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Applicability of coupling strength estimation for linear chains of
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The characterization of an unknown quantum system requires the Hamiltonian identification. The full access to
the system, however, is usually restricted, hindering the direct retrieval of the relevant parameters, and a reliable indirect
estimation is usually required. In this work, based on the reformulated form of the original algorithm of Burgarth et al.
[Phys. Rev. A 79 020305 (2009)], the robustness of the estimation scheme against numerous sources of errors during
the actual measurement is analyzed. The scheme is numerically studied for sites with a chain structure, exploring its
applicability against observational errors including the limited signal-noise ratio and the finite spectral width. The spectral
distribution of the end site is shown to determine the applicability of the method, and reducing the influence from truncated
spectral components is critical to realize the robust reconstruction of the coupling strengths.
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1. Introduction

The accurate control of the Hamiltonian of the designed
systems is always a prerequisite to carry out desired tasks,
e.g., quantum computation,[1,2] quantum communication,[3]

and quantum metrology.[4–7] The systems are usually micro-
scopic structures which are delicately engineered to realize
specific functions. To verify and benchmark these fabricated
structures, the characterization of the system via Hamiltonian
identification is desired.[8] Usually, the dynamics within the
system are extremely complicated, and the probing access is
often restricted. A delicately devised identification scheme is
supposed to allow the sensible estimation of the unknown pa-
rameters, reconstructing the Hamiltonian indirectly based on
partially available information, e.g., the a priori knowledge
about the structure of the quantum network, the initial state, or
an accessible subset of observables, et al.

Under the challenge of complicated dynamics and re-
stricted addressing resources, various identification algorithms
have been developed aiming at experimental realizations. In
a many-body system, the dynamical decoupling technique,
which simplifies the problem by decoupling each pair of qubits
from the rest, allows for the Hamiltonian identification with
arbitrary long-range couplings between qubits.[9] Besides, the
dynamics can be altered by tuning the control pulse that is
applied to the probe spin, improving the precision of the esti-
mation scheme.[10,11] In a network of limited access, the iden-

tification scheme is intended to bridge the Hamiltonian param-
eters and the observables from accessible subsystems that are
relatively easy to measure. The system realization theory is
proposed for the temporal record of the observables of a lo-
cal subsystem,[12,13] which has been experimentally demon-
strated on a liquid nuclear magnetic resonance quantum infor-
mation processor.[14] The Zeeman marker protocol shows that
local field-induced spectral shifts can be used to estimate pa-
rameters in spin chains or networks.[15] Also, when the graph
infection rule is satisfied, the similar parameter estimation is
also available by utilizing the spectral information retrieved
from a partially accessible spin.[16,17] Recently, a framework
for inferring local Hamiltonians is proposed that recovers a
short-ranged Hamiltonian on a large system by measuring the
observables in a Gibbs state or a single eigenstate.[18]

In this work, we revisit the estimation algorithm proposed
in Ref. [16] and focus on its applicability when the acquired
initial data deviate from the actual values. The procedure,
probing the global properties from a local site, is similar to
the estimation of spring constants in classical-harmonic oscil-
lator chains. By accessing only the end of the linear chain,
the algorithm allows deducing all coupling strengths from the
data of the associated spectral information. Nevertheless, the
errors of the input data are inevitable and may significantly in-
fluence the reconstruction results. The simulations show that
the spectral distribution is an important indicator of the ap-
plicability of the algorithm. Examining the spectral distribu-
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tion, the increasing number of spectral components that ap-
proach zero are likely to fail the reconstruction. The appli-
cability depends on both the properties of the individual sys-
tem and conditions of measurement. Though there exist vari-
ous Hamiltonian identification techniques (e.g., the ERA), the
chain structure investigated here being simple allows for the
direct presentation of the reconstruction procedure in our work
to estimate the Hamiltonian parameter and elucidate possible
sources of errors in the restricted system. Moreover, the sim-
plicity of the original model and the explicit recursive formula
allow us to track intuitively how the initial measurement er-
rors propagate along the chain and to quantitatively assess the
robustness of the reconstruction algorithm. The work is orga-
nized as follows. In Section 2, the recursive relations among
spectral coefficients and coupling strengths from adjacent sites
are derived. In Section 3, the robustness and the availability of
the algorithm are discussed under different conditions when
the input errors are introduced.

2. Theory of coupling strength estimation
We consider the state transfer within a system governed

by the generic Schrödinger equation i∂t |Ψ(t)〉 = Ĥ|Ψ(t)〉.
With the wave function represented in basis set {|i〉}, |Ψ(t)〉=
∑i ci(t)|i〉, the Hamiltonian is Ĥ = ∑i εi|i〉〈i|+∑i 6= j Ji, j|i〉〈 j|
with εi the on-site energy and Ji, j the coupling strength. Thus,
the Schrödinger equation in the matrix form reads

ċi =−iεici− i ∑
k∼i

Ji,kck, (1)

where the symbol “∼” means the two sites are coupled.
With amplitude ci = 〈i|Ψ(t)〉 represented spectrally, ci =

∑n Ci,ne−iλnt , where Ci,n = 〈i|λn〉〈λn|ψ(0)〉 is the spectral co-
efficient of mode n. The relation of Ci,n among the coupled
sites reads

Ci,n =
1

λn− εi
∑
k∼i

Ji,kCk,n. (2)

The relation allows estimating the parameters using the infor-
mation retrieved from a subset of sites under the restricted-
access condition. The simplest example is a linear chain as
shown in Fig. 1, where only the leftmost site 1 is accessible.
Given an N-site chain with energies εi known, all coupling
strengths Ji,i+1 can be reconstructed using the spectral infor-
mation simply read from site 1.

The feasibility of the scheme can be shown by the repet-
itive use of Eq. (2) and the normalization condition 〈i|i〉 = 1.
Given the eigenmode n, the C1,n of the leftmost site 1 allows
deriving C2,n of the next one,

C2,n =
λn− ε1

J12
C1,n. (3)

Given that only Ji,k with k = i±1 are nonvanishing in the lin-
ear chain, the repetitive use of Eq. (2) yields the coefficients of

subsequent sites recursively,

Ci+1,n =
(λn− εi)Ci,n− Ji−1,iCi−1,n

Ji,i+1
. (4)

The denominator Ji,i+1 should be non-zero, since a “broken”
coupling forbids the retrieval of the information on the further
site. Equations (3) and (4) allow for the recursive evaluation
of Ci+1,n from Ci,n and Ci−1,n.

detector

Fig. 1. Schematics of parameter estimation for a chain of N sites. Assum-
ing that the access of the chain is restricted, only site 1, the left-most site of
the chain, can be measured by the detector and all the rest (sites 2,3, . . . ,N)
are concealed by a blackbox. Using the scheme of parameter estimation,
however, all coupling strengths, Ji,i+1, can be estimated if the spectral infor-
mation of site 1 is available.

On the other hand, the normalization condition 〈i|i〉 = 1
should be satisfied. With Ci,n = 〈i|λn〉〈λn|ψ(0)〉, we have
〈i|i〉 = ∑n〈i|λn〉〈λn|i〉 = ∑n |

Ci,n
〈λn|ψ(0)〉 |

2 = 1. The unknown de-
nominator 〈λn|ψ(0)〉 depends on the concrete form of the ini-
tial state |ψ(0)〉. If the system is initially prepared by popu-
lating state |1〉 only, as considered in our case, |ψ(0)〉 = |1〉,
the denominator reads |〈λn|ψ(0)〉|2 = |〈λn|1〉|2 =C1,n and the
normalization condition becomes

〈i|i〉= ∑
n

|Ci,n|2

C1,n
= 1. (5)

With only state |1〉 accessible, the information of |1〉, c1(t) =
∑n C1,ne−iλnt , is supposed to be acquired by the measurement,
providing the input values of C1,n and λn for further param-
eter estimation. The measured C1,n should be normalized by
Eq. (5). Next, substituting Eq. (3) into Eq. (5) with i = 2, the
normalization condition 〈2|2〉= 1 yields

J1,2 =

√
N

∑
n
|λn− ε1|2C1,n (6)

and the normalized C2,n using Eq. (3). With the evaluated
Ji−1,i, Ci,n, and Ci−1,n, equation (5) generates Ji,i+1 for i > 2,

Ji,i+1 =

√
N

∑
n

|(λn− εi)Ci,n− Ji−1,iCi−1,n|2
C1,n

. (7)

Hence, all coupling strengths can be recursively evaluated
based on the above derived Eqs. (3), (4), (6), and (7).

In a realistic experimental setup, the above scheme works
for any system that can be reduced to the form equivalent to
Eq. (1). In Ref. [17], the method is applied to the N-spin chain
described by Heisenberg Hamiltonian

Ĥ =
N−1

∑
i

Ji,i+1(σ
+
i σ
−
i+1 +σ

−
i σ

+
i+1 +∆σ

z
i σ

z
i+1), (8)
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with ∆ the anisotropy, Ji,i+1 the nearest-neighbor interaction
strength, and σ± the spin raising and lowering operators,
σ± = σx±iσ y

2 . Ĥ acts on the 2N-dimensional Hilbert space of
the N-spin chain H =

⊗N
i=1 Hi =(C2)⊗N , where Hi is a two-

dimensional vector space over C spanned by the standard ba-
sis |0〉 and |1〉 corresponding to states of spin-up | ↑〉 and spin-
down | ↓〉, respectively. The total z-component of the spins,
σ

z
total = ∑i σ

z
i , is conversed, i.e., [σ z

total, Ĥ] = 0, which means
H can be decomposed into N +1 subspaces H (n) according
to the number of excitations (spin-ups) n = 0,1, . . . ,N, H =⊕N

n=0 H (n). For the purpose to estimate the unknown parame-
ters as in Ref. [16], we restrict H to the single excitation sub-
space H (1) spanned by the basis vectors {|i〉, i = 0,1, . . . ,N},
where i indicates the position of the excitation. Hence, we
can alternatively map the spin chain containing a single ex-
citation to a multi-state single particle system of chain-like
structure. Assuming the system is prepared within the single
excitation section, the subsequent evolution under the Hamil-
tonian (8) is still restricted to the single excitation sector. The
time evolution is mapped to the generic Schrödinger equation
for a single particle, Eq. (1), where the energies are given by
εi = ∆

[
∑

N−1
j=1 J j, j+1−2(Ji,i+1 + Ji−1,i)

]
. Since the influence

from disorder is not of concern in this work, all energies εi are
zero, i.e., ∆ = 0, as will also be considered in the following
discussion. The values of C1,n are embedded in the reduced
density matrix of |1〉, which can be experimentally obtained
by quantum state tomography.[17] Here, we are not concerned
with the specific realization of the measurement, Hence, the
input variables λn and C1,n are assumed to be readily reach-
able, but they are not necessarily guaranteed to be completely
precise, as will be discussed later.

The initial state of the entire spin chain system for the
probing in the reconstruction algorithm can be chosen as
|Ψ(0)〉 = α|0100 . . .0〉+ c|1100 . . .0〉 = α |0〉+ c |1〉, which
means that only the leftmost spin has been excited to the |1〉
state. For our purpose of unknown parameters estimation, it
suffices to restrict Ĥ to the single excitation subspace H (1).
As the ground state |0〉 is the eigenstate of Ĥ, α dose not
change during the evolution. Thus, at time t, the initial state
|Ψ(0)〉 evolves to |Ψ(t)〉= α |0〉+∑

N
i=1 ci(t)|i〉 with complex

coefficients α and ci(t), where |α|2 +∑
N
i=1 |ci(t)|2 = 1. The

initial conditions are then given by c1(0) = c and ci(0) = 0
(for all i 6= 1). The spin chain system can be initialized in
α |0〉+ c |1〉 by acting on the leftmost spin 1 only.[16] Then,
by performing quantum-state tomography on spin 1 after time
t, we can measure the element of the reduced density matrix of
spin 1, 〈1|e−iĤt |1〉 = ∑n e−iλnt |〈1|λn〉|2. And the eigenvalues
{λn} and the spectral coefficients {C1,n = |〈1|λn〉|2} can be
obtained through Fourier transform, which are the input vari-
ables of the reconstruction algorithm.

As a simple example, the estimation of Ji,i+1 in a chain

with 6 sites is demonstrated in Fig. 2. With only site 1 accessi-
ble, the time evolution of state |1〉 [Fig. 2(a)] is supposed to be
detectable. In the associated spectral distribution [Fig. 2(b)],
the position and the height of each spectral peak provide λn

and C1,n, respectively, as required input values for the esti-
mation scheme. Performing the evaluation using Eqs. (3), (4),
(6), and (7) recursively, we successfully reconstruct all the five
unknown coupling strengths Ji,i+1, as shown in Fig. 2(c).
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Fig. 2. Reconstruction of Ji,i+1 for a chain of N = 6 and εi = 0. Panel (a)
shows the temporal evolution of population on site 1, and panel (b) shows
its spectral distribution that provides λn and C1,n as required by the recon-
struction algorithm. In panel (c), applying the parameter estimation, the five
unknown coupling strengths are estimated. The estimated values J′i,i+1 show
good agreement with the actual values Ji,i+1. Panel (d) presents the possible
errors with the input values λn and C1,n that may hamper the reconstruction
procedure. For peak 1, the C1,n below the threshold during the measurement
is simply truncated. For peak 2, the broadening of the spectral peak results
in the deviation of the measured eigenvalue λ ′n from the actual λn.

3. Influence from errors of input variables
During the actual measurement, the finite instrumental

resolution, the limited signal-noise ratio, and other perturba-
tions may hinder the precise acquisition of initial input λn and
C1,n. Therefore, the robustness of the algorithm against the
deviations of these input values is critical to the success of the
parameter estimation. The influence from imprecision of mea-
sured C1,n has been mentioned in Ref. [16], showing rather
robust performance against small deviations. When the finite
signal-noise ratio of the C1,n detection is considered, the even
worse situation occurs when partial information is lost due to
the truncation of small values. As shown in Fig. 2(d), the
finite signal-noise ratio sets the truncation threshold. When
the value of C1,n for peak 1 is below the line representing the
threshold, the corresponding C1,n is missing. Besides the er-
rors in C1,n which are encoded in the heights of the spectral
peaks, the λn that are read from the positions of the peaks
are also susceptible to errors during the measurement. As
shown by peak 2 in Fig. 2(d), the nonvanishing spectral width
caused by either the finite instrumental resolution or the fluc-
tuation during the measurement may contribute to the uncer-
tainty ∆λn. The imprecise λn also deteriorates the performance
of Ji,i+1-reconstruction.
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We take the example of the simplest parametric setup, a
chain of 100 sites with identical coupling strengths Ji,i+1 = 1
and energies εi = 0, to show how the input values influence
the results. Under the ideal condition without any deviations
of λn and C1,n, the simulated results show that Ji,i+1 can be
correctly recovered for a long chain (tested up to thousands
sites). In a realistic experiment, however, the spectral peaks of
small-valued C1,n may not be well resolved, or even simply be
truncated. With the less number of observed peaks than the ac-
tual one, the lost information does influence the reconstructed
results.

1.5
1.0
0.5

0 10080604020

(a)

(b)

(c)

(d)

(e)

1.5
1.0
0.5

1.5
1.0
0.5

0

0.005

0.010

0.015

0.020

0

0.0005

0.0010

0.0015

0.0020

-2 -1 0 1 2

Fig. 3. For a homogeneous linear chain of N = 100, panel (a) shows the spec-
tral distribution C1,n versus λn. The region below 10−1Cmax, as indicated by
the purple line in (a), is zoomed as shown in panel (b). Assuming the C1,n
can be resolved up to 10−1 (purple), 10−2 (green), and 10−3 (red) of Cmax,
all the input data (λn,C1,n) with C1,n below the threshold are truncated. The
corresponding estimated coupling strengths J′i,i+1 are shown in (c), (d), and
(e), respectively, comparing with the original coupling strengths Ji,i+1.

The influence from the truncation is shown in Fig. 3. For
a homogeneous linear chain with all εi = ε and Ji,i+1 = J,
the eigenvalues are given by λn = ε + 2J cos[πn/(N + 1)] for
n = 1, . . . ,N. The element of the associated eigenvector for the
i-th site reads Ci,n = sin[nπi/(N+1)]. For the accessible site 1,
C1,n = sin[nπ/(N + 1)], as shown by the spectral distribution
in Fig. 3(a). The C1,n of small values are around both the far
ends along the λn-axis, where the data below a given thresh-
old are truncated if a finite signal-noise ratio is specified. For

different truncation thresholds as indicated in Fig. 3(b), the es-
timated results of Ji,i+1 are compared in Figs. 3(c)–3(e).

Assuming that the maximum value of C1,n is Cmax, when
the threshold is 10−1Cmax with ten pairs of C1,n truncated, sig-
nificant deviation appears from i = 50. When the data below
10−2Cmax are truncated with three pairs of C1,n missing, the
Ji,i+1 can be correctly reconstructed up to i = 80. Further,
when only one pair of data are truncated below the threshold
10−3Cmax, the deviations only appear at the rightmost sites of
the chain. The results suggest that the complete data of C1,n

should be important to the success of the algorithm. More in-
triguingly, though all C1,n contribute to the evaluation of each
Ji,i+1, when some components are missing, the chain can still
be recovered to some extent instead of failing in the recon-
struction as a whole, which shows the robustness of the algo-
rithm.

The error δJi,i+1 induced by the truncation appears to ac-
cumulate along the chain. To clarify this, we assume that a pair
of small-valued input data C1,m1 = C1,m2 = δ for eigenvalues
λm1 = −λm2 are truncated during the measurement and per-
form perturbation analysis of error propagation with respect
to δ . From Eq. (4), it shows that all Ci,m are absent during
the reconstruction as long as C1,m = δ of mode m is ignored
from the input data. Taking variables up to the first order of δ ,
the linear approximations assume Ci,n = C′i,n + ςi,nδ(n 6= m),
Ci,m = ξi,mδ , and Ji,i+1 = J′i,i+1 +θiδ , where C′i,n and J′i,i+1 are
the reconstructed variables tainted by the truncation, and Ci,n

and Ji,i+1 are the true values. Perturbation parameter θi de-
termines the deviation of the reconstructed coupling strength
J′i,i+1 from the true value Ji,i+1. Next, we need to find ςi,n, ξi,m,
and θi from the recursive relations (4) and (7). Substituting the
approximations into Eq. (7) and separating the contribution of
the truncated components from the rest, the recursive relation
of Ji,i+1 takes the form

Ji,i+1 =
√

Θmeasured +Θtruncated.

The contributions from the acquired modes Θmeasured and the
truncated data Θtruncated are

Θmeasured =
N

∑
n6=m1,m2

[∆n,i(C′i,n + ςi,nδ )− (J′i−1,i +θi−1δ )(C′i−1,n + ςi−1,nδ )]2

C1,n
,

Θtruncated = ∑
m∈{m1,m2}

[∆m,iξi,mδ − (J′i−1,i +θi−1δ )ξi−1,mδ ]2

δ
,

respectively, where ∆n,i = λn− εi. Keeping terms up to the first order of δ , eventually θi can be determined recursively from
θi−1, ςi−1,n, ςi,n, ξi−1,m, and ξi,m,

θi =

∑
N
n 6=m1,m2

2(∆n,iC′i,n− J′i−1,iC
′
i−1,n)(∆n,iςi,n−θi−1C′i−1,n− J′i−1,iςi−1,n)

C1,n
+ ∑

m∈{m1,m2}
(∆m,iξi,m− J′i−1,iξi−1,m)

2

2J′i,i+1
, (9)
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with the initial condition θ1 = [(∆m1,1)
2 +(∆m2,1)

2]/2J′1,2 ac-
cording to Eq. (6).

Similarly, substituting the linear approximations into re-
cursive relation (4), we can find the recursive formulas for ςi,n

and ξi,m,

ςi+1,n =
∆n,i(J′i,i+1ςi,n−C′i,nθi)

(J′i,i+1)
2

−
J′i−1,iJ

′
i,i+1ςi−1,n +C′i−1,nJ′i,i+1θi−1−C′i−1,nJ′i−1,iθi

(J′i,i+1)
2 , (10)

ξi+1,n =
∆m,iξi,m− J′i−1,iξi−1,m

J′i,i+1
. (11)

The initial conditions are ς1,n=0, ς2,n=−∆n,1∆ 2
m,1C1,n/2(J′1,2)

3,
ξ1,m = 1, and ξ2,m = ∆m,1/J′1,2.

In Fig. 4, we present the comparisons between error es-
timation under the linear approximation of Eqs. (9), (10), and
(11) with the results from the reconstruction algorithm under
different circumstances. Figures 4(a) and 4(b) show the re-
sults for a homogeneous chain of identical coupling strengths
Ji,i+1 = 1 when N = 50 and 100, respectively. Figures 4(c)
and 4(d) present the results for a non-homogeneous chain of
randomly distributed J ∈ [0.9,1.1] when N = 50 and 100, re-
spectively. In all four cases, when the error propagates along
the chain, the deviations appear earlier under the linear ap-
proximation than the original algorithm. It suggests that some
nonlinearity associated to the algorithm could protect the re-
construction from deterioration. In this case, the linear ap-
proximation based on the perturbation analysis may provide
the lower bound of the error introduced by the truncation of
the input data during the measurement. However, the role of
nonlinearity still requires further investigation.
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Fig. 4. Comparison among true values of Ji,i+1 (circle symbol), reconstructed
J′i,i+1 (cross symbol), and predicted J′i,i+1 (triangle symbol) from perturba-
tion analysis under the linear approximation when (a) N = 50 and Ji,i+1 = 1,
(b) N = 100 and Ji,i+1 = 1, (c) N = 50 and random Ji,i+1 ∈ [0.9,1.1], and
(d) N = 100 and random Ji,i+1 ∈ [0.9,1.1]. The reconstruction starts with a
pair of C1,n truncated.

Next, we consider the estimation when Ji,i+1 vary with i,
as we desired in practice. Without loss of generality, the Ji,i+1

are randomly chosen within a given interval, i.e., the disorder

induced by Ji,i+1. It is shown that the interval is highly rel-
evant to the performance of the estimation. Figures 5(a) and
5(b) present the dependence of the reconstruction on the inter-
val. In Fig. 5(a), when the span is small, Ji,i+1 ∈ [0.9,1.1], the
Ji,i+1 can be correctly estimated up to i = 28. While when the
span is large, Ji,i+1 ∈ [0.8,1.2], the applicability deteriorates,
the estimated values J′i,i+1 start deviating from Ji,i+1 around
site 16, as can be straightforwardly read from the error defined
by δJi,i+1 = J′i,i+1− Ji,i+1 as shown in Fig. 5(c).
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Fig. 5. Estimation of Ji,i+1 in a chain of N = 50 when C1,n is resolved
up to 10−3. The Ji,i+1 are randomly distributed in range (a) [0.9,1.1] and
(b) [0.8,1.2]. The errors δJi,i+1 = J′i,i+1−Ji,i+1 for the two different intervals
are compared in panel (c). Panels (d) and (e) show distributions of input data
C1,n = |〈λn|1〉|2 on site 1 for Ji,i+1 ∈ [0.9,1.1] and Ji,i+1 ∈ [0.8,1.2], respec-
tively, to reconstruct Ji,i+1 as shown in (a) and (b).

As discussed above, the reconstruction is rather robust for
a long chain with identical Ji,i+1. When Ji,i+1 are randomly
distributed, however, the effective distance of reconstruction
is significantly shortened, showing an anticorrelation between
the distance and the distribution interval of Ji,i+1. Examin-
ing the spectral distribution, the anticorrelation can also be ex-
plained by the truncation of C1,n as discussed for the homoge-
neous chain. The distribution interval of Ji,i+1 influences the
spectral pattern and the probability to find C1,n around zero.
With the distribution of random Ji,i+1 broadened, the spectral
distribution in Figs. 5(d) and 5(e) is no more as regular as that
in the homogeneous chain. The C1,n scatter to a larger range
with the increasing distribution interval of Ji,i+1, and more C1,n

approach zero. As discussed for the homogeneous chain, these
near-zero C1,n are likely to be truncated, and the resultant lost
spectral components worsen the applicability of the algorithm.
In addition, it is found that the decreasing Ji,i+1 also lowers
the value of C1,n and impedes the parameter estimation, as can
be intuitively understood since any broken bridge hinders the
probe of further sites. The above discussion also applies when
disorders of εi are involved as the spectral distribution also
presents the similar pattern and suggests the involvement of
the localization.
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Besides the influence from the errors of C1,n, the measure-
ment of λn also affects the Ji,i+1 reconstruction. Assuming the
actual eigenvalue is λn, the restricted resolution or disturbance
during the experiment may deviate the measured value from
λn, λ ′n = λn +∆λn. The fluctuation ∆λn in each measurement
results in the difference of the estimated J′i,i+1, as illustrated
in Fig. 2(d). The eventual J′i,i+1 should be the average of the
reconstructed results after multiple measurements. We exam-
ine the parameter reconstruction when fluctuations ∆λn around
the true value of λn are involved. An example for a chain of
N = 100 with coupling strengths Ji,i+1 ∈ [0.9,1,1] is shown
in Fig. 6(a), where all coupling strengths can be precisely re-
constructed if no random error is introduced. To account for
the influence from nonvanishing random errors, each of ∆λn is
chosen randomly for a single measurement, and the samples
are generated from a normal distribution, ∆λn ∼ N (0,σ2).
Then we perform multiple simulated measurements and eval-
uate the averaged J′i,i+1. Figure 6(b) shows the averaged J′i,i+1
from 2000 simulated measurements when σ = 0.001. Here,
the influence of the truncation of small-valued C1,n is ne-
glected.

(a) without error

(b)
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Fig. 6. The estimation of coupling strengths when ∆λn is considered for each
measurement. In a chain of 100 sites with Ji,i+1 ∈ [0.9,1.1], the reconstructed
J′i,i+1 are compared with Ji,i+1 in (a) when ∆λn = 0. In (b), the reconstructed
J′i,i+1 are shown when σ = 0.001. The errors δJi,i+1 are presented in (c), (d),
and (e) for σ = 10−1, 10−2, and 10−3, respectively.

From errors δJi,i+1 as shown in Figs. 6(c)–6(e), the Ji,i+1

can be roughly estimated up to i= 20, 40, and 60, respectively,
for σ = 10−1, 10−2, and 10−3. While without ∆λn fluctuation
[Fig. 6(a)], all Ji,i+1 are correctly reconstructed. For the chain
of N = 100, the average and minimum gaps of λn are 0.04 and
0.002, respectively. The average gap is larger than the fluctua-
tions considered in Figs. 6(e) (σ = 0.001) and 6(d) (σ = 0.01)
so that the spectral peaks are supposed to be resolved. For
comparison, figure 6(c) takes σ = 0.1 which is large, show-
ing the expected failure of the reconstruction scheme when the

spectral peaks cannot be well resolved. Therefore, the precise
measurement λn is shown to be critical to the precise recon-
struction. For a longer chain, we do not find significant de-
viations. However, the denser spectral distribution with more
states involved will hinder the precise retrieval of λn, if the
instrumental resolution of λn-acquisition is finite.

4. Conclusion
The reconstruction of parameters within a partially acces-

sible system is an important problem when indirect probing
is the only option to acquire the desired information. In this
work, the algorithm to estimate parameters in a linear chain
with restricted access is extensively investigated, providing
the necessary information to assess the algorithm robustness.
Starting with the generic Schrödinger equation, it is confirmed
that the coupling strengths can be efficiently deduced from the
recursive relation using the spectral information of only the
end site. We focus on the applicability of the algorithm, which
is shown to be highly relevant to the spectral distribution on the
accessible site. Given the errors induced by the finite signal-
noise ratio, the increasing number of truncated spectral com-
ponents is shown to gradually deteriorate the reconstruction
performance. It is found that reducing the loss of spectral com-
ponents is critical to the success of the method. Even so, the
partially successful estimation in the presence of truncations
shows the robustness of the algorithm and the estimation can
be conducted in a controllable way. Since the spectral distribu-
tion is system dependent, the applicability of the method also
varies with the systems. Accordingly, it is advisable to under-
stand the nature of the system before applying the method.
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