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Abstract.  We propose a mean-field vaccination game framework that combines 
two distinct processes: the simultaneous spreading of two strains of an influenza-
like disease, and the adoption of vaccination based on evolutionary game theory 
presuming an infinite and well-mixed population. The vaccine is presumed to be 
imperfect such that it shows better ecacy against the original (resident) strain 
rather than the new one (mutant). The vaccination-decision takes place at the 
beginning of an epidemic season and depends upon the vaccine-eectiveness 
along with the cost. Additionally, we explore a situation if the original strain 
continuously converts to a new strain through the process of mutation. With the 
aid of numerical experiments, we explore the impact of vaccinating behavior on a 
specific strain prevalence. Our results suggest that the emergence of vaccinators 
can create the possibility of infection-prevalence of the new strain if the vaccine 
cannot bestow a considerable level of eciency against that strain. On the other 
hand, the resident strain can continue to dominate under large-scale vaccine 
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avoidance. Moreover, in the case of continuous mutation, the vaccine ecacy 
against the new strain plays a pivotal role to control the disease prevalence. 
We successfully obtain phase diagrams, displaying the infected fraction with 
each strain, final epidemic size, vaccination coverage, and average social payo 
considering two-dierent strategy-update rules and provide a comprehensive 
discussion to get an encompassing idea, justifying how the vaccinating behavior 
can aect the spread of a disease having two strains.

Highlights
–We build a mean-field vaccination game scheme to analyze the eect of 

an imperfect vaccine on a two-strain epidemic spreading taking into account 
individuals’ vaccination behavior.

–En masse vaccine avoidance can enhance the possibility of the original 
strain prevalence.

–Propensity for vaccination can create the possibility of infection by the 
new strain if the vaccine is unable to provide a considerable level of eciency 
against that strain.

Keywords: evolution models, evolutionary processes, epidemic modeling, 
evolutionary game theory
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1.  Introduction

The endemic of infectious diseases is regarded as one of the major menaces to the 
contemporary human societies as it causes significant damage to humanity regardless 
of age, sex, lifestyle, ethnic background, and socioeconomic status as well as imposes 
a financial burden to the society. In modern times, infectious disease outbreaks can 
spread across the world owing to the prevalence of rapid travel athwart borders [1, 2].  
Many of these diseases, such as Pertussis, HIV, Measles, Influenza, etc. have been 
encumbering us for many years while new diseases, such as Ebola, SARS, and Zika 
virus, continue to appear from animal to human or spreading to new human popula-
tions because of climate change or other anthropogenic disruptions [3]. Pre-emptive 
vaccination, if available, is considered one of the most preventive measures to evade the 
spread of infectious disease as well as reduce morbidity and mortality [4–6]. Moreover, 
vaccination can also diminish the risk of nonvaccinated individuals becoming infected 
through a voluntary vaccination strategy that depends on human behavior and deci-
sions. Before the outbreak of the epidemic, every individual can choose to take the 
vaccine or expose herself/himself to the risk of infection. Individual’s decision on com-
mitting vaccination or not depends on vaccination cost, infection cost, self-interest, the 
risk of vaccination, and behavior of surroundings [7]. Consequently, a certain percent
age of the population goes into the vaccinated class, whereas others remain in the 
susceptible class [8]. If the herd immunity is achieved, even the non-vaccinators can 
elude an infection as most of the people surrounding them are immune from infection, 
cosequently, creating ‘free-riders’ who pay none of the cost but benefit from the herd 
immunity as ‘public goods’. This situation reveals the so-called ‘vaccination dilemma’ 
that can be modeled by mathematical social dilemma games [9]. Modeling the disease 
dynamics coupling with the complicated natures of human behavior on infection con-
trol has therefore become an area of the future complex systems research to better 
understand the epidemics in modern societies [10–12].

Along with the growing interest in evolutionary game theory and epidemiology, 
vaccination game [5–17] has been playing an important role to analyze the eect of 
vaccination on various infectious diseases taking into account the vaccinating behav-
ior of individuals. In addition to vaccination, some studies also focus on analyzing the 
eect of intermediate defense measures [1, 2, 20, 22] as well as information awareness 
[7, 23–25] to suppress Influenza-like disease spreading. Most of the studies regarding 
vaccination game presume perfect immunity from vaccination (for example, [2, 13, 
18, 19, 22, 26]), which sounds somewhat idealized. However, in reality, not all vac-
cines are entirely eective or perfect. Notably, the unavoidable primary vaccine failure 
rates have been found to range from 2 to 50 percent for licensed vaccines under ideal 
circumstances in clinical trials [3, 27]. Moreover, imperfect vaccine can trigger patho-
gen virulence that makes the situation worse. Some of the previous works concern-
ing imperfect vaccination and its consequences on pathogen virulence can be found 
in [28–32]. These issues have intrigued researchers to incorporate imperfect vaccine 
provision in disease modeling. However, exploring the imperfect vaccine complication 
on vaccine uptake behavior via game theoretical perspective has attracted significant 
attention, because apart from the perceived cost of vaccination with the infection risk, 
vaccine eectiveness plays an important role towards vaccination decisions. Some of 
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the contributions relating imperfect vaccination provision in vaccination game can be 
perceived from the previous literatures such as [20, 33–36], albeit more understand-
ings are due in this context. Recently, Kuga and Tanimoto [20] presented a mean-field 
approximation (in well-mixed population) as well as multi-agent simulation (MAS) 
framework of vaccination game dovetailed with the imperfect vaccination provision and 
intermediate defense measure. The authors mainly adopted the imitation dynamics of 
vaccination behavior proposed by Fu et al [26], and successfully developed an equiva-
lent approach in mean field approximation framework. They also examined the same 
scenario presuming heterogeneous spatial structures in the population [21]. Another 
recent work regarding imperfect vaccination together with game theoretical approach 
has been developed by Chen and Fu [34] concerning the stability and bifurcation 
analysis taking into account well-mixed as well as spatial populations. Interestingly, 
the dynamics of epidemic spreading (with imperfect vaccine) in both [20, 34] are almost 
similar, albeit having dierence in the game approach. All these studies are devoted to 
examining the eect of vaccination on a single infection spreading.

However, there is increasing evidence that many diseases are caused by more than 
one pathogen strains, such as Influenza, dengue fever, HIV-AIDS, and some sexually 
transmitted diseases. The multiple variants of the pathogen appear mostly because 
of the mutation or antigenic drift in the viral genome. Viruses, like HCV (hepati-
tis C virus), Influenza, are highly mutable, consequently generating multiple strains. 
Moreover, vaccination against mutable viruses is not very ecient. For example, 
Influenza A viruses mutate continuously and create new virus strains to which the 
host has only partial or no immunity at all and can be reinfected with the disease [37]. 
These factors have impelled researchers to formulate the dynamics of epidemic models 
with multiple strains.

To date, there are significant studies available, investigating the two-strain epi-
demic model with single vaccination policy. For instance, Rahman and Zou [38] ana-
lyzed the eect of a single vaccination on a two-strain SIR like flu model. This is worth 
noting that the original model in this regard is proposed by Castillo-Chavez et al [39]. 
Cai et al [40], in addition to examining the eect of single vaccination, explored the 
two-strain epidemic model considering mutation between strains. Nonetheless, these 
works disregard the vaccinating behavior of individuals rather focus on the stability 
analysis at equilibirum.

So far, there are a few studies available, investigating the influence of vaccinating 
behavior on two-strain disease spreading. A recent work in this avenue is presented 
by Pharaon and Bauch [41], where they explore the influence of social behavior on 
pathogen virulence. The authors consider the perceived severity of pathogen strains 
and the ecacy of infection control to aect the transmission rate of the disease strains. 
However, they avoid the long-term evolutionary process with repeated epidemic sea-
sons. In our current study, we intend to include the vaccine eciency and the relative 
cost of vaccination with respect to infection cost to aect an individual’s vaccinating 
behavior. Unlike [41], we incorporate an evolutionary game theoretic framework that 
considers repeated epidemic seasons to observe an overall scenario of infection spread-
ing and the extent of vaccination coverage required to control a disease spreading.

To this aim, we investigate the eect of a single vaccination policy on a two-
strain SIR like epidemic model considering a mean-field approximation framework of 
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vaccination game presuming an infinite and well-mixed population. We mainly adopt 
the scheme developed by Kuga and Tanimoto [20], where individuals are allowed to 
change their strategies (vaccinate or not) at the beginning of an epidemic season based 
on last season’s experience. Furthermore, taking into account the factors regarding vac-
cine eectiveness against disease strains mentioned earlier (as in [37]), we incorporate 
the notion of imperfect vaccination in epidemic dynamics, where vaccine bestows better 
eectiveness against the original or resident strain (strain 1) than the new or mutant 
(strain 2) strain. Moreover, we inspect our results considering the absence and presence 
of mutation. The absence of mutation means both strains are not directly connected 
but they compete through susceptible people, whereas in the presence of mutation, 
genetic changes give a competitive advantage to the mutant strain [37]. In our game 
approach, we integrate this epidemiological process into the imitation dynamics [13, 
26] of vaccination behavior where individuals use anecdotal information to estimate 
costs and benefits of vaccination.

The rest of this article is organized as follows: section 2 presents a detailed descrip-
tion of our methodology together with a SI1I2R/V  epidemic model; section 3 provides 
an inclusive discussion supported by a series of phase diagrams generated from the 
numerical simulation, and finally, section 4 concludes the findings of this paper.

2. Methods and model description

As discussed above, here we combine two dynamical processes, namely the disease 
spreading via a two-strain epidemic model in a local time scale, and the evolution of 
vaccination decision-making process in a global time scale (figure 1). Usually, an epi-
demic season ends when the number of infected individuals becomes zero. At the end 
of each epidemic season, we estimate six fractions of individuals comprising vaccinated 
and healthy, vaccinated but infected with either strain, non-vaccinated but healthy, 
and non-vaccinated and infected with either strain. As we are considering influenza-
like disease, the number of vaccinees remains fixed during an epidemic season, and the 
vaccination decision takes place at the beginning of each epidemic season by compar-
ing payos (obtained in the last season) among the relevant groups of individuals. 
The imitation process is being undertaken with the help of pairwise Fermi functions. 
Finally, the fraction of vaccinators is updated using the evolutionary dynamics given in 
section 2.4. This process is repeated for several seasons until we reach a steady state.

2.1. Disease spreading

The dynamics of a two-strain epidemic model coupled with the imperfect vaccination 
policy is explored where the individuals in a well-mixed and infinite population are 
classified into five compartments: susceptible−S , vaccinated−V , infected with origi-
nal strain (strain one)−I1, infected with new strain (strain two)−I2, and recovered−R 
(figure 1). The model has the following parameters: β1, β2−transmission rate of infec-
tion with strain one and strain two, respectively; ρ−mutation rate from strain 1 to 
strain 2; γ1, γ2−recovery rate for infected individuals with strain one and strain two, 

https://doi.org/10.1088/1742-5468/ab74c6


A mean-field vaccination game scheme to analyze the eect of a single vaccination strategy

6https://doi.org/10.1088/1742-5468/ab74c6

J. S
tat. M

ech. (2020) 033501

respectively. We assume that strain 1 can be converted to strain 2 within host through 
an antigenic shift. The process is known as mutation [42]. Usually, the mutant strain 
has stronger virulence to transmit disease, therefore, a vaccinated individual conceiv-
ably has more possibility of becoming infected after being in contact with an individual 
infected with strain two [40]. This is why we presume that the vaccine provides better 
eectiveness against the original strain (strain 1) than that of the new strain (strain 2). 
We further assume that an indvidual cannot be infected by both strains at once and 
that if anyone infected with either strain, she/he can never be infected with another 
strain in the same season, that is, there is no co-infection and super-infection. The sus-
ceptible people are divided into two subclasses namely, nonvaccinated and vaccinated. 
As vaccine is presumed imperfect, some vaccinators still can be infected by either 
strain. Hence, we include the vaccine eectiveness in our disease modeling. The vac-
cinated individuals are separated into two subclasses: perfect immune individuals and 
non-immune individuals; non-immune individuals become susceptible to either strain. 
Here we choose two dierent eectiveness parameters, e1 and e2(0 � e1, e2 � 1) against 
the original and new strain, respectively but with the condition, e1 � e2. At any time 

Figure 1. The schematic of the whole dynamic setup. The disease spreading process 
takes place at each local time scale (Tl) which presumes an SIR-like model having 
two strains and a single vaccination provision. The dashed arrow denotes the 
mutation from strain 1 to strain 2 with the rate ρ. The parameters e1 (0 � e1 � 1) 
and e2 (0 � e2 � e1) represent the vaccine eectiveness against strain 1 and strain 2, 
respectively. V (t)− eiV0, i = 1, 2 (V0 is the fraction of vaccinators at the beginning of 
an epidemic season) denotes the fraction of vaccinators susceptible to strain i at time 
t, where V (t) being the vaccinators present in the V state at time t. Notably, the 
proportion of individuals remain in the S and V compartments at the end of a local 
time scale are ‘successful free riders’ and ‘healthy-vaccinated people’, respectively. 
The change of strategies takes place at the end of each local time scale. The process 
is repeated until the system reaches a steady state on a global time scale (Tg).
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t, five fractions of individuals are denoted as, S (t) , V (t) , I1 (t) , I2 (t) , and R (t) . As 
the vaccine is assumed pre-emptive, the number of vaccinees remains same during an 
epidemic season. If V (0) = V0 is the fraction of vaccinators at the start of an epidemic 
season, then a proportion ei (i = 1, 2) of V0, that is, eiV0 is the fraction of vaccinators 
who get immunity from strain i (i = 1, 2) but the proportion (V (t)− eiV (0)) still remain 
susceptible to strain i, where V (t) is the fraction of vaccinators in the V compartment 
at time t. Figure 1 illustrates the layout of the SI1I2R/V  epidemic model along with 
the whole dynamical system. The dynamics of the epidemic model integrated with 
the imperfect vaccine policy can be presented by a system of five ordinary dierential 
equations (ODEs),

dS(t)

dt
= −β1S(t)I1(t)− β2S(t)I2(t),� (1)

dV (t)

dt
= −β1 (V (t)− e1V (0)) I1(t)− β2 (V (t)− e2V (0)) I2(t),� (2)

dI1(t)

dt
= β1 (S (t) + V (t)− e1V (0)) I1 (t)− γ1I1 (t)− ρI1(t),� (3)

dI2(t)

dt
= β2 (S (t) + V (t)− e2V (0)) I2 (t)− γ2I2 (t) + ρI1 (t) ,� (4)

dR(t)

dt
= γ1I1(t) + γ2I2(t),� (5)

where ρ is a non-negative parameter depicting the mutation rate from strain 1 to 
strain 2. The parameter, ρ = 0 means the absence of mutation. All the parameters: 
β1, β2, γ1, and γ2, are assumed as positive constants. As the state space variables 
in our epidemic model (equations (1)–(5)) represent the fractions of the total pop-
ulation at each state, we do not consider a population of any particular size, i.e. 
S (t) + V (t) + I1 (t) + I2 (t) +R (t) = 1. The initial conditions are: V (x, 0) = x, and 
S (x, 0) = 1− x, where x denotes the fraction of vaccinators at the beginning of a 
season.

Basic reproduction ratio: Many epidemiological models possess a threshold param
eter known as the basic reproduction ratio (or number) that yields the average number 
of secondary infections caused by a single infection in a completely susceptible popu-
lation [5]. Following the [43], the vaccine-dependent basic reproduction ratio corre
sponding to each strain of the epidemic model (1)–(5) can easily be derived as,

R1
0 =

β1

γ1+ρ
(S (0) + (1− e1)V (0))

R2
0 =

β2

γ2
(S (0) + (1− e2)V (0))

}
� (6)

where Ri
0, i = 1, 2, denotes the basic reproduction number of the strain i. Notably, if 

R1
0 < 1 and R2

0 < 1, then both strains die out, that is, a stable disease free equilibrium 
(DFE) exists, however, if any of these parameters possesses a value more than one, the 
DFE is no longer stable. The case when R1

0 > 1, R2
0 > 1 but R1

0 > R2
0 (or R1

0 < R2
0), strain 

1 (strain 2) dominates strain 2 (strain 1), and accordingly stronger strain outperforms 
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the weaker one and therby weaker one dies out eventually. If both parameters are equal 
but greater than one, then both strains coexist in the population [5]. We will examine 
the eects of these vaccine-dependent basic reproduction ratios in our outlined evo
lutionary process.

2.2. Payo structure

The non-vaccinated and infected (with either strain) individuals, called ‘failed free 
riders’, are supposed to carry out an infection cost Ci. However, non-vaccinated indi-
viduals who remain healthy during the epidemic season, that is, avoiding both infec-
tions, are termed as, ‘successful free rider’ incurring no cost at all. To evaluate each 
individual’s payo, the cost is rescaled by defining a relative cost of vaccination as, 
Cr = Cv/Ci; (0 � Cv � 1;Ci = 1) without loss of generality. Therefore, a vaccinator 
who remains healthy during the epidemic incurs a relative cost −Cr, while a vaccinated 
but infected individual carrying out a cost of −Cr − 1.

Because of analytical complexity in solving the model (equations (1)–(5)), we esti-
mate several fraction of individuals by considering the flux ϕA→B, which indicates 
the total fraction of individuals transferring from state A to state B. In our case, 
ϕS→I1 (x,∞) , ϕS→I2 (x,∞) , ϕV→I1 (x,∞) , and ϕV→I2 (x,∞) are representing the flux 
from non-vaccinated to infected with strain 1, non-vaccinated to infected with strain 
2, vaccinated to infected with strain 1 (I1V ), and vaccinated to infected with strain 2 
(I2V ), respectively at equilibrium. However, the successful free riders (SFR), denoted 
by S(x,∞), are the fraction who remain in the S state at equilibrium (t → ∞), and 
the failed free riders, denoted by FFRi, i = 1, 2, are the fractions ϕS→I1 (x,∞) , and 
ϕS→I2 (x,∞), that is, the non-vaccinators who get infected by a strain i (i = 1, 2) . The 
individuals remaining in the V  state at equilibrium (V (x,∞)) are the healthy vacci-
nated people (perfectly immune) denoted by HV. All these fractions with their respec-
tive payos are summarized in table 1.
Using the estimated fractions together with their payos depicted in table 1, we can 
evaluate the average social payo, π, the average payo for vaccinators (cooperators), 
〈πc〉, and the average payo for non-vaccinators (defectors), 〈πD〉 as follows:

π = −CrHV − (Cr + 1) (I1V + I2V )− (FFR1 + FFR2) ,� (7)

〈πc〉 = (−CrHV − (Cr + 1) (I1V + I2V ))/x,� (8)

〈πD〉 = −(FFR1 + FFR2)/(1− x).� (9)

Table 1.  Six fractions of individuals at the end of an epidemic season with their 
respective payos (within brackets).

Strategy/state Healthy
Infected 
with strain 1

Infected 
with strain 2

Vaccinated (V ) HV(−Cr) I1V (−Cr − 1) I2V (−Cr − 1)
Non-vaccinated (NV) SFR(0) FFR1(−1) FFR2(−1)

https://doi.org/10.1088/1742-5468/ab74c6
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2.3. Strategy update

As mentioned before, the strategy update takes place at the beginning of each epi-
demic season depending upon the estimated payo attained in the last season. Here, 
we consider two dierent strategy update rules proposed by Fu et al [26] and Fukuda 
et al [13]. Although these rules were mainly proposed for the agent-based modeling, 
the present study, however, does not consider any spatial structure in the population 
rather relying on the so-called mean-field approximation, where agents are indistin-
guishable, and all players in the same state adopt the same strategy [44].

2.3.1.  Individual-based risk assessment (IB-RA).  In agent-based modeling, an agent, 
i (say), mimics one of its randomly chosen neighbor, j’s (say) strategy by comparing 
their payos πi and πj, respectively. The probability that player i (having strategy Si) 
imitates j’s strategy, Sj, can be estimated by the well-known pair-wise Fermi function 
[45, 46] as follows:

P (Si ← Sj) =
1

1 + exp[−(πj − πi)/k]
,� (10)

where the parameter k > 0 signifies the strength of selection; smaller k characterizes 
more sensitivity to the payo dierence. An archetypal choice of k is 0.1 that has been 
used in many previous studies (such as, [1, 2, 7, 20]). Although Fu et al [26] originally 
adopted this Fermi function for a structured population, in a later work, Fukuda et al 
[13] named this rule as individual-based risk assessment (IB-RA) as the interaction 
is one to one. Following [20], we adopt this rule in our mean-field game approach, 
wherein, instead of agent to agent interaction, every fraction (depicted in table  1) 
assesses its payo with the other relevant fractions according to the formula (10). For 
instance, vaccinated and healthy (HV) individuals compare their payo with the suc-
cessful free riders (SFR) by the probability,

P (HV ← SFR) =
1

1 + exp[−(0− (−Cr))/k]
.

These transition probabilities aect the evolution of the fraction of vaccinators.

2.3.2.  Strategy-based risk assessment (SB-RA).  This rule was proposed by Fukuda 
et al [13] for the agent-based modeling, where a focal player compares its payo with 
the socially averaged payo of all the agents surrounding it having a strategy dierent 
from the focal player. Unlike IB-RA, this rule permits an individual to compare her/
his strategy with the society rather than a single individual. Therefore, the formula for 
SB-RA becomes,

P (Si ← Sj) =
1

1 + exp[−(〈πj〉 − πi)/k]
,� (11)

where 〈πj〉 is the average payo attained by averaging payos of all neighbors who adopt 
the same strategy Sj, of a randomly selected neighbor j of an individual i. Nevertheless, 
in our mean-field game, we adopt this rule by comparing a particular fraction’s (say, 
HV, belonging to vaccinators group) payo with the average payo of other fractions 
that are belonging to a separate or mutually exclusive group (say, NV-non-vaccinators 
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group). For example, HV fraction compares its payo (−Cr) with the average payo of 
non-vaccinators group (〈πD〉 defined in (9)) by the formula,

P (HV ← NV) =
1

1 + exp[−(〈πD〉 − (−Cr))/k]
.

Accordingly, all fractions assess their payo with the average payo of their corre
sponding mutually exclusive group. All the relevant transition probabilities regarding 
IB-RA and SB-RA can be found in the supplementary material (available online at 
stacks.iop.org/JSTAT/2020/033501/mmedia).

2.4. Evolutionary dynamics

The evolutionary dynamics yield the quantitative rate of change of vaccinators for the 
next generation by incorporating all possible transition probabilities defined in (10)–
(11). Equations  (12) and (13), respectively, represent the dynamical equations corre
sponding to IB-RA and SB-RA case. Notably, these equations have been extended from 
the master equation of the mean-field approach used previously, for example in [47], to 
estimate the temporal evolution of the cooperators’ (vaccinators’) density.

IB-RA case:

dx
dt

= HV · SFR (P (SFR ← HV)− P (HV ← SFR)) + HV · FFR1 (P (FFR1 ← HV)− P (HV ← FFR1))

+HV · FFR2 (P (FFR2 ← HV)− P (HV ← FFR2)) + I1V · SFR (P (SFR ← I1V )− P (I1V ← SFR))

+I1V · FFR1 (P (FFR1 ← I1V )− P (I1V ← FFR1)) + I1V · FFR2 (P (FFR2 ← I1V )− P (I1V ← FFR2))

+I2V · SFR (P (SFR ← I2V )− P (I2V ← SFR)) + I2V · FFR1 (P (FFR1 ← I2V )− P (I2V ← FFR1))

+I2V · FFR2 (P (FFR2 ← I2V )− P (I2V ← FFR2)) .
� (12)

SB-RA case:

dx
dt

= −HV · NV · P (HV ← NV)− I1V · NV · P (I1V ← NV)− I2V
·NV · P (I2V ← NV) + SFR · V · P (SFR ← V )

+FFR1 · V · P (FFR1 ← V ) + FFR2 · V · P (FFR2 ← V ) .
�

(13)

3. Result and discussion

The current framework combines two dynamical processes, the disease spreading pro-
cess demonstrated by equations (1)–(5) and the evolution of the vaccination decision 
making process supported by equations  (12) and (13). That is, the whole dynamical 
setup is governed by equations (1)–(5) along with equation (12) or (13). The disease 
spreading process provides the outcome of the epidemic that aects the evolution of 
vaccination choice. Due to the complexity of evolutionary equations  (equations (12) 
and (13)), here we rely on numerical simulations to analyze our results. The baseline 
parameters (summarized in table 2) of this study are assumed to represent an influenza-
like disease. The transmission rates and recovery rates are chosen to have the basic 
reproduction number corresponding to either strain as 2.5 (used in several previous 
studies such as [1, 7, 20, 25]) in the absence of vaccination strategy (or quantitatively 
when e1 = e2 = 0).

https://doi.org/10.1088/1742-5468/ab74c6
stacks.iop.org/JSTAT/2020/033501/mmedia
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3.1. Time series

Before analyzing the impact of vaccinating behavior on strain prevalence, let us first 
explore the initial strain prevalence on disease dynamics in a single season time series 
(figure 2), disregarding the vaccination cost (Cr = 0) and mutation (ρ = 0). It is clear 
that the higher initial infection by a strain, the higher the risk of predominance of 
that strain (figures 2(a) and (b)). If we presume same level of initial infection for both 
strains (I1 (0) = I2 (0) = 0.0001), strain 2 appears to dominate on the ground of having 
significant dierence between e1 and e2 (figure 2(c)). However, decreasing the vaccine 
ecacy against strain 1 (say, e1 = 0.4, and e2 = 0.3) reduces the invasion of the second 
strain (figure 2(d)) rather confirms almost similar risk by each strain, because this will 
increase the pool of susceptible people available for infection by the resident strain 
(strain 1) on the ground of β1 > β2. It is worth noting that all of our phase plane analy-
ses are based on the assumption, I1 (0) = I2 (0) = 0.0001.

3.2. Phase plane analyses

Now we examine how the cost and vaccine ecacy aect individuals’ vaccinating 
behavior, and how that vaccinating behavior influences the strain prevalence. All phase 
planes (e2 versus e1) in figures 3–6 suggest that the sensitivity is mostly coming along 
the direction of vaccine ecacy against strain 2 (e2). We note that the transition from 
blue to red color presumes a transition from the good/better (less infection or disease-
free) state to a bad/worse (endemic) situation and vice versa. In general, the lower cost 
boost up vaccination coverage that helps suppressing the disease and results in a better 
societal payo, whereas the higher cost does not enhance vaccine uptake even if the 
vaccine is highly eective, as a result, brings lower payo in the social perspective ((*-v) 
heat maps in figures 3–6). We mainly split our discussion into two parts according to 
the absence (ρ = 0) and the presence (ρ �= 0) of mutation.

3.2.1. Case I (ρ = 0).  In this case, both strains are not directly connected but can 
compete through susceptible individuals. Figure 3 (IB-RA update rule) and figure 5 
(SB-RA update rule) display instances for the absence of mutation, where we inves-
tigate the infection by each strain, the final epidemic size, the vaccination coverage, 
and the average societal payo attained from vaccination as a function of (e2, e1) 
with various cost levels. Here we perceive the influence of cost and vaccine ecacy in 

Table 2.  Baseline parameters and their assumed values.

Parameter Definition Value

β1 Transmission rate for strain 1  
(per day per person)

0.8333 (assumed)

β2 Transmission rate for strain 2  
(per day per person)

0.75 (assumed)

ρ Mutation rate (if considered) 0.1 (assumed)
γ1 Recovery rate from strain 1 (per day) 0.3333 (assumed)
γ2 Recovery rate from strain 2 (per day) 0.3 (assumed)
e1 Vaccine eectiveness against strain 1 [0, 1]
e2 Vaccine eectiveness against strain 2 [0, e1] (assumed)

https://doi.org/10.1088/1742-5468/ab74c6
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every heat map, especially, the vaccine ecacy, e2 seems to aect more on vaccina-
tion coverage ((*-iv)) as well as disease prevalence ((*-iii)), which is quite conceivable 
because along with e1 a satisfactory level of eectiveness against the second strain is 
necessary to inspire vaccination although this level varies with the cost. With a lower 
vaccination cost (Cr = 0.1), the vaccination coverage seems very low (red-colored) as 
long as e2 is below a threshold level. Afterwards it shows a non monotonic tendency 
with e2, i.e. vaccination coverage reaches its maximum with the increase of e2 and then 
decreases with the further upsurge of e2 as some people might want to free ride on herd 
immunity (triangular regime enclosed by black dotted lines in figure 3(a-iv)) for a more 
eective vaccine. However, an expensive vaccine (Cr = 0.8) does not entail the same 
tendency as that of the former case because the vaccine uptake for the latter case does 
not reach to a considerable level that ensures the herd immunity. It is also evident that 
the threshold level of e2 to confirm an upsurge of the vaccine uptake is proportional to 
the cost level (see (*-iii) heat maps in figures 3 and 5). The vaccinated individuals who 
miss out on immunity are more likely to be infected with strain 2 rather than strain 1 
on the ground of e1 � e2. This is why infected fraction with strain 2 contributes more 
in the final epidemic size (see phase diagrams (a-i)–(a-iii) of figures 3 and 5) in case of 
lower cost. However, this dominance (strain 2) declines with the increase of cost level 
(yellowish region enclosed by black dotted lines in (*-ii) heat maps of figures 3 and 5). 
Because the increase of cost level causes the lower vaccination coverage, consequently, 

Figure 2.  The variation of the dynamics of several fractions of individuals for dierent 
initial conditions of I1(t) and I2(t) when V (0) = 0.3 and ρ = 0. (a)–(c) Show the 
time series with (e1, e2) = (0.6, 0.3), whereas (d) displays that for (e1, e2) = (0.4, 0.3). 
Other relevant parameters are considered as in table 2. Clearly the initial infected 
fraction has an impact on the risk of infection for each strain. Especially, the 
condition I1 (0) = I2 (0) = 0.0001 implies (c) the higher risk of infection with strain 
2 than that of strain 1 on the ground of (e1, e2) = (0.6, 0.3), however, (d) infection 
risks of both strains are almost similar whenver (e1, e2) = (0.4, 0.3).

https://doi.org/10.1088/1742-5468/ab74c6
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the fraction of free riders emerge in the population and consequently, the infection with 
strain 1 becomes more likely than that of strain 2 as β1 > β2. This is why the fraction 
of infection with strain 1 is showing a proportional relationship with the extent of non-
vaccinators and the cost level Cr (see the yellowish region in phase diagrams (*-i) of 
figures 3 and 5). Notably, the average social gain is seen to be better for the low priced 
vaccine than that of the high priced vaccine that is quite imaginable.

3.2.2. Case II (ρ = 0.1).  In this case, we assume that strain 1 mutates to strain 2 with 
a rate ρ = 0.1. Figure 4 (IB-RA) and figure 6 (SB-RA) represent several phase planes 
concerning the infection with each strain, total infection, vaccination coverage and 
overall societal gain when a strain continuously converts to another type through the 
process of mutation. The existence of such mutation implies strain 2 to be the sole con-
tributor to the disease prevalence (see (*-ii) heat maps in figures 4 and 6). This is why 
all phase diagrams are showing the sensitivity along the direction of vaccine ecacy 
against the mutant strain (e2). This case also shows a non-monotonic tendency of 

Figure 3.  e2 versus e1 heat maps with strategy-updating rule IB-RA considering 
absence of mutation; first two columns represent fraction of infected people with 
each strain, third column as final epidemic size, fourth and fifth column represent 
vaccination coverage and average social payo, respectively. On the otherhand, 
first, second, and third row depict three relative costs as, Cr = 0.1, 0.4, 0.8, 
respectively. Here β1 = 0.8333, β2 = 0.75, γ1 = 0.3333, γ2 = 0.3. The regions enclosed 
by black dashed lines indicate more infections taking place with strain 2 whenever 
e1 reaches a satisfactory level (varies with Cr) and e2 is yet to reach its threshold 
level (varies with Cr). Each heat map in third, fourth and fifth columns depicts 
a threshold level of e2 where the situation gets better. Each heat map assumes 
I1 (0) = I2 (0) = 0.0001.

https://doi.org/10.1088/1742-5468/ab74c6
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vaccination coverage with e2, especially when the cost is low. Moreover, the level of e2 
to upsurge the vaccination coverage is showing a positive correlation with the cost, Cr.

3.2.3.  β1 versus β2 phase diagram.  We consider an instance with a low-priced vaccine 
(Cr = 0.1), where other relevant parameters are chosen as, ρ = 0, e1 = 0.7, e2 = 0.4, 
and explore the impact of transmission rates, (β1, β2) on the vaccine dependent basic 
reproduction number for each strain (R1

0, R
2
0 defined in equation (6)), the final epidemic 

size, and the vaccination coverage presuming IB-RA update rule (figure 7). Clearly 
lower transmission rates possess a disease-free equilibrium (DFE) (region enclosed by 
black dotted lines in panel (c)), where R1

0 and R2
0 are below one (panels (a) and (b)). 

Clearly this scenario does not inspire vaccination (panel (c)). However, the upsurge of 
β1(β2) leads to the predominance of strain 1(2) that also increases vaccination coverage. 
As we presume e1 > e2, the intensity of infection due to strain 1 seems less than that 
of strain 2. Panels (c) and (d) in figure 7 suggest that strain 2 can predominate even if 
the vaccine uptake reaches the peak level (deep blue regime in panel (d)).

3.2.4.  IB-RA versus SB-RA.  Apparently, from a global viewpoint, when comparing 
the two dierent strategy updating rules (IB-RA and SB-RA), we can observe an 

Figure 4.  e2 versus e1 heat maps with strategy-updating rule IB-RA considering 
mutation with the rate ρ = 0.1; first two columns represent fraction of infected 
people with each strain, third column as final epidemic size, fourth and fifth 
column represent vaccination coverage and average social payo, respectively. 
On the otherhand, first, second, and third row depict three relative costs as, 
Cr = 0.1, 0.4, 0.8, respectively. Here β1 = 0.8333, β2 = 0.75, γ1 = 0.3333, γ2 = 0.3. 
Each heat map in third, fourth and fifth columns depicts a threshold level of e2 
where the situation gets better. Each heat map assumes I1 (0) = I2 (0) = 0.0001.

https://doi.org/10.1088/1742-5468/ab74c6
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coverage, and lower final epidemic size by SB-RA whenever cost is 0.0 and 0.4 but 
the opposite scenario happens for a higher cost (Cr = 0.8), which is plausible because 
SB-RA uses global knowledge rather than local knowledge [7] and consequently, brings 
more eective force to suppress the disease spreading as long as the vaccination cost is 
of a considerable level, but afterward IB-RA seems to perform better than SB-RA. In 
this regard, we claim that higher vaccination cost possesses a more negative impression 
on global scale rather than local viewpoint. This typical phenomenon was observed in 
the original study regarding SB-RA by Fukuda et al (see figure 4 of [13]). Although the 
authors presumed spatial networks in their study, still agreeing with the well-mixed 
situation.

Figure 5.  e2 versus e1 heat maps with strategy-updating rule SB-RA considering 
absence of mutation; first two columns represent fraction of infected people with 
each strain, third column as final epidemic size, fourth and fifth column represent 
vaccination coverage and average social payo, respectively. On the otherhand, 
first, second, and third row depict three relative costs as, Cr = 0.1, 0.4, 0.8, 
respectively. Here β1 = 0.8333, β2 = 0.75, γ1 = 0.3333, γ2 = 0.3. The regions enclosed 
by black dashed lines (in second column) indicate more infections taking place with 
strain 2 whenever e1 reaches a satisfactory level (varies with Cr) and e2 is yet reach 
its threshold level (also varies with Cr). However, another two regions enclosed by 
black dashed lines in vaccination coverage heat maps indicating a little decline 
of vaccine uptake due to the emergence of free riders for higher eective (against 
both strains) vaccine. Each heat map in third, fourth and fifth columns depicts 
a threshold level of e2 where the situation gets better. Each heat map assumes 
I1 (0) = I2 (0) = 0.0001.
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Figure 6.  e2 versus e1 heat maps with strategy-updating rule SB-RA considering 
mutation with the rate ρ = 0.1; first two columns represent fraction of infected 
people with each strain, third column as final epidemic size, fourth and fifth 
column represent vaccination coverage and average social payo, respectively. 
On the otherhand, first, second, and third row depict three relative costs as, 
Cr = 0.1, 0.4, 0.8, respectively. Here β1 = 0.8333, β2 = 0.75, γ1 = 0.3333, γ2 = 0.3. 
Each heat map in third, fourth and fifth columns depicts a threshold level of e2 
where the situation gets better. Each heat map assumes I1 (0) = I2 (0) = 0.0001.

Figure 7.  The representation of the basic reproduction number for each strain 
(panel (a, b)), the final epidemic size (panel (c)), and the vaccination coverage (panel 
(d)) as a function of transmission rates, (β1, β2). The corresponding parameters are 
set as, Cr = 0.1, ρ = 0, e1 = 0.7, e2 = 0.4, γ1 = 0.3333, γ2 = 0.3, with IB-RA update 
rule. The lower transmission rates yield a disease-free equilibrium (DFE) (panel 
(c)), where the corresponding basic reproduction numbers (R1

0 and R2
0) are below 

one (panel (a) and (b)). No one opts vaccination for a DFE. However, the upsurge 
of β1(β2) depicts the dominance of strain 1(2) and boosts up vaccination coverage. 
Clearly, the large-scale propensity for vaccination (deep blue regime in panel (d)) 
favors the strain 2-dominant situation as e1 > e2.

https://doi.org/10.1088/1742-5468/ab74c6
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4. Conclusion

This study aimed to develop a mean-field approximation framework for a vaccination 
game, depicting the eect of a single vaccination strategy when there are two strains 
of a disease prevailing in an infinite and well-mixed population. Since vaccines may not 
be always perfect, we adopt the imperfect vaccination provision in disease modeling. 
Furthermore, it is observed that in conjunction with the vaccine-eectiveness, the vac-
cination cost can also play an important role to oppress disease spreading. Under the 
baseline parameters (depicted in table 2), our numerical experiments confirm that vac-
cine eectiveness against new strain (mutant) consumes more impact on disease eradi-
cation, and provide an apparent estimation of vaccination coverage as well as threshold 
levels of vaccine eciency (especially for e2) needed to control a disease spreading. It 
has been observed that in the absence of mutation, strain 1 dominates when a vast 
majority of the population are non-vaccinators. This dominance increases with the 
degree of non-vaccinators. However, strain 2 can emerge among the vaccinators if 
the vaccine ecacy against that strain is low. Moreover, the presence of continuous 
mutation makes strain 2 as the only contributor to the disease dynamics. In general, 
two dierent strategy update rules- IB-RA and SB-RA- possess the same tendency. 
However, SB-RA yields better results whenever the cost is low but IB-RA has been 
found to work well in case of higher cost.

The concept of a well-mixed situation is somewhat idealized. Indeed, individuals in 
a society are connected by some social networks [19, 21, 26, 34, 36]. Therefore, explor-
ing the outlined evolutionary process under a structured population would be exciting 
to investigate. Moreover, it would be also interesting to examine the current setting 
with short-term cross-immunity, isolation, late vaccination (if applicable), superinfec-
tion, etc. to get a more general impression.
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