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To date, there are very few studies on the second Hopf bifurcation in a driven square cavity, although there are
intensive investigations focused on the first Hopf bifurcation in literature, due to the difficulties of theoretical analyses and
numerical simulations. In this paper, we study the characteristics of the second Hopf bifurcation in a driven square cavity by
applying a consistent fourth-order compact finite difference scheme recently developed by us. We numerically identify the
critical Reynolds number of the second Hopf bifurcation located in the interval of (11093.75,11094.3604) by bisection. In
addition, we find that there are two dominant frequencies in its spectral diagram when the flow is in the status of the second
Hopf bifurcation, while only one dominant frequency is identified if the flow is in the first Hopf bifurcation via the Fourier
analysis. More interestingly, the flow phase portrait of velocity components is found to make transition from a regular
elliptical closed form for the first Hopf bifurcation to a non-elliptical closed form with self-intersection for the second Hopf
bifurcation. Such characteristics disclose flow in a quasi-periodic state when the second Hopf bifurcation occurs.
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1. Introduction

The two-dimensional (2D) flows in driven cavities have
been extensively studied in the past 60 years,[!”’! starting
from the pioneering work by Kawaguti. Among them, sev-
eral works have contributed to establish a clear picture of the
steady solutions to the problems for Reynolds numbers up
to several thousands, mainly by employing vorticity—velocity
and biharmonis solvers. [>+]

In recent decades, scientists have shifted their research
focus on studying the first Hopf bifurcation,®-19 in which
the flow transfers its stationary state to non-stationary periodic
state. In literature, there are majorally two kinds of methods
applied to study the first Hopf bifurcation. One is through the-
oretical analyses, the other is via numerical simulations. The
first attempt was made by Hou et al.,’! who numerically pre-
dicted that the critical Reynolds number of Re.; was larger
than 7500 for the occurrence of the first Hopf bifurcation with
a lattice Boltzmann method. Immediately, Poliashenko and
Aidun!! confirmed the prediction of Hou ez al. and gave out
Re.; = 7763 +2% by a low order finite element method. It
seems true that the critical Reynolds number of the first Hopf
bifurcation is beyond 7500 both from theoretical analysis and
numerical simulation. In theoretical analysis, Fortin et al. i
predicted the critical Reynolds number of Re.; = 8000 for the
first Hopf bifurcation, through an eigenvalue analysis of the

linearized Navier—Stokes equations by means of a finite el-
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ement spatial discretization. Late, Cazemier et al.l'”! found
Re.1 was at 7819.0 through the eigenvalue analysis of the lin-
earized Navier—Stokes equations but with a proper orthogonal
decomposition to solve the linearized system. On the numeri-
cal side. Auteri et al.!'3! applied a singularity subtraction tech-
nique and second-order spectral projection method to locate
the Rec; was in the interval (8017.6,8018.8). They claimed
that an asymptotic solution existed when Reynolds number
was less than Re.; and the asymptotic solution would become
periodic when Reynolds number was larger than Re;;. More
recently, Bruneau et al. 1] calculated Reo; was in the interval
(8000, 8050) by a third-order Murman-like scheme.

With the increase of Reynolds number, the flow expe-
riences transition from the first Hopf bifurcation to the sec-
ond Hopf bifurcation, where the flow is supposed to be un-
der a quasi-periodic state. Due to the second bifurcation is
a further bifurcation of flow instability, it is very difficult to
get useful information under the frame of eigenvalue analysis
of the linearized Navier—Stokes equations. To date, one can
only use numerical simulations to make investigation and very
few results disclosed. Auteri ef al.!'3] numerically forecasted
the second Hopf bifurcation with a critical Reynolds number,
Recy, located in the interval of (9685,9765). Because the flow
instability starts from the wall boundary layer, where it be-
comes very thinner under a high Reynolds number. To predict
the second bifurcation, the boundary layer has to be resolved
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accurately with either very fine mesh or high order numeri-
cal method. This makes the numerical simulation very costly
and challenging. In even worse case, recently, it was found by
us!#! that a high order method might suffer numerical instabil-
ity inside the wall boundary layer if a lower order treatment of
boundary conditions is equipped. Such lower order techniques
of wall treatment are very popular in applications of high order
numerical methods. To fix this problem, we have developed a
consistent fourth-order compact finite difference scheme, ']
in which both the order of accuracy and major truncation error
term are kept the same for the inner and boundary schemes.
Such a high order scheme can efficiently suppress the numeri-
cal instability insider the wall boundary layer.

In this work, we will apply the consistent fourth-order
compact finite difference scheme to study the characteristics
of the second Hopf bifurcation in the driven square cavity. In
addition, we employ bisection to locate the critical Reynolds
number and analyze the characteristics of the second Hopf bi-
furcation with Fourier analysis and phase diagram. We dis-
cover that the flow phase portrait makes transition from a reg-
ular elliptical closed form for the first Hopf bifurcation to a
non-elliptical closed form with self-intersection when the sec-
ond Hopf bifurcation occurs, indicating a quasi-periodic flow
behavior.

2. Model description and numerical methods
2.1. Governing equations

In this paper, the 2D lid—driven cavity problems are con-
sidered and governed with the 2D incompressible Navier—
Stokes equations given in the non-dimensional vorticity—
stream function in the form as

Wxx+ll’yy:_€a (D

&+t vy = o (Bt &), @

where u and v are the velocity components in x and y direc-
tions, respectively, Re is the Reynolds number and u = v,
v = —Vy,. Equation (1) is referred to as the stream function
equation, equation (2) is referred to as the vorticity equation.

The computational domain is set to {(x,y)|0 <x < 1,0 <
y < 1}. The boundary conditions are given as follows:

y=1: u=1v=0, y=0,

y=0: u=0,v=0, y=0,

x=0,1:u=0,v=0, y=0.
Because the vorticity on the wall is unknown, in the pro-
cess of solving the Eq. (2), the condition of vorticity on the
boundary must be supplemented. In this paper, the numerical

boundary conditions of vorticity in Ref. [15] are used, namely,

h(6& +4& — &) /21 +o(h*)

= (15y1 — 16y + y3)/(14h) £ V,,,

where the subscripts 1, 2, 3 represent the boundary points, its
neighbor, and sub-neighbor points, respectively. V,, is the tan-
gential velocity of the wall. On the sliding wall, V;, = 1. On
the solid wall, V,, = 0.

In Fig. 1, the typical flow pattern in a driven cavity is
illustrated, where there is a primary vortex (PV) at the center,
three corner vortexes locate respectively at the bottom (bottom
left vortex (BL), bottom right vortex (BR), and the top (top left
vortex (TL)).
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Fig. 1. The lid-driven cavity problem: (a) boundary condition and (b) the
schematic diagram.

2.2. Numerical methods

The numerical method employed in this work is the con-
sistent fourth-order compact finite difference scheme devel-
oped by Wang et al.!'* One can refer to Ref. [14] for details.
After the spatial discretization with the consistent fourth-order
compact finite difference scheme, an explicit third-order TVD
Runge—Kutta scheme (for details see Ref. [16]) was used to do
time discretization.

Mesh convergency for the numerical method has been
carried out with a driven square cavity with Re = 10000. Ta-
ble 1 shows the amplitude values and periodic lengths of the
u-velocity when the fluid reaches the periodic state ( = 2000)
using three uniform meshes (65 x 65,129 x 129 and 257 x 257)
at Re = 10000.
129 x 129 are in good agreement with those under fine grid

It can be seen that the results under grid

257 x 257 and the maximum error is less than 1%.

Table 1. Comparison of the amplitude values and periodic lengths of the
u-velocity when the fluid reaches the periodic state at Re = 10000.

Grid points  Amplitude value Error/% Periodic lengths Error/%
65 x 65 0.000137 1.481 1.806 0.6600

129 x 129 0.000135 0.735 1.818 0.0549

257 x 257 0.000136 - 1.819 -

Based on the mesh convergences test of the above bench-
mark simulation, in this paper, we take the time step size of
At =1 x 1073 and solve the system with 129 x 129 uniform

grids in the numerical simulations.
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3. Results and discussion 0 =
We determine the different states of the flow according to —0.01 \
the time evolution of velocity at a fixed point (x,y) = (0.5,0.5) 3 —0.02
of the cavity. 0.03
3.1. The critical Reynolds number of the second Hopf bi- 70.040 000 5050 2000
furcation t
From the introduction, it is known that the flow in a driven f f | (b)
square cavity becomes periodic when the Reynolds number is —0.0236 -y ””” TN
larger than a critical number of Re.;, which is beyond 7500. s —0.0238) ‘ _ HALH- - WL
We confirmed that the flow at Re = 10000 is still periodic in :
its first Hopf bifurcation as done by Tian er al.l'’! We calcu- —0-0240 b T T
lated the flow with a higher Re = 12500 for 7 from 0 to 3000 as T oy T T Y
shown in Figs. 2(a) and 3(a) for the evolution of u-velocity and t
v-velocity at the geometric center point. We give the enlarged  gig 2. The time history of u-velocity for Re = 12500: (a) total time; (b)
Figs. 2(a) and 3(a) for ¢ from 2960 to 3000 and found that the local time.
flow was under quasi-period as shown in Figs. 2(b) and 3(b) 0.015
for the evolution of u-velocity and v-velocity at the geometric (a)
center point. From the enlarged figures, one can see that the 0.010
flow from the initial unstable state converges eventually into a ~0.005
quasi-periodic state. 0
As a result, the critical Reynolds number of Re; is lo- 0 ) 3000 3600
cated in between Re = 10000 and Re = 12500. Now, we find t
the Re.; via bisection. Starting from ag = 10000, by = 12500,
if at Re = (ax +by)/2, we get periodic solution, then we let 0.0102 | I A A >
ar = (ar +by)/2; If at Re = (ay + by) /2, we get quasi-periodic -~ 0.0010 M\Mﬂ \ AIMA /\Aﬂ/\[\/\ M{\/\ ﬂ
solution, then we let by = (ay + by)/2. We repeat this process UU V\/ U U V\N \} U \}WU \va V\I
and carry out the dichotomy for 12 times, and then we obtain 0.0098 v v ¥ v

very small interval. Finally, in thi he Re.» h n
a very small interva ally, in this way, the Re., has bee 2960 5670 5630 55503900

localized in the small interval (11093.75,11094.3604). Ta- ¢
ble 2 shows the process of localizing the range of the Rec, by Fig. 3. The time history of v-velocity for Re = 12500: (a) total time; (b)
bisection. local time.

Table 1. The process of bisection for confirming Rec;.

k ax by (ax+br)/2 Solution Reer

0 10000 12500 11250 quasi-periodic (11250,12500)

1 10000 11250 10625 periodic (10625,11250)

2 10625 11250 10937.5 periodic (10937.5,11250)

3 10937.5 11250 11093.75 periodic (11093.75,11250)

4 11093.75 11250 11171.875 quasi-periodic (11093.75,11171.875)
5 11093.75 11171.875 11132.8125 quasi-periodic (11093.75,11132.8125)
6 11093.75 11132.8125 11113.2812 quasi-periodic (11093.75,11113.2812)
7 11093.75 11113.2812 11103.5156 quasi-periodic (11093.75,11103.5156)
8 11093.75 11103.5156 11098.6328 quasi-periodic (11093.75,11098.6328)
9 11093.75 11098.6328 11096.1914 quasi-periodic (11093.75,11096.1914)
10 11093.75 11096.1914 11094.9707 quasi-periodic (11093.75,11094.9707)
11 11093.75 11094.9707 11094.3604 quasi-periodic (11093.75,11094.3604)

In a series of Figs. 4 and 5 we present the time history of u(¢) for different Reynolds numbers. In these graphes, we can
clearly see that during the process of determining the critical Reynolds number, the function u(¢) solution is either periodic or
quasi-periodic.
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Fig. 4. The time history of u-velocity for different Reynolds numbers: (al)—(f1) total time, (a2)—(f2) local time.

3.2. The analysis of second Hopf bifurcation flow is in the status of its first Hopf bifurcation, for the latter

the flow is in its second Hopf bifurcation. Since the properties

We analyze the flow behavior from the time history of  of y-velocity and v-velocity are the same, we only look at the

flow velocity, its spectrum and phase diagram for two specific ~ behavior of the u-velocity. In this way, we may have a clear
Reynolds numbers of Re = 10000, 12500. For the former, the understanding of the nature of the second bifurcation.
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Fig. 5. The time history of u-velocity for different Reynolds numbers: (al)—(f1) total time, (a2)—(f2) local time.

Figures 6(a) and 6(b) show their time histories of u-
velocity for the respective Re = 10000 and Re = 12500;
the solutions clearly exhibit periodic behaviors with non-
dimensional periodic lengths of 7 = 1.818 for the former and
T = 1.429 for the latter.

The flow behaviors looks very different from Figs. 6(a)
and 6(b). We took Fourier analysis from r = 2960 to t = 2970.
The results are shown in Figs. 7(a) and 7(b) for the power
spectrum density of u(¢) for the respective Re = 10000 and
Re = 12500. There is only one frequency of f = 0.55005
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found for the flow at Re = 10000, while there are two dis-
tinct frequencies for the flow at Re = 12500, one with a fre-
quency of f; = 0.38654 and the other with a frequency of
f>=0.77309. This show that the flow at Re = 10000 is peri-
odic, while it is in the quasi-periodic behavior at Re = 12500.

We further plotted the phase portraits by using the delay
coordinates u(z) and u(z + 7) with 7 = 1.818 for Re = 10000

—0.0258 : :

| | @

—0.0259 - A A-F AR AR AR AR AR A AR -
3 —0.0260 P HH ; i
0026 RV TV
2960 2970 2980 2990 3000

t

and 7 = 1.429 for Re = 12500, respectively. The results are
shown in Figs. 8(a) and 8(b). One can observe that a perfect el-
liptic cycle formed for Re = 10000, while a non-ellipse closed
pattern formed with self-intersection for Re = 12500. These
features further confirms that the flow is in stable period under
the first Hopf bifurcation and in quasi-period for the second
Hopf bifurcation.

—0.0236

—0.0238¢

—0.0240}

2980 2990

t

2960 2970 3000

Fig. 6. The local time history of u-velocity for (a) Re = 10000 with 7 = 1.818 and (b) Re = 12500, 7 = 1.429.
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Fig. 8. Phase portrait of u() for (a) Re = 10000, T = 1.818 and (b) Re = 12500, T = 1.429.

In all, when Re € (10000,Re;), the flow state is peri-
odic, which is similar to that for Re = 10000 although the
periodic value is different for different Re. And when Re €
(Recy,12500), the flow state is quasi-periodic, which is sim-
ilar to that for Re = 12500 although the two frequencies are
different for different Re.

0 stable stationary
A stable periodic

® quasi-periodic

0000
AAAANA
1 1
1 1
00000! :
1 1
I | I | I
7500 Rees 1000 Ree 12500

Fig. 9. Bifurcation diagram.

Finally, we plot the findings in Fig. 9 to give a qualita-
tive summary. The flow is stationary below Re., periodic in
Re € (Rec1,Rec), and quasi-periodic in Re € (Rec, 12500).

4. Conclusion

In this paper, we investigated the flow properties un-
der its second Hopf bifurcation in a driven square cavity
by applying a consistent fourth-order compact finite differ-
ence scheme. We have located the critical Reynolds number
of the second Hopf bifurcation in a very narrow interval of
(11093.75,11094.3604). Moreover, by analyzing the spec-
trum and phase portrait, we found that there are two domi-
nant frequencies and the phase portrait changes from an ellipse
closed form to the non-ellipse closed form, when the flow is
in the status of the second Hopf bifurcation. We conjecture
that the flow might experience further bifurcation before it be-
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comes turbulent. This will be our future work.
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