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Construction of Laguerre polynomial’s photon-added squeezing
vacuum state and its quantum properties∗
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Laguerre polynomial’s photon-added squeezing vacuum state is constructed by operation of Laguerre polynomial’s
photon-added operator on squeezing vacuum state. By making use of the technique of integration within an ordered product
of operators, we derive the normalization coefficient and the calculation expression of

〈
ala†〉. Its statistical properties, such

as squeezing, the anti-bunching effect, the sub-Poissonian distribution property, the negativity of Wigner function, etc., are
investigated. The influences of the squeezing parameter on quantum properties are discussed. Numerical results show that,
firstly, the squeezing effect of the 1-order Laguerre polynomial’s photon-added operator exciting squeezing vacuum state is
strengthened, but its anti-bunching effect and sub-Poissonian statistical property are weakened with increasing squeezing
parameter; secondly, its squeezing effect is similar to that of squeezing vacuum state, but its anti-bunching effect and sub-
Poissonian distribution property are stronger than that of squeezing vacuum state. These results show that the operation of
Laguerre polynomial’s photon-added operator on squeezing vacuum state can enhance its non-classical properties.
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1. Introduction
In the field of quantum optics, non-classical states are

widely used for quantum teleportation, optical communica-
tions, gravitational detection.[1–3] The construction of quan-
tum states and the study of their quantum properties have al-
ways been the major topics for researchers. There are many
ways to construct a new quantum state, among which, the
operation of light field operators is one of the most familiar
methods. This method was first proposed by Agarwal and
Tara in 1991.[4] So far, the different non-classical quantum
states have been constructed by this method.[5–19] For exam-
ple, Ren and his coworkers investigated the non-classical prop-
erties of photon-added compass state.[5] Meng et al. calculated
the Wigner function and tomogram of the excited squeezed
vacuum state.[6] In Ref. [17], Lee et al. investigated how the
entanglement properties of a two-mode state can be improved
by performing a coherent superposition operation ta+ ra† of
photon subtraction and addition. With the deepening of re-
search work, in recent years, the operations of photon-addition
and photon-subtraction operators have been extended to that
of Hermite polynomial’s operator.[20–23] In Ref. [20], the Her-
mite polynomial’s photon-added coherent state has been in-
troduced, and its non-classical properties has been studied.
Zhang et al. introduced Hermite-polynomial-field excited co-
herent state and investigated its evolution in amplitude damp-
ing channel.[21] Inspired by the above references, we ap-
ply the Laguerre polynomial’s operator to the squeezed vac-
uum state (SVS) and construct Laguerre polynomial’s photon-

added squeezing vacuum state (LESVS). Further, we dis-
cussed its squeezing, anti-bunching effect, sub-Poissonian sta-
tistical property, and the negativity of Wigner function. La-
guerre polynomial Ln(x), as a special function, is widely used
in quantum mechanics and mathematical physics. It should
be pointed out that LESVT can be produced by superposing
some different photon-added SVSs in the form of Laguerre
polynomial. Recently, many effective methods for generat-
ing photon-added and photon-subtracted states have been pro-
posed and successfully realized experimentally.[4,24,25] Thus,
we believe that the experimentalists have enough wisdom to
generate LESVT, in the near future.

This paper is organized as follows. In Section 2, we in-
troduce LESVS and derive its normalization coefficient, and
the calculation expression formula of

〈
ala†

〉
is given. In Sec-

tions 3–6, the non-classical properties of LESVS, such as the
squeezing, the anti bunching effect, Mandel Q parameter, and
Wigner function, are studied. Finally, the main results are
summarized in Section 7.

2. The construction of LESVS

The single-mode squeezing operator with the squeezing
parameter λ can be written as[26]

S(λ ) = exp
(
−1

2
a†2 tanhλ

)
× exp

[(
a†a+

1
2

)
lnsechλ

]
× exp

(
1
2

a2 tanhλ

)
, (1)
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where a (a†) denotes annihilation operator (creation operator).
We note that the operators a†2/2, a+a+1/2, and a2/2 on the
exponent of Eq. (1) form a closed SU(1,1) Lie algebra. The
SVS is constructed by operation of the operator S(λ ) on the
vacuum state. It can be written as

|ϕ(0)〉= sech1/2
λ exp

(
−1

2
a†2 tanhλ

)
|0〉 . (2)

From the formula of its generating function

Ψ(x, t) =
1

1− t
exp
[
− tx

1− t

]
,

we get Laguerre polynomial as follows:

Ln(x) =
∂ nΨ

∂ tn

∣∣∣∣
t=0

, (3)

where n represents the order. By replacing the variable x with
a† in formula (3), we get Laguerre polynomial’s photon-added
operator as follows:

Ln(a†) =
∂ n

∂ tn

[
1

1− t
exp
(
− ta†

1− t

)]∣∣∣∣
t=0

. (4)

Now, we can construct LESVS by operating Ln(a†) on |ϕ(0)〉.
It can be written as

|ϕn〉 = Ln(a†)|ϕ(0)〉

= Nn sech1/2
λ × ∂ n

∂ tn

[
1

1− t
exp
(
−ta†

1− t

)]∣∣∣∣
t=0

× exp
(
−1

2
a†2 tanhλ

)
|0〉, (5)

where Nn is the normalization coefficient. Using the normal
product form of vacuum projector |0〉〈0|= : exp(−a†a) :, here
“: :” represents the normal order of operators. Thus, the den-
sity operator of LESVS can be written as

ρn = N2
n sechλ × ∂ 2n

∂ tn∂ sn

{
:

1
(1− t)(1− s)

× exp
[
− ta†

1− t
− sa

1− s
− 1

2
(a†2 +a2)

× tanhλ −a†a
]∣∣∣

t=s=0
:
}
. (6)

Using trρn = 1 and the operator identity 〈z′| : f (a†,a) : |z〉 =
f (z

′∗,z)〈z′|z〉, we obtain

N−2
n =

∂ 2n

∂ tn∂ sn

{
1

(1− t)(1− s)
exp
[

ts
(1− t)(1− s)

cosh2
λ

− t2 sinh2λ

4(1− t)2 −
s2 sinh2λ

4(1− s)2 )

]}∣∣∣∣
t=s=0

, (7)

where tr denotes the trace, |z〉 is coherent state. In the calcula-
tion of Eq. (7), we have used the integration formula∫ d2z

π
exp(h |z|2 +ηz∗+ sz+ f z2 +gz∗2)

=
1√

h2−4 f g
exp
(
−hsη + s2g+η2 f

h2−4 f g

)
, (8)

whose convergent condition is Re(h+ f + g) < 0 or Re(h−
f −g)< 0.

3. Squeezing property of LESVS

For the two quadrature operators of light field F1 =
1
2 (a+

a†) and F2 =
1
2i (a−a†), because they satisfy the commutation

relation [F1,F2] = i/2, there is a uncertain relation

∆F2
1 ∆F2

2 >
1
4
. (9)

For the sake of simplicity, we define

Y1 =
1
4
[
〈
a2 +a†2〉+2

〈
a†a
〉
]− 1

4
〈
a+a†〉2

,

Y2 =
1
4
[−
〈
a2 +a†2〉+2

〈
a†a
〉
]+

1
4
〈
a−a†〉2

. (10)

Thus, if Yi < 0 (i = 1,2) the state is squeezed in Fi (i = 1,2)
direction. Using Eq. (5), we obtain

〈
ala+m

〉
= N2

n
∂ 2n

∂ tn∂ sn

[
1

(1− t)(1− s)
∂ l

∂xl
∂ m

∂ym

× exp(A)
∣∣∣∣
x=−t/(1−t),y=−s/(1−s)

]∣∣∣∣
t=s=0

,

A = xycosh2
λ − 1

4
sinh(2λ )(x2 + y2). (11)

From formula (11), letting n = 1, we obtain

〈a†〉= 〈a〉=−N2
1 e−λ ,〈

a†a
〉
= 3N2

1 cosh4
λ −1,〈

a2〉= 〈a†2〉=−1
2

N2
1 sinh2λ (1+3cosh2

λ ). (12)

According to Eqs. (11) and (12), we can perform numeri-
cal calculations of Y1 as a function of λ . The numerical result
is plotted in Fig. 1. The solid line and dotted line in Fig. 1 de-
note the results of LESVS and SVS, respectively. From Fig. 1,
it is found that Y1 is always less than zero, and it gradually de-
creases and eventually approaches −0.25 with the increasing
of the squeezing parameter λ . This means that the squeezing
effect of the first-order LESVS is enhanced with the increasing
squeezing parameter λ . This is because the squeezing effect of
SVS is strengthened with the increasing of the squeezing pa-
rameter λ . Comparing the solid line and dotted line, we found
that the squeezing effect of the first-order LESVS is similar to
that of SVS.
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Fig. 1. The evolution of Y1 with squeezing parameter λ .

4. Anti-bunching effect of LESVS

The bunching/anti-bunching effects of light field can
be described by the second-order correlation function. The
second-order correlation function is defined as[27]

g =

〈
a†2a2

〉
〈a†a〉2

. (13)

Set G = g− 1. Thus, if G < 0, the light field has the photon
anti-bunching effect. Take n = 1, from Eq. (11) we derive〈

a2a†2〉 = N2
1 [2cosh4

λ + cosh2
λ sinh2

λ

+6cosh6
λ +9cosh4

λ sinh2
λ ],〈

a†a
〉
= 3N2

1 cosh4
λ −1,

a†2a2 = a2a†2−4a†a−2. (14)
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Fig. 2. The evolution of G with squeezing parameter λ .

Combining Eqs. (13) and (14), we plot the graph of G as a
function of λ in Fig. 2(a). Figure 2(b) denotes the evolution of
G for SVS. From Fig. 2(a), we find that the first-order LESVS
displays the anti-bunching effect when squeezing parameter is
less than a certain value, and the anti-bunching effect of the
first-order LESVS is weakened with the increasing squeezing
parameter λ . Figure 2(b) shows that SVS displays bunching
effect. This means that the operation of Laguerre polynomial’s

photon-added operator can strengthen the anti-bunching effect
of the light field. This may be caused by the superposition of
the SVS in the form of Laguerre polynomial.

5. Mandel’s Q-parameter

Mandel’s Q parameter has been a useful criterion for dis-
tinguishing the non-classical light from a classical one. It is
defined as[28]

Q =

〈
a†2a2

〉
−
〈
a†a
〉2

〈a†a〉
, (15)

if Q = 0, > 0 or < 0, it means that the light field exhibits
the poissonian distribution, the super-Poissonian distribution
or the sub-Poissonian distribution, respectively.

From Eqs. (14) and (15), the obtained numerical result
of Mandel Q parameter of the first-order LESVS is depicted
in Fig. 3(a). Figure 3(b) shows the evolution of Mandel Q pa-

rameter of SVS. These figures show that the first-order LESVS

displays the sub-Poissonian distribution, but SVS displays the
super-Poissonian distribution. This shows that the operation

of Laguerre polynomial’s photon-added operator can enhance

the sub-Poissonian distribution property of the light field. On
the other hand, the sub-Poissonian distribution property of the

first-order LESVS is weakened with the increasing squeezing

parameter λ .

 . .

↩.

↩.

↩.



.

0.4

0.6

0.8

1.0

 . .

.

.

.

.

3.0

3.5

4.0

 Q

(a)

λ

 Q

(b)

λ

Fig. 3. The evolution of Q with squeezing parameter λ .

6. Wigner function

Wigner function (WF) is a powerful tool for studying the
non-classical properties of quantum states, and its negativity
is one of the important symbols of non-classical properties of
the light field. The coherent state representation of the Wigner
operator is

∆ = exp(2 |α|2)
∫ d2z

π2 |z〉〈−z|exp[−2(α∗z−αz∗)]. (16)
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Thus, the WF of the state with the density operator ρ can be

expressed as

W (α,α∗) = exp(2 |α|2)
∫ d2z

π2 〈−z|ρ |z〉

× exp[−2(α∗z−αz∗)], (17)

Substituting Eq. (5) into Eq. (17), we derive

W (α,α∗) =
1
π

N2
n exp(2 |α|2) ∂ 2n

∂ tn∂ sn

×
[

1
(1− t)(1− s)

exp(B)
]∣∣∣∣

t=s=0
,

B = cosh2
λ ×

[
− st
(1− s)(1− t)

− 2αs
1− s

− 2α∗t
1− t

−4 |α|2
]

− 1
4

sinh2λ ×
[

s2

(1− s)2 +
t2

(1− t)2 +
4α∗s
1− s

+
4αt
1− t

+4(α2 +α
∗2)

]
. (18)

When n equals one, we have

W (α,α∗) =
1
π

N2
1 (−sinh2

λ −T −T ∗−|T |2)

× exp[(2−4cosh2
λ ) |α|2− sinh2λ (α2 +α

∗2)],

T = 2α cosh2
λ +α

∗ sinh2λ . (19)
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Fig. 4. The evolution of Wigner function with x and p for (a) λ = 0.1, (b) λ = 0.2, (c) λ = 0.5, (d) λ = 1.0, (e) λ = 2.0, (f) λ = 3.0.
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Because α = (x+ i p)/
√

2, the Wigner function can be ex-
pressed as

W (x, p) = N2
1 [−sinh2

λ −2
√

2eλ xcoshλ

+(2cosh2
λ + sinh2λ +2cosh2

λ sinh2λ )x2

+(2cosh2
λ + sinh2λ −2cosh2

λ sinh2λ )p2]

× 1
π

exp[(1−2eλ coshλ )(x2 + p2)]. (20)

Set the squeezing parameter λ equals 0.1, 0.2, 0.5, 1.0, 2.0,
and 3.0, respectively, three-dimensional graphs of W (x, p) are
drawn in Fig. 4 according to Eq. (20). As shown in Fig. 4, WF
displays negative value, and its negative region gradually dis-
appears with increasing squeezing parameter λ . In addition,
as λ increases, the negative depth of WF increases gradually
in the beginning; then it gradually decreases until it decays to
zero.

Furthermore, we calculate the negative volume of WF.
The negative volume of WF is defined as

V =
1
2

∫
(|W (α,α∗)|−W (α,α∗))dαdα

∗

=
1
2

∫
(|W (x, p)|−W (x, p))dxdp. (21)

Figure 5 displays the evolution of V as a function of λ when
n = 1. From Fig. 5, we can see that as the squeezing param-
eter λ increases, the negative volume of WF decreases in the
beginning, then it gradually increases; finally when λ is larger
than a certain value it again decays until it decays to zero. It
is implied that there is a nonlinear relationship between V and
the squeezing parameter λ .
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Fig. 5. The evolution of the negative volume of Wigner function with λ .

7. Conclusion
In this paper, we constructed LESVS by operation of La-

guerre polynomial’s photon-added operator on SVS. By the

technique of integration within an ordered product of oper-
ators, the normalization coefficient is derived and the cal-
culation expression formula of

〈
ala†

〉
is given. By numer-

ical calculations, the statistical properties of the first-order
LESVS, such as squeezing, the anti-bunching effect, the sub-
Poissonian distribution property, the negativity of Wigner
function, and so on, are discussed. The obtained results show
that as squeezing parameter increases, the squeezing effect of
the first-order LESVS is strengthened, but its anti-bunching ef-
fect and sub-Poissonian statistical property are all weakened.
In addition, comparing with SVS, we find that its squeez-
ing effect is similar to that of SVS, but it also exhibits the
anti-bunching effect and the sub-Poissonian distribution. This
shows that the operation of Laguerre polynomial’s photon-
added operator on SVS can help enhance its non-classical
properties. This may be caused by the superposition of the
SVS in the form of Laguerre polynomial.
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