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Optical fibers are seen in the optical sensing and optical fiber communication. Simultaneous propagation of opti-
cal pulses in an inhomogeneous optical fiber is described by a coupled time-dependent coefficient fourth-order nonlinear
Schrödinger system, which is discussed in this paper. For such a system, we work out the Lax pair, Darboux transforma-
tion, and corresponding vector semi-rational nonautonomous rogue wave solutions. When the group velocity dispersion
(GVD) and fourth-order dispersion (FOD) coefficients are the constants, we exhibit the first- and second-order vector semi-
rational rogue waves which are composed of the four-petalled rogue waves and eye-shaped breathers. Both the width of the
rogue wave along the time axis and temporal separation between the adjacent peaks of the breather decrease with the GVD
coefficient or FOD coefficient. With the GVD and FOD coefficients as the linear, cosine, and exponential functions, we re-
spectively present the first- and second-order periodic vector semi-rational rogue waves, first- and second-order asymmetry
vector semi-rational rogue waves, and interactions between the eye-shaped breathers and the composite rogue waves.
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1. Introduction
Optical fibers have been seen in the optical sensing and

optical fiber communication.[1] Optical solitons, caused by
the balance between self-phase modulation (SPM) and group
velocity dispersion (GVD) effects, have been applied in the
fields of optical fiber communication, nonlinear optics, optical
information processing, and photonic computing.[2–7] Under
certain conditions, breathers, which can periodically propa-
gate in the nonlinear media, have been shown to convert into
solitons.[8–11] Rogue waves have been thought as a kind of
special soliton solutions, which can store certain energy and
enlarge the optical pulses.[12–16]

Optical pulse propagation inside a one-mode optical
fiber has been found to be described by the scalar nonlin-
ear Schrödinger (NLS)-type equation containing the SPM and
GVD effects.[17] Scalar NLS-type equation has been verified
to model the solitons, breathers, and rogue waves.[18–20] For
modeling the semi-rational vector rogue waves which can de-
scribe that breathers or solitons coexist with the rogue waves,
the scalar NLS-type equation has been extended to the cou-
pled NLS-type system.[22–24] Besides, more types of vector
rational rogue waves such as the anti-eye-shaped rogue waves

and four-petaled rogue waves have been found to be modeled
by the coupled systems.[22–27]

The NLS-type equations with the variable coefficients
have been called to describe the nonlinear waves including
the solitons, breathers, and rogue waves.[28] For the simul-
taneous propagation of optical pulses in an inhomogeneous
optical fiber, references [29–31] have discussed the coupled
time-dependent coefficient fourth-order NLS system
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where q1(x, t) and q2(x, t) are the complex envelopes of two
field polarization components, “ * ” implies the complex con-
jugate, the subscripts stand for the partial derivatives to the
normalized propagation distance x and retarded time t, re-
spectively, µ(t) denotes the GVD coefficient, ν(t) represents
the SPM coefficient, γ(t) denotes the fourth-order disper-
sion (FOD) coefficient, γs(t)’s are the cubic nonlinear coef-
ficients (s = 1,2, . . . ,6), and γ7(t) represents the quintic non-
linear coefficient. For system (1), reference [29] has presented
the cubic, periodic, parabolic and bound-state solitons; ref-
erence [30] has given the Lax pair and non-degenerate dark-
dark solitons; reference [31] has reported the first- and second-
order eye-shaped rogue waves.

However, the vector semi-rational nonautonomous rogue
wave solutions for system (1), which can describe the
existence of the four-petalled rogue waves and breathers,
have not been constructed. In Section 2, with symbolic
computation,[32–36] we will give out a Lax pair for system (1)
which is distinct from that in Ref. [30], and the correspond-
ing Darboux transformation (DT). In Section 3, we will de-
rive the vector semi-rational nonautonomous rogue wave solu-
tions for system (1). In Section 4, we will investigate the first-
and second-order vector semi-rational nonautonomous rogue
waves with the GVD and FOD coefficients. Our conclusions
will be summarized in Section 5.

2. Lax pair and the N-th-order DT
Via the Ablowitz–Kaup–Newell–Segur method,[37] we

work out another Lax pair for system (1) which is distinct from
that in Ref. [30] as

Ψx =UΨ , Ψt =VΨ , (2)

where Ψ is the 3×1 vector complex eigenfunction of x, t and
the complex eigenvalue λ ,

U = i [λ (Ω + I)+Q] ,
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I is the identity matrix, and c and β are both the constants.
With the following coefficient conditions:[29]

ν(t) = β µ(t), γ1(t) = βγ(t), γ2(t) = βγ(t),

γ3(t) = 3βγ(t), γ4(t) = 2βγ(t), γ5(t) = 2βγ(t),

γ6(t) = βγ(t), γ7(t) =
3
2

β
2
γ(t), (3)

the zero curvature equation Ut −Vx +UV −VU = 0 can yield
system (1).

Based on the loop method and DT construction developed
in Refs. [25–27], we construct the N-th-order DT matrix for
system (1) as

D[N] = I−ΘM−1(λ I−S)−1
Θ

†J,

and work out the N-th-order DT for system (1) as

Q[N] = Q+ΩΘM−1
Θ

†J−ΘM−1
Θ

†JΩ , (4)

where N is a positive integer, [N] denotes the N-th it-
eration, D[N] and Q[N] are the 3 × 3 matrices, Θ =

(y1,y2, . . . ,yN), M = (M jk)N×N ( j,k = 1,2, . . . ,N), J =

diag(1,β/2,β/2), M jk = y†
jJyk/(λk − λ ∗j ), yk ≡ y(x, t,λk),

y(x, t,λ ) = v(x, t,λ )Ψ(x, t,λ ), v(x, t,λ ) is a nonzero complex
function, Ψ(x, t,λk) is a 3×1 vector solution of Lax pair (2) at
λ = λk, λk’s are N given values of λ , S = diag(λ ∗1 ,λ

∗
2 , . . . ,λ

∗
N),

the superscript −1 stands for the inverse of a matrix, and the
superscript † denotes the Hermitian conjugation.

In order to construct the expressions of y(x, t,λ ), we be-
gin our analysis with the seed solutions for system (1) in the
form

qα = aα e i[bα x+cα (t)], (α = 1,2), (5)

where aα ’s and bα ’s are the real constants,

cα(t) =
∫ [

β (a2
1 +a2
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α

]
µ(t)dt

+
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3
2

β
2(a2

1 +a2
2)

2
]

γ(t)dt.

Substituting seed solutions (5) into Lax pair (2), we find that
the solutions of Lax pair (2) can be obtained as

Ψ(x, t,λ ) = G H DK L e−iξ t , (6)

with

L = (l1, l2, l3)T,
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where c = a2
1 +a2

2, l1, l2, and l3 are all the nonzero constants,
the superscript T means the transpose for a vector/matrix, and
z1, z2, and z3 are the three roots of the following cubic equation
with respect to z:

z3− 1
2
(
a2

1β +a2
2β −2b1b2 +4b1λ +4b2λ

)
z

−(b1 +b2−2λ )z2 +
1
2
(
a2

1βb2 +a2
2βb1 +4b1b2λ

)
= 0. (7)

We set v(x, t,λ ) = e iξ t and derive that

y(x, t,λ ) = G H DK L .

3. Vector semi-rational nonautonomous rogue
wave solutions

Using the N-th-order DT (4) and the expansion method in
Ref. [38], we will investigate the vector semi-rational nonau-
tonomous rogue wave solutions for system (1) when cubic
equation (7) admits two equal roots.

We take β = 2, a1 = a2 = 1, b1 = 2/5, b2 = −2/5, and
λ = 3

√
6i/5 such that we can derive two equal roots of cu-

bic Eq. (7), i.e., z1 = z2 = −
√

6i/5 and the other root, z3 =

−4
√

6i/5. According to the expansion method in Ref. [38],
we assume that λ = λ1(1+ ε2) with ε being a small param-
eter. We set λ1 = 3

√
6i/5 and substitute β = 2, a1 = a2 = 1,

b1 = 2/5, b2 = −2/5, and λ = λ1(1+ ε2) into cubic Eq. (7)
such that we work out three different roots of cubic Eq. (7),
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with

τ =
3
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8ε6 +24ε4+17ε2−ε

√
32ε6 +128ε4+133ε2+10+1.

In what follows, we take

W =

 1 1 0
1 −1 0
0 0 1

 , R =

 1 0 0
0 1

ε
0

0 0 1

 ,

and ld = ∑
N
j=1 ld jε

2( j−1) (d = 1,2,3) such that we can give out
the following Taylor expansion of H DK W RL :

H DK W RL =
∞

∑
h=0

gh(x, t)ε2 j, (8)

with gh =
1
h!

∂ h(H DK W RL )

∂λ h
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λ= 3

√
6i

5

(h = 0,1,2, . . .). Accord-

ing to the expansion method in Refs. [25–27,38], via the N-
th-order DT (4) and expansion (8), we acquire the N-th-order
vector semi-rational nonautonomous rogue wave solutions for
system (1) as

q1[N] = e i[ 2
5 x+c1(t)] det(Γ −2Ξ

†
1 Ξ2)

det(Γ )
, (9a)

q2[N] = e i[− 2
5 x+c2(t)] det(Γ −2Ξ

†
1 Ξ3)

det(Γ )
, (9b)

where Ξ(x, t) = (g0,g1, . . . ,gN−1), Ξd denotes the d-th row of
Ξ(x, t), and Γ = (Γjk)N×N with

Γjk =
j+k−2

∑
s=0

min(k−1,s)
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4. Discussions on the vector semi-rational
nonautonomous rogue waves

Under coefficient conditions (3), the N-th-order vector
semi-rational nonautonomous rogue wave solutions for sys-
tem (1), i.e., solutions (9), are only associated with the GVD
coefficient µ(t) and FOD coefficient γ(t). In what follows,
we will study the properties of the first- and the second-order
vector semi-rational nonautonomous rogue waves based on so-
lutions (9) with µ(t) and γ(t) chosen as the distinct functions.

4.1. The first-order vector semi-rational nonautonomous
rogue waves

Figure 1 illustrates the properties of the first-order vector

semi-rational rogue waves with µ(t) and γ(t) chosen as the

constants. Figures 1(a1) and 1(a2) demonstrate that a four-

petalled rogue wave exists with an eye-shaped breather. Com-

paring Figs. 1(b1)–1(b2) or 1(c1)–1(c2) with 1(a1)–1(a2), we

observe that the width of the four-petalled rogue wave along

the t axis and temporal separation between the adjacent peaks
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of the eye-shaped breather both decrease with µ(t) or γ(t).
With µ(t) and γ(t) taken as the linear functions of t,

figure 2 displays the first-order vector semi-rational nonau-
tonomous rogue waves which describe the interactions be-
tween the eye-shaped breathers and composite rogue waves.
Figures 2(a1) and 2(a2) show the interaction between the
breather and the rogue wave with one hump and one valley,
where the breather becomes bent, and the temporal separa-
tion between two adjacent peaks increases around the interac-

tion part. With µ(t) =
(
t +
√

3
)
/2 and γ(t) =

(
t +
√

3
)
/50,

figures 2(b1) and 2(b2) illustrate the interaction between the

breather and the composite rogue wave with two humps and

two valleys, where the two adjacent peaks of the breather

merge into one peak at the interaction part. Increasing the

intercepts of µ(t) and γ(t), we observe that the double-peak

structure appears at the interaction part for the breather, as seen

in Figs. 2(c1) and 2(c2).
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When µ(t) and γ(t) are the cosine functions, the first-
order periodic vector semi-rational rogue waves are presented
in Figs. 3. Figures 3(a1) and 3(a2) exhibit the existence of
the eye-shaped breather and the periodic rogue wave with one
hump and one valley in each component. With the periods
of µ(t) and γ(t) increasing, the temporal separation between
two adjacent peaks of the breather and the period of the pe-
riodic rogue wave both increase, as presented in Figs. 3(b1)
and 3(b2). When we continue to increase the periods of µ(t)
and γ(t), the period of the vector periodic semi-rational nonau-

tonomous rogue wave also keeps increasing, and each inter-
mingled peak of the breather branches out into two separated
peaks, as displayed in Figs. 3(c1) and 3(c2).

In Fig. 4, we present the first-order asymmetry vector
semi-rational rogue waves when µ(t) and γ(t) are the ex-
ponential functions of t. When µ(t) = e−t/5/2 and γ(t) =
e−t/5/50, figures 4(a1) and 4(a2) show that an asymmetry
breather with changing velocity coexists with an asymmetry
rogue wave, where the asymmetry breather and rogue wave
both possess a hump along the positive direction of the t axis.
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When µ(t) = et/5/2 and γ(t) = et/5/50, the asymmetry
breather and rogue wave both possess an hump along the nega-
tive direction of the t axis, as depicted in Figs. 4(b1) and 4(b2).
When µ(t) = 1/2 and γ(t) = e−

1
25 (t+

√
3/3)/50, figures 4(c1)

and 4(c2) describe the interaction between the four-petalled
rogue wave and asymmetry breather, where the height for the
peak of the breather decreases along the positive direction of
the t axis.

4.2. The second-order vector semi-rational nonau-
tonomous rogue waves

With µ(t) and γ(t) being the constants, figures 5(a1)
and 5(a2) depict the second-order vector semi-rational rogue

waves, which demonstrate that the triangle structure com-
posed of three four-petalled rogue waves coexist with two eye-
shaped breathers. As µ(t) or γ(t) increases, the width of the
triangle structure along the t axis and the temporal separation
between the adjacent peaks of each eye-shaped breather both
decrease, as presented in Figs. 5(b1), 5(b2), 5(c1), and 5(c2).

Figure 6 shows the second-order vector semi-rational
nonautonomous rogue waves with µ(t) and γ(t) being differ-
ent functions. When µ(t) and γ(t) are the linear functions,
figures 6(a1) and 6(a2) exhibit the interaction between the two
breathers and the quadrangle structure, which is constituted
by two four-petalled rogue waves and two rogue waves with
one hump and one valley. When µ(t) and γ(t) are taken as
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the cosine functions, figures 6(b1) and 6(b2) display the
second-order periodic semi-rational rogue wave which de-
scribes that the two parallel eye-shaped breathers coexist with
two parallel periodic rogue waves with one hump and one
valley in each component. When µ(t) and γ(t) are chosen
as the exponential functions, figure 6(c1) and 6(c2) present
the second-order asymmetry vector semi-rational rogue wave
which is formed by two asymmetry four-petalled rogue waves
and two asymmetry eye-shaped breathers in each component.

5. Conclusions
Optical fibers have been seen in the optical sensing and

optical fiber communication. Simultaneous propagation of
optical pulses in an inhomogeneous optical fiber has been
beleived to be described by a coupled time-dependent coef-
ficient fourth-order nonlinear Schrödinger system, i.e., sys-
tem (1), which has been discussed in this paper. For sys-
tem (1), we have worked out Lax pair (2) which is distinct
from that in Ref. [30], the N-th-order DT (4), and the N-th-
order vector semi-rational nonautonomous rogue wave solu-
tions under coefficient conditions (3), i.e., solutions (9). By
dint of solutions (9), we have graphically investigated the first-
and second-order vector semi-rational nonautonomous rogue
waves with the GVD coefficient µ(t) and FOD coefficient
γ(t).

By means of solutions (9) with N = 1, figure 1 has shown
the first-order vector semi-rational rogue waves with µ(t) and
γ(t) being the constants: width of the four-petalled rogue
wave along the t axis and temporal separation between the
adjacent peaks of the eye-shaped breather both decrease with
µ(t) or γ(t); with µ(t) and γ(t) chosen as the linear func-
tions, figure 2 has displayed the first-order vector semi-rational
nonautonomous rogue waves which describe the interactions
between the eye-shaped breathers and the composite rogue
waves; figure 3 has presented the first-order periodic vector
semi-rational rogue waves with µ(t) and γ(t) taken as the co-
sine functions. When µ(t) and γ(t) are the exponential func-
tions, figure 4 has depicted the first-order asymmetry vector
semi-rational rogue waves.

According to solutions (9) with N = 2, when µ(t) and γ(t)
are the constants, figure 5 has depicted the second-order vector
semi-rational rogue waves, which demonstrate that the trian-
gle structure composed of three four-petalled rogue waves co-
exists with the two eye-shaped breathers: width of the triangle
structure along the t axis and temporal separation between the
adjacent peaks of each eye-shaped breather both decrease with
µ(t) or γ(t). When µ(t) and γ(t) are the linear, cosine, and ex-
ponential functions, figure 6 has respectively shown the inter-
action between two eye-shaped breathers and the quadrangle
structure constituted by two four-petalled rogue waves and two

rogue waves with one hump and one valley, the second-order
periodic vector semi-rational rogue waves, and the second-
order asymmetry vector semi-rational rogue waves.
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