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Abstract
We consider the three-dimensional incompressible magnetohydrodynamics 
(MHD) equations in a bounded domain with small volume and free moving 
surface boundary. We establish a priori estimate for solutions with minimal 
regularity assumptions on the initial data in Lagrangian coordinates. In 
particular, due to the lack of the Cauchy invariance for MHD equations, the 
smallness assumption on the fluid domain is required to compensate a loss of 
control of the flow map. Moreover, we show that the magnetic field has certain 
regularizing effect which allows us to control the vorticity of the fluid and 
that of the magnetic field. To the best of our knowledge this is the first result 
that focuses on the low regularity solution for incompressible free-boundary 
MHD equations.
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1.  Introduction

The goal of this manuscript is to investigate the solutions in low regularity Sobolev spaces for 
the following incompressible inviscid MHD equations in a moving domain:



∂tu + u · ∇u − B · ∇B +∇( p + 1

2 |B|
2) = 0, in D;

∂tB + u · ∇B − B · ∇u = 0, in D;
div u = 0, div B = 0, in D,

� (1.1)

describing the motion of conducting fluids in an electromagnetic field, where 
D = ∪0�t�T{t} × Ω(t) and Ω(t) ⊂ R3 is the domain occupied by the fluid with small volume 
whose boundary ∂Ω(t) moves with the velocity of the fluid. Under this setting, the fluid veloc-
ity u = (u1, u2, u3), the magnetic field B = (B1, B2, B3), the fluid pressure p  and the domain D 
are to be determined; in other words, given a simply connected bounded domain Ω(0) ⊂ R3 
and the initial data u0 and B0 satisfying the constraints div u0 = 0 and div B0 = 0, we want to 
find a set D and the vector fields u and B solving (1.1) satisfying the initial conditions:

Ω(0) = {x : (0, x) ∈ D}, (u, B) = (u0, B0), in {0} × Ω0.� (1.2)

We also require the following boundary conditions on the free boundary ∂D =  
∪0�t�T{t} × ∂Ω(t):



(∂t + u · ∇)|∂D ∈ T (∂D)

p = 0 on ∂D,
|B| = c, B · N = 0 on ∂D,

� (1.3)

where T (∂D) is the tangent bundle of ∂D, N  is the exterior unit normal to ∂Ωt  and c � 0 
is a constant. The first condition of (1.3) means that the boundary moves with the velocity 
of the fluid, the second condition of (1.3) means that the region outside Ωt  is vacuum, where 
B · N = 0 on ∂Ωt  implies that the fluid is a perfect conductor; in other words, the induced 
electric field E satisfies E × N = 0 on ∂Ωt . Also, the condition |B| = c on ∂Ωt  yields that the 
physical energy is conserved, i.e. denoting Dt = ∂t + u · ∇, and invoking the divergence free 
condition for both u and B, we have:
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d
dt

[1
2

∫

Ω(t)
|u|2 + 1

2

∫

Ω(t)
|B|2

]

=

∫

Ω(t)
u · Dtu +

∫

Ω(t)
B · DtB

= −
∫

Ω(t)
u · ∇( p +

1
2
|B|2) +

∫

Ω(t)
u · (B · ∇B) +

∫

Ω(t)
B · (B · ∇u)

= −
∫

∂Ω(t)
(u · N ) p −

∫

∂Ω(t)

1
2
(u · N )c2

︸ ︷︷ ︸
=0 by Gauss theorem

+

∫

Ω(t)
u · (B · ∇B)−

∫

Ω(t)
u · (B · ∇B) = 0.

We will establish a priori bounds for the MHD equations  (1.1)–(1.3) when 
u0, B0 ∈ H2.5+δ(Ω(0)) for δ ∈ (0, 0.5) under the physical sign condition

−∇N ( p +
1
2
|B|2) � ε0 > 0 on ∂Ω(t).� (1.4)

We recall here that for the free-boundary problem of the motion of a incompressible fluid 
without magnetic field (i.e. the incompressible free-boundary Euler equations), the physical 
sign condition reads

−∇N p � ε0 > 0 on ∂Ω(t).

Condition (1.4) was first discovered by Hao and Luo [16] when proving the a priori energy 
estimate for the free boundary incompressible MHD equations  with H4 initial data. Very 
recently, they proved that (1.1)–(1.3) is ill-posed when (1.4) is violated [17]. The quantity 
p + 1

2 |B|
2 (i.e. the total pressure) plays an important role here in our analysis. In fact, it deter-

mines the acceleration of the moving surface boundary.

1.1.  History and background

In the absence of the magnetic field B, the system (1.1) is reduced to the free-boundary Euler 
equations which has attracted much attention in the past two decades. Important progress has 
been made for both incompressible and compressible flows, with or without surface tension, 
and with or without vorticity. Without attempting to be exhaustive, we refer [1, 5, 6–9, 18, 
22–26, 28, 29, 32–34, 40–42] for more details.

On the other hand, the MHD equations describe the behavior of an electrically conduct-
ing fluid (e.g. a plasma) acted on by a magnetic field. In particular, the free-boundary MHD 
equations (also known as the plasma-interface problem) describes the phenomenon when the 
plasma is separated from the outside wall by a vacuum, whose motion can be formulated as 
the incompressible free-boundary MHD equations.

Although the MHD equations  in a fixed domain have been the focus of a great deal of 
activities, e.g. [3, 4, 11–13, 19, 39], much less is known for the free-boundary case. The main 
difficulty is the strong coupling between u and B (i.e. the appearance of B · ∇B and B · ∇u 
terms in the first and second equations of (1.1), respectively). In fact, the appearance of the 
Lorentzian force term B · ∇B destories the Cauchy invariance, which provides good estimates 
for curl v when B is absent; indeed, one can see this by commuting the curl operator through 
the first equation of (1.1), which implies3

3 We refer (1.14) and (1.15) for the detailed computation.
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(∂t +∇u)curl u ∼ ∇(curl B).

Nevertheless, it is remarkable that the magnetic field B yields certain regularizing effect (see 
[38]), which can be derived from the transport equation of B (i.e. the second equation of (1.1)). 
Such regularizing effect plays an important role to control the full Sobolev norms of curl B 
and curl u and hence the full Sobolev norm of B and u via the div-curl estimate. We will pro-
vide more details on this in section 1.3.

For the free-boundary MHD equations, the local (in time) well-posedness (LWP) of the 
linearized equations was studied by Morando–Trakhinin–Trebeschi [27], Secchi–Trakhinin 
[30] and Trakhinin [37]. For the nonlinear equations, Hao–Luo [16] proved the a priori energy 
estimate with H4 initial data and the LWP was established by Secchi–Trakhinin [31] and Gu–
Wang [14]. Also, we mention here that in Hao [15] and Sun–Wang–Zhang [35], the authors 
studied the a priori energy estimate and LWP, respectively, for the free-boundary MHD equa-
tions with nontrivial vacuum magnetic field.

In this manuscript, we establish the local a priori energy estimate with u, B ∈ H2.5+δ with 
δ > 0 is arbitrary. This agrees with the minimal regularity assumption (i.e. H

d
2 +1+δ, where d 

is the spatial dimension) that one may expect for the velocity field in the theory of the free-
boundary incompressible Euler equations  (see, e.g. [10, 21, 22]). In fact, Bourgain–Li [2] 
proved that the incompressible Euler equations with H

d
2 +1 initial data are ill-posed even in 

the free space Rd.

1.2.  MHD system in Lagrangian coordinates and main result

We reformulate the MHD equations  in Lagrangian coordinates, in which the free domain 
becomes fixed. Let Ω be a bounded domain in R3. Denoting coordinates on Ω by y = (y1, y2, y3), 
we define η : [0, T]× Ω → D  to be the flow map of the velocity u, i.e.

∂tη(t, y) = u(t, η(t, y)), η(0, y) = y.� (1.5)

We introduce the Lagrangian velocity, magnetic field and fluid pressure, respectively, by

v(t, y) = u(t, η(t, y)), b(t, y) = B(t, η(t, y)), q(t, y) = p(t, η(t, y)).� (1.6)

Let ∂ be the spatial derivative with respect to y  variable. We introduce the cofactor matrix 
a = [∂η]−1, which is well-defined since η(t, ·) is almost the identity map when t is sufficiently 
small. It’s worth noting that a verifies the Piola’s identity, i.e.

∂µaµα = 0.� (1.7)

Here, the summation convention is used for repeated upper and lower indices, and in above 
and throughout, all indices (e.g. Greek and Latin) range over 1, 2, 3.

Denote the total pressure ptotal = p + 1
2 |B|

2 and let Q = ptotal(t, η(t, y)). Then (1.1)–(1.3) 
can be reformulated as:




∂tvα − bβaµβ∂µbα + aµ
α∂µQ = 0 in [0, T]× Ω;

∂tbα − bβaµβ∂µvα = 0 in [0, T]× Ω;
aµα∂µvα = 0, aµα∂µbα = 0 in [0, T]× Ω;
v3 = 0 on Γ0;
aµνbµbν = c2, Q = 1

2 c2, aµνbνNµ = 0 on Γ;
∂Q
∂N = ∂3Q � −ε0 on Γ1.

� (1.8)

C Luo and J Zhang﻿Nonlinearity 33 (2020) 1499
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Remark.  In above and throughout, the upper index of a represents the number of the rows 
whereas the lower index represents the number of the columns, i.e. arow

column.

For the sake of simplicity and clean notation, here we consider the model case when

Ω = T2 × (0, ε),� (1.9)

where ε � 1 and ∂Ω = Γ0 ∪ Γ1 and Γ1 = T2 × {ε} is the top (moving) boundary, 
Γ0 = T2 × {0} is the fixed bottom. We shall treat the general bounded domains with small 
volume in section 6 by adapting what has been done in [10]. However, choosing Ω as above 
allows us to focus on the real issues of the problem without being distracted by the cumber-
someness of the partition of unity. Let N stands for the outward unit normal of ∂Ω. In par
ticular, we have N = (0, 0,−1) on Γ0 and N = (0, 0, 1) on Γ1.

In this paper, we prove:

Theorem 1.1.  Let Ω be defined as in (1.9). Let (η, v, b) be the solution of (1.8) and 
δ ∈ (0, 0.5). Assume that v(0, ·) = v0 ∈ H2.5+δ(Ω) and b(0, ·) = b0 ∈ H2.5+δ(Ω) be diver-
gence free vector fields and b0 · N = 0 on ∂Ω. Let

N(t) := ‖η(t)‖2
H3+δ + ‖v(t)‖2

H2.5+δ + ‖b(t)‖2
H2.5+δ .� (1.10)

Then for sufficiently small ε , there exists a T  >  0, depending only on N(0) and ε  such that 
N(t) � P(N(0)) for all t ∈ [0, T], provided the physical sign condition

−∂Q
∂N

∣∣
t=0 = −∂3Q

∣∣
t=0 � ε0 > 0, on Γ1� (1.11)

holds. Here, P is a polynomial of its arguments.

Remark.  We will show that the physical sign condition (1.12) propagates within [0, T]. In 
other words, it holds

−∂3Q(t) � ε0 > 0, on Γ1, t ∈ [0, T].� (1.12)

1.3.  Strategy, organisation of the paper, and discussion of the difficulties

 Notations. All definitions and notations will be defined as they are introduced. In addition, a 
list of symbols will be given at the end of this section for a quick reference.

Definition 1.1.  The L2- based Sobolev spaces are denoted by Hs(Ω), where we abbreviate 
corresponding norm ‖ · ‖Hr(Ω) as ‖ · ‖Hr when no confusion can arise. We denote by Hs(Γ) the 
Sobolev space of functions defined on Γ, with norm ‖ · ‖Hs(Γ).

Notation 1.2.  We use ε to denote a small positive constant which may vary from expression 
to expression. Typically, ε comes from choosing sufficiently small time, from lemma 2.1 and 
from the Young’s inequality.

Notation 1.3.  We use P = P(· · · ) to denote a generic polynomial in its arguments.

Now we can state the strategies we used and discuss the discovery and the difficulty in 
MHD system.

C Luo and J Zhang﻿Nonlinearity 33 (2020) 1499
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Gronwall-type argument and div-curl estimates
The proof of theorem 1.1 relies on div-curl type estimates of the velocity field v, the magn

etic field b and the Lagrangian flow map η. In particular, let N(t) be defined as in theorem 1.1. 
Then if vol (Ω) is sufficiently small (i.e. ε � 1), there exists a T  >  0 such that the estimate

N(t) � M0 + εP(N(t)) + P(N(t))
∫ t

0
P(N(s))ds� (1.13)

holds whenever t ∈ [0, T], where M0 = M0(‖v0‖H2.5+δ , ‖b0‖H2.5+δ) . This implies N(t) � M0 
by a Gronwall-type argument that can be found in chapter 1 of Tao [36].

Creation of vorticity by the magnetic field
The vorticity of the conducting fluid cannot be controlled analogously to that in the case of 

a non-conducting fluid due to the lack of the Cauchy invariance, since its derivation involves 
the derivative of the Lorentzian force (b0 · ∂)b, which contributes to higher order terms. In 
particular, let εµντ  be the anti-symmetric tensor with ε123 = 1. We have:

∂t(ε
µντ∂νvm∂τηm) = εµντ∂νvm∂τvm︸ ︷︷ ︸

=0

+εµντ∂νvm
t ∂τηm

= −εµντ∂ν(a�m∂�Q)∂τηm︸ ︷︷ ︸
=0, same as the Euler′s equations

+εµντ∂ν(bσ0 ∂σbm)∂τηm,� (1.14)

where the last term in the second line is equal to

εµντ∂ν(bσ0 ∂σbm)δτm + εµντ∂ν(bσ0 ∂σbm)(∂τηm − δτm)

= curl (bσ0 ∂σb) + εµντ∂ν(bσ0 ∂σbm)(∂τηm − δτm),
� (1.15)

is nonzero in general. We remark here that it is the Lorentzian force that causes the strong 
coupling between v and b. One can imagine that the Lorentzian force twists the trajectory of 
an electric particle in a magnetic field and produces vorticity even if the initial data is curl-
free. However, we can control curl v and curl b from their evolution equation derived by taking 
the Eulerian curl operator to the first equation of (1.8). This will be dicussed in the following 
paragraph.

Regularizing effect of b: controlling curl v, curl b and pressure Q
The key to control ‖v‖H2.5+δ and ‖b‖H2.5+δ is to control ‖Bav‖H1.5+δ and ‖Bab‖H1.5+δ, where Ba 

denotes the Eulerian curl operator, i.e. [BaX]λ = ελταaµτ∂µXα, where ελτα is the anti-sym-
metric tensor with ε123 = 1. These quantities are treated straightforwardly for non-conducting 
fluids (i.e. Euler equations) thanks to the remarkable Cauchy invariance. We, nevertheless, 
have to control them differently since the Cauchy invariance fails for MHD equations due 
to the presence of the Lorentzian force term bβaµβ∂µb. Inspired by Gu–Wang [14], one can 
derive the evolution equation for Bav and Bab. With the help of the following identities4

bβaµβ = bµ0 and bµ = (b0 · ∂)ηµ� (1.16)

mentioned in Gu–Wang [14], one can rewrite the first equation of (1.8) as

∂tvα + aµα∂µQ = (b0 · ∂)2ηα.� (1.17)

Now, one may apply the curl operator Ba on both sides of (1.17) and get:

(Ba∂tv)λ = (Ba((b0 · ∂)2η))λ,� (1.18)

4 We refer lemma 2.2 for the detailed derivation.

C Luo and J Zhang﻿Nonlinearity 33 (2020) 1499
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which yields an evolution equation after commuting ∂t and b0 · ∂ on both sides of (1.18):

∂t(Bav)λ − (b0 · ∂)Ba((b0 · ∂)η)λ = error terms + commutators.� (1.19)

This, in particular, yields an energy identity for Bav and Bab = Ba(b0 · ∂)η , i.e.

Ecurl (t) :=
1
2

∫

Ω

|∂1.5+δBav|2 + |∂1.5+δBa(b0 · ∂)η|2,� (1.20)

and it can be shown that E(t) verifies the following estimates by using Kato–Ponce inequali-
ties (2.3)

Ecurl (t) � ‖b0‖H2.5+δ +

∫ t

0
P(‖η‖H2.5+δ , ‖v‖H2.5+δ , ‖b‖H2.5+δ).� (1.21)

On the other hand, it is worth pointing out that the control of ‖Q‖H3+δ and ‖∂3Qt‖L∞(∂Ω) 
(and hence ‖Qt‖H2.5+δ) are both required. These quantities are needed even for the incompress-
ible free-boundary Euler equations, whose a priori energy estimate can be closed by requiring 
η to be half derivatives more regular than v (see, e.g. [1, 21, 22]). In the case of a conducting 
fluid, i.e. MHD equations, we have to use the regularizing effect of the magnetic field (i.e. 
identities (1.16)) to show that ‖η‖H3+δ is still good enough to control ‖Q‖H3+δ and ‖Qt‖H2.5+δ. 
In particular, Qt satisfies an elliptic equation that involves bµ

0 ∂µaνα∂ν∂tbα as part of its source 
term, whose H0.5+δ  norm requires η ∈ H3.5+δ to control. However, this term can be avoided 
by invoking the identities (1.16) when deriving the elliptic PDE of Qt.

Remark.  One may drop the requirement for ‖η‖Hs+0.5 when s  >  3.5 using Alinhac’s good 
unknowns thanks to the fact that ∂a ∈ L∞. We refer [14, 16] for details.

Smallness of the fluid’s volume is required: nonlinear control of curl η
One needs to control ‖curl η‖H2+δ (and hence ‖Baη‖H2+δ) to close the a priori estimate. This 

can be done in the case of a non-conducting fluid using the Cauchy invariance if one assumes 
ω0 = curl v0 ∈ H2+δ (see [22]). This, again, fails for MHD equations. In order to control 
Ba∂η, one can only hope to use the multiplicative Sobolev inequality and Young’s inequality 
with ε to derive the nonlinear estimate, which produces a term ε−1P(‖η(0)‖H2.5+δ). Therefore, 
we require the body of the conducting fluid to have small volume to fight the growth of 
the vorticity brought by twisting effect of the Lorentzian force (in other words, the strong 
coupling between b and v), otherwise the Gronwall-type argument no longer holds since it 
requires ε to be sufficiently small. The smallness of the fluid body can be propagated5 if it 
holds initially since η is volume-preseving.

Organization of the paper:
The manuscript will be organized as follows. In section 2 we record the preliminary esti-

mates for the cofactor matrix a and its time derivatives. Also, the well-known Kato–Ponce 
commutator estimates are summarized as lemma 2.3 for readers’ convenience. Section 3 is 
devoted to control ‖Q‖H3+δ and ‖Qt‖H2.5+δ, which is required for the tangential estimate of v. In 
section 4 we prove the tangential estimates for both v and b. Finally, in section 5, we provide 
the control for the full Sobolev norms of v, b and η using a div-curl type estimate. Also, we 
show that the physical sign condition (1.12) propagates within a short period by showing that 
the quantity ∂3Q|Γ1 is 1/4-Hölder continuous in time, which allows us to close the a priori 
estimates.

5 One may also choose to add an articifical smoothness conditions for η (e.g. η ∈ H3+δ(Ω)). But such conditions do 
not seem to be the ones that can be propagated.

C Luo and J Zhang﻿Nonlinearity 33 (2020) 1499



1506

List of symbols:

	 •	�ε: A small positive constant which may vary from expression to expression.
	 •	�ε : The ‘height’ of the fluid domain Ω, which is also chosen to be sufficiently small.
	 •	�a = [∂η]−1: The cofactor matrix; 
	 •	�‖ · ‖Hs: We denote ‖f‖Hs := ‖f (t, ·)‖Hs(Ω) for any function f (t, y) on [0, T]× Ω.
	 •	�P: A generic polynomial in its arguments; 
	 •	�P : P = P(‖v‖H2.5+δ , ‖b‖H2.5+δ) (and so P0 = P(‖v0‖H2.5+δ , ‖b0‖H2.5+δ); 
	 •	�N(t): N(t) = ‖η‖2

H3+δ + ‖v‖2
H2.5+δ + ‖b‖2

H2.5+δ; 
	 •	�∂ = (I −∆)1/2 where ∆ = ∂2

1 + ∂2
2, and S = ∂2.5+δ: Tangential differential operators.

□ 

2.  Preliminary lemmas

The first lemma is about some basic estimate of the cofactor matrix a, which shall be used 
throughout the rest of the manuscript.

Lemma 2.1.  Suppose ‖∂v‖L∞([0,T];H1.5+δ(Ω)) � M . If T � 1
CM for a sufficiently large con-

stant K, then the following estimates hold:

	(1)	�‖∂η‖H1.5+δ(Ω) � C  for t ∈ [0, T]; 
	(2)	�det(∂η(t, x)) = 1 for (x, t) ∈ Ω× [0, T]; 
	(3)	�‖a(·, t)‖H1.5+δ(Ω) � C for t ∈ [0, T]; 
	(4)	�‖at(·, t)‖L p(Ω) � C‖∂v‖L p(Ω) for t ∈ [0, T], 1 � p � ∞; 
	(5)	�‖at(·, t)‖Hr(Ω) � C‖∂v‖Hr(Ω) for t ∈ [0, T], 0 � r � 1.5 + δ; 
	(6)	�‖att(·, t)‖Hr(Ω) � C‖∂v‖H1.5+δ‖∂v‖Hr + C‖∂vt‖Hr, for t ∈ [0, T], 0 < r � 0.5 + δ; 
	(7)	�For every 0 < ε � 1, there exists a constant C  >  0 such that for all 0 � t � T ′ :=  

min{ ε
CM , T} > 0, we have

‖aµν − δµν ‖H1.5+δ(Ω) � ε, ‖aµαaνα − δµν‖H1.5+δ(Ω) � ε.

	(8)	�∂maµα = −aµν∂β∂mη
νaβ

α for m = 1, 2, 3.

Proof.  See [21]: (1)–(7) is lemma 3.1 and (8) is formula (6.6).� □ 

The next lemma reveals the regularizing effect of the magnetic field b; in particular, the flow 
map η is more regular in the direction of b0. It was also used in Wang [38] and Gu–Wang [14]

Lemma 2.2.  Let (v, b, η) be a solution to (1.8) with initial data (v0, b0, η0). Then the fol-
lowing two identities hold:

aναbα = bν0 ,� (2.1)

bβ = (b0 · ∂)ηβ = bν0∂νη
β .� (2.2)

Proof.  For (2.1), we multiply aνα to the second equation of (1.8) to get

aνα∂tbα = aναbβaµβ∂µ∂tηα = aναbβ∂t(aµβ∂µηα︸ ︷︷ ︸
=δβα

)− bβ∂taµβ(∂µηαaνα︸ ︷︷ ︸
δνµ

) = −bα∂taνα,

so ∂t(aναbα) = 0 and thus aναbα = bν0 . For (2.2), it can be easily derived by multiplying 
∂νηβ on the both sides of (2.1) and using a : ∂η = I .� □ 
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The last lemma records the well-known Kato–Ponce commutator estimates, the proof of 
which can be found in [20].

Lemma 2.3.  Let J = (I −∆)1/2, s � 0. Then the following estimates hold:

	(1)	�∀s � 0 and 1 < p < ∞, we have

‖Js( fg)− f (Jsg)‖L p � ‖∂f‖L∞‖Js−1g‖L p + ‖Jsf‖L p‖g‖L∞ ;� (2.3)

	(2)	�∀s � 0, we have

‖Js( fg)‖L2 � ‖f‖Ws,p1 ‖g‖L p2 + ‖f‖Lq1 ‖g‖Ws,q2 ,� (2.4)

		 with 1/2 = 1/p1 + 1/p2 = 1/q1 + 1/q2 and 2 � p1, q2 � ∞; 
	(3)	�∀s ∈ (0, 1), we have

‖Js( fg)− f (Jsg)− (Jsf )g‖L p � ‖f‖Ws1,p1‖g‖Ws−s1,p2 ,� (2.5)

		 where 0  <  s1  <  s and 1/p1 + 1/p2 = 1/p with 1 < p < p1, p2 < ∞; 
	(4)	�∀s � 1, we have

‖Js( fg)− f (Jsg)‖L2 � ‖f‖Ws,p1‖g‖L p2 + ‖f‖W1,q1‖g‖Ws−1,q2 ,� (2.6)

		 where 1/2 = 1/p1 + 1/q1 = 1/p2 + 1/q2 with 1 < p < p1, p2 < ∞; and

‖Js( fg)− (Jsf )g − f (Jsg)‖L p � ‖f‖W1,p1‖g‖Ws−1,q2 + ‖f‖Ws−1,q1‖g‖W1,q2� (2.7)

		 for all the 1 < p < p1, p2, q1, q2 < ∞ with 1/p1 + 1/p2 = 1/q1 + 1/q2 = 1/p.

□ 

3.  Pressure estimates

In this section we derive the estimates for ‖Q‖H3+δ and ‖Qt‖H2.5+δ. These quantities are both 
required in section 4.

Notation 3.1.  We denote P = P(‖v‖H2.5+δ , ‖b‖H2.5+δ) and so P0 = P(‖v0‖H2.5+δ , ‖b0‖H2.5+δ).

Lemma 3.2.  Assume lemma 2.1 holds. Then the total pressure Q satisfies:

‖Q‖H3+δ � P0 + P + P(‖η‖H3+δ)

(
‖Q0‖H2+δ +

∫ t

0
‖Qt‖H2+δ

)
,� (3.1)

and its time derivative Qt satisfies:

‖Qt‖H2.5+δ � P0 + P + P(‖v‖H2.5+δ)

(
‖Q0‖H2+δ +

∫ t

0
‖Qt‖H2+δ

)
.� (3.2)

Proof. Applying aνα∂ν to the first equation of (1.8), we have:

aνα∂ν(aµα∂µQ) = −aνα∂ν∂tvα + aνα∂ν(bβaµβ∂µbα) = −aνα∂ν∂tvα + aνα∂ν(b
µ
0 ∂µbα),� (3.3)

where we have used (2.1).
Invoking the Piola’s identity (1.7), lemma 2.1 (8) and (2.2), we get:

−aνα∂ν∂tvα = ∂taνα∂νvα,
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and

aνα∂ν(b
µ
0 ∂µbα) = aνα∂νbµ

0 ∂µbα + aναbµ0 ∂ν∂µbα
= aνα∂νbµ0 ∂µbα + bµ

0 ∂µ(a
να∂νbα︸ ︷︷ ︸

=0

)− bµ
0 ∂µaνα∂νbα

= aνα∂νbµ
0 ∂µbα + bµ

0 ∂µ∂βηγaνγaβα∂νbα

= aνα∂νbµ
0 ∂µbα + ∂β((b0 · ∂)ηγ)aνγaβα∂νbα − ∂βbµ0 ∂µηγaνγ

︸ ︷︷ ︸
=δνµ

aβα∂νbα

= aνα∂νbµ
0 ∂µbα + ∂βbγaνγaβα∂νbα − ∂βbµ0 aβα∂µbα.

Thus, the total pressure Q satisfies

∂µ∂µQ = ∂taνα∂νvα + ∂ν((δ
µν − aµ

αaνα)∂µQ) + aνα∂νbµ0 ∂µbα + ∂βbγaνγaβα∂νbα − ∂βbµ0 aβα∂µbα,
� (3.4)

with the boundary conditions

Q =
1
2

c2 on Γ1, and aµα∂µQNα = 0 on Γ0,� (3.5)

where the second condition can be rewritten as

∂αQNα = (δµα − aµ
α)∂µQNα on Γ0.� (3.6)

The standard elliptic estimate yields that

‖Q‖H3+δ � ‖∂taνα∂νvα‖H1+δ︸ ︷︷ ︸
Q1

+ ‖(δµν − aµ
αaνα)∂µQ‖H2+δ + ‖(δµα − aµ

α)∂µQNα‖H1.5+δ(Γ)︸ ︷︷ ︸
Q2

+ ‖aνα∂νbµ0 ∂µbα‖H1+δ + ‖∂βbγaνγaβα∂νbα‖H1+δ + ‖∂βbµ0 aβα∂µbα‖H1+δ︸ ︷︷ ︸
Q3

.

�

(3.7)

Bounds for Q1: We have:

‖∂taνα∂νvα‖H1+δ � ‖∂taνα‖H1+δ‖∂νvα‖H1.5+δ

� ‖η‖H2.5+δ‖v‖H2+δ‖v‖H2.5+δ � C‖v‖2
H2.5+δ‖v‖2

H2+δ ,
�

(3.8)

where we used ‖a‖H1.5+δ � ‖η‖2
H2.5+δ and the multiplicative Sobolev inequality

‖fg‖H1+δ � ‖f‖H1+δ‖g‖H1.5+δ ,� (3.9)

which is a direct consequence of (2.4) and the Sobolev embedding.

Bounds for Q2: Invoking lemma 2.1 (7) and (2.4), we have:

‖(δµν − aµαaνα)∂µQ‖H2+δ � ‖I − a : aT‖L∞‖∂µQ‖H2+δ + ‖I − a : aT‖H2+δ‖∂µQ‖L∞

� ε‖Q‖H3+δ + (1 + ‖η‖4
H3+δ)‖Q‖1/2

H2+δ‖Q‖1/2
H3+δ

� ε‖Q‖H3+δ + P(‖η‖H3+δ)‖Q‖H2+δ

� ε‖Q‖H3+δ + P(‖η‖H3+δ)

(
‖Q0‖H2+δ +

∫ t

0
‖Qt‖H2+δds

)
,

�

(3.10)
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and similarly

‖(δµα − aµ
α)∂µQNα‖H1.5+δ(Γ) � ‖I − a‖L∞‖Q‖H3+δ + ‖I − a‖H2+δ‖Q‖H2.5+δ

� ε‖Q‖H3+δ + P(‖η‖H3+δ)

(
‖Q0‖H2+δ +

∫ t

0
‖Qt‖H2+δds

)
.

�
(3.11)

Bounds for Q3: All the terms in Q2 can be controlled by C‖b‖H2.5+δ‖b0‖H2.5+δ + C‖b‖2
H2.5+δ 

via the multiplicative Sobolev inequality. We only write the first term and the others are treated 
similarly.

‖aνα∂νbµ0 ∂µbα‖H1+δ � ‖aνα‖H1.5+δ‖∂νbµ0 ∂µbα‖H1+δ � C‖b‖H2.5+δ‖b0‖H2.5+δ .
�

(3.12)

Summing up the bounds for Q1-Q3, then absorbing the ε-term to LHS, we conclude the esti-
mates of Q as:

‖Q‖H3+δ � P0 + P + P(‖η‖H3+δ)

(
‖Q0‖H2+δ +

∫ t

0
‖Qt‖H2+δds

)
.� (3.13)

Now we start to prove the estimates of Qt. Taking time derivative of (3.4), we obtain:

∂µ∂µQt = ∂ttaνα∂νvα + ∂taνα∂ν∂tvα

− ∂ν(∂taµ
αaνα∂µQ)− ∂ν(aµα∂taνα∂µQ) + ∂ν((δ

µν − aµ
αaνα)∂µQt)

+ aνα
t ∂νbµ

0 ∂µbα + aνα∂νbµ0 ∂t∂µbα + ∂t(∂βbγ∂νbα)aνγaβα + ∂βbγ∂t(aνγaβα)∂νbα

− ∂βbµ
0 aβα∂t∂µbα − ∂βbµ0 aβαt ∂µbα
�

(3.14)

with the boundary conditions

Qt = 0 on Γ1,
∂αQtNα = −∂taµα∂µQNα + (δµα − aµα)∂µQtNα on Γ0.
� (3.15)

By the elliptic estimate, we have:

‖Qt‖H2.5+δ

� ‖∂ttaνα∂νvα‖H0.5+δ + ‖∂taνα∂ν∂tvα‖H0.5+δ + ‖∂taµαaνα∂µQ‖H1.5+δ + ‖aµ
α∂taνα∂µQ‖H1.5+δ

+ ‖(δµν − aµ
αaνα)∂µQt‖H1.5+δ + ‖∂taµ

α∂µQNα‖H1+δ(Γ) + ‖(δµα − aµ
α)∂µQtNα‖H1+δ(Γ)

+ ‖aναt ∂νbµ0 ∂µbα‖H0.5+δ + ‖aνα∂νbµ
0 ∂t∂µbα‖H0.5+δ + ‖∂t(∂βbγ∂νbα)aνγaβα‖H0.5+δ

+ ‖∂βbγ∂t(aνγaβα)∂νbα‖H0.5+δ

+ ‖∂βbµ
0 aβα∂t∂µbα‖H0.5+δ + ‖∂βbµ0 aβα

t ∂µbα‖H0.5+δ .
�

(3.16)

First, since ∂tvα = aµα∂µQ − bβaµβ∂µbα we have:

‖vt‖H1.5+δ � ‖b‖2
H1.5+δ‖a‖H1.5+δ + ‖Q‖H2.5+δ‖a‖H1.5+δ .� (3.17)

Using this and the multiplicative Sobolev inequality

‖fg‖H0.5+δ � ‖f‖H0.5+δ‖g‖H1.5+δ ,� (3.18)

the first two terms of (3.16) are treated as:

‖∂ttaνα∂νvα‖H0.5+δ + ‖∂taνα∂ν∂tvα‖H0.5+δ

� ‖att‖H0.5+δ‖v‖H2.5+δ + ‖at‖H1.5+δ‖vt‖H1.5+δ

� ‖v‖2
H2.5+δ‖v‖H1.5+δ + ‖η‖H2.5+δ‖v‖H2.5+δ‖vt‖H1.5+δ

� P + ‖v‖H2.5+δ

(
‖Q0‖H2+δ +

∫ t

0
‖Qt‖H2+δds

)
.

�

(3.19)
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Second, invoking (3.9) and lemma 2.1 (7), the terms containing Q in (3.16) are treated as:

‖∂taµαaνα∂µQ‖H1.5+δ + ‖aµα∂taνα∂µQ‖H1.5+δ + ‖∂taµα∂µQNα‖H1+δ(Γ)

+ ‖(δµν − aµ
αaνα)∂µQt‖H1.5+δ + ‖(δµα − aµ

α)∂µQtNα‖H1+δ(Γ)

� ‖a‖H1.5+δ‖at‖H1.5+δ‖Q‖H2.5+δ

+ ‖at‖H1.5+δ‖Q‖H2.5+δ + ‖I − aT : a‖H1.5+δ‖Qt‖H2.5+δ + ‖I − a‖H1.5+δ‖Qt‖H2.5+δ

� ‖v‖H2.5+δ

(
‖Q0‖H2+δ +

∫ t

0
‖Qt‖H2+δds

)
+ ε‖Qt‖H2.5+δ ,

�

(3.20)

which can be controlled appropriately by the RHS of (3.2) by plugging in the estimate (3.1).
Now it remains to control the terms containing b in (3.16) (the last 6 terms). In fact, all the 

terms containing b can be controlled with the help of the multiplicative Sobolev inequality 
(3.18). The terms not containing bt are easier to control:

‖aναt ∂νbµ
0 ∂µbα‖H0.5+δ + ‖∂βbγ∂t(aνγaβα)∂νbα‖H0.5+δ + ‖∂βbµ

0 aβαt ∂µbα‖H0.5+δ

� ‖at‖H0.5+δ‖b0‖H2.5+δ‖b‖H2.5+δ

+ ‖at‖H0.5+δ‖a‖H1.5+δ‖b‖2
H2.5+δ + ‖at‖H0.5+δ‖b0‖H2.5+δ‖b‖H2.5+δ‖η‖H2.5+δ

� P .
�

(3.21)

For the terms containing bt, we have to put H0.5+δ  norm on ∂bt when we use the multiplica-
tive Sobolev inequality (3.18), because we only have bt ∈ H1.5+δ. This can be directly derived 
by taking time derivative of ∂tbα = bβaµβ∂µvα = bµ0 ∂µvα, which implies

‖bt‖H1.5+δ � ‖vt‖H1.5+δ‖b0‖H1.5+δ � ‖b0‖H1.5+δ‖v‖H2.5+δ .

Therefore,

‖aνα∂νbµ0 ∂t∂µbα‖H0.5+δ + ‖∂t(∂βbγ∂νbα)aνγaβα‖H0.5+δ + ‖∂βbµ
0 aβα∂t∂µbα‖H0.5+δ

� ‖a‖H1.5+δ‖b0‖H2.5+δ‖bt‖H1.5+δ + ‖a‖2
H1.5+δ‖b‖H2.5+δ‖bt‖H1.5+δ

� P0 + P .

�

(3.22)
Summing these bounds up, and absorbing the ε-term to LHS, we obtain:

‖Qt‖H2.5+δ � P0 + P + P(‖v‖H2.5+δ)

(
‖Q0‖H2+δ +

∫ t

0
‖Qt‖H2+δ

)
,� (3.23)

which yields (3.2).

4. Tangential estimates

In this section, we establish the tangential energy estimate for the incompressible MHD 
equations.

Notation 4.1.  We define ∂ = (I −∆)1/2 where ∆ = ∂2
1 + ∂2

2 to be the tangential differ
ential operator.

Theorem 4.2.  Let S = ∂2.5+δ. Let E(t) = ‖Sv‖2
L2 + ‖Sb‖2

L2 +
ε0
2 ‖a3

αSηα‖2
L2(Γ1)

. Then there 
exists a T  >  0 such that for each t ∈ [0, T], the estimate

E(t) � P0 +

∫ t

0
P +

∫ t

0
P(‖Q‖H3+δ , ‖Qt‖H2.5+δ , ‖η‖H3+δ)ds� (4.1)
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holds.

We prove this theorem by estimating v and b separately.

4.1. Tangential estimates of v

First, we derive the tangential estimates of v.

1
2

d
dt

∫

Ω

(Svα)(Svα)dy =

∫

Ω

(Svα)(∂tSvα)dy

= −
∫

Ω

(Svα)(S(aµα∂µQ))dy +
∫

Ω

(Svα)(S(bβaµβ∂µbα))dy

=: I + J.
�

(4.2)

To control I, we have:

I = −
∫

Ω

(Svα)(S(aµα∂µQ))dy

= −
∫

Ω

(Svα)(aµα)(S∂µQ)dy
︸ ︷︷ ︸

I1

−
∫

Ω

(Svα)(Saµα)(∂µQ)dy
︸ ︷︷ ︸

I2

−
∫

Ω

(Svα)[S(aµα∂µQ)− aµ
α(S∂µQ)− (Saµ

α)∂µQ]dy
︸ ︷︷ ︸

I3

.

�

(4.3)

Control of I3: This is a direct consequence of the Kato–Ponce inequality (2.7), i.e.

I3 � ‖Sv‖L2(‖aµα‖W1,6‖∂µQ‖W1.5+δ,3 + ‖aµα‖W1.5+δ,3‖∂µQ‖W1,6)

� ‖v‖H2.5+δ‖a‖H2+δ‖Q‖H3+δ

� ‖v‖H2.5+δ‖η‖2
H3+δ‖Q‖H3+δ .

� (4.4)

Control of I1: We integrate ∂µ by parts to get:

I1 = −
∫

Ω

Svαaµ
α(∂µSQ)dy

=

∫

Ω

aµ
αS∂µvα(SQ)dy +

∫

Γ0

(SQ)(a3
αSvα)dS(Γ0)

︸ ︷︷ ︸
=0

−
∫

Γ1

( SQ︸︷︷︸
=0

)(aµαSvαNµ)dS(Γ1)

=

∫

Ω

S(aµα∂µvα)︸ ︷︷ ︸
=0

(SQ)dy −
∫

Ω

(Saµα)∂µvα(SQ)dy −
∫

Ω

[S(aµα∂µvα)− (Saµ
α)∂µvα − aµ

αS∂µvα](SQ)dy,

� (4.5)

where the boundary integrals in the second line vanish since a3
1 = a3

2 = 0 and v3 = 0 on Γ0, 
and ∂Q = ∂(c2/2) = 0 on Γ1. The last term in the third line is controlled using (2.7):

−
∫

Ω

[S(aµα∂µvα)− (Saµ
α)∂µvα − aµ

αS∂µvα](SQ)dy

� (‖aµα‖W1.5+δ,3‖∂µvα‖W1,3 + ‖aµ
α‖W1,6‖∂µvα‖H1.5+δ)‖SQ‖L3

� ‖Q‖H3+δ‖a‖H2+δ‖v‖H2.5+δ � ‖Q‖H3+δ‖η‖2
H3+δ‖v‖H2.5+δ .

�

(4.6)

For the second term in the last line of (4.5), we need to integrate 1/2-tangential derivatives by 
parts and then apply (2.4):
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−
∫

Ω

Saµ
α∂µvαSQdy =

∫

Ω

∂
2+δ

aµα∂
0.5
(SQ∂µvα)

� ‖a‖H2+δ(‖SQ‖H0.5‖∂µvα‖L∞ + ‖SQ‖L3‖∂µvα‖W0.5,6)

� ‖η‖2
H3+δ‖Q‖H3+δ‖v‖H2.5+δ .

� (4.7)
Summing these up, we have:

I1 � ‖η‖2
H3+δ‖Q‖H3+δ‖v‖H2.5+δ .� (4.8)

Control of I2: Let Sm := −(I −∆)0.25+0.5δ∂m. Then one may decompose S as:

S = ((I −∆)1.25+0.5δ − (I −∆)0.25+0.5δ) + (I −∆)0.25+0.5δ

︸ ︷︷ ︸
=:S0

= (I −∆)0.25+0.5δ(−∆) + S0

=:
2∑

m=1

Sm∂m + S0.

� (4.9)

Plugging this decomposition and the identity (which is obtained by differentiating a : ∂η = I)

∂maµ
α = −aµν∂β∂mη

νaβα� (4.10)

into I2, we have:

I2 = −
2∑

m=1

∫

Ω

(Svα)(Sm∂maµα)(∂µQ)dy−
∫

Ω

(Svα)S0aµα∂µQdy
︸ ︷︷ ︸

R1

=

2∑
m=1

∫

Ω

(Svα)Sm(aµν∂β∂mη
νaβα)∂µQdy + R1

=

2∑
m=1

∫

Ω

(Svα)(Sm∂β∂mη
ν)(aµνaβα)∂µQdy

︸ ︷︷ ︸
I21

+

∫

Ω

(Svα)[Sm(aµν∂β∂mη
νaβα)− (Sm∂β∂mη

ν)(aµνaβα)]∂µQdy + R1.

� (4.11)

Here, R1 is bounded by P(‖η‖H2.5+δ)‖Q‖H1.5‖v‖H2.5+δ via the multiplicative Sobolev inequal-
ity, while the last term in the third line of (4.11) can be controlled by using Kato–Ponce 
inequality (2.6) as:

∫

Ω

(Svα)[Sm(aµν∂β∂mη
νaβα)− (Sm∂β∂mη

ν)(aµνaβα)]∂µQdy

� (‖aµνaβα‖W1,6‖∂β∂mη
ν‖W0.5+δ,3 + ‖∂β∂mη

ν‖L6‖aµ
νaβ

α‖W1.5+δ,3)‖∂µQ‖L∞‖Svα‖L2

� ‖a‖H2+δ‖a‖H1.5+δ‖η‖H3+δ‖Q‖H2.5+δ‖v‖H2.5+δ � P(‖η‖H3+δ)‖Q‖H2.5+δ‖v‖H2.5+δ .
� (4.12)

It remains to control I21. Writing 
∑2

m=1Sm∂m = S − S0, we have:

I21 =

∫

Ω

(Svα)(S∂βην)(aµνaβα)(∂µQ)dy −
∫

Ω

(Svα)(S0∂βη
ν)(aµνaβα)(∂µQ)dy.

� (4.13)
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It is easy to see the second term in (4.13) can be bounded by ‖v‖H2.5+δ‖Q‖H1.5 P(‖η‖H2.5+δ). For 
the first term, we integrate ∂β by parts to obtain:

I21 = −
∫

Ω

(∂βSvα)(Sην)(aµνaβα)(∂µQ)dy
︸ ︷︷ ︸

I211

−
∫

Ω

(Svα)(Sην)(∂βaµν )a
β
α(∂µQ)dy

−
∫

Ω

(Svα)(Sην)(aµνaβα)(∂β∂µQ)dy +
∫

Γ0

(Svα)(Sην)aµνaβα(∂µQ)NβdS(Γ0)

︸ ︷︷ ︸
=0

+

∫

Γ1

(Svα)(Sην)aµνaβ
α(∂µQ)NβdS(Γ1)

︸ ︷︷ ︸
I212

+R2

� I211 + ‖∂a‖L6‖Sη‖L3‖a‖L∞‖∂Q‖L∞‖Sv‖L2 + ‖a‖L∞‖Sη‖L3‖a‖L∞‖∂2Q‖L6‖Sv‖L2

+ I212 + ‖a‖L6‖η‖H2.5+δ‖a‖L∞‖∂Q‖L∞‖Sv‖L2

� I211 + I212 + P + P(‖Q‖H3),

�

(4.14)

where the integral on Γ0 vanishes because N = (0, 0,−1) and a3
1 = a3

2 = 0 on Γ0.
Now, we bound I211 by the Kato–Ponce commutator estimate (2.7), because we want to 

move the derivatives on v to a in order to control v.

I211 = −
∫

Ω

(S∂βvαaβα)(a
µ
νSην)(∂µQ)dy

=

∫

Ω

(∂βvα)Saβα(a
µ
νSην)(∂µQ)dy

+

∫

Ω

(aµνSην∂µQ)[S(aβα∂βvα)− (Saβα)∂βvα − aβ
αS(∂βvα)]dy.

�

(4.15)

The term on the second line of (4.15) is controlled by (2.4) after integrating 0.5 derivatives 
by parts, i.e.
∫

Ω

(∂βvα)Saβα(a
µ
νSην)(∂µQ)dy =

∫

Ω

∂
1/2

(Sηνaµν∂µQ∂βvα)∂
2+δ

aβαdy

� ‖a‖H2+δ‖∂1/2
(Sηνaµν∂µQ∂βvα)‖L2

� ‖a‖H2+δ(‖aSη‖L3‖∂Q∂v‖W1/2,6 + ‖aSη‖H1/2‖∂Q∂v‖L∞)

� P(‖η‖H3+δ)‖v‖H2.5+δ‖Q‖H2.5+δ .

�

(4.16)

In addition, we apply (2.7) to the term on the third line of (4.15) and get:
∫

Ω

(aµνSην∂µQ)[S(aβα∂βvα)− (Saβα)∂βvα − aβ
αS(∂βvα)]dy

� ‖a‖L∞‖Sη‖L3‖∂Q‖L∞(‖a‖W1,6‖∂v‖H1.5+δ + ‖a‖W1.5+δ,3‖∂v‖W1,3)

� P(‖η‖H3+δ)‖v‖H2.5+δ‖Q‖H2.5+δ .

�

(4.17)

Therefore,

I211 � P(‖η‖H3+δ)‖v‖H2.5+δ‖Q‖H2.5+δ .� (4.18)

Now we come to control I212. We shall compute its time integral, which then allows us to 
integrate ∂t by parts to eliminate 0.5 more derivatives falling on v. Since N = (0, 0, 1) and 
Q = 1

2 c2 on Γ1, we have aβ
αNβ = a3

α and aµ
ν∂µQ = a3

ν∂3Q, and so:
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∫ t

0
I212ds =

∫ t

0

∫

Γ1

(∂tSηα)(Sην)a3
νa3

α(∂3Q)dS(Γ1)ds

=
1
2

∫

Γ1

(Sηα)(Sην)a3
νa3

α︸ ︷︷ ︸
�0

(∂3Q)dS(Γ1)
∣∣∣
t

0

−
∫ t

0

∫

Γ1

∂ta3
αa3

νSηαSην∂3QdS(Γ1)ds − 1
2

∫ t

0

∫

Γ1

a3
νa3

αSηαSην∂3QtdS(Γ1)ds.

�

(4.19)

Invoking the physical sign condition ∂3Q � −ε0 and Sobolev trace lemma, we have:
∫ t

0
I212ds � −ε0

2

∫

Γ1

(Sηα)(Sην)a3
νa3

αdS(Γ1)
∣∣∣
t

0

+

∫ t

0
‖at‖H1.5+δ‖a‖H1.5+δ‖η‖2

H3+δ‖Q‖H2.5+δds

+

∫ t

0
‖a‖2

H1.5+δ‖η‖2
H3+δ‖Qt‖H2.5+δds

� −ε0

2
‖a3

αSηα‖2
L2(Γ1)

+ P(‖v0‖H2.5+δ , ‖b0‖H2.5+δ) +

∫ t

0
P(‖η‖H3+δ , ‖Q‖H2.5+δ , ‖Qt‖H2.5+δ)ds.

�

(4.20)

Summing up (4.3), (4.8), (4.11), (4.14), (4.18) and (4.20), we obtain:
∫ t

0
I(s)ds +

ε0

2
‖a3

αSηα‖2
L2(Γ1)

� P0 +

∫ t

0
P +

∫ t

0
P(‖η‖H3+δ , ‖Q‖H3+δ , ‖Qt‖H2.5+δ)ds.� (4.21)

Control of J: Now we start to control J. We first plug the identity (2.1) into J, then write J to 
be the sum of the highest order term and the commutator, which again can be controlled by 
Kato–Ponce inequality (2.3)

J =

∫

Ω

(Svα)(S(bβaµβ∂µbα))dy =

∫

Ω

(Svα)(S(bµ0 ∂µbα))dy

=

∫

Ω

(Svα)bµ0 S∂µbαdy
︸ ︷︷ ︸

J1

+

∫

Ω

Svα[S(bµ0 ∂µbα)− bµ
0 S∂µbαS∂µbα]dy

� J1 + ‖v‖H2.5+δ(‖∂bµ
0 ‖L∞‖∂1.5+δ

∂µbα‖L2 + ‖Sbµ
0 ‖L2‖∂µbα‖L∞)

� J1 + ‖v‖H2.5+δ‖b0‖H2.5+δ‖b‖H2.5+δ .

�

(4.22)

The term J1 cannot be controlled directly, but it actually cancels with the highest order term 
in the energy of b. We will see that in the next step.

4.2. Tangential estimates of b

We derive the tangential estimates of b in this subsection and then conclude the tangential 
energy estimates. Taking the time derivative of 1

2‖Sb‖2
L2  and invoking the identity (2.1) and 

Kato–Ponce inequality (2.6), we have:
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1
2

d
dt
‖Sb‖2

L2 =

∫

Ω

(Sbα)S(bβaµβ∂µvα)dy =

∫

Ω

(Sbα)S(b
µ
0 ∂µvα)dy

=

∫

Ω

(Sbα)b
µ
0 (S∂µvα)dy

︸ ︷︷ ︸
K1

+

∫

Ω

Sbα[S(b
µ
0 ∂µvα)− bµ

0 (S∂µvα)]dy

� K1 + ‖v‖H2.5+δ‖b0‖H2.5+δ‖b‖H2.5+δ .
�

(4.23)

Now we are able to see that J1 cancels K1: Integrating ∂µ in J1 + K1 by parts, we have

J1 + K1 =

∫

Ω

(Svα)bµ0 S∂µbαdy +
∫

Ω

(Sbα)b
µ
0 S∂µvαdy

=

∫

Ω

∂µ(SvαSbα)b
µ
0 dy

= −
∫

Ω

SvαSbα ∂µbµ
0︸ ︷︷ ︸

div b0=0

dy +
∫

∂Ω

SvαSbα bβaµβNµ︸ ︷︷ ︸
B·N=0

dS(y) = 0.

�

(4.24)

Combining (4.2) and (4.21)–(4.24), we derive the tangential estimate as follows:

‖Sv‖2
L2 + ‖Sb‖2

L2 +
ε0

2
‖a3

αSηα‖2
L2(Γ1)

� P(‖v0‖H2.5+δ , ‖b0‖H2.5+δ) +

∫ t

0
P(‖η‖H3+δ , ‖v‖H2.5+δ , ‖b‖H2.5+δ , ‖Q‖H3+δ , ‖Qt‖H2.5+δ)ds

� P0 +

∫ t

0
P +

∫ t

0
P(‖Q‖H3+δ , ‖Qt‖H2.5+δ , ‖η‖H3+δ)ds

�

(4.25)

which implies in (4.1).� □ 

5.  Closing the estimates

In this section we close our a priori estimate and prove the physical sign condition can be 
propagated to a positive time if holds for the initial data.

5.1. The div-curl type estimates

H2.5+δ-estimate of v and b:  In this subsection we do the div-curl type estimate of v and b to 
derive the control of full H2.5+δ  norms. Although for Euler equations one can use the Cauchy 
invariance to give linear estimates for curl v and div v, there is no such analogue for MHD 
equations. Instead, inspired by Gu–Wang [14], we can derive the evolution equations of curl v 
to control the curl v and curl b simultaneously thanks to the identity b = (b0 · ∂)η. Then we 
apply the div-curl estimate to derive the control of full H2.5+δ  norms of v and b.

The following notations will be adopted throughout:

Notation 5.1.  Let X = (X1, X2, X3) be a vector field. We denote the ‘curl operator’ and the 
‘div operator’ in the Eulerian coordinate by

(BaX)λ = ελταaµτ∂µXα, and AaX = aµα∂µXα,

respectively, where ελτα is the sign of the permutation (λτα) ∈ S3.
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Proposition 5.2.  For sufficiently small T  >  0, the following estimates hold:

‖curl v‖H1.5+δ + ‖curl b‖H1.5+δ � ε(‖v‖H2.5+δ + ‖b‖H2.5+δ) + P0 +

∫ t

0
P;

‖div v‖H1.5+δ + ‖div b‖H1.5+δ � ε(‖v‖H2.5+δ + ‖b‖H2.5+δ),
�

(5.1)

whenever t ∈ [0, T].

Proof.  The divergence estimates are easy because Aav = 0 and Aab  =  0, so:

‖div v‖H1.5+δ = ‖ Aav︸︷︷︸
=0

+(AI − Aa)v‖H1.5+δ � ε‖v‖H2.5+δ ;

‖div b‖H1.5+δ = ‖ Aab︸︷︷︸
=0

+(AI − Aa)b‖H1.5+δ � ε‖b‖H2.5+δ .

The estimates for ‖curl v‖H1.5+δ and ‖curl b‖H1.5+δ are more dedicate. Since

‖curl v‖H1.5+δ + ‖curl b‖H1.5+δ

� ‖(BI − Ba)v‖H1.5+δ + ‖(BI − Ba)b‖H1.5+δ + ‖Bav‖H1.5+δ + ‖Bab‖H1.5+δ

� ε(‖v‖H2.5+δ + ‖b‖H2.5+δ) + ‖Bav‖H1.5+δ + ‖Bab‖H1.5+δ ,
�

(5.2)

and so it suffices to control ‖Bav‖H1.5+δ and ‖Bab‖H1.5+δ. As mentioned in the beginning of this 
subsection, we will derive the evolution equation for Bav and Bab: Plugging bβaµβ = bµ0  and 
bα = (b0 · ∂)η in the first equation of (1.8), and then applying the curloperator Ba on both 
sides, we have:

(Ba∂tv)λ = (Ba((b0 · ∂)2η))λ.� (5.3)

Commuting ∂t and b0 · ∂ with Ba on both sides of (5.3), we have:

∂t(Bav)λ − (b0 · ∂)Ba((b0 · ∂)η)λ = ελτα∂taµτ∂µvα + [Ba, b0 · ∂]((b0 · ∂)η)λ.
� (5.4)

Taking ∂1.5+δ derivatives, and then commuting it with ∂t and b0 · ∂, respectively, we get 
the evolution equation of Bav:

∂t(∂
1.5+δBav)λ − (b0 · ∂)(∂1.5+δBa(b0 · ∂)η)λ = Fλ,� (5.5)

where

Fλ = [∂1.5+δ , b0 · ∂](Ba(b0 · ∂)η)λ + ∂1.5+δ(ελτα∂taµτ∂µvα + [Ba, b0 · ∂]((b0 · ∂)η)λ).� (5.6)

Taking the L2 inner product of ∂1.5+δBav and (5.5), we have:

1
2

d
dt

∫

Ω

|∂1.5+δBav|2dy −
∫

Ω

∂1.5+δBav · (bν0∂ν)(∂1.5+δBa(b0 · ∂)η)dy =

∫

Ω

F · ∂1.5+δBavdy.
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Integrating ∂ν by parts in the second term on LHS, commuting (b0 · ∂) with ∂1.5+δBa and then 
invoking ∂tη = v, we have:

1
2

d
dt

∫

Ω

|∂1.5+δBav|2 + |∂1.5+δBa(b0 · ∂)η|2dy =

∫

Ω

F · ∂1.5+δBavdy
︸ ︷︷ ︸

B1

+

∫

Ω

∂1.5+δ(Ba(b0 · ∂)η) · [∂1.5+δBa, b0 · ∂]vdy
︸ ︷︷ ︸

B2

+

∫

Ω

∂1.5+δ(Ba(b0 · ∂)η)λ∂1.5+δ(ελτα∂taµτ∂µ(b0 · ∂ηα))dy
︸ ︷︷ ︸

B3

,

� (5.7)

where the boundary term vanishes since b0 · N = 0 on the boundary. The control of B3 is 
straightforward by the multiplicative Sobolev inequality, say,

B3 � ‖b‖2
H2.5+δ‖a‖H1.5+δ‖at‖H1.5+δ � ‖b‖2

H2.5+δ‖v‖H2.5+δ‖η‖6
H2.5+δ .� (5.8)

To control B2, it suffices to control ‖[∂1.5+δBa, b0 · ∂]v‖L2 . We simplify the commutator term 
as follows:

[∂1.5+δBa, b0 · ∂]v = ελτα
(
∂1.5+δ(aµτ∂µ(bν0∂νvα))− bν0∂ν∂

1.5+δ(aµτ∂µvα)
)

= ελτα
(
∂1.5+δ(aµτ∂µ(bν0∂νvα))− ∂ν∂

1.5+δ(bν0 aµτ∂µvα)
)

︸ ︷︷ ︸
B21

+ ελτα
(
∂ν∂

1.5+δ(bν0 aµτ∂µvα)− bν
0∂ν∂

1.5+δ(aµτ∂µvα)
)

︸ ︷︷ ︸
B22

.

� (5.9)

Invoking the Kato–Ponce commutator estimate (2.3), we can control B22 as

‖∂ν∂1.5+δ(bν0 aµτ∂µvα)− bν
0∂ν∂

1.5+δ(aµτ∂µvα)‖L2

� ‖b0‖H2.5+δ‖aµτ∂µvα‖L∞ + ‖∂b0‖L∞‖aµτ∂µvα‖H1.5+δ

� ‖b0‖H2.5+δ‖v‖H2.5+δ‖η‖2
H2.5+δ .

� (5.10)

For B21, we have

B21 = ελτα∂
1.5+δ(aµτ∂µ(bν0∂νvα))− ∂ν(bν0 aµτ∂µvα)

= ελτα∂
1.5+δ (aµτ∂µbν0∂νvα + aµτbν

0∂µ∂νvα − bν
0∂νaµτ∂µvα − bν0 aµτ∂µ∂νvα)

= ελτα∂
1.5+δ

(
aµτ∂µbν0∂νvα + bν

0∂β∂νηγaµγaβτ∂µvα
)

= ελτα∂
1.5+δ(aµτ∂µbν

0∂νvα + ∂β((b0 · ∂)ηγ)aµγaβτ∂µvα − ∂βbν0∂νηγaµγaβτ∂µvα

︸ ︷︷ ︸
=∂βbν0 δ

µ
ν aβτ∂µvα

),

� (5.11)

where we used (4.10) to expand bν
0∂νaµτ∂µvα in the second line. Therefore, invoking 

b = (b0 · ∂)η again, the L2 norm of B21 can be controlled by the multiplicative Sobolev in-
equality:
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‖B21‖L2 � ‖aµτ∂µbν0∂νvα‖H1.5+δ + ‖∂βbγaµγaβτ∂µvα‖H1.5+δ + ‖∂βbµ
0 aβτ∂µvα‖H1.5+δ

� P(‖η‖H2.5+δ)(‖b0‖H2.5+δ + ‖b‖H2.5+δ)‖v‖H2.5+δ .
� (5.12)

It remains to control B1, specifically, we need to bound ‖F‖L2 given by (5.6). The first term 
is controlled by using Kato–Ponce commutator estimate (2.3). Silimarly as in (5.9), we have

‖[∂1.5+δ , b0 · ∂](Ba(b0 · ∂)η)‖L2 = ‖∂1.5+δ∂ν(bν0 Bab)− b0∂
1.5+δ∂νBab‖L2

� ‖∂b0‖L∞‖Bab‖H1.5+δ + ‖b0‖H2.5+δ‖Bab‖L∞

� P(‖η‖H2.5+δ)‖b0‖H2.5+δ‖v‖H2.5+δ .
� (5.13)

For the commutator term in (5.6), we can proceed similarly as in (5.11) to get

‖[Ba, b0 · ∂]((b0 · ∂)η)‖H1.5+δ � P(‖η‖H2.5+δ)‖b0‖H2.5+δ‖v‖H2.5+δ .� (5.14)

The remaining term in F can be easily bounded by P(‖η‖H2.5+δ)‖b0‖H2.5+δ‖v‖H2.5+δ via the 
multiplicative Sobolev inequality.

Combining (5.9), (5.10) and (5.12)–(5.14), we have

‖Bav‖H1.5+δ + ‖Bab‖H1.5+δ � P0 + ‖b0‖H2.5+δ

∫ t

0
P .� (5.15)

Therefore, invoking lemma 2.1 (7), then absorbing the ε-term to LHS, we ends the proof 
by:

‖curl v‖H1.5+δ + ‖curl b‖H1.5+δ

� ‖(BI − Ba)v‖H1.5+δ + ‖(BI − Ba)b‖H1.5+δ + ‖Bav‖H1.5+δ + ‖Bab‖H1.5+δ

� ε(‖v‖H2.5+δ + ‖b‖H2.5+δ) + P0 +

∫ t

0
P .

� (5.16)
□ 

Now we can derive the estimate of full H2.5+δ  derivative estimate of v and b. First applying 
Hodge’s decomposition inequality, we get

‖v‖H2.5+δ � ‖v‖L2 + ‖curl v‖H1.5+δ + ‖div v‖H1.5+δ + ‖(∂v) · N‖H1+δ(Γ1).� (5.17)

For the tangential term, we apply Sobolev trace lemma to get:

‖∂v · N‖H1+δ(Γ1) � ‖∂1.5+δ
v3‖H0.5(Γ1) � ‖∂1.5+δ

∂v3‖L2 ,� (5.18)

where the last term in (5.18) can be expressed using the tangential derivative of v by:

∂3v3 = div v − ∂1v1 − ∂2v2 = (AI − Aa)v − ∂1v1 − ∂2v2.� (5.19)

Hence,

‖∂1.5+δ
∂v3‖L2 � ‖∂2.5+δ

v‖L2 + ‖v‖H0.5 + ε‖v‖H2.5+δ .� (5.20)

Combining (5.2) and (5.20), and then absorbing ε‖v‖H2.5+δ to the LHS, we have:

‖v‖H2.5+δ � P0 +

∫ t

0
P ds + ‖Sv‖L2 .� (5.21)
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The estimate of ‖b‖H2.5+δ can be derived exactly in the same way as ‖v‖H2.5+δ, so we omit 
the details.

‖b‖H2.5+δ � P0 +

∫ t

0
P ds + ‖Sb‖L2 .� (5.22)

In conclusion, we have proved

Theorem 5.3.  The following estimates hold in a sufficiently short time interval [0, T]:

‖v‖H2.5+δ + ‖b‖H2.5+δ � P0 +

∫ t

0
P ds + ‖Sv‖L2 + ‖Sb‖L2 .� (5.23)

□ 

H3+δ-estimate of η: We derive the H3+δ estimate for η via the standard div-curl estimate:

‖η‖H3+δ � ‖η‖L2 + ‖curl η‖H2+δ + ‖div η‖H2+δ + ‖(∂η) · N‖H1.5+δ(∂Ω).� (5.24)

The divergence part is easy to treat owing to the div-free condition Aav = 0, i.e. the 
Eulerian divergence of v is identically zero.

‖div η‖H2+δ � ‖div ∂η‖H1+δ + ‖div η‖H1+δ

� ‖Aa∂η‖H1+δ + ‖(AI − Aa)∂η‖H1+δ + ‖η‖H2+δ

� ‖Aa∂η‖H1+δ + ε‖η‖H3+δ + ‖η(0)‖H2+δ +

∫ t

0
‖v‖H2+δ .

� (5.25)

Now it remains to control Aa∂η. We have:

Aa∂η(t) = Aa∂η(0) +
∫ t

0
Aat∂η + Aa∂v = div ∂η(0) +

∫ t

0
Aat∂η + ∂(Aav)︸ ︷︷ ︸

Aav=0

−A∂av ds.

Therefore, it can be controlled as

‖Aa∂η(t)‖H1+δ � ‖div ∂η(0)‖H1+δ +

∫ t

0
‖Aat∂η‖H1+δ + ‖A∂av‖H1+δds

� ‖η(0)‖H3+δ +

∫ t

0
‖at‖H1.5+δ‖η‖H3+δ + ‖a‖H2+δ‖v‖H2.5+δds

� ‖η(0)‖H3+δ +

∫ t

0
‖η‖H3+δ‖v‖H2.5+δds.

�

(5.26)

Summing up (5.25) and (5.26), then absorbing the ε-term to LHS, we get the control of 
div η :

‖div η‖H2+δ � ‖η(0)‖H3+δ +

∫ t

0
P(‖η‖H3+δ , ‖v‖H2.5+δ)ds.� (5.27)

For the boundary estimate, we have:

‖(∂η) · N‖H1.5+δ(Γ1) � ‖Sη · N‖L2(Γ1) + ‖η · N‖H1.5+δ(Γ1)

� ‖a3
αSηα‖L2(Γ1) + ‖(δ3

α − a3
α)Sη

α‖L2(Γ1) + ‖η‖H2+δ

�ε0

ε0

2
‖a3

αSηα‖L2(Γ1) + ε‖η‖H3 + ‖η(0)‖H2 +

∫ t

0
‖v‖H2 .

� (5.28)
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Here we remark that the term ε0
2 ‖a3

αSηα‖L2(Γ1) is exactly the boundary energy term derived 
from the physical sign condition in the tangential estimate.

It remains to control ‖curl η‖H2+δ, we start with

‖curl η‖H2+δ � ‖curl ∂η‖H1+δ + ‖curl η‖H1+δ

� ‖Ba∂η‖H1+δ + ‖(BI − Ba)∂η‖H1+δ + ‖curl η‖H1+δ .
� (5.29)

Recall that the ith component of Ba∂η (resp. (BI − Ba)∂η) is of the form εijkaµj∂µ∂η
k 

(resp. εijk(δ
µj − aµj)∂µ∂η

k). So we apply the multiplicative Sobolev inequality (3.9) to get:

‖(BI − Ba)∂η‖H1+δ � ‖I − a‖H1.5+δ‖η‖H3+δ � ε‖η‖H3+δ .� (5.30)

In addition, using multiplicative Sobolev inequality, Young’s inequality and Jensen’s inequal-
ity, we have:

‖Ba∂η‖H1+δ � ‖a‖H1.5+δ‖η‖H3+δ � ε−1‖η‖4
H2.5+δ + ε‖η‖2

H3+δ

� ε−1‖η(0)‖4
H2.5+δ + ε−1

∫ t

0
‖v‖4

H2.5+δ + ε‖η‖2
3+δ

� (5.31)

holds for sufficiently small t. Also,

‖curl η(t)‖H1+δ � ‖η(t)‖H2+δ � ‖η(0)‖H2+δ +

∫ t

0
‖v‖H2+δ ,� (5.32)

and hence

‖curl η‖H2+δ � ε−1P(‖η(0)‖H2.5+δ) + εP(‖η‖H3+δ) + ε−1
∫ t

0
P(‖v‖H2.5+δ).

� (5.33)
Now summing up (5.27), (5.28) and (5.33), we get the H3+δ estimates of η.

Theorem 5.4.  The following estimates hold in a sufficiently short time interval [0, T]:

‖η‖H3+δ �ε0

ε0

2
‖a3

αSηα‖L2(Γ1) + ε−1P(‖η(0)‖H2.5+δ) + εP(‖η‖H3+δ) + ε−1
∫ t

0
P(‖v‖H2.5+δ).

� (5.34)
□ 

5.2.  Propagation of the physical sign condition

For the MHD system, we still need to show that the physical sign condition (1.12) can be 
propagated to a positive time if it holds for the initial data, that is, −∂3Q|Γ1 � ε0 > 0 holds in 
a short time interval [0, T] for some ε0, provided −∂3Q|Γ1 � ε′0 > 0 holds at t  =  0 for some ε′0. 
We start with the following lemma:

Lemma 5.5.  Let T  >  0 be fixed. Assume f : [0, T]× Γ1 → R satisfies f ∈ L∞([0, T]; H1.5(Γ1))  
and ∂tf ∈ L∞([0, T]; H0.5(Γ1)), then f ∈ C0, 1

4 ([0, T]× Γ1).

Proof.  Since f ∈ L∞([0, T]; H1.5(Γ1)), we have ∂1f , ∂2f ∈ L∞([0, T]; H0.5(Γ1)). By Sobolev  
embedding and Hölder’s inequality, we have

L∞([0, T]; H0.5(Γ1)) ↪→ L∞([0, T]; L4(Γ1)) ↪→ L4([0, T]; L4(Γ1)) = L4([0, T]× Γ1),
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which implies f ∈ W1,4([0, T]× Γ1). Finally, we use Morrey’s embedding W1,4([0, T]×
Γ1) ↪→ C0, 1

4 ([0, T]× Γ1) to conclude that f ∈ C0, 1
4 ([0, T]× Γ1).� □ 

Recall we have shown that Q ∈ L∞([0, T]; H3+δ(Ω)) and Qt ∈ L∞([0, T]; H2.5+δ(Ω)).  
This, together with the trace lemma, gives ∂3Q|Γ1 ∈ L∞([0, T]; H1.5(Γ1)) and 
∂3Qt|Γ1 ∈ L∞([0, T]; H0.5(Γ1)). Therefore, we are able to set f = ∂3Q in lemma 5.5 to see 
that ∂3Q is 1/4-Hölder continuous in [0, T]× Γ1. Now, suppose −∂3Q|Γ1 � ε′0  holds at t  =  0 
for some ε′0 > 0, then there exists a ε0 > 0 such that −∂3Q|Γ1 > ε0  for all t ∈ [0, T] if the 
time T is chosen sufficiently small. This verifies that the physical sign condition (1.12) can be 
propagated to a positive time, provided it holds at t  =  0.

5.3.  Gronwall type argument

Now we recall that

N(t) := ‖η(t)‖2
H3+δ + ‖v(t)‖2

H2.5+δ + ‖b(t)‖2
H2.5+δ .� (5.35)

From (4.1), (5.23) and (5.34), we have :

N(t) � εP(‖η(t)‖H3+δ) + +P(N(0)) + P(N(t))
∫ t

0
P(N(s))ds

+ ε−1P(‖η(0)‖H2.5+δ) + ε−1
∫ t

0
‖v(s)‖H2.5+δ ds.

� (5.36)

For fixed ε � 1, recall that Ω = T2 × (0, ε) and η(0) = Id, one may choose ε  sufficiently 
small so that ε−1P(‖η(0)‖H2.5+δ) � 1. Then by a Gronwall-type argument in [36] we conclude 
that:

N(t) � 1 + P(N(0)), when t ∈ [0, T],� (5.37)

for some T = T(N(0), ε).� □ 

6. The case of a general domain

In this section we show how to adapt the ideas used in the proof on theorem 1.1 to the case of 
a general bounded domain with small volume. The physical situation we have in mind is that 
of a conducting liquid droplet with sufficiently small volume. We shall adapt the idea used in 
section 12 of [10] to our case. The goal of this section is to prove:

Theorem 6.1.  Let Ω ⊂ R3 be a bounded domain with smooth boundary Γ, and denote by n 
the unit outward normal to Γ. Let (η, v, b) be the solution of




∂tvα − bβaµβ∂µbα + aµα∂µQ = 0 in [0, T]× Ω;
∂tbα − bβaµβ∂µvα = 0 in [0, T]× Ω;
aµα∂µvα = 0, aµα∂µbα = 0 in [0, T]× Ω;
aµνbµbν = c2, Q = 1

2 c2, aµνbνnµ = 0 on Γ;

� (6.1)

and δ ∈ (0, 0.5). Assume that v(0, ·) = v0 ∈ H2.5+δ(Ω) and b(0, ·) = b0 ∈ H2.5+δ(Ω) be di-
vergence free vector fields and aµ

ν (0)b
ν
0 nµ = 0 on Γ. Let
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N(t) := ‖η(t)‖2
H3+δ + ‖v(t)‖2

H2.5+δ + ‖b(t)‖2
H2.5+δ .� (6.2)

Then if diam(Ω) := ε̄ � 1/8, there exists a T  >  0, depending only on N(0) and ε  such that 
N(t) � P(N(0)) for all t ∈ [0, T], provided the physical sign condition

−∂Q
∂n

∣∣
t=0 � ε0 > 0, on Γ� (6.3)

holds.

Flatten the boundary: Let Ω ⊂ R3 be a bounded domain with smooth boundary Γ with diam-
eter 8ε̄ � 1. Given y0 ∈ Γ, there exists r > 0, r � 4ε̄  and a smooth function φ such that (after 
a rigid motion and relabeling the coordinates if necessary) we have

Ω ∩ Br(y0) = {y ∈ Br(y0) : y3 � φ(y1, y2) + 1}.

Now, we take coordinates that flatten the boundary near y 0. To be more specific, there exists 
R  >  0 and a diffeomorphism

Φ : Ω ∩ Br(y0) → BR(0, 0, 1) ∩ {z3 � 1}

such that Φ(y1, y2, y3) = (y1, y2, y3 − φ(y1, y2)). Note that det(DΦ) = 1, and so 
det(DΦ−1) = 1. Denoting Ψ = Φ−1 and ψ = φ−1, we have

Ψ(z1, z2, z3) = (z1, z2, z3 + ψ(z1, z2)).

Moreover, we must have R � 4ε̄ since both Φ and Ψ are volume-preserving diffeomorphisms.

The local Lagrangian map and the cut-off functions: Consider the Lagrangian map 
η : Ω → Ω(t), and set η̃ = η ◦Ψ. Then ∂tη̃ = ∂tη ◦Ψ = u ◦ η̃, where u is the velocity of the 
moving domain Ω(t). In view of this, if we introduce

ṽ = u ◦ η̃, b̃ = B ◦ η̃, ã = [∂η̃]−1, Q̃ = Q ◦ η̃,

then these new variables verify the incompressible MHD equations  in the domain 
BR(0, 0, 1) ∩ {z3 � 1}. We thus use suitably chosen cut-off functions to produce local esti-
mate, passing to the global estimate by the standard gluing procedure. Let θ be a smooth 
cut-off function such that 0 � θ � 1 with θ = 1 in B̄R/5(0, 0, 1) and supp θ ⊂ BR/4(0, 0, 1). 
Therefore, extending all quantities to be identically 0 outside BR/4(0,0,1) and since R � 4ε̄, we 
may consider the equations and variables defined on the reference domain Ω̃ = T2 × (0, ε̄). 
This allows us to adapt the tangential energy estimates in section 4, but all integrands should 
carry the cut-off function θ. Also, unlike section 4, no integral over the lower boundary Γ0 of 
Ω̃ is present since all variables vanish there in view of the way they have been extended.

The energy estimate: First, since η̃(0, z) = (z1, z2, z3 + ψ(z1, z2)), a direct computation yields 
that at t  =  0 we have

ã(0) =




1 0 −∂1ψ

0 1 −∂2ψ

0 0 1


 .

In the proof of theorem 1.1, for which ψ = 0, we used a(0)− I = O, where O stands for the 
zero matrix, to produce some small parameters (i.e. lemma 2.1 (7)) in the energy estimates. 
We need ∂ψ to be small in order to apply the same argument here. This can be achieved 
since we may assume, without loss of generality, that ∂ψ(0, 0) = 0, and so the smallness of 
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‖∂ψ‖L∞(Γ) can be achieved by the mean value theorem possibly after reducing ε̄ , provided 
that ψ ∈ H2.5+δ(Γ).

We now apply the energy estimates of section 4 with

S· = ∂2.5+δ(θ·).� (6.4)

In order to simplify the exposition, we will omit tildes from all quantities and continue to label 
η, v, b, a and q, which are only locally defined Lagrangian flow map, velocity, magnetic field, 
cofactor matrix, and pressure, respectively. We start by differentiating ‖Sv‖L2(Ω̃), i.e.

1
2

d
dt

∫

Ω̃

(Svα)(Svα) =
∫

Ω̃

(Svα)(∂tSvα)

= −
∫

Ω̃

(Svα)(S(aµα∂µQ)) +

∫

Ω̃

(Svα)(S(bµ0 ∂µbα))

=: I + J.

� (6.5)

To control I, we have:

I = −
∫

Ω̃

∂2.5+δ(θvα)∂2.5+δ(θaµ
α∂µQ)

= −
∫

Ω̃

∂2.5+δ(θvα)θaµ
α(∂

2.5+δ[∂µQ])

︸ ︷︷ ︸
I1

−
∫

Ω̃

∂2.5+δ(θvα)∂2.5+δ(θaµ
α)(∂µQ)

︸ ︷︷ ︸
I2

−
∫

Ω̃

∂2.5+δ(θvα)[∂2.5+δ(θaµ
α∂µQ)− θaµ

α(∂
2.5+δ[∂µQ])− ∂2.5+δ(θaµ

α)(∂µQ)]

︸ ︷︷ ︸
I3

.

� (6.6)

Control of I1: We integrate ∂µ by parts to get

I1 =

∫

Ω̃

θaµ
α(∂

2.5+δ[θ∂µvα])(∂2.5+δQ)

︸ ︷︷ ︸
I11

−
∫

Γ1

(∂2.5+δQ︸ ︷︷ ︸
=0

)(θaµ
αSvαNµ)dS(Γ1) +R.

� (6.7)
Here and throughout, R contains error terms when the derivatives fall on θ, which can be 
controlled by the RHS of (6.16). Now,

I11 =

∫

Ω̃

θ S(aµα∂µvα)︸ ︷︷ ︸
=0

(∂2.5+δQ)−
∫

Ω̃

θ(Saµ
α)∂µvα(∂2.5+δQ)

︸ ︷︷ ︸
I112

−
∫

Ω̃

θ[S(aµα∂µvα)− (Saµ
α)∂µvα − aµ

αS∂µvα](∂2.5+δQ)

︸ ︷︷ ︸
I113

.
�

(6.8)

I113 can be controlled using the Kato–Ponce inequality. To do this, however, each separated 
term needs to be properly cut-off since the fractional derivatives destroy the compact support. 
Let θ̄  be a smooth cut-off function such that 0 � θ̄ � 1 with supp θ̄ ⊂ BR/3(0, 0, 1) and θ̄ = 1 
on supp θ . The construction of θ̄  allows us to introduce θ̄  without changing given expressions.

Notation 6.2.  We shall use Cθ to denote constants depend on ||θ||H3+δ and ||θ̄||H3+δ through-
out the rest of this section.
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Now, commutating θ through ∂2.5+δ we get

I113 � ‖∂2.5+δ[θ(aµαθ∂µvα)]− θ∂2.5+δ(aµαθ∂µvα)‖L3/2‖θ̄∂2.5+δQ‖L3

+ ‖∂2.5+δ[θ(aµαθ∂µvα)]− ∂2.5+δ(θaµ
α)θ∂µvα − θaµ

α∂
2.5+δ[θ∂µvα]‖L3/2‖θ̄∂2.5+δQ‖L3 .

�
(6.9)

The first line is bounded by

‖∂θ‖L∞‖aµ
αθ∂µvα‖W1.5+δ,3/2 + ‖θ‖W2.5+δ,3/2‖aµ

αθ∂µvα‖L∞ � Cθ||θa||H1.5+δ ||θ̄v||2.5+δ ,� (6.10)

and the second line is bounded by

(‖θaµα‖W1.5+δ,3‖θ∂µvα‖W1,3 + ‖θaµα‖W1,6‖θ∂µvα‖H1.5+δ)‖θ̄∂2.5+δQ‖L3

� Cθ‖θ̄Q‖H3+δ‖θa‖2
H2+δ‖θv‖H2.5+δ .

� (6.11)

Moreover, we integrate 1/2-tangential derivatives by parts and then I112 becomes
∫

Ω̃

∂
2+δ

[θaµα]∂
0.5
(θ∂2.5+δQ∂µvα) +R� (6.12)

where
∫

Ω̃

∂
2+δ

[θaµα]∂
0.5
(θ∂2.5+δQ∂µvα)� (6.13)

� ‖θa‖H2+δ(‖θ∂2.5+δQ‖H0.5‖θ̄∂µvα‖L∞ + ‖θ∂2.5+δQ‖L3‖θ̄∂µvα‖W0.5,6)� (6.14)

� Cθ‖θa‖H2+δ‖θQ‖H3+δ‖θ̄v‖H2.5+δ .� (6.15)

Summing these up, we have

I1 � Cθ

(
‖θa‖H2+δ‖θQ‖H3+δ‖θ̄v‖H2.5+δ + ‖θ̄Q‖H3+δ‖θa‖2

H2+δ‖θv‖H2.5+δ

)
.

� (6.16)
Control of I3: We have

I3 � ‖∂2.5+δ(θv)‖L2‖∂2.5+δ(θaµ
αθ̄∂µQ)− θaµα(∂

2.5+δ[θ̄∂µQ])− ∂2.5+δ(θaµα)(θ̄∂µQ)‖L2

� Cθ‖θv‖H2.5+δ‖θa‖H2+δ‖θ̄Q‖H3+δ .
� (6.17)

Control of I2: First it is easy to check that the decomposition (4.9) remains valid, i.e. for any 
smooth function u, we have

Su =

2∑
m=1

Sm∂m(θu) + S0(θu),� (6.18)

where S· is defined as (6.4), and Sm, S0 are defined in (4.9). Then the analysis of (4.11) suggests 
that it suffices to consider the term associated to I21, i.e.

I′21 =

2∑
m=1

∫

Ω̃

∂2.5+δ(θvα)[Sm(θ∂β∂mη
ν)](aµνaβα)∂µQ.

Writing 
∑2

m=1 Sm∂m = ∂2.5+δ − S0, we have

I′21 =

∫

Ω̃

∂2.5+δ(θvα)∂2.5+δ(θ∂βη
ν)(aµνaβα)∂µQ −

∫

Ω̃

∂2.5+δ(θvα)S0(θ∂βη
ν)(aµνaβα)∂µQ +R,

� (6.19)
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where the second term is controlled directly by Cθ‖θv‖H2.5+δ‖θ̄a‖2
H1.5+δ‖θ̄Q‖H1.5‖θη‖H2.5+δ. 

For the first term, we integrate ∂β by parts to obtain

I′21 = −
∫

Ω̃

∂2.5+δ∂β(θvα)(∂2.5+δθην)(aµνaβα)∂µQ
︸ ︷︷ ︸

I′211

−
∫

Ω̃

∂2.5+δ(θvα)(∂2.5+δθην)∂β [(aµνaβα)∂µQ]

+

∫

Γ1

∂2.5+δ(θvα)(∂2.5+δθην)aµνaβα(∂µQ)NβdS(Γ1)

︸ ︷︷ ︸
I′212

.

�

(6.20)

There is no problem to control the second term in the first line of (6.20) and I′212 is controlled 
analogous to I212 in section 4. For I′211, we write

I′211 = −
∫

Ω̃

aβαS∂βvα(aµνSην)∂µQ +R

=

∫

Ω̃

(Saβα)(∂βvα)(aµνSην)∂µQ +

∫

Ω̃

[S(aβα∂βvα)− (Saβα)(∂βvα)− aβαS∂βvα](aµνSην)∂µQ.

� (6.21)
The first term can be treated similar to (6.12) by integrating 0.5-derivatives by parts. The 
second term is equal to

∫

Ω̃

[∂2.5+δ(θaβ
α∂βvα)− ∂2.5+δ(θaβ

α)(∂βvα)− θaβ
α∂

2.5+δ∂βvα](aµνSην)∂µQ

−
∫

Ω̃

aβα[∂
2.5+δ(θ∂βvα)− θ∂2.5+δ∂βvα](aµνSην)∂µQ.

� (6.22)
The first line can be controlled similar to (6.11), and since

‖∂2.5+δ(θ∂βvα)− θ∂2.5+δ∂βvα‖L2

� ‖∂θ‖L∞‖v‖H2.5+δ + ‖∂2.5+δθ‖L2‖∂v‖L∞ � Cθ‖v‖H2.5+δ

� (6.23)

so the second line can be bounded by Cθ‖θ̄a‖2
H1.5+δ‖θ̄Q‖H2.5+δ‖θη‖H2.5+δ‖θ̄v‖H2.5+δ .

Control of J + d
dt

1
2‖Sb‖2

L2: This follows from the what has been done in section 4 except that 
the cancellation (4.24) holds up to a term of type R, which can still be controlled appropriately.

After covering Γ with finitely many balls, the procedure described above yields the tangen-
tial energy estimates near the Γ. We still need to cover the region of Ω not covered by these 
balls. However, we have no problem to cover this region using finitely many balls with radius 
r � 4ε̄ and again reducing the tangential estimates to Ω̃. In addition, there are no boundary 
integrals on either Γ1 and Γ0.

Finally, we need to show that the estimates in sections 3 and 5 are still valid in each local 
coordinate patch. This follows from adapting the estimates in sections 3 and 5 to the MHD 
equations after commuting θ, i.e.



∂t(θvα)− bβaµβ∂µ(θbα) + aµ
α∂µ(θQ) = −bβaµβ(∂µθ)bα + aµ

α(∂µθ)Q in [0, T]× Ω̃;
∂t(θbα)− bβaµβ∂µ(θvα) = −bβaµβ(∂µθ)vα in [0, T]× Ω̃;
aµ
α∂µvα = 0, aµα∂µbα = 0 in [0, T]× Ω̃;

aµνbµbν = c2, Q = 1
2 c2, aµνbνNµ = 0 on Γ.

� (6.24)
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We can recover the equations for Q, Qt, Bav and Bab modulo error terms involving derivatives 
land on θ, but these contribute only to lower order terms.
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