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Evaluation of polarization field in InGaN/GaN multiple quantum
well structures by using electroluminescence spectra shift*
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In order to investigate the inherent polarization intensity in InGaN/GaN multiple quantum well (MQW) structures,
the electroluminescence (EL) spectra of three samples with different GaN barrier thicknesses of 21.3 nm, 11.4 nm, and
6.5 nm are experimentally studied. All of the EL spectra present a similar blue-shift under the low-level current injection,
and then turns to a red-shift tendency when the current increases to a specific value, which is defined as the turning point.
The value of this turning point differs from one another for the three InGaN/GaN MQW samples. Sample A, which has
the GaN barrier thickness of 21.3 nm, shows the highest current injection level at the turning point as well as the largest
value of blue-shift. It indicates that sample A has the maximum intensity of the polarization field. The red-shift of the EL
spectra results from the vertical electron leakage in InGaN/GaN MQWs and the corresponding self-heating effect under
the high-level current injection. As a result, it is an effective approach to evaluate the polarization field in the InGaN/GaN
MQW structures by using the injection current level at the turning point and the blue-shift of the EL spectra profiles.
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1. Introduction

The InGaN-based light emitting devices, such as the light
emitting diodes (LEDs) and the laser diodes (LDs), have been
commercially produced and been adopted to various applica-
tions, such as the solid-state lighting, the full-color display,
and the laser projection.!!! One of the special features of III-
nitride materials is the inherent polarization field, which ori-
gins from the spontaneous polarization and the piezoelectric
polarization.!?! In InGaN-based optoelectronic devices grown
on c-plane sapphire or free-standing GaN substrates, the polar-
ization field bends the energy band diagrams in InGaN/GaN
multiple quantum wells (MQWs) and the quantum wells are
changed from rectangular to triangular ones.!3! The integral
intensity of the overlapped wave functions between electrons
and holes is reduced and the radiative recombination efficiency
in MQWs is subsequently suppressed. Meanwhile, the exis-
tence of the polarization field results in a non-uniform carrier
distribution in the InGaN quantum wells as well as the cor-
responding vertical electron leakage current, even in the case
of an AlGaN electron blocking layer (EBL) is introduced.*"!
The polarization field is one of the reasons of the efficiency
droop for InGaN-based LEDs. %]
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In order to suppress the negative effects of the polar-
ization field in the InGaN-based devices, many results have
been reported on how to manipulate the polarization field
in InGaN-based LEDs and LDs, such as the application of
polarization-matched MQW, 8! the design of InGaN quan-
tum well thickness,*~'!"! the epitaxial growth on semi-polar
or non-polar substrates,!!>~4 the introduction of mechan-
ical force,!'! and the thickness thinning of the sapphire
substrates.!'%!71 We have theoretically calculated the effects
of the polarization field on the device performance of InGaN-
based light-emitting diodes, the laser diodes, and the solar
cells.l'8211 However, it is challenging to evaluate the polar-
ization field before a completed device fabrication procedure.
In this article, we present an experimental investigation of the
EL spectra characteristics. Three InGaN/GaN MQW samples
with different polarization fields are studied. Based on an EL
spectra analysis, the polarization field is evaluated after the
epitaxial growth.

2. Experimental setup

Three samples of InGaN/GaN multiple quantum well
(MQW) structures are grown on the c-plane sapphire sub-
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strates by using a ThomasSwan 3 x 2" metalorganic chem-
ical vapor deposition (MOCVD) system. The trimethylgal-
lium, the trimethylindium, and the ammonia are used as Ga,
In, and N precursors, respectively. The structure of the three
MQW samples is composed of a low-temperature GaN buffer
layer grown at 530 °C, a 1-um silicon-doped n-GaN layer
grown at 1060 °C with a Si concentration of 3 X 10'8 ¢m—3,
an unintentionally-doped InGaN/GaN MQW active region, a
magnesium-doped p-GaN layer with a Mg concentration of
3 x 10" cm™3, and a heavily magnesium-doped p*+-GaN
contact layer with a Mg concentration of 3 x 10%° cm™3. In
the three-period InGaN/GaN MQW active region, the thick-
ness of InGaN quantum wells is fixed to be 2.4 nm, while the
thickness of GaN barrier is designed to be 21.3 nm, 11.4 nm,
and 6.5 nm to intentionally change the polarization field.

3. Results and discussion

After the epitaxial growth in MOCVD system, the struc-
tures of the three MQW samples are firstly checked by using
x-ray diffraction (XRD), as shown in Fig. 1. The MQW struc-
ture can be obtained from the position of the satellite peaks in
the XRD profiles. The thickness of the GaN barrier is con-
firmed to be 21.3 nm, 11.4 nm, and 6.5 nm for samples A, B,
and C, respectively. And the corresponding indium composi-
tion in InGaN quantum wells obtained from the simulation of
the XRD curves is 4.4%, 4.6%, and 4.7%, respectively.
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Fig. 1. The x-ray diffraction curves of samples A, B, and C.

Then the electroluminescence (EL) spectra measurement
is performed on a probe station with two needle contacts un-
der different levels of the current injection. The injection cur-
rent of 1 mA, 5 mA, 10 mA, 50 mA, and 100 mA is provided
by an ITech IT6123 DC Source Meter as shown in Figs. 2—4.
The current density is calculated to be 30 A/cm? for the 100-
mA current injection. The samples are characterized under
the same measurement setup, so they have the same current
density under a certain level of the current injection. The EL
spectra data are recorded by an Ocean Optics HR4000 high-
resolution fiber-optic spectrometer. The output light intensi-
ties are collected by a Hamamatsu Si photodiode.
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Fig. 2. Electroluminescence spectra of sample A under different injection
current levels.
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Fig. 3. Electroluminescence spectra of sample B under different injection
current levels.
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Fig. 4. Electroluminescence spectra of sample C under different injection
current levels.

The EL spectra data of samples A, B, and C are collected
with the injection current increases from 1 mA to 100 mA.
Each spectra diagram is fitted by the Gaussian curve and the
value of the peak wavelength is recorded for each fitting curve.
The data of peak wavelength are shown in Fig. 5. It is clear
that the peak wavelength of the EL spectra has a similar shift-
ing tendency for all of the three samples. It has a blue-shift first
under the low-level current injection, and then turns to a red-
shift when the current injection level continuously increases.

However, detailed difference occurs for the spectra shift
of samples A, B, and C. In the first place, the peak wavelength
is different under the same current injection level, even though
the samples have the same value of the well thickness and the
indium composition in InGaN quantum wells. Under the same
current injection level, sample A with the largest value of the
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GaN barrier thickness has the longest peak wavelength. Sam-
ple C with the smallest value of the GaN barrier thickness has
the shortest peak wavelength. Secondly, the spectra have dif-
ferent values of the blue-shift. The maximal blue-shift value,
which equals the difference between the longest and the short-
est peak wavelengths in the spectra profile, is calculated to
be 2.63 nm, 1.45 nm, and 0.94 nm for samples A, B, and C,
respectively, as shown in Fig. 5. Finally, the most important
feature is the position of the turning point. It is defined as
the value of the injection current under which the spectra shift
of the peak wavelength turns from the blue-shift to the red-
shift. The value of the turning point differs from one another
in the EL spectra curves for the three samples. For sample
A, the spectra shift of the peak wavelength turns from a blue-
shift trend to a red-shift one when the injection current reaches
80 mA. For samples B and C, this change occurs at the posi-
tion of 50 mA and 40 mA, respectively.
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Fig. 5. EL spectra shift of samples A—C under different injection current
levels.

The phenomena of the EL spectra shift are attributed to
the effect of the inherent polarization field in InGaN/GaN
MQWs. The polarization field in III-nitride materials is com-
posed of two parts. The spontaneous polarization results from
the lack of the inversion symmetry alone the ¢ axis of the
wurtzite crystal structure. The piezoelectric polarization is a
result of the stress which comes from the lattice mismatch
and the thermal mismatch. The energy band diagram of In-
GaN/GaN MQWs is sloped by the polarization field and the
triangular quantum wells are thus formed.

When the thickness of the GaN barrier increases from
6.5 nm to 21.3 nm, the stress in the InGaN quantum wells rises
and the piezoelectric polarization is enhanced. For the sample
with thicker GaN barrier, the gradient of the energy band dia-
gram in InGaN quantum wells is larger than that of other two
samples. The quantum-confined Stark effect (QCSE) is cor-
respondingly enhanced, leading to a longer peak wavelength
under the low-level current injection,??! as shown in Fig. 5.
Therefore, sample A with the highest value of the barrier thick-

ness has the longest peak wavelength.

When the current injection level rises, more carriers are
injected into the InGaN quantum wells, the impact of the po-
larization field tends to be weakened by the Coulomb screen-
ing effect and the band-filling effect, >34 exporting a rise of
the EL spectra blue-shift of the peak wavelength. For samples
A—C, when the thickness of the GaN barrier increases from
6.5 nm to 21.3 nm, the polarization field in the InGaN quan-
tum wells is enhanced.!>! The maximum value of the spectra
blue-shift rises from 0.94 nm for sample C to 1.45 nm and
2.63 nm for samples B and A, respectively, as shown in Fig. 5.

The polarization field and the energy band bending also
have an effect on the vertical electron leakage in the In-
GaN/GaN MQW structures. For the carriers injected into the
InGaN/GaN MQW, parts of them are captured inside the In-
GaN quantum wells. Another part escapes from the quantum
wells and migrates to the p-doped region, and thus generates
the vertical electron leakage current.!?02% These leaked elec-
trons contribute to the non-radiative recombination and the
heat generation. When the current injection level continuously
rises, the vertical electron leakage current and the heat gen-
eration increases. The EL spectra shows a tendency of the
red-shift with a higher temperature, known as the self-heating
effect.[30-321

The variation of the turning point in EL spectra is deter-
mined by the vertical electron leakage. With the existence of
the polarization field, the energy band diagram is tilted and
the triangular quantum wells are formed. When the barrier
thickness increases, the polarization field is enhanced. For a
quantum well with a higher effective depth, a larger amount of
the electrons are needed to full-fill the low energy levels. For
the sample with a thicker barrier, the vertical electron leakage
will be reduced, and the heat generation is weakened under
the same current injection level. The improvement of the ther-
mal stability puts off the beginning of the red-shift in the EL
spectra and a larger value of the turning point is thus obtained.
Since the red-shift value is sensitive to the heat management,
a temperature-controlled probe stage will be helpful to get a
more precise result.

Based on the spectra analysis mentioned above, the com-
parison of the polarization field in the InGaN MQW samples
can be presented by the maximum value of the blue-shift in
the EL spectra. A larger value of the spectra blue-shift and
the turning point indicates a higher intensity of the polariza-
tion field in InGaN/GaN MQWs. The experimental results and
the subsequent spectra analysis will benefits the design of the
InGaN/GaN MQW devices. It is usually challenging to char-
acterize the polarization field before the device fabrication is
completed. Based on our study, the features of the polarization
field can be extracted from the EL spectra and the analysis of

the corresponding effects can be evaluated.
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4. Conclusion

An EL spectra analysis approach is proposed to evaluate
the effects of the polarization field in the InGaN/GaN MQW
structures. Three samples of InGaN/GaN MQWs with differ-
ence barrier thicknesses of 21.3 nm, 11.4 nm, and 6.5 nm are
prepared. Under the same current injection level, the peak
wavelength of samples A—C differs from one another. Sam-
ple A with the highest value of the barrier thickness has the
largest value of the peak wavelength. When the current in-
jection level increases, the peak wavelength of the EL spectra
firstly shows a blue-shift and then turns to be red-shifted. The
maximum value of the blue-shift is measured to be 2.63 nm,
1.45 nm, and 0.94 nm for samples A, B, and C, respectively. It
is considered to be closely related to the polarization field in-
side the InGaN quantum wells. The value of the turning point,
which is 80 mA, 50 mA, and 40 mA for samples A-C, in-
dicates the difference of the vertical electron leakage current
from the InGaN quantum wells to the p-type layers. Based on
our experimental results, the polarization field can be simply
evaluated by the analysis of the EL spectra data.
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