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Abstract

A planet’s orbital orientation relative to an observer’s line of sight determines the chord length for a transiting
planet, i.e., the projected distance a transiting planet travels across the stellar disk. For a given circular orbit, the
chord length determines the transit duration. Changes in the orbital inclination, the longitude of ascending node, or
both, can alter this chord length and thus result in transit duration variations (TDVs). Variation of the full orbital
inclination vector can even lead to de-transiting or newly transiting planets for a system. We use Laplace-Lagrange
secular theory to estimate the fastest nodal eigenfrequencies for over 100 short-period planetary systems. The
highest eigenfrequency is an indicator of which systems should show the strongest TDVs. We further explore five
cases (TRAPPIST-1, Kepler-11, K2-138, Kepler-445, and Kepler-334) using direct N-body simulations to
characterize possible TDVs and to explore whether de-transiting planets might be possible for these systems. A
range of initial conditions are explored, in which each realization is consistent with the observed transits. We find
that tens of percent of multiplanet systems have fast enough eigenfrequencies to expect large TDVs on decade
timescales. For the directly integrated cases, we find that de-transiting planets might occur on decade timescales,
and TDVs of 10 minutes per decade are expected to be common.

Unified Astronomy Thesaurus concepts: Exoplanets (498); Exoplanet evolution (491); Exoplanet dynamics (490);
Transit duration variation method (1707)

1. Introduction

The Kepler mission has revealed that short-period multiplanet
systems are ubiquitous in the Galaxy (Burke et al. 2014). Recent
work suggests that 30% of solar-type stars have Kepler-like
systems with planets on orbits shorter than 400days, with an
average multiplicity of three planets per system (Zhu et al. 2018).
M dwarfs are predicted to have even higher occurrence rates
(Mulders et al. 2015). However, we do not know whether the
many known systems with tightly packed inner planets (STIPs,
i.e., the short-period multiplanet systems) harbor additional
planets at larger stellarcentric distances, loosely resembling the
solar system configuration, nor do we know in general the full 3D
orientation of the observed planets’ orbits.

STIPs have already shown that planetary types and system
configurations are diverse, providing new information for evaluat-
ing formation and evolution paradigms, such as disk migration
(Kley & Nelson 2012); N-body dynamical migration, at least for
hot Jupiters (Fabrycky & Tremaine 2007; Wu & Lithwick 2011;
Petrovich 2015); and in situ formation or assembly (Hansen &
Murray 2012; Boley et al. 2014; Chatterjee & Tan 2014).
Knowing whether STIPs also contain long-period planets is of
keen interest for interpreting the existing data (see, e.g., Zhu &
Wu 2018) and providing context to planet formation theory. As an
example, some broad classes of formation models suggest that
STIPs are unlikely to have extensive outer planetary systems
(Ormel et al. 2017). Full 3D planetary orbits are needed to better
understand the actual inclination distribution of planets (with
formation implications), and the evolution of these orbits can in
turn constrain the perturbations acting on the planets. It is in this
spirit that we focus on potentially observable changes to transits in
a given STIP that are due to the secular evolution of planetary
orbits.

Planetary transit durations depend on several factors, includ-
ing the planet’s orbital period, the size of the star and planet, and

the projection of the planetary orbit as seen by the observer. The
projected path of the transiting planet across the stellar disk is
the transit chord. If the effective size of the star is known, then
the duration of a transit can be used to infer the chord length
and the impact parameter b, i.e., the offset of the chord from the
center of the stellar disk.
The impact parameter is related to the inclination i of the

planetary orbit relative to the observer by =b icosr

R
, where r

is the star–planet separation during the transit, and R is the
effective size of the star. By convention, i=90° means that the
orbit normal lies in the skyplane, while for i=0°, the orbit
normal is parallel to the observer’s line of sight.
Although we can infer the orientation of a planetary orbit

relative to the observer, the transit duration does not in general
tell us the orbital inclination I of a planet relative to any given
reference plane. Ultimately, the orbital inclination is a vector I,
with a direction toward the longitude of ascending node Ω (or
simply the node) and magnitude I. We therefore cannot relate i
to I in a general way, which complicates the interpretation
of multiplicity statistics and typical planetary inclinations
(Tremaine & Dong 2012). For example, suppose there are two
planets in a system and both planets are observed with b≈0.
Without additional information, the resulting configuration
might arise because both planets have low relative inclinations
and the observer’s line of sight happens to be along the mutual
orbital plane. It might also be the case that the planets have
very high relative orbital inclinations I, but one or both nodes
happen to be nearly aligned with the observer’s line of sight.
For arbitrary combinations of b’s (or equivalently, i’s), a wide
range of I might be possible.
Fortunately, this degeneracy between i and I can be broken

in principle through transit duration variations (TDVs),
revealing or at least constraining the 3D plane of the planets
(e.g., Agol & Carter 2018). Similar to transit timing variations
(TTVs; Ford et al. 2012), perturbations by other planets or even
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the stellar potential (and for very hot Jupiters, the planet’s
potential; Ragozzine & Wolf 2009) will cause changes to the
planetary orbits and the chord lengths of corresponding transits.
The magnitude and direction of the resulting TDVs can in turn
be used to model the actual inclination vectors of the planets
for a given system. When TDVs in a system cannot be
reconciled with orbital solutions, then the discrepancy might
point to additional perturbations, such as nontransiting planets.

To date, observations of TDVs are limited among the
confirmed planet sample, but the number of systems with
measured TDVs is expanding. Examples include Kepler-13
(Szabó et al. 2012; Mazeh et al. 2013), Kepler-88 (Nesvorný
et al. 2013), and Kepler-108 (Mills & Fabrycky 2017).
Variations in Kepler-13 b are consistent with evolution due
to stellar oblateness, while the TDVs in Kepler-88 are due to
eccentricity variations among two planets in a 2:1 resonance.
Kepler-108 exhibits TDVs consistent with changes in the
impact parameter resulting from planet–planet interactions.
Photodynamical modeling of Kepler-9 c (Freudenthal et al.
2018) revealed that the planet transit duration is expected to
decrease and the planet may stop transiting altogether in the
near future. An extensive search of Kepler objects of interest
(KOIs) by Kane et al. (2019) also found roughly 100 TDV
candidates. Finally, K2-146 c was recently observed to come
into transit (Hamann et al. 2019), demonstrating that planets
can indeed re-transit and presumably de-transit. These results
demonstrate that TDVs are measurable and contain a wealth of
possibilities for examining dynamical interactions within a
planetary system.

Secular perturbations among the planets in a STIP will be a
major driver of long-term TDVs by varying I. We stress that
precession of Ω alone can lead to changes in a transit chord
length, i.e., the magnitude of the inclination need not change to
produce an observable signature. This is highlighted in
Figure 1, in which a planet on a circular orbit with semimajor
axis a=0.1 au orbits a Sun-sized star. The planet size is not
included in this toy model, and the observer is assumed to be in
the reference plane. A precession rate of 3° yr−1 is assumed,
leading to large TDVs on decade timescales. Whether real

systems commonly have such observable precession rates is
one of the focuses of this work.
A recent study that examined potential TDVs in multiplanet

systems (Becker & Adams 2016) used the Lagrange-Laplace
secular theory to determine how the orbital inclinations of
planets in STIPs would vary with time, and used the results to
calculate the expected TDVs for known systems. The work also
assessed whether transiting planets in STIPs might move away
from transiting configurations (i.e., de-transit) due to self-
interactions. Their results focused on changes in the magnitude
of orbital inclinations (I), but did not explicitly include the
contribution from variations in Ω. In particular, they found that
de-transits are expected to be rare.
In this work, we reexamine TDV signatures and the potential

for systems to de-transit by taking into account changes in the
full I. We begin in Section 2 by using the Laplace-Lagrange
secular theory to evaluate the nodal precession frequencies of
known systems, which is used as an indication of the TDV
timescale. Systems with rapid precession frequencies and large
impact parameters together can be used to select systems that
are expected to show strong TDVs. We then directly simulate
several known STIPs in Section 3 to produce synthetic TDVs,
determine potential variations on decadal timescales, and assess
these systems for potential evolution between transiting and
nontransiting states. The results of these simulations are
presented in Section 4, followed by a discussion in Section 5.
The main findings are summarized in Section 6.

2. Indicators of Noticeable TDVs

2.1. Secular Inclination Frequencies

We use the Laplace-Lagrange secular theory to determine the
eigenfrequency structure for 118 STIPs. In short, the secular
theory assumes that short-period gravitational perturbations
average out on long timescales, which is valid provided that
the planets are not strongly interacting in, for example, mean-
motion resonances (MMRs) or near-MMRs. The remaining
long-period perturbations affect the eccentricity and inclination
vectors, but not the semimajor axes. Secular theory is second
order in e and I, and is first order in mass. Eccentricity and
inclination are decoupled at this order. If the planets are near an
MMR, then the system might still be described by secular
theory, but additional modes may be present and the actual
modes may be shifted compared with the secular eigenfrequen-
cies. Nonetheless, for strong planet–planet interactions, the
actual nodal eigenfrequencies (see below) can show excellent
correspondence to the Laplace-Lagrange theory even if the
apsidal eigenfrequencies do not (e.g., Malhotra et al. 1989;
Granados Contreras & Boley 2018). We refer to Murray &
Dermott (1999) for a thorough overview; several key relations
are listed for clarity.
For each planet j, the inclination vector (with magnitude Ij

and direction Ωj) can be described by the rectangular
coordinates

( )= Wq I cos 1j j j

and

( )= Wp I sin . 2j j j

The evolution of q, p is governed by coupled, linear, first-order
differential equations. A similar set of equations can be written
to describe the eccentricity vector (not shown). Thus, the

Figure 1. Example of a TDV due only to precession of Ω, which is assumed in
this toy model to be W=3° yr−1. The stellar radius is 1Re, and the circular
orbit of the planet has a semimajor axis of a=0.1 au and an inclination
I=1°. The observer is assumed to be located in the reference plane.
Precession alone can cause significant chord changes for moderate inclinations,
leading to TDVs >5 minutes on decade timescales.
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long-term evolution of the planetary orbits can be reduced to a
series summation of sines and cosines, explicitly dependent on
time and running over the eigenfrequencies of the system,

( ) ( )å g= +
=

-

q U f tcos , 3j
i

N

i ij i i
1

1

and

( ) ( )å g= +
=

-

p U f tsin . 4j
i

N

i ij i i
1

1

For N planets, there are N apsidal (eccentricity) eigenfrequen-
cies and N−1 nonzero nodal (inclination) eigenfrequencies
because one degree of freedom is lost in defining the mean
plane of the system. The eigenfrequencies fi depend only on the
system masses and the planets’ orbital semimajor axes, as do
the eigenvectors Uij for a specific mode i on planet j. Secular
theory itself is unscaled. The mode amplitudes (i) and phases
(γi) must be determined from boundary conditions—the orbital
inclination I and node Ω at a given time.

Because we expect the inclinations of most systems to be
reasonably described by the Laplace-Lagrange secular theory,
we can use the inclination eigenfrequencies as a preliminary
ranking for systems that should be targeted for follow-up. To
that end, we use masses and semimajor axes from the NASA
exoplanet archive3 to determine the inclination eigenfrequen-
cies of various systems. We only consider systems that have
three or more planets. We further require that all of the known
planets are currently transiting and have well-defined semi-
major axes or periods. The archive’s default values are selected
when possible. If masses are available from the archive, then
those are used directly. Otherwise, the Lissauer et al. (2011)

mass–radius relation is used to estimate planetary masses, with
the understanding that this is only approximate. Specifically,
we used M/M⊕≈(R/R⊕)

q with q=2.01. This is slightly
different from the Lissauer et al.relation, which uses q=2.06.
This was an unintentional change discovered after the analysis
had been completed, but because the overall effect is small and
well within the uncertainties, we continued with the smaller q.
As an example, Table 1 lists all nodal eigenfrequencies for

select exoplanet systems. The systems are arranged by
multiplicity and then Kepler number, while the eigenfrequen-
cies are sorted by rate. Multiple frequencies exceed one degree
per year, suggesting that TDVs in these systems might be
observable on relatively short timescales. We note that the
uncertainty in mass measurements will give rise to a
comparable uncertainty in the eigenfrequencies. For well-
constrained systems, we expect our estimates to be accurate to
tens of percent, while for poorly constrained systems, the
eigenfrequencies are still expected to yield an order-of-
magnitude estimate, on average.

2.2. Considering the Impact Parameter

Even fast nodal frequencies may have little observational
impact if the magnitude of the inclination is small. Because we
do not know the actual orbital inclinations, we use the impact
parameters as a general indicator. This should be taken with
caution. The impact parameter only tells us the inclination to
our line of sight, and it is possible for two planets with the same
inferred inclination to have nonzero mutual inclinations. It is
also possible to have a system with large impact parameters,
but low orbital inclinations if the system as a whole is inclined
to the observer. In this case, one would expect the impact
parameters for planets in a system to increase with increasing
semimajor axis.

Table 1
Secular Eigenfrequencies from Laplace-Lagrange Secular Theory for Select Exoplanet Systems

Secular Frequencies (deg per yr)

System Nplanets f1 f2 f3 f4 f5 f6 f7

KOI351 8 −0.7 −0.7 −0.4 −0.3 −0.2 −0.1 −0.0
TRAPPIST-1 7 −9.5 −5.3 −4.9 −2.8 −1.4 −0.6
Kepler-80 6 −4.2 −2.9 −1.5 −0.8 −0.4
Kepler-11 6 −1.2 −0.8 −0.3 −0.2 −0.0
HIP 41378 5 −1.5 −0.2 −0.1 −0.0
K2-138 5 −4.5 −3.4 −2.1 −1.1
Kepler-32 5 −1.2 −0.9 −0.2 −0.2
Kepler-33 5 −2.6 −1.5 −0.9 −0.4
Kepler-55 5 −0.6 −0.4 −0.3 −0.1
Kepler-62 5 −0.4 −0.1 −0.0 −0.0
Kepler-84 5 −1.0 −0.3 −0.2 −0.1
Kepler-102 5 −0.7 −0.5 −0.3 −0.2
Kepler-122 5 −1.3 −1.1 −0.4 −0.2
Kepler-154 5 −0.5 −0.4 −0.1 −0.1
Kepler-169 5 −1.1 −0.4 −0.2 −0.0
Kepler-186 5 −0.8 −0.2 −0.1 −0.0
Kepler-238 5 −4.7 −1.1 −0.8 −0.4
Kepler-292 5 −1.8 −1.0 −0.5 −0.3
Kepler-296 5 −0.7 −0.4 −0.2 −0.1
Kepler-444 5 −0.5 −0.4 −0.3 −0.1

Note. The results are sensitive to the planetary masses and orbital semimajor axes, therefore frequencies are only shown to the nearest tenth of a degree per year.
Values of zero are not intended to mean exactly zero; rather, the magnitude of the value is lower than 0°. 05 yr−1.

3 https://exoplanetarchive.ipac.caltech.edu/, last accessed 28 December 2018.
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With these caveats in mind, impact parameters, while having
large uncertainties, provide additional information for assessing
whether a particular system may exhibit strong TDVs.

2.3. Nodal Frequency Ranking

Tables 2 through 5 rank 118 STIPs from the exoplanet
archive according to the following: systems are first separated
into quartiles by the maximum transit impact parameter in each
system. Within each quartile, the systems are then sorted by the
highest nodal eigenfrequency. Entries listed with a maximum
frequency of zero are not formally zero, but have a magnitude
lower than 0°.05 yr−1. These tables are summarized in Figure 2.

The motivation for using quartiles is to highlight which STIPs
may be the most promising for future follow-up according to
both b and nodal precession. Because the uncertainties in the
impact parameters may make such groupings misleading, we

Table 2
Systems Ranked by Fastest Secular Eigenfrequency for Maximum Impact

Parameters 0.75�b<1

System Nplanets fmax (deg per yr) bmax

Kepler-238 5 −4.7 0.8
Kepler-304 4 −2.7 0.8
Kepler-46 3 −2.5 0.8
K2-37 3 −2.4 0.8
Kepler-292 5 −1.8 0.9
Kepler-26 4 −1.7 0.8
Kepler-256 4 −1.5 0.8
Kepler-224 4 −1.4 0.8
Kepler-306 4 −1.3 0.9
Kepler-18 3 −1.3 0.8
Kepler-122 5 −1.3 0.8
Kepler-11 6 −1.2 0.8
Kepler-58 3 −1.1 0.9
GJ 9827 3 −1.1 0.9
Kepler-169 5 −1.1 0.8
Kepler-359 3 −0.9 0.9
Kepler-172 4 −0.8 0.8
K2-32 3 −0.8 0.8
Kepler-326 3 −0.7 0.9
Kepler-250 3 −0.7 0.8
Kepler-338 4 −0.7 0.8
Kepler-138 3 −0.6 0.9
Kepler-142 3 −0.6 0.9
Kepler-272 3 −0.6 0.9
Kepler-276 3 −0.6 0.9
Kepler-215 4 −0.5 0.8
Kepler-444 5 −0.5 0.8
Kepler-299 4 −0.4 0.9
Kepler-351 3 −0.4 0.9
Kepler-53 3 −0.4 0.8
Kepler-104 3 −0.4 0.8
Kepler-342 4 −0.3 0.8
Kepler-52 3 −0.3 0.8
Kepler-79 4 −0.2 1.0
Kepler-310 3 −0.2 0.9
Kepler-357 3 −0.2 0.9
Kepler-100 3 −0.2 0.8
Kepler-298 3 −0.2 0.8
Kepler-51 3 −0.1 1
Kepler-130 3 −0.0 0.8

Figure 2. Fastest secular eigenfrequency, fmax, vs. maximum transit impact
parameter, bmax, of the planetary systems listed in Tables 2–5. The different
symbols represent the separation of the impact parameter into quartiles. The
vertical dashed line defines the systems with the highest secular eigenfre-
quencies, as listed in Table 6.

Table 3
Systems Ranked by Fastest Secular Eigenfrequency for Impact Parameters

0.5�b<0.75

System Nplanets fmax (deg per yr) bmax

TRAPPIST-1 7 −9.5 0.5
K2-19 3 −8.3 0.6
K2-138 5 −4.5 0.5
Kepler-80 6 −4.2 0.5
Kepler-42 3 −3.6 0.7
Kepler-446 3 −2.9 0.7
Kepler-305 3 −2.6 0.6
Kepler-33 5 −2.6 0.5
Kepler-114 3 −2.3 0.7
Kepler-221 4 −1.6 0.6
Kepler-203 3 −1.6 0.5
HIP 41378 5 −1.5 0.6
Kepler-65 3 −1.5 0.5
Kepler-279 3 −1.3 0.7
Kepler-319 3 −0.9 0.6
Kepler-339 3 −0.9 0.6
Kepler-275 3 −0.8 0.7
Kepler-374 3 −0.8 0.7
Kepler-267 3 −0.8 0.5
Kepler-296 5 −0.7 0.7
Kepler-102 5 −0.7 0.6
KOI-351 8 −0.7 0.5
Kepler-55 5 −0.6 0.7
Kepler-81 3 −0.6 0.7
Kepler-167 4 −0.6 0.5
K2-136 3 −0.6 0.5
Kepler-154 5 −0.5 0.7
Kepler-341 4 −0.5 0.7
Kepler-31 3 −0.5 0.5
Kepler-235 4 −0.4 0.7
Kepler-363 3 −0.4 0.7
Kepler-106 4 −0.3 0.7
Kepler-327 3 −0.3 0.7
Kepler-354 3 −0.3 0.7
Kepler-164 3 −0.3 0.5
Kepler-331 3 −0.3 0.5
K2-155 3 −0.3 0.5
Kepler-265 4 −0.2 0.7
K2-3 3 −0.2 0.7
K2-183 3 −0.2 0.5
Kepler-336 3 −0.2 0.5
Kepler-332 3 −0.1 0.5
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also show in Table 6 the top 10 systems with the fastest nodal
eigenfrequencies. The systems all lie to the left of the vertical
line in Figure 2, and have a maximum secular eigenfrequency
faster than −3°.0 yr−1.

While high-multiplicity systems tend to be in the upper half
of any given quartile, they do not in general have the fastest
eigenfrequencies. Thus, the number of planets in a system is
not necessarily a good predictor of large TDVs, at least based
on secular analysis.

For systems in Table 6, the planets might exhibit TDVs from
precession alone (e.g., Figure 1) because of the high
eigenfrequencies. This does not consider the magnitude of
the inclination vector, which will have a large effect on the
actual TDV signal. This will be highlighted in particular with
Kepler-445 using direct N-body simulation, which is dis-
cussed next.

3. N-body Simulations

Ranking systems based on an eigenfrequency analysis under
Laplace-Lagrange theory only gives a sense for which systems
might show large TDVs. It does not give a general under-
standing of the range TDVs that are possible for a given
system, nor does it elucidate the fraction of systems that might
have planets going in and out of transit. We thus select several
systems and run direct N-body simulations to capture the
evolution of planetary transits for several assumptions regard-
ing the distribution of inclination vectors. All realizations are
constrained by transit observations. The systems we choose to
explore are Kepler-11, TRAPPIST-1, K2-138, Kepler-445, and
Kepler-334. The first two are chosen because of their general
interest within the exoplanet community. K2-1384 is an
additional system that has a large maximum impact parameter
and fast nodal eigenfrequencies. Kepler-445 has a nearly zero
maximum impact parameter, but a high maximum eigenfre-
quency. Thus, depending on the orientation of the system
relative to the observer, the realizations could exhibit large to
negligible TDVs. The final system, Kepler-334, has a very low
maximum eigenfrequency. Realizations of this system are
expected to show negligible TDVs, regardless of how the
system is oriented toward the observer.

3.1. Initial Conditions

Because we wish to model a given system as accurately as
practicable, we use a combination of the NASA exoplanet
archive along with updated observational constraints, if
available, to determine the initial configuration of the system.
Table 7 lists the masses, semimajor axes, eccentricities (if
known), and current mid-transit times used in the simulations.
This does assume that there are no significant nontransiting
planets in the system. If the eccentricity is unknown for a
planet, it is drawn from a Rayleigh distribution with
σe=0.0025, chosen to be low but nontrivial. We note that
this is lower than the eccentricity reported by Van Eylen &
Albrecht (2015), who found that the eccentricities for planets
within a subset of Kepler multiplanet systems are roughly
Rayleigh distributed with σe=0.049±0.013. Higher eccen-
tricities would lead to more unstable systems among our initial
conditions, so our choice of a lower σe helps to bias the initial
conditions toward stable realizations.

Table 5
Systems Ranked by Fastest Secular Eigenfrequency for Impact

Parameters b<0.25

System Nplanets fmax (deg per yr) bmax

Kepler-445 3 −7.9 0
Kepler-223 4 −2.6 0.0
Kepler-1542 4 −1.6 0.0
K2-072 4 −1.6 0.0
Kepler-32 5 −1.2 0.0
Kepler-54 3 −1.0 0.2
Kepler-85 4 −0.9 0.2
Kepler-1388 4 −0.9 0.0
Kepler-758 4 −0.9 0.0
Kepler-191 3 −0.6 0.1
K2-187 4 −0.6 0.0
Kepler-245 4 −0.5 0.2
Kepler-82 4 −0.5 0.1
Kepler-282 4 −0.3 0.1
Kepler-334 3 −0.1 0.1

Table 6
The 10 Systems in Our Sample with the Highest Nodal Eigenfrequencies,

Ranked from Fastest to Slowest

System Nplanets fmax (deg per yr) bmax

TRAPPIST-1 7 −9.5 0.5
K2-19 3 −8.3 0.6
Kepler-445 3 −7.9 0
Kepler-238 5 −4.7 0.8
K2-138 5 −4.5 0.5
Kepler-80 6 −4.2 0.5
Kepler-42 3 −3.6 0.7
Kepler-30 3 −3.3 0.4
Kepler-446 3 −2.9 0.7
Kepler-226 3 −2.9 0.3

Table 4
Systems Ranked by Fastest Secular Eigenfrequency for Impact Parameters

0.25�b<0.5

System Nplanets fmax (deg per yr) bmax

Kepler-30 3 −3.3 0.4
Kepler-226 3 −2.9 0.3
Kepler-49 4 −2.5 0.3
Kepler-23 3 −1.6 0.3
Kepler-24 4 −1.5 0.3
KOI-94 4 −1.4 0.4
Kepler-350 3 −1.2 0.4
Kepler-84 5 −1.0 0.3
Kepler-83 3 −0.9 0.4
Kepler-186 5 −0.8 0.4
Kepler-255 3 −0.7 0.3
Kepler-208 4 −0.5 0.3
Kepler-289 3 −0.5 0.4
Kepler-62 5 −0.4 0.4
Kepler-206 3 −0.3 0.4
Kepler-325 3 −0.3 0.4
Kepler-251 4 −0.3 0.3
Kepler-301 3 −0.3 0.3
Kepler-372 3 −0.2 0.3
Kepler-198 3 −0.1 0.4
Kepler-288 3 −0.1 0.4

4 An additional planet may exist in this system (Christiansen et al. 2018). For
this study, we have focused solely on the confirmed planets.
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All simulations are referenced to an initial time of
JD=2458224.50000. The planets are given true anomalies
that are consistent with the published transit midpoints. The
longitudes of pericenter are drawn from a uniform random
distribution between 0° and 360°, except for the first five
planets of Kepler-11, which have longitudes constrained with
the eccentricities. Orbital inclinations and the longitudes of
ascending node Ω are randomly determined, constrained by the
system orientation and the published impact parameters.
Because of degeneracies between orbital inclinations and the
locations of the nodes, we use several different sampling
distributions to explore the range of allowed inclination
vectors, as described next.

3.2. Determining I and Ω

We investigate three scenarios to determine the inclination
vectors, which also include different assumptions for a system
orientation relative to the observer. We refer to these scenarios
as flat, inclined, and σ. The first case (flat) assumes that the
observer is in the reference plane for the inclinations (this is not
necessarily the invariable plane of the system). As such, an
impact parameter b=0 means that the orbital inclination of the
given planet I is also 0°, unless the longitude of ascending node
is aligned or antialigned with the observer’s line of sight. With
this assumption, for a given planet, we draw a random
longitude Ω and then determine an orbital inclination I that
would be consistent with the random Ω and the observationally

Table 7
Initial Conditions for the N-body Simulations. Values are from https://exoplanetarchive.ipac.caltech.edu/index.htmlwhen available. Specific references are as

follows: Delrez et al. (2018) and Grimm et al. (2018) for Trappist-1; Lissauer et al. (2013) for Kepler-11; Christiansen et al. (2018) for K2-138; Muirhead et al. (2015)
for Kepler-445; and Rowe et al. (2014) for K334. In the Kepler-11 realizations, the longitudes of pericenter are determined for all but the outermost planet, and as
such, we setϖ = 135°, 141°, 56°, 138°, and 66° for the first five planets and setϖ to be random for the last planet. The longitudes are randomly determined between 0

and 2π for the remaining systems.

Planet a [au] Radius [R⊕] Mass [M⊕] e b Transit mid [JD]

Trappist-1 0.121±0.003a 0.089±0.006b

Trappist-1 b -
+0.0115 0.00025

0.00028 1.127±0.028 1.017±0.15 L 0.157±0.075 2457322.51654±0.00010

Trappist-1 c -
+0.01576 0.00034

0.00038 1.1±0.028 1.156±0.14 L 0.148±0.088 2457282.80879±0.00018

Trappist-1 d -
+0.02219 0.00048

0.00053 0.788±0.020 0.297±0.037 L -
+0.08 0.06

0.10 2457670.14227±0.00026

Trappist-1 e -
+0.02916 0.00063

0.00070 0.915±0.025 0.772±0.077 L -
+0.240 0.047

0.056 2457660.37910±0.00040

Trappist-1 f -
+0.03836 0.00084

0.00092 1.052±0.026 0.934±0.79 L -
+0.337 0.029

0.040 2457671.39470±0.00022

Trappist-1 g 0.0467±0.0011 1.154±0.029 1.148±0.097 L -
+0.406 0.025

0.031 2457665.35084±0.00020

Trappist-1 h -
+0.0617 0.0013

0.0015 0.777±0.025 0.331±0.053 L -
+0.392 0.043

0.039 2457662.55467±0.00054

Kepler-11 0.961±0.025a -
+1.065 0.022

0.0017b

Kepler-11 b 0.091±0.001 -
+1.8 0.05

0.03
-
+1.9 1.0

1.4
-
+0.045 0.042

0.068
-
+0.116 0.116

0.053
-
+2455589.7378 0.0047

0.0026

Kepler-11 c 0.107±0.001 -
+2.87 0.06

0.05
-
+2.9 1.6

2.9
-
+0.026 0.026

0.063
-
+0.156 0.156

0.059
-
+2455583.3494 0.0019

0.0014

Kepler-11 d 0.155±0.001 -
+3.12 0.07

0.06
-
+7.3 1.5

0.8
-
+0.004 0.002

0.007
-
+0.181 0.084

0.074
-
+2455594.0069 0.0014

0.0022

Kepler-11 e 0.195±0.002 -
+4.19 0.09

0.07
-
+8.0 2.1

1.5 0.012±0.006 0.763±0.008 -
+2455595.0755 0.0009

0.0015

Kepler-11 f 0.250±0.002 -
+2.49 0.07

0.04
-
+2.0 0.9

0.8
-
+0.013 0.009

0.011
-
+0.463 0.032

0.030
-
+2455618.2710 0.0038

0.0041

Kepler-11 g 0.466±0.004 -
+3.33 0.08

0.06 11c 0.013d -
+0.217 0.087

0.092
-
+2455593.8021 0.0021

0.0030

K2-138 0.93±0.06a 0.86±0.08b

K2-138 b 0.03380±0.00024 -
+1.57 0.17

0.28 2.5c L -0.50 0.34
0.33

-
+2457773.317 0.0038

0.0037

K2-138 c 0.04454±0.00032 -
+2.52 0.16

0.34 6.4c L 0.47±0.32 -
+2457740.3223 0.027

0.0025

K2-138 d 0.05883±0.00042 -
+2.66 0.18

0.39 7.1c L -
+0.47 0.32

0.31
-
+2457743.1607 0.0037

0.0036

K2-138 e 0.07807±0.00056 -
+3.29 0.18

0.35 11c L -0.44 0.30
0.31

-
+2457740.6451 0.0021

0.0020

K2-138 f -
+0.1043 0.00075

0.00074
-
+2.81 0.19

0.36 8.0c L -
+0.48 0.33

0.30
-
+2457738.7019 0.0035

0.0033

Kepler-445 0.21±0.03a 0.16±0.04b

Kepler-445 b 0.0229e 1.58±0.23 2.5c L 0.01f 2454966.1194±0.0033
Kepler-445 c 0.0318e 2.51±0.36 6.4c L 0.01f 2454966.6408±0.0019
Kepler-445 d 0.0448e 1.25±0.19 1.6c L 0.01f 2454836.751±0.05

Kepler-334 1a,g 1b

Kepler-334 b 0.061e 1.12±0.21 1.3c L -
+0.11 0.11

0.2 2454964.49467±0.0021

Kepler-334 c 0.107e 1.43±0.26 2.1c L -
+0.03 0.03

0.2 2454966.95790±0.0026

Kepler-334 d 0.168e 1.41±0.26 2.0c L -
+0.07 0.07

0.2 2454978.56945±0.0035

Notes.
a This is the stellar radius given in R .
b This is the stellar mass given in M .
c Masses inferred using the Lissauer et al. (2011) radius–mass relation, but using ( )» Å

Å
M MR

R

q
with q=2.01 instead of q=2.06. See text.

d The value is well below the upper limit of 0.1, and is taken to be the same as for Kepler-11 f.
e The semimajor axes are determined from the published periods using the constrained stellar mass.
f Published value is nearly zero with very large uncertainties. We use a value that is low and well-behaved in the IC generator.
g The stellar mass is assumed to be M1 .
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derived b. To do this, we assume that the observer is located on
the +x-axis and that the y–z plane represents the skyplane,
with the origin centered on the stellar disk. The generating
script then tries an orbital inclination I for the given Ω and ω
(where the argument of pericenter ω=ϖ−Ω), and then
determines the minimum y−z distance that a planet on the
trial orbit would have from the origin for x>0 (i.e., passing in
front of the star). If the minimum distance corresponds to a b
that is within 5% of the observationally constrained value (well
within the observational uncertainty), then the solution is
accepted. If this is not the case, then a new inclination is drawn,
as determined from a Newton–Raphson guided search. If the
script fails to find an inclination within the required tolerance,
then the given Ω is rejected and a new one is tried. The nodes
are measured counterclockwise from the +x-axis, which means
solutions may not exist for Ω≈0 or π rad when b>0. An
example of an I–Ω distribution for Kepler-11 is shown in the
left panel of Figure 3. Each planet (with a corresponding b) has
a separate solution curve.

Placing the observer in the reference plane is highly idealized.
For the second case (the inclined case), we randomly determine an
Ω and then use a trial orbital inclination I to give a proposed orbit.
The system is then rotated by a random observational inclination
δi about the y-axis, yielding a new skyplane corresponding to the
- ¢y z . The observer is located on the+ ¢x axis, but is now below

the reference plane because of the chosen direction of rotation.
Here, primes are used to denote the rotated coordinates. The
procedure as outlined for the flat distribution is then repeated until
an impact parameter is found that is within 5% of the constrained
value. It should be noted that because the system is no longer at
exactly i=90°, then b=0 could represent an I>0, even when
W ¹ 0 or π rad.

The value of δi is determined from a uniform random
distribution between 0 and δimax, where δimax=Rstar/amax.
Here, Rstar is the radius of the star and amax is the semimajor axis
of the outermost transiting planet in the given system. A system
thus has an inclination relative to the observer of i=π/2−δi.
In principle, larger δi’s than considered here are possible, but this
becomes increasingly unlikely with increasing δi because it will
require very high orbital inclinations among all the planets while
maintaining low mutual inclinations.

A corresponding I–Ω distribution for Kepler-11 is shown in
the middle panel of Figure 3 for the inclined distribution. The
solution curves are similar to the left panel, but there is now
much more scatter because the observer inclination is random.
There is also an offset between inclinations on either side of
Ω=π. Because we have placed the observer below the
reference plane and we have chosen Ω=0 to be along the

x-axis, for Ω=[π, 2π), an increasing inclination will only
increase the impact parameter. In contrast, for Ω=[0, π), an
increasing inclination will first take a given impact parameter to
zero before the impact parameter can increase, thereby
allowing a wider range of orbital inclinations.
Finally, a third case (the σ case) is also explored, for which we

draw random planet inclinations from a Rayleigh distribution
and then determine Ωs that would be consistent with the given
b’s. The reason for this last approach is to address potential
biases in the observed Ω distributions. A Rayleigh distribution is
chosen based on the results of Fabrycky et al. (2014), in which
the mode of the distribution for each system is chosen to be
σ=δimax, as defined above. The corresponding Ω is then
determined by conducting a gridded search through parameter
space, with refinement. As in the second set of initial conditions,
the observer is randomly positioned to be slightly out of the
system’s reference plane. The resulting I–Ω distribution, again
for Kepler-11, is shown in the right panel of Figure 3. Unlike the
other distributions, valid system configurations are clustered
around Ω=0 and π. There is some striping at π/2 and 3π/2,
which occurs as a result of certain combinations of b, i, and I.
The striping is likely made slightly more striking by the 5%
solution tolerance and the gridded search. They do, nonetheless,
represent a narrow region of valid solution space. The results
produced from this third case are critically dependent on σ. To
emphasize the effects of a high σ on a system, we also run a case
for Kepler-11 in which σ=1°.8, consistent with the mutual
inclination angle derived from the Kepler multiplanet population
(Fabrycky et al. 2014). For comparison, the σ for Kepler-11 as
determined using δimax is approximately 0°.6.
Before we discuss the integrations, we note that some of the

systems, particularly Trappist-1, have strong resonances among
planet pairs. Other than using the semimajor axes and transit
timings derived from observations, our realizations do not
enforce that any particular pair of planets is indeed resonant, as
determined by the corresponding resonant angle. As such,
some of the realizations may have lower fidelity to the actual
systems than others. Regardless, we are most interested in the
variety of transiting behaviors that can occur as a result of
differences in I and Ω distributions, which can be done with the
current simulations.

4. Numerical Integration

We use Rebound with the IAS15 integrator (Rein &
Spiegel 2015) to simulate analogs of Kepler-11, Kepler-445,
K2-138, Trappist-1, and Kepler-334 using the initial conditions
described in the previous section. Each set of initial conditions

Figure 3. Distributions of I–Ω for (left panel) uniform random Ω with the observer in the orbital reference plane, (middle panel) uniform random Ω and random
observer offset from the orbital reference plane, and (right panel) Rayleigh distributed i with a random observer offset from the orbital reference plane (using a mode of
σ=0°. 6 in this case).
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is run with 300 realizations (i.e., system analogs), and all
analogs are integrated for 100 yr. The ReboundX extension is
used (Tamayo et al. 2016) to capture general relativistic effects
that are due to the central body through the “gr” option.

The observer is always assumed to be in the+ ¢x direction, as
noted above. Each planet position is recorded at intervals of
approximately 5 minutes simulation time (107 snapshots over
100 yr of simulated evolution). Whenever the projected
distance d of the planet center is within twice the combined
radius of the star and the given planet (i.e., Rcomb=Rå+Rp),
the position of the planet is recorded, giving positional
information for each transit. The beginning of a transit is
determined by finding the first recorded point at which the
projected distance of the planet from the stellar disk center
d<Rcomb and linearly interpolating between that time and the
point recorded just prior to the planet entering the transit (the
ingress for this study). The end of the transit is determined the
same way using the last point of the series for which d<Rcomb

and the subsequent point out of transit (egress). The ingress and
egress times are used to determine the duration for the given
event. The transit midpoint is taken to be halfway through the
transit duration.

4.1. Stability

The above procedures ensure that the initial conditions are
reasonably consistent with the actual transit signatures today.
However, it does not guarantee that the realizations are stable
for the age of the observed systems, which may be of particular

importance for the highly inclined cases. We check for stability
by running the inclined realizations (the identical initial
conditions) for each system up to 100,000 yr and flag each
system that has one or more instabilities. We ultimately analyze
the full set of simulations and then compare this with the
outcome of this subset. The timescale of 100,000 yr was a
compromise between completing the simulations in a tractable
amount of time while still being useful for understanding the
expected long-term instability rate.

4.2. Simulation Results

The simulations reproduce the initial transit durations for
each planet within the uncertainty of the impact parameter. The
largest deviations are associated with planets that have high
initial impact parameters, but overall, the initial transit
durations are within about 10% of the nominal values. Using
Kepler-11, we verified that the initial conditions also reproduce
the nominal initial transit midpoints.5 Thus, the system analogs
represent plausible configurations despite having a wide range
of inclinations for any given planet among the analogs.
The overall behavior of the simulations are summarized in

Table 8. In particular, this table shows (1) the percentage of
realizations for each system that have at least one de-transiting
planet during the 100-year evolution (Column 2), and (2) the

Table 8
Summary of the Simulation Outcomes

System De-transit De-transit0+1 TDV>10 >TDV 100 Median0 Median1 Median2
(%) (%) (%) (%) ° ° °

K11-flat 59 44 93 96 1.6 3.0 6.3
K11-inc 57/57* 38 98/98* 95 1.9 4.3 5.7
K11-σ 13 12 93 89 1.3 1.6 1.7
K11-s1.8 80 64 100 98 3.3 3.5 4.1

K2-138-flat 83 55 100 98 4.7 5.7 7.7
K2-138-inc 85/84* 59 100/100* 98 4.7 5.7 7.7
K2-138-σ 80 66 100 100 4.1 4.4 5.1

K445-flat 0.67 0.67 1.0 0.34 0.054 2.6 NA
K445-inc 46/43* 26 62/60* 30 1.0 2.4 4.5
K445-σ 63 52 84 55 1.9 2.4 2.9

Trappist-1-flat 67 37 78 39 0.84 1.3 1.8
Trappist-1-inc 84/80* 47 91/89* 49 0.99 1.6 1.9
Trappist-1-σ 69 55 91 72 1.0 1.1 1.2

K334-flat 0 0 0 0 0.93 L L
K334-inc 0 0 0 0 3.1 L L
K334-σ 0 0 0 0 3.2 L L

Note. The system names are in the first Column, and flat and inclined σ refers to the different initial condition strategies described in Section 3.2. The second Column
gives the percentage of systems that had at least one planet de-transit during the integration, as compared with all realizations for that system. The third Column is
similar, but is the percentage of systems with one de-transiting planet of the systems that had zero or one de-transiting planet during the integration. The fourth Column
shows the percentage of systems that had at least one planet with a TDV>10 minutes per decade during any one of the 10 decades. A similar quantity is shown in the
fifth Column, but only for the systems that have zero de-transiting planets. The last three Columns give the medians of the maximum inclinations (median of maxes)
for system realizations that had zero de-transiting planets, that had one de-transiting planet, and had two de-transiting planets. Kepler-11 (K11) has an additional set of
initial conditions, for which planet inclinations are drawn from a Rayleigh distribution with σ=1°. 8. Note that all medians for this case are higher than 1°. 8 because
the metric only considers the maximum inclination for each system instead of the inclinations of all planets. For the inclined initial conditions, some Columns report
two numbers. The value with an asterisk reflects the results derived by excluding all realizations that become unstable after 100,000 yr. Columns 3 and 5 do not list
two values because the simulation subsets with zero or one de-transiting planets contain almost entirely stable realizations, i.e., instability preferentially occurred in
systems that had multiple de-transit events.

5 Strictly, provided we start a system realization close to the published
reference time, we can recover the expected transit midpoints. For the arbitrary
reference JD that we use for all systems, there can be a shift in the transit
midpoints relative to published values.
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fraction of analogs that has at least one planet with a
TDV>10 minutes per decade for at least one of the 10
decades (Column 4).

Because some systems have planets on moderate to high
initial inclinations (e.g., >10°), which can cause a substantial
angular momentum deficit, we also analyze subsets of the
simulation output, selected by the number of de-transiting
planets (zero, one, and two). By looking at these subsets, we
preferentially select system analogs that have different distribu-
tions of mutual inclinations (discussed further below). With this
in mind, Column 3 shows the percentage of systems that have
one de-transiting planet among all systems that have zero or one
de-transiting planet. Column 5 shows the percentage of
analogues that have no de-transiting planets, but still show a
TDV>10minutes per decade for at least one of the 10 decades.

It is of interest to understand the extent to which high-
inclination planets might drive the evolution of a system’s
transit signatures. To this end, we find the maximum initial
orbital inclination for each system analog and then determine
the median of those maximums. Hereafter, we call this the
median of maxes. Column six is the median of maxes for the
zero de-transiting planet subset, Column 7 is for one de-
transiting planet, and Column 8 is for two de-transiting planets.
The median of maxes increases with the number of de-
transiting planets, as might be expected. Unfortunately, the
distributions among the subsets can be large and overlap,
providing no clear predictive power. We did investigate
whether the angular momentum deficit (e.g., Laskar 2008) is
a better indicator of a system’s potential to have a de-transiting
planet. The results are similar to using the maximum
inclinations: each subset has a distribution with a distinct
median, but the distributions are broad and overlap. Moreover,
the current simulations also do not address whether, given
enough time, one of the system analogs with zero de-transiting
planets would indeed evolve to a state in which one planet de-
transits. Future work is needed to determine a metric for
evaluating the probability that a given system hosts a de-
transiting planet.

Before continuing, we need to remark on the stability of the
systems. As noted in Section 4.1, all realizations for each
system using the inclined ICs were run for 100,000 yr. In
K334, K11, K445, K2-138, and Trappist-1, the percentage of
realizations that became unstable during that time interval is
0.3%, 1%, 5%, and 9%, and 20%, respectively. We expect
STIPs to undergo equal fractions of instability in equal decades
of time (Volk & Gladman 2015) after an initial phase of
stability. We very cautiously note that this seems to hold for the
Trappist-1 realizations, for which 31 systems decay between
103 and 104 yr of evolution and an additional 29 decay between
104 and 105 yr. Provided there was nothing peculiar about the
realizations that became unstable, if the loss were to continue at
this rate, we might expect to have just over half of the
realizations left after 1 Gyr. Too few realizations became
unstable in other systems to apply this scaling, and we expect a
greater number of realizations to be retained for all other cases.

For our analysis, if we exclude the systems that become
unstable, we see only a small change in the results (a few
percent) and only when we consider the full simulation output
(shown in Table 8). The simulations that become unstable are
biased toward having many planets de-transit. For example,
among the Trappist-1 realizations that are unstable, all exhibit
four or more de-transits in 100 yr. Because of this, the analyses

that consider between zero and two de-transits already filter out
most of the unstable realizations.
There are two additional points to note from Table 8. First,

the fraction of systems with de-transiting planets is large
regardless of the initial conditions, except in the cases of K445-
flat and all realizations of Kepler-334 (discussed below).
Second, many systems are expected to exhibit variations in
transit durations of 10 minutes or more over decade timescales,
regardless of whether any planets eventually de-transit. This
means that many of the known multiplanet systems are
expected to have detectable TDVs.
For Kepler-445, there is little possible variation in transit

durations if the observer is in the reference plane because the
impact parameters of the planet are small. However, when the
system as a whole is inclined relative to the observer (K445-inc
or K445-σ), Kepler-445 shows a behavior similar to that seen
in the other systems. In stark contrast is Kepler-334. It shows
little variation, with no marked TDVs for any of the realization
orientations, including realizations that have highly inclined
planets (e.g., I>10°). Based on the secular nodal eigenfre-
quencies, we expect this system to have little change in the
planetary inclination vectors during the 100 yr integration
period, which is borne out by the N-body simulations.
Next, we visualize the behavior of select system analogs

from Kepler-11, Trappist-1, and Kepler-445 to show the
complexity of transit duration evolution. Figure 4 shows the
evolution of two Kepler-11 realizations, one of which has a de-
transiting planet (r12, black curves) and the other (r17, blue
curve) shows large TDVs, but no de-transiting events. The
names reflect the realization number used for internal book-
keeping, and in this case, the ICs are from the “flat”
distribution. When we examine the initial conditions, the
maximum inclination among the planets in K11.flat.r12 is 2°.4,
compared with 2°.0 in K11.flat.r17.
A similar behavior is seen in Trappist-1. The analog

Trappist-1.flat.r0 (Figure 5) has one de-transiting planet, while
analog Trappist-1.flat.r7 (also Figure 5) has only large TDVs
for the duration of the simulation. Again, the actual TDV
signatures are diverse, and we highlight two cases as examples.
The initial conditions of these realizations show that the
maximum inclination among the planets in r0 is 1°, while it is
0°.8 for r7. Although the inclination difference alone is small,
the three-dimensional orientation of the planets will also be
different between realizations, which will play a role in the
observational outcome.
As a final example, we show in Figure 6 two realizations

from K445 using ICs from the “inclined” distribution. Both
cases exhibit no de-transiting planets, but have very different
TDV signatures. The system K445.inclined.r0 has a maximum
inclination of 0°.3, while the system in Figure K445.inclined.r1
has a maximum planet inclination of about 1°.2.
Altogether, the transit duration evolution of planets in any

given system has many possible trajectories, but these can be
constrained over time.

5. Discussion

Because many of the Kepler STIPs are approaching a decade
since their discovery, measuring TDVs for a large number of
systems is a feasible observational goal, provided the TDVs are
of the magnitude found here. As noted in the introduction, a
number of TDVs have already been measured, and we expect
many more to be announced in the upcoming years.
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We reiterate that the impact parameter inferred from
observations does not directly correspond to the inclination
of a planet. As seen from possible initial conditions in Figure 3,
different positions of the ascending node permit the distribu-
tions of orbital inclinations to remain consistent with a given
set of observed transit durations. Taking all the realizations for
all ICs (i.e., flat, inclined, and σ) of the N-body simulations at

face value, we find that de-transiting planets are expected to be
common in STIPs with high nodal eigenfrequencies. Kepler-
11, Kepler-445, K2-138, and Trappist-1 all have at least one set
of initial conditions in which over 50% of the realizations have
a planet that de-transits. In these same systems, excluding the
special case of K445-flat, over 10% of the analogs produce a
de-transiting planet for all IC distributions.

Figure 4. Transit durations for Kepler-11 analogs using the “flat” initial conditions, with the “r12” realization in black and “r17” in blue. One planet (planet f) de-
transits during the 100-year evolution in the r12 realization. Other realizations can show multiple planets de-transiting within the 100-year time frame. For r12, the
maximum initial orbital inclination is 2°. 4. In contrast, r17 does not have a planet that de-transits, with planets d and e showing the largest variation overall. The
maximum initial orbital inclination for this realization is 2°. 0.

Figure 5. Transit durations for Trappist-1 analogs (r0 and r7) using the “flat” initial conditions. Planet h de-transits after 40 years of evolution for r0 (black curve). In
r7 (blue curve), no planets de-transit, although planet e comes very close to doing so toward the end of the simulation.
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The ICs that showed the fewest occurrences of de-transiting
planets include K11-σ, K445-flat, and all of the Kepler-334
ICs. The K11-σ IC distribution used σ≈0°.6 in the Rayleigh
distribution for the inclinations (see Section 3.2), and as such,
had few planets with even moderately high inclinations (see the
median of maxes in Table 8). The planets in the K445-flat set
of ICs showed little transit duration evolution in almost all
realizations. Although the nodal eigenfrequencies are fast for
this system, the magnitudes of the inclination vectors must be
small, in this case because of the combined effect of having
small impact parameters (b≈0) and having the observer in the
reference plane. Allowing a random position for the observer
(K445-inc) opened the potential 3D orbital configuration space,
and de-transiting planets were again possible, although at a
reduced rate compared with other systems.

Kepler-334 showed little variation in transit durations for all
realizations. This particular STIP has some of the slowest
eigenfrequencies of all the systems we explored, and as
discussed above, we did not expect it to show strong TDVs.
The N-body simulations of Kepler-334 highlight the utility of
secular theory precession rates for identifying good targets for
TDV follow-up.

As a check for consistency between the actual precession
rates and expectations from secular theory, we reran the
inclined realizations for all systems in Table 7, but did so for
only 1 yr and tracked the orbital element evolution. This was
used to obtain instantaneous nodal precession rates for each
planet in each realization. Because the actual precession rate
may vary throughout a precession period, these instantaneous
rates do show a distribution of values (very approximately
Rayleigh distributed) with a clear mode. When we consider
only the magnitudes of the maximum precession rates for each
realization, the modes are approximately (in degrees per year)
9.0, 8.0, 3.5, 1.2, and 0.1 for Kepler-445, Trappist-1, K2-138,
Kepler-11, and Kepler-334, respectively. The actual precession
rates for a planet are a linear combination of the different
eigenfrequencies, so we do not expect an exact correspondence
between the two. Nevertheless, the magnitude of the maximum
precession rates lies within approximately 30% of the
maximum eigenfrequencies, suggesting we can indeed use
nodal eigenfrequencies as an indicator for potential TDVs.

A major caveat for interpreting these results is that we
assumed that all configurations consistent with the observations
are equally possible, including very high mutual inclinations
between the planets. This again is the motivation for subsetting
the simulation output in Table 8. If independent, physical
reasons (e.g., almost planar configurations in a gaseous disk
with limited subsequent excitation) were to dictate that actual
orbital inclinations in STIPs remain low (e.g., below the values

in Column 6 of Table 8), then de-transits may be much less
abundant than we found here. However, Column 7 of Table 8
shows that the systems with one de-transiting planet do not
have maximum inclinations that are obviously too high.
Likewise, our understanding of high-multiplicity systems might
be biased not only by seeing systems with low inclinations, but
possibly by STIPs with planets on moderate inclinations and
chance alignments of nodes.
Even among the subsets for which there were no de-

transiting events, TDVs>10 minutes on decade timescales are
very common and are shared among all the different initial
condition realizations. Kepler-11, K2-138, and TRAPPIST-
1 are all good candidates for exhibiting strong TDVs. For
general prioritization of long-term monitoring of STIPs, we
suggest using nodal precession frequencies, as determined from
secular theory. Systems that also have planets with large impact
parameters are particularly good targets (e.g., Table 5).
If we take STIPs with eigenfrequencies of −1° yr−1 or faster

as a rough cut for TDV systems of interest (Kepler-11 is just
faster than this threshold), then 41 of the 118 systems in
Tables 2 through 5 are candidates.
This work is different but complementary to that by Becker

& Adams (2016), who also used secular theory but focused on
changes in the magnitude of the orbital inclination rather than
the full inclination vector. This creates a potentially large
difference in our results regarding the expectation for systems
that might de-transit (at least for those that we studied), where
we find that de-transiting planets (or newly appearing transits)
are expected to be common over decade timescales. For
example, Becker & Adams found that systems remain in a state
such that their planets are transiting >85% of the time. While
we focus on the percentage of systems that have a de-transiting
event rather than on the time, our results cannot be immediately
reconciled. Instead, the higher incidence of de-transiting events
might be due to our consideration of the full inclination vector
rather than just its magnitude, making the Becker & Adams
results a lower limit on the de-transit rate.
A more detailed comparison between the studies can be

made by comparing the number of recorded transits, summed
over all planets and realizations, with the corresponding
expected number of transits over the 100 yr evolution. This
calculation thus gives us a sense of the average fraction of time
that a planet will remain transiting for all realizations. When we
consider only the simulations that are stable over 100,000 yr
(only the inclined ICs), the corresponding fractions are 100%,
91%, 86%, 85%, and 80% for K334, K11, K445, Trappist-1,
and K2-138, respectively. However, these percentages are
misleading because they are averages over all planets. If instead
we determine the fraction of time in which all realizations have

Figure 6. Transit durations for Kepler-445 analogs using the “inclined” initial conditions. The TDVs are all small for r0 (black), although they do show long-term
trends. In contrast, one planet shows large TDVs on decade timescales for realization r1 (blue). The maximum inclination for r1 is about 1°. 2, while that for r0 is 0°. 3.
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all planets transiting based on the planet that spends the longest
time out of transit (if one exits), then the fractions are 100%,
65%, 74%, 52%, and 53% again for K334, K11, K445,
Trappist-1, and K2-138, respectively. The actual fraction of
time that at least one planet will be out of transit might be lower
still because we did not take into account that multiple planets
might go out of transit at different times. These results are
comparable to those reported in Table 8, showing that we do
indeed find a higher rate of de-transits than Becker & Adams.
Nonetheless, while the de-transiting rates are different between
the studies, the general magnitudes of the TDV calculations
agree that TDVs>10 minutes per decade are expected to be
common.

Finally, we note that STIPs among the Kepler sample, for
instance, are snapshots of evolving planetary systems and do
not include additional planets, if they exist at longer orbital
periods. Systems with both transiting and nontransiting planets
(such as Kepler-20; Buchhave et al. 2016) may represent cases
in which secular cycling has caused a relatively recent de-
transit event or cases in which a new transiting event is
expected to appear, as has occurred for K2-146 (Hamann et al.
2019). Efforts to refine the transit properties of planets (e.g.,
Christ et al. 2019; Goldberg et al. 2019) will further help to
reveal the presence of TDVs.

6. Summary

We have investigated whether TDVs are observable on
decade timescales using secular theory (118 STIPs) and direct
N-body integration (5 STIPs). The N-body simulations took
into account possible variations of the full inclination vectors
when creating system analogs. Three different methods were
used to create initial conditions, with each method containing
300 realizations that are observationally consistent with the
corresponding STIP.

For the STIPs we investigated using N-body simulations,
tens of percent or more of the realizations contained at least one
planet that de-transited, i.e., the secular cycling of their
inclination vectors took the planet out of a transiting state. At
least some of the short-period systems that are known are
expected to exhibit de-transiting (or even a new planet coming
into transit) through long-term monitoring.

The fastest nodal eigenfrequency, as determined from
secular theory, is a predictor for which systems might have
strong TDVs. Systems that have eigenfrequencies of −1° yr−1

should be prioritized (41 of the 118 systems we examined meet
this threshold), particularly if their planets also have large
impact parameters. Eight of the 118 systems we examined have
eigenfrequency faster than −3° yr−1 and may be of particular
interest. Measuring the resulting TDVs of these systems might
reveal the 3D planetary orbital orientations of their planets
and/or constrain the presence of additional planets in the
system.
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