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Abstract — Aspects of screening and confinement are re-examined for a recently proposed compact
Abelian Higgs model with a f-term. Our discussion is accomplished using the gauge-invariant but
path-dependent variables formalism, which is an alternative to the Wilson loop approach. We
explicitly show that the static potential profile is the sum of an effective-Yukawa and a linear
potential, leading to the confinement of static external charges. We point out the central role
of the parameter measuring the stiffness of the vortex lines present in the model in both the
Yukawa-like and the confining sectors of the effective inter-particle potential we have computed.
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Condensed matter physics and quantum field theory
have, in the last few years, become increasingly closely
meshed [1,2]. The physical consequences of this new
physics have triggered a large body of literature. An in-
teresting and illustrative example on this subject arises
when one considers topological insulators and topological
superconductors, where topological insulators have been
experimentally realized in various materials. Incidentally,
it is worth noting that these states are characterized by
topological properties rather than usual properties such as
symmetries preserved (or broken) by some order parame-
ter. At the same time, it may be recalled that the 6-term
(or axion-term) has been the key ingredient of these devel-
opments, producing non-trivial effects such as the Witten
effect [3-5] and topological magneto-electric effect [6,7].

As already expressed, the precedent states are described
by a low-energy field theory which is a topological field
theory. For instance, recently a topological field theory
description of (1 4 3)-D topological superconductors has
been discussed [8]. In this work, the topological super-
conductor is described through a topological coupling be-
tween the electromagnetic field and the superconducting
phase fluctuation, in much the same way as the coupling
of axions with an Abelian gauge field.

Most recently, it has been shown that a compact Abelian
Higgs model with a #-term in (1 + 3)-D may be consid-
ered as an effective field theory for a topological Mott
insulator [9]. Interestingly, it was also shown that this

effective theory is dual to an axionic superconductor
model [3], which contains both particle and vortex degrees
of freedom. Curiously, it should be noted that this dual
theory is analogous to superconducting vortex strings [10].
Mention should be made, at this point, of an equivalent
condensed matter picture from the above studies, where
the vortex lines play the role of magnetic monopoles [9].
Let us also mention here that, in the case without mat-
ter, the previous compact Higgs model becomes a compact
electrodynamics model with a theta term, which is confin-
ing. It should be recalled that the existence of a phase
structure for the continuum Abelian U(1) gauge theory
was first obtained by including the effects due to the com-
pactness of the U(1) group, which significantly modifies
the infrared properties of the model [11]. These theories
where the crucial feature is the contribution of self-dual
topological excitations have been systematically investi-
gated for the last forty years [12,13]. However, as we will
see below, our analysis highlights that the mechanism of
confinement in the model under study is not condensation
of topological excitations, but rather vortex lines. This
is what makes the current work different from the above
proposals of confinement in Abelian gauge theories.
Inspired by these observations, the aim of the present
work is to examine the effects of this new compact Abelian
Higgs model in (1 + 3) dimensions on a physical observ-
able. To do this, we will work out the static potential
for the present model by using the gauge-invariant
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but path-dependent variables formalism, along the lines
of [14]. In our conventions the signature of the metric is
(+1,—-1,-1,-1).

We commence our considerations with a short presenta-
tion of the model under study (a compact Abelian Higgs
model with a f-term) in (3 4+ 1) space-time dimensions.
The model is characterized by the Lagrangian density (in
Euclidean space-time) [9]
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where m,, is a magnetic monopole current, which is con-
served. As already expressed, on the one hand, from the
equivalent condensed matter picture the vortex lines play
the role of magnetic monopoles such that the parameter
) mimics the stiffness of vortex lines [9] and, on the other
hand, Q! represents the chemical potential of monopoles.
We also point out that Lg.qiqr stands for the scalar field
part of the Higgs model.
In writing the above we have used the notation

qu:Fuv+%Muuv (2)
and ~ - -
qu:Fuv+5Muuv (3)

where M,, = 0,M, — 0,M,. It may be noted here
that the monopole gauge ﬁeld M, is given by M, (z) =
fd4 'G(z — 2’)my(2), with the Green function G( ) =
;- [13).

In this context it is particularly important to recall that
the subject of magnetic monopoles has a long history origi-
nating from the pioneering paper by Dirac [16]. The point
we wish to emphasize, however, is that the fields intro-
duced in egs. (2) and (3) are analogous to that encountered
n [17,18].

As observed in [9], by introducing the auxiliary field Ay,
eq. (1) can be brought to the form

47r
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Notice that to get the last line a Lagrange multiplier, A,
has been introduced in order to take into account the con-

straint, d,m, = 0. We also have f,, = 0,h, — O, hy.
To proceed further, we define z,, = Z(h,,+<0d,A). From
this last definition it follows that f,, = £z, = £(Ju2, —

Oyzy). In this manner, we obtain the following Lagrangian
density:
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Next, integrating out the z,-field induces an effective
theory for the A, field, that is,
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It should be further noted that Lseqiar is given by [9]

2
ﬁscalar = ? (a#(,ﬁ + 2€AM)2 . (7)
Performing the integration over the ¢-field, eq. (7) re-

duces to

1 46
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In summary then, the new effective Lagrangian density (in
the Minkowski space-time) reads

Q2e2p?
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where A = 0,,0".

Having described the theory under study, we can now
compute the interaction energy. To this end we will cal-
culate the expectation value of the energy operator H in
the physical state |®), which we will denote by (H).

Before going into details, we recall that this paper is
aimed at studying the static potential. In such a case,
we can substitute A by —V? in eq. (9). With this re-
mark the canonical quantization of this theory, from the
Hamiltonian point of view, readily follows. The Hamilto-
nian analysis starts with the computation of the canonical
momenta, II° = 0, which is the usual primary constraint
equation. One can further observe that the remaining non-

. 2 2 .
zero momenta are I1* = {1 — (fowz,) - Z}F - & B
2_.2p2 2.2
where y? = 228 w? = £ and w? = 16e?p?. Thus,

the canonical Hamiltonian corresponding to (9) is given by

P . 1. . 1. X
Ho = /d% [—Aoé)iH’ + 51113—1111 + 531331}

3|1 i1y 30 i1
+ [ d°x §B: H+1287rQB: B'|, (10)

WhereE:{l—(VQXi_le,)—%}.

Time conservation of the primary constraint, I1°, yields
a secondary comstraint I'y = &;II' = 0. The preser-
vation of I'y for all times does not give rise to any
further constraints. The extended Hamiltonian that
generates translations in time is thus given by H =
He + [ d*x{co(x)p(x) + c1(x)T1(2)}, where co(z) and
c1(z) are Lagrange multipliers reflecting the gauge in-
variance of the theory. Since IIp = 0 for all time
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and Ag(x) = [Ag(x), H] = co(x), which is completely ar-
bitrary, we discard Ay and Iy because they add nothing
to the description of the system. Then, the Hamiltonian
takes the form

H = /d3 { )O;IT + 2111”—111z + 231”31}

. . 362 . .
+/d3x [5315—1H1+ 128#315—131}, (11)

where ¢(z) is a new arbitrary Lagrange multiplier.

It is important to emphasize that the existence of this
arbitrary quantity ¢(x) is unwanted since we have no way
of giving it a meaning in a quantum theory. In view of this
situation, we shall introduce a gauge condition such that
the full set of constraints becomes second class. A partic-
ularly helpful choice is [19]

Do (z) = /dz”A /ld =0,
0

Cea

(12)

where A (0 < X < 1) is the parameter describing the space-
like straight path 2* = ¢* + X (z — ()" , and ¢ is a fixed
point (reference point). There is no essential loss of gen-
erality if we restrict our considerations to (* = 0. We thus
obtain the only nonvanishing equal-time Dirac bracket

{A; (2), 1V ()} = 6760 (x —y)
—07 [ dxz?6®) Az —y).  (13)
/

We are now equipped to obtain the corresponding in-
teraction energy between pointlike sources in the model
under consideration, where a fermion is localized at y7
and an antifermion at y. Let us start by observing that
(H) g reads

= ((I)|/d3x

392 ) VQ a2 )
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where €2 = (w? + x? + @?).
In this case, it is also opportune to recall that the phys-
ical state can be written as [20]

|®) = | (y) ¥ (y))
= T (y)exp | ig / A= 4; (2) | w () [0), (15)

where |0) is the physical vacuum state and the line integral
appearing in the above expression is along a spacelike path
starting at y/ and ending at y, on a fixed time slice. As a
consequence of this the fermion fields are now dressed by
a cloud of gauge fields.

Making use of the previous Hamiltonian structure we
then easily verify that

) [¥ (y) ¥ (y)) = ¥ (y) ¥ (y)IL (x)|0)

/

y
+q/ dz6®) (z — x) |®).
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(16)
It follows from the above equation that
(H)y = (H)o +(H)y' + (H)g, (17)

where (H), = (0| H|0), and the <H>$) and (H)‘(I,Q) terms
are given by
2_2
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where  M? = 1 [e + Vet ] M3 —

1[62_

5 64—4M4},M1 > M, >0, WhereasM4:w2w2.

Consequently, the static potential profile for two oppo-
site charges located at y and y’ then reads

V- q2 WQ’WQ 1 efMlL 1 efMQL
- 47T(M2—M2) MZ L M2 L
L WQWQ

8 (M2 = M2)

i)~ (3}
X 4 — ——In(1+— )L,
{ (i 85) 4

(20)
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where A is an ultraviolet cutoff and |y —y’| = L. From this
last expression it follows that the effect of including vortex
lines (magnetic monopoles) is a linear potential, leading to
the confinement of static charges. We also call attention
to the fact that the present cutoff arises when manipu-
lating the ultraviolet divergent integral (19). Given this
situation, it will be useful to give a meaning to the cutoff
A. 1In this case, we first observe that our effective the-
ory for the electromagnetic field is an effective description
that arises under integration over the A-field, whose exci-
tations are massive (k? = M? and k* = M2). Evidently,
1/M; and 1/M,, are the Compton wavelengths of these
excitations, which define a correlation distance. We thus
see that physics at distances of the order or lower 1/M;
must take into account a microscopic description of vortex
lines fields. In other words, if we work with energies of the
order of or higher than M, our effective theory with the
integrated effects of A is no longer sensible. Accordingly,
we identify A with M;. Thus, finally we end up with

v q2 w2w2 1 671\/[1L 1 671\/[21‘
T T am(MZ-MH\MZT L ME L
q2 w2w2

T&x (7 - 153)
1 1 M?

Since the inter-particle potential above describes an ef-
fective physics below the cutoff A , and the mass M; has
been identified with A, we are not allowed to consider the
limit of the potential in the limit of very high stiffness,
when the magnetic monopole current-current interaction
becomes negligible. This limit would correspond to an
infinite value of M7, but this is not possible for M is ac-
tually the cutoff we adopt. So, our results hold only for
finite values of the stiffness parameter, €.

Another interesting observation is that the p — 0 limit
is not always smooth, that is, from eq. (21) it is evident
that in such a case the interaction energy vanishes. This
might seem unexpected since that in such a limit we should
recover the known result of compact electrodynamics with
a f-term. The reason for this is very simple, the algebraic
structure that leads to static potential is quite different.
Thus we observe that the limit p — 0 must be taken in
eq. (9). We thus find that

(21)

e%0
1672

92
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(22)
From this expression it follows that the static potential
profile is analogous to that encountered in eq. (20). In
addition, one can easily see that in the § — 0, we obtain
the Coulomb potential. However, the limit w — 0 requires
a special attention. Let us be more specific. If we consider
w — 0 then this means 2 — 0 (vanishing stiffness). If also

matter is absent, then we have the problem of both M; and
Ms blowing up. Therefore, in such a situation, we cannot
use what we have derived to get to eq. (20). The right
procedure to follow is to go back to our Lagrangian (9)
and so it can be readily shown that the Coulomb behavior
is restored.

In summary, we have studied the recently proposed
compact Abelian Higgs model with a 6-term [9] from a
different perspective. Our discussion has been carried
out by using the gauge-invariant but path-dependent vari-
ables formalism, which is an alternative to the Wilson
loop approach. Once again we have exploited a correct
identification of field degrees of freedom with observable
quantities. It was explicitly shown that the static poten-
tial profile is the sum of an effective-Yukawa and a linear
potential, leading to the confinement of static external
charges. Finally, we would like to recall that the above
static potential profile is analogous to that encountered in
a theory of antisymmetric tensor fields that results from
the condensation of topological defects as a consequence
of the Julia-Thoulouse mechanism [21]. In fact, this mech-
anism is a condensation process dual to the Higgs mecha-
nism [22], which describes the electromagnetic behavior of
antisymmetric tensors in the presence of magnetic-branes
(topological defects) that condensate due to thermal and
quantum fluctuations.
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