
J. S
tat. M

ech. (2020) 033209

Large-N behavior of three-dimensional 
lattice CPN−1 models

Andrea Pelissetto1 and Ettore Vicari2

1  Dipartimento di Fisica dell’Università di Roma Sapienza and INFN Sezione 
di Roma I, I-00185 Roma, Italy

2  Dipartimento di Fisica dell’Università di Pisa and INFN Largo Pontecorvo 
3, I-56127 Pisa, Italy

E-mail: Andrea.Pelissetto@roma1.infn.it and Ettore.Vicari@unipi.it

Received 13 December 2019
Accepted for publication 22 January 2020  
Published 13 March 2020

Online at stacks.iop.org/JSTAT/2020/033209
https://doi.org/10.1088/1742-5468/ab7747

Abstract.  We consider a three-dimensional lattice CPN−1 model, which 
corresponds to the lattice Abelian–Higgs model in the infinite gauge-coupling 
limit. We investigate its phase diagram and critical behavior in the large-N 
limit. We obtain numerical evidence that the model undergoes a first-order 
transition for suciently large values of N, i.e. for any N  >  2 up to N  =  100. 
The transition becomes stronger—both the latent heat and the surface tension 
increase—as N increases. Moreover, on the high-temperature side, gauge fields 
decorrelate on distances of the order of one lattice spacing for all values of 
N considered. Our results are consistent with a simple scenario, in which the 
transition is of first order for any N, including N → ∞. We critically discuss 
the analytic large-N calculations that predicted a large-N continuous transition, 
showing that one crucial assumption made in these computations fails for the 
model we consider.
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1.  Introduction

Models that are invariant under a local U(1) gauge symmetry have been systemati-
cally studied in condensed-matter and in high-energy physics. The simplest model with 
a local U(1) gauge symmetry is the CPN−1 model. In three dimensions it emerges as 
an eective theory describing several condensed-matter systems [1–7], while in two 
dimensions it is an interesting theoretical laboratory to study quantum field theories of 
fundamental interactions as it shares several features with quantum chromodynamics 
(QCD), the theory that describes the hadronic strong interactions [8, 9].

A lattice formulation of the CPN−1 model is obtained by associating complex 
N-component unit vectors zx with the sites x of a cubic lattice, and U(1) variables λx,µ 

with each link connecting the site x with the site x+ µ̂ (where µ̂ = 1̂, 2̂, . . . are unit 
vectors along the lattice directions). The partition function of the system reads

Z =
∑

{z},{λ}

e−βH ,
� (1)

where the Hamiltonian is

HCP = −N
∑
x,µ

(λx,µ z̄x · zx+µ̂ + c.c.) ,
� (2)

and the sum runs over all lattice links. Such a model is the limiting case of the lattice 
Abelian–Higgs model, in which the gauge fields become dynamical (see [10] and refer-
ences therein). Its Hamiltonian is

HAH = HCP − βg

∑
x,µ>ν

(
λx,µ λx+µ̂,ν λ̄x+ν̂,µ λ̄x,ν + c.c.

)
,

where the sum runs over all lattice plaquettes.
In three dimensions CPN−1 models are expected to undergo a finite-temperature 

transition. The associated order parameter is the gauge-invariant quantity

https://doi.org/10.1088/1742-5468/ab7747
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Qab
x = z̄axz

b
x − 1

N
δab.� (3)

In the high-temperature (HT) phase, the system is disordered and 〈Qab〉 = 0, while in 
the low-temperature (LT) phase the parameter Qab magnetizes. In spite of extensive 
field-theoretical and numerical studies for N = 2, 3, 4 and N → ∞, the nature of the 
transition is still controversial [9, 11–13].

Model (2) was numerically studied in [13] for N = 2, 3, 4. It was shown that the 
system undergoes a continuous transition for N  =  2, in the O(3) universality class. For 
N  =  3 and 4, it undergoes a first-order transition. No numerical results are available for 
larger values of N, although both existing lattice and continuum analytic computations 
[9, 13, 17] predict a continuous transition for N = ∞. Consistency between the large-N 
prediction and the N = 3, 4 numerical results requires the existence of a critical number 
of components Nc, such that the transition is of first order for 2  <  N  <  Nc and continu-
ous for N  >  Nc. The universality class of the critical transition for N  >  Nc would then be 
naturally identified with that associated with the large-N fixed point occurring in the 
continuum Abelian–Higgs model [14–16] and which exists for N � Nc0. The estimate 
Nc0  =  12.2(3.9) was obtained by an analysis of the ε expansion up to four loops [16]. 
Of course, the critical number Nc should be larger than or equal to Nc0. Therefore, a 
numerical study of the model for quite large values of N is required.

The purpose of this paper is that of determining the nature of the transition in the 
model with Hamiltonian (2) for large values of N. We report results for 7 � N � 100, 
which are all consistent with a simple scenario in which the transition is always of 
first order, even for N → ∞. This conclusion contradicts the analytic calculations for 
N = ∞, forcing us to review the assumptions that are generally made in the standard 
large-N approach [9, 13, 17–19], as applied to the Abelian–Higgs model and, in par
ticular, to model (2). We verify that one crucial assumption in these calculations is not 
correct. All calculations assume that the gauge fields order for N → ∞, i.e. that one 
can set λx,µ = 1 in this limit. We find that this assumption is correct in the LT phase, 
but not in the HT phase. In the latter one, gauge fields as well as gauge-invariant 
observables remain uncorrelated up to the transition point. In model (2) the transition 
is therefore of first order in the limir N → ∞.

It is important to note that one can also consider CPN−1 models in which no gauge 
fields are present. For instance, one can consider the model with Hamiltonian

H2 = −N
∑
x,µ

|z̄x · zx+µ̂|2 .
� (4)

For this theory, the standard approach [17, 20, 21] predicts a first-order transition for 
N = ∞, separating a completely disordered HT phase from a magnetized LT phase. 
The behavior is completely analogous to the one we observe here for the model with 
Hamiltonian (2).

The paper is organized as follows. In section 2 we present our numerical large-N 
results. In section 2.1 we give some details on the numerical simulations and define the 
observables we measure in the Monte Carlo (MC) simulations. In section 2.2 we pres-
ent the numerical results at the transition, while in section 2.3 we discuss the nature 
of the two phases. In section 3 we review the large-N analytic calculations. Finally, in 
section 4 we summarize and present our conclusions.

https://doi.org/10.1088/1742-5468/ab7747
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2. Numerical results

2.1. Numerical simulations and observables

In this section we present numerical results for systems with 7 � N � 100. We perform 
MC simulations on cubic lattices of linear size L with periodic boundary conditions, 
using the same overrelaxed algorithm as in our previous work [13].

We compute the energy density and the specific heat, defined as

E =
1

NV
〈H〉, C =

1

N2V

(
〈H2〉 − 〈H〉2

)
,� (5)

where V = L3. We consider correlations of the hermitean gauge invariant operator (3). 
Its two-point correlation function is defined as

G(x− y) = 〈TrQxQy〉,� (6)
where the translation invariance of the system has been taken into account. The sus-
ceptibility and the correlation length are defined as χ =

∑
x G(x) and

ξ2 ≡ 1

4 sin2(π/L)

G̃(0)− G̃(pm)

G̃(pm)
,� (7)

where G̃(p) =
∑

x e
ip·xG(x) is the Fourier transform of G(x), and pm = (2π/L, 0, 0). 

We also consider the Binder parameter

U =
〈µ2

2〉
〈µ2〉2

, µ2 =
∑
x,y

TrQxQy,� (8)

and vector correlations of the fundamental variable zx. We define

GV (�,L) =
1

V

∑
x

Re

〈
z̄x · zx+�µ̂

�−1∏
n=0

λx+nµ̂,µ

〉
,� (9)

where all coordinates should be taken modulo L because of the periodic boundary 
conditions. Note that in the definition (9) we average over all lattice sites x exploiting 
the translation invariance of systems with periodic boundary conditions, and select 
a generic lattice direction µ̂ (in our MC simulations we also average over the three 
equivalent directions). Note also that GV (0,L) = 1 and that GV (L,L) is the average 
value P (L) of the Polyakov loop,

P (L) =
1

V

∑
x

Re

〈
L−1∏
n=0

λx+nµ̂,µ

〉
.� (10)

2.2. Behavior at the transition point

In our previous work [13] we studied the CPN−1 model with Hamiltonian (2). We found 
that the system undergoes a continuous transition for N  =  2 and a first-order transition 
for N  =  3 and 4. We now consider N = 7, 10, 15, and 20. We find that the transition is 
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A Pelissetto and E Vicari

5https://doi.org/10.1088/1742-5468/ab7747

J. S
tat. M

ech. (2020) 033209

of first order in all cases, with a latent heat that increases with increasing N: the trans
ition becomes stronger as N increases.

To determine the position of the transition and ascertain its order, we use the phe-
nomenological theory presented in [22, 23]. If the transition is of first order, at fixed 
L the specific heat C and the Binder parameter U have maxima Cmax(L) and Umax(L), 
respectively, which are proportional to the system volume V . For L → ∞, we have

Cmax(L) = V

[
1

4
∆2

h +O(V −1)

]
, Umax(L) = V

[
a+O(V −1)

]
,� (11)

where ∆h is the latent heat, defined as ∆h = E(β → β+
c )− E(β → β−

c ). The values 
βmax,C(L) and βmax,U(L) where the maximum is attained converge to the transition 
inverse temperature βc as

βmax,C(L)− βc ≈ c1 V
−1, βmax,U(L)− βc ≈ c2 V

−1.� (12)

For each value of N we determine the temperatures at which the specific heat C and the 
Binder parameter U have a peak, and then we study the behavior of the maxima as a 
function of V , to infer the order of the transition. In the presence of a first-order trans
ition one should carefully verify that the simulation correctly samples both phases. As 
we are using a local metropolis/microcanonical algorithm, this only occurs if the barrier 
between the two phases is not too high; otherwise, the system is trapped in the phase 
in which the simulation is started. Since, as we shall discuss, the first-order transition is 
strong for the values of N we consider, we have been limited to relatively small lattices. 
In practice, we have results for L � 12, 10, 8, 6, for N  =  7, 10, 15, and 20.

In figure 1 we report results for N  =  7. We plot the ratios C/V  and (U − Uh)/V , 
where Uh = (N2 + 1)/(N2 − 1) is the HT value of the Binder parameter. As we dis-
cussed in [13], the subtracted term, although asymptotically irrelevant, allows us to 
take somehow into account the corrections of order V −1 to the asymptotic behavior of 
U, see equation (11). The reported results are consistent with U ,C ∼ V , and therefore 
provide clear evidence for a first-order transition. The extrapolations of βmax,C(L) and 
of βmax,U(L) allow us to estimate βc. The two extrapolations give consistent results: 
we estimate βc = 0.4714(5). The first-order nature of the transition is also confirmed 
by the two-peak structure of the distributions of E and of the square of the local 
order parameter µ2/V

2 (µ2 is defined in equation  (8)); see figure  2 for results for 
L  =  12 and β ≈ βmax,C(L). If Pmax is the maximum value of the distribution of E and 
Pmin is the minimum value in the valley between the two maxima, we observe that 
Pmin/Pmax ≈ 10−2 for L  =  12, which indicates a relatively strong transition. Since this 
ratio is supposed to scale as e−βσL2

, where σ is the surface tension, assuming a prefac-
tor of order one, we predict the ratio Pmin/Pmax to be of order 10−4 for L  =  16, which 
indicates that a standard local algorithm is not able to sample correctly both phases 
for L � 16 (our runs consist in O(10k) lattice sweeps with k ≈ 6–7). For this reason we 
have only results with L � 12.

Similar results hold for N  =  10 and 15, see figures 3 and 4. We observe a first-order 
transition at βc = 0.4253(5) for N  =  10 and at βc = 0.381(1) for N  =  15. The transition 
becomes stronger as N increases: the ratio Pmin/Pmax at fixed L decreases significantly 
as a function of N—therefore, the surface tension that parametrizes the interface free 
energy increases—limiting us to smaller and smaller values of L. For N  =  20 we are 

https://doi.org/10.1088/1742-5468/ab7747
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Figure 1.  Estimates of the Binder cumulant U (bottom left), of the specific heat 
(bottom right), and of the positions βmax,C and βmax,U  of the maxima (top) for 
N  =  7. In the top panel we also report the extrapolations that provide an estimate 
of βc.

Figure 2.  Distributions of the energy E (left) and of M2 = µ2/V
2 (right), where 

µ2 is defined in equation  (8) and V  is the volume. Results for N  =  7, L  =  12, 
β = 0.4693 ≈ βC,max(L).

https://doi.org/10.1088/1742-5468/ab7747
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not able to go beyond L  =  6 and therefore, we cannot make a quantitative study of the 
transition. We only roughly estimate the transition temperature, βc ≈ 0.353. In figure 5 
we plot the estimates of βc versus 1/N (we also include the results of [13]), together 
with the large-N estimate of [13], βc,∞ = 0.252 73 . . ., which is probably a lower bound 
to the correct value (this is discussed in section 3).

To analyze the behavior of the system in the two phases at β ≈ βc, we proceed 
as follows. We fix β to our estimate of βc and perform two runs, which start from a 
disordered and an ordered configuration, respectively. If L is large enough (as we dis-
cussed, it is enough to take L � 16), during the simulation there are no phase swaps 
and therefore, we are able to determine the average values of the dierent observables 
in the two phases. Using this method, we have estimated the average energy in the two 
phases and the corresponding latent heat. The estimates of ∆h for L  =  24, reported in 
table 1, are consistent with those that can be obtained from the behavior of the specific 
heat maximum, see equation (11). We have not attempted an infinite-volume extrapo-
latiom, but comparison with results for smaller values of L indicates that size devia-
tions are significantly less than 1%. The data show that ∆h increases as N increases: 
the first-order transition becomes stronger in the large-N limit.

Similar conclusions are reached from the analysis of the correlations of the order 
parameter. In the LT phase, ξ computed from the Q correlations, see equation  (7), 

Figure 3.  Estimates of the Binder cumulant U (bottom left), of the specific heat 
(bottom right), and of the positions βmax,C and βmax,U  of the maxima (top) for 
N  =  10. In the top panel we also report the extrapolations that provide an estimate 
of βc.

https://doi.org/10.1088/1742-5468/ab7747
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Figure 4.  Estimates of the Binder cumulant U (bottom left), of the specific heat 
(bottom right), and of the positions βmax,C and βmax,U  of the maxima (top) for 
N  =  15. In the top panel we also report the extrapolations that provide an estimate 
of βc.

Figure 5.  Plot of the available estimates of βc versus 1/N. For 1/N  =  0, we report 
βc,∞ ≈ 0.252 73, which is probably a lower bound on the correct critical temperature 
for N = ∞ (see section 3 for a discussion).

https://doi.org/10.1088/1742-5468/ab7747
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increases with L for any N. This is of course expected, as the order parameter Q con-
denses in the LT phase. On the other hand, in the HT phase, ξ decreases with increas-
ing N and is always of order one. Apparently, correlations do not develop on the HT 
side of the transition as N increases. This is obviously in contrast with the idea that the 
transition becomes continuous for large values of N. In this case, one would expect ξ to 
increase with N, becoming of order L for N large enough, as expected in the vicinity of 
a critical transition.

To analyze the behavior of the gauge-field dependent observables, we first consider 
the Polyakov loop. Such a quantity is generically expected to decay exponentially with 
the system size [13], i.e.

P (L) = AP e
−L/ξP ,

� (13)
with an appropriate correlation length ξP . In the HT phase, even for L as small as 12, 
the Polyakov loop is negligible within errors (they are of the order of 10−5). If AP is a 
constant of order 1, this implies that ξP  is approximately 1 or smaller (e−12 = 6 · 10−6). 
In the HT phase, therefore, also gauge modes are essentially uncorrelated. In the LT 
phase, we can estimate ξP  considering data in the range 16 � L � 40. The results show 
that ξP  increases with N: gauge correlations become larger in the large-N limit. Finally, 
we have considered the correlation function GV (x). As shown in figure 6, the curves 
behave quite precisely as exponentials, i.e. they are well fitted by

GV (x) = Ae−x/ξz .� (14)

If we fit the numerical results to equation  (14), we obtain estimates of ξz (they are 
reported in table 1), that are consistent with a very simple scenario: gauge correla-
tions are always negligible in the HT phase—for any N and, therefore, also for N → ∞
—while in the LT phase they increase with N, leaving open the possibility that ξz 
becomes infinite for N → ∞.

Summarizing, we have shown that, at least up to N  =  20, the model undergoes 
a first-order transition that apparently becomes stronger as N increases. The trans
ition separates two phases. The HT phase is disordered: both correlations of the order 
parameter Qx and gauge correlations decay very rapidly, with a typical length scale of 
a lattice spacing. Moreover, the correlation lengths ξ and ξz apparently decrease as N 
increases. In the LT phase the order parameter Qx condenses and ξ ∼ L. Gauge corre-
lations are always massive, with a corresponding correlation length that increases with 
N. These results allow us to formulate a simple scenario for the behavior in the large-N 

Table 1.  Estimates at the transition point of the latent heat ∆h and of the 
correlation lengths obtained from correlations of Q (ξ, equation  (7)), from the 
Polyakov loop (ξP , equation  (13)) and from the gauge correlations GV (x) (ξz, 
equation (14)). The sux HT (LT) refers to the HT (LT, resp.) phase. The results 
for ∆h, ξHT and ξz,HT have been obtained on a lattice of size L  =  24, those for ξz,LT 
on a lattice of size L  =  48 (N  =  7) or L  =  40 (N = 10, 20).

N ∆h ξHT ξP ,LT ξz,HT ξz,LT

7 0.4066(3) 1.710(6) 4.17(2) 1.46(1) 4.01(2)
10 0.5397(2) 1.169(5) 1.28(1) 5.22(5)
20 0.5806(2) 0.700(3) 6.71(2) 1.03(1) 6.95(20)

https://doi.org/10.1088/1742-5468/ab7747
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limit. We expect the N = ∞ transition to be of first order. For β < βc gauge and Q 
correlations are always massive, while for β > βc both gauge-dependent vector correla-
tions and gauge-invariant Q correlations are massless: in the infinite-volume limit both 
ξ and ξz are infinite for N = ∞.

2.3. Phase behavior

Here we wish to provide additional support to the scenario discussed in the previous 
section, determining how ξ, ξP , and ξz vary as a function of N for two dierent fixed 
values of β . First, we consider β = 0.252 73 ≈ βc,∞, where βc,∞ is the transition point 
predicted by the large-N analysis of [13]. If the standard large-N analysis is correct, 
these runs should allow us to determine the behavior of the model on the HT side of the 
large-N transition point. We will also perform runs at β = 0.8, deep in the LT phase. 
We will consider four dierent values of N, N = 10, 20, 50, and 100.

Let us first consider the runs in the HT phase, at β = 0.252 73. Results for L  =  16 are 
reported in table 2. For all values of N, ξ is very small, consistent with a correlation of 
the order of at most one lattice spacing in the limit N → ∞. A diverging correlation 

Figure 6.  Plot of the correlation function GV (x) versus x, in the LT (LT, bottom) 
and in the HT phase (HT, top). Results at β ≈ βc obtained starting the simulation 
from an ordered (LT) or disordered (HT) configuration. The dashed lines going 
through the points are fits to equation (14).

https://doi.org/10.1088/1742-5468/ab7747
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length for N = ∞ is clearly not consistent with the data. In figure 7 (top panel) we 
report the correlation function GV (x). It decays very rapidly with x with a correlation 
length ξz that is little dependent on N and is always less than 1. We are unable to esti-
mate the Polyakov correlation length, since the average of the Polyakov loop is always 
zero within errors (10−5), as expected if ξP ∼ ξz � 1. Again, data support the scenario 
that both gauge-invariant invariant modes associated with Qx and gauge modes are 
massive in the HT phase, even at the transition point, for any N, including N = ∞, 
consistently with an N = ∞ first-order transition.

The results in LT phase are also in agreement with the scenario reported in sec-
tion 2.2. The correlation length ξ always scales with L for any N, as expected. The 
correlation length ξz is instead finite in the infinite-volume limit and apparently scales 
as ξz ∼ N , a behavior which is also confirmed by the Polyakov correlation length ξP . 
Therefore, in the LT phase gauge modes are massive for any finite N and become mass-
less in the limit N → ∞, consistently with what was observed on the LT side of the 
transition.

3. The large-N standard solution: a critical discussion

The numerical data we have presented strongly suggest that the CPN−1 model with 
Hamiltonian (2) undergoes a first-order transition for any N  >  2 and also for N = ∞. 
This is in contrast with [13, 17] that predicted a continuous transition using some 
standard assumptions. We will now review the large-N calculations, with the purpose 
of understanding which assumption is not correct. For the specific Hamiltonian (2), 
there is no need to use the general approach of [13]. One can obtain the same results 
in a a straighforward way [17], repeating on the lattice the same steps that are used 
in continuum calculations for the Abelian–Higgs model (see [9] and references therein).

We start from the partition function, which can be written as

Z =

∫ ∏
xµ

dθxµ
∏
x

[dzxdz̄xδ(z̄x · zx − 1)] e−H ,� (15)

where we wrote λxµ = exp(iθxµ). As usual, we write

Table 2.  Estimates of the dierent correlation lengths as a function of N. In the 
second and third columns we report results obtained at β = 0.252 73 ≈ βc,∞, in 
the fourth and fifth column results for β = 0.8. The HT results are obtained on 
lattices of size L  =  16; the LT estimates of ξz on lattices with L  =  24 (N = 10, 20) 
and L  =  32 (N = 50, 100). The Polyakov correlation length is a fit of results with 
16 � L � 32.

N

β = 0.252 73 β = 0.8

ξ ξz ξP ξz

10 0.275(9) 0.70(1) 22.8(3)
20 0.285(5) 0.71(1) 47(3)
50 0.316(2) 0.72(1) 116.2(1) 116(10)
100 0.437(1) 0.87(2) 233.4(1) 225(20)

https://doi.org/10.1088/1742-5468/ab7747
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δ(z̄x · zx − 1) =
βN

2πi

∫ c+i∞

c−i∞
dγx exp[−βγxN(z̄x · zx − 1)]� (16)

where c is a real constant. We can then integrate over the z-fields, obtaining

Z = (2πi)−V

∫ ∏
xµ

dθxµ
∏
x

dγx e
−βNHeff ,� (17)

where

Heff({θxµ, γx}) =
1

2
Tr log(BB†) +

∑
x

γx,� (18)

the matrix Bxy is given by

Bxy = γxδxy − eiθxyηxy,� (19)

and ηxy = 1 is equal to 1 if x and y  are nearest neighbors and is zero otherwise.

Figure 7.  Plot of the correlation function GV (x) versus x, in the LT phase (β = 0.8, 
bottom) and in the HT phase (β = 0.252 73, top), for dierent values of N. The 
dashed lines going through the points are fits to equation (14).
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The limiting behavior for N → ∞ can be obtained by using the usual saddle-point 
method. For this purpose we must determine the stationary point of the eective 
Hamiltonian Heff({θxµ, γx}) with the lowest (free) energy. In the usual approach [17] 
one assumes that the relevant stationary point is obtained by considering translation 
invariant solutions of the gap equations. In other words, the saddle point is obtained 
by setting θxµ = θ0 and γx = δ0, where θ0 and δ0 are constants independent of the posi-
tion. Gauge invariance allows one to set θ0 = 0, implying that the saddle point corre-
sponds to setting λxµ = 1 on every link. Thus, the assumption of translation invariance 
essentially implies that the gauge variables play no role in the large N limit (the same 
assumption is made in the continuum formulation, see, e.g. [9]). We thus obtain the 
eective Hamiltonian for the large-N O(2N) vector theory. One then predicts a continu-
ous transition located at [17]

βc,∞ =

∫
d3p

(2π)3
1∑
µ p̂

2
µ

≈ 0.252 73,� (20)

where p̂ = 2 sin( pµ/2). In two dimensions, the assumption turns out to be correct, see 
[18] for a review. Our results show instead that this is not the case in three dimensions. 
The assumption that λxµ = 1 on every link for N = ∞ is only correct in the LT phase. 
Indeed, in this phase we observe 1/ξz, 1/ξP ∼ 1/N , which confirms the existence of a 
massless gauge phase for N = ∞. In the HT phase, instead, even for N strictly equal 
to infinity, gauge fields are spatially uncorrelated. This implies that, for small β , there 
is a dierent non-translation invariant saddle point with a lower free energy that gives 
the correct behavior of the theory.

As the HT phase is associated with a dierent saddle point of Heff, the critical point 
in the large-N limit is not necessarily given by equation (20). However, the presence of 
a single transition, allows us to set the lower bound βc � βc,∞. Indeed, in the opposite 
case, as the translation-invariant saddle point gives the solution for all values β > βc, 
we would have a continuous transition for β = βc,∞, with a finite correlation length ξ 
in the interval βc < β < βc,∞. As there is no evidence of this intermediate phase, we 
conclude that βc � βc,∞.

4. Conclusions

In this paper we have analyzed the phase diagram of the CPN−1 model with Hamiltonian 
(2), with the objective of understanding the nature of the finite-temperature transition 
as a function of the number N of components. The numerical data indicate that the 
transition is of first order. For all values of N we consider, N  >  2 up to N  =  100, the 
correlation length ξ obtained from correlations of the gauge-invariant order parameter 
Qab defined in equation (3) is of order one on the HT side of the transition and diverges 
in the infinite-volume limit on the LT side. Moreover, the transition becomes stronger 
as N increases: both the latent heat and the surface tension, which parametrize the free 
energy barrier between the two phases, increase with N. Vector and gauge correlations 
are massive for any finite N. On the HT side of the transition, the corresponding corre-
lation lengths ξz and ξP  are always of order one, for any value of N: gauge fluctuations 
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are always uncorrelated, even for N = ∞. In the LT phase, instead, we find that 
ξz, ξP ∼ N , so that gauge modes become massless in the large-N limit.

Our results for the system with Hamiltonian (2) are consistent with a simple sce-
nario in which, for any N including N = ∞, the HT phase is always disordered, up to 
the transition point, where both correlations of the order parameter Q and gauge cor-
relations decay with a typical length scale of the order of one lattice spacing. In the 
LT phase, Q condenses, while ξz, ξP ∼ N , so that for N = ∞ both gauge-invariant and 
gauge-dependent degrees of freedom are massless. The transition is therefore of first 
order, even for N = ∞.

These results contradict the analytic predictions of the many papers that investi-
gated the large-N limit, see, [13, 19] and references therein. The disagreement can be 
traced back to one of the standard assumptions which is used in the large-N analysis, 
both for continuum and lattice models [9, 13, 18, 19]. In the calculation, one usually 
assumes that the relevant saddle point that controls the behavior of the large-N free 
energy is translation invariant. For the gauge fields, this assumption implies that one 
can set λx,µ = 1 on any lattice link: gauge fields are assumed to play no role for N = ∞. 
Our results show that the assumption is correct in the LT phase, but fails in the HT 
phase: even for N = ∞ the gauge fields are disordered for any β < βc. This is essentially 
consistent with the results of [24], that observed that hedgehog configurations forbid 
the ordering of gauge fields in the HT phase, at least if one takes the limit N → ∞ 
before the limit ξ → ∞. Note that the N = ∞ behavior we predict for model (2) is 
analogous to that predicted for model (4) on a cubic lattice by standard calculations 
[17, 20, 21].

The present results are in agreement with the predictions obtained in the so-called 
Landau–Ginzburg–Wilson (LGW) approach defined in terms of the order parameter 
Qab, provided one assumes that the presence of a Φ3 term in the LGW Hamiltonian 
implies the absence of continuous transitions. It should be stressed that this assumption 
should not be taken for granted as it relies on an extrapolation of mean-field results to 
three dimensions. Note that, although we find no evidence of a large-N critical trans
ition, our results do not exclude it either, as it is a priori possible that our model is 
outside the attraction domain of this elusive fixed point.

It is interesting to compare our results with those of [3–5] for SU(N) quantum 
antiferromagnets. Kaul [3] studied a bilayer two-dimensional (2D) system and found 
a behavior analogous to what we find here. The transition is of first order for N � 4 
and becomes stronger as N increases from N  =  4 to N  =  6. On the other hand, for a 
single-layer 2D system [4], an apparently continuous transition was always observed. 
The main dierence between the two models is the topological nature of the allowed 
configurations. In the bilayer system, monopoles are allowed, while in the single-layer 
case monopoles are suppressed. In the model we consider, monopoles are allowed and 
we expect the transition to be characterized by their binding/unbinding: the monopole 
density should be positive in the HT phase and vanishing in the LT phase. Thus, on 
the basis of the results of [3, 4] and consistently with the discussion of [24], one may 
blame monopoles for the absence of a continuous transition. As the suppression of 
monopoles corresponds to adding an ordering interaction in the HT phase, it is conceiv-
able—this would be consistent with the results of [4, 5]—that a continuous transition 
can be observed in a model in which monopoles are completely, or at least partially, 
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suppressed. Clearly, additional work is needed to identify the role that monopoles play 
in the large-N limit.
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