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Abstract

The great difference in dynamical range between small-scale accretion disk simulations and large-scale or
cosmological simulations creates difficulties in tracking the disk wind kinematics. In the first paper of this series,
we studied the dynamics of hydrodynamic winds from the outer edge of the accretion disk toward galactic scales.
In this paper, we further incorporate magnetic fields by employing a one-dimensional magnetohydrodynamic
model, with fiducial boundary conditions set for hot accretion flows. The wind solution is achieved through
requiring gas to pass smoothly through the slow, Alfvén, and fast magnetosonic points. Beyond the fast
magnetosonic point, physical quantities are found to show power-law dependences with cylindrical radius R, i.e.,
r µ µ µ µf f

- - -R v v R B R, const ., , ,2
p

1 1 and b rµ g-1. The magnetization of wind is dominant in determining
the wind properties. The wind is accelerated to greater terminal velocities with stronger magnetizations. The
fiducial parameters result in a terminal velocity of about 0.016c. The dependence of the wind physical quantities on
temperature, field line angular velocity, and adiabatic index is also discussed.

Unified Astronomy Thesaurus concepts: Black holes (162); High energy astrophysics (739); Astrophysical black
holes (98); Supermassive black holes (1663); Active galactic nuclei (16); Magnetohydrodynamics (1964);
Astrophysical fluid dynamics (101)

1. Introduction

It is widely accepted that disk winds are broadly present in
black hole accretion systems. On small scales, they serve as an
indispensable ingredient of black hole accretion, determining
the density and temperature of accretion flows, subsequently
affecting the emitted spectrum (e.g., Yuan et al. 2003). On
large scales, they are key to interactions and coevolution of the
central black hole and its host galaxy (e.g., Ciotti et al.
2010, 2017; Ostriker et al. 2010; Choi et al. 2012; Eisenreich
et al. 2017; Weinberger et al. 2017; Yoon et al. 2018, 2019;
Yuan et al. 2018). Wind-launching mechanisms are extensively
studied in the literature. In particular, three mechanisms have
been proposed, namely, the thermally driven (e.g., Begelman
et al. 1983; Font et al. 2004; Luketic et al. 2010; Waters &
Proga 2012), the radiation driven (e.g., Murray et al. 1995;
Proga et al. 2000; Proga & Kallman 2004; Nomura &
Ohsuga 2017), and the magnetically driven winds (e.g.,
Blandford & Payne 1982; Lynden-Bell 1996, 2003).

The magnetohydrodynamic (MHD) wind theory has long
been established, initiated by the seminal work of Blandford &
Payne (1982) and Lynden-Bell (1996, 2003), followed by
intense studies over the past few decades (e.g., Pudritz &
Norman 1983, 1986; Sakurai 1985, 1987; Konigl 1989;
Lovelace et al. 1991; Pelletier & Pudritz 1992; Cao &
Spruit 1994; Contopoulos & Lovelace 1994; Ferreira &
Pelletier 1995; Li 1995, 1996; Ferreira 1997; Ostriker 1997;
Vlahakis et al. 2000; Everett 2005; Fukumura et al. 2010; Bai
et al. 2016). Magnetically driven winds can be generally
categorized into two classes, one of which is the magnetocen-
trifugal winds where the poloidal magnetic field dominates, and
the other is winds driven by the magnetic pressure gradient,
where the toroidal field dominates.

A centrifugal force is able to drive winds if the poloidal
component of the magnetic fields makes an angle of more than

30° from the rotational axis (Blandford & Payne 1982). The
launching of magnetocentrifugal winds generally requires the
presence of a large-scale, ordered magnetic field threading
the disk with a poloidal component at least comparable to
the toroidal magnetic field (e.g., Cannizzo & Pudritz 1988;
Pelletier & Pudritz 1992). Global MHD simulations with time-
dependency have been performed to study the structure and
evolution of these winds, although the internal structure of
the disk is usually ignored, with winds being ejected at
the boundary (e.g., Ustyugova et al. 1995, 1999; Ouyed &
Pudritz 1997a, 1997b, 1999; Romanova et al. 1997; Krasnopolsky
et al. 1999; Kato et al. 2002; Anderson et al. 2005; Pudritz et al.
2006; Zanni et al. 2007; Porth & Fendt 2010). The toroidal
magnetic field builds up through disk rotation, giving rise
to winds that are driven by the magnetic pressure gradient
(Lynden-Bell 1996, 2003). Depending on the ratio of poloidal
to toroidal field strength, the wind will transition from driven by
magnetocentrifugal forces to driven by the magnetic pressure
gradient along its propagation (Uchida & Shibata 1985; Pudritz
& Norman 1986; Shibata & Uchida 1986; Stone & Norman
1994; Contopoulos 1995; Kudoh & Shibata 1997; Ouyed &
Pudritz 1997b).
Global simulations on cold accretion disks suffer from

proper implementation of radiative transfer processes, which is
key to the thin-disk model. Moreover, the simultaneous
modeling of geometrically thin disks with resolved gas
dynamics and propagation of the disk winds to large radii
would be prohibitively time-consuming. Previous numerical
studies generally do not resolve the full internal structure of the
disk. Instead, they employ simplifications by injecting winds
from the simulation boundary, assuming specific wind-driving
mechanism(s) (e.g., Proga et al. 2000; Proga & Kallman 2002;
Luketic et al. 2010). Because the simplified model is not able to
generate wind self-consistently from accretion disks, the wind
properties that are obtained are not fully reliable. On the other
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hand, the theoretical understanding of winds that are launched
from hot accretion flows is more advanced, partly because the
radiation is dynamically unimportant in hot accretion flows and
it is easy to simulate geometrically thick flows. The early
speculation that strong winds might exist in hot accretion flows
(Narayan & Yi 1994; Blandford & Begelman 1999) was later
confirmed by numerical simulations (Narayan et al. 2012; Yuan
et al. 2012a, 2012b; Li et al. 2013).

Winds from hot accretion flows have been thoroughly
studied in Yuan et al. (2015; hereafter Y15). They analyze data
from 3D general relativistic (GR) MHD simulations via a
virtual particle trajectory approach, which effectively distin-
guishes real wind from turbulent flows. Winds originating from
smaller radii are found to have higher poloidal velocities, and
the velocity roughly remains constant during the outward
propagation. Differentiating from global simulations of thins
disks, winds are self-consistently generated in hot accretion
flow simulations with the internal dynamics of accretion flows
resolved so that reliable wind properties are obtained.

The simulations mentioned above can only track winds on
accretion disk scales. Nevertheless, wind properties beyond this
scale are of great importance in order to understand its role in
the interactions between active galactic nuclei (AGNs) and host
galaxies. Recent cosmological simulations invoke winds from
hot accretion flows that interact with the interstellar medium on
galactic scales to overcome serious problems in galaxy
formation, e.g., reducing star formation efficiency in the most
massive halos (e.g., Weinberger et al. 2017). Moreover, Yuan
et al. (2018) comprehensively include feedback by wind and
radiation from AGNs in cold and hot feedback modes and find
that wind plays a dominant role in both modes, although
radiative feedback cannot be neglected.

The dynamics of disk winds have been studied in the context
of black hole accretion disks with most attention paid to thin
disks (e.g., Contopoulos & Lovelace 1994; Romanova et al.
1997; Proga et al. 2000; Proga 2003; Proga & Kallman 2004;
Luketic et al. 2010; Waters & Proga 2012; Cao 2014;
Clarke & Alexander 2016; Nomura & Ohsuga 2017; Waters
& Proga 2018), and some of these works have extended to
large radii. In this series, we aim to study the wind dynamics
beyond accretion disk scales with an analytical method. A
hydrodynamic model has been adopted in our first paper to
study thermally driven winds (Cui et al. 2019). In this paper,
we employ one-dimensional MHD equations to understand
how magnetic fields influence the wind dynamics, with special
attention to those from hot accretion flows. The key factor of
studying the large-scale wind dynamics lies in the precise
adoption of boundary conditions because the MHD equations
controlling the wind dynamics are a set of differential
equations. In this work, we revisit the large-scale dynamics
with realistic boundary conditions from small-scale accretion
disk simulations and focus on winds from hot accretion flows.

Analytical studies of magnetized winds in cold black hole
accretion disks have been conducted in the literature. Some of
these works invoke the simplification of self-similarity in
solving MHD equations and therefore suffer from the fact that
boundary conditions do not need to be prescribed (e.g.,
Everett 2005; Fukumura et al. 2010). Despite the rarity of
large-scale wind studies from hot accretion flows, a recent work
by Bu & Mosallanezhad (2018) investigates the wind proper-
ties of advection-dominated accretion flows via resistive MHD
equations. However, their results are also limited by the

adoption of self-similar solutions. In this work, we pursue the
study of magnetized disk winds by the standard Weber & Davis
model and solve the set of MHD equations self-consistently,
with the the most realistic boundary conditions taken from
small-scale accretion disk simulations (Y15).
The paper is organized as follows. We describe the MHD

wind model and the analytical approach in Section 2. In
Section 3 we discuss the boundary conditions in terms of hot
accretion flows and thin disks. We present solutions by
detailing the magnetization, temperature, mass loading, and
the acceleration mechanism of the wind in Section 4. Parameter
studies on adiabatic indices and disk angular velocities are
conducted in Section 5. Finally, we summarize the main
findings and discuss the results in Section 6.

2. Model Description and Equations

The steady (¶ ¶ =t 0), axisymmetric (∂/∂ f=0) model of
magnetized disk winds is presented in this section, following
equations introduced in Webber & Davis (1967). The wind
geometry is prescribed in Section 2.1. The set of equations to
be solved is described in Section 2.2 with the properties of
critical points detailed in Section 2.3. The numerical proce-
dures for solving MHD equations are elaborated in Section 2.4,
and a sample solution is displayed in Section 2.5. We list the
physical quantities in Section 2.6; this facilitates the analysis.

2.1. Wind Geometry

Using cylindrical coordinates (R, f, z), we decompose the
magnetic field B and velocity fieldv at any point in the outflow
into poloidal and toroidal components,

ˆ ˆ ( )f f= + = +f fB B v vB v, , 1p p

wherevp,Bp are the poloidal velocity and magnetic field
components, vf is the rotational velocity, and Bf is the toroidal
magnetic field component.
The wind is prescribed to be launched from the disk surface

at (R0, z0), known as the wind base or the footpoint of the
magnetic field line. When we assume that large poloidal filed
lines thread the accretion disk, the field line is anchored at the
wind base and is taken to be straight for R>R0 in the poloidal
plane. This simplified assumption enables us to easily
incorporate this in the wind geometry, and it is valid through
small-scale accretion disk simulations for hot accretion flows
(Y15, see their Figure 1). With a constant inclination angle θ to
the rotational axis, we parameterize the poloidal filed line,
which is also the streamline of the wind as a result of flux
freezing, by q= +R R s cos0 and z=z0+s sin θ, where s
denotes the length along the poloidal magnetic field.
The 1D Weber and Davis model requires the prescription of

the poloidal field strength along the streamline. We adopt the
divergence-free condition, writing the function of Bp(R) in the
form

⎛
⎝⎜

⎞
⎠⎟( ) ( )=
-

B R B
R

R
, 2p p0

0

2

where subscript naught denotes quantities at the wind base.

2.2. Conservation Laws

A magnetized disk wind is described by six equations for six
variables, the gas density ρ, pressure P, poloidal components of

2
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the velocity and magnetic field vp, Bp, and toroidal components
vf, Bf. One of these equations prescribing the strength of the
poloidal magnetic field along the streamline is shown in
Equation (2). Another of these is the polytropic equation of

state,

( )r= gP K , 3

where K and γ are constants, with the latter representing
the polytropic index. The sound speed is defined by ºcs

2

r g r¶ ¶ =P P . The polytropic relation is employed to
express the enthalpy term in conservation of the specific energy
(Equations (12) and (13)).
The remaining four Equations (9)–(12) are conservation laws

derived from stationary ideal MHD. In the Gaussian unit
system, these equations read (Spruit 2016)

· ( ) ( )r =v 0, 4

( · ) ( ) ( )r r
p

 = - - F +  ´ ´v v B BP
1

4
, 5

( ) ( ) ´ ´ =v B 0, 6

· ( ) =B 0, 7

where Φ represents the gravitational potential. Equation (4) is
the continuity equation, and Equation (5) is the equation of
motion. Equations (6) and (7) are the induction equation and
the divergence-free condition that states that no magnetic
monopoles exist. Owing to axisymmetry and the conservation
of magnetic flux, the poloidal magnetic field is derived from the
magnetic flux function ψ by Spruit (2016) and Ogilvie (2016),

ˆ ( )y f=  ´B
R

1
. 8p

Hence we have · y =B 0, which indicates that the flux
function ψ labels field lines or their surfaces of evolution. For
steady and axisymmetric flow, Equations (4)–(7) are reduced to
four conservation laws with four invariants k w el, , , . These
quantities are functions of ψ, thereby they are conserved along
each individual field line.
The first of these invariants can be derived from the

continuity equation:

( ) ( )k y
pr

º
v

B

4
, 9

p

p

where κ is the ratio of the mass flux to magnetic flux. The
induction equation further gives the conservation of angular
velocity of the filed line:

( ) ( )w y
k
pr

º -f fv

R

B

R4
, 10

where vf=Ω R, and Ω is the gas angular velocity. Following
Equation (6), the steady and axisymmetric conditions give

´ =v B 0p p bcause ethey do not allow the existence of a
toroidal electric field ( = - ´ =fE v B c 0p p ). Thus, the
poloidal velocity and magnetic field are everywhere parallel
to each other, v Bp p. This expresses the flux-freezing condition
and does not depend on the reference frames. Along with
Equation (10), the total gas velocity is parallel to the total
magnetic field in the frame rotating with ω. The azimuthal
component of the equation of motion implies the conservation
of angular momentum on each filed line:

( ) ( )y
k

º -f
f

l v R
RB

. 11

Figure 1. Solution plane of the wind model. Top panel: the solid, dashed, and
dotted curves represent the solutions of ( )r e=H R, , ( )r r¶ ¶ =H R, 0, and

( )r¶ ¶ =H R R, 0. The intersections between these curves show the loci of
the slow (red), Alfvén (green), and fast (black) mode velocities from the bottom
to the top of the ( )M R,A

2 -plane. Bottom panel: solution curves by drawing
contours of ( )rH R, with Equation (19). Colors delineate deviations from

( )r e=H R, , which is highlighted in black. The wind solution should be part
of the solid black curve that smoothly connects the slow, Alfvén, and fast
points.

3
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The first term on the right is the ordinary specific angular
momentum, and the second term represents the torque
associated with the magnetic stresses. The Bernoulli integral
or the conservation of specific energy expresses the last
invariant:

( ) ( ) ( )e y wº + - + F +fv v R h
1

2

1

2
, 12p

2 2
eff

where wF = F - R 2eff
2 2 is the combined potential energy of

centrifugal and gravitational forces along the field line. The
gravitational potential by a point mass is defined as F =

( )- + -GM R zBH
2 2 1 2, where MBH is the mass of the central

black hole. Along with the polytropic law, the enthalpy

ò r=h dP is written as

( )g
g

r=
-

g-h K
1

. 131

It is obvious from the angular velocity and centrifugal potential
terms that Equation (12) is written in the rotating frame with
the footpoint angular velocity ω. In the rest frame, the Bernoulli
constant is given by ẽ w k= + F + - fv h R B22 , where

( )= + fv v vp
2 2 1 2. The last term corresponds to the Poynting

flux and is not shown in ε. This is because in the rotating frame,
the magnetic field is strictly parallel to the flow velocity such
that the Lorentz force = ´J B cFL everywhere perpend-
icular to B is perpendicular to ˆw f-v R , hence the field does
no work in this frame. The two Bernoulli integrals are related
by ˜e e w= - l .

2.3. Critical Points

It is convenient to introduce the poloidal Alfvénic Mach
number MA, which is defined as

( )k
pr

= =M
v

v 4
, 14A

2 p
2

Ap
2

2

where pr=v B 4Ap p is the poloidal Alfvén velocity.
Eliminating Bf in Equations (10) and (11) gives

( )w
=

-
-

fv
M l R R

M 1
. 15A

2

A
2

The radius R=RA where MA=1 is the Alfvénic point. The
denominator of the expression for vf goes to zero at this point,
hence we require the numerator to vanish identically. This
results in a simple expression for the conserved specific angular
momentum as

( )w=l R . 16A
2

Substituting Equations (9)–(11) into Equation (12), the
Bernoulli integral, we can express ε as a function of ρ and R,

( ) ( )e r= H R, , 17

and ( )rH R, takes the explicit expression

( )
( )

( )
( )

( )r
k

pr
w k

pr k
= +

-
-

+ F +H R
B l R R

h,
1

2 4

1

2 4
. 18

2
p
2

2

2 4

2 2 eff

Substituting ρ by MA through Equation (19), we obtain

( ) ( )
( )

( )
k

w
= +

-
-

+ F +-H M R
M B l R R

M
h,

1

2

1

2 1
. 19A

A
4

p
2

2

2

A
2 2 eff

Critical points can be obtained by requiring the partial
derivatives of H(ρ, R) to be zero,

( ) ( ) ( )r
r

r¶
¶

=
¶

¶
=

H R H R

R

, ,
0, 20

which gives the slow (r R,s s) and the fast (r R,f f) magnetosonic
point. The subscripts s and f denote the slow and fast critical
points. In particular, these points manifest themselves in the
partial derivative of ρ,

( )

( )

( )( )
( )

r
r

w¶
¶

=- -
W -

-
+

=
- + + +

-

=
- -

-

f

H
v

R

M
c

v c v v v c v

v v

v v v v

v v

1

, 21

p
2

2 2

A
2 s

2

p
4

s
2

Ap
2

A
2

p
2

s
2

Ap
2

Ap
2

p
2

p
2

sp
2

p
2

fp
2

Ap
2

p
2

where pr=f fv B 4A is the toroidal Alfvén velocitiy, and the

square of the sound speed is defined as r g rº ¶ ¶ =c P Ps
2 .

The expressions of vsp and vfp are given by the quadratic
formula

( ) ( )
( )


=

+ + -
v v

c v c v c v
,

4

2
, 22sp

2
fp
2 s

2
A
2

s
2

A
2 2

s
2

Ap
2

where = + fv v vA
2

Ap
2

A
2 . The left-hand side vanishes in

Equation (21) when vp equals either the slow-mode velocity
vsp or the fast-mode velocity vfp. In addition to the conditions
for critical points imposed by Equation (20), a further
constraint is placed to equate the energies at slow and fast
points to the Bernoulli constant,

( ) ( ) ( )r e r e= =H R H R, , , . 23s s f f

We have seen that at the slow and fast magnetosonic
points six equations are introduced, i.e., Equations (20)
and (23) at (ρs, Rs) and (ρf, Rf), while eight variables
(r r k w eR R l, , , , , , ,s s f f ) are presented. If two of these
variables are specified, then the remaining six can be
determined. In this paper, we fix ω and ε, and solve for the
remaining variables r r kR R, , , ,s s f f and l. Hence, any wind
solution is characterized by ω and ε.

2.4. Numerical Procedures

We have verified that in a pure hydrodynamic model, wind
solutions should be either supersonic or transonic, whereas the
subsonic solutions are not likely to exist because of low-
frequency acoustic perturbations (Cui et al. 2019). Our MHD
equations are accordingly solved under the condition that all
solutions smoothly pass through the slow, Alfvén, and fast
magnetosonic point. The general equations to be solved are
given in Equations (20) and (23). These equations must be
fulfilled at the slow and fast magnetosonic point. To start with,
we iterate over a set of values for l and solve for κ, Rs, MAs

2 at
the slow critical point. We then solve for l R M, ,f Af

2 at the fast
critical point using κ found at the slow point. The initial guess

4
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of l and its computed value at fast point are compared for each
iteration until the two values match. The initial guesses for all
these variables are taken through the inspection of the contour

( )r e=H R, . Once r r kR R, , , ,s s f f and l are found, the
remaining variables can be obtained by either solving H(ρ,
R)=ε directly or tracking along the contour curve.

Success in finding the solution at the first time involves
difficulties. However, once the first set of solution is achieved,
it can be used as the initial guess as we alter the parameters to
find new sets of solutions. Note that the initial poloidal
velocities of some solutions exceed the slow-mode velocities,
or equivalently, <R Rs 0. The wind can be accelerated through
any other mechanism when R<R0, which is beyond the scope
of this paper, and we focus on the large-scale wind dynamics
for R>R0 in the ideal MHD regime in the model established
in this paper.

2.5. Solution Plane

Figure 1 shows the solution plane of the wind model. In the
top panel, we plot curves of ( )r e=H R, , ( )r r¶ ¶ =H R, 0,
and ( )r¶ ¶ =H R R, 0 in the ( )M R,A

2 plane. Their interactions
represent the slow, Alfvén, and fast magnetosonic points,
respectively. The wind solution curve is part of the solid curve
that smoothly connects the slow, Alfvén, and fast magneto-
sonic point in order, and the poloidal flow velocity exceeds the
slow-, Alfvén-, and fast-mode velocities when the solution
crosses the corresponding critical points.

In the bottom panel, we plot the contours of H(ρ, R) and
highlight the ( )r e=H R, curve in black in which our wind
solution resides, using Equation (19). The colors delineate
contours with Bernoulli integrals that deviate from ε.
Inspecting the color contours near the critical points shows
that the slow and fast critical points are saddle points. Although
the Alfvén point is a focus of a bundle of cruves, it does not
impose additional constraints on the wind solution. This can be
understood because the condition has already been applied at
the Alfvén point in deriving Equation (16). Strictly speaking, it
should be referred to the Alfvén point, but not to the Alfvén
critical point.

2.6. Definition of Physical Quantities

The Alfvén point separates the wind solution into two
regimes in terms of rotation. For MA = 1, Equation (15) gives

( )w»fv R, 24

where the fluid corotates (Ω=ω) with the angular velocity of
the magnetic field lines. For MA ? 1,

( )»fv
l

R
, 25

and the fluid rotates by conserving its specific angular
momentum. In practice, wind usually starts from low velocities
(MA = 1) so that we can identify ω≈Ω0, where Ω0 is the
angular velocity of the wind at the footpoint. The specific
angular momentum is Ω0R0

2 at the launching point. Once the
wind is accelerated to the Alfvén point, the excess of the
specific angular momentum is ( )W -R R0 A

2
0
2 . By the assump-

tion that ( )W » W R0 K 0 , the wind mass-loss rate is related to the
mass accretion rate inside the disk according to Ferreira &

Pelletier (1995) and Bai et al. (2016)

( )
( )


x = =

-M

dM

d R R R

1

ln

1

2

1

1
, 26

acc

wind

A 0
2

where Macc is the wind-driven accretion rate, ( )M Rwind is the
cumulative mass-loss rate, ξ is called the ejection index, and the
ratio R RA 0 is often referred to as the magnetic lever arm. The
location of the Alfvén point can thereby provide a convenient
measure of the mass loss to the accretion rate.
To quantify the wind properties, we introduce the dimen-

sionless mass-loading parameter μ, defined as

( )m k
w

=
R

B
. 270

p0

The invariant κ in Equation (9) represents the mass flux per
field line. The mass-loading parameter is obtained by normal-
izing κ with wB Rp0 0. The wind is lightly loaded when μ = 1,
and heavily loaded when μ? 1. Characteristic quantities of the
wind can be written explicitly as a function of μ in a simplified
model (Equations (28)–(30)), which assumes that wind
propagates along the equatorial plane and ignores thermal
pressure (cs=0; Spruit 2016). Our wind model has a more
general application than the simplified model and differs from
it by a constant angle from the equatorial plane and finite wind
temperature. In Section 4.5 we directly compare our results to
the expressions derived from this simplified model.
The locus of the Alfvén point can be expressed as

⎡
⎣⎢

⎤
⎦⎥( ) ( )m= + -R

R

3

2
1 . 28A

0

2 3
1 2

As the wind is lightly loaded, the Alfvén radius is far from the
wind base. While for heavily loaded wind, the Alfvén radius
reaches a minimum of ( )=R R 3 2A 0

1 2 when m  ¥.
Furthermore, the terminal wind velocity can be written as

( )w m=¥ -v R , 29p 0
1 3

which states that wind carrying low-mass flux can be
accelerated to high velocities. When μ=1, the terminal
velocity is equal to the rotational velocity at the wind base.
The ratio of the toroidal to poloidal magnetic field at the

Alfvén radius can be approximated by

( ) ( )

( ) ( )





m

m m

»

»

fB

B
19 8 1 ,

1.14 1 . 30
Rp

1 2

A

In the limit of weak mass-loading, the ratio reaches a constant
and is nearly unity. This case can be referred to as the
centrifugally accelerated wind. Up to the Alfvén radius, the field
lines are not strongly bent and the wind corotates with the field
line. At the other limit, with strong mass-loading, the field line
winds up, developing a strong toroidal magnetic field from the
wind base with the corotation breaking down. The wind is then
accelerated by the toroidal magnetic pressure gradient, and the
terminal velocity is much lower than that at the wind base.
Another quantity of interest is the ratio of the Poynting flux

to the kinetic energy flux σ. The component of the Poynting
flux parallel to the poloidal field is w p- fRB B 4p . Far beyond
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the Alfvén radius R?RA, we expect wW » R RA
2 2 by

Equation (15) so that Ω = ω. Thereby, from Equation (10),
we have w» fB B v Rp p , hence Bf ? Bp at very large R. Then,
we can write the conversion of magnetic to kinetic energy as
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Note that at infinity, we have vp>vA because >v vfp A, which
gives an asymptotic value of σ<2.

3. Model Parameters

The footpoint of the magnetized disk winds is set to be at a
spherical radius =r r100

3
g, where ºr GM cg

2 is the gravita-
tional radius. For convenience, we normalize radius, velocity,
and density by their values at the footpoint of the field line,
such that r= = =R v 10 K0 0 . The poloidal magnetic field
strength is parameterized by the poloidal Alfvén velocity

pr=v B 4Ap0 p0 0 at the wind base. This conveniently relates
the magnetic field strength to the velocity so that we can
describe the field strength by comparing it to the Keplerian
velocity. For the fiducial wind model, the parameters are
chosen to be

( )
q

w
= = 
= = = W

z R
v v c v

0.5 , 45 ,
0.2 , 0.5 , 0.8 , 32

0 0

Ap0 K0 s0 K0 K0

and the adiabatic index is set to γ=1.4 throughout.
The fiducial parameters are set by considering the regime of

hot accretion flows. Wind properties are investigated in Y15
based on 3D GRMHD simulations where disk winds are
produced self-consistently from hot accretion flows. These
winds are launched from ∼30rg up to the outer boundary of the
accretion flow, which implies that at the footpoint, winds are a
combination of those originating from r�r0. Launched from
different radii, winds possess different velocities and almost
remain constant during the outward propagation, indicating that
the velocity at the footpoint must be diverse. The trajectory of
wind after launch is found to follow a straight line along an
angle θ  45°, i.e., it is more prone to the pole rather than the
equatorial plane.

We adopt the wind properties that were reported in Y15 as
our fiducial model parameters. The location of the footpoint is
chosen to be the outer radial boundary of their simulations. The
hot accretion flow maintains a disk aspect ratio whose scale
height H is about a half of the cylindrical radius R. We
assume that the wind base is at one disk scale height
and set θ=45° in the fiducial model. The poloidal
magnetic field strength vAp0 is adopted so that the plasma

( )b prº = + fP P c B B8gas mag s
2

p
2 2 , defined as the gas pres-

sure over magnetic pressure, is about unity at the wind base
(Figure 2). The sound speed is set by the disk aspect ratio

=H R c vs0 K0, which is equivalent to about 1.36×109 K at
the footpoint. The fiducial angular velocity of the field line ω is
computed by Equation (10) in accretion disk simulations. We
note that the poloidal velocity at the footpoint is not prescribed
in Equation (32), different from our previous hydrodynamic
work, because satisfying conditions of passing through all three
critical points smoothly places constraints on the number of
parameters that need to be given. Hence, the poloidal velocity

vp0 is solved by MHD equations, and we confirm that the value
found in the fiducial setup is consistent with the value of
GRMHD simulations (see Section 4.2).
Winds that emerged from thin disks have different properties

from hot accretion flows. The disks are cold, for which
situation the sound speed cs0 is expected to be low. A value of
0.1 or 0.05vK0 is usually taken for these disks in numerical
simulations. For both accretion regimes, the magnetic field
strengths at the wind base are barely constrained. Aiming to
include a variety of winds with diverse properties from hot
accretion flows and thin disks, we employ parameter spaces as
follows in addition to our fiducial setup. We obtain wind
solutions over large domains of the poloidal magnetic field,
where vAp0 ä [0.01, 100]. The temperatures at the wind base
span over cs0 ä [0.01, 0.5]. The angular velocity of the field
line ω ä {0.8, 1} and the adiabatic index γ ä {1.3, 1.4, 1.5} are
also investigated in Section 5.

4. Results

In this section we present numerical results of MHD wind
solutions by analyzing the fiducial model in Section 4.1, the
dependence on the poloidal magnetic field strength in
Section 4.2, the wind temperature in Section 4.3, and the mass
loading in Section 4.5. The wind acceleration mechanism is
discussed in Section 4.4. We note that all the solutions obtained
have sub-Alfvénic velocities at the wind base, although some
of the solutions may already pass through the slow magneto-
sonic point.

4.1. The Fiducial Solution

We commence with analyzing the behavior of characteristic
physical quantities with the fiducial parameters prescribed in
Equation (32), shown by curves of vAp0=0.2 in Figure 2. The
radial profiles of the density, the poloidal and toroidal
velocities, the ratio of the magnetic field, plasma β, and the
ratio of the Poynting to kinetic energy flux are displayed in
the plot.
The upper middle panel indicates that the wind is accelerated

monotonically by passing through the Alfvén and fast
magnetosonic points. We note that the poloidal velocities of
the fiducial model already passed through the slow magneto-
sonic point at the wind base. The wind continues to accelerate
after propagating through the Alfvén point. The poloidal
velocity approaches an asymptotic value at large radii; beyond
the fast point, it almost remains constant. From the figure, the
density profile drops as ρ ∝ R−2 at large distances, which is as
expected in Equation (9) because the poloidal magnetic field
strength is prescribed to obey the divergence-free condition as
Bp ∝ R−2, and the poloidal velocity remains about constant
beyond the fast point.
The angular velocity profile shown in the upper right panel

shows whether the gas corotates with the field line, i.e., vf ∝ R,
or rotates by conserving its specific angular momentum, i.e.,
vf ∝ R−1. These two regimes correspond to different wind
acceleration mechanisms that are detailed in Section 4.4. In
short, when the poloidal magnetic field dominates the toroidal
component, corotation occurs and is associated with the
magnetocentrifugal force. During the outward propagation of
the gas, the field lines wind up with the development of toroidal
magnetic fields. Corotation ceases when the toroidal comp-
onent dominates. The wind then rotates by conserving the
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specific angular momentum, and the acceleration is driven by
the toroidal magnetic pressure gradient. In our fiducial model,
the gas is mainly in the case that is driven by the toroidal
magnetic pressure gradient.

In the lower left panel, we display the ratio of the toroidal to
the poloidal magnetic field. A minus sign is taken because the
toroidal magnetic field has the opposite sign to the poloidal
field both above and below the equatorial plane as a result of
the disk rotation. Because −Bf/Bp scales approximately as ∝R,
the toroidal field strength possesses a flatter slope than the
poloidal field, with Bf ∝ R−1. The plasma β is computed by the
ratio of gas pressure to magnetic pressure. Although Bp and Bf
are comparable at the wind base, the magnetic pressure is
dominated by the toroidal component at large radii. The plasma
β is then dominated by the profile of the sound speed because
density and magnetic pressure have the same proportionality
with R. The sound speed is proportional to rµ g-cs

2 1 so that
we obtain b µ µ -c Rs

2 0.8.
The conversion of Poynting flux to kinetic energy flux is

shown in the lower right panel of Figure 2. Near the wind base,
the magnetic energy dominates the kinetic energy. As the wind
propagates outward, magnetic energy is converted into kinetic
energy, yielding a decline in their ratio. Beyond the fast
magnetosonic point, the ratio approaches an asymptotic value
of σ∼2, as expected in Equation (31).

4.2. Dependence on the Poloidal Magnetic Field

To study the dependence of poloidal magnetic fields, we keep
cs0 constant and vary vAp0. Because the initial poloidal magnetic
field strength is barely constrained, we explore a large domain by
setting =v v0.01Ap0 K0 and =v v100Ap0 K0 to be the lower and
upper limit (Figure 3). The lower values of vAp0 (weak magnetic
field strength) can be associated with the standard and normal
evolution (SANE; Narayan et al. 2012) model that is referred to
in hot accretion flow simulations, and higher values of vAp0
(strong magnetic field strength) can be related to the
magnetically arrested disk (MAD; Narayan et al. 2003) model.
In Figure 2 we show profiles of diagnostic physical

quantities at various vAp0 with nonconsecutive values from
0.2vK0 to 10vK0. The overall proportionality as a function of R
of each physical quantity at large distances for different vAp0 is
very similar. Larger poloidal field strengths lead to fast poloidal
velocities. The Alfvén points and fast magnetosonic points
generally shift toward larger radii as poloidal fields are
enhanced. The poloidal velocities all tend to approach an
asymptotic value at large radii. At the fast magnetosonic point,
the poloidal velocity mostly reaches its asymptotic value. The
angular velocity in Figure 2 shows a transition from corotation
to conserving specific angular momentum for strong poloidal
fields. When the poloidal magnetic field is weak at the wind
base, the magnetic tension is not able to sustain the corotation

Figure 2. Profiles of density, poloidal and toroidal velocity, the ratio of the toroidal to the poloidal magnetic field, plasma β, and the ratio of the Poynting flux to the
kinetic energy flux σ of the wind as a function of cylindrical radius R along the wind trajectory prescribed with q = 45 to the rotational axis. Colors indicate various
initial poloidal magnetic field strengths, with vAp0 ranging from 0.2 to 10 vK0. Solid circles mark the Alfvén points, and triangles represent the fast magnetosonic
points.
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between the gas and the field line (see Section 4.4). The ratio of
the toroidal to the poloidal magnetic field tends to be lower
when the poloidal field strength is stronger at the launching
point, as expected, and the plasma β drops with increasing
vAp0.

In Figure 3 we show in black curves the dependence of the
poloidal field strength vAp0 on the Alfvén point, the mass-
loading parameter, the magnetic field strength ratio at the wind
base, the poloidal velocity at the launching point and at the fast
magnetosonic point, and the plasma β at the wind base. The
field strength spans over 0.01–100 vK0. Shown in the upper left
panel, the Alfvén point shifts toward large radii with vAp0 and is
boosted when vAp0  1. The ejection index (Equation (26)),
which is the ratio of the cumulative mass-loss rate to the
wind-driven mass accretion rate, is directly related to the
location of the Alfvén point. Taking representative values of
vAp0=0.1, 1, and 10, we find the corresponding ejection
indices ξ≈3, 0.15, and 0.0086, respectively. Larger ejection
indices correspond to more massive mass loading. As shown in
the upper middle panel, the mass-loading factor is a decreasing
function with vAp0, hence an increasing function of ξ, as
expected. The field strength ratio ∣ ∣fB B0 p0 declines with vAp0,

which indicates that strong mass-loading leads to a fast
development of the toroidal magnetic field because it is harder
to enforce corotation with more massive winds so that the field
line bends more.
The lower left panel of Figure 3 delineates the poloidal

velocity at the wind base. In the domain of vAp0 we
investigated, the poloidal velocity at the footpoint vp0 spans
over 0.01–0.5 vK0 with an increasing poloidal field strength.
Small-scale 3D GRMHD simulations of hot accretion flows
imply that near the surface, the poloidal velocity at each radius
is about 0.2vK(r), where vK(r) is the local Keplerian velocity
(Y15). Their results are achieved by weighting through the
mass flux of the wind at different radii because at each
launching point r0 the outflow is a combination of wind
originating from r<r0. We can approximately treat 0.2vK as
the wind poloidal velocity launched at r0 because wind that is
launched at larger radii carries more mass flux, as concluded by
fitting the simulation results, which gives  µM rs

wind and
s≈1. In Section 3 we reported that the poloidal velocity at the
footpoint is not prescribed because the number of parameters to
be given at the boundary are limited by requiring the wind
solutions to pass through the slow and fast critical points. With

Figure 3. Alfvén radius, mass-loading parameter, ratio of the toroidal to the poloidal magnetic field strength, poloidal velocity at the wind base and at the fast
magnetosonic point, and plasma β at the wind base as a function of the poloidal magnetic field vAp0 (black curves) and temperature cs0 (blue curves) at the wind base.
When we vary vAp0, three temperature values are investigated, where =c 0.1s0 (dotted), 0.3 (dashed), and 0.5 (solid). When we varyi cs0, three values of the poloidal
field vAp0 are investigated, where vAp0=0.2 (solid), 1 (dashed), and 10 (dotted).
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our fiducial wind temperature cs0=0.5 and the fiducial field
strength at the wind base vAp0=0.2, the poloidal velocity is
vp0≈0.2vK0, which is consistent with the GRMHD simula-
tions. We also note that when vAp0  1, the poloidal velocity at
the wind base approaches an asymptotic value of about 0.5vK0.

The terminal velocity of the wind also deserves attention. It
reaches a faster speed than the poloidal magnetic field as the
wind base increases. The poloidal velocity can rise several
times or be one order of magnitude higher than it is at the wind
base. The fiducial model of vAp0=0.2 reveals a terminal
velocity of vpf≈0.5vK0 (≈0.016c). Y15 trace the trajectory
of the wind from 80 to 103rg to study the physical properties
during the outward propagation of wind. They find that the
poloidal velocity of the wind with opening angles θ  30°
shows an increase with distance, and it tends to remain constant
since the launching point when 40°  θ  50°. Their results are
applicable to a radial extent close to the accretion disk (up to a
few times 100rg) where the corona region above the main disk
body is rather turbulent, unlike the pure MHD model we
adopted in this work.

It is immediately apparent that the plasma β0 is a decreasing
function with vAp0. As seen in the lower right panel of Figure 3,
it ranges from unity down to 10−4 for vAp0 ä [0.01, 100] for the
fiducial temperature cs0=0.5, and even lower when the
temperature drops. Another diagnostic quantity of interest is
the ratio of the Poynting flux to the kinetic energy flux σ.
Although not shown in the figure, we report that the ratio of the
Poynting flux to the kinetic energy flux is nearly a constant
σ∼2 at large radii throughout the entire domain of vAp0 and
cs0 employed in Figure 3. This means that the values of the
Alfvén velocity and the fast magnetosonic velocity are
comparable toward large radii (Equation (31)).

4.3. Dependence on Temperature

We study the influence of the wind temperature at the launch
point because it differs substantially for hot accretion flows and
thin disks. In Figure 3 we first keep cs0 fixed throughout
the domain of vAp0 by adopting three representative values
cs0=0.1, 0.3, and 0.5 vK0. Then we vary cs0 at fixed values of
vAp0=0.1, 1, and 10 vK0. We find that the wind properties do
not show a strong dependency on the temperature at the
footpoint, except for the plasma β0.

The black curves in Figure 3 reveal that the influence of the
launch point temperature on the wind evolution is modest. The
enhanced wind temperature results in a smaller Alfvén radius,
higher mass-loading, a faster launch velocity, and a slower
terminal velocity. The magnetic field shows an equal partition
between the poloidal and toroidal components for all three cs0
at vAp0∼1. With slopes of ∣ ∣fB B0 p0 varying slightly with
different cs0, the wind at the footpoint is generally more
dominated by the toroidal field when vAp0<1 and vice versa.
When we fix vAp0 at 0.2, 1, and 10 vK0, the wind temperature
cs0 from 0.01 to 0.5 vK0 is under investigation. Shown as blue
curves in Figure 3, the diagnostic quantities generally vary
slightly with cs0, except for vAp0 and β0. The poloidal field vAp0
shows a more prominent increase with vAp0  1. The plasma β0
at the wind base is a strong function of cs0 because it is closely
related to the gas pressure. The black and blue curves in the
lower right panel of Figure 3 indicate that at fixed vAp0, higher
temperature yields lower β0, as expected.

4.4. Acceleration Mechanism

In this work, we aim to study how magnetism influences the
dynamics of disk winds. The magnetically driving mechanism
can be divided into two categories based upon the locus of the
Alfvén point (Equations (24) and (25)). In general, with radii
smaller than the Alfvén radius, the gas is accelerated mainly
through magnetocentrifugal force where corotation is enforced.
Beyond the Alfvén radius, gas conserves specific angular
momentum and is accelerated thorugh the toroidal magnetic
pressure gradient.
Physically, near the wind base, the poloidal magnetic field

strength is reasonably large so that the magnetic pressure is
stronger than the gas pressure or the ram pressure. The
magnetic tension force persists, and the field line behaves like a
rigid wire where gas is free to move along it, resembling the
scenario of beads on a wire. The wind is enforced to corotate,
with the field line sticking out of the disk surface. The enforced
corotation causes the increase in centrifugal force with distance
to sustain the outward acceleration. This regime is referred to as
magnetocetrifugal force in driving outflows. Along the wind
trajectory, the poloidal field strength drops toward large
distances. The magnetocentrifugal acceleration will effectively
stop when the ram pressure starts to exceed the magnetic
pressure, and the corotation ceases to be valid because the
magnetic tension force weakens. Meanwhile, the toroidal
component of the field builds up as a result of the disk rotation
and subsequently dominates its poloidal component. Then the
flow is accelerated mainly through the toroidal magnetic
pressure gradient.
The upper right panel in Figure 2 shows that with a strong

poloidal magnetic field at the wind base ( v 5Ap0 ), corotation
is enforced near the disk surface and the poloidal magnetic field
dominates the toroidal component, as seen in the lower left
panel. Close to the Alfvén radius, ∣ ∣fB Bp becomes higher than
unity, and corotation ceases. Weak poloidal magnetic fields
(vAp05) possess a large ∣ ∣fB Bp at the wind base that do not
even allow corotation.
A more intuitive understanding of the wind acceleration

mechanism can be achieved by looking at the components of
specific energy terms in the Bernoulli integral (Equation (12)),
which is expressed in a frame that rotates with angular
frequency ω. Rearranging Equation (12), we arrive at

( )e w= + + F + -f fv v h v R
1

2

1

2
. 33p

2 2

On the right-hand side of Equation (33), the terms correspond
to the radial kinetic energy, the rotational energy, the
gravitational potential, the enthalpy, and the centrifugal
potential, respectively. In the upper panels of Figure 4, we
show the components of the Bernoulli integral as a function of
R at vAp0=0.2, 1, and 10vK0. In the limit of the weak poloidal
field (vAp0=0.2vK0), this suggests that the drop in enthalpy,
rotational energy, and centrifugal potential compensates for the
increase in gravitational potential and radial kinetic energy.
More precisely, it is mainly the rapid decrease in enthalpy that
offsets the quick growth of the gravitational potential, which is
consistent with the results in Cui et al. (2019), where a pure
hydrodynamic model is assumed. Toward the strong poloidal
field limit (vAp0=10vK0), the radial kinetic energy shows a
more pronounced increase primarily as a result of the energy
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converted from the centrifugal potential. An intermediate
poloidal field (vAp0=1) leads to an intermediate case.

It is noteworthy that the Bernoulli integral (Equation (12))
receives no contribution from magnetic forces because in the
corotating frame, the total magnetic fieldB is parallel to the
total velocity v. Nonetheless, ultimately, the magnetic forces
drive the outward propagation of the wind. We find that the
magnetic term does involve the Bernoulli integral in its rest-
frame expression (Section 2.2). To examine the effects of
magnetism in driving disk winds, we write the equation of
motion along the poloidal magnetic field as

( )
r pr

= - -
F

- fdv

dt

dP

ds

d

ds

dB

ds

1 1

8
, 34

p
2

where s is the length along the wind trajectory. The last term on
the right-hand side is associated with the pressure gradient of
the toroidal fields along the direction of wind propagation. The
outward acceleration of the wind requires that the thermal and
magnetic pressure gradient overcome gravity.

In the bottom panels of Figure 4 we decompose the poloidal
forces into the thermal and magnetic pressure gradient, as well
as gravity at different vAp0 and fixed cs0=0.5vK0. In the limit
of the weak poloidal field (vAp0=0.2vK0), the forces exerted
by the thermal and magnetic pressure gradient are comparable,
with thermal pressure gradient being more pronounced before

passing through the Alfvén point. The toroidal magnetic
pressure gradient dominates the thermal pressure to drive
outward acceleration when vAp0>1. The magnetic pressure
gradient becomes overwhelming when the poloidal field at the
wind base is strong, i.e., vAp010, which results in a boost of
the terminal velocity (Figure 3).

4.5. Dependence on Mass Loading

In Section 2.6 we presented (asymptotic) relations between
diagnostic physical quantities (Equations (28)–(31)), namely,
the Alfvén radius, the terminal velocity, the ratio of the
magnetic field strength, the ratio of the Poynting flux to the
kinetic energy flux, for which Equations (28)–(30) are derived
in the case of the cold Weber & Davis wind model (θ=90°,
cs0=0). Our model differs from this by an inclined wind
trajectory θ=45° and cs0=0.1, 0.3, and 0.5. Being more
generalized, our results are compared to the derived relations to
test whether they can still be obeyed.
The top panel in Figure 5 shows that high mass-loading

(weak vAp0) is associated with a small Alfvén radius, and
accordingly, a high mass loss to the mass accretion rate. Our
results perfectly match the relation in Equation (28), especially
when μ  0.1 for all three cs0 is adopted. It seems that the
relation holds for low mass-loading. When μ  0.1, winds with
different cs0 show deviations from the derived relation to

Figure 4. Components of potential energies and forces along the wind trajectory with varying vAp0=0.2 (first column), 1 (second column), 10 (third column), and
fixed cs0=0.5. Top panels: Bernoulli constant (ε) and components of potential energies, namely, radial kinetic energy ( v1 2 p

2), rotational energy ( fv1 2 2), black hole
gravitational potential (Φ), enthalpy (h), and centrifugal potential ( w- fv R) as a function of R (Equation (33)). Bottom panels: components of forces, namely, thermal
pressure gradient (red), magnetic pressure gradient (blue), and gravity (black) as a function of R (Equation (34)). The vertical dashed lines denote the Alfvén points
(gray) and the fast magnetosonic points (black).
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different extents. RA falls below expectation for cs0=0.3 and
0.5, but rises for cs0=0.1. A lower limit of ( )=R 3 2A

1 2 is
placed for high mass-loading by the cold wind model, while
this is no longer valid for winds that possess finite temperature.

The middle panel of Figure 5 implies that high mass-loading
results in a case that is more dominated by the toroidal
magnetic field because it is more difficult to enforce that gas
corotates with the field line when the outflow is massive. The

horizontal asymptotic relation is strictly obeyed when μ = 1
(strong vAp0) for all cs0. In the weak poloidal field limit, colder
winds show better consistency to the derived relation, while
the curve of cs0=0.5 deviates more prominently from the
asymptotic line. When μ is fixed, warmer winds tend to obtain
lower ∣ ∣fB B Rp A values, because the Alfvén radius is closer to
the wind base and ∣ ∣fB B Rp A is always an increasing function
with radius.
In the bottom panel we show the terminal velocity as a

function of mass loading μ. Despite the wind base temperature,
all three models with various cs0 strictly satisfy the asymptotic
relation. This is likely because our prescribed wind model, with
an adiabatic index γ=1.4, is cooled nearly adiabatically.
Hence, the wind temperature drops rapidly with radius. At large
distances, the wind is cold as in the model for the derived
relation.

5. Parameter Study

We investigate the dependence of diagnostic physical
quantities on the field line angular velocity (Section 5.1) and
adiabatic index (Section 5.2) in this section. In Figure 6 we
show two quantities of interest, namely RA and vpf, as a
function of the poloidal magnetic field strength at the footpoint
vAp0. The Alfvén point RA directly relates to the mass loading
and can be used to distinguish the regions dominated by
magnetocentrifugal and toroidal magnetic pressure gradient.
The terminal velocity vpf shows the extent of the wind
acceleration.

5.1. Dependence on the Field Angular Velocity

We compute the angular velocity of the field line using
Equation (10) with small-scale accretion disk simulations. The
θ dependence leads us to adopt a higher value of ω=1 to
follow the trend of the solutions. In the lower left panel of
Figure 6, we find that a higher field angular velocity results in a
greater RA and vpf.

5.2. Dependence on the Adiabatic Index

The adiabatic index γ of the wind remains uncertain and is
determined by the intricate interplay of thermal conduction,
heating, and cooling. Accurate values can be obtained through
numerical simulations by following the trajectory of the wind,
which may introduce further complications to our MHD wind
equations by varying its value along the field line. In the
hydrodynamic case, γ<1.5 is required to obtain transonic
solutions when angular momentum is not taken into account.
For simplicity, we adopt a constant γ in the model and test

adiabatic indices above and below our fiducial value. In the
right panel of Figure 6, the wind solution is generally not a
strong function of γ because RA and vpf do not show discernible
variations when vAp0 is greater than unity. When vAp0 is lower
than unity, larger adiabatic indices result in greater Alfvén
radii. The reason is that the thermal pressure gradient is
comparable to the magnetic force in driving winds at weak field
strengths. The temperature that is determined by γ then plays
an important role. As vAp0>1, the magnetic force dominates
the wind acceleration (see Figure 4) so that a slight variation in
γ does not modify the solutions to a great extent.

Figure 5. Diagnostic physical quantities as a function of mass-loading
parameter μ at various wind base temperatures cs0=0.5 (solid black), 0.3
(dashed black), and 0.1 (dotted black). Top panel: loci of the Alfvén point as a
function of the mass-loading parameter. Middle panel: ratio of the poloidal to
the toroidal magnetic field strength at the Alfvén point. Bottom panel: wind
terminal velocity as a function of μ. The dash–dotted blue curves in all panels
denote the relation derived from the cold Weber & Davis wind model in
Section 2.6.
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6. Conclusions and Discussion

6.1. Summary

In this work, we present an initial effort toward studying the
dynamics of black hole accretion disk winds toward large
radii. Disk winds are essential ingredients for AGN feedback
in understanding the coevolution between the central super-
massive black hole and the host galaxy. The limited
dynamical range of small-scale accretion disk simulations
does not allow us to study the kinematics of winds toward
galaxy scales. In this work, we employ wind properties
obtained in small-scale accretion disk simulations as our inner
boundary conditions and adopt an analytic model to provide a
simple but intuitive way to understand wind dynamics over a
wider spatial range.

We construct 1D MHD equations following Webber &
Davis (1967) in cylindrical coordinates. Four equations
associated with four conserved quantities, including mass to
magnetic flux, angular velocity of the field line, specific angular
momentum, and specific energy (Equations (9)–(12)), are
solved. The solution is requested to smoothly pass through the
slow, Alfvén, and fast critical points. We do not impose the
condition that all three critical points should have their loci
beyond the wind base. Our fiducial model is set with
parameters for winds from hot accretion flows, specifically,

= =c v v v0.5, 0.2s0 K Ap0 K , and w W = 0.8K . The geometry
of the poloidal magnetic field is prescribed as a straight line
with a constant angle from the rotational axis (θ=45°), while
the strength is described by the divergence-free condition. We
summarize our main results as follows.

The physical quantities possess the following relations with
cylindrical radius R as the wind passes the fast magnetosonic
point:

( )
r

b r

µ µ µ

µ µ
f

f
g

- -

- -

R v v R

B R

const.

, 35

2
p

1

1 1

with the prescribed poloidal magnetic field Bp ∝ R−2. Moreover,
we explore the dependence of the poloidal magnetic field at the
wind base characterized by vAp0 in a range from 0.01 to 100.
The weak magnetic field case corresponds to the SANE model
in accretion flow simulations, and the strong magnetic field case
is associated with the MAD model. The Alfvén radius is a
quickly increasing function with magnetization when vAp0 is
higher than unity, whereas the mass-loading parameter is a

decreasing function of vAp0. Equal partition of ∣ ∣fB B0 p0 is
achieved when vAp0 is about unity, with smaller ∣ ∣fB B0 p0

toward large vAp0. The poloidal velocity at the footpoint vp0 is
enlarged with vAp0 but approaches an asymptotic value of
0.5vK0 when vAp0>1. A faster terminal velocity vpf is
associated with a stronger vAp0, and the plasma β0 is a
decreasing function of magnetization, as expected. We further
investigate the dependence of the temperature at the wind base
cs0 from 0.01 to 0.5vK0, which shows modest effects on the
physical quantities.
The wind acceleration mechanism is studied for different

poloidal magnetic field strengths at the wind base. With strong
poloidal fields v 5Ap0 , the corotation can be enforced close to
the disk surface. Beyond the Alfvén radius, corotation ceases
where the gas rotates by conserving specific angular momen-
tum. Weak poloidal fields vAp0  5 do not give rise to
corotation. The decomposition of the Bernoulli constant reveals
that with a weak poloidal field where vAp0=0.2, it is chiefly
the enthalpy that is converted into black hole potential energy,
resembling the scenario in the pure hydrodynamic model. A
strong poloidal field strength vAp0=10 results in a fast rise of
the radial kinetic energy, which is attributed to the conversion
from the centrifugal potential. The decomposition of poloidal
forces indicates that the thermal pressure gradient is compar-
able to the toroidal magnetic pressure gradient near the wind
base at vAp0=0.2, and the magnetic force dominates the
acceleration for vAp0  0.2.
The dependence of diagnostic physical quantities on the

mass-loading parameter μ is presented. Heavily loaded winds
correspond to weakly magnetized winds (vAp0<1). The
Alfvén radius is a decreasing function of μ, while ∣ ∣fB B Rp A

rises with it. The relations derived in the cold Weber & Davis
model are generally obeyed for relatively cold winds in our
model, whereas warmer winds show more deviations. The
terminal velocity of the wind perfectly fits the derived relation,
which seems not to be affected by the wind temperature. We
deduce that this is caused by the nearly adiabatic cooling of the
wind. The ratio of the Poynting flux to the kinetic energy flux
toward large radii approaches an asymptotic value of σ∼2.
The dependence on the field line angular velocity and the
adiabatic index are explored as a function of vAp0. The Alfvén
radius RA and terminal velocity vpf enlarge with higher field
line angular velocity ω. The adiabatic index does not seem to
affect the wind solution much, especially when vAp0>1.

Figure 6. Alfvén radius RA (black) and terminal velocity vpf (blue) as a function of the poloidal field strength vAp0 at various field line angular velocities ω ä {0.8, 1}
and adiabatic indices γ ä{1.3, 1.4, 1.5}.
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6.2. Discussion

6.2.1. Comparison with the Hydrodynamic Model

In the first paper of this series, a hydrodynamic wind model
considering the black hole and galaxy potential was employed
to study the wind dynamics toward large distances (Cui et al.
2019). The wind solution found in that work requires smooth
passage through the sonic point, which is the only critical point
in the hydrodynamic model. We demonstrate that the relations
of the physical quantities as a function of cylindrical R are
r µ µ-R v, const.2

p , and vf ∝ R−1. The wind acceleration is
attributed to the conversion of enthalpy into kinetic energy. For
hot accretion flows, the radial velocity of wind is nearly
constant (≈0.2vK0) with the departure from the wind base.

When we include magnetism, we note that the hydrodynamic
variables share the same proportionalities with R as those in
the hydrodynamic model. The wind is accelerated by both
thermal pressure and magnetic force for weak magnetization
(vAp0∼0.2), where the toroidal magnetic pressure gradient
dominates the magnetic force. For strong magnetization
(vAp0>1), thermal pressure is not important and the accel-
eration is attributed to the magnetocentrifugal force near
the surface and to the magnetic pressure gradient beyond
the Alfvén radius. This causes the terminal velocity for the
magnetized wind to reach vpf=0.5vK0 (≈0.016c) for
the fiducial model where vAp0=0.2, and increases to

( )= »v v c0.03pf K0 and ( )= »v v c5 0.15pf K0 for vAp0=1 and
10, respectively (Figure 3).

6.2.2. Caveats

One limitation of this work is that we do not include the
galaxy potential in the MHD equations. As the wind propagates
over the accretion scales, the gravitational potential from the
galaxy will play a role against its outward acceleration. This
additional potential will be involved in the Bernoulli integral.
Nevertheless, our hydrodynamic results imply that the galaxy
potential does not significantly affect the wind solution when
reasonable parameters at the wind-launching point are adopted.
With the complexity of solving for MHD equations, the galaxy
potential is thereby temporarily excluded in this work for the
sake of simplicity.

Another caveat comes from the collimation of the wind. To
confine the momentum flux of the outflow, it can be either
compressed by an external medium that is dominated by gas
pressure or by the hoop stress associated with the magnetic
tension of the toroidal magnetic field. However, the kink
instability takes place with the presence of a predominating
toroidal field. Once the instability sets in, the collimation
provided by the hoop stress is mitigated (Eichler 1993). Rather
than collimated by the toroidal pinching force, the poloidal
disk magnetic field is suggested to preserve the collimation
(Spruit et al. 1997). The winds are expected to experience
the confinement via the mechanisms mentioned above. The
collimation modifies the trajectory of the wind such that
the geometry and strength of the poloidal magnetic field would
be different. However, previous work has proved that the wind
properties are not sensitive to the field geometry (Bai et al.
2016). To properly deal with the collimation of the flow, the
force balance in the (R, z)-plane perpendicular to the poloidal
magnetic field should be considered (e.g., Sakurai 1985; Grad-
Shafranov equation). In this case, the solutions obtained for a
fixed poloidal magnetic field are still valid, but we should

interpret the results in terms of the yet-to-be-determined
poloidal field.
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QYZDJSSW-SYS008), and the Astronomical Big Data Joint
Research Center co-founded by the National Astronomical
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