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Interface coupling effects of weakly nonlinear Rayleigh–Taylor
instability with double interfaces∗
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Taking the Rayleigh–Taylor instability with double interfaces as the research object, the interface coupling effects
in the weakly nonlinear regime are studied numerically. The variation of Atwood numbers on the two interfaces and the
variation of the thickness between them are taken into consideration. It is shown that, when the Atwood number on the
lower interface is small, the amplitude of perturbation growth on the lower interface is positively related with the Atwood
number on the upper interface. However, it is negatively related when the Atwood number on the lower interface is large.
The above phenomenon is quantitatively studied using an analytical formula and the underlying physical mechanism is
presented.
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1. Introduction

The Rayleigh–Taylor instability (RTI)[1,2] exists widely
in inertial confinement fusion (ICF) and supernova explosions.
Understanding the mechanism of the RTI is important to the
success of the ignition of ICF[3] and to explain the nonlin-
ear evolution of supernova explosions.[4] Generally, it will
happen when a heavy fluid is accelerated by a light one, if
some perturbations are on the interface between two fluid lay-
ers. Focusing on this kind of RTI, many studies have been
done in its linear,[1,2] nonlinear,[5,6] and turbulence mixing[7,8]

regimes. However, in some practical applications, the RTI
with multiple material interfaces is more attractive. For ex-
amples, there are an ablator layer, a deuterium–tritium (DT)
fuel layer filled with a low density DT gas in the one-shell
ICF targets.[9] Alternatively, double-shell targets, which con-
sist of more material layers, were suggested by Amendt[10]

and Canaud.[11] Especially, in the implosion process of ICF,
the ablation effect makes the material distribution in the cap-
sule more complicated.[12–16] The classic RTI models which
only include a single material interface are not good enough
for depicting the perturbation growth of the RTI with multiple
interfaces. However, to understand the mechanism of the RTI
with multiple interfaces, some efforts have been done by re-
searchers. The first series of studies were made by Mikaelian.
The author presented an analytical model to describe the tem-
poral evolution of the RTI in the linear growth regime at the
interfaces of any number of stratified fluids forming an arbi-

trary density profile.[17,18] Using this model, some meaningful
works have been done by him. For example, the density gra-
dient stabilization effect[19] and the way that how to adjust the
perturbation amplitude on the two interfaces to kill the expo-
nentially growing mode.[20] Besides, the author extended the
model in the plane geometry to that in the spherical[21] and
the cylindrical geometry.[22] Following Mikaelian’s works, the
weakly nonlinear growth regime of the RTI was taken into
consideration by Wang et al.[23] They presented a weakly non-
linear model of the RTI with a finite-thickness fluid layer.
They showed that the weakly nonlinear effect and interface
thickness effects are important to understand the flow phe-
nomenons of ICF and supernova explosions. It should be
pointed out that this weakly nonlinear model only considers
the situation that the Atwood number on the lower interface is
1 and the Atwood number on the upper interface is −1. Fo-
cusing on the plane and cylindrical geometry, recently, Guo et
al.[24,25] used the potential model to study the linear RTI with
multiple fluid layers. Making a summary about the existing
studies, one can see that most of studies about the RTI with
multiple fluid layers are focussed on in the linear regime. The
weakly nonlinear RTI with double interfaces studied by Wang
et al.[23] did not cover the situation with varied Atwood num-
bers. In this study, the situations, the Atwood number on the
lower interface is from 0 to 1 and the Atwood number on the
upper interface is from −1 to 0, are taken into consideration.
The interface coupling effects of the RTI in the weakly non-
linear regime are studied. Euler numerical simulations along
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with analytical studies are used to do the research in this pa-
per. The results presented in this study are helpful to under-
stand the physical mechanism of the interface coupling effects
of the RTI with double interfaces.

The remainder of this article is organized as follows.
Firstly, the perturbation interactions between two interfaces
are studied by numerical simulations. Secondly, the variation
rule of the perturbation amplitude on the lower interface with
the Atwood number on the upper interface is studied by the an-
alytical model. Meanwhile, a suppression strategy of the per-
turbation growth of the RTI on the lower interface is proposed.
Thirdly, the underlying mechanisms are explained. Finally, the
major conclusions are summarized.

2. Statement of the problem
A two-dimensional (2D) problem in the plane geometry,

as shown in Fig. 1, is concerned in this study. Along the di-
rection of acceleration, a finite-thickness fluid layer with den-
sity ρ2 is located between two semi-infinite fluid layers with
densities ρ3 and ρ1 respectively. These three fluids are all in-
compressible and immiscible. Apparently, there are two in-
terfaces among these three fluids. Initially, the upper one be-
tween fluid layers with densities ρ3 and ρ2 is at the position
x = 0. The lower one between fluid layers with densities ρ2

and ρ1 is at the position x = −d. A2 and A1, which are de-
fined as (ρ3−ρ2)/(ρ3 +ρ2) and (ρ2−ρ1)/(ρ2 +ρ1), are the
Atwood numbers on the upper and lower interfaces. The sit-
uations that A1 > 0 and A2 < 0 are discussed in this study. A
perturbation is set on the lower interface. It is a single-mode
cosinusoidal perturbation defined as η(x, t = 0) = η0 cos(kx),
where η0 is the amplitude of the initial perturbation; k = 2π/L
is the wavenumber; and L is the wavelength.
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Fig. 1. Schematic drawing about the initial condition of the RTI with double
interfaces.

3. Numerical simulation
Euler simulations are made in an L×10L domain contain-

ing fluids with three different densities. The domain length in

the acceleration direction is 10L. The value of L is 0.01π cm.
The acceleration g is 1000 cm/µs2. ρ2 is fixed as 1 g/cm3. In
this way, A1 and A2 on the interfaces can be changed by adjust-
ing the values of ρ1 and ρ3. The boundaries at the ends of the
y direction are walls. At the ends of x direction, the periodic
boundary condition is used. At the initial time, the wavelength
on the lower interface is L, and its amplitude is 0.01L. There
are 256 uniform grids in the x direction and 2000 grids in the
y direction. Most of grids are located in the evolution region
of the perturbation. The Euler simulations are done by a well-
tested second-order Godunov hydrodynamic simulation code.
This code is recently developed in house. The finite volume
method and the massively parallel computation are used. The
second order HLLE approximation Riemann solver[26] is used.
The slope limit is moncen.[27]
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Fig. 2. The temporal evolution of the perturbation amplitude calculated by
Euler simulation (dotted lines) and linear growth analytical model (solid
lines); (a) A1 = 0.2; (b) A1 = 0.9.

To study the interface coupling effects, the temporal evo-
lution of the perturbation growth amplitude on the lower in-
terface (η1) is depicted with some combinations of A1 and A2.
Ten situations depicted in Fig. 2 are chosen to show this phe-
nomenon. They are the conditions that A1 = 0.2 and A1 = 0.9
with five different A2. The thickness between two interfaces
is 0.004 cm, which means that the normalized thickness kd
is 0.5. The computational results are represented by dotted
lines. To judge when the perturbation growth reaches the
weakly nonlinear regime, the analytical results of the linear
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RTI model, which is presented by Mikaelian,[18] are also de-
picted by solid lines in the figure. It is shown that, early in
the temporal evolution of the perturbation, the analytical re-
sults are closed to the simulation results. This implies that
this period of time is the linear RTI regime. At the time when
the perturbation growth amplitude η1 reaches 0.2 time of the
wavelength, the simulation results deviate from the linear an-
alytical results greatly. This means that the RTI has already
reached the weakly nonlinear regime. One can see that, in
the weakly nonlinear regime, η1 is positively related with A2

when A1 is small. However, it is negatively related when A1

is large. More Euler simulations have shown that this phe-
nomenon exists in situations with kd > 0.4. The reason why
situations with kd < 0.4 are not concerned is that the single
medium Euler simulation can not accurately capture the inter-
faces when kd is too small. The following studies are made
under the condition kd > 0.4.

4. Variation rule of η1 with A2

To further confirm how the interface coupling effects im-
pact on the correlation between η1 and A2, an analytical re-
search is made in the following. Comparing the simulation
results and linear analytical results depicted in Fig. 2, one can
see that, at the end of the linear regime, the correlations be-
tween η1 and A2 for the two methods are consistent. In this
way, we choose the time τa, when the classical single inter-
face RTI with Atwood number A1 reaches the saturation am-
plitude, to make the analytical research. This time is depicted
by blue vertical line in Fig. 2. Results show that, at the time
τa, the correlations between η1 and A2 are consistent with the
one in the weakly nonlinear regime. Therefore, the interface
coupling effects at the time τa can be used to judge the cor-
relations between η1 and A2 in the weakly nonlinear regime.
According to the linear analytical model,[18] we can obtain the
partial derivative ∂η1(τa)/∂A2. Figure 3 depicts its contours
with two fixed normalized thicknesses. They are kd = 0.4 and
0.8. All the calculations are done with g = 1000 cm/µs2,
L = 0.01 cm, and η0 = 0.01L. From Fig. 3, one can see
that the lines ∂η1(τa)/∂A2 = 0 are nearly straight (highlighted
by black dotted lines) under these two fixed non-dimensional
thicknesses. Below the lines ∂η1(τa)/∂A2 = 0, ∂η1(τa)/∂A2

is almost larger than 0. However, ∂η1(τa)/∂A2 is less than
0 above the lines ∂η1(τa)/∂A2 = 0. More researches with
other concerned non-dimensional thicknesses, which are not
demonstrated in this study, also show the same phenomenon.
It means that under the line ∂η1(τa)/∂A2 = 0, η1 and A2 are
positively related. While η1 and A2 are negatively related
above the line. The parameter kd only has influences on the
variation degree of η1 along with the change of A2. With the

analysis of Fig. 2, one has already known that the above in-
terface coupling effects at the time τa are consistent with ones
presented in the weakly nonlinear RTI regime. In this way, if
the line ∂η1(τa)/∂A2 = 0 is defined, the correlation between
η1 and A2 in the weakly nonlinear regime under arbitrary con-
cerned A1 and kd will be clear.
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Fig. 3. Contours of ∂η1(τa)/∂A2 with the normalized thickness kd = 0.4
(a) and kd = 0.8 (b).

As the line ∂η1(τa)/∂A2 = 0 is nearly linear at different
kd, the line can be fixed if positions of points (−1,ya) and
(A2 → 0,yb) are known. These points are labeled in Fig. 3.
The line can be expressed as

A1−aA2−b = 0. (1)

It should be noted that the values g, η0, and L have
no influence on the construction of ∂η1(τa)/∂A2 = 0. As
they are eliminated when the value of τa is substituted into
∂η1(τa)/∂A2 = 0. In this way, coefficients a and b in Eq. (1)
are only related with kd. Furthermore, the points (−1,ya) and
(A2 → 0,yb) are only related with kd. When A2 is fixed, the
variation rules between ya or yb with kd could be depicted
by using the formula ∂η1(τa)/∂A2 = 0. Their relationship is
shown in Fig. 4.
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Fig. 4. The relationship between A1 and kd under the condition that A2 =−1
and A2→ 0 when ∂η1(τa)/∂A2 = 0.

It is shown that A1 and kd are nearly exponential relation-
ship when A2 = −1. When A2 → 0, A1 almost has no rela-
tionship with kd. Calculating by the data fitting, ya and yb can
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be defined as 0.289e−3.252kd + 0.678 and 0.396, respectively.
Substituting the two points into Eq. (1), one can obtain

a =−(0.289e(−3.252kd)+0.282), b = 0.396. (2)

In this way, a variation rule of η1(τa) with A2 under the con-
dition with an arbitrary concerned A1 and kd can be defined
as

η1(τa) ↓ with A2 ↓

if A1 6−(0.289e(−3.252kd)+0.282)A2 +0.396,

η1(τa) ↓ with A2 ↑

if A1 >−(0.289e(−3.252kd)+0.282)A2 +0.396. (3)

Equations (3) present a criteria to judge the correlation
between η1 and A2 in the weakly nonlinear regime. It is shown
that when the normalized thickness kd is fixed, the position
of the line ∂η1(τa)/∂A2 = 0 will be defined. The study in
Ref. [23] has shown that, when A1 = 1 and A2 = −1, the ex-
ist of the upper interface will accelerate the RTI perturbation
growth in the weakly nonlinear regime on the lower interface.
Using Eqs. (3), one can also make the same conclusion. From
Eqs. (3), it is shown that η1 and A2 are negatively related when
A1 = 1. In this way, comparing with the condition A2 → 0,
the RTI perturbation on the lower interface with the condition
A2 = 1 will be accelerated in the weakly nonlinear regime.
Besides the extreme situation studied by Wang et al.,[23] the
results presented in this study can be applied to more situa-
tions. Equations (3) are maybe useful to give some guidance
to the domination of η1 in the weakly nonlinear RTI regime.

5. Underlying physics mechanism of η1 to A2

Following, the underlying physics mechanism is trying
to be described. Firstly, the condition that A1 = 0, which
means there is only an upper interface in the system, is con-
cerned. According to the classical linear RTI growth model
η(τ) = η0 cosh

(√
Agkτ

)
, the perturbation on the upper inter-

face is absolutely stable when A2 < 0. Therefore, there are two
kinds of movement trends for the perturbation on the upper in-
terface. As shown in Fig. 5, the initial perturbation will make
a downward movement following with an upward movement
repeatedly. Besides, the smaller A2 is, the stronger the trend is.
For convenience, this movement trend is called the self-excited
response of the upper interface.

For the RTI with double interface studied in this study,
the perturbation seed of the upper interface is from the per-
turbation evolution on the lower interface. Conversely, the
perturbation evolution on the upper interface will impact the
perturbation evolution on the lower interface. The downward
movement trend of the self-excited response on the upper in-
terface will accelerate the perturbation evolution on the lower

interface. The upward movement trend of the self-excited re-
sponse on the upper interface will suppress the perturbation
evolution on the lower interface. It is clear that the value of
A1 has influences on the intensity of the perturbation seed of
the upper interface, while the value of kd impacts on the gen-
eration time of the perturbation seed on the upper interface.
Firstly, the rationality of impacts of A1 is concerned. For a
small A1, the perturbation intensity generated on the upper in-
terface is small. When the RTI on the lower interface reaches
the weakly nonlinear RTI regime, the self-excited response
of the upper interface should present the upward movement
trend. This trend will suppress the perturbation evolution on
the lower interface. As the smaller A2 is, the stronger the trend
is. A2 will be positively related to η1. However, for a large
A1, the perturbation intensity generated on the upper interface
is larger than the situation with a small A1. When the RTI on
the lower interface reaches the weakly nonlinear RTI regime,
the self-excited response of the upper interface should present
the downward movement trend. This trend will accelerate the
perturbation evolution on the lower interface. In this way, A2

will be negatively related to η1 when A1 is large. In terms
of kd we concerned, one can see that it influences the gradi-
ent of the line ∂η1(τa)/∂A2 = 0. The larger the kd is, the
smaller the gradient of this line will be. Following, a situation
just above the line ∂η1(τa)/∂A2 = 0 in Fig. 3 is focussed on.
When kd is shortened, the correlation between η1 and A2 in
this situation will turn from negative relationship to positive
relationship. This means that the self-excited response of the
upper interface turns from the downward movement trend to
the upward movement trend. This is reasonable because the
generation time of the perturbation seed on the upper interface
will be earlier when kd is shortened. This means that the per-
turbation evolution time on the upper interface is longer when
the RTI on the lower interface reaches the weakly nonlinear
regime. Therefore, the self-excited response of the upper in-
terface has already presented the upward movement trend for
a smaller kd. In this way, the gradient of ∂η1(τa)/∂A2 = 0
will be decreased when kd is shortened.
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Fig. 5. Two movement trends of the self-excited response on the upper in-
terface.
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6. Conclusion
The interface coupling effects of the weakly nonlinear

RTI with double interfaces are studied by taking into consid-
eration of the two situations: the situation that the Atwood
number on the lower interface is from 0 to 1 and the Atwood
number on the upper interface is from −1 to 0. This is an
expending research of Ref. [23]. It is shown that due to the
self-excited response of the upper interface, the amplitude of
perturbation growth on the lower interface is positively related
with the Atwood number on the upper interface when the At-
wood number on the lower interface is small. However, it is
negatively related when the Atwood number on the lower in-
terface is large.
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