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Many-body localization in generalized Kondo lattice with disorder
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Abstract – We study the many-body localization transition in a one-dimensional generalized
Kondo lattice, where a one-dimensional Hubbard chain with disordered spin-orbit coupling inter-
acts with a fixed impurity of spin 1/2. Using exact diagonalization, we characterize the many-body
localized transition with entanglement entropy and energy spectrum distribution. We find that
although the subsystem of the impurity is free of disorder, it can still be localized in the spin space
by the coupling with the Hubbard chain. We also investigate the out-of-time-order correlation in
the many-body localized phase, and find distinctive features in comparison to either the thermal
state or the Anderson localized state. Our scheme can be realized in experiments with ultracold
fermions of alkaline-earth–like atoms near an orbital Feshbach resonance.

editor’s  choice Copyright c© EPLA, 2020

Introduction. – The study of dynamical properties
of disordered systems has been one of the key problems
in condensed matter physics, ever since the publication
of the seminal paper by Anderson in 1958 [1]. In that
work, it is shown that a non-interacting system can un-
dergo a quantum phase transition from transport to lo-
calized state for large enough disorder strength. In this
so-called Anderson localization (AL) or Anderson insula-
tor state, the particles interfere destructively and hence
prevent transport in the thermodynamic limit. Following
research proves that this phenomenon is more prominent
in lower dimensions such that systems in one and two di-
mensions become an Anderson insulator in the presence of
an arbitrarily small amount of disorder [2]. The absence of
spreading of particle’s wave-packet in AL phase implies the
initial quantum information is permanently maintained,
making it an ideal platform to produce quantum memory
devices. However, in general, there is no purely isolated
system. The coupling between the qubits and reservoirs
essentially destroys the initial correlations in the quantum
systems. Then how to eliminate the diffusion of quantum
information from system to reservoir becomes a profound
question.
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Recently, the investigation of localization has been gen-
eralized to interacting systems, where a transition from
transport to localized state can also be observed with in-
creasing disorder both theoretically [3–14] and experimen-
tally [15–18]. The localized state, referred to as many-body
localization (MBL), is suggested to be a different state
of matter with some distinct properties compared to ei-
ther AL state or other interacting systems. For exam-
ple, it is shown that, for an AL state, the entropy will
first increase linearly with time and then nearly saturate
to a constant after a sudden quench, while, for a MBL
phase, the entropy will increase continuously with a log-
arithmic behavior for long enough time as a result of the
interaction-induced dephasing [10,19]. Besides, the out-of-
time-order correlator (OTOC) for an AL phase remains as
a constant over time, but drops with a power-law depen-
dence in a MBL phase [20]. More remarkably, it is known
that the MBL phase does not satisfy the eigenstate ther-
malization hypothesis (ETH) [21–32], which means that
the system does not thermalize even in the thermodynamic
limit [33,34].

In this work, we study the MBL transition in a gen-
eralized Kondo lattice, where a one-dimensional (1D)
Hubbard chain with disordered spin-orbit coupling couples
to a fixed impurity of spin 1/2. Because of the presence of
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spin-orbit coupling, the impurity can be viewed as itiner-
ant in the spin space, i.e., can hop between the two spin
eigenstates. This setup can be treated as a toy model to
study whether the decoherence effect of environment in
MBL on the system is weakened. Although the subsys-
tem of the impurity does not acquire any apparent dis-
order, the randomness in the background Hubbard chain
can induce a transition to the localized state and prevent
hopping of the impurity in the space via the impurity-
background coupling. To characterize the localized state,
we numerically obtain the full spectrum by exact diago-
nalization (ED), and calculate various quantities that can
distinguish a MBL state from either an AL state or a ther-
mal state. Specifically, we evaluate the mean and standard
deviation of the entanglement entropy of a subsystem, the
average ratio of adjacent energy gaps, and the OTOC by
varying the disorder strength. We also suggest that the
model considered here can be implemented in ultracold
Fermi gases of alkaline-earth–like atoms in 1D optical lat-
tices and Raman-assisted spin-orbit coupling [35].

Model. – We consider a quasi-1D quantum gas of
alkaline-earth–like atoms trapped in an optical lattice po-
tential along the axial direction, and tightly confined in the
transverse directions. In addition to the ground electronic
state 1S0, these two-electron atoms have a metastable
state 3P0, which is forbidden to couple with the ground
state by dipole transition and hence acquires a very long
lifetime in the scale of tens or even hundreds of seconds.
Thus, for most experimental relevant cases, these two elec-
tronic states are considered to be stable and provide an
additional degree of freedom referred to as orbital. In the
following discussion, we label the 1S0 state as orbital |g〉
and 3P0 as orbital |e〉. As the total electronic angular mo-
mentum for both |g〉 and |e〉 orbitals is zero, the coupling
between electronic and nuclear angular momenta is negli-
gible and the different nuclear spin states are degenerate
in the absence of magnetic field. For 87Sr, the nuclear spin
is 9/2, which gives 10 different Zeeman levels. While for
173Yb, a nuclear spin of 5/2 gives 6 magnetic states. This
nuclear spin degeneracy can be lifted in a finite Zeeman
field. By selectively populating two of these nuclear spin
states, we can then realize a spin-1/2 fermionic system
where the nuclear spin states are labelled by (pseudo)spin
| ↑〉 and | ↓〉.

A synthetic spin-orbit coupling between the two spin
states within each orbital can be implemented via a
Raman transition, as illustrated in fig. 1. Stimulated by
the experimental scheme of Raman optical lattice [36],
we assume one leg of the Raman transition in both or-
bitals is driven by a standing-wave with Rabi frequency
Ω2,α(x) = Ω2,α cos(k0x), where α = g, e labels differ-
ent orbitals. The wave vector k0 corresponds to the
magic wavelength for 1S0 and 3P0 atoms. The other leg
of the Raman transition is realized by a traveling wave
Ω1,α(x)eik0x. While the magnitude of the |g〉 orbital Ω1,g

is a uniform constant, for |e〉 the orbital is assumed to be

Fig. 1: Alkaline-earth–like atoms in the |g〉 and |e〉 orbitals are
trapped in 1D optical lattices. With the aid of a Raman lattice,
synthetic spin-orbit coupling can be implemented within both
orbitals between different nuclear (pseudo) spin states. Near
an orbital Feshbach resonance, the system features not only on-
site Hubbard interaction, but also a spin-exchange interaction
which couples the two orbitals as defined in eq. (3). The |e〉
orbital is quarterly filled, while the number of particle for the
|g〉 orbital is fixed to be unity. Disorders are introduced to the
|e〉 orbital solely. The atom in the |g〉 orbital is fixed in position
to act as an immobile spinful impurity.

position-dependent and may acquire some disorder. As a
result, the atoms in both orbitals are trapped in two 1D
optical lattices, and are spin-orbit coupled with a uniform
(random) intensity for the |g〉 (|e〉) orbitals. We stress that
the intensities of the optical lattice potentials for the two
orbitals can be varied independently since the AC polar-
izibilities are in general different.

Within this setup, the single-particle Hamiltonian can
be written as

Ĥ0 =
∫

dx
∑
ασ

ψ̂†
ασ

[
− h̄2

2m
∇2 + Vα(x) + δασ

]
ψ̂ασ

+
∫

dx
∑
α

[Mα(x)ψ̂†
α↑ψ̂α↓ + H.c.], (1)

where σ = (↑, ↓), ψασ is the annihilation operator for
atoms with spin σ in the α orbital, and δασ denotes the dif-
ferential Zeeman shifts under an external magnetic field.
The lattice potential Vα(x) = −V0α cos2(k0x), and the
Raman potential Mα(x) = M0α(x) cos(k0x), where both
V0 and M0α are proportional to the AC polarizability of
the clock states. While the magnitude of the Raman
potential for the |g〉 orbital M0g(x) = M0g remains a
constant, that for the |e〉 orbital is a random function
M0e(x) = M0erand(0, 1) with amplitude M0e.
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Within the single-band approximation, the Hamiltonian
above can be written into a lattice model

Ĥ0 =
∑

α,σ〈i,j〉
t1αĉ†iασ ĉjασ +

∑
α,σ〈〈i,j〉〉

t2αĉ†iασ ĉjασ

+ Γα
z

∑
i

(n̂iα↑ − n̂iα↓)

+
∑

i

Ωiα(ĉ†iα↑ĉiα↓ − ĉ†iα↑ĉiα↓ + H.c.), (2)

where ĉiασ is the annihilation operator for atoms on site
i with spin σ and orbital α, n̂iασ = ĉ†iασ ĉiασ is the cor-
responding number operator, t1α and t2α are the spin-
conserving hopping rates for nearest neighbors 〈i, j〉 and
next nearest neighbors 〈〈i, j〉〉, respectively, and Γα

z is the
effective Zeeman field for the α orbital, which gives the en-
ergy shift resulting from the two-photon detuning of the
corresponding Raman process. Note that Γα

z originates
from the energy offset δασ between the two nuclear spin
states, and is different for the two orbitals at finite exter-
nal magnetic fields. While the spin-orbit coupling rate for
the |g〉 orbital is a constant Ωig, that for the |e〉 orbital
is a random function Ωie = WΩe

rand(0, 1). The parame-
ters in the lattice Hamiltonian can be obtained from the
continuous space Hamiltonian eq. (1) by calculating the
corresponding overlap integrals of Wannier functions. In
the absence of interactions, the two orbitals are decoupled,
and the single-particle eigenstates within each orbital are
composed of spin-up and spin-down components and usu-
ally referred as helix. Notice that while the contribution
from spin-up and spin-down atoms to the |g〉 orbital helix
is fixed, those for the |e〉 orbital helix are fluctuating due
to the randomness of Ωie.

A key property of this system is the inter-orbital
spin-exchange interactions in the clock-state manifolds.
In three-dimensional space, the interaction depends on
whether the orbital degrees of freedom are singlet or
triplet, with the scattering lengths of the two scattering
channels given by as− and as+, respectively. In a quasi-1D
trapping potential and under a finite external magnetic
field, the two scattering channels are coupled, and the in-
teraction under the tight-binding approximation can be
written as

Ĥint =
∑

i

(Vexĉ†ig↑ĉ
†
ie↓ĉie↓ĉig↑ + H.c.)

+
∑

i

(Ugn̂ig↑n̂ig↓ + Uen̂ie↑n̂ie↓) +
∑
iσ

U0n̂igσn̂ieσ, (3)

where U and U0 are the Hartree-type on-site interactions,
and Vex is the on-site inter-orbital spin-exchange interac-
tion. All the on-site interaction parameters {Vex, U, U0}
can be tuned via the external magnetic field through the
orbital Feshbach resonance, or via the transverse trapping
frequencies through the confinement-induced resonance.
Due to the presence of disorder in the |e〉 orbital, all the
on-site interaction parameters related to the |e〉 orbital are
random in nature. Nevertheless, in the following calcula-
tion we consider a simplified setup with constant Vex and

U0, and a random Ue = WUe
rand(0, 1). In this config-

uration, the system corresponds to a ladder as shown
in fig. 1, with one leg (|g〉) free of disorder and the
other leg (|e〉) with both random spin-orbit coupling and
on-site interaction. An interesting question is whether
localization can take place in the disorder-free leg due to
the coupling to the other leg.

Transition from thermal to localized phases. –
To address the question raised above, we assume the

leg with disorder (|e〉) is filled with 1/2 particle per site,
while the number of particles in the disorder-free |g〉 or-
bital is fixed to be unity. We use ED to calculate the
eigenstates for systems of length L up to 16, and extract
several key indicators to investigate the localization tran-
sition. In the following discussion, we choose the hopping
rate between nearest neighbors in the |e〉 orbital as energy
unit t1e = 1, and choose other parameters as t2e = 0.5,
t1g = t2g = 0, Ωg = 0.5, Γg

z = 0, Γe
z = 2.0, U0 = 0.5,

Ug = 8.0, and Vex = 4.0. Notice that the hopping rates
in the |g〉 are assumed to be zero reflecting the fact that
the impurity is fixed. The two quantities that acquire
randomness are assumed to be of the same intensity with
Ωe = W × rand(0, 1) and Ue = W × rand(0, 1). This
choice of parameters is realistic for 173Yb atoms trapped
in quasi-1D optical lattices near an orbital Feshbach reso-
nance [36]. In our numerical calculation, we average over
at least 3000 randomly generated parameter combinations
until convergence is obtained for the means.

The first quantity of interest is the entanglement en-
tropy SE = −Tr(ρA ln ρA) of a subsystem A with ρA =
TrI−A(|ψ〉〈ψ|) the reduced density matrix. We first cut
the ladder in the middle and calculate the entanglement
entropy for the left (or equivalently right) subsystem. In
fig. 2 we show the mean SE

LR (top) and standard devia-
tion σE

LR (bottom) of the entanglement entropy by varying
the strength of disorder W . The entanglement entropy is
evaluated at an energy in the middle of the spectrum by
averaging over at least 50 eigenpairs in order to reduce
finite size effects.

For weak disorder, the system is in the thermal phase
where the entanglement entropy follows a volume law ap-
proaching the Page value S = (L ln 2 − 1)/2 of a pure
random state as shown by dotted lines [37]. By increasing
disorder, SE

LR decreases monotonically and saturates at
S = ln 2 (dashed line) in the localized state. The tran-
sition from the thermal to the localized state becomes
sharper with increasing system size L. The standard de-
viation of the entanglement entropy tends to vanish in the
thermodynamic limit in the deep thermal state, which is
consistent with the ETH. In the deep localized state, σE

LR

also goes to zero since all states acquire the same entan-
glement entropy of ln 2. In the middle, the standard devi-
ation shows a diverging behavior, indicating that MBL is
indeed a phase transition in the thermodynamic limit.

Next we cut the ladder system into two separate chains,
and plot the mean SE

UD (top) and standard deviation σE
UD
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Fig. 2: (a) Mean of entanglement entropy as a function of disor-
der strength W . The entropy is obtained for the left (or equiv-
alently, right) subsystem by cutting the ladder at the center,
and evaluated in the middle of the spectrum. The inset shows
the volume law of the entanglement entropy without disorder
and the dashed line indicates the anticipated ln 2 entanglement
entropy in the deep MBL phase. (b) Standard deviation of the
entanglement entropy as a function of disorder strength W .
The thermal-to-localized transition is shown by the diverging
behavior.

(bottom) of the entanglement entropy of the |g〉 orbital
in fig. 3. From these results, we observe similar trends of
variation as in fig. 2 by increasing the disorder strength
from the thermal state to the localized state. Quantita-
tively, as the impurity in the |g〉 orbital is fixed in space,
in the deep thermal state the system tends to a cat state
with the impurity of either spin-up or spin-down, hence
acquires an entanglement entropy of S = ln 2 as indicated
by the dashed line in fig. 3. In the deep localized state,
however, the impurity is fixed at one specific spin state,
leading to a vanishing entropy in this limiting case.

Another important indicator for the MBL transition is
the average ratio between the smallest and the largest ad-
jacent energy gaps, rn = min[δE

n , δE
n−1]/max[δE

n , δE
n−1] [6].

Here, {En} is the ordered list of energy levels and δE
n =

En − En−1 is the separation between two adjacent eigen-
states. As shown in fig. 4, in the thermal phase where the
level spacing exhibits a Wigner-Dyson distribution, the av-
erage ratio is 〈r̄〉dis ≈ 0.5307, while in the localized phase
where the level spacing exhibits a Poisson distribution,

Fig. 3: (a) Mean and (b) standard deviation of the entangle-
ment entropy of the impurity. The dashed line shows the lim-
iting behavior of a deep thermal state of S = ln 2. Parameters
used here are the same as in fig. 2.

Fig. 4: Average ratio of adjacent energy gaps as a function of
the disorder strengths. Dashed lines show the limiting value
for the deep thermal and localized states where spectra acquire
Wigner-Dyson (0.5307) and Poisson (0.3863) distributions, re-
spectively. Parameters used here are the same as in fig. 2.

the average ratio is 〈r̄〉dis = 2 ln 2 − 1 ≈ 0.3863 [38].
The variation becomes sharper with increasing system
size, indicating the MBL transition in the thermodynamic
limit.
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（ ）

（ ）

Fig. 5: Time evolution of OTOC in the MBL state by varying
(a) disorder strengths with Vex = 4.0 and (b) spin-exchange
interaction with W = 30. The results are scaled to drop from
unity in short time. The horizontal axis is in the logarithmic
scale to show the power-law behavior (dashed line) at inter-
mediate time. In this calculation, we choose a system size of
L = 8. Other parameters are the same as in fig. 2.

Finally, we study the evolution of OTOC in the MBL
phase, as defined by

O(t) ≡ 〈Â†(t)B̂†(0)Â(t)B̂(0)〉, (4)

where Ŝ(t) = eiĤtŜe−iĤt is the time-dependent operator
for Ŝ = (Â, B̂), and 〈. . . 〉 denotes the expectation value
for the ground state at zero temperature. OTOC is a
commonly used quantity to characterize the chaotic be-
havior of a quantum system. The exponential deviation
of OTOC defines the Lyapunov exponent [39,40]. Previ-
ous studies show that the MBL phase is not chaotic, and
the time evolution of OTOC therein presents a power-law
decay instead of an exponential deviation [19,20,41–44].
It is also suggested that OTOC can serve as an indicator
to distinguish a MBL state from an AL state. While the

OTOC remains a constant over time in the AL phase, it
decreases in the MBL phase accompanying a logarithmic
growth of entropy [20].

For our system, we take the operators in eq. (4) as a lin-
ear combination of creation and annihilation operators at
adjacent sites Â = (ci+c†i ) and B̂ = (ci+1+c†i+1). In fig. 5,
we show time evolution of OTOC for the MBL phase for
various disorder strengths and spin-exchange interactions.
The results are averaged over half lattice sites at the center
and over 3000 random configurations to achieve conver-
gence. In all cases, we observe that after a certain amount
of time t ∼ h̄/t1 OTOC starts to deviate from unity, as in
clear contrast to the AL state where OTOC remains 1. For
intermediate time, the decay is in power-law instead of ex-
ponential, showing a distinctive behavior in comparison to
a thermal state. The power-law exponent, as indicated by
dashed lines in fig. 5, is not a universal value but changes
slightly for different choice of parameters. For long enough
time t → ∞, OTOC tends to zero.

Summary. – We study the thermal to many-body lo-
calization transition in generalized Kondo lattice, where
a 1D Hubbard chain with disordered spin-orbit coupling
and on-site interaction coupled to a fixed impurity of spin
1/2 via spin-exchange interactions. We find that for large
enough disorder strength, the system undergoes a tran-
sition from thermal to localized state, during which the
entanglement entropy shows an abrupt change. This re-
sult shows that although the subsystem of the impurity is
free of disorder, it can still be localized in spin space by the
coupling with the Hubbard chain. The localized transition
can also be characterized by the average ratio between the
smallest and the largest adjacent energy gaps, which shows
that the spectrum changes from a Wigner-Dyson distri-
bution in the thermal state to a Poisson distribution in
the localized state. We also investigate the OTOC in the
many-body localized phase, and find distinctive features
in comparison to either the thermal state or the AL state.
The theoretical model we discussed here can be realized in
ultracold quantum gases of alkaline-earth–like atoms near
an orbital Feshbach resonance in a 1D optical lattice.
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