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The Z–S–C multiphase lattice Boltzmann model [Zheng, Shu, and Chew (ZSC), J. Comput. Phys. 218, 353 (2006)]
is favored due to its good stability, high efficiency, and large density ratio. However, in terms of mass conservation, this
model is not satisfactory during the simulation computations. In this paper, a mass correction is introduced into the ZSC
model to make up the mass leakage, while a high-order difference is used to calculate the gradient of the order parameter to
improve the accuracy. To verify the improved model, several three-dimensional multiphase flow simulations are carried out,
including a bubble in a stationary flow, the merging of two bubbles, and the bubble rising under buoyancy. The numerical
simulations show that the results from the present model are in good agreement with those from previous experiments and
simulations. The present model not only retains the good properties of the original ZSC model, but also achieves the mass
conservation and higher accuracy.
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1. Introduction
The multiphase flow problems are ubiquitous in nature,

industrial and agricultural productions. It is of great signif-
icance to study the basic theory and law of multiphase flow
for people’s production and living and promoting the develop-
ment of industry and agriculture. In order to study these prob-
lems numerically, lattice Boltzmann method (LBM) has been
developed into a powerful tool. Due to numerous advantages
of the LBM, including solid physical foundations, high effi-
ciency, complete parallelization, and easy processing of com-
plex boundaries, it has been successfully used in the numerical
simulation of complex multiphase fluid systems.[1–3]

In the past decades, many efforts have been made to de-
velop multiphase lattice Boltzmann (LB) models, and sev-
eral main popular models are proposed, i.e., the color-gradient
model proposed by Gunstensen et al.,[4] the pseudo-potential
model (SC model) by Shan and Chen,[5,6] the free energy
model by Swift et al.,[7] and the HCZ model by He et al.[8]

Among them, the free energy model has been favored by many
researchers because it can solve the problem of interface trac-
ing, restore the Cahn–Hilliard (CH) equation, satisfy the local
mass and momentum conservation, conform with the thermo-
dynamic theory, etc. However, the numerical instability will
be caused by the original free energy model with large den-

sity ratio, and the Galilean invariance is not satisfied when
there is a large density gradient near the interface.[9] To solve
this problem, Inamuro et al.[10] proposed a projection method
for the free-energy model to achieve a large density ratio,
in which the Poisson equation for pressure convergence was
used. However, solving the Poisson equation would spoil the
simplicity and efficiency of the LBM. Lee and Lin[11] later
developed a stable discretization scheme (LL model) for two-
phase flows with high density and viscosity ratio, in which
the pressure gradient term is discretized by different ways be-
fore and after streaming step, which makes the scheme imple-
mentation relatively complicated and the amount of computa-
tion large. Zheng et al.[12] presented a multiphase LB model
with large density ratio (ZSC model) based on the free-energy
model, in which the CH equation is accurately recovered with-
out any additional terms and the Galilean invariance property
remains unchanged. In addition, owing to the small change of
the average density in this model, it is very stable and efficient,
and more importantly, it can be employed to simulate the mul-
tiphase flows with large density ratio beyond 1000. Due to
good performance of the ZSC model, it has been favored by
many researchers. Huang et al.[13] extended the ZSC model
to three-dimensions to simulate a bubble rising phenomenon.
Cheng et al.[14] simulated the multiple bubbles rising under

∗Project supported by the National Natural Science Foundation of China (Grant Nos. 11862003 and 81860635), the Key Project of the Natural Science Foun-
dation of Guangxi Zhuang Autonomous Region, China (Grant No. 2017GXNSFDA198038), the Project of Natural Science Foundation of Guangxi Zhuang
Autonomous Region, China (Grant No. 2018GXNSFAA281302), the Project for Promotion of Young and Middle-aged Teachers’ Basic Scientific Research
Ability in Guangxi Universities, China (Grant No. 2019KY0084), and the “Bagui Scholar” Teams for Innovation and Research Project of Guangxi Zhuang
Autonomous Region, China, and the Graduate Innovation Program of Guangxi Normal University, China (Grant No. JXYJSKT-2019-007).

†Corresponding author. E-mail: zhangcy@gxnu.edu.cn
© 2020 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb　　　http://cpb.iphy.ac.cn

034701-1

http://dx.doi.org/10.1088/1674-1056/ab6834
zhangcy@gxnu.edu.cn
http://iopscience.iop.org/cpb
http://cpb.iphy.ac.cn


Chin. Phys. B Vol. 29, No. 3 (2020) 034701

buoyancy in a quiescent viscous incompressible fluid with a
three-dimensional (3D) ZSC model. Recently, He et al.[15]

employed the ZSC model to simulate and analyze the role of
wettability and surface tension in forming the ink-jet printing
droplets. However, owing to the presence of the diffusion term
and the numerical dissipation caused by the discretization of
convection term in CH equation, the mass of each phase in
the ZSC model cannot be conserved exactly.[9] van der Sman
and van der Graaf et al.[16] found that the droplet mass under
shear decreases continuously in the evolution process. Huang
et al.[13] showed that the volume of a 3D bubble rising under
buoyancy dwindles over time when Reynolds numbers is high,
and in an extreme case, the bubble volume loss can increase
up to 75%. Zheng et al.[17] also illustrated that a non-physical
shrinkage of the bubble may be produced in the diffuse in-
terface method. In order to solve the non-conservative mass
problem in phase-interface diffusion method, Son[18] intro-
duced a volume correction equation for the order parameter in
the level set formulation to keep the mass conservation, which
needs multiple iterations to correct the order parameter in each
time step. Based on this method and considering the effect of
density changes, Chao et al.[19] recasted the volume correc-
tion equation and presented a filter-based, mass-conserved LB
model for improving the HCZ model, in which high density ra-
tio (up to 100) and mass conservation are achieved. By using
Chao et al.’s mass correction method and an effective surface
tension formula, Huang et al.[20] developed a mass-conserved
axisymmetric multiphase LB model of simulating the bubble
rising, which retains mass conservation of the bubble, and their
the maximum density ratio is 15.5. Later, Wang et al.[9] con-
sidered that the mass loss or increase in a phase state goes
through the interface zone by diffusion, and they proposed a
mass correction method to compensate for the mass loss or
offset the mass increase in the volume of diffuse layer to keep
the mass conservation at each time step. Their results showed
that the mass is well-conserved with high density ratio. Re-
cently, Niu et al.[21] also presented a multiphase LB model
to improve Shao et al.’s model[22] by using a mass correction
method similar to that in Wang et al.’s work.[9] The mass con-
servation for each phase is maitained, but their density ratio
is quite small. In brief, the above two correction methods are
both favored by researchers. The volume correction method is
relatively simple, but the efficiency is affected by multiple iter-
ations in each correction. The mass correction method based
on the phase interface is more efficient, but it is not suitable
for the ZSC model which cannot accurately obtain the local
density by the order parameter.

On the other hand, the solutions to the gradient of the
order parameter are involved in the calculations of chemical
potential and velocity in the ZSC model, and the accuracy for

calculating these gradients is particularly important. The cen-
tral difference method is often used to calculate the numerical
gradient in multiphase models.[11,14,23] In general, this method
is sufficiently accurate. However, in the diffusion interface
method with high density ratio, the results calculated by cen-
tral difference method may deviate greatly from the theoreti-
cal solutions, which may lead the numerical simulation to be
unstable. Therefore, the introduction of a high accurate differ-
ence method instead of traditional central difference method
is expected to be able to further improve the computational
accuracy of the ZSC model.

Through the above investigations, we know that although
great progresses have been made in the numerical study of
multiphase flow based on free energy model, solving the prob-
lems of large density ratio and mass non-conservation in the
model are still an important research subject. In this pa-
per, we are to improve the original ZSC model in terms of
the mass conservation and computational accuracy in order
to develop a mass-conserved and high accuracy multiphase
LB model for simulating multiphase flows, in which the high-
order difference is introduced to calculate the gradient of the
order parameter to improve accuracy and a mass correction
method proposed by Chao et al.[19] is utilized to solve the non-
conservative mass problem. As a result, the present model not
only enjoys the advantages of the original model such as large
density ratio, stability, efficiency and Galilean invariance, but
also can solve its non-conservative mass problem and further
improve its accuracy. We will investigate the numerical meth-
ods of calculating the gradient of the order parameter and re-
veal the importance of its numerical accuracy, and demonstrate
the performances of the improved model by testing several
cases such as a bubble in a stationary flow, the merging of
two bubbles, and the bubble rising under buoyancy.

The rest of this paper is organized as follows. Firstly, a
brief introduction is given to the original ZSC model. Sec-
ondly, the central difference and the high-order difference
methods are investigated. Thirdly, a mass-conserved multi-
phase LB model based on the original model is constructed
by introducing a mass correction term. Fourthly, the perfor-
mances of the present model are investigated through using
several testing cases. Finally, a brief conclusion is drawn.

2. Method
2.1. Macroscopic governing equations

In this study, two-phase fluid with different densities is
considered. The high density and low density are represented
by ρH and ρL respectively. The flow can be described by the
Navier–Stokes (NS) equations and a Cahn–Hilliard equation
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as[24–26]

∂n
∂ t

+∇ · (n𝑢) = 0, (1)

∂ (n𝑢)
∂ t

+∇ · (n𝑢𝑢) =−∇ · p+µ∇
2u+𝐹b, (2)

∂φ

∂ t
+∇ · (φ𝑢) = θM∇

2
µφ , (3)

where p is the pressure tensor, θM is the mobility, 𝐹b is the
body force, µφ is the chemical potential, n and φ are defined
as n = (ρA + ρB)/2, φ = (ρA− ρB)/2,[26] respectively, φ is
the order parameter indicating the two phases, while ρA and
ρB are the densities of fluid A and fluid B, respectively. De-
pending on the initial conditions, they may be ρL or ρH.

In Eq. (2), the term ∇ · p relates to the surface tension,
which can be written as a potential term[25,27]

∇ · p = φ∇µφ +∇p0, (4)

where p0 = nc2
s and cs is the sound speed.

In combination with Eq. (4), the momentum equation (2)
can be rewritten as

∂ (n𝑢)
∂ t

+∇ · (n𝑢𝑢)

= −∇(p0 +φ µφ )+µφ ∇φ +𝐹b +µ∇
2𝑢. (5)

The chemical potential µφ can be derived from the free
energy density function, and a free energy function in a closed
volume with a mixture of two fluids is adopted as[25,28,29]

F =
∫

Ψ dV =
∫

dV
[

ψ(φ)+
κ

2
(∇φ)2 +

n ln(n)
3

]
, (6)

where V is a control volume, ψ is the bulk free energy density
per unit mass for the homogeneous system, κ is a coefficient
relating to the surface tension and the interface layer thick-
ness. The square of gradient term relates to the variation of
the density and contributes to the excess of the free energy
in the interface, which determines the surface energy.[28] It is
chosen as a double-well form

ψ(φ) = A(φ 2−φ
∗2)2, (7)

where A is an amplitude parameter, which is used to control
the interaction energy between the two phases. This form will
contribute to two equilibrium states, φ ∗ and −φ ∗. The chemi-
cal potential µφ is calculated from[13]

µφ =
∂Ψ

∂φ
−∇ · ∂Ψ

∂∇φ
= A(4φ

3−4φ
∗2

φ)−κ∇
2
φ , (8)

where A = 3σ
(
4wφ ∗4

)
, κ = A(wφ ∗)2 /2,[13] σ is the surface

tension coefficient, W is the interface thickness, and the ex-
pected order parameter is φ ∗ = (pH− pL)/2.

2.2. Interface capturing LB equation

The interface capturing is modeled by the convective CH
equation (3). The distribution function gi is used to track the
interface between two phases in each lattice node. To solve
Eq. (3), a modified LB equation is adopted[30]

gi(𝑥+𝑐iδx, t +δt)

= gi(𝑥, t)+(1−q)[gi(𝑥+𝑐iδx, t)−gi(𝑥, t)]+Ωi, (9)

where the collision operator is Ωi = [g(0)i (𝑥, t)− gi(𝑥, t)]/τφ ,
with gi being the distribution function for tracking interface,
and τφ being the dimensionless relaxation time, 𝑐i is the lat-
tice velocity, and here the 3D D3Q7 velocity model is used,
q = 1/(τφ + 0.5) is a constant coefficient, g(0)i is the equilib-
rium distribution function, and it is in the following form:

g(0)i = Ai +Bi +Ciφ𝑐i ·𝑢, (10)

the coefficients can be chosen as

A1 =−DΓ µφ , Ai = 0.5Γ µφ (i 6= 1),

B1 = 1, Bi = 0 (i 6= 1), Ci = 1/2q, (11)

where Γ is the mobility. The macroscopic variable (order pa-
rameter) φ is calculated from

φ = ∑i gi. (12)

2.3. Continuity and momentum LB equation

The isothermal incompressible Newtonian fluid is mod-
eled by Eqs. (1) and (2). Here, another distribution function
fi is utilized for simulating the fluid flow in each lattice node,
and in order to solve Eqs. (1) and (2), the second LB equation
is employed as[12]

fi(𝑥+𝑐iδt , t +δt)

= fi(𝑥, t)+
1
τn
[ f (0)i (𝑥, t)− fi(𝑥, t)]+Si, (13)

where fi is the distribution function for fluid flow, the lattice
velocity 𝑐i takes the 3D D3Q19 velocity model, Si is a source
term added into LB equation to mimic the body force term of
the NS equations, and it is given as

Si =

(
1− 1

2τn

)
wi

c2
s

[
(𝑐i−u)+

𝑐i𝑢

c2
s
𝑐i

]
(𝐹b +µφ ∇φ)δt , (14)

the equilibrium distribution function f (0)i is taken as

f (0)i = wiAi +win
(

3ciα uα −
3
2

u2 +
9
2

ciα ciβ uα uβ

)
, (15)

where the coefficients are chosen as[13]

A0 = 3n−6(φ µφ + c2
s n), Ai|i=1−8 = 3(φ µφ + c2

s n),
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w0 = 1/3, wi|i=1−6 = 1/18, wi|i=7−18 = 1/36.

The macroscopic variable n and velocity 𝑢 are calculated
from

n = ∑
i

fi, 𝑢=
(
∑

i
fi𝑐i +

1
2
(𝐹b +µφ ∇φ)

)
/n. (16)

2.4. Central difference and high-order difference method

It can be seen from Eqs. (8) and (16) that the second-
order and the first-order gradient of the order parameter φ are
involved in solving the chemical potential µφ and velocity 𝑢

respectively. The performance of numerical method of calcu-
lating gradient is likely to affect the accuracy and stability of
the multiphase flow model. In this subsection, we will investi-
gate the accuracy of the central difference method (CDM) and
high-order difference method (HDM) in some specific cases,
and then propose a better numerical scheme to improve the
accuracy of the ZSC model.

2.4.1. Central difference method

Consider a continuous and derivable function y = f (x) ∈
[a,b],a≤ b, and the interval [a,b] is equidistantly divided into
n sub-intervals with the spacing h = (b−a)/n and separated
by xi (i = 0,1,n− 1,n). According to the principle of CDM,
the numerical derivative at xi can be solved by

y(xi) =
y(xi+1)− y(xi−1)

2h
. (17)

From Eq. (17), it can be seen that the derivate at node xi

is determined by its neighbouring function value of f (xi−1)

and f (xi+1), and independent of f (xi) at its own position. In
the actual simulations of multiphase flows, a weighted central
difference scheme is usually adopted to calculate the gradient.
For the D3Q19 model, the numerical gradient of the order pa-
rameter can be evaluated from[11]

∂φ

∂x

∣∣∣∣
(i, j,k)

= [φ(i+1, j,k)−φ(i−1, j,k)]/6

+[φ(i+1, j+1,k)−φ(i−1, j−1,k)]/12

+[φ(i+1, j−1,k)−φ(i−1, j+1,k)]/12

+[φ(i+1, j,k+1)−φ(i−1, j,k−1)]/12

+[φ(i+1, j,k−1)−φ(i−1, j,k−1)]/12, (18)

∂φ

∂y

∣∣∣∣
(i, j,k)

= [φ(i, j+1,k)−φ(i, j−1,k)]/6

+[φ(i+1, j+1,k)−φ(i−1, j−1,k)]/12

+[φ(i−1, j+1,k)−φ(i+1, j−1,k)]/12

+[φ(i, j+1,k+1)−φ(i−1, j−1,k−1)]/12

+[φ(i, j+1,k−1)−φ(i, j−1,k+1)]/12, (19)

∂φ

∂ z

∣∣∣∣
(i, j,k)

= [φ(i, j,k+1)−φ(i, j,k−1)]/6

+[φ(i, j+1,k+1)−φ(i, j−1,k−1)]/12

+[φ(i+1, j,k+1)−φ(i−1, j,k−1)]/12

+[φ(i−1, j,k+1)−φ(i+1, j,k−1)]/12

+[φ(i, j−1,k+1)−φ(i, j+1,k−1)]/12, (20)

∂ 2φ

∂x2
k

∣∣∣∣
(i, j,k)

= [φ(i+1, j+1,k)+φ(i−1, j−1,k)+φ(i+1, j−1,k)

+φ(i−1, j+1,k)+φ(i+1, j,k+1)+φ(i−1, j+1,k−1)

+φ(i, j−1,k+1)+φ(i−1, j,k−1)+φ(i+1, j,k−1)

+φ(i−1, j,k+1)+φ(i, j+1,k+1)+φ(i, j−1,k−1)

+2φ(i+1, j,k)+2φ(i, j+1,k)+2φ(i, j−1,k)

+2φ(i, j,k+1)+2φ(i, j,k−1)−24φ(i, j,k)]/6. (21)

For a phase transition system, its equilibrium distribution
of density or order parameter can be usually approximated into
a hyperbolic tangent function. Here, consider a bubble in the
center of the stationary flow field, then the hyperbolic tangent
function will be used to initialize the flow field and written as
follows:

φ(x,y,z)

= φ
∗ tanh(2(R−

√
(x− x0)2 +(y− y0)2 +(z− z0)2)/W ), (22)

where the computational domain is DX ×DY ×DZ = 110×
110× 110 in lattice unit. The initial position of the bubble is
(x0,y0,z0) = (DX/2,DY/2,DZ/2), and its radius is R = 10.
The liquid density takes ρH = 1000, the gas density takes
ρL = 1, and the density ratio is 1000. The initial order pa-
rameter is φ ∗ = (ρH−ρL)/2, −φ ∗ for the bubble and φ ∗ else-
where. The surface tension is σ = 0.1, the interface thickness
is W = 5, the relaxation times are τn = 0.7 and τφ = 0.7 respec-
tively, the migration coefficient is Γ = 100, and the periodic
boundary conditions are applied to all boundaries. Unless oth-
erwise specified, all the parameters in other testing cases in
this paper are the same as those above.

The first and second derivatives of the order parameter
calculated by CDM across the interface of the bubble are
shown in Fig. 1, the corresponding exact results are also plot-
ted for comparison, and their absolute errors are shown in
Fig. 2. In order to investigate the errors from CDM with differ-
ent interface thickness, the standard errors between the deriva-
tives calculated by CDM and the exact results are shown in
Fig. 3. From Figs. 1 and 2, it can be clearly seen that there
exists a significant discrepancy between the numerical result
calculated by CDM and the theoretical value, and the discrep-
ancies of the second derivative are greater than those of the
first one. Figure 3 shows that the deviations increase sharply
with interface thickness W decreasing. These discrepancies
can affect the simulation accuracy or even produce incorrect
results in the numerical simulation of multiphase flow.
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Fig. 1. Computational results from CDM and HDM, showing (a) the first derivative (in x-axis direction) and (b) the second derivative.
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Fig. 2. Absolute errors from CDM and HDM for (a) the first derivative (in x-axis direction) and (b) the second derivative.
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Fig. 3. Plots of standard error versus interface thickness from CDM and HDM for (a) the first derivative (in x-axis direction) and (b) the second
derivative.

2.4.2. High-order difference method

Considering that the properties of the fluid nodes near the
node to be solved are similar, the derivation using more in-
formation about adjacent nodes should obtain more accurate
results. We construct a multi-order difference method by per-
forming a Taylor series expansion at different neighbor nodes
to build polynomials, and then evaluate the correlation coeffi-
cients of the polynomials with a method of undetermined co-
efficients. In order to give consideration to the accuracy and
efficiency of this method, a five-point higher-order difference
method is used in this study[31,32]

f ′(x) ≈ 1
12dx

( f (x−2dx)−8 f (x−dx)

+8 f (x+dx)− f (x+2dx)), (23)

f ′′(x) ≈ 1
12(dx)2 (− f (x−2dx)+16 f (x−dx)

−30 f (x)+16 f (x+dx)− f (x+2dx)). (24)

To verify the performance of HDM, the similar calcula-
tions in Subsubsection 2.4.1 with HDM are also performed.
The corresponding results are also plotted in Figs. 1–3, re-
spectively. As shown in Fig. 1, the derivatives from HDM
are closer to the exact values than the ones from CDM. Fig-
ure 2 obviously shows that the accuracy of HDM is much
higher than that of CDM according to the absolute error of the
derivative. Figure 3 shows that as the interface thickness de-
creases, the standard error from HDM increases, but the error
level is much lower than that from CDM. In order to investi-
gate the computational efficiency of CDM and HDM, a case
of a bubble in a stationary flow is tested. The bubble radius
is R = 30, and the computational domains are 100×100×100,
150×150×150, 200×200×200, and 300×300×300, respec-
tively. The CDM and HDM are used to calculate separately the
first and second derivatives of the order parameter in Eqs. (8)
and (16). The computing platform is Windows 10 64 bit, In-
tel(R) Core(TM) i9-9900K CPU, and 32 GB RAM. The time
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spent in running the program with 10000 steps is shown in Ta-
ble 1. As indicated in Table 1, the time spent in using HDM is
much less than that in using the CDM, and the average compu-
tational efficiency of HDM is about 1.53 times higher than that
of CDM. The main reason for the above result is that the us-
ing of HDM requires relatively less lattice nodes. For the first
derivative of the order parameter in each direction, the using of
HDM (see Eq. (23)) only needs to consider 4 neighbor nodes
in the axial direction, while the using of CDM (see Eqs. (18)–
(20) needs to consider the adjacent 10 neighbor nodes. For the
second-order derivative of the order parameter, the using of
HDM (see Eq. (24)) needs to employ 15 nodes in the x-, y-, and
z-axis directions. However, the using of CDM (see Eq. (21))
needs to use 18 neighbor nodes. Through the above analysis,
we can conclude that derivatives calculated with HDM may
be more accurate and efficient than the ones calculated with
CDM in simulations. Therefore, the five-point high-order dif-
ference method will be introduced to calculate the gradient of
the order parameter in Eqs. (8) and (16).

Table 1. Comparison of computational efficiency between CDM and
HDM.

Mesh size
Time spent with Time spent with Computational

HDM/s CDM/s efficiency

100×100×100 163 269 1.65
150×150×150 647 1061 1.64
200×200×200 2194 3075 1.40
300×300×300 15353 21686 1.41

2.5. Mass conservation correction

Mass conservation is an important problem in the numeri-
cal simulation of multiphase flow. Although the discretization
of the CH equation has the form of mass conservation, Ding
et al.[33] pointed out that the mass conservation does not mean
that the volume enclosed by any given contour remains un-
changed. In order to solve the problem of non-conservative
mass in the original ZSC model, a volume conservation cor-
rection method proposed by Chao et al.[19] is adopted

∂φ

∂τ
+𝑢 ·∇φ = 0, (25)

𝑢= (V −V0)∇φ/|∇φ |, (26)

where V is the volume of the gas or liquid phase before the cor-
rection after streaming step, V0 is its initial volume. After each
streaming step, at every artificial time τ , we calculate the vol-
ume difference V d = |V −V0|, if V d > err (an error criterion
defined by user), update the order parameter φ(𝑥, t +∆t) with
the conservation corrected values calculated from Eqs. (25)
and (26), and then recalculate the V d according to the updated
order parameter. If V d is still more than the err, we iterate the
above processes until V d is less than the err or the iteration

steps reach the maximum iteration step, and then continue and
enter into the next LB evolution iteration step. In order to im-
prove the computational accuracy of Eqs. (25) and (26), the
five-point higher-order difference method is used. The artifi-
cial time step ∂τ = 0.15/V0 is adopted in our simulation.[20]

3. Numerical verification
3.1. Bubble in stationary flow
3.1.1. Laplace law

The Laplace is a basic testing case to verify the surface
tension property of a multiphase flow system. According to
this law, when a bubble and its adjacent liquid reach a stable
state, the relationship between the pressure difference across
the bubble interface and the surface tension is as follows:[34,35]

∆P = Pin−Pout =
kσ

R
, (27)

where Pin and Pout are the pressure inside and outside the bub-
ble respectively, k = 2 is for the 3D model, σ is the surface
tension, and R is the radius of the bubble. A spherical bub-
ble is placed in the center of a flow field with a mesh size of
130× 130× 130. The surface tension is σ = 0.1, and the in-
terface thickness is W = 4. The radius of the bubble is taken
as 15, 20, 25, 30, 35, 40, 45, and 50, separately. The period
boundary condition is imposed on the all sides.

Figure 4(a) shows the relationship between the pressure
difference and the radius of the bubble, and it can be seen
that the results from the HDM are in excellent agreement with
those from the Laplace law. With the decrease of the radius,
the maximum absolute error between the results from CDM
and theoretical solutions reaches up to 10%. In addition, fig-
ure 4(b) shows the effect of the interface thickness on the sur-
face tension. It can be easily observed that the surface tension
obtained by the CDM deviates significantly from the theoreti-
cal value as the thickness of the interface decreases when the
thickness of the interface is smaller than 4.5. However, the
surface tension obtained by the HDM well matches the theo-
retical value when the thickness of the interface is bigger than
2.5, and it just decreases a little when the thickness of the inter-
face is smaller than 2.5. Form Figs. 4(a) and 4(b), it can also
be seen that evenintroducing mass correction into the CDM
cannot improve the computational accuracy.

3.1.2. Mass conservation tests

In order to investigate the mass conservation of the im-
proved model, the mass conservation are tested by using the
CDM and HDM with or without mass correction in a 3D sta-
tionary flow. Figure 5 shows the evolution of the bubble mass
with radius in different times. It can be seen that the bubble
mass obtained by the original ZSC model with the CDM or the
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HDM decreases continuously with the increase of the num-
ber of evolution steps. When the number of evolution steps
is 50000, the radius of bubble is 20, 30, 40, and 50, the mass
loss is 1.726%, 0.638%, 0.368%, and 0.239% for CDM re-
spectively, and the corresponding mass losses for the HDM
are almost the same. However, the bubble mass obtained by
the CDM and the HDM with mass correction are both main-
tained very well during the whole simulation.
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Fig. 4. (a) Pressure differences versus 1/R and (b) surface tension versus
interfacial thickness (with radius of bubble R = 20).
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3.2. Two merging bubbles

Bubbles merging is a typical phenomenon of bubble mo-
tion. In order to study the performance of the present model
with mass correction under the motion of bubbles, a testing
case of two merging bubbles is executed. In this simulation,

the surface tension is σ = 1.0 and the initial spacing between
two bubbles is 5. Figure 6 shows the time evolution of two
bubbles merging , and the simulation results and processes are
consistent with those in Refs. [9] and [12]. Figure 7 displays
the mass changes of the two merging bubbles during the evo-
lution. It can be seen that if there is no mass correction, with
the two bubbles merging slowly, the mass of the two merging
bubbles gradually decreases with the evolution step increasing,
and when the number of evolution steps is 200000, the mass
loss of the bubbles is 6.75% for CDM and 6.69% for HDM. By
comparing the results in Subsubsection 3.1.2, we also find that
the mass loss of dynamic bubble is greater than that of static
bubble. However, the results indicate that the mass losses of
the two merging bubbles are almost zero when the mass cor-
rection is introduced into the original model with the CDM or
HDM.

(d) 6.85T104 step     (e) 7.0T104 step (f) 2.0T105 step

(c) 6.75T104 step(b) 6.6T104 step      (a) 0 step      

Fig. 6. Evolutions of two bubbles merging with time.
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Fig. 7. Evolutions of mass with time for two merging bubbles.

3.3. Single bubble rising

The complex motion characteristics such as deformation
and oscillation will occur during a bubble rises under buoy-
ancy, the deformation of the bubble relates to surface tension,
and the deformation degree relates to Reynolds (Re) number,
Eotvos (Eo) number, and Morton (Mo) number, and they can
be calculated from the following formulas:[36,37]

Re =
ρHUd

µH
, Eo =

gρHd2

σ
, Mo =

gµ4
L

ρHσ3 . (28)

The dimensionless parameter for the evolution time is cal-
culated from[14]

T = t
√

g/d, (29)
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where t is evolution step, and the bubble velocity can be cal-
culated from[12]

Ububble =
∑z φU
∑z φ

, φ < 0, (30)

where U is the bubble velocity component in the vertical di-
rection.

In order to further verify the performance of the present
model (HDM with mass correction) under the complex motion
conditions, a case of single bubble rising will be teseted. Ini-
tially, a spherical bubble is located at the bottom of the simula-
tion domain with 120×120×240, 30 lattice units high away
from the bottom wall, and its diameter is d = 20. The density
ratio between liquid and gas is 1000 and viscosity ratio is 100,
the interface thickness is W = 4, and the migration coefficient
is Γ = 1000. The extrapolation boundary condition is applied
to the top boundary, and the half bounce-back boundary con-
ditions are imposed on the other boundaries.

Table 2 gives the comparison between the Re numbers
from the present model , CDM with mass correction and other
results from Huang et al.[13] and the experiments of Clift et
al.[36,37] in different Eo and Mo numbers. It can be seen that

the results from Huang et al. are quite close to the experimen-
tal results from Clift et al. in the cases C2 and C3, except for
the case C5, and its relative error is up to 16.853%. The max-
imum relative error from the present model is 8.964% in the
case C4, and the minimum one from the present model is only
0.172% in the case C2. Meanwhile, it can also be seen that the
relative error of the present model is smaller than that of the
CDM with mass correction. Therefore, the present model has
higher accuracy, and its results are in good agreement with the
experimental results in all the cases.

Figure 8 illustrates the evolutions of Re number with the
evolution time in some cases (C1–C4) in detail. It can be seen
that with the increase of the evolution time, the Re number
increases rapidly then decreases slowly, and finally reaches a
steady state for each of all the cases. Moreover, the larger the
Re number, the longer the time it takes to reach a steady state
and the greater the discrepancy of Re number between the ex-
periment and the present model. We also find that the Re num-
ber from HDM with mass correction is better than those from
other methods, andit is closer to the experimental result for
each of all the cases.

Table 2. Comparison between Re numbers from the present model and other results with different Eo and Mo numbers.

Case Eo Mo
Experiments[36,37] Huang et al.[13] CDM with mass correction Present model

Re Re∗ Relative error Re∗ Relative error Re∗ Relative error

C1 8.67 711 0.078 – – 0.0762 2.308% 0.0772 1.026%

C2 17.7 711 0.232 0.1856 2% 0.2291 1.250% 0.2316 0.172%

C3 116 848 2.47 2.499 1.174% 2.38 3.644% 2.42 2.024%

C4 116 266 3.57 – – 3.15 11.765% 3.25 8.964%

C5 32.2 0.00082 55.3 64.62 16.853% 52.01 5.949% 52.93 4.286%
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Fig. 8. Plots of evolution of Re number with time in four cases (C1–C4).
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Figure 9 shows the evolution of the rising bubble mass in
four cases (C1)–(C4) in the Table 2. It is obvious that with-
out the mass correction, the rising bubble mass from CDM
and HDM models decreases slowly with the evolution time in-
creasing for each of all the cases, and the larger the Re number,
the larger the mass loss is. Nevertheless, the mass loss from the
HDM is much smaller than that from the CDM. If the HDM
or CDM with mass correction is applied to the original model,
the rising bubble mass is conserved very well in all evolution

time. By analyzing the above testing cases, including the bub-
ble in a stationary flow, the merging of two bubbles, and the
bubble rising under buoyancy, we can draw a conclusion that
the mass conservation can be achieved by introducing the mass
correction method into the original model, and the main con-
tribution of mass conservation is the mass correction method,
which is unrelated to whether CDM or HDM is used in the
model. However, by using the HDM the computational accu-
racy and efficiency can be improved.
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Fig. 10. Comparison among bubble shapes from the present model, Huang et al.,[13] and experiments.[36,37]
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Besides the comparison of the Re number and the mass
conservation, to verify the performance of the present model,
the bubble shapes under different parameters are also studied.
The bubble shape is affected by surface tension, and Eo num-
ber is related to surface tension. A high Eo number means a
low surface tension, which can make bubble greatly deformed.
In addition, Re number relates to the deformation in the bub-
ble’s vertical direction, and the larger the Re number, the larger
the deformation will be. In general, the final bubble shape is
determined by both Re and Eo numbers.[20] Figure 10 shows
the comparison between bubble shapes from the present model
and those from Huang et al.[13] and experiment.[36,37] For case
C1, due to small Eo and Re, the final bubble shape remains
almost unchanged when it rises. As Eo or Re increases, the
final bubble shape becomes an oblate ellipsoidal cap in case
C3, an oblate ellipsoidal (disk) in case C5, and a spherical

cap (closed wake) in case C6 respectively. These shapes from
the present model all consistent well with the experimental
ones.[36,37] The final bubble shapes from Huang et al.[13] are
also very close to those from the experiments.[36,37] in cases
C1, C3 and C5. However, they found that the bubble deforms
and rises in an oscillatory manner, which has some deviation
from the experimental results.[13] In order to further study the
effect of Mo number on bubble shape, a comparison among
bubble shapes from different methods is made with Eo = 116
and different Mo numbers. As shown in Fig. 11, with the Mo
number decreasing, their differences in deformation at the bot-
tom of the spherical crown increase gradually. The simulation
results from the present model are consistent with those from
Hua et al.,[38] Cheng et al.,[14] Huang et al.,[13] Ren et al.,[39]

Li et al.,[40] and the experiment.[36]
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Ren et al. (3D LBM 
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Li et al. (3D LBM with 
large density ratio)[40]

Fig. 11. Comparison among bubble shapes with Eo=116 and different Mo numbers by using different methods.
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4. Conclusions
In this paper, a mass-conserved and high accuracy mul-

tiphase LB model based on the ZSC model is developed, in
which the high-order difference is introduced to calculate the
gradient of the order parameter and thus improving the accu-
racy, and a mass correction method is employed to solve the
non-conservative mass problem of the original model. In order
to verify the performance of the present model, several cases
such as a bubble in a stationary flow, the merging of two bub-
bles, and the bubble rising under buoyancy are tested. Some
conclusions are drawn from the present study as follows.

(i) Whether we use simple single static bubble simula-
tion or bubble rising simulation with complex deformation
motion characteristics, in all testing cases, through introduc-
ing the mass correction method into the original model, the
bubble mass is conserved very well, and the problem about
non-conservation of mass in the original modelis solved.

(ii) By introducing HDM into the original model, the sim-
ulation results from HDM are much better than those from
CDM in all the testing cases, the accuracy of the present model
is improved.

(iii) In the simulations of bubble rising, the Re numbers
and the final bubble shapes from the present model are com-
pared with those from the experiments and other models or
methods. The results from the present model are in good
agreement with the experimental ones, and better than those
from other models and methods mentioned when the Re num-
ber is relatively small.

(iv) In all our simulations, the density ratio for each of two
phases is 1000, the simulations are very stable, and the present
model keeps the advantages of the original ZSC model, such
as large density ratio and stability very well.

Due to its high accuracy, mass conservation and large
density ratio, the present multiphase model can be expected
to be applied reliably to more general complex fluid systems
and obtain some good results. Nevertheless, in the case of bub-
ble rising with high Re number, the instability for the velocity
and bubble shape may appear, and our near future work is to
further improve the present model to solve this problem.
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