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We find a new complex integration-transform which can establish a new relationship between a two-mode operator’s
matrix element in the entangled state representation and its Wigner function. This integration keeps modulus invariant
and therefore invertible. Based on this and the Weyl-Wigner correspondence theory, we find a two-mode operator which
is responsible for complex fractional squeezing transformation. The entangled state representation and the Weyl ordering

form of the two-mode Wigner operator are fully used in our derivation which brings convenience.
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1. Introduction

Optical transforms are very useful in optical signal anal-
ysis and optical communication. For instance, fractional
Fourier transform!!! and wavelet transform!?! are widely used
in optical fiber communication. These transforms can be de-
veloped in the context of quantum optics. In this paper, we
shall propose a new complex integration-transform which can
establish a new relationship between a two-mode operator’s
matrix element in the entangled state representation (EGR)
and its Wigner function. Based on this, we find an opti-
cal complex fractional squeezing transformation by virtue of
the Weyl-Wigner correspondence®>=! in the entangled state
representation. %’ The work is arranged as follows. In Sec-
tion 2, we briefly review the EGR , based on which in Sec-
tion 3 we derive the two-mode Wigner operator in EGR and
its Weyl ordering. Then in Section 4 we find a kind of new
complex integration transformation which relates a two-mode
operator’s matrix element in EGR and its Wigner function. As
its application, in Section 5 we derive the two-mode fractional
squeezing operator which can engender the complex fractional
squeezing transformation, and in Section 6 we shall derive the
complex fractional squeezing transformation. Throughout the
whole paper the technique of integration within ordered prod-
uct (TIWOP) of operators!®?! is fully employed.

2. The entangled state representation

In Ref. [5], the entangled state representation is proposed
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Equation (2) becomes

(X1—X2) ) =vV2mi[n), (Pi+P)In)=+v2mn). (1)
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The conjugate state of |1) is

exp[ Ly zaf+ 5*a§—aia£] 0 =18),
§=28 +i&, ®)
where |£) obeys the eigenvector equations
(a+db)g)=¢18), (af+a)&)=E"18). ©

Since [X;+Xa, P
of bipartite’s center of mass and the relative momentum,

(X1 +X)[16) = V281 [E),  (P—P)[E) = V2618). (10)

The |€) is complete too, i.e.,
[ e {=[g = (arad)] [5= (s +)]}
_ /% :exp{—‘ﬁ — (al—i—a;)‘z} :

= 1. (11)

—P,] =0, |&) is the common eigenstate

3. The two-mode Wigner operator in entangled
representation

Combining the completeness of bipartite entangled states
In) and |&), we can make up a new completeness relation

“d*o d%y 2
= ow{=[o-(a-dl)

_‘y_(alJra;)‘z};:l. (12)

We have the reason to introduce the normally ordered form

% :exp{—‘c— (al —a;)lz— ‘Y— (m—l—a;)’z} :
— A(o,y), (13)

and it turns out that A (o, y) is just the two-mode Wigner op-
erator. Because when letting y = ot + *, 0 = o — B*, we can
see

ﬂlzzexp{— ‘G— (a1 —a%)‘z— ’Y— (al —I—a;))z} :
:%:exp {—2 (a* —a{) (a—a])—Z(ﬁ*—a;) (B —aQ)} :
=A; (o, ") 42 (B, B7), (14)

which is just the direct product of two single-mode Wigner
operators.

The marginal distribution of the two-mode Wigner oper-
ator constructed in this way is

[ Eoa(o.n) =x1E) Elle-y. (15)

/dzyA (o,7)=7In)(nlln=c- (16)

We can further show that the form of A (o,7) in |€) represen-
tation is

d? fo_EG*
Ao = [ FIE+nE+nes i, an

while in (7| representation is

d’n Ny -n"y
A= [ SHo-mo+nie™ 1T as)

Using the integration method within normally ordered
product we perform the integration in Eqs. (17) and (18),
which leads to Eq. (14).

4. New complex integral transformation con-
necting |n) (n|&) (| and the two-mode
Wigner operator

Recall that the single-mode Winger operator’s Weyl or-

dering form is

Ax,p)=8(x—X)8(p—P):, (19)

where the symbol denotes Weyl ordering, which we

firstly introduced in Ref. [10].
Equation (19) is the combination of |x) (x| = & (x—X)

and |p)(p| = 8 (p—P).
eigenvector equations (2) and (9) we know

) (1] =28 (n—a1+dj).
&) (&1 =m8? (¢ —a1—a}). (20)

so the Weyl ordering form of the two-mode Wigner operator

As its generalization, from the

is

75 (u —a _a;) 5@ (v —a +a§) L= A(w,v). @21)

The original meaning of Weyl ordering can be traced
back to the operator identity e iuP—ivk — ie_i"p -ivk
which is different from the P, X ordering, e iuP—ivk _
e_i“‘ﬁe_i‘/Xexp{—[—iuﬁ,—ivX]/Z}, where [X,P] = i
Thus, using the Baker—Hausdorff operator formula we can
convert the coordinate—momentum projecting operator into its

Weyl ordering form,

1p) (plx) (x| =8 (p —P)6( -X)

:42/due pP/dve””‘X

— ﬁ/ dudeiu(p—f’)-‘riv(x—X)e#
e,

_ b dudy: elu(p—P)riv(—%): 4
42 : :

e [-2i (-

X)(p—P)] :. (22)
Likewise, from Eq. (19) and noting {a{ —az,ay +aﬂ = -2,
we may convert |1) (1 | &) (€] into its Weyl ordering form,
ie.,
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Using Eq. (22), we can put
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Its inverse transformation is
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Thus we find a new kind of complex integral transformation
whose integral kernel is e~ (6 =#) (1" =V)+M-v)(&"-p")

5. New relationship between a two-mode oper-
ator’s matrix element in the entangled state
representation and its Wigner function

In this section we shall show that the complex integration-
transform can establish a new relationship between a two-
mode operator’s matrix element in the entangled state repre-
sentation and its Wigner function.

Assuming that an operator G’s classical Weyl correspon-
dence function is F (1,), then using the Wigner operator’s
entangled state representation (7), we obtain

F(nvé) = TI‘(GA (1",5))

2
=Tr (G/dﬂfm —o)(n+o]| ecé*a*é)
d? . -
:/Tf(nJrG\GM—G)e"é_Gé. (26)

Then we make up the above mentioned integration transform

|
for F(n,&)
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27)

where |{t) belongs to the |£) representation, in the last step
we have performed the integration over d’c, which converts
|v—20) to its conjugate |1 )

v—20 +
/dzcexp[— 5 | +(v—-20)a’

— (V' =20")b" +a'b" + o —puo*||00)
— |p) eV, (28)

The inverse of Eq. (27) is

F(1.8) = [ Eudvespl—(u-&) (0" ~v")
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+(Mm=v)(u =38
x (V|G| p) e2 W vy, (29)

This formula shows the relationship between G’s Wigner func-
tion F (1,&) and its matrix element in the entangled state rep-
resentation.

6. Derivation of the complex fractional squeez-
ing transformation

When the complex classical function is

Fng) = 5% (n- %)

cha

X en*‘?*é*”e_mh“‘ézlsechoc, (30)

herec is an angle parameter, substituting Eq. (30) into Eq. (27)
and performing this integration, we obtain

[ @naEexpl(u—&) ("= v~ (n—v) ("~ &")

x 8@ <T’ - IISh(X<§) e E=Em e —2ithaE| Goop o

cho
= (v|6] u) e (W V=mv") 31)
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Gy = (v|Gw)
2 2\ vkt

This is the generalization of the fractional Fourier integral
kernel,!'! and is named the fractional squeezing integration
transform kernel. For obtaining the fractional squeezing op-
erator, we construct the integration

é:/dzud2v|u>é”,v<v|, (33)

where | 1) and (v| are mutual conjugate entangled states,

2
) =exp| - BE e el el 001, oo
Vi -
V) = exp {—2+Vaf +v*a£—a{a§] |00).  (35)

Using Eq. (32) and IWOP, we perform the integration in
Eq. (33) and obtain

i(uf+vP) i(uv+utv)
XeXp[ 2thot e HORM
_ 1 2 2
N 2isha/d v
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[
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*dTLl 7(11'” ‘v|2 * -_
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= secha : exp [ — iajajtha + (secha — 1) ajay
+ (—secha — 1) ajar +iajartha] :, (36)

which is the complex fractional squeezing operator.

7. Conclusion

By using the two-mode Wigner operator in EGR and its
Weyl ordering form we have found a kind of new integration
transformation which relates a two-mode operator’s matrix el-
ement in EGR and its Wigner function. In this way the com-

plex fractional squeezing operator is derived and the phase

11,12

space quantum mechanics!!!?! is developed.
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