
Chin. Phys. B Vol. 29, No. 3 (2020) 030304

Quantum speed limit time of a non-Hermitian two-level system
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We investigated the quantum speed limit time of a non-Hermitian two-level system for which gain and loss of energy
or amplitude are present. Our results show that, with respect to two distinguishable states of the non-Hermitian system, the
evolutionary time does not have a nonzero lower bound. The quantum evolution of the system can be effectively accelerated
by adjusting the non-Hermitian parameter, as well as the quantum speed limit time can be arbitrarily small even be zero.
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1. Introduction
In conventional quantum mechanics, a Hamiltonian of a

quantum system must be represented by a Hermitian opera-
tor, which ensures that not only the eigenvalues of the Hamil-
tonian are real, but also the time evolution of the quantum
system is unitary. However, in the last two decades, non-
Hermitian (NH) systems have received considerable attention.
Many theories of NH systems with real and complex spec-
tra have been investigated. In 1998, Bender et al. proposed
that parity–time reversal (𝒫𝒯 ) symmetric NH Hamiltonians
which are invariant under combined space and time rever-
sal still have real and positive energy spectra,[1] proved that
the time evolution of 𝒞𝒫𝒯 -symmetric Hamiltonians is uni-
tary, and redefined an inner product whose associated norm
is positive-definite,[2] and demonstrated that the evolutionary
time of 𝒫𝒯 -symmetric NH systems can even be made ar-
bitrarily small without violating the time–energy uncertainty
principle.[3,4] Assis et al. proved that the phenomenon that
the passage time needed for the evolution can be made ar-
bitrarily small in the quantum brachistochrone problem of
𝒫𝒯 -symmetric systems can also be obtained for NH Hamil-
tonians in which the 𝒫𝒯 -symmetry is completely broken.[5]

Günther et al. demonstrated that the 𝒫𝒯 -symmetric quan-
tum brachistochrone problem can be reanalyzed as a quan-
tum system consisting of a 𝒫𝒯 -symmetric NH component
and a purely Hermitian component simultaneously,[6] and pro-
posed that the quantum mechanical brachistochrone system
with a 𝒫𝒯 -symmetric Hamiltonian can be Naimark-dilated
and reinterpreted as a subsystem of a larger conventional
quantum mechanics system in a higher-dimensional Hilbert
space governed by a Hermitian Hamiltonian.[7] Kawabata et
al. proposed the Naimark extension for quantum measure-
ment by adding an ancilla (a measuring apparatus) and ex-
tending the Hilbert space, and found that the complete infor-

mation retrieval from the environment can be achieved in the
𝒫𝒯 -symmetry unbroken phase, whereas no information can
be retrieved in the 𝒫𝒯 -symmetry broken phase.[8] Since the
quantum brachistochrone problem appeared in NH systems,
optimal-speed evolutions of NH systems have been widely
investigated.[9–11] Moreover, the framework for the NH for-
malism of Hamiltonians has been proposed by Brody et al.[12]

and Sergi et al.[13] Based on the previous works, many quan-
tum properties and quantum effects in NH systems have been
widely studied.[14–20] These research results show that NH
Hamiltonians are useful in theoretical work, and they are also
regarded as effective mathematical tools for studying quantum
properties of open quantum systems in quantum optics.[21–24]

On the other hand, the quantum speed limit time (QSLT)
originates from the Heisenberg uncertainty relation for energy
and time, it is conventionally known as the minimum evo-
lutionary time between two distinguishable states of a quan-
tum system, and it becomes a key factor in characterizing the
maximum evolutionary speed of quantum systems. For closed
quantum systems with unitary time evolution, a unified lower
bound of the QSLT is obtained by the Mandelstam–Tamm
(MT)-type bound τQSL = π h̄/(2∆E)[25] and the Margolus–
Levitin (ML)-type bound τQSL = π h̄/(2E),[26] where ∆E is
the variance of energy of the initial state and E is the mean
energy with respect to the ground state. Both the MT-type
and the ML-type bounds are attainable in closed quantum sys-
tems for initial pure states. According to Refs. [4,27], although
𝒫𝒯 -symmetric NH Hamiltonians with real eigenvalues are not
Hermitian in the Dirac sense, they do have entirely real spec-
tra and give rise to unitary time evolution. Hence, the authors
in Ref. [28] considered that both the MT-type bound as well
as the ML-type bound for time-dependent generators of 𝒫𝒯 -
symmetric NH systems remain valid. However, it should be
noted that 𝒫𝒯 -symmetric Hamiltonians with real eigenvalues
are a special class of NH Hamiltonians. For an NH system
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which is the spontaneous 𝒫𝒯 -symmetry breaking, the time
evolution is no longer unitary.[29] Fortunately, Campo et al.
considered NH systems for the quantum speed limit (QSL),
and proved that the bound to the speed of evolution under
NH Hamiltonians still holds.[30] Deffner et al. expressed the
QSLT in terms of the operator norm of the non-unitary gen-
erator of the dynamics.[31] However, the unified lower bound
introduced in Ref. [31] is applicable for a given driving time
for pure initial states, it is not feasible for mixed initial states.
Later, Zhang et al. proposed a generic bound on the evolu-
tionary time of quantum systems with non-unitary time evo-
lution by using the relative purity, which is applicable to both
mixed and pure initial states.[32] In research field of QSLT, to
effectively reduce the evolutionary time as well as accelerate
the speed of quantum evolution is one of our strong expecta-
tions. Although a lot of works have investigated the quantum
Brachistochrone problem in NH systems, this paper is aimed
to investigate the evolution time in NH systems from the per-
spective of the QSLT. With the help of numerical calculations,
we demonstrate that the non-Hermiticity in Hamiltonians can
notably reduce the QSLT of the system, even decrease to arbi-
trary small one.

This paper is organized as follows. Firstly, definitions of
the QSLT are briefly reviewed. Secondly, physical model and
NH dynamics are introduced. Thirdly, QSLT of the NH system
is investigated with the help of numerical calculations. Finally,
conclusion is given.

2. Definitions of quantum speed limit time
In this section, we briefly review the definitions of the

QSLT. Deffner and Lutz[31] derived a unified lower bound
of the QSLT which is determined by an initial state ρ0 =

|ψ0⟩⟨ψ0| and its target state ρτD , and governed by arbitrary
time-dependent non-unitary equation of the form ρ̇t = Ltρt .
With the help of the von Neumann trace inequality and the
Cauchy–Schwarz inequality, the QSLT is obtained as

τD ≥ τQSL = max
{

1
Λ 1

τD

,
1

Λ 2
τD

,
1

Λ ∞
τD

}
sin2[ℬ(ρ0,ρτD)], (1)

where τD is the actual driving time, Λ
p
τD = τ

−1
D
∫ τD

0 ‖Ltρt‖p dt,
and ‖A‖p = (σ p

1 + · · ·+σ
p
n )

1/p denotes the Schatten p norm,
σ1, . . . ,σn are the singular values of A. ‖A‖1 = ∑i σi is the

trace norm, ‖A‖2 =
√

∑i σ2
i is the Hilbert–Schmidt norm, and

‖A‖∞ =σmax is the operator norm which is given by the largest
singular value. Because of the relationship ‖A‖∞ ≤ ‖A‖2 ≤
‖A‖1, the ML-type bound based on the operator norm (p = ∞)
provides the sharpest bound on the QSLT. And ℬ(ρ0,ρτD) =

arccos
√
⟨ψ0|ρτD |ψ0⟩ is the Bures angle between the initial

state ρ0 and the target state ρτD . However, equation (1) is not
feasible for mixed initial states. Fortunately, Zhang et al. in

Ref. [32] proposed a unified lower bound of the QSLT for an
arbitrary mixed state ρτ to its target state ρτ+τD based on the
relative purity:

τD ≥ τQSL = max
{

1

∑
n
i=1 σiρi

,
1√

∑
n
i=1 σ2

i

}
×| f (τ + τD)−1|Tr(ρ2

τ ), (2)

where X = τ
−1
D
∫

τ+τD
τ

X dt, σi and ρi are the singular val-
ues of Ltρt and the mixed initial state ρτ , respectively. And
f (τ + τD) = Tr(ρτ+τDρτ)/Tr(ρ2

τ ) denotes the relative purity
between the initial state ρτ and the final state ρτ+τD with the
driving time τD. For a pure initial state ρτ=0 = |ψ0⟩⟨ψ0|, the

singular value ρi = δi,1, then ∑
n
i=1 σiρi = σ1 ≤

√
∑

n
i=1 σ2

i , and
equation (2) can be simplified as

τD ≥ τQSL =
| f (τ + τD)−1| Tr(ρ2

τ )

σ1
. (3)

Equation (3) indicates that, with regard to a pure initial state,
the expression given by Eq. (2) can recover to the unified lower
bound of the QSLT obtained by Eq. (1). When τQSL = τD, it
means that the evolution is already along the fastest path and
does not possess potential capacity for further quantum speed-
up. However, τQSL < τD indicates that the further acceleration
might occur, and the shorter τQSL, the greater the capacity for
potential speed-up will be. And 1/τQSL defines a natural no-
tion of the speed of quantum evolution. Because two bounds of
the QSLT can be saturated (i.e., the actual optimal evolution
time could equal the speed limit time), reducing τQSL would
lead to an acceleration of the quantum evolution. Especially,
τQSL = 0 can be interpreted as two different situations: for
two identical states (i.e., the initial state is the same as its tar-
get state), τQSL = 0 indicates that the quantum evolutionary
speed tends to zero-speed, but for two distinguishable quan-
tum states (i.e., the initial state is different to its target state),
τQSL = 0 represents that the quantum evolutionary speed be-
comes infinite speed.

3. Physical model and non-Hermitian dynamics
We all know that the NH approach is regarded as one of

available methods to describe properties of open quantum sys-
tems. Sergi et al.[13] assumed that in absence of any inter-
action with the environment, the two-level system is free to
make transitions between its two energy levels. Such a situ-
ation is modeled by the Hermitian Hamiltonian H+. In order
to formulate the open system dynamics of the model, they in-
troduced a general anti-Hermitian Hamiltonian H−. Namely,
NH Hamiltonians (HnH ̸= H†

nH) always can be decomposed
into Hermitian and anti-Hermitian parts as HnH = H+ +H−
with H± =±H†

± and H− =−iΓ , where Γ = Γ † is usually re-
garded as the decay rate operator. We choose a special scheme
which has been realized in both classical experiments[33–35]
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and quantum experiments[36] to describe the NH model for
which gain and loss of energy or amplitude are present (h̄= 1):

H+ =−ωσx, Γ = γσz, (4)

where ω and γ are assumed to be real-valued, γ represents the
NH parameter, and σα (α = x,z) are Pauli matrixes. And the
Hamiltonian of the NH model is given as

HnH = −ωσx − iγσz

= −ω

(
i∆ 1
1 − i∆

)
, (5)

where we denoted ∆ = γ/ω , and ω−1 is an energy scale,
namely ∆ has the same sign as the NH parameter γ . And the
eigenvalues of HnH are E± = ±

√
1− γ2. It is easy to deter-

mine that when γ ∈ (−1,0)∪(0,1), HnH in the 𝒫𝒯 -symmetric
phase with real eigenvalues, while γ ∈ (−∞,−1)∪ (1,∞), HnH

in the 𝒫𝒯 -symmetry broken phase with complex eigenval-
ues. And γ =±1 are usually considered as exceptional points
(EPs) where eigenvalues switch from real values to complex
values.[37] It should be noted that 𝒫𝒯 -symmetry breaking is
usually associated with the EP; in contrast, in the system with
infinite site, the 𝒫𝒯 -symmetry breaking is associated with
spectral singularity rather than the EP.[38,39] When γ = 0, the
NH model degrades into a coherent Rabi oscillation with cou-
pling parameter ω = 1. The evolution equation of NH sys-
tems with an initially pure state is a complex extension of
Schrödinger equation. For a mixed state, the evolution equa-
tion of NH systems refers to the covariance equation which is
a complex extension of the von Neumann equation[12]

d
dt

Ωt =−i[H+,Ωt ]−{Γ ,Ωt}, (6)

where [ , ] and { , } represent the commutator and the
anti-commutator, respectively. In general, due to the non-
Hermiticity of HnH, the NH dynamics is non-unitary, and Ωt

in Eq. (6) is a non-normalized density operator. Therefore,
for making sure that the density matrix is trace-preserving, the
following renormalization process is required:

ρt =
Ωt

TrΩt
. (7)

And then the norm-preserving evolution equation generated by
an NH Hamiltonian for the normalized density operator ρt is
given as

d
dt

ρt =−i[H+,ρt ]−{Γ ,ρt}+2Tr(ρtΓ )ρt . (8)

It should be noted that the solution of this evolution equation
in Eq. (8) also can be expressed in the form

ρt =
UnHρ0U†

nH

Tr(UnHρ0U†
nH)

, (9)

where ρ0 is the initial state, UnH = exp(−iHnHt) is still a non-
unitary time evolution operator. In conventional quantum me-
chanics, the NH dynamics is intrinsically non-unitary both
in the 𝒫𝒯 -symmetry unbroken and broken phases.[33] How-
ever, the Hermitian dynamics can appear in non-Hermitian
systems.[40]

By solving the evolution equation Eq. (8), matrix ele-
ments ρkl

t (k, l = 1,2) of the normalized final state ρt are given
as

ρ
11
t =

1
γ2

1 T
{γ

2
1 ρ

11
0 cosh2(γ1t)+ [1+ γ

2
1 ρ

11
0 + i∆(ρ12

0 −ρ
21
0 )]

× sinh2(γ1t)− γ1

[
∆ρ

11
0 +

1
2

i(ρ12
0 −ρ

21
0 )

]
sinh(2γ1t)},

ρ
12
t =

1
γ2

1 T

[
γ

2
1 ρ

12
0 cosh2(γ1t)+(i∆ −∆

2
ρ

12
0 +ρ

21
0 )

× sinh2(γ1t)+
1
2

iγ1(1−2ρ
11
0 )sinh(2γ1t)

]
,

ρ
21
t = (ρ12

t )*,

ρ
22
t = 1−ρ

11
t , (10)

where ρ
i j
0 (i, j = 1,2) are elements of the initial state ρ0, we

have denoted T = Tr(UnHρ0U†
nH) and γ1 =

√
∆ 2 −1.

4. Quantum speed limit time of non-Hermitian
model
According to definitions of the QSLT given by Eqs. (1)

and (2), we consider two cases of different initial states ρ0.

4.1. Pure initial state case

We firstly examine the QSLT of the NH two-level system
with a pure initial state |ψ0⟩ = |1⟩, and equation (1) can be
simplified as

τQSL =
1− p(τD)

(1/τD)
∫ τD

0 σmax dt
, (11)

where p(τD) = ρ11
τD

represents the population of the excited
state |1⟩ at time τD, and σmax is the largest singular value of
Ltρt .

In Fig. 1, we depict the QSLT represented by τQSL (the
black-solid curve) as a function of the NH parameter repre-
sented by ∆ , and the actual driving time τD = 1. According to
Eq. (5) and its explanation, when ∆ ∈ (−1,1), HnH is a 𝒫𝒯 -
symmetric NH Hamiltonian, while ∆ ∈ (−∞,−1) ∪ (1,∞),
HnH is a 𝒫𝒯 -symmetry broken NH Hamiltonian, and ∆ =±1
are usually considered as EPs. On the basis of definitions of
the QSLT, and the actual optimal evolution time could equal
the speed limit time, we know that increasing τQSL would lead
to a deceleration of the quantum evolution, while decreasing
τQSL would result in an acceleration, and τQSL = 0 can be inter-
preted as zero-speed or infinite speed. Besides, from Eq. (11),
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one can see that τQSL is related to p(τD), and p(τD) can re-
flect evolutionary efficiency of the quantum state. In order
to explore the internal mechanism of the speed of the quan-
tum evolution, we also plot p(τD) (the red-dashed curve) as a
function of ∆ . In Fig. 1, we adjust ∆ from negative values to
positive values. For negative and small region ∆ ∈ (−15,−3),
p(τD) slightly decreases, and τQSL increases correspondingly.
Especially, when ∆ ∈ (−3,1.5), p(τD) quickly decreases, and
τQSL firstly increases, and then decreases. For positive and
large region ∆ ∈ (1.5,15), p(τD) slightly reverts, and finally
decreases to zero, τQSL firstly decreases and then increases to
a constant. That is to say, when ∆ is in negative and small
region, although the value of τQSL is smaller, p(τD) barely
changes, which means that the evolution of the quantum state
is faster but low efficient. In the region which p(τD) rapidly
and efficiently changes, the quantum evolution experiences a
process from deceleration to acceleration, and then τQSL grad-
ually tends to a constant speed with ∆ increases continuously.
It is obvious that, with regard to the NH parameter, the excited
state population has a negative relation with the QSLT. The
speed-up of NH systems is mostly because that the major dif-
ference between conventional and NH quantum mechanics is
the definition of the inner product. Because the Hilbert-space
metric depends on the Hamiltonian, the geometry of Hilbert
space of the NH quantum theory has to be modified. Hence, a
pair of states is orthogonal under the standard inner product of
the Hermitian quantum theory, but is no longer orthogonal in
the NH quantum theory. As a consequence, the counterpart of
Bures angle in Eq. (1) under the NH quantum theory must be
changed, which is possible that an alternative complex path-
way from a state to its target state can be made shorter.
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Fig. 1. The quantum speed limit time τQSL (black-solid line) and the excited
state population p(τD) (red-dashed line) as functions of the non-Hermitian
parameter ∆ for the initial excited state. The actual driving time is τD = 1.

We secondly explore effects of the non-Hermiticity on the
QSLT of the two-level system in the whole dynamical process
by using the definition given by Eq. (2). We also start from the
excited state |1⟩ and discuss the QSLT τQSL from an arbitrary
state ρτ to its target state ρτ+τD , and p(τ) = ρ11

τ represents the
population of the excited state |1⟩ at the time τ . In Fig. 2, we
plot the QSLT τQSL (black-solid curves) and the excited state
population p(τ) (red-dashed curves) as functions of the initial

time parameter τ for different NH parameter ∆ , and the actual
driving time τD = 1. According to Eq. (5) and its explana-
tion, we know that HnH with the NH parameter ∆ = 0.4 or 0.9
in Fig. 2(a) or Fig. 2(b) satisfies 𝒫𝒯 -symmetric structure. In
Figs. 2(a) and 2(b), τQSL periodically decreases and increases,
which implies that the quantum evolution exists periodical
speed-up and speed-down. We also find that with ∆ increases
from 0.4 to 0.9, the effect of acceleration and deceleration be-
comes more obvious. It is means that, in the 𝒫𝒯 -symmetric
phase, the larger the NH parameter ∆ is, the more obvious the
effect of speed-down and speed-up is, the smaller value the
QSLT can be achieved, which corresponds to a faster speed of
the quantum evolution. And p(τ) periodically evolves and has
the same period with τQSL. While ∆ = 1.1 or 2.5 in the 𝒫𝒯 -
symmetry broken phase in Fig. 2(c) or Fig. 2(d), the quantum
evolution is aperiodic. From Figs. 2(c) and 2(d), we can see
that τQSL slightly increases at the beginning, and gradually de-
creases to zero, which implies that the quantum evolution ex-
ists a speed-down and a speed-up. And p(τ) firstly decreases
and then increases, finally reaches at a stable value. The zero
QSLT combined with a stable excited state population indi-
cates that the state of the NH system finally evolves into a
steady state and the quantum evolutionary speed finally tends
to zero-speed. In the 𝒫𝒯 -symmetry broken phase, the larger
the NH parameter ∆ is, the faster the evolution of the system
to the steady state is, the smaller the stable value of the excited
state population p(τ) is, which corresponds to faster and more
effective quantum evolution.
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Fig. 2. The quantum speed limit time τQSL (black-solid line) and the excited
state population p(τ) (red-dashed line) as functions of the initial time param-
eter τ for the initial excited state. (a) ∆ = 0.4; (b) ∆ = 0.9; (c) ∆ = 1.1; (d)
∆ = 2.5. The actual driving time τD = 1.

4.2. Mixed initial state case

In this subsection, we examine the QSLT of the NH two-
level system with a mixed initial state

ρ0 =

(
1− p

2

)
|1⟩⟨1|+ p

2
|0⟩⟨0|, (0 < p < 1), (12)

where p is a constant parameter. For clearly demonstrating
the quantum evolution process, we also consider the trace

030304-4



Chin. Phys. B Vol. 29, No. 3 (2020) 030304

distance[41] which is a measure of the distinguishability be-
tween two quantum states ρ1 and ρ2

D(ρ1,ρ2) =
1
2

Tr |ρ1 −ρ2| (13)

with Tr |A| = Tr
√

A†A. The trace distance of two distin-
guishable states satisfies the inequality 0 < D(ρ1,ρ2) ≤ 1,
D(ρ1,ρ2) = 0 for two identical states ρ1 = ρ2, and D(ρ1,ρ2) =

1 for two orthogonal states ρ1ρ2 = 0.
Effects of the non-Hermiticity on the QSLT of the two-

level system in the whole dynamical process can be studied
by using Eq. (2) when the initial state takes the form of a
general mixed state given by Eq. (12). In Fig. 3, we de-
pict the QSLT τQSL (black-solid curves) and the trace distance
D(ρτ ,ρτ+τD) (blue-dotted curves) as functions of the initial
time parameter τ for different NH parameter ∆ . According to
Eq. (5) and its explanation, we know that HnH with ∆ = 0.6
or 0.9 in Fig. 3(a) or Fig. 3(b) satisfies 𝒫𝒯 -symmetric struc-
ture, and the quantum evolution is periodical. We find that,
in Fig. 3(a), ∆ = 0.6, the quantum evolution exhibits straight-
forward acceleration and deceleration in one period. While
in Fig. 3(b), ∆ = 0.9, τQSL tends to zero twice in one period,
and the quantum evolution experiences repeated speed-down
and speed-up. It is worth pointing out that when τQSL re-
duces to a minimum, D(ρτ ,ρτ+τD) is nonzero. The zero QSLT
combined with the nonzero trace distance indicates that the
quantum state of the NH system still evolves, but evolution-
ary time is zero, which means that the quantum evolutionary
speed tends to infinite speed. That is to say, the evolution-
ary time of NH systems do not have a nonzero lower bound,
which is a remarkable difference comparing with the conven-
tional quantum theory. In order to give NH quantum systems a
meaning in the conventional quantum mechanics, the authors
in Ref. [8] embedded NH systems into a larger Hermitian sys-
tem, and proposed the Naimark extension for quantum mea-
surement by adding an ancilla (a measuring apparatus) and
extending the Hilbert space, any non-unitary dynamics can be
understood as a unitary dynamics of the entire system followed
by quantum measurement acting on the ancilla. Moreover, the
authors in Ref. [7] proposed that the embedding of NH system
into a higher-dimensional Hilbert space can be deemed as a
strengthening of the wormhole analogy introduced in Ref. [3],
and the authors in Ref. [3] noted that it is possible to create
a wormhole-like effect in the Hilbert space to explain why
the transformation between a pair of orthogonal states (under
the standard inner product in Hermitian quantum theory) can
be made in arbitrarily small time. This is because that for a
quantum system described by NH Hamiltonians the alterna-
tive complex pathway from a state to its orthogonal state can
be made arbitrarily short. The mechanism described here is
similar to that in general relativity in which the alternative dis-
tance between two widely separated space–time points can be

made small if they are connected by a wormhole. Besides, an
exceptional point (EP) of the NH Hamiltonian has only one
(geometric) eigenvector, since both the eigenvalues and the
corresponding eigenstates of the NH Hamiltonian coalesce at
EPs, in Ref. [11] the authors found that some NH Hamiltoni-
ans correspond to an NH degeneracy called EPs, and showed
that any state evolution can be generated solely by such NH de-
generacies yielding an EPs-driven evolution which minimizes
the Hilbert–Schmidt norm of the matrix of NH Hamiltonians.
And in Ref. [8] the authors proposed that the EPs plays a role
of the critical points around which many physical quantities
such as the recurrence time and the distinguishability show
power-law behavior. These findings may find novel applica-
tions to quantum control. Hence, in the following, we choose
some typical and representative cases (i.e., EPs) to expound
our work. In Figs. 3(c) and 3(d), ∆ = 1 and −1 are EPs
of 𝒫𝒯 -symmetric structure in the NH model, and the quan-
tum evolution is aperiodic. We can also find that when τQSL

decreases to zero, D(ρτ ,ρτ+τD) is still nonzero, which is the
same as the phenomenon that appears in Figs. 3(a) and 3(b).
The nonzero trace distance and the zero QSLT indicates that
the quantum evolutionary speed tends to infinite speed. In ad-
dition, we also consider others situations of ∆ . Our numerical
calculations also show that the quantum evolutionary speed of
distinguishable states of the NH two-level system can tend to
infinite speed. It is well known that the surprising result in
Refs. [3,5] showed that the evolutionary time of NH systems
can be made arbitrary small without violating the time–energy
uncertainty principle, and we demonstrated the result by using
QSLT in this work.
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Fig. 3. The quantum speed limit time τQSL (black-solid line) and the trace
distance D(ρτ ,ρτ+τD ) (blue-dotted line) as functions of the initial time pa-
rameter τ for a mixed initial state. (a) ∆ = 0.6; (b) ∆ = 0.9; (c) ∆ = 1; (d)
∆ =−1. Other parameters are τD = 1 and p = 0.6.

5. Conclusion
In this paper, we considered an NH two-level system in

the presence of gain and loss of energy or amplitude, and stud-
ied the QSLT of the NH system in regard to two cases of pure
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and mixed initial states. In the pure initial state, the quantum
evolution of the system can be effectively accelerated by ad-
justing the NH parameter. While in the mixed initial state,
with respect to two distinguishable states of the NH system,
the evolutionary time does not have a nonzero lower bound,
as well as the QSLT can be arbitrarily small even be zero. A
probable physical explanation for why the NH systems allow
for faster evolutions is that the major difference between con-
ventional and NH quantum mechanics is the definition of the
inner product. Hence, the geometry of Hilbert space of the NH
quantum theory has to be modified. It is easy to note that, the
modification of NH Hilbert space has to be implemented, irre-
spective of whether two distinguishable states of NH systems
are orthogonal or not. That is to say, under the NH quantum
theory, by adjusting the non-Hermiticity of the system, the al-
ternative complex pathway of such two distinguishable states
can be made in arbitrarily short, and the evolutionary time of
the states also can be arbitrarily small without violating the
time–energy uncertainty principle.
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