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Abstract – We study the Goos-Hänchen (GH) shifts for transmitted Dirac fermions in gapped
graphene through a single barrier structure having a time periodic oscillating component. Our
analysis shows that the GH shifts in transmission for central band l = 0 and two first sidebands
l = ±1 change sign at the Dirac points E = V + l�ω. In particular the GH shifts in transmission
exhibit enhanced peaks at each bound state associated with the single barrier when the incident
angle is less than the critical angle associated with total reflection. The Klein tunneling, reflected
by perfect transmission at normal incidence, is also preserved in the presence of an oscillating
barrier.

Copyright c© EPLA, 2020

Introduction. – When a light beam experiences a to-
tal reflection at the interface of two media having different
indices of refraction it shifts along the interface by a cer-
tain distance. Such a lateral displacement between the
incident and reflected beams is called the Goos-Hänchen
(GH) effect [1]. Since the transport carriers in graphene
behave like massless particles, then by analogy with light,
the GH shift has been investigated in various graphene-
based nanostructure devices. It has also been found that
the GH shift can be enhanced by the presence of trans-
mission resonances [2–4] while its control can be achieved
through tunability of the applied electrostatic potential
and induced gap [2,5]. It was found that the GH shift
plays an important role in the group velocity of quasipar-
ticles along interfaces of graphene p-n junctions [6,7].

Time-dependent phenomena and in particular periodic
fields and oscillating potential barriers play an important
role in nanostructure devices. For instance, the applica-
tion of a periodic oscillating electromagnetic field gives
rise to additional sideband resonant energies at E + l�ω
(l = 0,±1, . . .) in the transmission probability [8,9]. These
resonant energies originate from the fact that electrons
while interacting with the oscillating field will exchange
photons of energy �ω, ω being the frequency of the os-
cillating magnetic field. Dayem and Martin [10] were

(a)E-mail: a.jellal@ucd.ac.ma

the first to provide evidence of photon-assisted tunnel-
ing when they subjected a thin superconducting film to
a microwave field. Subsequently, Tien and Gordon [11]
used a time modulated scalar potential as a theoretical
model to explain these experimental observations. Further
theoretical studies were performed later by other research
groups, in particular Buttiker and Landauer investigated
the barrier traversal time of particles interacting with
a time-oscillating barrier [12]. Then Wagner and other
workers [13] gave a detailed treatment on photon-assisted
transport through quantum wells and barriers with oscil-
lating potentials and studied in depth the transmission
probability as a function of the potential parameters.

In our previous work [9] we have analyzed the energy
spectrum together with the corresponding transmission in
graphene through a square potential barrier driven by a
periodic potential. In the present work we consider the
same system but with a gap and study the transport of
Dirac fermions. The barrier height oscillates sinusoidally
around an average value Vj with oscillation amplitude Uj

and frequency ω. Thus we will investigate the negative
and positive GH shifts in transmission for the central band
and sidebands of Dirac fermions through a time-oscillating
potential in monolayer graphene, based on the tunable
transmission gap [2,14]. The GH shifts for the central
band and first sidebands discussed here are related to the
transmission resonances, which are quite different from the
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GH shift for total reflection at a single graphene interface.
Using the derived energy spectrum we compute the GH
shifts for the central and sidebands and study their vari-
ations in terms of the system’s physical parameters and
phase shifts. To give a better understanding of our results,
we perform a numerical study based on various choices of
the physical parameters. Among the obtained results we
show that GH shifts in transmission can be controlled by
a square potential barrier harmonically oscillating in time.
It is worth mentioning that few recent references have con-
sidered the GH shifts due to irradiation of graphene sheet
with a time-dependent oscillating magnetic field [15]. Oth-
ers investigated the GH shifts in a strained graphene sheet
where the mechanical strain is described by a gauge vec-
tor potential giving rise to a pseudo-magnetic field that
affected differently the valley [16].

The work is organized as follows. In the following
section, we use the solutions of the energy spectrum asso-
ciated with our system together with transmission prob-
abilities to determine the GH shifts. We numerically
analyze and discuss the GH shifts in transmission within
the central band and first sidebands by considering suit-
able choices of the physical parameters in the third section.
Conclusions are given in the last section.

Goos-Hänshen shifts. – Opening and controlling a
band gap in graphene is one of the most important is-
sues that need to be resolved with certitude to ensure
the usage of graphene in telecommunication or informa-
tion technology. Several methods have been advanced
to create such band gap in graphene such as deposition
of graphene on a well-selected substrate having a similar
honeycomb structure [17], application of strain [18] or cre-
ation of nanoribbons by physically cutting the graphene
sheet giving rise to an effective mass [19]. However the
existence of a substrate-induced energy gap in graphene
due to its interaction with substrate SiC or BN is still
debatable [20]. Setting aside the issue of existence and
realization of an energy gap in graphene while preserving
its honeycomb lattice symmetry, we consider in our model
a gapped graphene subject to a square potential barrier
of width d and oscillating sinusoidally around its average
height Vj with amplitude Uj and frequency ω. Fermions
with energy E are incident from one side of the barrier at
incidence angle φ0 with respect to the x-axis and leave the
barrier with energy E +m�ω (m = 0,±1,±2, . . .) making
angles π − φm after reflection and φm after transmission.
The corresponding Hamiltonian is

Hj = −i�vF �σ · �∇ + Δσz + [Vj(x) + Uj cos(ωt)] I2, (1)

where υF is the Fermi velocity, σ = (σx, σy) are the Pauli
matrices, I2 is the 2×2 unit matrix, V is the static square
potential barrier and Uj is the amplitude of the oscillating
potential, both of which are constant for 0 ≤ x ≤ d, with

Fig. 1: Schematic of the potential profile showing a time-
oscillating potential in a gapped graphene region subject to
an electrostatic potential.

d positive, and zero elsewhere (fig. 1)

Vj(x) =
{
V, 0 ≤ x ≤ d,
0, otherwise,

Uj =
{
u1, 0 ≤ x ≤ d,
0, otherwise. (2)

The subscript j = 0, 1, 2 denotes each scattering region
from left to right as shown in fig. 1. The parameter Δ =
mv2

F is the energy gap owing to the sublattice symmetry
breaking.

After rescaling ε = E/vF , vj = Vj/vF , μ = Δ/vF ,
	 = ω/vF , uj = Uj/vF , α1 = u1

� and taking � = 1,
we solve the Dirac equation in the three regions. In the
incident region j = 0 (x < 0):

ψ0(x, y, t) = eikyy
+∞∑

m,l=−∞

[
δl,0

(
1
zl

)
eiklx

+ rl

(
1

− 1
zl

)
e−iklx

]
δm,le

−ivF (ε+m�)t, (3)

where zl = sl
kl+iky√

k2
l +k2

y

and sl = sgn(ε+ l	). In the trans-

mitted region j = 2 (x > d):

ψ2(x, y, t) = eikyy
+∞∑

m,l=−∞

[
tl

(
1
zl

)
eiklx

+ bl

(
1

− 1
zl

)
e−iklx

]
δm,le

−ivF (ε+m�)t, (4)

where {bl} is the null vector. In the scattering region j = 1
(0 < x < d):

ψ1(x, y, t) = eikyy

m,l=+∞∑
m,l=−∞

[
aj

l

(
c+
c−z′

l

)
eik′

lx

+ bjl

(
c+

− c−
z′

l

)
e−ik′

lx

]
Jm−l(α1)e−ivF (ε+m�)t, (5)

where c± =
√

1 ± s′
lμ√

(k′
l)

2+ky
2
, z′

l = s′
l

k′
l+iky√

(k′
l)

2+k2
y

and the

associated energy (ε − v + l	)2 − μ2 = s′
l

√
(k′

l)2 + ky
2,

with s′
l = sgn(ε+l	−v) and Jm(α1) is the Bessel function

of the first kind such that Jm−l(α1) = δm,l.
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The transmission and reflection probabilities can be ob-
tained using the continuity of the spinor wave functions
at junction interfaces (x = 0, x = d), namely ψ0(0, y, t) =
ψ1(0, y, t) and ψ1(d, y, t) = ψ2(d, y, t). These boundary
conditions can be represented in matrix form as(

Ξ0
Ξ′

0

)
=

(
M11 M12
M21 M22

) (
Ξ2
Ξ′

2

)
= M

(
Ξ2
Ξ′

2

)
(6)

and the total transfer matrix M = M(0, 1) · M(1, 2) with

M(0, 1) =
(

I I

N+ N−

)−1 (
C1 C1

G
+
1 G

−
1

)
,

M(1, 2) =
(

C
+
2 C

−
2

G
+
2 G

−
2

)−1 (
I I

N+ N−

) (
K+ O

O K−

)
, (7)

where we have set the parameters (N±)m,l = ±(zm)±1δm,l,
(C±

1 )m,l = αlJm−l(u1
� ), (G±

1 )m,l = ±βl(z′
l)

±1Jm−l(u1
� ),

(C±
2 )m,l = αle

±ik′
ldJm−l(u1

� ), (G±
2 )m,l = ±βl(z′

l)
±1e±ik′

ld ·
Jm−l(u1

� ), (K±)m,l = ±e±idklδm,l and the null matrix is
denoted by O, I is the unit matrix.

To proceed further, we assume an electron propagat-
ing from left to right with the quasienergy ε = E

vF
.

Then, τ = (1, 2), Ξ0 = {δ0,l} and Ξ′
2 = {am} is the

null vector, whereas Ξ2 = {tl} and Ξ′
0 = {rl} are the

vectors for transmitted and reflected waves, respectively,
Ξ2 = (M11)−1 ·Ξ0. The minimum number N of sidebands
that need to be considered is determined by the strength of
the perturbing potential oscillation, N > v1

� . The infinite
series for T can be then truncated to consider only a finite
number of terms starting from −N up to N . Furthermore,
analytical results are obtained if we consider small values
of α1 = u1

� and include only the first two sidebands at
energies ε±	 along with the central band at energy ε

t−N+k = M
′[k + 1, N + 1], (8)

where k = 0, 1, 2, . . . , 2N and M′ is a matrix element of
M

−1
11 . Using the reflected J re and transmitted J tr currents,

the reflection Rl and transmission Tl probabilities for a
given mode l can be expressed as

Tl =
kl

k0
|tl|2, Rl =

kl

k0
, |rl|2, (9)

such that Tl is the probability amplitude describing the
scattering of an electron with incident quasienergy E in
the region 0 into the sideband with quasienergy E + l�ω
in the region 1. Thus, the rank of the transfer matrix
M increases with the amplitude of the time-oscillating
potential. The amplitudes tl and rl can be written in
complex notation as tl = ρt

l eiϕt
l , rl = ρr

l eiϕr
l , such

that the corresponding phase shifts and moduli are de-
fined by ϕt

l = arctan(i t∗
l −tl

tl+t∗
l
), ϕr

l = arctan(i r∗
l −rl

rl+r∗
l
), ρt

l =√
Re2[tl] + Im2[tl], ρr

l =
√

Re2[rl]) + Im2[rl], which can
be used to obtain the probabilities

Tl =
kl

k0
(Re2[tl]+Im2[tl]), Rl =

kl

k0
(Re2[rl])+Im2[rl]).

(10)

In the forthcoming analysis due to numerical difficul-
ties, we are able to truncate (8) retaining only the terms
corresponding to the central and first two sidebands,
namely l = 0,±1. We can proceed as before to de-
rive transmission amplitudes t−1 = M′[1, 2], t0 = M′[2, 2],
t1 = M′[3, 2]. Such an approximation can be validated at
low energies where two- and higher-photon processes are
less probable than the single-photon processes.

The Goos-Hänchen shifts for Dirac fermions in gapped
graphene under the applied potential can be analyzed by
considering the incident, reflected and transmitted beams
around some transverse wave vector ky = ky0 and the
angle of incidence φl(ky0) lies in the interval [0, π

2 ]. These
beams can be written in terms of the obtained solutions of
the energy spectrum. Indeed, for the incident and reflected
waves, we have

Ψin(x, y) =
∫ +∞

−∞
dky f(ky − ky0)

× ei(k0(ky)x+kyy)
(

1
eiφ0(ky)

)
, (11)

Ψre(x, y) =
∫ +∞

−∞
dky rlf(ky − ky0)

× ei(−kl(ky)x+kyy)
(

1
−e−iφl(ky)

)
, (12)

where φl = tan−1 ky

kl
, φ0 is the incident angle and

f(ky − ky0) the angular spectral distribution. We can ap-
proximate the ky-dependent terms by a Taylor expansion
around ky0 , retaining only the first-order term to end up
with

φl(ky) ≈ φl(ky0) +
∂φl

∂ky

∣∣∣
ky0

(ky − ky0),

kl(ky) ≈ kl(ky0) +
∂kl

∂ky

∣∣∣
ky0

(ky − ky0).
(13)

As for the transmitted beam, we have

Ψtr(x, y) =
∫ +∞

−∞
dky tlf(ky − ky0)

× ei(kl(ky)x+kyy)
(

1
eiφl(ky)

)
. (14)

The stationary-phase approximation indicates that the
GH shifts are equal to the negative gradient of transmis-
sion phase with respect to ky. To calculate the GH shifts
of the transmitted beam through our system we adopt the
definition from [21,22], accordingly the stationary phase
method [23] gives

St
l = −∂ϕt

l

∂ky

∣∣∣
ky0

, Sr
l = −∂ϕr

l

∂ky

∣∣∣
ky0

. (15)

Assuming a finite beam width with Gaussian shape,
f(ky − ky0) = wy exp[−w2

y(ky − ky0)2] around ky0, where
wy = w secφl, with half beam width w at the waist, we
can evaluate the Gaussian integral to obtain the spatial
profile of the incident beam, by expanding φl and kl to
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Fig. 2: GH shifts in transmission St
l vs. potential v for the oscillating barrier with μ = 0, ε = 10, � = 1: (a) l = −1, 0, 1, ky = 1,

d = 2.5, α1 = 0.2; (b) l = 0, ky = 1, d = 1.5 α1 = 0.2 (red line), α = 0.6 (green line), α = 0.9 (blue line); (c) α1 = 0.2, l = 0,
ky = 1, d = 0.5 (red line), d = 1.5 (green line), d = 2.5 (blue line); (d) α1 = 0.4, l = 1, d = 1.5 ky = 0 (red line), ky = 2 (green
line), ky = 4 (blue line).

first order around ky0 when satisfying the required condi-
tion δφl = λF /(πw) � 1 with the Fermi wavelength λF .
Comparison of the incident and transmitted beams sug-
gests that the displacements σ± of up- and down-spinor
components are both equal to ∂ϕt

l/∂ky0 and the average
displacement is given by

St
l =

1
2
(σ+ + σ−) = −∂ϕt

l

∂ky

∣∣∣
ky0

. (16)

Next we will numerically analyze and discuss the GH shifts
for the central band St

0 and first sidebands St
±1 for Dirac

fermions in gapped graphene scattered by a square barrier
with height that oscillates sinusoidally. This will be done
by selecting adequately the physical parameters charac-
terizing our system.

Discussion of numerical results. – To allow for a
suitable interpretation of our main results, we compute
numerically the GH shifts in transmission for the central
band and first sidebands under various conditions. First
we plot the GH shifts in transmission St

l as a function
of the potential v of the oscillating barrier in the gapless
graphene region where μ = 0, the energy ε = 10 and the
frequency 	 = 1, see fig. 2. It is clear that the GH shifts
change sign at the Dirac points, namely v = ε + l	 with
(l = −1, 0, 1). We observe that St

l exhibit negative as well
as positive values and strongly depend on the location
of Dirac points. In fig. 2(a), we observe, when d = 2.5,
α = 0.2 and ky = 1, that the GH shifts in transmission
for the central band and the two first sidebands St

0 (blue
line), St−1 (green line) and St

1 (red line) change sign at
the Dirac points ε, ε − 	 and ε + 	, respectively. Fig-
ure 2(b) shows, for different values of α1 = {0.2, 0.6, 0.9},

that the GH shifts for central band St
0 in the oscillating

barrier decreases if α1 increases. This tells us that by ad-
justing the value of α1 we can decrease the value of St

0. In
fig. 2(c), we have chosen the parameters α1 = 0.2, ky = 1
for three different values of the distance d = 0.5 (red line),
d = 1.5 (green line), d = 2.5 (blue line) to show St

0 be-
haviors. We observe that St

0 increases if d increases and
changes its sign at the Dirac points v = ε. This change in
sign of the GH shifts shows clearly that they strongly de-
pend on the strength of the barrier heights. Note that, the
Dirac points represent the zero modes for the Dirac oper-
ator [5] and lead to the emergence of new Dirac points,
which have been discussed in different works [21,24]. Such
point separates the two regions of positive and negative
refraction. In the cases of v < ε and v > ε, St

0 is, respec-
tively, in the forward and backward directions due to the
fact that the signs of group velocity are opposite. Fig-
ure 2(d) presents the numerical results of the GH shifts
in transmission St

1 for first band l = 1 as a function of
the potential energy v for specific values of the barrier
width d = 1.5, α1 = 0.4 and three different values of the
wave vector ky = 0 (red line), ky = 2 (green line), ky = 4
(blue line). We observe that St

1 decreases if d decreases
and then vanishes for ky = 0, that is to say for normal
incidence there is no shift.

In fig. 3 we present the numerical results of the trans-
mission probabilities and GH shifts in transmission as a
function of barrier width d with ε = 10, v = 15, μ = 0,
	 = 1, ky = 0, 2. The transmission probability T0s

and the GH shifts St
0s for the static barrier are shown,

which correspond to the case α1 = u1
ω = 0. While for

the oscillating barrier with α1 = 0.6, we show the GH
shifts in transmission St

l and transmission probabilities Tl
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Fig. 3: Transmission probability Tl and GH shifts in transmission St
l vs. barrier width d, with α1 = 0 for static barrier, α1 = 0.6

for the oscillating barrier, ε = 10, v = 15, μ = 0, � = 1: (a), (c) ky = 2; and (b), (d) ky = 0. For static barrier (T0s, St
0s) in

magenta and for oscillating barrier (T0, St
0) in blue, (T−1, St

−1) in green, (T1, St
1) in red.

for central band l = 0 and first sidebands l = ±1 as a
function of barrier width. The magenta, blue, green and
red lines correspond to (T0s, St

0s), (T0, St
0), (T−1, St−1)

and (T1, St
1), respectively. Figures 3(a), (c) present the

transmission probabilities and GH shifts in transmission
as function of barrier width d for the wave vector ky = 2,
where the transmission probabilities for the central band
and sidebands in the oscillating barrier show sinusoidal
behaviors. We observe that the number of peaks in the
GH shifts for the first sidebands St

−1 and St
1 correspond

to the zero transmission probabilities for the first side-
bands T−1 and T1, respectively. Figures 3(b), (d) show
the transmission probabilities and GH shifts in transmis-
sion for normal incidence ky = 0. Obviously, T0s is unity
for larger barrier width and the GH shifts St

0s are zero. For
the oscillating barrier, T0 varies initially from unity and os-
cillates periodically for larger barrier width. However, the
transmission probabilities for the other first two sidebands
T±1 starts initially from zero then oscillates periodically.
This occurs due to the larger tunneling time available for
the electron to interact with the oscillating potential as it
traverses the barrier. In addition, we find that for normal
incidence in the oscillating barrier T+1 = T−1 and the GH
shifts St±1 = 0. Moreover, the total transmission proba-
bility through the central band as well as the sidebands
is unity. These results imply that perfect transmission
at normal incidence is independent of the barrier width,
which is yet another manifestation of Klein tunneling.

At this stage let us see what will happen if a gap is
introduced in the intermediate region 1 (0 ≤ x ≤ d). As is
shown in fig. 4 the gap affects the system energy spectrum
obtained in region 1. In fact, the GH shifts St

l in the
propagating case can be enhanced by a gap opening at

8, v 15

15, v 8
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9
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8

Μ

G
H

Fig. 4: GH shifts in transmission St
−1 (green line), St

0 (blue
line), St

−1 (red line) vs. energy gap μ with α1 = 0.5, ky = 2,
d = 1.5, � = 1, (ε = 8, v = 15) and (ε = 15, v = 8).

the Dirac point. This has been performed by fixing the
parameters α1 = 0.5, ky = 2, d = 1.5, 	 = 1 and making
different choices for the energy and potential. For the
configuration (ε = 15, v = 8), we can still have positive
shifts while for configuration (ε = 15, v = 8) the GH shifts
are negative. It is clearly seen that there are three intervals
showing different behaviors of the shifts. Indeed, for μ ∈
[0, 4] the shifts are zero or constant according to the energy
configurations, but for μ ∈ [4, 8] their behaviors changed
completely by exhibiting some peaks and vanish in the last
interval μ ∈ [8, 10].

Figure 5 shows the GH shifts in transmission and trans-
mission probabilities for the central band and the first two
sidebands for α1 = 0.4 (oscillating barrier) along with that
for static barrier α1 = 0 as a function of the potential v
for specific values ky = 2, ε = 10, 	 = 1 and different
values of the energy gaps, see figs. 5(a), (c) for μ = 1 and
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ky = 2, v = 10, d = 1.5, � = 1: (a), (c) μ = 1; and (b), (d) μ = 3. For static barrier (T0s, St
0s) in magenta and for oscillating

barrier (T0, St
0) in blue, (T−1, St

−1) in green, (T1, St
1) in red.

figs. 5(b), (d) for μ = 3. We observe that the region of
weak GH shifts becomes wide with the increase in the en-
ergy gap μ, the shifts are also affected by the parameters of
the single barrier. In particular it changes sign at total re-
flection energies and peaks at each bound state associated
with the barrier. Thus the GH shifts can be enhanced by
the presence of resonant energies in the system when the
incident angle is less than the critical angle associated with
total reflection. It is clearly seen that St

l are oscillating
between negative and positive values around the critical
point v = ε+ l	 (l = 0,±1). At such point, Tl is showing

transmission probabilities for the central band and first
two sidebands while it oscillates away from the critical
point. We notice that for large values of v, the GH shifts
become mostly constant and can be positive as well as
negative. We deduce that there is a strong dependence of
the GH shifts on the potential height v, which can help to
realize a controllable sign of the GH shifts.

From fig. 6, we see that the GH shifts in transmission St
l

and the transmission probabilities Tl vs. incident energy ε
for the values α1 = (0, 0.4) ky = 2, v = 10, d = 1.5, 	 = 1
for two values of gap μ = 1 in fig. 6(a), (b) and μ = 3
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in fig. 6(b), (d). Both quantities are showing a series of
peaks and resonances where the resonances correspond to
the bound states of the static barrier for α1 = 0 and the
oscillating barrier for α1 = 0.4. We notice that the GH
shifts in the transmission peak at each bound-state energy
are clearly shown in the transmission curve underneath.
The energies at which transmission vanishes correspond
to energies at which the GH shifts in transmission change
sign. Since these resonances are very sharp (true bound
states with zero width) it is numerically very difficult to
track all of them, if we do then the alternation in sign of
the GH shifts will be observed. We observe that around
the Dirac point ε = v + l	 the number of peaks is equal
to the number of transmission resonances.

Conclusion. – We have studied the Goos-Hänchen
shifts for Dirac fermions in gapped graphene through sin-
gle barrier with a time periodic potential. This has been
done using the solutions of the energy spectrum to write
down the incident, reflected and transmitted beams in in-
tegral forms. In the second step, we have employed our
results to determine the phase shifts associated with the
transmission and reflection amplitudes. Subsequently, we
have derived the corresponding GH shifts in terms of var-
ious physical parameters such as the width and height of
the barriers, incident energy, transverse wave vector and
frequency of oscillating barrier.

The time periodic electrostatic potential generates ad-
ditional sidebands at energies ε + lω (l = 0,±1,±2, . . .)
in the transmission probability originating from pho-
tons absorption or emission within the oscillating bar-
rier. However, at low energies we can limit ourselves to
single-photon processes and neglect two-photon processes.
Numerically, we have shown that the GH shifts for the cen-
tral band and first two sidebands depend on the incident
angle of the particles, the width and height of the barrier,
and the frequency of oscillation. Our results showed that
the GH shifts are affected by the internal structure of the
oscillating barrier. We have analyzed the GH shifts in the
transmission in terms of incident energy, barrier width, po-
tential strength and energy gap. We have observed that
the GH shifts in the transmission for the central band
and first two sidebands change sign at the Dirac points
ε = v + lω and switch from positive to negative signs in a
controllable manner. The energies at which the GH shifts
in transmission change sign correspond to the sharp res-
onances at which the transmission vanishes. Thus, the
switching of the sign of the GH shifts can be selected in
a controllable manner. Then our results might provide
a theoretical basis for the design of graphene-based elec-
tronic switches or high sensitivity sensors based on the
sign of the GH shifts.

Finally, we mention that our results could be experimen-
tally tested using a beam splitter scanning method [25],
which allows to measure the giant GH shifts produced by
increasing the thicknesses of gapped graphene subject to
a time-oscillating potential.
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