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We deal with the Wick-type stochastic fractional Korteweg de–Vries (KdV) equation with conformable derivatives.
With the aid of the Exp-function method, white noise theory, and Hermite transform, we produce a novel set of exact soliton
and periodic wave solutions to the fractional KdV equation with conformable derivatives. With the help of inverse Hermite
transform, we get stochastic soliton and periodic wave solutions of the Wick-type stochastic fractional KdV equation with
conformable derivatives. Eventually, by an application example, we show how the stochastic solutions can be given as
Brownian motion functional solutions.
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1. Introduction
The nonlinear fractional differential equations (FDEs) are

constructed by mathematical modeling of some complex phys-
ical phenomena. The study of such nonlinear physical models
through wave solutions analysis corresponding to their FDEs
has a dynamic role in applied sciences. The Korteweg–de
Vries (KdV) equations have been applied to a broad variety of
material science phenomena as a model for the development
and communication of nonlinear waves. The KdV equation
was introduced to describe shallow water waves of long wave-
length with small amplitude. The soliton and periodic exact
solutions of the KdV equation may be of significance in many
physical contexts as collision-free hydromagnetic waves, strat-
ified internal waves, particle acoustic waves, plasma physics,
and so on.[30,38,42]

This work is devoted to investigate the stochastic frac-
tional KdV equation with conformable derivatives

Dα
t U +R(t)�U �Dα

x U +S(t)�D3α
x U = 0, (1)

where (x, t) ∈ R×R+ and 0 < α ≤ 1. Here, R and S are non-
zero integrable functions from R+ to the Kondrative distri-
bution space (S )−1 which was defined by Holden et al. in
Ref. [23] as a Banach algebra with the Wick-product “ � ”.
Equation (1) is the perturbation of the variable coefficients
fractional KdV equation with conformable derivatives

Dα
t u+ r(t)uDα

x u+ s(t)D3α
x u = 0, (2)

where r and s are non-zero integrable functions on R+. Equa-
tion (2) is a general model which describes shallow water

waves of small amplitude and long wavelength.[22] Moreover,
if equation (2) is considered in a random environment, we have
a random fractional KdV equation. In order to obtain the exact
solutions of the random fractional KdV equation, we only con-
sider it in a white noise environment, that is, we will discuss
the Wick-type stochastic fractional KdV equation (1).

There are many studies done for the definition and prop-
erties of the conformable derivative. Conformable forms
of the chain rule, Gronwalls inequality, exponential func-
tions, Taylor power series expansions, integration by parts,
and Laplace transform have been presented by Abdeljawad
in Ref. [1]. Benkhettoua et al.[3] have presented the calculus
of the conformable time-scale. The heat equation with con-
formable derivatives was investigated by Hammad and Khalil
in Ref. [18]. Chung[8] used the conformable derivative and
integral to study the fractional Newtonian mechanics. More-
over, the deterministic conformable partial differential equa-
tions (PDEs) became an important subject in mathematical
physics. So, many scholars paid more attention to their ap-
proximate and analytical solutions. The existence and unique-
ness theorems for the linear sequential differential equations
with conformable derivatives were proved by Gokdogan et al.
in Ref. [17]. Eslami and Rezazadeh[9] gave a set of analytical
solutions to the Wu–Zhang system with conformable deriva-
tive via the first integral method. The stochastic traveling wave
solutions for the fractional coupled KdV and two-dimensional
(2D) KdV equations were obtained by the modified fractional
sub-equation method in Refs. [13,15], respectively.
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Many researchers have studied the subject of random
traveling wave, which is a significant subject of stochastic par-
tial differential equations (SPDEs). Wadati[37] first proposed
and discussed the stochastic KdV equation and discussed the
propagation of soliton of the KdV equation under the effect
of Gaussian noise. Furthermore, Ghany and Hyder,[12,13,15,16]

Chen and Xie,[5–7] Hyder and Zakarya,[26,27] and Hyder[24,25]

investigated a wide class of Wick-type stochastic evolution
equations by using different extension methods and white
noise analysis. Recently, many research works have done to
investigate the conformable PDEs and their exact solutions via
various methods. In Ref. [46], a conformable sub-equation
method was proposed to construct exact solutions of the
space–time resonant nonlinear Schröinger equation. By us-
ing the generalized exponential rational function method, new
periodic and hyperbolic soliton solutions were constructed to
the conformable Ginzburg–Landau equation with the Kerr law
nonlinearity.[10] Also, a family of exact solutions were ob-
tained for the space–time conformable generalized Hirota–
Satsuma-coupled KdV equation and coupled mKdV equa-
tion using the Atangana’s conformable derivative and con-
formable sub-equation method.[43] The analysis of the first in-
tegral method was given in Refs. [44,45] to construct exact
solutions of the nonlinear PDEs described by beta-derivative.
Moreover, new optical, dark, complex, and singular soliton
solutions were obtained for some nonlinear PDEs with M-
derivative.[2,11] The investigation of exact and approximate
solutions of nonlinear evolution equations plays an important
role in the study of nonlinear physical phenomena. Many help-
ful methods such as bilinear transformation method,[35] the
modified Clarkson and Kruskal (CK) direct method,[39] the
multi-scale expansion method,[33] the binary Bell polynomi-
als method,[48] the Riemann–Hilbert method,[41] and the ap-
proximate symmetry method[28] have been presented in the
recent literature. He and Wu[19] introduced a concise and
straightforward method, called the Exp-function method, to
obtain generalized soliton, periodic, and compacton-like solu-
tions for many nonlinear PDEs.[21,49] In this method, the exact
solutions are obtained in the form of an exponential type ra-
tional function in which both the numerator and denominator
are polynomials of exponential functions. The main merit of
the Exp-function method over the others lies in the fact that a
great variety of exact solutions to nonlinear PDEs can be de-
rived easily by choosing the parameters that appear, and the
degrees of the polynomials that are present, in the solution.
The main feature of the exact solutions obtained by the Exp-
function method is their reducibility.[32] Also, the proposed
Exp-function method leads to both the generalized solitonary
solutions and periodic solutions. Moreover, the solution pro-
cedure, by the help of Mathematica, is of utter simplicity, and
can be easily extended to all kinds of nonlinear equations.

Our aim in this work is to obtain new stochastic soli-
ton and periodic wave solutions for the variable coefficients
fractional KdV equation and Wick-type stochastic fractional
KdV equation with conformable derivatives. Using white
noise theory and Hermite transform, the Wick-type stochastic
fractional KdV equation with conformable derivatives can be
transformed to a deterministic fractional KdV equation con-
taining conformable derivatives. In view of the proposed Exp-
function method, the exact solutions of the deterministic frac-
tional KdV equation are constructed in the form of an expo-
nential type rational function in which both the numerator and
denominator are polynomials of exponential functions. The
highest and lowest degrees of the polynomial sums in both
the numerator and denominator are determined through a ho-
mogeneous balance between the highest nonlinear term and
the linear term of the highest order derivative appearing in the
deterministic fractional KdV equation. Using some symbolic
computation and the software Mathematica, we can find soli-
ton and periodic wave solutions for the variable coefficients
fractional KdV equation with conformable derivatives. Un-
der pronounced conditions, we can apply the inverse Hermite
transform to obtain stochastic soliton and periodic wave so-
lutions for the Wick-type stochastic fractional KdV equation
with conformable derivatives. Finally, by an application ex-
ample, we show how the stochastic solutions can be given as
Brownian motion functional solutions. This paper is organized
as follows. In Section 2, we recall the definitions and some
properties of the conformable derivative and integral, some
requisites from Gaussian white noise analysis, and the main
steps for solving the conformable nonlinear PDEs. In Section
3, we use the Exp-function method, white noise theory, and
Hermite transform to obtain new stochastic soliton and pe-
riodic wave solutions for the Wick-type stochastic fractional
KdV equation with conformable derivatives. In Section 4, we
give an example to show that the stochastic solutions can be
given as Brownian motion functional solutions. Section 5 is
devoted to conclusion.

2. Preliminaries
2.1. The conformable derivative and integral

In this subsection, we recall the definitions and some
properties of the conformable derivative and integral.

Definition 1[4,29] Let f be a function from (0,∞) into R.
For α ∈ (0,1], we define the conformable derivative of f of
order α as follows:

Dα
t f (t) = lim

h→0

f (t +ht1−α)− f (t)
h

, t > 0. (3)

Definition 2[4,29] Let f be an α-conformable differen-
tiable function for t ∈ (0,a), a > 0 and limt→0+ Dα

t f (t) exists.
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Then, Dα
t f (0) = limt→0+ Dα

t f (t) and the conformable integral
of the function f beginning from a≥ 0 is given by

Iα,a f (t) =
∫ t

a

f (τ)
τ1−α

dτ, (4)

where the integral in the right hand side is the classical im-
proper Riemann integral and α ∈ (0,1].

The following theorems give some sustainable properties
for the conformable derivative.

Theorem 1[4,29] Assume that α ∈ (0,1], f and g are α-
conformable differentiable functions at t ∈ (0,∞) and f is dif-
ferentiable (in the usual sense) with respect to t. Then,

(i) Dα
t (a f +bg) = a Dα

t f +b Dα
t g, for all a, b ∈ R,

(ii) Dα
t (ta) = a ta−α , for all a ∈ R,

(iii) Dα
t ( f g) = f Dα

t g+gDα
t f ,

(iv) Dα
t

(
f
g

)
=

gDα
t f − f Dα

t g
g2 ,

(v) Dα
t ( f (t)) = t1−α f ′(t),

where ′ denotes the usual derivative with respect to t.
Theorem 2[31] Assume that the function f is a differ-

entiable and α-conformable differentiable function on (0,∞).
Also, assume that g is a differentiable function defined on the
range of f . Then,

Dα
t ( f ◦g)(t) = t1−α [g(t)]α−1g′(t)(Dα

t f (t))t=g . (5)

2.2. Basic concepts from Gaussian white noise analysis

The Gaussian white noise analysis starts with the rigging
S (Rd) ⊂ L2(Rd) ⊂S ∗(Rd), where S (Rd) is the Schwartz
space of rapidly decreasing, infinite differentiable functions
on Rd and S ∗(Rd) is the space of tempered distributions.
From the Bochner–Minlos theorem,[23] we have a unique
white noise measure µ on

(
S ∗(Rd),β

(
S ∗(Rd)

))
. Assume

that ξn(x) = π−1/4((n−1)!)−1/2e−x2/2 hn−1(
√

2x), n ∈ N are
the Hermite functions, where hn(x) denotes the Hermite poly-
nomials. It is well known that the collection (ξn)n∈N forms
an orthonormal basis for L2(R). Let α = (α1, . . . ,αd) be d-
dimensional multi-indices with α1, . . . ,αd ∈N, then the family
of tensor products ξα := ξ(α1,...,αd) = ξα1 ⊗·· ·⊗ξαd , α ∈ Nd

constitutes an orthonormal basis for L2(Rd). Now, introduce
an ordering in Nd by

i < j⇒
d

∑
k=1

α
(i)
k ≤

d

∑
k=1

α
( j)
k ,

where

α
(i) =

(
α
(i)
k

)d

k=1
, α

( j) =
(

α
( j)
k

)d

k=1
∈ Nd .

Using this ordering, we define ηi := ξ
α(i) = ξ

α
(i)
1
⊗ ·· · ⊗

ξ
α
(i)
d
, i ∈ N. Let J =

(
NN

0
)

c be the set of all sequences

α = (αi)i∈N with αi ∈ N0 and with compact support. For
α ∈ J, we define

Hα(ϖ) =
∞

∏
i=1

hαi(〈ϖ ,ηi〉), ϖ ∈S ∗(Rd).

Let n ∈ N, the Kondrative space of stochastic test func-
tions (S )n

1 is defined by

(S )n
1 =

{
f = ∑

α

cα Hα ∈
n⊕

k=1

L2(µ) : cα ∈ Rn and

‖ f‖2
1,k := ∑

α

c2
α(α!)2(2N)kα < ∞ ∀k ∈ N

}
,

and the Kondrative space of stochastic distributions (S )n
−1 is

defined by

(S )n
−1 =

{
F = ∑

α

bα Hα : bα ∈ Rn and

‖F‖2
−1,k := ∑

α

b2
α(2N)−qα < ∞ for some q ∈ N

}
.

The family of seminorms ‖ f‖1,k, k ∈N produces a topol-
ogy on (S )n

1 and (S )n
−1 can be represented as the dual of

(S )n
1 under the action 〈F, f 〉 = ∑α(bα ,cα)α!, where F =

∑α bα Hα ∈ (S )n
−1, f = ∑α cα Hα ∈ (S )n

1, and (bα ,cα) is the
usual scalar product on Rn.

The Wick product of two distributions F = ∑α aα Hα ,
G = ∑β bβ Hβ ∈ (S )n

−1 with aα ,bβ ∈ Rn is defined by

F �G = ∑
α,β

(aα ,bβ )Hα+β .

Let F = ∑α aα Hα ∈ (S )n
−1 with aα ∈ Rn. The Hermite

transform of F is defined by

H F(z) = F̃(z) = ∑
α

aα zα ∈ Cn (when convergent),

where z = (z1,z2, . . .) ∈ CN and zα = Π∞
i=1zαi

i , with α =

(α1,α2, . . .) ∈ J and z0
i = 1.

For F,G ∈ (S)n
−1, by the definition of Hermite transform,

we have
F̃ �G(z) = F̃(z)G̃(z)

for all z such that F̃(z) and G̃(z) exist. The multiplica-
tion on the right hand side of the above equality is the
complex bilinear multiplication in Cn which is defined by
(z1

1, . . . ,z
1
n)(z

2
1, . . . ,z

2
n) = ∑

n
i=1 z1

i z2
i , where zk

i ∈ C. Hence, the
Hermite transform converts the Wick product into the usual
product and the convergence in (S )n

−1 into pointwise and
bounded convergence in a specific neighborhood of zero in
Cn. For more details about stochastic Kondrative spaces,
Wick product, and Hermite transform, we refer the reader to
Ref. [23].

In what follows, the stochastic distribution process (or
(S )n

−1-process) is a measurable function u from Rd into
(S )n

−1. Moreover, if the (S )n
−1-valued function u is contin-

uous, differentiable, C1, Ck, etc., then the process u has the
same properties, respectively. Now, for q < ∞, r > 0, consider
the infinite-dimensional neighborhoods Nq(r) = {(z1,z2, . . .)

∈ CN : ∑α 6=0 |zα |2(2N)qα < r2} of zero in CN.[23] To investi-
gate the stochastic conformable PDEs, we need the following
results.
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Lemma 1[14,23] Suppose X(t,ϖ) and Y (t,ϖ) are
(S )−1-processes such that (i) Dα

t X̃(t,z) = Ỹ (t,z) for each
(t,z) ∈ (a,b)×Nq(r) and (ii) Ỹ (t,z) is a bounded function for
(t,z) ∈ (a,b)×Nq(r) and continuous with respect to t ∈ (a,b)
for each z ∈ Nq(r). Then X(t,ω) has an α-order conformable
derivative and for each t ∈ (a,b),

Dα
t X(t,ω) = Y (t,ω) in (S )−1. (6)

Lemma 2[14,23] Let X(t) be an (S )−1-process. Suppose
there exist q < ∞, r > 0 such that

sup{X̃(t,z) : t ∈ [a,b], z ∈ Nq(r)}< ∞ (7)

and X̃(t,z) is a continuous function with respect to t ∈ [a,b]
for each z ∈ Nq(r). Then the α-order conformable integral op-
erator of X(t) exists and

˜Iα,aX(t)(z) = Iα,aX̃(t,z),

for α, a≥ 0, t ∈ [a,b], z ∈ Nq(r). (8)

Now, consider a conformable nonlinear PDE in the form

P(u,x, t,Dα
t u,Dα

x u,D2α
x u,D3α

x u, . . .) = 0, (9)

where u = u(x, t) is the unknown function and P is a polyno-
mial in u and its conformable derivatives. To obtain travelling
wave solutions for Eq. (9), we use the following wave trans-
formation:

u = u(ξ ), ξ (x, t) = k
(

xα

α

)
+ω

∫ t

a

θ(τ)

τ1−α
dτ, (10)

where a > 0,k,c are constants and θ is a nonzero function to
be determined later. Hence, equation (10) converts Eq. (9) to
a nonlinear ordinary differential equation

Q
(

ξ ,u,k
du
dξ

,cθ
du
dξ

,k2 d2u
dξ 2 ,k

3 d3u
dξ 3 , . . .

)
= 0. (11)

Subsequently, the transformed equation (11) can be solved by
using the Exp-function method as in the following section.

Theorem 3[23] Suppose u(x, t,z) is a solution (in the
usual strong and pointwise sense) of the equation

Ω̃(x, t,Dα
t ,D

α
x1
, . . . ,Dα

xd
,u,z) = 0, (12)

for (x, t) in some bounded open set 𝐷 ⊂ Rd×R+, and for all
z ∈ Nq(r), for some q,r. Moreover, suppose that u(x, t,z) and
all its conformable derivatives which are involved in Eq. (12)
are (uniformly) bounded for (x, t,z) ∈𝐷×Nq(r), continuous
with respect to (x, t) ∈ 𝐷 for each z ∈ Nq(r), and analytic
with respect to z ∈ Nq(r), for all (x, t) ∈𝐷. Then there ex-
ists U(x, t) ∈ (S )−1 such that u(x, t,z) = Ũ(t,x)(z) for all
(t,x,z) ∈𝐷×Nq(r) and U(x, t) solves (in the strong sense)
the equation

Ω
�(x, t,Dα

t ,D
α
x1
, . . . ,Dα

xd
,U,ω) = 0 in (S )−1. (13)

3. Exact solutions for Eq. (1)

Applying Hermite transform to Eq. (1), we get the con-
formable deterministic equation

Dα
t Ũ(x, t,z)+ R̃(t,z)Ũ(x, t,z)Dα

x Ũ(x, t,z)

+S̃(t,z)D3α
x Ũ(x, t,z) = 0, (14)

where z = (z1,z2, . . .) ∈ (CN)c. To obtain traveling wave so-
lutions to Eq. (14), we introduce the transformations R̃(t,z) =
r(t,z), S̃(t,z) = s(t,z), Ũ(x, t,z) = u(x, t,z) = u(ξ (x, t,z)) with

ξ (x, t,z) = k
(

xα

α

)
+ω

∫ t

a

θ(τ,z)
τ1−α

dτ, (15)

where k,ω are arbitrary constants and θ is a nonzero function
to be determined. Hence, equation (14) can be converted to
the following NODE:

ωθ
du
dξ

+ kru
du
dξ

+ k3s
d3u
dξ 3 = 0. (16)

According to the Exp-function method, equation (16) can be
solved by expanding its general solution in terms of the expo-
nential function as follows:

u(ξ ) =
∑

d
n=−c an(t,z)exp(nξ )

∑
q
m=−p bm(t,z)exp(mξ )

, (17)

where c, d, p, and q are freely chosen positive integers and an,
bm are functions to be determined. Alternatively, we can write
Eq. (17) as follows:

u(ξ ) =
ac exp(cξ )+ · · ·+a−d exp(−dξ )

bp exp(pξ )+ · · ·+b−q exp(−qξ )
. (18)

By balancing the highest order linear and nonlinear terms in
Eq. (18), we can determine the numbers c and p. By simple
calculation, we get p = c. Similarly, by balancing the lowest
order linear and nonlinear terms in Eq. (18), we can determine
the numbers d and q. Hence, we can obtain d = q.

Now, for some special cases of the numbers p,c,d, and q,
we can express the general solution of Eq. (16) as follows.

Case I If we set p = c = 1 and d = q = 1, then equa-
tion (18) becomes

u(ξ ) =
a1 exp(ξ )+a0 +a−1 exp(−ξ )

b1 exp(ξ )+b0 +b−1 exp(−ξ )
. (19)

Substituting Eq. (19) into Eq. (16), collecting the coefficients
of exp(ξ ) and equating them to zero give a system of alge-
braic equations in a0,a1,a−1,b0,b1,b−1, and θ . Solving this
system with the aid of Mathematica, we have the following set
of solutions:

a0 =
b0

b1

(
a1 +6b1k2 r

s

)
, a−1 =

a1b2
0

4b2
1
,

b−1 =
b2

0
4b1

, θ =− kr
ωb1

(
a1 +b1k2 r

s

)
,

(20)

where a1,b1, and b0 are free parameters. Substituting the val-
ues (20) into Eq. (19) and using Eq. (15), we obtian a soliton
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wave solution of Eq. (14) as follows:

u1(x, t,z) =
a1

b1
+

6b0k2r(t,z)
s(t,z)

[
b1 exp

(
k

(
xα

α

)

−
∫ t

a

kr(τ,z)
(
a1s(τ,z)+b1k2r(τ,z)

)
b1τ1−α s(τ,z)

dτ

)

+b0 +
b2

0
4b1

exp

(
−k

(
xα

α

)

+
∫ t

a

kr(τ,z)
(
a1s(τ,z)+b1k2r(τ,z)

)
b1τ1−α s(τ,z)

dτ

)]−1

. (21)

Case II If we set p = c = 2 and d = q = 2, then equa-
tion (18) can be reduced to the form

u(ξ)=
a2exp(2ξ)+a1exp(ξ)+a0+a−1exp(−ξ)+a−2exp(−2ξ)

b2exp(2ξ)+b1exp(ξ)+b0+b−1exp(−ξ)+b−2exp(−2ξ)
.

(22)
For simplicity, we put b1 = b−1 = 0 and b2 = 1. Then, equa-
tion (22) becomes

u(ξ)=
a2exp(2ξ)+a1exp(ξ)+a0+a−1exp(−ξ )+a−2exp(−2ξ )

exp(2ξ)+b0+b−2exp(−2ξ )
.

(23)
Inserting Eq. (23) into Eq. (16), collecting the coefficients of
exp(ξ ) and equating them to zero give a system of algebraic
equations in a0, a1, a2, a−1, a−2, b0, b−2, and θ . Solving this
system with the aid of Mathematica, we have the following set
of solutions:

a0=
a2

1(γ1−11k3)s
72k5r

,a2=
(γ1 + k3)r

ks
, a−1=

a3
1s2

144k4r2 ,

a−2=
a4

1(γ1+k3)s3

20736k9r3 , b0=
a2

1s2

72k4r2 , b−2=
a4

1s4

20736k8r4 , θ=
γ1

ω
r,

(24)
where a1 and γ1 are free parameters. Substituting the values
(24) into Eq. (23) and using Eq. (15), we obtain a soliton wave
solution of Eq. (14) as follows:

u2(x, t,z) =−
(γ1+k3)r(t,z)

ks(t,z)
+a1

[
exp
(

k
(

xα

α

)
+γ1

∫ t

a

r(τ,z)
τ1−α

dτ

)
+

a1s(t,z)
6k2r(t,z)

+
a2

1s2(t,z)
144k2r2(t,z)

×exp
(
−k
(

xα

α

)
−γ1

∫ t

a

r(τ,z)
τ1−α

dτ

)]−1

. (25)

Case III If we set p = c = 2 and d = q = 1, then equa-
tion (18) becomes

u(ξ ) =
a2 exp(2ξ )+a1 exp(ξ )+a0 +a−1 exp(−ξ )

b2 exp(2ξ )+b1 exp(ξ )+b0 +b−1 exp(−ξ )
. (26)

For simplicity, we set b2 = 1. Similarly, by the above proce-
dure, we obtain

a0=

(
a1k+b1

(
γ2+k3

)r
s

)(
a1γ2k−7a1k4+b1

(
γ2

2−14γ2k3+33k6
)r
s

)
48k7

(r
s

) ,

a−1=

(
γ2+k3

)(
a1k+b1

(
γ2+k3

)r
s

)
2
(
a1k+b1

(
γ2−5k3

)r
s

)
864k10

(r
s

)2 ,

b0=−

(
a1k+b1

(
γ2+k3

) r
s

)(
a1k+b1

(
γ2−7k3

)r
s

)
48k6

( r
s

)2 ,

b−1=−

(
a1k+b1

(
γ2+k3

) r
s

)
2
(
a1k+b1

(
γ2−5k3

) r
s

)
864k9

( r
s

)3 ,

a2 =−
(γ2 + k3)r

ks
, θ =

γ2

ω
r, (27)

where a1,b1, and γ2 are free parameters. Substituting the val-

ues (27) into Eq. (26) and using Eq. (15), we obtain a soliton

wave solution of Eq. (14) as follows:

u3(x, t,z) =−
(γ2 + k3)r(t,z)

ks(t,z)
+144k5

δ (t,z)
(

r(t,z)
s(t,z)

)2

×

[
144k6

(
r(t,z)
s(t,z)

)2

exp
(

k
(

xα

α

)
+ γ2

∫ t

a

r(τ,z)
τ1−α

dτ

)
+24k3

δ (t,z)
(

r(t,z)
s(t,z)

)
+δ

2(t,z)

×exp
(
−k
(

xα

α

)
− γ2

∫ t

a

r(τ,z)
τ1−α

dτ

)]−1

, (28)

where δ (t,z) = a1k+b1(γ2 + k3)
r(t,z)
s(t,z)

.

Assume that k is an imaginary number, the above soliton

wave solutions can be transformed to periodic solutions[19,20]

according to the transformations
k = i K,

e iφ = cosφ + i sinφ ,

e−iφ = cosφ − i sinφ .

(29)

Then, the solution (21) becomes

u1,1(x, t,z) =
a1

b1
− 6b0K2r(t,z)

s(t,z)

[
µ cos

(
K
(

xα

α

)

−
∫ t

a

Kr(τ,z)
(
a1s(τ,z)+b1K2r(τ,z)

)
b1τ1−α s(τ,z)

dτ

)

+b0 + i ν sin
(

K
(

xα

α

)

+
∫ t

a

Kr(τ,z)
(
a1s(τ,z)+b1K2r(τ,z)

)
b1τ1−α s(τ,z)

dτ

)]−1

, (30)

where µ = b1 +
b2

0
4b1

and ν = b1−
b2

0
4b1

. In order to obtain real

periodic solutions, the imaginary part in Eq. (30) must be van-

ishing. For this, we set ν = 0, then we have b0 = ±2b1. So,

we get the following periodic solutions to Eq. (14):
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u1,2(x, t,z) =
a1

b1
− 6K2r(t,z)

s(t,z)

[
cos

(
K
(

xα

α

)
−
∫ t

a

Kr(τ,z)
(
a1s(τ,z)+b1K2r(τ,z)

)
b1τ1−α s(τ,z)

dτ

)
+1

] , (31)

u1,3(x, t,z) =
a1

b1
+

6K2r(t,z)

s(t,z)

[
cos

(
K
(

xα

α

)
−
∫ t

a

Kr(τ,z)
(
a1s(τ,z)+b1K2r(τ,z)

)
b1τ1−α s(τ,z)

dτ

)
−1

] . (32)

Following the same technique as presented for the solu-
tion (21), we can convert the soliton wave solutions (25) and
(28) to periodic solutions. Obviously, we can find different
soliton and periodic wave solutions for Eq. (14) by setting dif-
ferent values for the numbers p,c,d, and q.

The properties of the exponential and trigonometric func-
tions yield that there exists a bounded open set 𝐷 ⊂ R×R+,
q < ∞,r > 0 such that the solution u(x, t,z) of Eq. (14) and
all its derivatives which are involved in Eq. (14) are uni-
formly bounded for (x, t,z) ∈𝐷×Nq(r), continuous with re-
spect to (x, t) ∈𝐷 for all z ∈ Nq(r), and analytic with respect
to z ∈ Nq(r), for all (x, t) ∈𝐷. From Theorem 3, there ex-
ists U(x, t) ∈ (S )−1 such that u(x, t,z) = Ũ(x, t)(z) for all
(x, t,z) ∈ 𝐷 × Nq(r) and U(x, t) solves Eq. (1) in (S )−1.
Hence, by applying the inverse Hermite transform to Eqs. (21),
(25), (28), (31), and (32), we obtain the exact solutions of
Eq. (1) as follows:

(I) Stochastic soliton wave solutions

U1(x, t) =
a1

b1
+

6b0k2R(t)
S(t)

�

[
b1 exp�

(
k
(

xα

α

)

−
∫ t

a

kR(τ)�
(
a1S(τ)+b1k2R(τ)

)
b1τ1−α S(τ)

dτ

)

+b0 +
b2

0
4b1

exp�
(
−k
(

xα

α

)

+
∫ t

a

kR(τ)�
(
a1S(τ)+b1k2R(τ)

)
b1τ1−α S(τ)

dτ

)]�(−1)

, (33)

U2(x, t) =−
(γ1 + k3)R(t)

kS(t)

+a1

[
exp�

(
k
(

xα

α

)
+γ1

∫ t

a

R(τ)
τ1−α

dτ

)
+

a1S(t)
6k2R(t)

+
a2

1S�2(t)
144k2R�2(t)

�exp�
(
−k
(

xα

α

)
−γ1

∫ t

a

R(τ)
τ1−α

dτ

)]�(−1)

, (34)

U3(x, t) =−
(γ2 + k3)R(t)

kS(t)
+144k5

∆(t)�
(

R(t)
S(t)

)�2
�

[
144k6

(
R(t)
S(t)

)�2
exp�

(
k
(

xα

α

)
+ γ2

∫ t

a

R(τ)
τ1−α

dτ

)
+24k3

∆(t)�
(

R(t)
S(t)

)
+∆

�2(t)

�exp�
(
−k
(

xα

α

)
− γ2

∫ t

a

R(τ)
τ1−α

dτ

)]�(−1)

, (35)

where ∆(t) = a1k+b1(γ2 + k3)
R(t)
S(t)

.

(II) Stochastic periodic wave solutions

U1,2(x, t) =
a1

b1

− 6K2R(t)

S(t)�

[
cos�

(
K
(

xα

α

)
−
∫ t

a

KR(τ)�
(
a1S(τ)+b1K2R(τ)

)
b1τ1−α S(τ)

dτ

)
+1

] ,
(36)

U1,3(x, t) =
a1

b1

+
6K2R(t)

S(t)�

[
cos�

(
K
(

xα

α

)
−
∫ t

a

KR(τ)�
(
a1S(τ)+b1K2R(τ)

)
b1τ1−α S(τ)

dτ

)
−1

] .
(37)

4. Example and numerical simulation
In this section, we provide specific application example

and numerical simulation to demonstrate the effectiveness of
our results and to justify the real contribution of these results.
We observe that the solutions of Eq. (1) are strongly depend
on the shape of the given functions R(t) and S(t). So, for dis-
similar forms of R(t) and S(t), we can find dissimilar solutions
of Eq. (1) which come from Eqs. (33)–(37). We illustrate this
by giving the following example.

Assume that α = 1, R(t) = ρS(t), and S(t) = f (t)+σWt ,
where ρ and σ are arbitrary constants, f (t) is a bounded mea-
surable function on R+, and Wt is the Gaussian white noise
which is the time derivative (in the strong sense in (S )−1)
of the Brownian motion Bt . The Hermite transform of Wt is
given by W̃t(z) = ∑

∞
i=1 zi

∫ t
0 ηi(τ)dτ .[23] Using the definition

of W̃t(z), equations (33)–(37) yield the white noise functional
solution of Eq. (1) as follows:

UB1(x, t) =
a1

b1
+6b0k2

ρ

[
b1 exp

(
kx− kρ(a1 +b1ρk2)

b1

×
[∫ t

a
f (τ)dτ +σ

(
Bt −

t2

2

)])
+b0 +

b2
0

4b1
exp
(
−kx+

kρ(a1 +b1ρk2)

b1
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×
[∫ t

a
f (τ)dτ +σ

(
Bt −

t2

2

)])]−1

, (38)

UB2(x, t) =−
ρ(γ1 + k3)

k

+a1

[
exp
(

kx+ γ1ρ

[∫ t

a
f (τ)dτ +σ

(
Bt −

t2

2

)])
+

a1

6k2ρ
+

a2
1

144k2ρ2

×exp
(
−kx−γ1ρ

[∫ t

a
f (τ)dτ+σ

(
Bt−

t2

2

)])]−1

, (39)

UB3(x, t) =−
(ργ2 + k3)

k
+144ρ

2k5
Θ

×

[
144ρ

2k6 exp
(

kx+γ2ρ

[∫ t

a
f (τ)dτ+σ

(
Bt−

t2

2

)])
+24ρk3

Θ +Θ
2

×exp
(
−kx−γ1ρ

[∫ t

a
f (τ)dτ+σ

(
Bt−

t2

2

)])]−1

, (40)

where Θ = a1k+ρb1(γ2 + k3),

UB4(x, t) =
a1

b1

− 6ρK2

cos
(

Kx−Kρ(a1+b1ρK2)

b1

[∫ t

a
f (τ)dτ+σ

(
Bt−

t2

2

)])
+1

,

(41)

UB5(x, t) =
a1

b1

+
6ρK2

cos
(

Kx−Kρ(a1+b1ρK2)

b1

[∫ t

a
f (τ)dτ+σ

(
Bt−

t2

2

)])
−1

.

(42)
The numerical simulation of the solution (38) is given in

Figs. 1 and 2 for a = 0, a1 = 0.01, b0 = b1 = 1, k = 0.01,
ρ = 1.5, σ = −2.5, and f (t) = sin2 t. Figure 1 presents
the evolutional behaviors of Eq. (38) with the noise effect
Bt = Random[0,1]× tan(1.7t), and figure 2 presents the be-
havior of Eq. (38) without the effect of stochastic term Bt = 0.
From Figs. 1 and 2, it is concluded that the stochastic forcing
term leads to the uncertainty of the wave amplitude.
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Fig. 1. (a) The 3D plot of the solution (38) and (b) contour plot
of the solution (38) under the noise effect.

Fig. 2. (a) The 3D plot of the solution (38) and (b) contour plot
of the solution (38) without the noise effect.

5. Conclusion

Due to the fact that the stochastic models are more realis-

tic than the deterministic models, we concentrate our study in

this paper on the Wick-type stochastic fractional KdV equa-

tion with conformable derivatives. Besides that, we investi-
gate and solve the deterministic fractional KdV equation with
conformable derivatives. By using the Exp-function method,
Hermite transform, and white noise theory, we produce a
new set of exact soliton and periodic wave solutions for the
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variable coefficients and fractional KdV equation with con-
formable derivatives. With the aid of inverse Hermite trans-
form, we obtain stochastic soliton and periodic wave solu-
tions for the Wick-type stochastic fractional KdV equation
with conformable derivatives. Furthermore, we show by an
example how the stochastic solutions can be given as Brow-
nian motion functional solutions. Moreover, if α = 1, then
the stochastic solutions (33)–(37) give a new set of stochastic
solutions for the Wick-type stochastic KdV equation with in-
teger derivatives.[40] Moreover, the set of solutions (21), (25),
(28), (31), and (32) gives a new set of exact solutions for the
variable coefficients and deterministic KdV equation.[47] Note
that, the schema proposed in this paper can be used for solving
several nonlinear evolution equations in mathematical physics,
both Wick-type stochastic and deterministic.

Moreover, our exact solutions can be compared with other
exact solutions which are obtained by different methods. For
example, if we set α = b1 = 1, a1 = σ0, b0 = 2, k = 2δ , a = 0,
R(t) = r(t), S(t) = s(t), and r(t) = σ1

12δ 2 s(t), where σ0, σ1, δ

are constants and r(t), s(t) are deterministic integrable func-
tions on R+. Then, the exact solution (33) becomes

U1(x, t) = σ0+4δ1

[
exp
(

2δx−2δ (3σ0+σ1)

3

∫ t

0
r(τ)dτ

)

+2+exp
(
−2δx+

2δ (3σ0+σ1)

3

∫ t

0
r(τ)dτ

)]
. (43)

Equation (43) can be rewritten in the form

U1(x, t) = σ0 +σ1sech2
[

δx−
∫ t

0

(
σ0δ r(τ)+4δ

3s(τ)
)

dτ

]
.

(44)
Equation (44) is just the solution (32) in Ref. [36], which was
obtained by an auxiliary equation method.
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