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Chaotic encryption is one of hot topics in cryptography, which has received increasing attention. Among many en-
cryption methods, chaotic map is employed as an important source of pseudo-random numbers (PRNS). Although the
randomness and the butterfly effect of chaotic map make the generated sequence look very confused, its essence is still the
deterministic behavior generated by a set of deterministic parameters. Therefore, the unceasing improved parameter estima-
tion technology becomes one of potential threats for chaotic encryption, enhancing the attacking effect of the deciphering
methods. In this paper, for better analyzing the cryptography, we focus on investigating the condition of chaotic maps to
resist parameter estimation. An improved particle swarm optimization (IPSO) algorithm is introduced as the estimation
method. Furthermore, a new piecewise principle is proposed for increasing estimation precision. Detailed experimental
results demonstrate the effectiveness of the new estimation principle, and some new requirements are summarized for a

secure chaotic encryption system.
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1. Introduction

Over the past twenty years, chaotic secure communica-
tion has attracted a lot of attention by the realization of chaotic
synchronization.!! It is widely emerged in engineering appli-

2-4 [5.6]

cations, such as signal processing, [>#! speech encryption,

7-181 1 fact, researches on information

and image processing.|
encryption technology have been studied for several decades,
and some classical encryption technologies were proposed,
namely the data encryption standard (DES) and the advance
encryption standard (AES). However, these traditional encryp-
tion methods have some shortcomings, e.g., incapability treat-
ing special properties of multimedia data like strong correla-
tion and high redundancy.!'”! Especially in the field of image
processing, both of the DES and the AES are not suitable for
the image encryption.?”! Thus, chaotic encryption becomes a
promising encryption technology.

Chaos is characterized in ergodicity, randomness, and
initial value sensitivity, which make chaos theory very suit-
able for cryptography applications. Because the mixing and
randomness of chaos are similar to the confusion and diffu-
sion effects in cryptography, chaotic encryption method shows
more potential over traditional methods.?!! Compared with
continuous-time chaotic systems,? chaotic maps are utilized
more frequently, featuring its simple structure, no need for
solution algorithm and high complexity. Chaotic map is the
basis of chaotic cryptography,?’! and it is divided into one-
dimensional (1D) and higher-dimensional (HD) cases. For
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example, Wang et al.l''l proposed a row and column switch
encryption algorithm based on the classical 1D logistic map.

Chenaghlu et al.l!?!

introduced a polynomial combination of
1D chaotic maps in a dynamic image encryption algorithm.
To counteract the dynamics degradation of chaotic map in
a digital computer as shown in Ref. [24], various enhanc-
ing methods for two and higher-dimensional chaotic maps
were proposed: two-dimensional (2D) logistic map,[!3! three-
dimensional (3D) cat map,!'*! and hyperchaotic maps!!>-18!
like 2D sine logistic modulation map (2D-SLMM),[!3] 2D-
logistic-adjusted-sine map (2D-LASM),['% 2D sine ICMIC
modulation map (2D-SIMM),!'7! and 2D logistic ICMIC cas-
cade map (2D-LICM).[!8] According to the Kirchhoff crite-
rion: the confidentiality of the system does not depend on the
encryption system or the algorithm, but only depend on the
key. Hence the parameter estimation technology may become
one of threats for chaotic encryption due to its ability to ac-
curately estimate parameters (initial values and system param-
eters). In contrast, only the equivalent version of PRNS of
length as that of known plaintext is recovered in the conven-
tional cryptanalysis methods as shown in Ref. [25]. Therefore,
the study of parameter estimation can help people better ana-
lyze the chaotic encryption.

Recently, the topics of parameter estimation for chaotic
system attracts more and more attention. The meta-heuristic
algorithm is one of effective estimation methods, %331 fea-
turing good robustness and easy implementation. It converts
parameter estimation into an optimization problem, and the
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prior knowledge only takes some pseudo-random sequences
generated by chaotic system as the samples. However, because
the discrete-time chaotic system has more complex behavior,
most of researches on parameter estimation are just limited
to estimate the system parameters in continuous-time chaotic
system. 20321 Lately, Du et al.[*3) successfully identified six
continuous-time chaotic systems with unknown initial values
and system parameters by a variant differential evolution al-
gorithm. After that, Peng er al.l®* investigated the effect of
samples on parameter estimation and proposed the IPSO al-
gorithm to estimate parameters of chaotic maps. Simulations
demonstrate the better performance of IPSO over other five
meta-heuristic algorithms. These studies motivate us to think-
ing about a new problem: If the initial values and system pa-
rameters can be estimated, the secrete key of the chaotic map
will be decoded. Therefore, it is interesting to investigate what
kind of chaotic map can resist the parameter estimation attack.
In addition, because the number of estimated parameters has

(341 the precision of tra-

great influence on estimation results,
ditional estimation principle,?! i.e., simultaneous estimation
of initial values and system parameters, is not high enough.
Therefore, we try to propose a new piecewise estimation prin-
ciple to solve this problem.

The rest of the present article is organized as follows.
In Section 2, preliminary knowledge of parameter estimation,
namely the traditional principle and the new piecewise param-
eter estimation principle, are described. The IPSO algorithm is
presented in Section 3. Simulation experiments are introduced
in Section 4. Finally, we conclude the results and prospects
for further researches.

2. Parameter estimation of chaotic map
2.1. Traditional principle

The traditional parameter estimation for chaotic map is
regarded as a multi-dimensional optimization problem. Its
principle is illustrated in Fig. 1 and will be described in de-
tail in the following.

Xo Xy s X1
— 0 JAX=F(X,1.,0)

— =0 LAX= F(j(,t,é)

adjusting Xo,é

meta-heuristic|
algorithm

Fig. 1. The principle of traditional parameter estimation.

The original chaotic map is described as
AX =F(X,t,0), (H

where X = (Xy,X1,...,Xy)T € R is the M-dimensional state
vector of the original system (1 < M < 1), ¢ is the iteration
number of chaotic system, and Xj is the system’s initial value,
6 =(61,6s,...,0p)T € RP denotes the original system param-
eter and D is the number of estimated system parameter.

Then the estimated system is described by

AX =F(X,1,0), @)

where X = (Xo,X1,...,Xy)T € RM is the M-dimensional state
vector of the estimated system, and M is the number of sam-
ples. 6 = (61,6,,...,0p)7 is the estimated system parameter.
Finally, the goal of the parameter estimation is defined by

1 X -

J=07 Y X=X, 3)

k=1
where J is the square estimated error, X; and X; (k=1,2,...,M)
denote the state at the k-th time of the original system and the
estimated system, respectively. Essentially, the parameter esti-
mation problem is a multi-dimensional optimization problem

with the objective function J.

2.2. New principle

As shown in Fig. 1, the traditional principle is to adjust
the values of Xj and 6 to minimize J, that is, the initial val-
ues and the system parameters are estimated simultaneously.
However, unlike in the continuous-time chaotic system, the
chaotic map produces more complex sequence. Too many es-
timated parameters and initial values may make the estimation
process be a complex non-convex optimization problem, re-
sulting in a low estimation precision.

To solve this problem, a new piecewise estimation princi-
ple is proposed. The new principle is illustrated in Fig. 2, and
it consists of two parts. Here, we divide it into two steps:

Step 1 In fact, the initial values synchronization of the
original system and the estimated system is not a necessary

5.[291 Figure 2(a) shows that the initial value X; of the es-

proces
timated system is generated by the original system. [ is a pos-
itive integer (I > 1), and Xj, ..., X1 is an arbitrary sequence
produced by the original system. So, the system parameters
are estimated without the constraint of original system initial
values.

Step 2 Based on the accurately estimation of system pa-
rameters, then the initial values are estimated.

The new estimation principle corresponds to the piece-
wise structure of the original principle, and it reduces the dif-
ficulty of estimation problem by reducing the considered di-
mensions.
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Fig. 2. The new principle of parameter estimation: (a) step 1 and (b) step 2.

3. TIPSO algorithm

The IPSO algorithm separates into the basic PSO algo-
rithm and a special inertia weight. It is specially designed for
parameter estimation of chaotic map. Its structure is simple,
and the running speed is almost the same as that of the basic
PSO algorithm.

3.1. Basic PSO algorithm

The PSO algorithm is a well-known meta-heuristic al-
gorithm, which originates the wisdom of bird group.'?>! The
algorithm describes a process which some particles simulate
bird flight in search of food (optimal solution). Each particle
represents a bird, and they are initialized with random posi-
tions. In each algorithm iteration, particles keep track of its
own current optimal and the current population optimal posi-
tions to update its velocity, until the optimal solution is found
or the termination condition is met. The velocity of particle i

Vi(t+1) = @Vi(t) +c1ri[Jpit) — Xi(1)]
+cara[Jg(t) = Xi(1)], “4)

where V;(¢) is the velocity of the particle i at the 7-th iteration.
@ is called the inertia weight. ¢; and ¢, are the learning fac-
tors. ry and r, are random numbers (r1,r, € [0,1]), and they
mean that the movement direction of the particle is random.
Jpi(t) is the optimal position of the particle i at the ¢-th iter-
ation, and J,(¢) represents the population optimal position at

the ¢-th iteration. X;(¢) is the position of the particle i. In the
next iteration, X;(¢ + 1) is set as

Xi(t+1) = X(t) +Vi(t +1). ®)

The PSO algorithm is divided into global search process
and local search process. The global search process refers to
the capability of finding the global optimal solution, while the
local search process refers to the capability of applying the
previous knowledge to find a better solution. The two pro-
cesses are contradict each other, and the inertia weight o is
the key to balance them. So, the ® must be set reasonably to
achieve better performance.

In the basic PSO algorithm, inertia weight linearly de-
creases with increasing iterations. It has been proved that it is
not suitable for parameter estimation of chaotic maps,*3! so
the special inertia weight in IPSO algorithm is set as

w(t + 1) = (wmax - wmin) e_p(t/T)z ~+ Omin, (6)

where ®max = 0.9 and @pin = 0.4.17 p is a constant. ¢ and
T are current and maximum iterations of the PSO algorithm,
respectively. Without lose of generality, we set p = 1000 in
this paper.

3.2. Implementation of IPSO algorithm in parameter esti-
mation

The implementation steps of the IPSO algorithm are il-
lustrated in Algorithm 1. The encoding of individual particle
position in parameter estimation is illustrated in Fig. 3. Part
A is the unknown system parameters. Part B is the unknown
initial values, and d means the dimension of estimated chaotic
map (i.e., d = 1 corresponds to 1D chaotic map, d = H corre-
sponds to HD chaotic map).

Algorithm 1 Pseudo-code of IPSO in parameter estimation.

1. Initialize N, D, Vinax, Vmin, €1, €2, X(0), and V(0)
2. Evaluate the fitness value of each particle, find Jj, and J,
3. whilez < T do

Update by Eq. (6), particle’s velocity and position
5 Update particle’s velocity and position by Egs. (4) and (5)
6.  Calculate particles’ fitness J(r)
7. ifJ(r) < Jp then
8 Jp is replaced by J(r)
9

. endif
10. if J(r) < J,, then
11. Jg is replaced by J(t)
12.  endif
13, r=t+1
14. end while

0, eos | 0p

21(0) | oo

z4(0)

N J N J
Y Y
Part A Part B

Fig. 3. The encoding of individual particle position.
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4. Numerical simulations

In this section, numerical simulations are carried out
in six different chaotic maps, including 2D-logistic map,!3!
2D-LASM, 6] Jogistic—logistic (LL) map, ¢! 2D-SLMM, 5]
Chebyshev map (2D),1*”l and 2D-LICM.!'8! The parame-
ter settings and their corresponding chaotic attractors of
these six maps are presented in Table 1 and Fig. 4, respec-

tively. The Lyapunov exponent (LE) is calculated by QR

decomposition.[*8 In this paper, the x-sequence of chaotic
map is applied for parameter estimation, so we only calcu-
late the LE of x-sequences. Larger LE means more complex
chaotic sequence. In general, if the chaotic map with larger LE
is applied in secure communication, the security will be better.
Simulations are divided into three parts. The first two parts use
traditional and new principles to estimate parameters without
considering noise. The last part is to estimate parameters by
new principle with noise interference.

Table 2. Original parameters of different chaotic maps.

Chaotic map Parameter settings LE
2D-logistic r=1.190000, x(0) = 0.890000, y(0) = 0.330000 0.3386
2D-LASM 1 = 0.900000, x(0) = 0.100000, y(0) = 0.200000 1.0728
LL U1 = Up =3.900000, x(0) = 0.800000 1.0973
2D-SLMM a = 1.000000, b = 3.000000, x(0) = 0.570000, y(0) = 0.620000 0.4604
Chebyshev w=2x, ¢ =m, x(0) = 0.500000, y(0) = 0.500000 1.8400
2D-LICM a = 3.000000, k = 0.800000, x(0) = 0.500000, y(0) = 0.300000 2.4135
(c) 1.0
0.8
=
g 0.6
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0.2
R 3 L 0
04 0.6 0.8 0 02 04 06 08 1.0
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Fig. 4. Chaotic attractors based on the parameter settings in Table 1: (a) 2D-logistic map, (b) 2D-LASM, (c) LL map, (d) 2D-SLMM, (e) Chebyshev map,

(f) 2D-LICM.

To eliminate the randomness of algorithm and compare
the security of chaotic maps, we performed 100 consecutive
algorithm runs for each chaotic map. If the error between the
final estimation result and the original parameter is less than
1 x 107°, then the estimation is considered to be successful.
Here, the success rate is calculated by

successful estimation times
100

The maximum iteration of the IPSO algorithm was set as

Success rate = x 100%.

)

T = 300. According to Ref. [33], the number of samples was
set as M = 2. The search range for system parameters and
initial values are set as [0, 5] and [—1, 1], respectively. Simu-
lations were based on MATLAB 2016a on Intel(R) Core(TM)
15-4200H CPU @2.80 GHz with 4-GB RAM.

4.1. Parameter estimation by traditional principle

Parameter estimation results of traditional principle are
presented in Table 2. It shows that only the 2D-logistic map
and the 2D-LASM were estimated accurately. Because of
the smallest number of estimated parameters (three) and the
lowest LE (0.3386), the 2D-logistic map has the highest es-
timated success rate (34%). The estimated success rate of
2D-LASM has dropped a lot to 3% for its much larger LE
(1.0728) than that of 2D-logistic map. When the LE is larger,
the LL (1.0973) cannot be estimated accurately. Although the
LE of 2D-SLMM is only 0.4604, its success rate is 0 for it
has four estimated parameters. Because the LE of remaining
two chaotic maps is much larger than that of 2D-SLMM, the
success rate is still 0.
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Table 2. Parameter estimation results by traditional principle.

Chaotic map Best estimation result Success rate
2D-logistic r = 1.190000, x(0) = 0.890000, y(0) = 0.330000 34%
2D-LASM 1 =0.900000, x(0) = 0.100000, y(0) = 0.200000 3%

LL W =3.922757, up = 3.942643, x(0) = 0.801563 0%
2D-SLMM a=0.990127, b = 3.034018, x(0) = 0.567228, y(0) = 0.620939 0%
Chebyshev w=6.358846, c = 3.155078, x(0) = 0.511205, y(0) = 0.501639 0%
2D-LICM a =3.687434, k = 0.987897, x(0) = 0.573314, y(0) = 0.889129 0%

From the above results, it is concluded that: For the tra-
ditional estimation principle, if the chaotic map has more than
three estimated parameters (including system parameters and
initial values) and its LE is larger than that of LL map (1.0973),
it is difficult for the general meta-heuristic algorithm to esti-
mate its parameters accurately. Furthermore, the results also
demonstrate the conclusions in Ref. [34], i.e., both of the num-
ber of estimated parameters and the system complexity affect
the estimation precision, and the influence of the estimated
number is larger than that of the system complexity.

4.2. Parameter estimation by new principle

Parameter estimation results of the new principle are pre-
sented in Table 3. From the results of step 1, it shows that
the system parameters of all the chaotic maps can be accu-
rately estimated, except for the 2D-LICM with the highest
LE (2.4135). The system parameters of 2D-logistic map, 2D-
LASM, LL map, and 2D-SLMM are estimated accurately with
100% success rate, but the Chebyshev’s success rate drops to
43% for its relatively large LE (1.8400). The process of Step 2
is based on the premise that system parameters have been ac-
curately estimated. Results show that the success rate of the
chaotic maps with two estimated parameters (two initial val-
ues x(0) and y(0)) decreases with the increase of LE, except
for LL. map that it only has x-sequence. Moreover, the ini-
tial values of 2D-LICM are accurately estimated with known
system parameters, but its success rate is only 1%.

From these results, the conclusions are summarized as:
The new principle is more effective than the traditional princi-
ple. Based on the new principle, only the 2D-LICM can resist
parameter estimation attack. Increasing the number of esti-
mated parameters and LE of chaotic systems is an effective
means to increase the resistance to parameter estimation at-
tack, and the influence of the number of estimated parameters

is greater than that of LE. In addition, because of the special
sensitivity of the initial value for chaotic system, it is more dif-
ficult to estimate the initial values than to estimate the system
parameters.

Table 3. Parameter estimation results by new principle.

Step Chaotic map Best estimation result Success rate

2D-logistic  r=1.190000 100%
2D-LASM  u = 0.900000 100%
| LL = 3.930000, uy = 3.930000 100%
2D-SLMM  a = 1.000000, b = 3.000000 100%
Chebyshev ~ w = 6.283185, ¢ = 3.141593 43%
2D-LICM a=2.550860, k = 1.072577 0%
2D-logistic  x(0) = 0.890000, y(0) = 0.330000 39%
2D-LASM  x(0) = 0.100000, y(0) = 0.200000 18%
) LL x(0) = 0.800000 25%
2D-SLMM  x(0) = 0.570000, y(0) = 0.620000 23%
Chebyshev  x(0) = 0.500000, y(0) = 0.500000 13%
2D-LICM x(0) = 0.500000, y(0) = 0.300000 1%

4.3. Noise interference

Noise is an unavoidable factor in practical applications.
Therefore, the parameter estimation of new principle with the
the interference of additive white Gaussian noise (AWGN)
is considered in this section. In the field of communica-
tion, AWGN refers to a kind of noise signal whose spec-
trum components obey uniform distribution (i.e., white noise)
and whose amplitude obeys Gaussian distribution. The noise
intensity increases with the decrease of signal-to-noise ratio
(SNR).

Here, due to the interference of random noise, it is con-
sidered that the estimation is successful if the error is no more
than 1 x 1073, Because the 2D-LICM cannot be estimated
accurately by the IPSO algorithm, it is not considered in the
simulation of this section. Results of step 1 in new estimation
principle are presented in Table 4.

Table 4. Parameter estimation results by step 1 with noise.

Chaotic map 60 dB 50 dB

40 dB

Best estimation result Success rate

Best estimation result

Success rate  Best estimation result Success rate

2D-logistic r=1.1900 100% r=1.1900
2D-LASM 1 =0.9000 100% 1 =0.9000
LL 1y =3.9300, pp =3.9300 10%
2D-SLMM  a = 1.0000, b = 3.0000 18%
Chebyshev w=6.2832, c = 3.1412 15%

wy =3.9299, up =3.9299 5%
a = 1.0000, b =2.9999 3%
w=6.2831, c = 3.1417 2%

68%
93%

r=1.1900 24%
u=0.9000 32%
uy =3.9334, up =3.9307 0%
a=0.9979, b = 3.0081 0%
w=6.2837, c = 3.1442 0%
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Table 5. Parameter estimation results by step 2 with noise.

Chaotic map 60 dB 50 dB

40dB

Best estimation result Success rate

Best estimation result

Success rate Best estimation result Success rate

2D-logistic ~ x(0) = 0.8900, 14% x(0) = 0.8901, 2% x(0) = 0.8919, 0%
¥(0) = 0.3300 ¥(0) = 0.3299 ¥(0) = 0.3362

2D-LASM  x(0) = 0.1000, 8% x(0) = 0.1010, 0% x(0) = 0.1103, 0%
¥(0) = 0.2000 ¥(0) = 0.1853 ¥(0) = 0.1627

LL x(0) = 0.8000 27% x(0) = 0.8000 14% x(0) = 0.8000 9%

2D-SLMM  x(0) = 0.5700, 18% x(0) = 0.5701, 4% x(0) =0.5721, 0%
¥(0) = 0.6200 ¥(0) = 0.6201 ¥(0) = 0.6174

Chebyshev  x(0) = 0.5001, 5% x(0) = 0.4991, 0% x(0) = 0.5207, 0%
¥(0) = 0.4999 ¥(0) = 0.5008 ¥(0) = 0.5012

As it is shown, the system parameters of 2D-logistic map
and 2D-LASM can still be accurately estimated when the SNR
of signal channel reaches 40 dB, but the remaining three maps
can only be accurately estimated when the SNR is 50 dB. Re-
sults of step 2 are demonstrated in Table 5. When the SNR
reaches 40 dB, only the initial values of LL is estimated ac-
curately. Initial values of the 2D-Logistic map and the 2D-
SLMM are accurately estimated when the SNR is 50 dB. How-
ever, for the 2D-LASM and the Chebyshev map which has
higher complexity, they are accurately estimated only when
the SNR is raised to 60 dB.

It is concluded that: Under the interference of AWGN,
although the estimation precision decreases a lot, most of the
chaotic maps are still estimated accurately under the signal
with 50-dB SNR. The conclusion in the previous noise-free
simulation is valid, that is, chaotic systems with more esti-
mated parameters and larger LE are more difficult to be ac-
curately estimated, and the number of estimated parameters is
more influential.

5. Conclusion

In this paper, we focus on the dynamics analysis of en-
cryption by chaotic maps, and summarized some new require-
ments for the secure chaotic encryption system. The IPSO
algorithm is introduced for parameter estimation of chaotic
maps, and a new piecewise estimation principle is proposed.
Numerical simulations were carried out in six different chaotic
maps with unknown system parameters and initial values, and
the results lead to the following conclusions.

(i) The design of chaotic maps with more estimated pa-
rameters and larger LE is more effective against the estimation
attack. From the results in this paper, it is more important to
increase the number of system parameters and initial values
(the component of secrete key) than to enhance the LE of the
chaotic system.

(i1) The new piecewise parameter estimation principle is
more effective than the traditional one.

(iii) In our simulations, utilizing the 2D-LICM (4 esti-
mated parameters and LE: 2.4135) for chaotic encryption is
the relatively secure method.

(v) Estimating initial values are more difficult than esti-
mating system parameters.

In the simulations, some practical factors are considered,
including unknown system parameters, unknown initial val-
ues, and noise interference. These simulations were therefore
theoretically constitute a possibility of anti-chaotic encryption.
In the future, more powerful meta-heuristic algorithms may be
proposed by the efforts of researchers, so how to construct a
chaotic system with both simple structure and high complex-
ity is a problem worthy of continuously concerned. What is
more important is that the introduced approach may be a useful
tool for the cryptanalysis and the synchronization of chaotic
maps. Our next work is to use this method in the applications
of chaotic secure communication.
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