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Abstract – Unresolved neutrino problems of mass hierarchy and CP violation have a more
interesting interplay in neutrino phenomenology. Differing from the discrete symmetry approach,
this issue is pursued from the perspective of neutrino oscillation with the matter effect. The
contributions from δCP and Δm2

31 are entangled in a complex manner when the mass effect is
considered. After investigating the role of δCP in A

(m)
CP , it is found that at some determined

values of δCP , neutrino mass hierarchy can be determined at the same time. By introducing a
statistical quantity λ, the requirement of distinguishable mass hierarchy and its confidence level
can be investigated. The set of the values of δCP forms a window for addressing mass hierarchy
that is calculated for MINOS, NOνA and DUNE.

Copyright c© EPLA, 2020

Introduction. – Neutrino oscillation has opened up
an interesting window into physics beyond the standard
model. As a quantum mechanics effect, it can be described
by the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mix-
ing matrix between weak eigenstates and mass eigenstates.
Even though all mixing angles, including close to zero θ13,
in PMNS have been measured by solar, atmosphere, and
reactor neutrino experiments, some fundamental prob-
lems, such as neutrino mass order, CP violation in
neutrino oscillation, and Dirac/Majorana fermions still
remained unsolved [1–4]. These problems are not inde-
pendent and some pioneering studies were made for the
combined effects from neutrino experiments [5,6] as well as
theoretical work like weak-basis invariance [7] and quark-
lepton complementarity [8,9]. More popular works focused
on the issues from the discrete symmetry approach [10–15].
The observed pattern of neutrino mixing is believed to en-
code some underlying flavour symmetry such as A4, S4, T

′

and Dn that exists at a high-energy scale and breaks at
a lower scale to the residual symmetry of the leptonic
sector [16–21]. This approach predicts two large mixing
angles, one of which is close to zero θ13, and one is an
unmeasured Dirac CP violation. Mass hierarchy (MH)
is another problem that is often treated as an input in
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the discrete symmetry approach. Different results are ob-
tained for normal hierarchy (NH) and inverted hierarchy
(IN). With the additional help of the chosen models such
as GUT or seesaw mechanics, the neutrino mass matrix
can be generated and the mass order predicted [22–24]. In
this paper, we study the interplay of neutrino CP violation
and mass hierarchy in long-baseline neutrino oscillations
without any additional symmetry assumptions. We point
out that the asymmetry Am

CP is an important tool for the
study of the combined effects of Dirac CP violation and
MH in long-baseline experiments. Based on the results of
the neutrino experiments performed to date, we show a
Dirac CP violation value window in which mass hierarchy
can be determined simultaneously in MINOS, NOνA and
DUNE.

The explanation of neutrino oscillation requires different
mass eigenvalues. However, oscillation probability only
depends on the absolute value of Δm2

31 unless a non-
vanishing CP violation δCP is obtained. Thus, MH is
coupled to the CP violation in the framework of the stan-
dard neutrino model. The coupling effect is suppressed by
the small quantities α ≡ Δm2

21/Δm2
31 and θ13. A small

contribution of CP violation requires more experiments
with long-baseline, intense beams and high energy resolu-
tion in the future. When the matter effect is considered,
the situation becomes more complex. Dirac CP violation
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can provide a CP violation source in the leptonic sector.
This yields the difference between neutrino oscillation and
anti-neutrino oscillation. The asymmetry of matter and
anti-matter distribution in the Earth also provides a CP
asymmetric interaction mechanism. δCP only controls a
part of CP violation in the matter effect. Even when the
Dirac CP violation vanishes, neutrino oscillation and its
CP process are not equal. For νμ → νe with the matter
effect, Δm2

31 and θ13 are replaced by their effective val-
ues [25,26], introducing a complex dependence on the MH
parameter Δm2

31. Matter effect makes CP violation en-
tangled with neutrino mass order. In this paper, we start
from the relation between the Dirac CP violation and neu-
trino MH. By analyzing the roles of δCP and Δm2

31 in
neutrino oscillation with the matter effect, it is found that
CP violation is related to the problem of MH, helping
us obtain an in-depth understanding of the role of Dirac
CP violation and explore a new approach for addressing
unknown MH.

The rest of the paper is organized as follows: in the
next section, neutrino mixing and oscillation are briefly
reviewed. The role of the Dirac CP violation in neutrino
oscillation is analyzed in the third section. By comparing
with vacuum oscillation, the complex entanglement be-
tween δCP and Δm2

31 in the Earth is obtained. The con-
tribution of δCP to the matter effect is extracted. Next,
in the fourth section, the asymmetry A

(m)
CP error is derived

in terms of the error transfer formula. The contributions
from the different physical quantities are analyzed. To
analyse MH, a statistical quantity λ is proposed. It is de-
fined as the difference of A

(m)
CP between normal hierarchy

(NH) and inverted hierarchy (IH) over the standard de-
viation. For a determined δCP , the value of λ represents
the confidence of MH. Some numerical results are given
in the fifth section. The requirement of addressing MH
for the detector parameters, beam energy E and distance
L, is calculated with unknown δCP . We also analyze the
range of δCP to provide an estimate of the neutrino mass
order in MINOS, NOνA, and DUME. Finally, a summary
is given in the last section.

Review of neutrino oscillation. – As a quantum
effect, a neutrino weak eigenstate, denoted by να (α =
e, μ, τ) is a linear combination of mass eigenstates νi

(i = 1, 2, 3) with different mass eigenvalues that can be
expressed by a unitary rotation [1,27]

|να〉 =
3∑

i=1

U∗
αi|νi〉. (1)

For 3 flavor neutrinos, Uαi is the PMNS matrix

U =

⎛
⎝ 1 0 0

0 c23 s23

0 −s23 c23

⎞
⎠

⎛
⎝ c13 0 s13e

−iδCP

0 1 0
−s13e

iδCP 0 c13

⎞
⎠

×

⎛
⎝ c12 s12 0

−s12 c12 0
0 0 1

⎞
⎠ diag(ei

α1
2 , ei

α2
2 , 1),

parameterized by 3 mixing angles θij , and 3 leptonic CP
violation phases δCP , α1, α2. Currently, unlike the 3 mea-
sured mixing angles, the 3 leptonic CP violation phases
remain unknown. Among the 3 phases, α1 and α2 only ex-
ist for Majorana neutrinos that involve slight differences
in some phenomena such as 0νββ decay. Another phase,
δCP , often called the Dirac CP violation, exists not only
for the Dirac neutrinos but also for the Majorana neu-
trinos. This phase leads to more applications in particle
physics and cosmology. Considering neutrino oscillation
from flavor να to νβ at the distance of L with energy E,
the oscillation probability is

P (να → νβ) =
∣∣∣ ∑

i

U∗
αiUβie

−im2
i L/(2E)

∣∣∣2
= δαβ − 4

∑
i>j

Re(U∗
αiUβiUαjU

∗
βj)

× sin2

(
Δm2

ijL

4E

)

+2
∑
i>j

Im(U∗
αiUβiUαjU

∗
βj)

× sin
(

Δm2
ijL

2E

)
, (2)

with Δm2
ij ≡ m2

i −m2
j . For νμ to νe, the CP violation ef-

fect is doubly suppressed by the small value of α and near
zero θ13. The CP violation contribution can be enhanced
in long-baseline experiments in which the matter effect
must be considered. When a neutrino travels through the
Earth, the electrons in matter will interact with the neu-
trino. Due to a lack of positron interaction, asymmetric
contributions for neutrino oscillations and anti-neutrino
oscillations give rise to an enhanced difference. Replac-
ing Δm2

31 and θ13 in eq. (2) by their matter-dependent
values [26], we obtain

Δm2
31 → Δmm2

31 = Δm2
31

√
(1 − A)2 − 4A sin2(θ13),

(3)

sin(2θ13) → sin(2θ13)m =
sin(2θ13)√

(1 − A)2 − 4A sin2(θ13)
,

(4)

with A = 2
√

2GF NeE/Δm2
31 and electron number density

of the Earth Ne, and we have the νμ → νe oscillation
probability in the Earth, up to O2(α, θ13), as

P (m)(νμ → νe) = c
(m)
0 + αc

(m)
1s sin(δCP ) + αc

(m)
1c cos(δCP )

+α2c
(m)
2 + . . . , (5)

with

c
(m)
0 = sin2(θ23) sin2(2θ13)

sin2[(1 − A)Δ]
(1 − A)2

, (6)

c
(m)
1s = − sin(2θ13) sin(2θ12) sin(2θ23) cos(θ13)

× sin[(1 − A)Δ] sin[AΔ]
A(1 − A)

sin(Δ), (7)
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c
(m)
1c = sin(2θ13) sin(2θ12) sin(2θ23) cos(θ13)

× sin[(1 − A)Δ] sin[AΔ]
A(1 − A)

cos(Δ), (8)

c
(m)
2 = cos2(θ23) sin2(2θ12)

sin2[AΔ]
A2

. (9)

In the above, the CP violation δCP is coupled to the mat-
ter effect correction A in a complex from.

Dirac CP violation in A
(m)
CP with matter effect.

– CP violation in PMNS involves a difference between
the neutrino oscillation and anti-neutrino oscillation. A
more sensitive CP violation observable is the asymmetry
between P (νμ−νe) and P (ν̄μ− ν̄e). In vacuum, the asym-
metry is given by

ACP ≡ P (νμ → νe) − P (ν̄μ − ν̄e)

= −JCP

{
sin

(
Δm2

21L

2E

)
+ sin

(
Δm2

32L

2E

)

+ sin
(

Δm2
13L

2E

)}
,

with weak basis invariant

JCP =
1
8

cos θ13 sin 2θ12 sin 2θ23 sin 2θ13 sin δCP .

When δCP vanishes, the neutrino oscillation probability
P (νμ → νe) is equal to its CP corresponding P (ν̄μ → ν̄e),
and ACP vanishes. However, this is not true when the
matter effect is considered. The corrections from the mat-
ter effect can be seen more clearly by expanding eq. (3),

Δm2
31 →

{
(1 − A) − 2As2

13

(1 − A)

}
Δm2

31 + O(s3
13).

The correction factor of Δm2
31 in the first term is

slightly less than 1, reducing the oscillation probability
P (m)(νμ → νe) sensitivity to MH. For the anti-neutrino
oscillation, the probability can be obtained by changing
A → −A and δCP → −δCP . Expanding A

(m)
CP in terms of

the small A (∼ 10−4)

A
(m)
CP ≡ P (m)(νμ → νe) − P (m)(ν̄μ → ν̄e)

= Δc
(m)
0 + αΔc

(m)
1s sin(δCP )

+αΔc
(m)
1c cos(δCP ) + O3(α, θ13, A), (10)

with

Δc
(m)
0 = 4 sin2(θ23) sin2(2θ13) sin(Δ)

×
{

sin(Δ) − Δcos(Δ)
}

A,

Δc
(m)
1s = −2Δ sin(2θ13) sin(2θ12) sin(2θ23)

× cos(θ13) sin2(Δ),

Δc
(m)
1c = 2Δsin(2θ13) sin(2θ12) sin(2θ23) cos(θ13) cos(Δ)

×
[
sin(Δ) − Δcos(Δ)

]
A.

Δc0
(m)

αΔc1 s
(m)sin(ΔCP)

αΔc1 c
(m)cos(ΔCP)
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ΔCP/Π
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Fig. 1: A
(m)
CP coefficients vs. δCP at L = 1500 km and E =

1.7 GeV.

When δCP = 0, only Δc
(m)
1s vanishes. Other two non-

vanishing terms Δc
(m)
0 and Δc

(m)
1c stem from the matter

effect. Even more remarkably, CP violation is entangled
with MH by A and Δ in the order of α (see fig. 1 for
details). Due to the dependence not only on the abso-
lute value of Δm2

13 but also on its sign, A
(m)
CP provides

an approach for addressing the neutrino MH problem by
entanglement with δCP .

Mass hierarchy in A
(m)
CP . – The latest global fit re-

sults have been given for the NH case and IH case, re-
spectively [28–30] (see table 1 for details). If there is a
gap of A

(m)
CP between NH and IH, the neutrino MH can

be determined. In the formation of the gap, it is impor-
tant to consider the error band of A

(m)
CP . This error band

is spanned by all parameters deviation. When the error
band of NH overlays the error band of IH, MH cannot
be determined. By contrast, when the error bands of NH
and IH are distinguishable, we can obtain the informa-
tion regarding MH. Using the error transfer formula, the
standard deviation of A

(m)
CP becomes

δA
(m)
CP =

√∑
q

F 2
q (δq)2, (11)

with parameters q taking θ12, θ13, θ23,Δm2
21,Δm2

31, beam
energy E, oscillation distance L, and also unknown δCP .
The coefficient Fq is Fq = ∂A

(m)
CP /∂q. Now, let us analyze

the role of δCP in eq. (11). Dirac CP violation affects the
deviation of A

(m)
CP in two ways: coefficient Fq and devi-

ation δq. In FδCP
, the contribution from Δc

(m)
1 c is sup-

pressed by the small A, so that FδCP
is dominated by the

Δc
(m)
1s term. Notice that because the contribution from

the Δc
(m)
1s term is proportional to cos(δCP ), FδCP

is van-
ishing at the maximal CP violation. The other Fq also
depends on the unknown value of δCP , but by contrast
mainly contributing from the Δc

(m)
1s term at the maxi-

mal CP violation. In addition to the Fq coefficient in
eq. (11), all of the parameter measurement accuracy δq
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Table 1: Best-fit values with the standard derivation for three
flavour neutrino oscillation parameters from [29]. (For other
global fit results, see [28,30].)

Parameter NH (1σ range) IH (1σ range)
sin2 θ12/10−1 2.81–3.14 2.81–3.14
sin2 θ23/10−2 4.10–4.46 5.67–6.05
sin2 θ13/10−2 2.08–2.22 2.07–2.24

Δm2
21/10−5 ( eV)2 7.52 ± 0.18 7.52 ± 0.18

Δm2
32/10−3 ( eV)2 2.444 ± 0.034 −2.55 ± 0.04

together determines the error of A
(m)
CP . Notice that the

deviation of Dirac CP violation plays an important role,
and even dominates δ(A(m)

CP ) in some cases. Before further
discussing the error space of A

(m)
CP , we must focus on the

deviation of the Dirac CP violation δ(δCP ). Being δCP

in a circle (0, 2π), its deviation must be limited to a finite
range when it is determined by neutrino experiments. It
is recommended that a minimal limit of its standard de-
viation should be less than π/4 in [31], corresponding to
2σ C.L. on a half-cycle. The statistical condition of δCP

gives a minimal distinguishing limit at its value domain.
Now, the next issue is to study the effect of the δCP value
on the gap in the making. With the help of the statistical
condition, fig. 2 shows that a gap appears with increas-
ing source-detector distance L due to the accumulation of
asymmetric contributions from the interactions with the
matter effect. Furthermore, the gap can be described pre-
cisely by the number of statistical deviations λ, defined
as

λ =

∣∣∣A(m),NH
CP − A

(m),IH
CP

∣∣∣
δ(A(m)

CP )|NH + δ(A(m)
CP )|IH

. (12)

A gap appears corresponding to λ = 1, which means that
NH and IH can be divided as 1σ C.L.. Now, we consider
the sensitivity of λ to the global fit results. The expression
A

(m),IH
CP for IH can be obtained by replacing

Δm2
31 → −Δm2

31

in NH A
(m),NH
CP ,

A
(m),NH
CP − A

(m),IH
CP =

P (m),NH(νμ → νe)

−P (m),NH(νμ → νe)|A→−A,δCP →−δCP

−P (m),NH(νμ → νe)|A→−A,Δ→−Δ,α→−α

+P (m),NH(νμ → νe)|δCP →−δCP ,Δ→−Δ,α→−α.

Clearly, if all of the neutrino parameters have the same
values for NH and IN, λ vanishes up to O2(α, θ13, A). This
means that λ is controlled by the difference of the global
fit results for NH and IH, which is the reason why A

(m)
CP is

sensitive to MH. (Only θ23 and the MH parameter Δm2
32

have different global fit results in table 1.)
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Fig. 2: A gap of A
(m)
CP for NH and IH with different lengths

of baselines in 2σ C.L. The purple area is the overlay area
from NH and IH. The best fit values of the mixing angles and
squared-mass difference can be found in table 1.
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Table 2: λ values at δCP = 3π/2 and a window range corresponding to λ > 3 and λ > 5 at MINOS, NOνA and DUNE.

Exp. λ|δCP =3π/2 δCP /π range for λ > 3 δCP /π range for λ > 5
MINOS 3.5 [0.41, 0.53] ∪ [1.41, 1.53] –
NOνA 11.1 [0.18, 0.62] ∪ [1.18, 1.62] [0.34, 0.56] ∪ [1.34, 1.56]
DUNE 9.2 [0.14, 0.70] ∪ [1.14, 1.70] [0.29, 0.58] ∪ [1.29, 1.58]

Fig. 3: Parameter space for MH in the plane E-L. The yellow
area (green area) indicates the separation of NH and IH in 3σ
(5σ) C.L., i.e., λ = 3 (5).

Numerical results. –

Detecting parameters E and L to MH. Using the
global fit results in table 1, we investigate the MH re-
quirement for the neutrino detection parameters. As an
unknown parameter, Dirac CP violation takes all its pos-
sible values in the (0, 2π) range. Its error has been taken
to satisfy the statistical condition with a minimal limit of
the standard deviation of less than π/4. In ideal detecting
conditions δL = δE = 0, and the parameter space of E
and L corresponding to distinguishing MH in 3σ and 5σ
C.L. is shown in fig. 3. The minimal distance of the base-
line is approximately 100.1 km (162.6 km) in 3σ (5σ) C.L.
corresponding to a minimal beam energy of approximately
31.6MeV (56.2MeV).

A window to MH in NOνA, DUME and MINOS.
Some long-baseline neutrino oscillation experiments have
been run or are planned to address the leptonic CP viola-
tion and/or neutrino MH problem. With fixed detecting
parameters E and L, when taking each δCP value, we ob-
tain a point in the plane A

(m)
CP -λ. With δCP taking all its

possible values, the line forms a closed loop in fig. 4.
Another more interesting issue is the value of δCP that

can make a distinguishable MH. For a chosen δCP , when
λ > 3 (5), MH is distinguished in 3σ (5σ) C.L. A set of
δCP values forms a window for addressing the problem of
MH. In fig. 5, the window for MH at MINOS, NOνA and
DUNE is shown in the plane λ-δCP . Table 2 lists the λ
values of some long-baseline neutrino oscillation experi-
ments at δCP = 3π/2 and the range of Dirac CP violation
corresponding to 3σ and 5σ C.L. Here, the actual energy

0.05 0.05
ACP

0

2

4

6

8

10

12

λ

NOvA (NH)
NOvA (IH)

MINOS (NH)
MINOS (IH)

DUNE (NH)
DUNE (IH)

δCP 0

δCP

δCP

δCP 3Π

/2

/2

Fig. 4: Values of λ and A
(m)
CP at NOνA, DUME and MINOS

are shown.

MINOS

NOvA

DUNE

0.5 1.0 1.5 2.0
ΔCP /Π

2

4

6

8

10

12

Λ

Fig. 5: Dirac CP violation for neutrino MH in NOνA, DUME
and MINOS.

resolution has been considered which tends to increase the
error in the denominator of eq. (12) and suppress λ. Due
to the sensitivity to energy error in high-energy neutrino
beams, the suppressing effect on λ will become more no-
table. An effective method to enhance the confidence level
is to improve the energy resolution of the detectors in the
high-energy area. The results in table 2 show that only a
narrow window is open near the maximal Dirac CP viola-
tion. This arises from the error of the Dirac CP violation.
Only at the point of the maximal CP violation does the
contribution from the energy resolution vanish. When
considering Dirac CP violation and taking the minimal
distinguishable error, δ[δCP ] = π/4, a relatively large er-
ror dominates the error band of A

(m)
CP . Thus, the window

rapidly closes at a range away from δCP = 3π/2 (another
maximal CP violation, δCP = π/2 is disfavoured [28]).
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Summary. – In summary, the asymmetry A
(m)
CP

in long-baseline experiments provides an important
observable for investigating the interplay of Dirac CP vi-
olation and MH problem. The two issues are entangled in
A

(m)
CP in the complex form. By analyzing the role of δCP ,

we found that MH can be de determined at some values
of δCP . A new statistical quantity λ is defined to describe
the confidence level of the MH problem. The window of
δCP has been given in table 2 for the MINOS, NOνA and
DUNE experiments. The results show that when Dirac
CP violation is determined within the window range, MH
can be obtained at the same time. Revealing the entan-
glement of Dirac CP violation and MH in long-baseline
neutrino oscillations helps us understand neutrino physics
more clearly in phenomenology.
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