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Abstract

A common approach for characterizing the properties of time-series data that are evenly sampled in time is to
estimate the power spectrum of the data using the periodogram. The periodogram as an estimator of the spectrum is
(1) statistically inconsistent (i.e., its variance does not go to zero as infinite data are collected), (2) biased for finite
samples, and (3) suffers from spectral leakage. In astronomy, time-series data are often unevenly sampled in time,
and it is popular to use the Lomb—Scargle (LS) periodogram to estimate the spectrum. Unfortunately, from a
statistical standpoint, the LS periodogram suffers from the same issues as the classical periodogram and has even
worse spectral leakage. Here, we present an improvement on the LS periodogram by combining it with the
Thomson multitaper approach. The multitaper spectral estimator is well established in the statistics and engineering
literature for evenly sampled time series. It is attractive because it directly trades off bias and variance for
frequency resolution, and is fast to compute: compared to an untapered spectral estimator, the multitaper adds no
more than a couple of seconds for a time series with a million data points on a current desktop computer. Here, we
describe an estimator that combines the multitaper with the LS periodogram. We show examples in which this new
approach has improved properties compared to traditional approaches in the case of unevenly sampled time series.
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Finally, we demonstrate an application of the method to astronomy with an application to Kepler data.

Unified Astronomy Thesaurus concepts: Time series analysis (1916); Interdisciplinary astronomy (804);
Astrostatistics (1882); Algorithms (1883); Astrostatistics techniques (1886); Astrostatistics strategies (1885);
Irregular cadence (1953); Asteroseismology (73); Stellar oscillations (1617)

1. Introduction

The analysis of time-series data is becoming increasingly
common in astrophysics research, and will continue to grow
in prevalence as data from telescopes such as the National
Science Foundation Vera C. Rubin Telescope (LSST Science
Collaboration et al. 2009) comes online in the 2020s. Data from
spacecraft and ground-based telescopes such as Kepler (Koch
et al. 2010), the Transiting Exoplanet Survey Satellite (TESS;
Ricker et al. 2015), and the Zwicky Transient Facility (ZTF;
Bellm et al. 2018; Graham et al. 2019) have and are improving
our understanding of exoplanets and stars, but we are limited
by issues such as unevenly sampled data, measurement
uncertainties, and the statistical methods we employ. This
paper is most concerned with the latter, and seeks to provide an
improved statistical method for identifying and estimating
periodic signals in time-series data.

Various methods exist for analyzing data sampled in time,
but a common approach is called spectral analysis. Spectral
analysis is used to estimate and characterize the process
underlying time-series data by expressing power as a function
of frequency, and obtaining an estimate of the frequency
spectrum or power spectrum. When performing spectral
analysis, we obtain from the data a statistical estimate of the
true power spectrum—we will never know to true power
spectrum, but can hope to estimate it well using reliable
methods.

Most spectrum estimators (e.g.,the periodogram) depend
heavily on the assumption that the data are regularly sampled in
time. In astronomy, we do not always have the luxury of
well-controlled observation times, and so time-series data are
almost always irregularly sampled to some degree. Thus, the

Lomb-Scargle (LS) periodogram (Lomb 1976; Scargle 1982),
which accounts for unevenly sampled data, is a popular method
for estimating the frequency spectra of astronomical time-
series data.

The application of the LS estimator has become very popular
in astronomy, despite its many drawbacks (see VanderPlas 2018
for a thorough discussion about LS). One method for spectral
analysis that is widely used in other areas of science but less so
in astronomy is the multitaper statistic invented by Thomson
(1982).5 One reason for this may be that the Thomson
multitaper statistic, like many time-series analysis methods,
relies on evenly sampled data. Closely related fields of
helioseismology, solar physics, and geophysics have seen the
use of the multitaper statistic (e.g., Thomson et al. 1996;
Komm et al. 1999; Thomson & Vernon 2015, 2016).

In this paper, we propose the multitaper-Lomb—Scargle
(MTLS) statistic: a method for time-series analysis that
combines the multitaper approach with the LS technique. The
method is a rapid computation of the multitaper spectral
statistic (Thomson 1982) under irregular sampling. We foresee
this method as an easily implemented improvement to the most
common approach to spectrum estimation when times are
known but irregular.

We aim to make this paper accessible to those relatively new
to time-series analysis and/or statistical notation for time-series
analysis. If you are already well versed in both, then you may
want to skip ahead to Section 4.

The paper is organized as follows.

5 This is the mathematically rigorous paper—for a less intense summary, see
Thomson (1990). Further statistical properties of the spectrum estimate are
described in Thomson & Haley (2014).
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Section 2: a short introduction to mathematical
notation for time-series analysis and a descrip-
tion of important assumptions and concepts
such as stationarity, the autocovariance func-
tion, and the spectral density function.

Section 3: a review of the classical periodogram
and its statistical issues, which necessitate the
use of tapers.

Section 4: description of the discrete prolate
spheroidal sequences (DPSS) as tapers, which
are used in the multitaper spectral estimator.

Section 5: a well-known example that demon-
strates the superior estimate of the frequency
power spectrum provided by the multitaper
statistic over the periodogram.

Section 6: issues with interpolating missing data
in a time series.

Section 7: the MTLS statistic; the LS period-
ogram is briefly reviewed (Section 7.1) and then
combined with the multitaper spectral statistic
(Section 7.2).

Section 8: the MTLS is used in a preliminary
analysis of time-series data from a red giant
(RG) star as measured by Kepler.

Much of the work presented in this paper is part of
Springford (2017), which also contains more details pertaining
to time-series analysis with irregular and latent times (i.e.,
when there is a proxy for time).

2. Notation for Time-series Analysis

In time-series analysis, we consider a sequence of random
variables X, collected at the set of times D,

{X;:te D},

where we assume the set of times D are strictly increasing.
Next, assume that the random variables have a joint distribution
with finite mean

uw,=E[X], teD
and finite variance/covariance

cov(Xy, Xp) = E[(X; — p)(Xy — )], t,re€D.
Here, t and r are two different times from D, and E[ ] denotes
the expected value of whatever is inside the square brackets.’®

A time series is a realization x drawn from X, at a set of
times D. For example, x might be the measurements of the flux
of a star collected at a set of times D.

A time series is regularly (or evenly) sampled if
t;, — i1 =c for all i, where ¢ is a constant. Regularly
sampled time series are the most common in other scientific
disciplines, particularly when the observation times can be
controlled by the observer.

6 Also known as the expectation in physics and astronomy literature.
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Of primary interest in the analysis of time series is the
covariance of the random variables {X;}. This differentiates
time-series analysis from much of statistics in which random
variables are often assumed to be independent or conditionally
independent (spatial statistics has a similar interest in
covariance structure). It also presents a problem for inference
because typically we only obtain a single time series—that is, a
single sample—making it impossible to characterize the
covariance without simplifying assumptions about the covar-
iance structure. Easily the most common assumption is that of
stationarity, of which there are two flavors:

1. strong stationarity assumes that any finite collection of
random variables {X;,...,X, } has the same joint
distribution as {Xj+s,..., X;,+s}, Where s € (—o0, 00) if
the times are continuous, and s € Z for integer-valued
discrete times (Z is the set of integers); and

2. weak or second-order stationarity assumes that E[X;] = p
for every t and that the covariance cov(X;, X;.,) does not
depend on ¢, assuming that the variance of each X; is finite.

If {X,} follow a multivariate Gaussian distribution of finite
dimension, weak stationarity implies strong stationarity
because the multivariate Gaussian is uniquely determined by
its mean and covariance. In practice, it is impossible to verify
these stationarity assumptions, but some natural systems seem
more likely than others to be non-stationary. For example,
pulsars often exhibit obvious, predictable, and regular variation
in flux over several years. On the other hand, the flux measured
from a supernova changes quite a lot depending on when you
start measuring!

Assuming weak stationarity, we are interested in the
autocovariance function

R(s) = cov(Xy, Xivy) = E[(Xy — 1) (Xrs — )] (1)
We will assume for now that we have D =0, 1, 2,..., N — 1,
where N is the length of the time series. These time values will
make the mathematics simpler compared to regular Julian
dates, for example.

Under mild regularity conditions, the spectral density
function of frequency f can be represented as

oo
S(f)= > R(s)exp(—2ifs), 2
§=—00
which provides another approach to statistical inference via the
spectral density or spectrum of the time series. The autocovar-
iance and the spectrum are Fourier transform pairs, so that
given the spectrum, the autocovariance can be represented as

172 .
R = [ L, SUNeXpCfY. 3)

This is the Einstein—Wiener—Khintchine theorem (Einstein 1914;
Wiener 1930; Khintchine 1934).
The spectrum has the following important properties:

Property Descriptive Meaning

S(f) =0 The spectrum is non-negative

S(H=S(f+ 1) The spectrum is periodic and
has period equal to one

S(f) =S The spectrum is an even

function for real-valued x
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AR(4) Process, n=1000

signal (arbitrary units)
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Figure 1. A single, evenly sampled time series generated from an AR(4)
process with coefficients ¢, = 2.7607, ¢, = —3.8106, @3 = 2.6535, and
s = —0.9238.

The equivalence of the autocovariance R(s) and the spectrum
S(f) means that either can be used for inference. However, the
spectrum has an arguably simpler interpretation and provides
the opportunity to discover something unexpected (Tukey &
Hamming 1949). The spectrum is precisely tuned to detect
periodicities.

Another strong point in favor of the spectrum compared to
the autocovariance is that at suitably spaced frequencies, the
distribution of spectrum estimates are or can be made
approximately independent. This independence simplifies
interpretation and inference considerably.

3. Statistical Properties of the Periodogram

A naive estimator of the spectrum, known as the period-
ogram (Schuster 1898), is

2

R 1=
Sp(f) = N Zx, exp(—2ift)

t=0

“)

(Recall that N is the length of the time series.) The estimator in
Equation (4) assumes we have a time series X, a realization of
X, observed at a set of known and discrete times. It also
assumes that the observation times are regularly spaced
withD=0,1,2,...,N— 1.

The periodogram estimator of the spectrum, §p( f), has some
problems. It is inconsistent: the variance of the estimator does
not tend to zero as N goes to infinity (first proved by
Rayleigh 1903). In fact, the variance of the estimator does not
decrease as the sample size increases.

The spectral window for the periodogram is Fejér’s kernel

F(f) = %% This kernel has side lobes that contribute to
the spectrum estimate at frequencies away from a given
frequency, an effect known as spectral leakage. Spectral
leakage can cause the periodogram to be badly biased
(Thomson 1982).

Both the inconsistency and bias of the periodogram estimator
can be displayed through an example first presented in Box &
Jenkins (1970) and later in Percival & Walden (1993). The
example begins by considering a time series generated by an
autoregressive process,

JJ
Xi=c+ Z o Xi—i + & (%)

i=1
of order p = 4, with coefficients ¢ = 2.7607, ¢, = —3.8106,
w3 = 2.6535, and ¢, = —0.9238. This autoregressive process
(denoted AR(4)) is used to generate the time series shown in
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Figure 2. Power spectrum estimate from the classical periodogram (blue
curves) and the true power spectral density (red dashed curve) for an AR(4)
process time series of length N = 1000 (top) shown in Figure 1. The bottom
figure is the same but for N = 50,000. Note that the classical periodogram
estimate of the power spectrum is biased at high frequency for finite N, and is
inconsistent.

Figure 1. The evenly sampled time series is then used with the
classical periodogram estimator to estimate the spectral density
(or power spectrum).

Figure 2 shows the power spectrum as estimated by the
periodogram (blue curve) for the AR(4) time series of length
N = 1000 (top) and N = 50,000 (bottom), and compares it to
the true power spectrum that is known analytically (the red
curve). Note that the classical periodogram estimator is biased
at high frequency for the time series of length N = 1000 (top).
The spectrum estimate for the time series of length N = 50,000
(bottom) is less biased, but the power spectrum remains
statistically inconsistent—the variance does not go to zero as N
increases.

These statistical issues with the periodogram are well
known and so estimators that taper the data are preferred
(Brillinger 1981). The tapered estimator of the spectrum,
known as a direct estimate, is

N—1 2

Sp(f) = | D hex, exp(—2ift) (6)

t=0

where /, is the data taper, which notably has the property that
Z?’;OI h}? = 1. Examining Equation (6), the taper reweights the
time-series values, typically down-weighting values at the
beginning and end of the time series. In the frequency domain,
this results in a spectral window with lower side lobes than
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Slepian Sequences, N=60 and NW =6
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Figure 3. Slepians of order k =0 to k = 3, assuming a time-series length of
N =60 and a frequency bandwidth of 2W = 1.2.

Fejér’s kernel, reducing spectral leakage in the estimate (see
also Blackman & Tukey 1958; Blackman 1959).

There are many kinds of data tapers /i, (sometimes called
windows) that can be used to mitigate the spectral leakage
problem (Harris 1978). The family of cosine tapers are popular
(of which the Hann window is a special case), as is the
modified cosine taper or Hamming window.’

In the next section, we describe the particular set of tapers
used by the Thomson (1982) multitaper statistic and why they
are an optimal choice.

4. Slepian Tapers

Thomson’s multitaper statistic makes use of not one taper,
but multiple tapers. Specifically, it uses a special set of
sequences called the DPSS (colloquially referred to as the
Slepians in reference to Slepian 1978).

The Slepians are usually denoted as v (N, W), where & is
the order of the sequence. They are sequences of length N (i.e.,
the length of the time series) that have the smallest possible
spectral leakage outside of a defined frequency band of width
2W. As an example, the Slepian sequences of order k = 0
through k = 3 for a time series of length N = 60 and frequency
band of width 2W = 1.2 are shown in Figure 3.

The higher-order DPSS can also have nearly minimal
spectral leakage. In fact, the first K S 2NW have nearly
minimal spectral leakage, so that for any k $ 2NW

~(mt)

N—1
Se () = 1> vPx exp(—2mift) P )
=0

will provide an estimate that is characteristically similar (note
here that we have replaced Slepian’s notation with an
. . a(mt
equivalent shorthand: v,(k)). Moreover, the estimates Sk(m)( )
are approximately uncorrelated because the DPSS tapers are

7 Note the similarity between the names, which often leads to confusion; the
Hann window is often called the “Hanning” window!

Springford, Eadie, & Thomson

1e+05
|

—— Classical periodogram
—— Multitaper Spectral Estimate
—— Analytic form of AR(4)

1e+01 1e+03
| |

PSD (Power Spectrum)

1e-01

1e-03

0.0 0.1 0.2 0.3 0.4 0.5
Frequency

Figure 4. Comparison of the power spectrum estimate made by the classical
periodogram (blue curve) to that made by the multitaper spectral estimator
(black curve). The true power spectrum for the AR(4) process is shown as a red
dashed curve.

orthogonal (Thomson 1982). This suggests averaging the
{.§,§mt)( f)} to not only control spectral leakage, but also to

reduce the variance of the combined estimate.
The result is the multitaper spectrum estimate

$™(f) = lkijl $( 8
=% e () (8)
k=0

where K is the maximum order of the DPSS taper chosen in
forming the estimate. An adaptively weighted average
can be used to further improve the in-band concentration
(Thomson 1982). It is also common to play it safe with respect
to spectral leakage and use K = [2NW | — 1 or fewer DPSS
tapers (Thomson 1982).

By using multiple tapers, the Thomson multitaper spectrum
estimate reduces bias, reduces variance, and reduces spectral
leakage. In the next section, we continue the example from
Percival & Walden (1993) that helped bolster the application of
the multitaper estimator in other disciplines.

5. A Motivating Example for the Multitaper Spectral
Estimator

Continuing with the example in Section 3, we now apply the
multitaper spectrum estimator to the same time series (AR(4)
process) presented in Figure 1.

Figure 4 shows the true spectrum for the AR(4) process (red
curve), the spectral estimate from the periodogram (blue curve),
and the spectral estimate from the Thomson multitaper
approach (black curve; this example appears in Percival &
Walden 1993). The Thomson multitaper estimator clearly
reduces bias and variance, and accurately predicts the true
power spectrum. Note that one way to reduce the variance of
the periodogram is to apply a smoothing filter after computing
the estimate. We hope that this example makes obvious the
shortcoming of this approach: although the variance of the
estimate would be reduced, the bias would remain.

The Thomson multitaper estimator is meant for regularly
sampled time-series data, and Stoica & Sundin (1999) proved
that when the spectrum is relatively smooth, the multitaper
estimate is equivalent to the maximum likelihood. In the rest of
this paper, we introduce a way to combine the multitaper
estimator with the LS periodogram in order to make this
approach feasible and useful for irregularly sampled time-
series data.
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6. Irregular Times

There exists a version of the multitaper for irregular time
series (Bronez 1988). The approach involves computing
generalized DPSS for each frequency band of interest by
solving a generalized matrix eigenvalue problem. By definition,
the Bronez solution achieves optimal in-band concentration,
just like Thomson (1982) in the case of regularly sampled
times. However, the estimator is extremely computationally
expensive and numerically difficult to compute. These qualities
make it ill-suited to problems in which a quick and reliable
solution is necessary for Markov Chain Monte Carlo (MCMC)
sampling or in which there are thousands of time series to be
analyzed (e.g., forthcoming data from the Legacy Survey of
Space and Time; LSST Science Collaboration et al. 2009).

Still others have developed solutions for otherwise regular
series with gaps (e.g., Fodor & Stark 2000; Smith-Boughner &
Constable 2012). Most recently, Chave (2019) introduces a
generalization of the multitaper for gappy time-series data that
are otherwise regularly sampled. However, this method is not
intended for data with arbitrary sampling times, and when
applied to time series with many small gaps does not work well
(A. Chave 2020, personal communication).

Approaches that interpolate the autocovariance matrix using
slotted estimators based on discretization of time lags are also
possible (Stoica & Sandgren 2006), but again would seem to be
more suited to series that are otherwise regular or comprised of
a small set of discrete time increments. A review of various
parametric, non-parametric, and heuristic approaches is avail-
able in Babu & Stoica (2010).

Given the computational advantage afforded by the spectral
estimators under regular sampling, a natural question is
whether we can use methods of spectrum estimation that are
designed for regularly sampled time series in cases where the
times are irregularly sampled.

A seemingly popular approach is to interpolate the
irregularly sampled time series to a mesh of regular times,
then proceed with spectrum estimation as though the
interpolated time series were what was originally observed.
However, the consequences of the interpolation on the
spectrum estimate and the inferred characteristics of the
underlying spectrum should be considered. For example,
Lepage (2009) demonstrated that spurious peaks in the
spectrum can occur as a result of interpolation of an irregularly
sampled time series to regular spacing.

Consider the following highly simplified example. Suppose
we have a white noise process that follows

X, ~ MO, 7%)

for any f, where A represents a normal distribution. We draw a
realization from this process x at observation times that are
irregular, and in addition at observation times on a regular
mesh for comparison. Next, we use linear interpolation to
interpolate the times for the irregularly sampled time series.
Figure 5 compares the multitaper spectrum estimate obtained
by linear interpolation of the irregularly sampled series to the
spectrum estimate that would have been obtained had the series
been regularly sampled.

The linear interpolation has a noticeable effect on the overall
shape of the spectrum. Although the underlying process is
white, and should have resulted in a flat spectrum estimate,
interpolation has reddened the estimate: high frequencies have
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Figure 5. Comparison of multitaper spectrum estimates for a white noise
process sampled at a time interval of five (top panel), and the same realization
sampled irregularly and interpolated to the same time interval of five (bottom
panel), showing the effect of interpolation.
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Figure 6. Application of the Mann & Lees (1996) method to the interpolated
white-noise series spectrum seen in the bottom panel of Figure 5. The light gray
is the locally smoothed spectrum estimate used to fit the autoregressive
spectrum in solid black. The dotted lines are 90th, 95th, and 99th percentiles of
the background spectrum. Estimated spectrum values exceeding these
percentiles would be interpreted as significant signals.

a lower associated spectrum estimate, and low frequencies have
a higher associated spectrum estimate.

Here we might like to know whether the estimate of the
power spectrum in the bottom panel of Figure 5 would lead to a
false detection of signals (as was seen in Lepage 2009). Mann
& Lees (1996) describe a popular method for estimation of
background noise and signal detection in climatic time series.
The method consists of partitioning the spectral representation
of a series into a background autoregressive spectrum and a set
of signals. The signals are then tested for significance by
comparison to a null distribution. Figure 6 shows the
application of the Mann & Lees (1996) method to the
interpolated spectrum estimate. Although it appears that the
background spectrum does not do a good job of describing the
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spectrum estimate at higher frequencies, several low to
moderate frequency signals are detected by the procedure. In
cases where the method is applied in “black box” fashion, false
detection could easily become a common problem.

Given that interpolation can have misleading effects on
estimates of the spectrum, it seems that computational
efficiency alone does not justify interpolation to regular times.
Thus, there is motivation to develop spectral estimators that use
the unevenly sampled data directly without interpolation.

The LS periodogram is widely used and considered to be a
solution to the spectrum estimation problem for irregular
sampling. However, like the periodogram, it has statistical
issues, namely:

1. it is inconsistent,

2. it has spectral leakage that is often worse than the
classical periodogram, and

3. it has spectral leakage that depends on the pattern of
observation times and that is frequency specific.

In Scargle (1982), the author is concerned primarily with the
detection and identification of a single periodic component
from a background noise process that is of no interest. Because
of this narrow focus, Scargle argues that inconsistency and
spectral leakage are not of particular concern, but that the
estimator could be improved by applying a window function to
reduce spectral leakage if desired.

Here, we propose using interpolated DPSS as windows for
the LS periodogram, and averaging the resulting spectral
statistics in the same way as for the regular sampling
multitaper. Although not theoretically optimal in the sense of
Bronez (1988), the statistic can be made fast to compute using
a nonequispaced fast Fourier transform (nfft; Press &
Rybicki 1989).

The properties of the multitaper spectral likelihood for the
evenly sampled case do not necessarily transfer to the irregular
sampling case. In particular, the spectral window under
irregular sampling varies as a function of the actual sample
times and differs as a function of frequency (Scargle 1982). In
the next section, we describe an approximate multitaper
spectral statistic based on the nfft, the LS periodogram, and
the DPSS tapers.

7. The Multitaper LS Statistic

In this section, we review the LS periodogram and describe
how it can be computed using a fast algorithm. Next, we define
a multitaper version of the LS periodogram and demonstrate
that it has spectral windows that exhibit reduced spectral
leakage.

7.1. Fast Computation of the LS Periodogram
The LS periodogram estimator (Lomb 1976; Scargle 1982) is

N 2
1 (Zizl x;cosw(t; — TLS)

N
2 Yt cos?w(t — Tis)

Pis(f) =

N . 2
1 (Zi:l x; sinw(t; — TLs)

— T
2 Ei:1S1n2w(l‘i — Tis)

©)
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where 71 g is defined by

S sin 2w

i : (10)
> im 1 Cos 2wt

tan 2w =

N is the length of the time series, w = 2xf is the angular
frequency, x; is the ith observation, and #; is the sampling time
of the ith observation.

The LS estimator has the following properties.

1. The estimator is invariant to time translation. That is, if
the ¢#; are replaced with #; — t* where " is a constant, the
estimator is unchanged.

2. The estimator has the same distribution for a Gaussian
white-noise process as the regularly sampled periodogram.

3. The estimator is equivalent to a least-squares fit of a
sinusoid at a given frequency f to the data x in the time
domain.

Leroy (2012) points out that the nfft can be used to compute
the LS periodogram using the decomposition of Press &
Rybicki (1989). Following Press & Rybicki, the LS period-
ogram can be represented using the following sums:

N N

Sh= Y X SInWwh ¢ = Y X; COS Wi (11)
i=1 i=1
N N

5o = »_sin2wt ¢ = Y cos 2w;. (12)
i=1 i=1

If the sums in Equations (11) and (12) can be computed
rapidly, then the LS periodogram can be computed rapidly as
well using the following terms:

Al = ¢ coswnis + S, SInWT s (13)
Ay = E + lcz cos2wms + lsz sin 2w g (14)
2 2 2
B] = S COSWTLSs — Cp sin WTLS (15)
N 1 1
B, = — — —c¢ycos2wrnis — —s8o Sin 2wt s, 16
2= T 50 Ls = 5% Ls (16)

where cos2wrng and sin 2w 75 can be computed from
Equation (12), and cosw 75 and sinwrg can be computed
using half-angle formulae from cos2wr; g and sin2wmn s. The
LS periodogram is thus expressed as

2 2
PLs(f) = %[A—‘ + B—l]. (17)

To compute the sums in Equations (11) and (12), we use the
nfft library (Keiner et al. 2009), which provides a fast Fourier
transform for irregularly sampled data. The nfft library defines
the nonequispaced discrete Fourier transform (NDFT) as

L/2—1
~ 7 *
xp= ), Fe K, (18)
k=—L/2
where the X are input complex Fourier coefficients, and x,» are
J

the time series as observed at times t;", standardized so that the
times are in the interval [—1/2, 1/2). Writing the NDFT in



THE ASTRONOMICAL JOURNAL, 159:205 (12pp), 2020 May

matrix notation, we have
x = AX (19)
Ajk — efi27rkrj*_ (20)

(Note that k here represents the index over which the
summation occurs in Equation (18), not the kth taper.)

To make the nfft library useful for time-series analysis, we
need to consider the x as an input and the Fourier
representation as an output. The adjoint (conjugate transpose)
of the matrix A multiplied by the time-series vector X is

7 = Allx, 21)

which is
N *
HEDY xtj*e’%k’.f. (22)
=1

Thus, the adjoint NDFT performs the necessary Fourier
transform of the input time series x, except that it seems to
return the complex conjugate of the usual transform. In fact,
because of the centering of the times to the interval [—1/2,
1/2], there is a further rotation of k7 due to the —1/2 offset.
This additional rotation requires a further transformation of Z,

% Zr k iseven
= 23
o {—zk k is odd. 3

This subtlety is not mentioned by Leroy (2012).

7.2. MTLS: Multitapering the LS Periodogram

Scargle (1982) suggests that the spectral leakage in the
irregular sampling case can be improved through data tapering.
The Thomson multitaper limits the spectral leakage to a
negligible amount in the case of regularly sampled times, so
that multitaper spectral statistics spaced far enough apart in
frequency are nearly uncorrelated. Here we generalize this
approach to unevenly sampled times.

Our approach for multitapering using the DPSS for irregular
time series is as follows.

1. We compute the Slepians at a mesh corresponding to an
average sampling interval At = T/N, where T'is ty — f
and N is the number of times in the series. The DPSS on
the regular mesh are denoted as before: v,(")(N , W), where
k is the order of the sequence.

2. The taper weights at intermediate points corresponding to
the irregular times are obtained by interpolation using a
cubic spline. We denote these interpolated weights
as v O, W).

3. The interpolated weights for each DPSS order are
renormalized so that Z?’:,l (v,*(k)(N , W) = 1 for each k.

The approximation in step 2 is best when the set of times is
close to regular—for example, there are no long gaps—which
we assume is true for many astronomical data sets (e.g., from
the Kepler or TESS spacecraft). The resulting multitaper
statistics are then used as in the regular sampling case described
previously.

The MTLS is a compromise between the optimal quadratic
estimator of Bronez (1988), which is difficult and costly to
compute, and the untapered LS periodogram, which can be
made fast to compute but does not achieve minimum spectral
leakage out of band. Because the spectral leakage performance
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Figure 7. MTLS estimate for a white noise process sampled irregularly. The
spectrum estimate is comparable in shape—that is, flat—to the estimate that
would have been obtained under regular sampling (Figure 5, top). Moreover,
the average spectrum value and variation in the estimate are similar.

of the MTLS depends on the observation times D as well as the
frequency band, it is crucial that the spectral pseudowindows
(see Section 7.3) be examined across a range of frequencies for
a given set of irregular times for which the statistic is to be
computed.

We now revisit the earlier example of an irregularly sampled
white-noise process, interpolated to regular sampling (bottom
of Figures 5 and 6 in Section 6). We saw that interpolation to
regular sampling induced an overall shape to the spectrum
estimate and could lead to false signal detection. As shown in
Figure 7, the MTLS spectrum estimate is able to overcome the
irregular sampling without introducing any shape or other
spurious features.

7.3. Checking Pseudowindows

Scargle (1982) defines and examines pseudowindows and
shows that in some cases, spectral leakage can be significant
even at remote frequencies. This suggests that checking
pseudowindows is good practice in all cases of spectrum
estimation under irregular sampling, whether using the MTLS,
LS, the method of Bronez, or any other.

A pseudowindow is the frequency-domain response of the
estimator to a pure sinusoidal input at a particular frequency. In
order to check pseudowindows, it suffices to create an artificial
signal at a given frequency, sample it at the same times as the
original irregular series, and examine the resulting spectral
statistics. This reveals the pattern of spectral leakage out of the
band defined by the Slepians.

When using the MTLS for irregular times, the DPSS are
interpolated, and the resulting spectral leakage depends on both
the particular set of irregular times and the frequency band.
Although the spectral leakage properties of the MTLS should
be close to optimal for nearly regular sampling, it is a good idea
to check the pseudowindows for a range of bands to avoid
errors in the interpretation of the MTLS statistics.

8. Application to Kepler Data

It is hoped that the MTLS spectral statistic can be used as an
approximate direct estimator of the spectrum in cases where the
observation times are known but irregular. In particular, we
believe this estimator may be usefully applied to study time-
varying processes in astronomical data.

Here, we perform a preliminary analysis of Kepler time-
series data from an RG star, Kepler-91. Figure 8 shows the time
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Figure 8. Relative flux data fore:es RG star Kepler-91.
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Figure 9. Zoom-in to the first 3000 data points shown in Figure 8.

series of the relative flux measurements measured by the
Kepler spacecraft (preprocessing done by T. Bedding 2020,
private communication), and Figure 9 shows detail by zooming
in on the first 3000 observations. The star has a transiting
planet, Kepler-91b, with an orbital period of approximately
6.25 days (Batalha et al. 2013; Lillo-Box et al. 2014), in
addition to other periodic variations in flux indicative of stellar
oscillations. This system has been extensively studied pre-
viously (e.g., Lillo-Box et al. 2014; Barclay et al. 2015; Placek
et al. 2015; Budding et al. 2016).

By using measurements of total flux over time from the
Kepler spacecraft and estimating the power spectrum, aster-
oseismologists can unravel stellar properties (e.g., helium core
burning in RG stars; Bedding et al. 2011). This inference is
based on the peak mode and the spacing of adjacent line
components in the spectrum of the time series of the flux,
which relies on accurate identification of signals from noise in
the spectrum estimate.

The data in Figure 8 are sampled irregularly due to the orbit
of the spacecraft around the Sun and correction to the
heliocentric barycenter. There are also some longer time gaps
in the series (Figure 8). For this preliminary analysis, the series
was analyzed in its entirety, across these longer gaps.

We obtain estimates of the power spectrum of the relative
flux using MTLS and three different frequency bandwidth
values (corresponding to NW = 4, 10, or 20), and also using
the LS periodogram for comparison. Figure 10 shows the LS
periodogram and the MTLS estimate for increasing numbers of
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Figure 10. Four spectrum estimates using the Kepler-91 flux data from
Figure 8. The top panel is the usual LS periodogram. The second panel is the
MTLS spectrum estimate with NW = 4 and K = 7 tapers. The third panel is
the MTLS spectrum estimate with NW = 10 and K = 19 tapers. The bottom
panel is the MTLS spectrum estimate with NW = 20 and K = 39 tapers. The
progression shows the trade-off between frequency resolution and estimator
variance.
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Figure 11. Zoom-in of the top and third panel of Figure 10 to illustrate the
reduced variance in the MTLS-estimated power spectrum.

tapers k. The increasing number of tapers with increasing
bandwidth has a noticeable effect on the variance of the
estimate. In the extreme case of the LS periodogram (top),
signals appear to be less obvious than for even the narrow-
bandwidth MTLS (second panel).

Comparing the three MTLS spectrum estimates, the one with a
time-bandwidth parameter of 10 appears to retain the relative
amplitude of any signals present while providing a good separation
relative to the noise in the estimate. Figure 11 shows a zoom-in of
the top and third panel in Figure 10 for comparison.

Although some work has been done on the choice of
bandwidth parameter under some assumptions about the under-
lying true spectrum (Haley & Anitescu 2017), there is no
universally applicable method for determining the optimal
choice for this parameter.

The MTLS estimate of the spectrum appears to confirm
previous estimates of the orbital period of the transiting planet
Kepler-91b (Figure 12(b)). In particular, there is a peak in the
spectrum estimate at a period that matches previous estimates
(i.e., the planet orbital period of 6.25 days; Batalha et al. 2013;
Lillo-Box et al. 2014), as well as a series of harmonics, which
is to be expected due to the shape of the light curve attenuation
as the planet passes in front of the star. There are also a number
of apparent signals or line components in the frequency band
from 8 to 12 cycles per day, approximately 92-140 pHz
(Figure 12(c)). The high-frequency portion of the MTLS
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estimate (seen in Figures 12(a) and (d)) should not be trusted,
for reasons explained next.

The apparently large spectrum values at high frequency are
potentially due to leakage from elsewhere in the spectrum. To
investigate this possibility, we generated synthetic signals
across the frequency range and calculated the response of the
MTLS statistic for each.

The frequency response shows a pattern of aliasing beyond
about 10 cycles per day (Figure 13). This pattern was verified
by computing the LS periodogram of the same synthetic signals
using an independent computer code (Ruf 1999). The aliasing
effect is a result of the particular pattern of times.

9. Discussion

Unlike many branches of statistics in which observations are
assumed to be realizations of independent or conditionally
independent random variables, time-series analysis is preoccu-
pied with the dependence of sequences of random variables.
Unfortunately for time-series analysts, the random variables
underlying the observations are fleeting, and it is impossible to
obtain repeated measures of a random variable corresponding
to a moment in time. Instead, methods of time-series analysis
make simplifying assumptions about the nature of the under-
lying random variables and their covariance structure. The
assumption of stationarity, for example, allows measurement to
begin at any point in time, because if the assumption holds then
the joint distribution of random variables depends only on their
relative position in time. The stationarity assumption allows the
covariance to be summarized as a function of time separation.

The autocovariance can be obtained from the spectrum if
desired, meaning that spectral statistics or spectrum estimates
can be used instead of estimates of the autocovariance.
Inference in the spectral domain is convenient because many
natural processes are approximately periodic, and show up as
signals in the spectrum of a time series. This makes non-
parametric spectrum estimation of the kind described here an
important contributor to the exploratory data analysis toolbox.
In cases where little is known beforehand, a good estimate of
the spectrum can provide some insight into the underlying
processes, while suggesting parametric approaches that could
be successful in describing the data. Like other exploratory
approaches, analysis might stop at the spectrum estimate, or
might proceed to additional modeling.

Moreover, spectral statistics can be made to be approxi-
mately independent using data tapers, so that the total
likelihood of a set of spectral statistics can be approximated
using a product likelihood. This could greatly simplify
inference for parametric models of stellar processes that imply
a theoretical spectrum—given a model with unknown para-
meters, the theoretical spectrum could be used to calculate the
likelihood for each of the spectral statistics. Because of their
approximate independence, the total likelihood is the product
of each, and maximum-likelihood estimates or Bayesian
posterior distributions for model parameters are easily
obtained. A more general example of this approach is described
in Springford (2017).

For irregularly sampled time series, the LS spectrum
estimate is widely used. Scargle (1982) was motivated by the
case of a single periodic component embedded in a white noise
process, and for this type of process the LS periodogram has its
place. However, the spectral leakage properties of the estimator
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Figure 12. MTLS spectrum estimate with NW = 10 and K = 19 tapers. Panel (a) is the spectrum estimate across all frequencies. Panel (b) is the low-frequency
portion of the spectrum; lines show the fundamental frequency (1/6.25 days) and harmonics of the previously identified transiting planet (Batalha et al. 2013; Lillo-
Box et al. 2014). Panel (c) is the band from 8 to 12 cycles per day, showing many apparent signals. Panel (d) is the highest-frequency portion of the spectrum. This
portion of the spectrum should be interpreted with caution due to the possibility of leakage or aliasing from distant parts of the spectrum.

can be extremely poor, and if the underlying spectrum is not of
the type envisioned then it is possible to be misled by the result.

Scargle (1982) suggests tapering the time series to control
spectral leakage before computing his periodogram, a sugges-
tion that we take to the same conclusion as Thomson (1982) by
multitapering using interpolated DPSS tapers.

The generalized LS periodogram (GLS; Zechmeister &
Kiirster 2009) and the Bayesian GLS (Mortier et al. 2015) are
increasingly popular in astronomy. While these methods offer
improvements to the standard LS, these improvements are
complementary to those offered by tapering, primarily: (1)

10

measurement of error-derived weights and (2) separate mean
values by frequency. Analysts who are interested in employing
the GLS or BGLS for these reasons can also benefit by tapering
or multitapering.

The MTLS statistic we introduce here matches the Thomson
multitaper under regular sampling. Deviations from regular
sampling introduce frequency-specific differences that depend
on the particular set of observation times. For a given set of
times, careful examination of the pseudowindows is recom-
mended. If there appear to be strong signals or a large dynamic
range in the spectrum, frequencies with high associated spectral
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Figure 13. Frequency response of the MTLS for the Kepler-91 time series.
Frequencies above about 10 cycles per day show pseudo-aliasing to higher
frequencies.

statistics should be examined for their leakage properties
because they are liable to contribute to spectral statistics at
other frequencies in the spectrum.

Unlike in the case of regular sampling, leakage (or aliasing)
to distant frequencies is possible for irregular sampling. In
particular, high-frequency parts of the spectrum may not be
trustworthy and, if judged to be suspect, should be ignored.

In the example of the RG star data, there appear to be many
signals present, and the overall shape of the spectrum at high
frequencies seems to be affected by a kind of aliasing. This
limits the effective Nyquist frequency to something much
smaller than 1/2Af = N/2T.

One possibility is that the aliasing is due to regular gaps in
the series. If this is the case, an MTLS spectrum estimate could
be computed for each contiguous portion of the series, and
averaged as in a non-overlapped Welch estimate (Welch 1967).
Although this does not resolve the higher-frequency compo-
nents of the spectrum estimate, if the aliasing is removed it
makes interpretation of the estimate more straightforward.
Regardless, the technique of separating time series according to
the location of long gaps could be helpful in certain cases
where the long gaps make the high-frequency portion of the
spectrum estimate unreliable.

There are obvious extensions to the current MTLS as an
estimator of the spectrum, based on analogies to the use of the
multitaper estimator in the regular sampling case.

The eigencoefficients (Thomson 1982) are the complex-
valued result of taking the discrete Fourier transform of the
DPSS-windowed time series. The eigencoefficients are the
basis of several extensions to the multitaper method in the
regular sampling case. The Thomson F-test (Thomson 1982) is
a test for the presence of periodic components that is based on a
regression estimate of the eigencoefficients. The variance
explained by the regression is compared to the residual
variance of the estimate to form the F-test. In principle a
similar test could be constructed for the MTLS, but this might

11
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require an adjustment to the method of computation described
in Section 7.2. A targeted approach in which frequencies of
interest are tested for periodicity might be the most efficient if
the fast computing advantage is lost.

Coherence, the frequency-domain analog of correlation,
would also be a useful tool in cases where an estimate of the
relationship between two or more time series is of interest.
Jackknife error estimates for the spectrum estimate, periodic
F-test, and coherence are also possible, and would provide
insight into the uncertainties and biases associated with each
(Thomson 2007).

10. Conclusion

We have described a multitapered version of the popular LS
estimator of the spectral density of an irregularly sampled time
series, which we call the MTLS. The MTLS was shown to have
limited spectral leakage, but because the leakage depends on
the particular pattern of observation times, examination of the
pseudowindows is necessary in any particular application.

As an estimator, the MTLS was applied to a time series of
photometry data and displayed the reduced variance and
spectral leakage characteristic of the multitaper estimator for
regularly spaced data. However, examination of the frequency
response (pseudowindows) revealed aliasing and a much
smaller effective Nyquist frequency than might have been
expected.

The subfield of time-series analysis in astronomy is growing
with data sets related to exoplanets, asteroseismology, and
transients through Kepler, TESS, and ZTF. The subfield is
destined to become even more prevalent as survey projects
such as the LSST on the Vera C. Rubin Observatory begin in
the 2020s. When scientific questions require the identification
of more than a single mode in the power spectrum, the LS
estimator is a weak tool because it suffers from spectral
leakage, inconsistency, and bias. The MTLS estimator,
however, shows promise for applications in astronomy where
multiple modes are of interest.

In a future work, we will explore other applications of this
method to astronomical data and compare it to other recent
advances for estimating the power spectrum. Equally important
is the development of an F-test for the MTLS statistic, which
determines the probability that a frequency signal in the
spectrum estimate originates from a genuine periodic process.
The F-test provides a way to test for the presence of real
periodic signals in time-series data that may contain evidence
of, e.g., exoplanets, asteroseismic modes, and stellar rotation.
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