concerned with USP planets should perform
their own fine-tuned searches.

3.12. Period Alias Check

Occasionally the TERRA grid search will find a transit that is
some integer multiple of the true signal period. In such cases, it
is very common that the signal is deemed an FP because of the
significant “secondary eclipse,” or the transit is poorly fit,
causing several other FP flags to be triggered. Alternatively, a
signal with a period less than 0.5 days can be found with some
larger multiple of the true period and can contaminate the
candidate population.

To avoid such cases, we measure the Gaussian likelihood
( c= -log 1

2
2L ) of the transit model with the fit transit period

(P), and compare that with the likelihood of the same model
with four other possible periods: P 2, P/3, 2P, and 3P. We
also scale the ratio of semimajor axis to stellar radius (apl)
accordingly to ensure the transit duration is consistent among
all tested likelihoods. To avoid edge cases where noisy data
could falsely score one of the likelihoods higher, we give the
initially fit period a slight advantage. If any of the alternative
periods produces a likelihood greater than 1.05, the likelihood
of the initially fit transit period, the signal is flagged as a period
alias.

Any signal flagged as a period alias will be refit and revetted
with the corresponding highest likelihood period. This cycle
will occur at most three times (in most cases it only occurred
once), allowing for higher-order integer multipliers to be tested.
Within each cycle, the FP flag will be reset and the vetting
metrics will be reprocessed at the new period. We then take the
vetting as it stands in the final cycle.

3.13. Consistency Score

One cannot help but worry about the edge cases that could
potentially slip through the cracks of our vetting metrics. To
combat such cases, we implement a limit on consistency
score. To calculate the consistency score of our vetted
candidates, we run each of them through the EDI-Vetter fit
and vetting pipeline 20 times. Given the statistical nature of
the MCMC parameter estimation (and the limited number of
burn-in and test steps), each run will process the light curve
slightly differently, potentially pushing the candidate into
the FP bin. We only label a TCE as a candidate if it comes
out of the vetting metric as an FP 25% of the time or less
(consistency score�0.75). This metric is comparable to
the “disposition score” made available for Kepler DR25
(Thompson et al. 2018).

4. CDPP

In Christiansen et al. (2012) the combined differential
photometric precision (CDPP) metric was defined to create a
quantitative measure of the expected stellar variability and
systematic noise. In other words, the CDPP tells us how strong
a signal must be in order to overcome the noise present in the

light curve. Having such a metric is essential to be able to
analytically determine the expected MES value of a given
transit (MES ∝ transit depth/CDPP). Here, we investigate the
following transit durations: 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7, 8,
9, 10 hr.
To calculate this value, we consider the processed light

curve for each target (after EVEREST, both GP fitters, and the
harmonic fitter have detrended the light curve). We then inject
a transit with depth equal to the standard deviation of the
baseline light curve and a period that will reflect Ntr=9
transits within the light curve (P≈8.31 days). For clarity,
this postprocessing injection is independent of the preproces-
sing signal injections considered in Section 5. The injections
discussed in the current section are only intended to measure
the residual noise within each light curve. Using a short
period with several transits allows us to quickly cover a larger
portion of the light-curve parameter space. It also allows us to
remain robust to data gaps and systematic within the light
curve. If one of the transits were to fall on a data gap, it should
only decrease the measure of MES by 6% for that run.
Repeated iterations of this simulation will minimize this
offset. The transit duration is tuned via the apl parameter to
match the CDPP duration of interest. Then the light curve is
examined with TERRA, at a period range corresponding to the
injected signal, and the recovered MES value is used to
measure the CDPP:

= ´ NCDPP depth MES 23tr( ) ( )/

where depth and CDPP are given in units of ppm. Resetting the
light curve after each run, these injections are made 50 times
with a randomly selected ephemeris at each draw, ensuring
sufficient coverage of the time series. To summarize, nine
transits are injected into each light curve and this is repeated
50 times, providing 450 injections in each light curve. The
recorded CDPP value is then derived using the arithmetic mean
of these 50 CDPP measurements. Using nine transits, as done
here, allows us to statistically cover the entire phase space of the
data for the CDPP duration of 4 hr with only 50 samples,
dramatically speeding up our calculations. This process is then
repeated for each of the 12 CDPP durations. A machine-readable

Table 1
Description of the CDPP and Measurements of Window Function for Each

Stellar Target

Column Format Units Explanation

1 I9 L EPIC identifier
2 F11.3 ppm CDPP rms value for transit of 1.0 hr
3 F11.3 ppm CDPP rms value for transit of 1.5 hr
4 F11.3 ppm CDPP rms value for transit of 2.0 hr
5 F11.3 ppm CDPP rms value for transit of 2.5 hr
6 F11.3 ppm CDPP rms value for transit of 3.0 hr
7 F11.3 ppm CDPP rms value for transit of 4.0 hr
8 F11.3 ppm CDPP rms value for transit of 5.0 hr
9 F11.3 ppm CDPP rms value for transit of 6.0 hr
10 F11.3 ppm CDPP rms value for transit of 7.0 hr
11 F11.3 ppm CDPP rms value for transit of 8.0 hr
12 F11.3 ppm CDPP rms value for transit of 9.0 hr
13 F11.3 ppm CDPP rms value for transit of 10.0 hr

(This table is available in its entirety in machine-readable form.)
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version of our table of CDPP values is available. Table 1 shows
an example of the contents.

5. Injections

To test the likelihood of a signal being recovered, we inject
artificial transit signals into the raw flux data. This is similar to
the light-curve-level injections done by Christiansen et al.
(2013, 2015) and Burke & Catanzarite (2017b). By doing so,
we can then run the flux measurements through the pipeline
and count the number of recovered signals. This allows us to
measure the detection efficiency of our pipeline.

Our injections utilize the batman Python package to create
our artificial transits (Kreidberg 2015). When injecting signals,
it is important to maximize the number of signals near the
MES threshold; this ensures good coverage of the detection
efficiency curve (Christiansen et al. 2013). For each available
light curve, we inject a transit signal that has a period uniformly
drawn from a range of [0.5, 38] days and a value of Rpl/Rå

drawn from a log-uniform distribution. The log-uniform draw
for R Rpl is meant to emphasize smaller planets where the
signal is near the detection threshold. When injecting signals at
the light-curve level, it is important to be cautious about
contaminating flux from nearby sources. If the neighboring
source contributes a significant amount of flux to the target, the
injections can be biased and the pipeline completeness will be
artificially improved (planets with smaller radius will appear
easier to detect than what reality dictates). To combat this issue,
we use the metrics described in Section 3.2 to measure the
amount of flux contamination. Instead of sampling from
a range [0.01, 0.1] in log space for radius, we sample
from F F F F0.01 max , , 0.1 max ,Gaia Gaia

Tot
2MASS
Tot Tot

2MASS
Tot[ ( ) ( ) ]

for each target. This ensures that we do not bias our injection
sample. In most cases, the correction for flux contamination is
negligible, so the original [0.01, 0.1] sampling space is
recovered.

It is important that these signals meet all of the vetting
requirements to ensure that we are not injecting planets that
will certainly be rejected regardless of the detection capabilities
of the pipeline. The most basic cut we make is on signals with
fewer than three transits. We uniformly draw the ephemeris (t0)
from a range that will certainly produce three transits within the
span of the data. This is uniform with a range of [0, P] for
short-period injections (<25 days) and a range of [0,
tspan−2P] for longer-period injections. Additionally, it is
important that the signals do not trigger an FP flag for an
eclipsing binary. In selecting the impact parameter (b) for the
artificial planet, we uniformly draw from [0, 1], but such cases
where b and Rpl/Rå are large will result in an FP flag. We test
our randomly drawn values against Equation (11), and both
values are redrawn if they exceed this limit. This cycle
continues until the b and Rpl/Rå values meet this criterion.
Drawing impact parameters in this fashion leads to slight bias
in our measure of completeness, as we force the injections to
meet one of our detection metrics. However, this effect can be
easily accounted for as discussed in Section 9.1. For apl and
the limb darkening parameters (u1 and u2), we calculate the
expected values using the ATLAS model coefficients for
the Kepler bandpasses tabulated by Claret & Bloemen (2011)
and the photometrically derived stellar parameters available on
ExoFOP (see footnote 14) (Huber et al. 2016). If such values
are not available for the target in question we assume solar
values. This assumption is made for less than 1% of the targets

and will only impact the inferred limb darkening parameters,
avoiding the introduction of serious biases to our targets. The
updated stellar parameters discussed in Section 8.1 were not
available when this processing occurred. In testing, we found
this use of older stellar parameters had no effect on our ability
to recover signals. All final inferred planetary parameters were
calculated using the most up-to-date stellar values (Hardegree-
Ullman et al. 2020).
The injected raw flux data are then processed through our

pipeline (EVEREST, TERRA, and EDI-Vetter). We con-
sider the recovery of a signal as a TCE and as a vetted
candidate. Looking at this recovery fraction in terms of period
and radius (Figure 6), we see that the vetting metrics in EDI-
Vetter do not induce a significant loss in the recovery
fraction (∼10%; which is comparable to that seen by the
Robovetter (Thompson et al. 2018) for Kepler as seen in
Figure 7). A large portion of the vetting loss comes from edge
cases (P∼0.5 days, P∼38 days, and ~R R 0.10pl ), where
statistical fluctuations can easily push the parameters beyond
the threshold of our vetting limits. In general, we find that the
pipeline has the most difficulty recovering transits with long
periods and small Rpl/Rå, and the pipeline is most adept at
recovering signals with short periods and large Rpl/Rå. This
expected trend indicates that the detection efficiency of our
pipeline is a function of MES.
It is essential that we understand the noise (CDPP) within

each light curve so that we can analytically determine the
expected MES value for each injection. This will allow us to
accurately calculate the recovery fraction throughout the MES
range in question. We use the following equation to determine
this parameter:

= ´ ´ NMES MES
depth

CDPP
24

t
Cor tr

dur

( )

where CDPPtdur is the CDPP value corresponding to the
injected transit duration and MESCor is the correction factor
that matched the analytic function to the MES being detected
by the pipeline (MESDet). Since the CDPP values derived in
Section 4 are discrete, CDPPtdur is an interpolation between
the nearest values of duration. Cases where <t 1 hrdur or

>t 10 hrdur are not extrapolated, but rather assigned the
nearest CDPP value. To calculate MESCor we look at the
most well-behaved injections ( <MES 200Det and b<0.1).
These restrictions limit the amount of MES smearing
(Burke & Catanzarite 2017b) that our injections will
experience. This type of smearing occurs because the detected
MES value is drawn from a distribution of values centered
around the theoretical MES value. Signals with a larger MES
or high impact parameter are prone to wider deviations from
the theoretical MES value, making it more difficult to estimate
the theoretical values. To minimize the potential bias that this
smearing effect can impose, we take the median value of
MES MESDet , which we find to be 0.880, as our MESCor
value. This indicates that our analytic function will over-
estimate the MES value by 12% without this correction factor.
This factor is much more significant than the one found for
Kepler (4.4%; Christiansen 2017), but is not surprising
because the K2 data are more unruly. It is important to
remember that even with this correction in place, the analytic
MES value may differ from MESDet on any given signal;
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the analytic MES value represents an average over the entirety
of noise within the light curve, while MESDet is a discrete
measurement.

As done in previous completeness measurements, we
consider the separation of M dwarfs from FGK stars. Typically
M dwarfs have more correlated stellar noise and produce, on
average, a decreased completeness function. We begin this
separation with our initial list, which contains 25,040 stellar
targets. Removing targets with apertures that are too large or
have incomplete data sets, we retain 24,949 targets. We then
use the stellar parameters provided by Hardegree-Ullman et al.

(2020) to establish the spectral type classifications and glog
values for our targets. To remove giants from our sample we
eliminate targets with <glog 4 (17,045 targets remain).
We also remove targets that exhibit noisy light curves
( >CDPP 12008 hr ppm). We select this limit of CDPP because
it roughly corresponds to 5σ from the median CDPP value of
all targets. This cut leaves us with 15,698 targets. We now
separate the sample into FGK dwarfs using the spectral
classification provided in Hardegree-Ullman et al. (13,046
targets) and M dwarfs (2652 targets). We initially consider
these two populations separately in our completeness calcul-
ation. However, we find no statistically significant difference in
the detection efficiency between the two spectral groups. This
is possibly caused by the small sample of M dwarfs available in
Campaign 5, and we will continue to test this potential
separation of stellar spectral type.
Looking at bins of width 1 MES, we calculate the fraction of

recovered injections as a function of MES. We use the analytic
MES values found using Equation (24) for both recovered and
lost signals to ensure consistency. We also look to see what
fraction is recovered once the signals have been processed through
EDI-Vetter (Figure 8). To account for inner bin fluctuations,
and provide a more precise measure of recovery, we use the
kernel density estimator (KDE) for fitting. To calculate the KDE,
we use a uniform kernel with a width of 1 MES. This method
essentially recalculates the recovery rate at each shift of 0.05
MES. The uncertainties are calculated assuming binomial
statistics, because the options are binary (the signal is either
recovered or not recovered). The measured KDE values are then
used to fit a logistic function ( f (x)) to the data:

=
+ - -

f x
a

e1
25

k x l
( ) ( )( )

where a, k, and l are all tunable parameters. In testing, we tried
several functions, including the commonly used Gamma function
(Christiansen et al. 2015; Christiansen 2017), but found that the
logistic function provides the best fit with the detection efficiency

Figure 6. The recovery fraction of injected planets as a function of period and radius. Each bin is sampled uniformly (∼250 injections each). The left plot shows the
recovery fraction for injected planets detected as a TCE. The right plot shows the recovery fraction for injections that were detected as a TCE and also labeled as a
candidate by EDI-Vetter. The anomaly seen at P=20 days and Rpl/Rå=0.05 appears to be statistical fluctuation where an abnormally large fraction of targets
with high CDPP were selected for injection. We have thoroughly checked our pipeline and find no reason why a signal in this specific range would have a unique
recovery fraction.

Figure 7. A comparison of the completeness functions for Kepler and K2. The
light peach and peach lines represent the Gamma functions for the Kepler
DR25 TCE (Christiansen 2017) and the Robovetter (Coughlin 2017)
completeness respectively. The light blue and blue lines represent the logistic
functions for the K2 TCE and EDI-Vetter completeness functions derived
in this study. All functions have been fit using injections across all ranges for
which periods are available.
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of our pipeline. To fit the data we maximize the binomial
log-likelihood function ( L xlog found, lost( ∣ )):

µ
´ + ´ -
L x

f x f x
log found, lost found

log lost log 1 26
( ∣ ) ( )

( ( )) ( ) ( ( )) ( )

where “found” represents the number of recovered injections in
a given KDE measurement and “lost” represents the number of
lost signals in a given KDE measurement. The results of our
fitting procedure are provided in Table 2.

It is apparent that the K2 pipeline is far less efficient than the
previous Kepler study. Comparing the unvetted candidates
(70% efficient at high MES) with the results of Christiansen
(2017) (94% efficient at high MES), we can see a 24% drop in
the recovery rate from Kepler to K2 in Figure 7. This is
significant, but expected because K2 data have far more
systematic noise issues, causing transit detection to be more
difficult. However, understanding this deficiency allows us to
account for the loss when making measurements of occurrence.

We note that a more thorough test would be to inject the
transits at the pixel level as done by Christiansen (2017) for the
Kepler pipeline, but this process is far more computationally
expensive and only provided a small correction (an increase of
2%) to the Kepler detection efficiency. We will consider such
undertakings in future studies of the K2 completeness.

6. Reliability

To assess the reliability of the catalog against instrumental
FPs, we flip the processed light curves upside-down and run
them through TERRA and EDI-Vetter. Since the light-curve
inversion ensures that no true astrophysical transit exists within
our data set, counting up the number of false signals that make
it through the vetting process gives us a handle on the
reliability of our candidates. Our pipeline finds 6145 TCEs in
the inverted light curves (compared to 5452 found from the
original processing), and only four (0.07%) of these make it
through the EDI-Vetter testing.

To determine how reliable our pipeline is, we use the metrics
laid out in Equations (3)–(8) of Thompson et al. (2018). First,
we must calculate how efficiently FPs are being classified by

the pipeline (E), using the inverted light-curve results:

»E
N

T
27FP

FP

inv

inv

( )

where TFPinv is the total number of TCEs found in the inverted
light curves and NFPinv is the number of TCEs found that were
vetted and accurately assigned FP status. Since our test of
inverted light curves only produced four falsely identified
candidates, small-number statistics need to be considered. To
account for these small-number statistics, we add one
additional false alarm signal to each measure of E so that it
becomes

»
+
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This addition is motivated by the expectation value for λ given
N measurements from a Poisson distribution using Bayes’
theorem:
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where Gamma represents a Gamma distribution. However,
this means we are likely underestimating the efficiency

Figure 8. Injected signal MES as a function of the recovery fraction. The left plot shows the recovery function for planets detected as a TCE. The right plot shows the
recovery function for planets detected as a TCE and also deemed a candidate by EDI-Vetter. The blue and red vertical lines represent the kernel density estimator
(KDE) using a uniform kernel with a width of 1 MES. The height of these lines represents the binomial uncertainty of each measurement. The dark blue and red lines
illustrate the best fit logistic function given by the parameters in Table 2. We choose to separate the data at large periods to account for the decreased signal recovery
from injections with only a few transits. All injections with periods <18.75 days will have at most three transits.

Table 2
The Logistic Function Parameters that Best Model the MES Recovery Fraction

a k l

Unvetted
P�18.75 days 0.75023 0.7769 8.7199
P>18.75 days 0.6680 0.7434 9.2445
Vetted
P�18.75 days 0.6499 0.6813 9.7288
P>18.75 days 0.5394 0.6572 10.2787

Note. These values were obtained by maximizing the binomial likelihood
function for the KDE measurements provided in Figure 8.

15

The Astronomical Journal, 159:154 (22pp), 2020 April Zink et al.



of our FP identification. Thus, our reliability values should be
considered a lower limit that will likely increase as we
increase our FP count with data from other K2 Campaigns.
Overall, our pipeline finds =N 6141FPinv and =T 6145FPinv ;
using Equation (28) our overall pipeline E is 0.9992. In
Figure 9 we report the E values calculated for each region of
parameter space.

Using the number of planet candidates (NPC) and the number
TCEs given FP status (NFP) in the non-inverted light curves, we
can determine the reliability fraction (R) of our data set:

= -
-

R
N

N

E

E
1

1
. 30FP

PC
( )⎜ ⎟⎛

⎝
⎞
⎠

We provide a coarse binning of these reliability metrics in
Figure 9. Overall our pipeline finds a reliability fraction of
0.942, indicating that we should only expect ≈4 FPs to be
contaminating our candidate catalog. Again, small-number
statistics are largely at play here, and it is very possible that our
true reliability is even greater than the values we have reported.
This is slightly less reliable than the Kepler pipeline, which
finds an overall reliability of 0.97 for its all-stars measure
(Thompson et al. 2018). However, a more appropriate
comparison would consider the parameter space where a
similar number of transits occur (periods >10 days for Kepler).
Using Figure8 of Thompson et al. (2018) and knowing that
18,660 TCEs were detected with periods beyond 10 days, we
estimate this reliability to be roughly 0.95 for the Kepler data
set in a comparable parameter space. While this value is still
higher than the measurement presented by our pipeline, we
remind the reader that a conservative estimate of reliability has
been provided, which will likely improve as we increase our
sample.

Testing reliability by inverting the light curves assumes that
the FPs are symmetric and will persist upon inversion. One
method of testing this assumption is by examining the period
distribution of the TCEs. In Figure 10 we compare the TCE
distribution to the inverted TCE distribution. Overall, the

distributions provide a reasonable match. We find some
underrepresentation in the inverted TCEs near the Resat period
(2 days) and the third thruster harmonic (0.75 days), indicating
that these systematics are slightly asymmetric. Additionally, the
long-period TCEs are slightly overrepresented in the inverted
light curves. We acknowledge that these mismatches could
modify our measure of reliability. Additional light curves from
other campaigns will help to improve this measure, and other
methods such as data scrambling (see Section 2.3.2 of
Thompson et al. 2018) may be considered in future studies.

7. Window Function

The window function gives the probability (prob) that a
certain period (P) will meet the requirement of a minimum of
three transits for TCE consideration within the span (tspan) of
the available light curve (von Braun et al. 2009; Ballard et al.
2010). This metric is an essential ingredient for measurements
of occurrence (Burke et al. 2015; Bryson et al. 2019; Zink
et al. 2019a), where all aspects of detection probability must be
considered. If the data are seamless, without any masking, the
equation can be found analytically:
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where tspan for Campaign 5 is nominally 74.82 days. However,
this problem becomes more difficult to solve when considering
masked cadences within each light curve. While some cadences
are masked globally (see Section 2.4.1), often the masking is
done on an individual per-target basis, in an attempt to remove
outliers. To ensure accuracy, we directly measure this
probability for each target light curve, similarly to Burke &
Catanzarite (2017a) for Kepler DR25.
Looking at each light curve, we used the corresponding

masked cadences (those that were masked prior to the TCE
search process) to create the gaps in our light curve. Starting at
18 days, we take steps of 0.1 days and test the probability of
each period yielding three transits. It is important here to
consider how the transit duration will affect the number of
available cadences in each transit. Longer transits will have a

Figure 9. A display of the reliability of our pipeline. The NFP values
correspond to the number of FPs identified in each bin. The NPC values indicate
the number of planet candidates found in each bin. The R value is the expected
reliability given the number of candidates and FPs using Equation (30). The
bins have been divided at the midpoint of the ranges considered in this search.
The Rpl/Rå cut is at the midpoint in log space.

Figure 10. A plot of the TCE distribution and the inverted light-curve TCE
distribution.
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higher likelihood of avoiding serious masking. To marginalize
over this parameter, we sample from our empirical sample of
planet candidates with replacement. This sampling is biased
toward planets with longer transits (which are easier to detect).
To account for this, we do not sample uniformly, but rather
with a t1 dur probability (as MES scales with tdur ). This
gives more weight to shorter transits. This weighted sampling
produces a median tdur of 2.20 hr with a minimum of 1.05 hr
and a maximum of 8.38 hr. A more thorough metric would be
to create a 2D grid, stepping through both period and tdur
values, but we found little variation when changing the transit
duration, and have settled on a simple measure using only the
planet period. At each step of period, we sample 160 times
(roughly 2% accuracy for a binomial distribution), selecting a
new tdur and ephemeris (t0) at each iteration. We then count up
the number of times three or more transits occurred within the
span of the data set. We only consider a transit as observed if at
least 50% of the transit was unmasked. We then record the
probability of three transits occurring at this period and move
on to the next step in period space. Figure 11 shows all of the
measured window functions. It is apparent that the masking is
spread uniformly though the light curves, minimizing the
deviation from the analytic Equation (31). If significant gaps
exist in the light curves, the measurements produce large
deviations from the functional form. To a first-order approx-
imation, the analytic equation provides a good measure of the
window function. For a more detailed calculation, we provide
the measured window function for each target as the data
behind Figure 11.

8. Candidates

Using our described pipeline, we detected 75 planet candidates
in the 15,698 C5 light curves searched. The parameter estimations

made by the pipeline are performed with a focus on computational
speed. With our final list of 75 candidates, we can afford to let our
MCMC sampler more thoroughly explore the likelihood surface.
We use emcee (Foreman-Mackey et al. 2013) with 100 semi-
independent walkers, a burn-in of 500 steps, and a parameter
space coverage of 500 steps (50,000 test samples). In this fit we
allow period (P), impact parameter (b), ephemeris (t0; with a zero
offset of 2,454,833 days), radius ratio ( R Rpl ), and semimajor
axis (a) to vary at each iteration. We assume circular orbits for all
of our planets and use the limb darkening parameters derived from
the existing stellar parameters (we discuss these non-variable
transit parameters in Section 5). Table 3 shows an example of our
results. For each candidate, we also make a snapshot of each
transit, which includes the full light curve, the folded transit, and
the residuals when the transit model is removed. We provide an
example of this snapshot for planet candidate EPIC 211816003.01
in Figure 12. We provide our full list of candidate snapshots on
ExoFOP (see footnote 14).
As mentioned in Section 5, possible flux contamination can

cause an underestimation of the transit depth. We use the
parameters described in Equation (11) to correct for detected
contamination. All R Rpl parameters are multiplied by the flux

contamination factor F Fmax ,Gaia
Tot

2MASS
Tot( ) , increasing the ratio

accordingly. We note that this factor only accounts for flux
contamination detected by either Gaia or 2MASS. It is likely
that other transit dilution exists from bound binary companions
(Ciardi et al. 2017; Furlan et al. 2017; Matson et al. 2018).
High-resolution follow-up is essential to rule out such cases for
our candidate list. Additionally, signal processing has the
potential to artificially decrease the transit depth. We discuss
this issue in greater detail in Section 8.2. We note here that
our listed candidates do not reflect any type of systematic
correction; we leave such a procedure to be carried out at the
reader’s discretion.
Within our candidate sample we find seven systems with

more than one detected planet. System multiplicity is often a
good indicator that the planets are real and not FPs (Lissauer
et al. 2014), thus we focus our discussion on these candidates.
One target, EPIC 211428897, contains four planet candidates.
Three of the candidates were previously noted (Dressing et al.
2017; Petigura et al. 2018). Alongside Kruse et al. (2019), we
find an additional candidate at a period of 6.265 days. We also
verify the claim of Kruse et al. (2019) for two new multi-planet
systems: EPIC 211413752 and EPIC 212072539 both had a
single known candidate (Petigura et al. 2018), but we were able
to extract additional planets in both of these systems, increasing
the number of known multi-planet systems. In Section 8.1 we
briefly discuss the how our multi-planet candidates are
distributed among stellar spectral type.
We suspect that several of the single-planet systems likely

have additional planets that either do not transit or were not
detected because of the issues regarding detection order pointed
out by Zink et al. (2019a) for Kepler. Many of these same
detection features exist in this pipeline, as discussed in
Section 2.3. An example of this is EPIC 212164470 (Barros
et al. 2016; Pope et al. 2016; Mayo et al. 2018; Petigura et al.
2018), where we only recovered the transit with a period of
7.81 days and did not recover the smaller MES signal at 1.74
days (Mayo et al. 2018). In later iterations of this pipeline, we
will test the detection efficiency of multiplicity by injection of
several planets into each light curve, allowing us to directly

Figure 11. The measured window function for all targets in Campaign 5. The
white dotted line represents the analytic function (Equation (31)) expected for
this campaign, assuming tspan=74.84 days. We see that a large fraction of the
targets appear to exceed the functional probability, which represents the best-
case detection scenario. This is due to the increased tspan for a limited number
of targets, but more importantly, to statistical fluctuations in our Monte Carlo
simulation. The increased dispersion seen near prob=0.5 is the signature of a
binomial distribution, caused by statistical fluctuations. The data behind this
figure are available in machine-readable format.

(The data used to create this figure are available.)
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measure the role that detection order plays in transit recovery.
However, such a task is beyond the scope of this paper.

One reason we lose multiple planet signals is the limited
range of our period search. We limit our pipeline to a range of
0.5–38 days. Previous surveys have found two systems that
have multiple transiting planets with periods less than 0.5 days
(EPIC 211305568, Dressing et al. 2017; EPIC 211562654,
Mayo et al. 2018). Upon visual inspection of the light curve, it
appears that these candidates were found with our TCE search
but then rejected by our vetting requirement of P � 0.5 days.
Weakening this vetting requirement may yield more planets,
but we found in practice that it will dilute the purity of our
sample (Section 2.3). We note that a large fraction of the targets
in Campaign 5 are also available in either Campaign 16 or 18.
By stitching the data from multiple campaigns together, the
available data span can be extended to potentially find periods
beyond our 38 day limit. An example of this is EPIC
211611158, which has a known planet at a period of 52.71
days (Mayo et al. 2018). It should be noted that this planet was
not found by stitching, but rather by relaxing the requirement of
three transits. Currently, there has been no effort to combine
overlapping campaigns in the manner discussed. We hope to
develop the ability to stitch together campaigns in future
iterations of this pipeline.

One system of known planets was completely lost by our
pipeline, EPIC 212157262. This system was detected and also
confirmed by Mayo et al. (2018), who used the K2SFF
(Vanderburg & Johnson 2014) processed light curves. Some of
the planets in this system produce signals near the detection
threshold and were not detected in our pipeline TCE search.
Using different detrending algorithms can yield slightly
different results, which may help push some signals above
this threshold while moving others below it. Using all the
different detrending algorithms simultaneously can help
minimize such loss (Kostov et al. 2019), but requires a serious
computational cost to create the completeness and reliability
metrics available here. Thus, we have only used the EVEREST
detrending algorithm, and we accept the potential planet loss.
Additionally, two of the planets (K2-187 d, e; Mayo et al.
2018) have strong signals and should not be near the detection
threshold. In fact, these two planets were detected in our
injection simulation. This loss is caused by the indeterministic
nature of the EVEREST software, meaning that the same flux
data can produce two different processed light curves on
different iterations. One way to combat this problem would be
to process all of the light curves twice and take the case with
the lowest CDPP, but such a task would significantly increase
the amount of computational time required and is not done
here. We run each light curve through EVEREST twice; in
doing so we acknowledge that individual injected light curves
may produce better or worse CDPP than our nominal
observational light curves. However, when considering the
overall injection population this effect should cancel out. Such
issues are folded into our completeness measure in Section 5.
Future iterations of our pipeline will attempt to minimize this
effect by forcing EVEREST to abide by a fixed seed.
Our search pipeline is able to identify nine previously

unknown candidates (see Table 3). These new candidates are
mostly planets with a small radius (R< 3 R⊕) that were not
detected by previous searches, which used higher MES thresh-
olds. One of these candidates extends the multiplicity of known
systems (EPIC 211562654). Almost all of the new candidates
have Kepler band magnitudes <13, with the exceptions being
EPIC 211918985.01 and EPIC 211942755.01, which are 16.4
and 14.1 mag respectively. The brightness of these new
candidates makes them excellent targets for follow-up validation.
One candidate (EPIC 211958340.01) appears to be suspi-

ciously large for a planet, highlighting the limitations of our
stellar agnostic vetting metric (Equation (11)). This candidate’s
host star has a relatively large radius (1.44 R☉), where

Table 3
An Example of the Planet Candidate Table for Campaign 5 Available for Download in Machine-readable Format

Candidate P R/Rå R t0 b tdur ...
(days) (R⊕) (BJD) (hr) ...

211562654.04 2.15290±0.00015 0.01151±0.00062 1.23±0.11 2307.4643±0.0035 0.47±0.14 2.03±0.21
211711685.01 15.4624±0.0023 0.01273±0.00050 1.28±0.06 2310.8848±0.0054 0.47±0.17 3.94±0.55
211918985.01 9.4892±0.0040 0.0390±0.0018 4.40±4.35 2316.0782±0.0078 0.26±0.19 8.38±1.06
211942755.01 19.7288±0.0034 0.0285±0.0013 2.22±0.13 2322.8335±0.0038 0.688±0.056 2.70±0.21
211953244.01 29.7236±0.0051 0.01547±0.00097 1.44±0.10 2307.3432±0.0056 0.67±0.18 4.07±0.90
211958340.01 1.465460±.000028 0.2693±0.0074 42.49±1.72 2307.17786±0.00082 0.468±0.058 3.23±0.19
212020330.01 1.65348±0.00039 0.01430±0.00059 1.87±0.14 2307.8556±0.0051 0.78±0.12 2.69±1.20
212119244.01 1.07692±0.00023 0.00772±0.00045 1.64±1.62 2307.1496±0.0055 0.41±0.25 2.02±0.47

Note. Listed are the new planet candidates detected in this paper.

(This table is available in its entirety in machine-readable form.)

Figure 12. An example of a fully vetted planet candidate. The gray points
represent the processed flux measurements and the navy points show the
binned average. Here we choose a bin width that ensures five bins exist within
the transit duration. The orange line represents the best fit transit model.
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eclipsing binaries have the potential to produce small dips in
the light curve. We suggest that a study of occurrence imposes
an upper limit on radius to avoid these potential astrophysical
FPs. Similar contaminants can be found in the Kepler pipeline
candidate list.

Overall, our pipeline detected 75 planet candidates. Compar-
ing these to known candidates from Kruse et al. (2019), who
manually vetted transits signals, we recover 51% of the known
planet candidates within our search limits on period and radius
ratio. This manually vetted catalog contains the largest yield of
K2 candidates to date and also used the EVEREST software to
remove spacecraft systematics, thus we use Kruse et al. (2019)
for comparison in Figure 13. It is important to remember that
while Kruse et al. (2019) may provide a more complete list of
the candidates from Campaign 5, our catalog of candidates has
been uniformly vetted, eliminating potential confirmation
biases. Comparing to the systems of multiple planets, where
FPs are less likely, we recover 60% of the known multi-planet
system candidates. An alternative comparison can be made for
Petigura et al. (2018), who also used TERRA to search for
transit signals in Campaign 5 of K2. We recover 70% of the
planets in the manually vetted catalog of Petigura et al. (2018)
that fall within our search limits on period and radius ratio.
Two other large transit searches have been performed on
Campaign 5, by Dressing et al. (2017) and Pope et al. (2016).
We find that our candidates list overlaps with 51% of each of
these previous studies within our search limits on period and
radius ratio.

There are several reasons why we fail to recover 100% of the
known planet candidates. As mentioned previously, using
different detrending algorithms will yield different results and
cause us to lose some planets that a different algorithm would
otherwise allow us to detect; 37% of the lost planets were never
detected as a TCE by our pipeline. Additionally, our vetting

metrics are harsher than some studies, which take an “innocent
until proven guilty” philosophy toward planet candidacy. We
aim for reliability, so we are willing to remove real signals at
the benefit of ensuring fewer FPs. The eclipsing binary metric
(Equation (11)) of our vetting removes many of the potential
candidates found by other studies, accounting for 17% of the
lost planets. The difference in even and odd transit depths may
cause a rejection when one of the transits is poorly detrended
(Section 3.5), leading 13% of the rejections of known planet
candidates. The outlier metric (Section 3.3), meant to remove
signals dominated by the chance alignment of several outliers,
can misclassify noisy transit signals, removing 13% of the lost
planets. The remaining 20% are lost due to single triggers of
various other metrics in EDI-Vetter.

8.1. Stellar Parameters

The measurements of planet radius available in Table 3
were calculated using the values of stellar radius given by
Hardegree-Ullman et al. (2020). These parameters were
inferred using data from photometric g, r, J, H, K, Kepler,
and Gaia bands in combination with the Large Sky Area Multi-
Object Fibre Spectroscopic Telescope (LAMOST; Su &
Cui 2004) spectra. Using the well defined parameters (spectral
type, Teff, glog , [Fe/H]) available from the LAMOST data, a
random forest algorithm (Pedregosa et al. 2011) was used to
assign these parameters to each of the K2 targets based on the
photometry for targets without spectroscopic measurements.
Bolometric luminosities were computed using K-band magni-
tudes and Gaia parallaxes, from which stellar radii were
calculated using the Stefan–Boltzmann law. In Table 3 we
provide the transit parameters in such a way that stellar and
planet parameters can be updated as new information becomes
available. Using this updated stellar classification, our list of
candidates includes 58 planets around FGK stars and 17 that
are hosted by M-dwarf stars. We find eight planets in multi-
planet systems around M dwarfs and nine in multi-planet
systems around FGK dwarfs. This indicates that nearly 50% of
the M-dwarf candidates are part of a system of detectable
planets, which is consistent with the occurrence rate of compact
multiple planets of 44% from Hardegree-Ullman et al. (2019).
This could be due to the fact that smaller planets are more
easily detected around M dwarfs, increasing the multiplicity of
detectable planets. With such a small sample (75 candidates) it
remains difficult to make strong claims about the population
parameters of the planets of M dwarfs versus FGK dwarfs, but
overall they both follow similar distributions of period and
radius. A more thorough investigation of population parameters
will be left for a future study.

8.2. Planet Radius

The K2 data set must undergo significant processing
(Section 2) before the transit may be fit. This extensive
manipulation may lead one to question the accuracy of the
extracted parameters. The feature that experiences the largest
risk of modification is the transit depth. The EVEREST
software, the GP detrenders, and the harmonic fitter all have
the potential to remove some of the transit depth. Fortunately,
injecting signals at the light-curve level (as done in Section 5)
affords us the opportunity to measure the transit depth before
and after processing.

Figure 13. A plot of the candidates resolved by our pipeline. The dots (EDI-
Vetter) correspond to the candidates detected, with a color scaling to show
the consistency score of each candidate (Section 3.13). The ⨯ symbols represent
the candidates not found by our pipeline but noted by Kruse et al. (2019). The
histograms show the density of the found planets for both period and radius by
our pipeline in blue and the entire Campaign 5 catalog of Kruse et al. (2019) in
orange.
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We focus on the planet radius, because this parameter has the
largest impact on the transit depth. In Figure 14 we present the
ratio of expected radius and recovered radius after processing.
We find an expected offset of 2.3% for the planet radius. This
means that, on average, our pipeline will underestimate the
planet radius by 2.3%. In comparison, the Kepler pipeline
considered the offset in measured MES and detected MES
(0.4%); transforming this metric to radius, the expected offset
for Kepler is −0.19% for the recovered planets (Christiansen
et al. 2013). Unsurprisingly, the K2 pipeline is far more prone
to reduction in transit depth. However, both of these offsets
(Kepler and K2) are smaller than the average uncertainty in
planet radius (∼10%; Berger et al. 2018). Knowing that this
offset falls within the normal uncertainty in radius, Figure 14
shows that the mode of this offset distribution is located at 1;
we do not apply this correction to our candidate parameters.
We leave such a procedure to be carried out at the reader’s
discretion. However, we do incorporate this potential offset
into our measure of radius uncertainty. To account for the
uncertainty expected by the radius offset (σOff), we use the
following operation:

s = ´ R0.023 32Off ( )

where R is our best estimation of the planet radius.
We also investigated the possible difference in this ratio

distribution when separating long-period injections (>10 days)
from short-period injections (<10 days). We expect that planets
with more available transits might be less prone to this type of
depth reduction, but we find no significant difference between
these two distributions. Therefore, we only focus on the
combined population.

Beyond the radius offset mentioned above, we also want to
consider our overestimation of flux contamination (Section 3.2).
We assumed a 1D model for flux contamination, but a 2D model
would produce less contamination (∼1.88×in the worst-case
scenario). To address this issue, we fold the potential

overestimation (σF) into our measure of radius uncertainty:
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where Rfit is the radius ratio found using our MCMC sampler,
Rå is the radius of the stellar host, and FTot is the ratio of the
total flux to the flux of the target star. If FTot is one, σF is zero
because no contamination was found, and therefore no
correction is warranted. The uncertainty contribution from this
parameter is very small (σF/R∼6.9×10−6). Our combined
estimation of the uncertainty in planet radius is as follows:

s s s s s= + + + 34R Ffit
2 2 2

Off
2 ( )

where σfit is the uncertainty measured by our MCMC sampler
for Rfit (σfit/R∼0.040) and σå is the uncertainty measured for
the stellar radius (σå/R∼0.06). In almost all cases σfit and σå
dominate the uncertainty, but the other parameters provide a
slight increase to account for the issues they represent. Overall,
we find a median (σR/R) of 0.16 for our list of planet
candidates.
The radius distribution recovered by our pipeline shows

some hints of the gap in radius near 2 R⊕ (Fulton et al. 2017),
shown by the double peak in the blue radius–density plot of
Figure 13. The improved stellar parameters available in this
study allow this gap to be visible even with our small sample
size of 75 candidates. Evidence for this gap in the K2 data has
also been acknowledged in Mayo et al. (2018) and Kruse et al.
(2019). However, a more detailed accounting of completeness
is necessary to verify such claims. A first-order completeness
correction, using post-processing injections, was carried out by
Cloutier & Menou (2019), combining the K2 and Kepler data
to verify the gap in low mass star systems. However, we leave a
complete analysis using light-curve level injections for future
studies.

9. Conclusions

We have provided the results from our pilot study, in which
we created a uniform planet candidate catalog for K2 Campaign
5. The results of this study are intended to help generate a
population of planets that can be used to measure the
underlying exoplanet population for this campaign out to 38
days. We also show that our methodology can be applied to the
remaining K2 campaigns C11–C18, where the number of
known candidates is much lower and cannot provide sufficient
data for tuning of the pipeline.
Our candidate sample includes 75 planets with seven multi-

planet systems (five double, one triple, and one quadruple
planet systems), and nine new candidates. We have success-
fully recovered 51% of the known planet candidates (Kruse
et al. 2019) within the range of our survey, and can uniformly
measure the completeness and reliability of our sample.
We also introduce our vetting software (EDI-Vetter),

which has been optimized to address issues specific to the K2

Figure 14. A histogram of the ratio of injected to recovered planet radius with
bin widths of 0.01. The detrending and processing of the light curves on
average leads to a 2.3% reduction in the inferred planet radius. The dashed line
represents the median ratio value and the dotted lines mark the 68% quartiles.
This shows that the offset has a statistical significance of <1σ.
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data set. This software builds upon the metrics of Robovet-
ter (Thompson et al. 2018), which was used on Kepler DR25.
We provide several new features that allow us to produce a
reliable candidate catalog for K2. The philosophy of EDI-
Vetter is to minimize the number of FPs, even if it requires
the loss of some true planet candidates, which is more difficult
in K2 than Kepler because of the systematic noise introduced
by the spacecraft roll and thrusters.

To measure how reliable our pipeline is, we invert the light
curves to ensure no true transits exist. The pipeline is then run,
and any TCEs found and vetted can be considered true FPs. Of
6145 TCEs found in the light curves, only four were able to
deceive EDI-Vetter. Using Equation (30), we found EDI-
Vetter to be 94.2% reliable for our catalog. This means that
statistically we should only expect four planets within our
catalog to be systematic FPs. However, such tests will only
address the possibility of systematic FPs. Astrophysical FPs,
such as eclipsing binaries, can dilute the transit depth and lead
to signal misclassification (Fulton et al. 2017; Matson et al.
2018). Additionally, binary stars can cause inaccurate measure-
ments of planet radius. Ciardi et al. (2017) showed that stellar
multiplicity can lead to an overestimation in the number of
Earth-sized planets by 15%–20%.

We also measured the completeness of our sample, and find
a maximum completeness of 70% for TCEs and 60% for vetted
candidates. By injecting artificial transits at the light-curve level
of the raw K2 data, we find that our vetting software is only
reducing the recovery rate by about 10%. This is comparable to
the loss introduced by Robovetter (see Figure 7), indicating
that our vetting software is not contributing to the majority of
the recovery loss. The lack of completeness is in large part due
to the systematic issues of K2, increasing the noise and the
likelihood of a transit being artificially removed (via detrend-
ing) from the light curve.

To ensure that studies of occurrence can be carried out with
this catalog, we provide CDPP and window function measure-
ments for each stellar target. These data are available in a
machine-readable version, see Table 1.

9.1. Recommendations for Studies of Occurrence

For studies of occurrence we recommend the following
procedures.

1. Use a stellar sample where all light curves have a CDPP
measure of �1200 ppm for a transit window of 8 hr.
Light curves with more noise are problematic and
unlikely to yield usable transits.

2. Only use a target light curve if the window function has a
probability >0.8 for periods of 18 days. Targets with
lower probabilities are missing significant portions of the
light curve, making transit detections difficult.

3. Consider the issue of systematic correction for radius as
seen in Figure 14. This effect could alter the inferred
radius distribution of this population of planets.

4. Impose an upper limit on the populations of planet radius.
Our eclipsing binary metric is agnostic to stellar radius in
order to eliminate any potential biases that a specific
stellar catalog may introduce. Thus, planet candidates
with a large radius (R>20 R⊕) may be astrophysical FPs
that slipped through our vetting metrics (further discus-
sion on this topic in Section 8).

5. The measure of completeness provided in this study
assumes that all planets meet the criterion presented in
Equation (11). It is possible that real transiting planets
that graze the limb of a star may not meet this criterion.
To account for this possibility, we suggest that future
studies of occurrence use the following probability
function to account for this issue:
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where P is the probability of detection, assuming a
uniform distribution of impact parameters from 0 to 1.
This correction is minimal for small measures of the ratio
of planet to star radius (Rpl/Rå). However, in cases where
Rpl/Rå is larger, usually in planets orbiting M dwarfs, this
probability can get as low as 74%.
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