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Abstract
The first calculation, similar to that of Lewis of 1908, takes as postulates
Newton’s second law of motion and work-energy equivalence, the second
makes use of the Hamilton—Jacobi equation for motion in free space and the
third identifies the velocity of a freely moving particle with the group velocity
of its associated de Broglie wave. In all cases the equivalence of mass and
energy is also postulated. How the path integral formulation of quantum
mechanics relates all the different calculations is demonstated. The essential
roles of relativity, quantum mechanics and the particulate nature of light in the
establishment of the current standard units of length, time and mass, are
discussed, as well as the similar relations of the fundamental constants ¢, 4 and
k to energy at the microscopic physics level.

Keywords: mass-energy equivalence, relativistic kinematics, time dilation

1. Introduction

By far the most important aspect of special relativity theory from both the practical and
fundamental physics viewpoint is the equivalence of mass and energy predicted in two papers
published by Einstein in 1905 [1-3]. This was completed by the relativistic generalisations of
the momentum and energy concepts of Newtonian classical mechanics by Planck in the fol-
lowing year [3, 4]. As discussed in [3] the empirical fact that enormous reserves of energy must
be stored in the matter of all atoms had already been clearly understood by experimental
physicists studying radioactive decay [5], as well as that this energy enabled new particles to be
created, thereby reducing the mass of the decaying atom [6]. The fact that new particles can be
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created from the kinetic energy of other particles was the basis of the novel 20th century
scientific disciplines of nuclear physics, particle physics and particle astrophysics.

In spite of the above, elementary special relativity, as taught from text books, is still
largely restrained to the range of pre-1905 concepts considered by Einstein along his route to
its discovery—Ilight signals corresponding to electromagnetic waves, considered to be solu-
tions of Maxwell’s equations in free space; the postulate that the laws of physics are the same
in all inertial frames, so that there are no preferred frames for describing physical experiments.
In this approach the Lorentz transformations of both electromagnetic fields and space-time
events play a fundamental role.

The object of the present article is to point out that, following the method of a dynamical
calculation by Lewis of 1908 [7], also given in The Feynman Lectures in Physics [8], a much
simpler approach to the teaching of special relativity at an elementary level is possible. This is
done, in section 3, by introducting, as the primary postulate, the empirically observed
equivalence of mass and energy: E = xm where & is an, initially unknown, universal, con-
stant with the dimensions of velocity squared that is kinematically identified with ¢* where ¢
is the speed of light in free space. This is a consequence of the particulate nature [9] of light.

Once the functional dependence of relativistic energy on velocity is determined the time
dilation relation follows directly from the invariant relation between rest mass, momentum
and energy, on cancelling out the rest mass squared that appears as a common factor in each
term of the equation.

The derivations in sections 4 and 5 below make the same initial postulates, of mass-
energy equivalence and an ansatz for relativistic momentum, as that of section 3. The calc-
ulation of section 4, which was sketched, in the case that Kk = ¢? is assumed at the outset, in a
previous paper published in this journal [10], makes use of the Hamilton principal function S
of classical Hamiltonian dynamics. Interestingly, only uniform motion in free space is con-
sidered so that the concepts of force, energy and Newton’s dynamical laws, essential to the
first derivation, play no role in this case.

The third calculation is a ‘reverse engineered’ approach based on de Broglie’s derivation
of the quantum-mechanical formula for the de Broglie wavelength in terms of the relativistic
momentum p: A = k/p [11]. De Broglie assumed relativistic kinematics and that the asso-
ciated particle velocity is equal to the group velocity of the de Broglie wave. It is shown that,
with the de Broglie wavelength formula, the Planck-Einstein relation: E = hv, and the
identification of the group velocity with particle velocity as initial postulates, the velocity
dependence of relativistic energy and the time dilation relation may be derived, the latter
derivation being the same as given previously.

The postulates used in the different derivations are listed in the following section, while
the final section discusses the connection of all three derivations to fundamental micro-
physics, that is, to quantum mechanics, as well as the use of values of the constants « (of
relativity) and 4 (of quantum mechanics) in the modern international (SI) definitions of the
units of temporal (the second) and spatial (the metre) intervals, Finally, the role of these two
constants as well as Boltzmann’s constant, k, in relating the phenomenological concepts of
mass, light frequency, and temperature, respectively, to the energy of microscopic com-
stituents of matter, is discussed. In an appendix the pedagogical virtues of the approach of
section 3 are compared with those of others that have been recommended in the literature.

The first of the derivations, based on Newton’s laws and work-energy equivalence, is
suitable for inclusion in an introductory course at any level (down to high school). It could
also form a stand-alone basis of an introductory course on relativity for applied physicists or
engineers mainly interested in practical applications of the subject. The second and third
derivations are more suited to an advanced course on relativity at graduate or undergraduate
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level, while historians or philosophers of science may find of interest the second and third
derivations and the discussion, in section 6, of the connections of both special relativity and
classical mechanics to quantum mechanics, as well as the discussion of common physical
meaning of the constants «, & and k. Teachers of relativity, at any level, may find the material
presented in the appendix informative.

2. Postulates

The derivations are based on the following postulates concerning the physical attributes of a
physical object of energy E and mass m moving with speed v:

I. Mass-energy equivalence:
E®W) = km@v) = cm(0)y(v), 2.1

where « is an, initially unknown, universal constant with the dimensions of velocity
squared, and v = ds/dr where ds, dr are infinitesimal space and time intervals.
II. An ansatz for relativistic momentum:
E

p="Lv 2.2)

III. Equivalence of work, W, and energy:
dW = Fds = dE, 2.3)

where F is an applied Newtonian force.
IV. Newton’s second law of motion'

b 1dEY)

= 2.4
dt Kk dt @4

V. Hamilton’s principal function for an object in free space:
S =ps — Et. (2.5)

VL. Equality of the group velocity of a de Broglie wave, v,, with the velocity of the
associated particle:

dv
1 9
a(5)
where E = h v, p = h/)\; v, A are the frequency and wavelength of the de Broglie wave
and h is Planck’s constant.

V=, = (2.6)

All the following derivations employ I and II. The first assumes, in addition, III and IV, the
second V and the third VL.

! Note that this form of the second law, where force is equated to the time derivative of momentum (not, as in

elementary mechanics text books, as ‘mass times acceleration’) is exactly the form in which it was given in the
Principia [12]. See definition 2 (p 404) and Law 2 (p 416).
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3. Derivation from Newton’s second law and work-energy equivalence

Combining (2.3) and (2.4) gives

dw = d—pds = vdp = dE. 3.1
dr

Multiplying both sides of the last member by E and using (2.2) gives

EdE = Evdp = kpdp (3.2)
or

d(E?) = kd(p?). (3.3)
Integrating (3.3):

E() P
[ CaEy =k [T dp?) (3.4)
E(0) 0
or
2

EW)? — E(0)> = kp(v)? = wvz. (3.3)
Rearranging, it is found that

Ewy =20 _ _mO® _ .. (3.6)

e
where
1
m=m(0), v= .
"

K

The relations p = myv and E = xkmy may be combined with (3.5) to obtain the velocity
in terms of the rest mass, m, the constant x and the relativistic momentum:

e P - _IEp 3.7)

E \/mpz + E(0)? \/p2 + km?

In consequence, any object with relativistic momentum, p such that p > /xm will move, in
any inertial frame, with an almost constant velocity close too, but slightly less than, /x. On
identifying light with photons, massless” particles, it is found that the universal constant /% is
equal to c, the speed of light in free space. In this way Einstein’s postulate, in special
relativity, that the speed of light is constant may be understood [13] as necessary consequence
of his contemporaneous discovery [9] of the particulate nature of light’. Thus the special
relativistic definition of + is recovered from (3.6):

2 The experimental upper limit on the photon mass is 107'® eV / ¢* [14]. Any change in the speed of light due to a
photon mass less than or equal to this value is negligible as compared to the experimental uncertainty on c. See
section 6 below.

3 Equation (3.7) suggests that the experimental discovery, in the late 19th century, that the electromagnetic waves
predicted by Maxwell do have the same speed as visible light has the alternative explanation that that the latter
consists of particles with a rest mass much less than their energy. i.e. in modern parlance, that photons exist. That the
constant ¢ should be regarded not as an attribute of light, but, for purely kinematical reasons, as the speed of any
massless particle was strongly emphasised by Lévy-Leblond [15].
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y=— (3.3)
Setting v = ds/dt and rearranging (3.8) gives a time-like invariant interval relation:
cdr)
(cdt)? — (ds)? = (—) = (cd7)2. (3.9
v

If v=0then v =1, ds = 0 and df = d7 is a time interval recorded by a clock at rest in the
frame of an observer. If ds = O then the last member of (3.9) is a time dilation relation giving
the time interval dz as recorded by a clock at rest in an observer’s rest frame corresponding to
the time interval d7 recorded by a similar clock moving at speed v in the frame of observation:

dt = ~dr. (3.10)

The above calculation is couched in terms of relativistic energy but it is mathematically
equivalent to calculations of m(v) or v(v). To show this, the differential equation obtained by
combining postulates I, II and III, in equation (3.1):

£ _ (3.11)
dp

is expressed in terms of E and v only by using equation (2.2) to eliminate p. This gives
1 dE v
- = 3.12
Edv K —1? G-12)

which is also obtained as equation (4.8) in the calculation below based on the Hamilton—
Jacobi equation. Because of the proportionality in (2.1) of E(v), m(v) and ~(v), (3.12)
generalises to a differential equation that gives the velocity dependence of all three quantities:

1 dE(v) 1 dm(@v) 1 dy(v) v
EWv) dv  m(@) dv @) dv Kk — v

It is interesting to note that the fundamental differential equation (3.11) of relativistic
kinematics has no mass dependence. Indeed, as will be explained in the appendix, only
energy and momentum variables appear in the standard formulas of relativistic kinematics
employed in high energy physics, the concept of rest mass being replaced by that of rest
energy.

(3.13)

4. Derivation from the Hamilton—Jacobi equation

Hamilton’s principal function (HPF), S, is the generating function of a canonical transfor-
mation of kinematical variables [16] such that the transformed Hamiltonian function of the
mechanical system vanishes. It satisfies the relations

S = f Ldt, 4.1)

where L is the Lagrangian of the system, and the Hamilton—Jacobi equation [17]:

H(q,-, p," t) + g_f = 09 (42)
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where H(g,, p;, ?) is the untransformed Hamiltonian and

oS
p; = 8—% (4.3)
The canonical momentum p; also appears in the Lagrange equations according to the relations
% — g—‘l]: =0, 4.4)
where
oL

P = N
i
(%)
For a single object moving uniformly in free space with position coordinate x, measured
parallel to its direction of motion, with constant momentum, p, and energy, E = H, the HPF
takes the form
S =px— Et 4.5)

which is evidently a solution of both (4.2) and (4.3) in these circumstances. Differentiating
(4.5) with respect to f, substituting p(E/k)v from (2.2) and using (4.1) gives

B BB - Rk (4.6)
dr dr
Differentiating (4.6) with respect to v = dx/dt and using the definition of p given after (4.4) it
is found that
oL E _1dE

E
2
— = — — K) + 2—=v. 4.7
ov P /<;V /ﬁdv(v ®) Iﬁ:V @D

Rearranging gives the differential equation for E in terms of v:

dE. _ vdv 1 d(B?)
E  V—x 21— (4.8)
where 3 = v//k . Integrating (4.8)
E(v)d_E B _ l 8 d(BY) B _l o
Sy G = mEC EOI= 2 [T S = A - @)
so that

J1 -3 _\/1—§

which recovers (3.6) above.

The identification of </k with the speed of light and the derivation of the time dilation
relation (3.10) then follows from the discussion after (3.6) which is identical for (4.10).

As previously remarked in [10], the above derivation shows that the minus sign in the
time-like invariant integral relation (3.9) originates as the coefficient of Et in the HPF of (2.5)
and (4.5). Indeed nothing prevented the above calculation being performed during the first
half of the 19th century, given the proportionality of mass and energy suggested by the
classical formula for kinetic energy, KE = mvz/ 2, and required by the structure: [ML* T ?]
of energy given by dimensional analysis. On the other hand, the calculation of section 3 above
was unlikely to have been performed until after 1850, when the equivalence of mechanical
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work with heat energy was empirically established by the experiments of Joule. In this way,
the discovery of special relativity could have been contemporaneous with the experiments of
Faraday and before the advent of Maxwell’s electromagnetic theory.

5. Derivation from the group velocity associated with the de Broglie wave

The concept of a path amplitude describing particle propagation, which was later developed
by Dirac, and refined by Feynman into a complete alternative formulation of quantum
mechanics, was introduced in 1923-1924 [11, 18], by de Broglie, before the advent of both
wave mechanics and matrix mechanics. The amplitude, v, called the de Broglie ‘wave’
associated with a freely moving particle was of the form

P = sinz%s = sin27r[px+Et] = sin27r[§ — I/t] = sinzTW[x — vt]. 6.1

Equation (5.1) incorporates the HPF of equation (4.5), the Planck—FEinstein relation: E = hv
as well as the de Broglie wavelength: A = h/p. The ‘phase velocity” v, of (5.1) is given as
E E
v(b:]/)\:—ﬁ:—zi’ (52)
hp p v
where (2.2) of postulate II is substituted for p. Assuming now the postulate VI (i.e. that the
particle velocity is equal to the group velocity * of the wave as defined in (2.6)) suffices to
derive the form of velocity dependence of energy and the time dilation relation.
Inserting the Planck—Einstein and de Broglie wavelength relations into the group velocity
formula (2.6) gives5

dv  dE
N dp
aiG)
In this way, the differential equation (3.11), relating E, p and v of section 3, is recovered.
Differentiating equation (2.2) gives
d E
d_v Ed (5.4)
dE. &K Kk dE
Combining (5.3) and (5.4) gives

Vg =v= (5.3)

E
y— ‘:1_ S (5.5)
P v+ Eﬁ
or, on re-arrangement:
dE vdv
= _ _ 5.6
E v:— g (>6)

which is identical to (4.8), that has the solution (4.10). The velocity dependence of mass is
then given by (3.7) and the time dilation relation by (3.10) as previously.

* For discussion of the relation between group velocity, phase velocity and particle velocity in connection with de
Broglie matter waves see [10]. For the description of packets of electronic de Broglie matter waves in the analysis of
the Davisson—Germer experiment, in which they were first observed, see [19].

5 That the group velocity formula recovers the differential equation (3.11) implies that postulate VI is logically
equivalent to III and IV if the Planck—Einstein and the de Broglie wavelength relations are also assumed.
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6. Discussion

It seems, at first sight, that the three sets of postulates: (a) III and IV, (b) V, and (c) VI, that
give the independent predictions of relativistic energy variation and time dilation, have little
in common. III, IV and V are purely classical, whereas VI is based on the quantum concept of
the de Broglie wave. However, as inspection of equation (5.1) shows, this wave is closely
related to Hamilton’s principal function, as it is derived by eliminating the dependence on
energy and momentum of the latter in favour of the frequency and wavelength given by the
Planck—Finstein and de Broglie wavelength relations.

Feynman often emphasised that, at the most fundamental level, all of physics is (must
be!) quantum mechanics. This means that given quantum mechanics, all of classical physics
may be derived, but in no conceivable way can some quantum effects—most importantly the
phenomenon of interference in the space-time behaviour of elementary particles—be
described by Newton’s laws of classical mechanics.

In the context of the derivations presented in the present article, careful consideration
shows that all the ‘classical’ postulates III, IV and V are also, eventually, consequences of
quantum mechanics when it is formulated in terms of the Feynman path integral [20-22]. The
Schrodinger equation of wave mechanics can be derived from the Hamilton—Jacobi
equations (4.2) and (4.3) [10], because the phase of a path amplitude is precisely 27 S/h
where the ‘action’ § is the classical HPF described in section 4. However the complexity of
‘quantum dynamics’ space-time experiments with particles involving interference effects and
relativistic motion cannot be completely addressed by wave mechanics and the Schrodinger
equation. Similarly the commutation relations and operator calculus of matrix mechanics
follow [10] from the space-time structure of S in equation (4.5), which as. demonstrated
above, is also responsible for the mass-variation and time dilation effects of special relativity.
Again matrix mechanics, which is essentially a method to calculate the rates of radiative
transitions in atoms, gives no predictions for space-time experiments beyond contributing a
factor in the multiplicative structure of a path amplitude [19, 22].

The quantum origin, in the Feynman path integral, of the ‘classical’ posulates III, IV and
V is illustrated in figure 1. This was explained, for the first time, by Dirac, in 1934, in a paper
entitled: ‘The Lagrangian in Quantum Mechanics’ [23]. In this he introduced a ‘transfor-
mation function’ containing Hamilton’s principal function, S, discussed above, which cor-
responds to the total probability amplitude of a space-time quantum experiment. It is the
foundation of Feynman’s later path-integral formulation. Classical mechanics is obtained by
consideration of the behaviour of the transformation function as Planck’s constant, A, tends to
zero. Dirac’s explanation of how this occurs, leading to the Principal of Least Action and the
Lagrange equations (the top four boxes of figure 1) considers the variation of the HPF,
corresponding to a particular path, S,,, in the probability amplitude for an experiment:

S
Probability amplitude ~ > exp |:27Ti%thj| = D expidy, (6.1)
paths paths

The contribution of a particular path with phase ¢p.; i a complex number that can be
represented as an arrow in the Argand plane pointing in a certain direction. If ¢,y varies
rapidly between nearby paths the length of the arrow corresponding to vector addition in the
Argand plane of the arrows contributed by each path will be short, leading to a small modulus
of the probability amplitude and hence small probability that the corresponding quantum
process will occur. It is clear that the modulus of the probability amplitude will be larger
when the rate of change of ¢p.n between closely neighbouring paths is smaller, and the

8
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Feynman
h = 0 limit
Path Integral
Stationary
Action
Lagrange
Equations
Newton’s Hamilton’s
Laws Equations
Hamilton
-Jacobi
Equation
v i | I \'
dp/dt=F — dE=dW=Fds p =myv E = xmy S = px-Et
y=1/v(1-p7) y=1//(1-p7)
At =yAT At =yAT

Figure 1. Concept flow diagram of the connections between the Feynman path integral
formulation of quantum mechanics, classical mechanics and special relativity.In
postulates I and II m stands for rest mass and + for an arbitrary dimensionless function
of v. The ‘classical’ postulates III, IV, and V are all seen to be consequences of
quantum mechanics in the # = O limit. The primary postulates I and II (common to all
the derivations presented) are simple generalisations of the concepts of energy and
momentum of classical mechanics.
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maximum value will occur when this rate of change vanishes i.e. when the function Sy, has a
stationary value. In this case the phase arrows of neighbouring paths are almost parallel®. In
the limit 4 — 0 only paths very close to that corresponding to the stationary value of Spum
contribute to the probability amplitude, so that the physical path predicted by quantum
mechanics becomes essentially the one corresponding to the stationary value of Spyp. This is
indentical to the path predicted by the classical Principal of Least Action that is obtained as a
solution of the Lagrange equations’. Since both Newton’s mechanical laws and Hamilton’s
equations are consequences of the Lagrange equations and work-energy equivalence follows
by integration of Newton’s second law, it can be seen in figure 1 that the ‘classical’ postulates
III, IV and V can all ultimately be derived by consideration of the 7~ — O limit of the
Feynman path integral.

The flow of concepts in figure 1 enables the three derivations of ~(v) presented in
sections 3-5 to be classified in terms of their pedagogical efficacity or economy of intitial
postulates. Clearly the derivation of section 3 is best for beginning students, since the
mathematics is simple and the postulates are likely to be already familiar to them. The
derivation most economical of postulates but requiring more advanced mathematical
knowledge is that of section 4 based on the equations of Hamilton and Hamilton—Jacobi
both of which are direct consequences of the Feynman path integral that contains, in its
definition, the action function § that is postulate V. Unlike in section 3 no additional
mechanical laws are involved and unlike in section 5 no additional quantum-mechanical
laws (the Planck-Einstein and the de Broglie wave relations and the identification of
particle velocity with wave group velocity) are needed. The de Broglie wave fornula (5.1) is
closely related to that of the quantum probability amplitude (6.1) and both contain the
action function S of (2.5).

Another connection between quantum mechanics and special relativity was mentioned in
an article on some connections between quantum mechanics and classical electromagnetism
[26] published in this journal. The first 1905 special relativity paper [1] gave a transformation
formula for the energy of what Einstein called a ‘light complex’:

E' = Ey(1 — Bcos ¢) (6.2)

as well as for the frequency of an electromagnetic wave:
v =vy(l — Bcos ), (6.3)

where ¢ is the angle between the direction of the wave front and that of the boost in the
Lorentz transformation. The first of these formulas played a crucial role in the discussion of
mass-energy equivalence in the second 1905 special relativity paper [2, 3]. Concerning (6.2)
and (6.3) Einstein limited himself to the remark:

‘It is remarkable that the energy and frequency of a light complex vary with
the state of motion according to the same law.’

S This was discussed at length in the ‘Feynman Lectures in Physics [see footnote 8] and Feynman’s popular book
QED [24]. An example of the curve in the Argand plane given by summing the amplitudes of adjacent paths is the
Cornu spiral in Fresnel diffraction [25]. See [19, 22] for a completely general derivation of the purely spatial classical
wave theory of light, or of massive particles, from the relativistic quantum-mechanical Feynman path integral where
consideration of time intervals plays a crucial role.

7 It is important to remark that here the classical limit is obtained, not in the limit where quantum interference effects
are neglected as in ‘decoherence’, but in a configuration where they are maximal.
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In fact (6.2) and (6.3) imply that

/

% = % = constant independent of 3, ¢ = h (6.4)
or E = hv, the relation first noticed by Planck in the context of the frequency dependence of
black body radiation [27], as well as by Einstein himself in the paper published earlier in 1905
[9] in which the concept of the light quantum—Iight as a particle—was introduced. Einstein
did not make any connection between his ‘light complex’ and ‘light quantum’. This is
understandable insofar as the concepts of relativistic energy and momentum were not
introduced, by Planck [4], until the following year. Equation (6.2) is then a straightforward
prediction of relativistic kinematics for any massless (or very light) particle, without any
consideration of the classical electromagnetic theory of light.

It can then be seen that the introduction of the fundamental constant 4 into quantum
mechanics and of ¢ into special relativity (as shown in section 3 above) are both direct
consequences of the corpuscular nature of light i.e. the real existence of photons.

There are two essentially distinct experimental aspects of special relativity theory:
(1) Space-time geometry dealing with observations of moving objects—especially clocks.
(i1) Relativistic kinematics—concerned with the laws governing the energy and momentum of
such objects when they interact, or are created or destroyed. Following the historical
development of the subject most relativity textbooks favour the discussion of (i) rather than
(i) in introductory chapters. For example, Taylor and Wheeler [28] is entitled ‘Spacetime
Physics’ and uses the time-like invariant interval equation (3.9) and similar metric equations
as its conceptual basis. These equations contain only space-time coordinates. In the approach
of section 3 above (3.9) is derived from simple postulates by way of relativistic kinematics. In
[28] it is an unproved postulate and relativistic kinematics is only introduced in the last
chapters of the book. An important fact that is not revealed in such an approach is that the
very units that are employed in space-time geometrical experiments depend essentially on
both relativistic kinematics and quantum mechanics.

In particular, the proportionality of mass and energy, Postulate II, and so the value of the
kinematical constant £ and quantum mechanics in the guise of the Planck—Einstein relation
(E = hv) as well as the de Broglie wavelength (A = h/p) are essential in the establishment of
the definitions of the universal standard (SI) units for time intervals (the second) and spatial
intervals (the metre). As will be mentioned below, they are also expected to soon play a
similar role in the definition of the unit of mass (the kilogram) [29]. Since the development of
the caesium-beam atomic clock in the late 1950s the second has been defined in terms of the
separation of the hyperfine energy levels of the ground state of the Cs'*? atom: AEy(Cs'*?)
by use of the Planck—FEinstein relation:

9192631770 fh
S = = .
vyr(Cs!33) AEyr(Cs'®)

In 1960 the de Broglie wavelength relation was used, in the context of interferometric
comparisons with the length of the standard metre bar, to provide the definition of the metre:

i~
p(Krd0)’

(6.5)

1 m = 165076373.73\(Kr®0) =

(6.6)

where p(Kr*®) is the momentum of the photon associated with the orange-red emission line
with M\(Kr®®) = 6057 A. Using the definition of relativistic momentum in (2.2) above and
assuming, using (3.7), that the energy equivalent of the photon rest mass is much less than its
energy, enables (6.6) to be written:
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fn hVE
m=-—-—"——,
AE (Kr80)
where the recoil of the daughter atom has been neglected so that EV(Kr%) = AEKr®®) and
AE(Kr®) is the energy level separation of the radiative transition. Combining (6.5) and (6.7)
gives the proportionality constant of mass and energy (aka the square of the speed of light in
free space) as

6.7)

[, AE (Kr®9)

—_ -1 6.8
fo AEgp(Cs) 8

JE =c¢ =
Thus the arbitrary ‘external’ physical quantities employed to define the standard units of time,
the siderial second and the metre—the distance between two marks on a bar of platinum-
iridium alloy, at the temperature of melting ice, held in the International Bureau of Weights
and Measures in Paris—as well as the value of the universal constant VK = ¢ were all
replaced in 1960 by the two atomic energy level separations: AEHF(C8133) and AE(Kr86).
Due to dramatic improvements in laser technology it was possible by 1972 to measure
directly the frequency of a highly stable helium-neon laser relative to that of the Cs'*
transition defining the second. Since the shorter wavelength of the laser, as compared to that
of the microwaves previously employed, enabled a much more precise measurement, by
interferometry, of the wavelength in terms of the standard metre the new value found for the
velocity of light given by the formula ¢ = vA [30]:

¢ =299792456.2 + 1.1 ms~!

was about a 100 times more accurate than the previous best measurement employing a
microwave interferometer [31]. This led, in 1983, to the substitution of the currently most
accurate value of ¢ in (6.7) and (6.8) to provide the current definition of the standard metre:

299792458 AEyp(Cs!33)
fs .

In the light of recent very precise determinations of the value of Planck’s constant from
the Josephson and quantum Hall effects, it has been proposed to combine precisely deter-
mined values of x = ¢ and & and the mass-energy equivalence relation (2.2), in conjunction
with the Planck—Finstein relation, to define a new more precise standard of mass (a modified
kilogram) depending only on the values of c, ki, the caesium atom hyperfine interval, and a
single pure number [29]. In this way the standard units of mass, length and time will all be
defined in terms of the fundamental constants x = ¢ of special relativity, / of quantum
mechanics and a single external quantity with the dimensions of energy: AEyr(Cs'*).

In conclusion, it is interesting to remark that each of the fundamental constants of
physics, ¢ and &, as well as Boltzmann’s constant k, relate phenomenolgical concepts that
arose naturally in the historical development of physics—in particular in the interpretation of
certain crucial experiments—to kinematical properties of physical constituents at a micro-
scopic level. Boltzmann’s constant relates the thermodynamic concept of temperature to the
average kinetic energy of a gas molecule that is member of a certain ensemble of them. The
constant ¢ relates the somewhat vague but still essential concept of ‘mass’ first appearing, in a
quantitative context, in Newton’s Principia, to the rest energy of any physical system. &
relates the concepts of frequency and wavelength arising naturally, by analogy with wave
phenomena in classical machanics, in the wave theory of light, to, respectively, the energy
and momentum, not only of a photon, but of an arbitrary physical object. In all cases the
phenomenological concepts: temperature, mass, frequency or wavelength are related to
kinematical properties (energy or momentum) of underlying particulate, or composite,

1m

(6.9)
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microscopic physical systems. The ‘fundamental constants’ are in all cases simple constants
of proportionality.

Contemplation of the intertwining, at a more fundamental level, of apparently disparate
physical concepts, as just discussed and illustrated in figure 1, calls to mind a remark of
Feynman’s [32]:

‘Nature uses only the longest threads to weave her patterns, so each small
piece of the fabric reveals the organisation of the entire tapestry.’

Acknowledgments

I specially thank T Taylor for discussions and a careful reading of the manuscript. I also thank
three anonymous referees of an earlier related but unpublished article for corrections and
critical comments that have been of great help in the preparation of the present manuscript.

Appendix. Comments on the teaching of special relativity

Three ways might be envisaged to approach the understanding of relativity. The first is to give the
historical account that takes into consideration Einstein’s seminal papers of 1905 in conjunction
with previous and contemporary related work of Lorentz [33], Larmor [34—36] and Poincaré [37].
The basic concepts here are Lorentz transformations arising in the study of Maxwell’s equations
of classical electromagnetism, and postulating the special relativity principle and the inertial-
frame independence of the speed of light. Classical ideas of space and time are found to be
modified. The second, particularly appropriate for engineers or applied physicists, is to examine
in a quantitative way, what modifications must be made in classical physics to correctly describe
the real world. The third (and in the opinion of the present writer the most important for a good
pedagogy) is to ask: What are the completely new physical concepts that made relativity theory
the revolution in our understanding of physics that it is? and: How does classical physics emerge
from the more general and accurate worldview of relativity?

Otherwise the best pedagogical approach is the one that arrives at the essential equations
of the theory employing the simplest possible mathematics and the minimum number of
unproven postulates that must be accepted on trust by a beginning student. The essentials of
an approach largely satisfying these requirements appear in a paper published by Lewis in
1908, which is the conceptual basis of the calculation of section 3 of the present article. The
single new postulate, going beyond classical physics, is that energy is proportional to mass or,
in other words that they are equivalent. As shown below, this equivalence is used in order to
exclude the mass concept in favour of that of energy from the units used by experimental
particle physicists in the currently employed formulas of relativistic kinematics.

One question that often arises in the context of the pedagogy of special relativity is the
advisability, or not, of introducing the concept of a speed-dependent mass. In a bibliographic
study carried out in 2005 [38] the speed-dependent mass concept appeared in 63 out of 100
relativity textbooks and in 87 out 105 popular science books. At this time there was a majority
(though a less marked one in academic works) in favour of the introduction of the concept.
Some of the arguments pro and contra for this are briefly reviewed here.

The pedagogical utility of the speed-dependend mass concept is stressed in the Feynman
Lectures in Physics® and Pauli’s relativity textbook [39], as well as the more recent textbook

8 [8] section 26—6 and Figure 26.14, section 15-9.
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of Rindler [40]. On the other hand the concept was strongly criticised in the late 1980s by
Adler [41] and Okun [42, 43] as well as earlier in [28]. Many of Adler’s critiques were
convincingly rebutted by Sandin [44] by argumentation based on relativistic kinematics
similar to that presented below. Okun’s assertion was that the only quantity with dimension
[M] that should appear in the equations of special relativity was the rest mass of an object,
that is identical to the Newtonian mass of classical mechanics. This has the apparent
advantage, for a beginning student, who already knows classical mechanics, that, apparently,
‘mass is the same in classical mechanics and relativity’. Only the special case, where v = 0,
of the general mass-energy equivalence relation E(v) = m(v)c” is considered to be legitimate,
giving: Ey = E(0) = m(0)c> = mc*> where m is the only quantity of dimension [M] that
students have the right to encounter. Since then: E(v) = my(v)c2 and p(v) = my(v)v, where
~(v) is a known dimensionlees function of v/c, this can certainly be done, but why students
should be forbidden to know or think about the meaning of the general equation
E(v) = m(v)c? is not at all clear. It is certainly true that if «(v) is introduced in E(v) = m(v)c?,
by a suitable mathematical substitution, no other quantity with the dimension [M] but m is
required, in all relativistic kinematical equations, so that Ockham’s razor could be invoked in
justification.

It was argued in [28] that a co-moving observer would always ‘see’ the rest mass of any
object in motion whereas m(v) seems to indicate it is ‘not the same‘ when it is in motion i.e.
its structure is changed in comparison with that of the same object at rest. The elephant in the
room for this argument and Okun’s ‘only correct’ formula: Ey = mc” (one that is particularly
dangerous for an unwary beginning student) is the fact that the relativistic rest mass of an
object (unlike the Newtonian mass indicated by the same symbol) is not conserved when
interactions occur with other objects. A corollary is that in inelastic collisions the classical
concept of conservation of kinetic energy breaks down. The kinetic energy of incoming
objects can become the rest energy of newly created objects moving out from the collision
This empirical fact should be one of the first things that a student of special relativity should
learn. Okun’s equation ‘Ey = mc is of no help in understanding this.

It was particularly stressed by Feynman that the speed-dependent mass does behave
exactly like an ‘effective Newtonian’ mass when the momentum of a particle is increased in
an accelerator’. At very high energy the speed is almost constant (very slightly less than c)
and the increase of the momentum produced by the electric fields in the accelerating cavities
just increases the relativistic mass E /cz. Feynman also stressed the particular utility of the
speed-dependent mass concept for an introductory course on relativity for experimental
physicists or engineers'’.

‘For those who want to learn just enough about it so that they can solve
problems, that is all there is in the theory of relativity—it just changes
Newton’s laws by introducing a correction factor to the mass.’

Feynman then goes on to give (without citing the prior work of Lewis) essentially the
same calculation as that in section 3 above, but framed in terms of a speed-dependent mass'".
One argument given by Okun against use of the general formula E(v) = m(v)c2 was
consideration of processes where photons (assumed to be massless) are produced. In 7° decay
at rest into two photons energy conservation shows that the energy of each photon is

% [8] section 15-9.
10 [8] section 15-1.

U Teis possible that the critics of speed-dependent mass were unaware of the work of Lewis and Feynman. I have
found no mention or citation of it in their papers.



Eur. J. Phys. 41 (2020) 025602 J H Field

equivalent to half the mass of the 7°. Okun would correctly assume that this follows from his
preferred formula E(0) = m(0)c?, where m(0) is the 7° rest mass, but not from E(v) = m(v)c>
where E(v) is the photon energy, since it was asserted that it would imply that the supposedly
massless photon had a mass of E.,/ ¢%. However the problem here is not one of physics but of
language, because Okun is erroneously conflating the ‘rest mass of a photon’ and the entirely
different: ‘mass equivalent of the energy of a photon’.

The interpretational importance, in one particular case (that of a particle in an accelerator,
as discussed by Feynman [see footnote 9]) of relativistic speed-dependent mass as compared
to rest mass is made evident by a dimensional analysis of the equation:

pw) =m@W)v = ym@0)v = m@0)U, (A.1)

where U = v is the space component of the 4-vector velocity: (Uy, U) = (vc, yv) Every
expression in the equation has dimensions [M LT '] but there is a twofold ambiguity in the
interpretation of the equation, viz:

m@)=[M], v=[LT,

m(©0) =[M], U=~ =[LT .

It is clear that for a particle in an accelerator the first interpretation is the relevant one. A
proton with an energy of 4 TeV in the LHC at CERN which actually has a velocity of about
v =(1-2.75 x 10" ®¢, as determined by the frequency of the accelerating RF cavities,
would, according to the second interpretation, in which only the rest mass is considered, have
the velocity of U = v = 4264c!

As every experimental particle physicist knows, the mass concept is not required for a
complete expression of the equations of relativistic kinematics. A corollary is that polemical
discussions, like that of Okun, of the concept of mass in relativity, are actually a red herring for the
understanding of the subject. Mass and energy are equivalent (like Dollars and Euros when the
conversion rate is fixed). The mass of the electron is both 0.510 000 Mev/c* and 9.109 38 x 10!
kg. A consequence is that mass need not appear at all in the equations of relativistic kinematics.
This follows on choosing units such that all terms in the equations have the dimensions of energy.
For example, choosing the unit of velocity, v, such that ¢ = 1 (2.2) may be written as

p = Ev. (A2)

where v is dimensionless and p has the dimensions of energy. If p is expressed in MeV then
the momentum is p MeV/c.
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