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The use of smartphone microphones in aquatic media is explored by means
of two experiments. The first experiment consists of a simple time-of-flight
measurement of the sound speed in water, while the second deals with the

acoustic location—or ranging—of a distant object. As the underwater noise

is considerable, the experimental details and the uncertainties are worth

discussing.
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Underwater acoustics. During the last few years,
it has become increasingly clear that smartphones
are valuable tools to be used almost every-
where. Until recently, a place that still resisted
smartphone onslaught was aquatic media. Several
experiments in acoustics were proposed [1-8].
However, nowadays, many modern smartphones
are waterproof and the performance of their
microphones is sufficiently adequate to employ
them as hydrophones. This capability gives rise to
several interesting applications. Here, we describe
two experiments in underwater acoustics which
require two smartphones—at least one should be
waterproof. The first experiment consists of a
simple time-of-flight measurement of sound speed
in water and the comparison with the correspond-
ing value in air. The second deals with the acous-
tic location—or ranging—of a distant object by
comparing the time it takes for the sound to reach
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the object traveling in two different media (air and
water in this case) with known sound speed.

Sound speed in water. The first experiment
using the smartphone hydrophone, schematized in
figure 1, is to determine sound speed in water.
Although the idea is simple, care should be taken
to avoid uncertainties coming from underwater
noise. Two smartphones, A and B (at least one
waterproof), and a simple app, able to register
and edit the raw uncompressed sound wave, are
needed.

First, to synchronize the recordings, while
both smartphones are in air recording sound
with their microphones as close as possible, a
sound pulse is generated (top panel). This can be
achieved by hitting a metal bar or using another
appropriate device as a loudspeaker. Without stop-
ping the recording, smartphone B is submerged
into water and separated from A by a distance d.
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Figure 1. Experiment to measure sound speed in water.
Firstly, as depicted in the top panel, with both smart-
phones as close as possible, sound tracks are synchron-
ized. Then, as shown in the bottom panel, a sound pulse
is registered by both smartphones separated by a known
distance d.

This distance should be of the order of a couple of
meters to minimize uncertainties. Then, a second
sound pulse is generated at the surface of the
water. It is important that the sound source is
aligned with the smartphones, so that the sound
wave arrives first to smartphone A and then to B
(bottom panel). After stopping the recordings, the
audio files are saved in the cloud to further process
on a computer.

The results are analyzed in figure 2, which
displays the sound waves as shown in the free soft-
ware Audacity. The top and bottom audio tracks
correspond to smartphones A and B, respect-
ively. The considerable level of underwater noise
can be appreciated in the smartphone B sound
wave. The time difference in the arriving of the
pulses—measured in the progressive zooms dis-
played in figure 2—corresponds to 82 samples and
its uncertainty is estimated in four samples. As the
sampling frequency is 44.1 kHz, then, the time dif-
ference results in 1.9(1) ms.

The distance is directly measured underwa-
ter as d =2.95(2) m. Its uncertainty comes from
the size of the objects (source and hydrophone)
and difficulty to measure underwater. Finally, the
sound speed in water will simply be the ratio
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between the distance and time.
Cyater = 1.6(1)km/s.

Its speed in water results in very good concord-
ance with reference values at the temperature at

the moment of the experiment. It is also worth
pointing out that sound propagates four times
faster in water than in air.

Acoustic ranging. A well-known problem is
to determine the distance at which a sound source
is located using the difference in propagation time
of an acoustic pulse in two different media. For
example, suppose a whale is sighted from a ship.
Sound waves travel both through water and air,
at different speeds, and are registered on board
using a hydrophone and a microphone. From
the time difference of the arrival time between
both signals, the distance to the source, x, can
be calculated. The time difference between both
media is easily obtained as Af =ty — tyarer =
X(1/cair — 1/Cwater) and the distance results in
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With a submersible smartphone (hydrophone)
placed inside the water and another smartphone
outside the water—very close to the first—
(microphone), the above method can be tested as
shown in figure 3. As in the previous experiment,
the first step is to synchronize the sound tracks.
In a home pool, a pulse was produced with a
semi-submerged metal bar and the time difference
was detected between the hydrophone and the
microphone. In the present experiment, the time
difference was measured in 258 samples, equi-
valent to 5.9(1)ms. Then, the distance from the
metal bar to the smartphones is readily obtained as
x=2.66(6)m. This result is in very good concord-
ance with the direct measurement of the distance,
xg =2.60(2)m between the smartphones.

Closing remarks. To sum up, we have
described a simple and inexpensive experi-
ment in underwater acoustics; an area that has
been explored little in physics courses. At least
one waterproof smartphone is needed and the
experiments can be performed in a small pool
or pond. Data analysis requires only a sound
editor, however, due to the noise inherent to the
aquatic media, special attention should be paid
to the experimental details. As uncertainties are
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Figure 2. Sounds recorded by the two smartphones displayed on the software Audacity (full track and two suc-
cessive zooms). The upper (lower) track is the sound recorded by smartphone A (B). The tracks have been moved
so that the first pulse matches both recordings. The second pulse occurs when the two smartphones are separated,
so that it first reaches A and then B.
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Figure 3. Acoustic ranging. Similarly to the previous
experiment, sound tracks are synchronized as schemat-
ized in the top panel. Then, shown in the bottom panel, a
sound pulse, propagating both in water and air, reaches
the smartphones separated by an unknown distance x.

delicate here, in a classroom context, it would
be interesting to discuss the experimental limita-
tions as the characteristics of sound source and the
shortest distances compatible with a given relative
uncertainty.
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