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Abstract
In this paper, we mainly study the population dynamics of a Lotka–Volterra 
competition system from river ecology. One interesting feature in this model 
concerns the boundary conditions at upstream and downstream ends, where 
the species can be exposed to a net loss of individuals, as tuned by parameters 
bu and bd measuring the magnitude of the loss. We establish a complete 
classification of all possible long time behaviors for this general model, and 
as an application, we further present a clear picture on the global dynamics 
by investigating a special case where two species are competing for the same 
resource.
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1.  Introduction

In this paper, we mainly investigate the population dynamics of the following general two-
species Lotka–Volterra competition-diffusion-advection system arising in river ecology:





ut = d1uxx − α1ux + u(r1(x)− u − bv), 0 < x < L, t > 0,
vt = d2vxx − α2vx + v(r2(x)− cu − v), 0 < x < L, t > 0,
d1ux(0, t)− α1u(0, t) = buα1u(0, t), t > 0,
d1ux(L, t)− α1u(L, t) = −bdα1u(L, t), t > 0,
d2vx(0, t)− α2v(0, t) = buα2v(0, t), t > 0,
d2vx(L, t)− α2v(L, t) = −bdα2v(L, t), t > 0,
u(x, 0) = u0(x) �, �= 0, 0 < x < L,
v(x, 0) = v0(x) �, �= 0, 0 < x < L,

� (1)

where u and v represent the population densities of two competing aquatic species living 
in a river with constantly unidirectional water flow. The river is abstracted here by a one-
dimensional habitat denoted by an interval (0, L). Populations are taking certain diffusive 
movement with rates d1, d2 > 0 due to water turbulence or self-propelling, and also some 
passive movement caused by unidirectional water flow with advection speeds α1,α2 > 0. The 
functions r1(x) and r2(x) stand for the intrinsic growth rates or local carrying capacities, and 
b, c > 0 signify the inter-specific competition intensities. The parameters bu, bd � 0 are used 
to measure the loss rate of individuals at the upstream and downstream ends relative to the 
flow rate, see [9].

Up to now, various special cases of system (1) have been widely investigated.
We begin with the spatially homogeneous case r1 = r2 ≡ r0 with r0 being a positive con-

stant. If d1 �= d2, α1 = α2, Lou, Lutscher [9] and Lou, Zhou [12], respectively, discussed 
bu = 0, bd = 1 and bu = 0, bd ∈ [0, 1), and they finally conclude that the competitor with 
faster diffusion rate would displace the slower one, that is, faster diffusion will evolve, in 
sharp contrast to the well-known ‘slower diffuser wins’ in non-advective case [4, 5]; while if 
d1 = d2, α1 �= α2 and bu = bd = 0, it was confirmed by Lou et al [10] that weak advection is 
more beneficial for species to exclude its competitor; this conclusion was further extended to 
general case with d1 = d2, α1 �= α2, bu  =  0, 0 < bd � +∞ and spatially dependent resource 
function; see [15, 21]. For differing movement rates, i.e. d1 �= d2, α1 �= α2, Zhou [18] firstly 
treated bu = bd = 0, and among other things, he found: (i) the strategy of faster diffusion 
together with slower advection is always favorable, which can be seen as a generation of [10] 
and [12]; (ii) the strategy of faster diffusion but with much stronger advection (relative to dif-
fusion) is always selected against; see also [20] for the generalization to bu  =  0 and bd ∈ (0, 1].

For the inhomogeneous case r1 = r2 := r(x), non-constant, system (1) is much more harder 
to deal with. Lam, Lou and Lutscher [8] seems to be the first attempt to talk about the case 
d1 �= d2, α1 = α2 and bu = bd = 0, aiming at the existence and multiplicity of evolutionarily 
stable strategies by using some limiting arguments (in the sense of both diffusion and advec-
tion rates are sufficiently small and comparable). Zhao and Zhou [17], focusing on the special 
case d1 �= d2, α1 = 0 < α2, bu  =  −1 and bd  =  0, tried to reveal some different phenomena 
after involving spatial variations. The general case d1 �= d2, α1 �= α2, bu  =  0 and bd  >  0, was 
recently explored by Lou et al [11], where, by developing new techniques to overcome the dif-
ficult caused by non-self-adjoint operators, they obtained a deep understanding on the global 
dynamics.

A recent important advance on a bit more general setting of system (1) is due to Zhou and 
Xiao [19], where by assuming
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	(H1)	�
d2
d1

= α2
α1

:= k > 0   (or equivalently α1
d1

= α2
d2

= k∗); 
	(H2)	�(b, c) ∈ A := {(b, c) : b, c > 0 and b · c � 1}
	(H3)	�r1(x), r2(x) ∈ C1,γ([0, L], R+) with some γ ∈ (0, 1); 
	(H4)	�bu = bd = 0; 

they classified completely all possible long time behaviors of system (1): either one of these 
two species wins the final competition or both populations coexist eventually. Indeed, they 
discussed it in higher spatial dimensions.

Motivated by the above work, in this paper, we aim to consider system (1) under the basic 
hypotheses (H1)–(H3) but in a very general region for parameters bu and bd, that is,

	(H̄4)	� (bu, bd) ∈ [0,∞]× [0,∞]\(0, 0),

which includes various biological scenarios at the habitat ends, and also, may induce different 
types of boundary conditions from the mathematical point of view. We explain this further by 
taking bd as an example. Specifically,

	(1)	�bd  =  0 means that there is no loss at the downstream end, which indicates that populations 
cannot cross over the downstream end, and if we further have bu  =  0, then one sees the 
environment under consideration is closed [8, 18]; 

	(2)	�bd  =  1 means that water flow will cause a hundred percent loss at the downstream end, 
which can be applied to describe the scenario ‘stream to lake’ [9, 14] and biologically is 
called ‘free-flow’ boundary condition (indeed, mathematically it matches the homoge-
neous Neumann type boundary condition); 

	(3)	�0  <  bd  <  1 indicates that at the downstream end there is a partial loss relative to the water 
flow, and this seems to happen under certain artificial factors, e.g. at the interface of the 
stream and lake, there is a fishnet set up by human beings, which may block a portion of 
individuals to be washed out [20]; 

	(4)	�bd  >  1 shows that both diffusive and advective movements will cause population loss at 
the downstream end, which in turn reflects an unfavorable environment nearby x  =  L, 
and mathematically, it gives rise to the Robin type boundary condition [9]; especially, 
if bd → ∞, then formally we get the Dirichlet type boundary condition, which can be 
used to model the situation ‘stream to ocean’ [13] (in the sequel, by bd = ∞, we mean 
u(x, t) = v(x, t) = 0 at x  =  L; bu = ∞ can be understood similarly).

Since system (1) generates a monotone dynamical system, its dynamics will be largely 
determined by its steady states and their stability. Clearly, system (1) always has a trivial 
steady state (0, 0), and two possible semi-trivial steady states, which, in the sequel, are denoted 
by (ud1,α1,r1 , 0) and (0, vd2,α2,r2) respectively.

Let us introduce the following auxiliary linear eigenvalue problem
{

dφxx − αφx + rφ+ τφ = 0, x ∈ (0, L),
dφx(0)− αφ(0) = buαφ(0), dφx(L)− αφ(L) = −bdαφ(L),

� (2)

where d,α > 0 and r(x) ∈ L∞(0, L). By the Krein–Rutman theorem [7], problem (2) admits a 
principal eigenvalue, denoted in the sequel, by τ1(d,α, r), and its corresponding eigenfunction 
φ1(d,α, r) can be chosen strictly positive in [0, L].

Let us define

Γ := R+ × R+ × R+,

F Xu et alNonlinearity 33 (2020) 1528
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and

	Σu	�:= {(d1,α1, k) ∈ Γ : τ1(d2,α2, r2 − cud1,α1,r1) > 0, i.e. (ud1,α1,r1 , 0) is linearly stable}; 
	Σv	�:= {(d1,α1, k) ∈ Γ : τ1(d1,α1, r1 − bvd2,α2,r2) > 0, i.e. (0, vd2,α2,r2 is linearly stable}; 
	Σ−	�:= {(d1,α1, k) ∈ Γ : τ1(d2,α2, r2 − cud1,α1,r1) < 0 and τ1(d1,α1, r1 − bvd2,α2,r2) < 0 , 

i.e. both (ud1,α1,r1 , 0) and (0, vd2,α2,r2) are linearly unstable }; 
	Σu,0	�:= {(d1,α1, k) ∈ Γ : τ1(d2,α2, r2 − cud1,α1,r1) = 0, i.e. (ud1,α1,r1 , 0) is neutrally stable}; 
	Σv,0	�:= {(d1,α1, k) ∈ Γ : τ1(d1,α1, r1 − bvd2,α2,r2) = 0, i.e. (0, vd2,α2,r2 is neutrally stable}; 
	Σ0,0	�:= {(d1,α1, k) ∈ Γ : τ1(d1,α1, r1 − bvd2,α2,r2) = τ1(d2,α2, r2 − cud1,α1,r1) = 0, i.e. both 

(ud1,α1,r1 , 0) and (0, vd2,α2,r2) are neutrally stable }.

In the sequel, we say that a steady state (U(x), V(x)) of system (1) is g.a.s (globally asymp-
totically stable) if for any given initial data (u0(x), v0(x)) with u0(x), v0(x) �, �≡ 0 in [0, L], the 
corresponding unique solution (u(x, t), v(x, t)) of system (1) satisfies

lim
t→∞

(u(x, t), v(x, t)) = (U(x), V(x)) uniformly for x ∈ [0, L],

in the standard C([0, L])× C([0, L]) topology. Moreover, a compact set A ⊂ C([0,L])×C([0,L]) 
is said to be a global attractor of system (1) if for any given initial data (u0(x), v0(x)) with 
u0(x), v0(x) �, �≡ 0 in [0, L], the corresponding unique solution (u(x, t), v(x, t)) of system (1) 
satisfies

lim
t→∞

d
((

u(x, t),v(x, t)
)
,A

)
= 0 uniformlyfor x ∈ [0,L],

where d
(
·,A

)
: C([0,L])×C([0,L])→ R is defined by

d
(

m,A .
)

:= inf
n∈A .

d(m,n), forany m ∈ C([0,L])×C([0,L]).

Here the metric d(·, ·), again, is understood in the standard C([0, L])× C([0, L]) topology.
We now state our main result as follows.

Theorem 1.1.  Assume that (H1)–(H3) and H̄4 hold. Then, we have the following results:

	 (i)	�if τ1(d1,α1, r1) � 0 and τ1(d2,α2, r2) � 0, then (0, 0) is g.a.s; 
	(ii)	�if τ1(d1,α1, r1) � 0 and τ1(d2,α2, r2) < 0, then Σv = Γ and (0, vd2,α2,r2) is g.a.s; 
	(iii)	�if τ1(d1,α1, r1) < 0 and τ1(d2,α2, r2) � 0, then Σu = Γ and (ud1,α1,r1 , 0) is g.a.s; 
	(iv)	�if τ1(d1,α1, r1) < 0 and τ1(d2,α2, r2) < 0, then

Γ =
(
Σu ∪ Σu,0 \ Σ0,0

)
∪
(
Σv ∪ Σv,0 \ Σ0,0

)
∪ Σ− ∪ Σ0,0,

		 and the following statements are valid:

	(iv.1) �For all (d1,α1, k) ∈
(
Σu ∪ Σu,0 \ Σ0,0

)
, (ud1,α1,r1 , 0) is g.a.s; 

	(iv.2) �For all (d1,α1, k) ∈
(
Σv ∪ Σv,0 \ Σ0,0

)
, (0, vd2,α2,r2) is g.a.s; 

	(iv.3) �For all (d1,α1, k) ∈ Σ−, system (1) has a unique co-existence steady state that is 
g.a.s; 

	(iv.4) �For all (d1,α1, k) ∈ Σ0,0, ud1,α1,r1 ≡ bvd2,α2,r2 in [0, L] and system (1) has a compact 
global attractor consisting of a continuum of steady states

{(
�ud1,α1,r1 , (1 − �)

ud1,α1,r1

b

)
: � ∈ [0, 1]

}

		  connecting the two semi-trivial steady states.

F Xu et alNonlinearity 33 (2020) 1528



1532

Theorem 1.1 presents a complete classification of all possible long time behaviors of sys-
tem (1) under the conditions (H1)–(H3) and H̄4. Recall the fact that the sign of τ1(d1,α1, r1) 
and τ1(d2,α2, r2) will exactly determine the existence of (ud1,α1,r1 , 0) and (0, vd2,α2,r2), respec-
tively. Taking τ1(d1,α1, r1) as an example, the semi-trivial steady state (ud1,α1,r1 , 0) exists if 
and only if τ1(d1,α1, r1) < 0. Having this in mind, we obtain the following nice biological 
explanations: theorem 1.1 (i) reveals that if both (ud1,α1,r1 , 0) and (0, vd2,α2,r2) do not exist, that 
is, both species u and v cannot survive without competition, then two populations definitely 
will die out when competition is involved; Statement (ii) suggests that if species v can persist 
in the long run without competition while u cannot, then v takes an advantegeous position 
during the competition and would displace species u eventually; A similar interpretation can 
be seen from statement (iii). However, when both u and v can persist without competition, 
statement (iv) indicates that the final competitive consequence becomes very complicated, 
either one of these two competitors becomes the final winner (see (iv.1)–(iv.2)), or both of 
them coexist eventually (see (iv.3)), or even the system is degenerate in the sense that there is 
a compact global attractor consisting of a continuum of steady states (see (iv.4)).

As mentioned in [19], it is, in general, highly challenging to precisely describe the geomet-
ric property of the sets Σu, Σu,0, Σv, Σv,0, Σ0,0 and Σ−, as some of them may become empty in 
certain circumstance. To investigate this issue further, we next turn to discuss the special case 
r1(x) = r2(x) := r(x), that is,




ut = d1uxx − α1ux + u(r(x)− u − bv), 0 < x < L, t > 0,
vt = d2vxx − α2vx + v(r(x)− cu − v), 0 < x < L, t > 0,
d1ux(0, t)− α1u(0, t) = buα1u(0, t), t > 0,
d1ux(L, t)− α1u(L, t) = −bdα1u(L, t), t > 0,
d2vx(0, t)− α2v(0, t) = buα2v(0, t), t > 0,
d2vx(L, t)− α2v(L, t) = −bdα2v(L, t), t > 0,
u(x, 0) = u0(x) �, �= 0, 0 < x < L,
v(x, 0) = v0(x) �, �= 0, 0 < x < L.

� (3)

For system (3), we obtain a more clear picture on the global dynamics by using k, b, c as 
variable parameters. See below.

Theorem 1.2.  Assume that (H1)–(H3) and H̄4 hold. The following statements are true:

	 (i)	� If k  >  1, we have τ1(d1,α1, r) < τ1(d2,α2, r) and
	(i.1) �if τ1(d1,α1, r) < 0 � τ1(d2,α2, r), then for any (b, c) ∈ (0, 1]× (0, 1], (ud1,α1,r, 0) is 

g.a.s; 
	(i.2) �if τ1(d1,α1, r) � 0, then for any (b, c) ∈ (0, 1]× (0, 1], (0, 0) is g.a.s; 
	(i.3) �if τ1(d2,α2, r) < 0, there exists c∗ ∈ (0, 1) such that for any (b, c) ∈ (0, 1]× [c∗, 1], 

(ud1,α1,r, 0) is g.a.s, and for any (b, c) ∈ (0, 1]× (0, c∗), system (3) has a unique co-exist-
ence steady state that is g.a.s; 

	(ii)	�If k  <  1, we have τ1(d1,α1, r) > τ1(d2,α2, r) and
	(ii.1) �if τ1(d2,α2, r) < 0 � τ1(d1,α1, r), then for any (b, c) ∈ (0, 1]× (0, 1], (0, vd2,α2,r) is 

g.a.s; 
	(ii.2) �if τ1(d2,α2, r) � 0, then for any (b, c) ∈ (0, 1]× (0, 1], (0, 0) is g.a.s; 
	(ii.3) �if τ1(d1,α1, r) < 0, there exists b∗ ∈ (0, 1) such that for any (b, c) ∈ [b∗, 1]× (0, 1], 

(0, vd2,α2,r) is g.a.s, while for any (b, c) ∈ (0, b∗)× (0, 1], system (3) has a unique co-
existence steady state that is g.a.s; 

	(iii)	�If k  =  1, we have τ1(d1,α1, r) = τ1(d2,α2, r) and
	(iii.1) �if τ1(d1,α1, r) � 0, then for any (b, c) ∈ (0, 1]× (0, 1], (0, 0) is g.a.s; 

F Xu et alNonlinearity 33 (2020) 1528
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	(iii.2) �if τ1(d1,α1, r) < 0, then for any (b, c) ∈ (0, 1)× (0, 1), system (3) has a unique co-
existence steady state that is g.a.s; 

	(iii.3) �if τ1(d1,α1, r) < 0, then for any (b, c) ∈ {1} × (0, 1), (0, vd2,α2,r) is g.a.s; 
	(iii.4) �if τ1(d1,α1, r) < 0, then for any (b, c) ∈ (0, 1)× {1}, (ud1,α1,r, 0) is g.a.s; 
	(iii.5) �if τ1(d1,α1, r) < 0 and b  =  c  =  1, then system (3) has a compact global attractor con-

sisting of a continuum of steady states

{(
�ud1,α1,r1 , (1 − �)ud1,α1,r1

)
: � ∈ [0, 1]

}
.

We make some biological interpretations for theorem 1.2. For statement (i) above, clearly 
the situation in (i.1) and (i.2) can be understood biologically in a similar way to that of theo-
rem 1.1 (i)–(iii), while for the case that both u and v can survive without competition, (i.3) 
above shows that species u has relatively more competitive advantages in the sense that either 
it wipes out v completely in the final or coexists with v eventually depending on whether the 
inter-specific competition intensity c ∈ (0, 1] crosses over a critical number c∗ ∈ (0, 1). To 
understand this phenomenon, we first explain two special cases: (1) c  =  1 and (2) c  =  0. If 
c  =  1, from the reaction terms one sees that u is superior since the inter-specific competition 
intensity b is less than 1, and also, from the movement terms one finds that v is inferior as it 
has stronger advective movement (k  >  1) which is negative (as such movements always drive 
individuals to the downstream end x  =  L where there is a net loss of populations measured by 
bd), so finally species u is the winner. If c  =  0, the equation of v is decoupled from that of u, 
and for this case, it is not difficult to prove that two species will coexist eventually at the steady 
state (u∗, vd2,α2,r), where u* is the unique positive solution of




0 = d1uxx − α1ux + u(r(x)− bvd2,α2,r − u), 0 < x < L,
d1ux(0)− α1u(0) = buα1u(0),
d1ux(L)− α1u(L) = −bdα1u(L).

(We note here that the existence of u* is equivalent to τ1(d1,α1, r − bvd2,α2,r) < 0, which can 
be established by using τ1(d2,α2, r − vd2,α2,r) = 0, k  >  1, b  <  1 and lemma 3.1. The unique-
ness of u* is standard.) Based on the results of (1) and (2), it then seems natural to expect the 
critical value of c* which connects these two different competitive consequences. Statement 
(ii) can be understood in a symmetric manner to (i). For statement (iii), (iii.1) is easy to see; 
(iii.2) shows that two weakly competing species (b, c ∈ (0, 1)) will coexist finally if they take 
the same movement and growth rate; (iii.3)–(iii.4) suggest that if one species takes a slightly 
strong competition ability, then it will be dominated provided the rest biological traits of 
two populations are identical; (iii.5) indicates that two populations cannot be distinguished if 
everything of them is the same.

As we see from theorem 1.2, the global dynamics of system (3) depends heavily on the sign 
of τ1(d1,α1, r) and τ1(d2,α2, r). To exactly determine the sign of τ1(d1,α1, r) and τ1(d2,α2, r), 
we find a feasible way by fixing k*  >  0 (recall k* is given in (H1)) and changing the diffusion 
rates d1, d2, and then obtain the following result on system (3).

Theorem 1.3.  Assume that (H1)–(H3) and H̄4 hold. Fix k*  >  0. Then there exists 
0 < d∗ < +∞ such that

	 (i)	�if d1, d2 � d∗, then (0, 0) is g.a.s; 
	(ii)	�if d1 � d∗ > d2, then (0, vd2,d2k∗,r) is g.a.s; 
	(iii)	�if d2 � d∗ > d1, then (ud1,d1k∗,r, 0) is g.a.s; 
	(iv)	�if d1, d2 < d∗, then we have the following results:

F Xu et alNonlinearity 33 (2020) 1528
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(iv.1)	 �if d1 < d2, then there exists c∗ ∈ (0, 1) such that for any (b, c) ∈ (0, 1]× [c∗, 1], 
(ud1,α1,r, 0) is g.a.s; while if (b, c) ∈ (0, 1]× (0, c∗), system (3) has a unique co-exist-
ence steady state which is g.a.s.

(iv.2)	 �if d2 < d1, then there exists b∗ ∈ (0, 1) such that for any (b, c) ∈ [b∗, 1]× (0, 1], 
(0, vd2,α2,r) is g.a.s; while if (b, c) ∈ (0, b∗)× (0, 1], system (3) has a unique co-exist-
ence steady state which is g.a.s.

(iv.3)	 if d1 = d2, then the following statements are true:
	(iv.3.1)	� for any (b, c) ∈ (0, 1)× (0, 1), system (3) has a unique co-existence steady state that 

is g.a.s; 
	(iv.3.2)	� for any (b, c) ∈ {1} × (0, 1), (0, vd2,α2,r) is g.a.s; 
	(iv.3.3)	� for any (b, c) ∈ (0, 1)× {1}, (ud1,α1,r, 0) is g.a.s; 
	(iv.3.4)	� if b  =  c  =  1, then system (3) has a compact global attractor consisting of a con-

tinuum of steady states

{(
�ud1,α1,r1 , (1 − �)ud1,α1,r1

)
: � ∈ [0, 1]

}
.

Biologically, theorem 1.3 (i)–(iii) suggest that if the advection is proportional to the diffu-
sion at the same level for two populations (d1[uxx − k∗ux] and d2[vxx − k∗vx]), then species with 
sufficiently large diffusive movement will never win the competition. This is not surprising 
because combining lemma 3.1(2) and the limiting behaviors in lemmas 3.2–3.4 together, one 
immediately finds that large diffusion is harmful for the survival of single species, and thus 
for two-species competition. Theorem 1.3 (iv) can be understood similarly to the counterpart 
in theorem 1.2 (i.3), (ii.3) and (iii.2)–(iii.5).

The rest of this paper is organized as follows. In section 2 below, we establish theorem 1.1. 
Then in section 3, we prove theorems 1.2 and 1.3. Finally, we include a short discussion in 
section 4.

2.  Proof of theorem 1.1

To verify theorem 1.1, according to the theory of monotone dynamical systems [6, proposition 
9.1, theorem 9.2], we need to make an estimate on the linear stability of coexistence steady 
states.

Suppose that (u, v) is a coexistence steady state of system (1), that is,



d1uxx − α1ux + u(r1(x)− u − bv) = 0, 0 < x < L
d2vxx − α2vx + v(r2(x)− cu − v) = 0, 0 < x < L
d1ux(0)− α1u(0) = buα1u(0), d2vx(0)− α2v(0) = buα2v(0),
d1ux(L)− α1u(L) = −bdα1u(L), d2vx(L)− α2v(L) = −bdα2v(L).

� (4)

Linearizing system (4) at (u, v), we obtain the following linear eigenvalue problem



d1φxx − α1φx + φ(r1(x)− u − bv)− u(φ+ bψ) + λφ = 0, 0 < x < L, t > 0,
d2ψxx − α2ψx + ψ(r2(x)− cu − v)− v(cφ+ ψ) + λψ = 0, 0 < x < L, t > 0,
d1ψx(0)− α1ψ(0) = buα1ψ(0), d2ψx(0)− α2ψ(0) = buα2ψ(0),
d1φx(L)− α1φ(L) = −bdα1φ(L), d2ψx(L)− α2ψ(L) = −bdα2ψ(L).

� (5)
Using the Krein–Rutman theorem [7] again, one sees that problem (5) admits a principal 
eigenvalue, denoted in the sequel by λ1, and its corresponding eigenfunctions (φ,ψ) satisfying 
φ > 0 > ψ in (0, L).
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We now display a key lemma regarding the linear stability of any coexistence steady state, 
which plays an extremely important role in proving theorem 1.1.

Lemma 2.1.  Assume that (H1)–(H3) and H̄4 hold. Then for any (d1,α1, k) ∈ Γ\Σ0,0, every 
coexistence steady state of system (1), if it exists, is linearly stable.

Proof.  It suffices to show that λ1 > 0 when (d1,α1, k) ∈ Γ\Σ0,0. We employ some idea 
from [19] to give this proof.

Multiplying the first equation in (5) by u and the first equation in (4) by φ, and then sub-
tracting the resulting equations, one finds

(d1φxx − α1φx)u − (d1uxx − α1ux)φ− u2(φ+ bψ) + λ1φu = 0.� (6)

Multiplying (6) by φ
2

u2 e−
α1
d1

x and integrating over (0, L), one attains
∫ L

0
(d1φx − α1φ)x

φ2

u
e−

α1
d1

xdx −
∫ L

0
(d1uxx − α1ux)

φ3

u2 e−
α1
d1

xdx

−
∫ L

0
φ2(φ+ bψ)e−

α1
d1

xdx + λ1

∫ L

0

φ3

u
e−

α1
d1

xdx = 0.
�

(7)

Set

I1 :=
∫ L

0
(d1φx − α1φ)x

φ2

u
e−

α1
d1

xdx and I2 :=
∫ L

0
(d1ux − α1u)x

φ3

u2 e−
α1
d1

xdx.

By integration by parts and boundary conditions, one can calculate

I1 := −bdα1
φ3(L)
u(L)

e−
α1
d1

L − buα1
φ3(0)
u(0)

+

∫ L

0

α1

d1

φ3

u
(d1

φx

φ
− α1)e

−α1
d1

xdx

−
∫ L

0
(d1

φx

φ
− α1)

φ3

u
(2

φx

φ
− ux

u
)e−

α1
d1

xdx,

�

(8)

and

I2 := −bdα1
φ3(L)
u(L)

e−
α1
d1

L − buα1
φ3(0)
u(0)

+

∫ L

0

α1

d1

φ3

u
(d1

ux

u
− α1)e

−α1
d1

xdx

−
∫ L

0

φ3

u
(d1

ux

u
− α1)(3

φx

φ
− 2

ux

u
)e−

α1
d1

xdx.

�

(9)

It follows from (8) and (9) that

I1 − I2 = −2d1

∫ L

0

φ3

u
(

ux

u
− φx

φ
)2e−

α1
d1

xdx,� (10)

which, together with (7), gives

λ1

∫ L

0

φ3

u
e−

α1
d1

xdx =

∫ L

0
2d1

φ3

u
(

ux

u
− φx

φ
)2e−

α1
d1

xdx +
∫ L

0
φ2(φ+ bψ)e−

α1
d1

xdx.

� (11)
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Following the same idea as above, one can use the equations v and ψ satisfy to derive

λ1

∫ L

0

ψ3

v
e−

α2
d2

xdx =

∫ L

0
2d2

ψ3

v
(

vx

v
− ψx

ψ
)2e−

α2
d2

xdx +
∫ L

0
ψ2(cφ+ ψ)e−

α2
d2

xdx.

� (12)

Multiplying (11) by c3 and subtracting (12) by the resulting equations, one finds

λ1

∫ L

0
(c3 φ

3

u
e−

α1
d1

x − ψ3

v
e−

α2
d2

x
)dx �

∫ L

0
(cφ+ ψ)2(cφ− ψ)e−

α1
d1

xdx

+

∫ L

0
2d1c3 φ

3

u
(

ux

u
− φx

φ
)2e−

α1
d1

xdx −
∫ L

0
2d2

ψ3

v
(

vx

v
− ψx

ψ
)2e−

α2
d2

xdx

� 0,

�

(13)

where we have used α1
d1

= α2
d2

, bc � 1 and φ > 0 > ψ in (0, L). So, λ1 � 0.
It remains to exclude λ1 = 0 under the given conditions. By (13), we know that λ1 = 0 if 

and only if

bc = 1,
ux

u
=

φx

φ
,

vx

v
=

ψx

ψ
and ψ = cφ,

which implies

bc = 1 and
ux

u
=

vx

v
.

The above second condition further yields

u = ρv for some constant ρ > 0.� (14)

By applying (14) to the equations of (u, v), one can derive from the uniqueness of positive 
steady state of the single species problem that

(1 +
b
ρ
)u = ud1,α1,r1 and (1 + cρ)v = vd2,α2,r2 ,

which, in view of bc  =  1, gives 
ud1,α1,r

vd2,α2,r
= b. This in turn shows

τ1(d2,α2, r2 − cud1,α1,r1) = τ1(d2,α2, r2 − vd2,α2,r2) = 0

and

τ1(d1,α1, r1 − bvd2,α2,r2) = τ1(d1,α1, r1 − ud1,α1,r1) = 0,

contradicting our assumption. Thus, λ1 > 0.� □ 

Remark 2.1.  We note here that when bu or bd equals infinity, that is, the Dirichlet boundary 
condition holds, the above proof still works. Indeed, one should keep in mind

φ

u
|x=0,L =

φ′

u′
|x=0,L and

ψ

v
|x=0,L =

ψ′

v′
|x=0,L,

where we have used the Hopf boundary lemma.
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We next give the proof of theorem 1.1 as follows.

Proof.  In statement (i), both semi-trivial steady states do not exist; in statement (ii), only 
(0, vd2,α2,r2) exists; and in statement (iii), only (ud1,α1,r1 , 0) exists. The dynamics in these three 
statements can be obtained by using the standard upper and lower solution method; see [21, 
lemma 5.1].

Statement (iv) holds mainly due to the estimate in lemma 2.1. Since the rest proof is quite 
similar to [19, theorem 1.2], we omit the details here.� □ 

3.  Proof of theorems 1.2 and 1.3

Recall τ1(d,α, r) for problem (2). By the variational approach, if 0 � bu, bd < ∞, then

τ1(d,α, r) = inf
0 �=ψ∈H1(0,L)

∫ L
0 (dψ

2
x e

α
d x − rψ2e

α
d x)dx + bdαe

αL
d ψ2(L) + buαψ

2(0)∫ L
0 e

α
d xψ2dx

;

if bu = bd = ∞, then

τ1(d,α, r) = inf
ψ∈S

∫ L
0 (dψ

2
x e

α
d x − rψ2e

α
d x)dx∫ L

0 e
α
d xψ2dx

,

where S := {φ ∈ H1(0, L)|φ(0) = φ(L) = 0,φ �≡ 0}; if bu = ∞ and 0 � bd < ∞, then

τ1(d,α, r) = inf
ψ∈S1

∫ L
0 (dψ

2
x e

α
d x − rψ2e

α
d x)dx + bdαe

αL
d ψ2(L)∫ L

0 e
α
d xψ2dx

,� (15)

where S1 := {φ ∈ H1(0, L)|φ(0) = 0,φ �≡ 0}; and if 0 � bu < ∞ and bd = ∞, then

τ1(d,α, r) = inf
ψ∈S2

∫ L
0 (dψ

2
x e

α
d x − rψ2e

α
d x)dx + buαψ

2(0)∫ L
0 e

α
d xψ2dx

,

where S2 := {φ ∈ H1(0, L)|φ(L) = 0,φ �≡ 0}. Then the following result is standard.

Lemma 3.1.  Assume that d,α > 0, 0 � bu, bd � ∞, |bu|+ |bd| �= 0 and m(x) ∈ L∞([0, L]). 
Then the following statements on τ1(d,α, m) are true:

	(1)	�τ1(d,α, m) is strictly decreasing in the weight function m(x) in the L∞ sense, that is, if 
m1(x) �, �≡ m2(x) in [0, L], then τ1(d,α, m1) > τ1(d,α, m2); 

	(2)	�if β > 1, then τ1(
d
β , α

β , m) < τ1(d,α, m) < τ1(βd,βα, m).

Proof.  The proof of statement (1) is standard; see, e.g. [1–3].
We next verify statement (2). Without loss of generality, we assume that bu = ∞ and 

0 � bd < ∞. By the Krein–Rutman theorem [7], problem (2) admits a principal eigen-pair 
(τ1(βd,βα, m),ψ1(βd,βα, m)), where ψ1(βd,βα, m) ∈ S1 can be chosen strictly positive on 
(0, L]. For simplify, we denote ψ1(βd,βα, m) by ψ1. Clearly, (τ1(βd,βα, m),ψ1) satisfies
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τ1(βd,βα, m) =

∫ L
0 (βdψ2

1,xe
α
d x − mψ2

1e
α
d x)dx + bdβαe

αL
d ψ2

1(L)∫ L
0 e

α
d xψ2

1dx

>

∫ L
0 (dψ

2
1,xe

α
d x − mψ2

1e
α
d x)dx + bdαe

αL
d ψ2

1(L)∫ L
0 e

α
d xψ2

1dx

� inf
ψ∈S1

∫ L
0 (dψ

2
x e

α
d x − mψ2e

α
d x)dx + bdαe

αL
d ψ2(L)∫ L

0 e
α
d xψ2dx

= τ1(d,α, m),

where we have used d,α > 0, bd � 0, β > 1, ψ1 is not a constant on [0, L], and the variational 
approach (15). Similarly, one can obtain τ1(

d
β , α

β , m) < τ1(d,α, m). This completes the proof.
� □ 

We now are ready to verify theorem 1.2.

Proof.  Since the proofs are similar, we only prove case (i).
By the assumption, k  >  1, that is, d2 > d1. By lemma 3.1, we have τ1(d1,α1, r) < 

τ1(d2,α2, r). Then (i.1) and (i.2) are the direct results of theorem 1.1. For (i.3), we have 
τ1(d1,α1, r) < τ1(d2,α2, r) < 0, that is ud1,α1,r  and vd2,α2,r exist. Now, we will show that 
(0, vd2,α2,r) is linearly unstable. It suffices to show that τ1(d1,α1, r − bvd2,α2,r) < 0. Actually, 
by lemma 3.1, we have

τ1(d1,α1, r − bvd2,α2,r) � τ1(d1,α1, r − vd2,α2,r) < τ1(d2,α2, r − vd2,α2,r) = 0,

where we used 0  <  b  <  1, d2 > d1, the equation of vd2,α2,r and vd2,α2,r > 0 in (0, L).
Next, we consider the stability of (ud1,α1,r, 0). It suffices to consider the sign of 

τ1(d1k,α1k, r − cud1,α1,r). Since τ1(d1,α1, r) < 0, by lemma 3.1 and theorem 1.1, it suffices 
to show that τ1(d1k,α1k, r − ud1,α1,r) > 0. Indeed, by lemma 3.1, we have

τ1(d1k,α1k, r − ud1,α1,r) > τ1(d1,α1, r − ud1,α1,r) = 0,

where, we used k  >  1 and the equation of ud1,α1,r .� □ 

To prove theorem 1.3, we need the following lemmas.

Lemma 3.2.  For any given d, L, k > 0, 0 < bd < +∞, 0 � bu < +∞ and r(x) > 0 in 
(0, L), we have

	 (i)	�lim
d→0

τ1(d, dk, r) < 0; 
	(ii)	�lim

d→∞
τ1(d, dk, r) = +∞.

Proof.  By variational representation, choosing 1 as a test function, we have

lim
d→0

τ1(d, dk, r) < −
∫ L

0 rekxdx∫ L
0 ekxdx

< 0,

where we have used r  >  0 in (0, L).
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On the other hand, by a transformation ϕ = eεkxψ, where ε is a positive number to be de-
termined later, we have

τ1(d, dk, r) = inf
0�=ψ∈H1(0,L)

bddkekLψ2(L) + budkψ2(0) +
∫ L

0 (dψ
2
x ekx − rψ2ekx)dx∫ L

0 ekxψ2dx

= inf
0�=ϕ∈H1(0,L)

{bddke(1−2ε)kLϕ2(L) + budkϕ2(0)−
∫ L

0 rϕ2e(1−2ε)kxdx∫ L
0 e(1−2ε)kxϕ2dx

+

∫ L
0 [dϕ

2
x + dε2k2ϕ2 − εdk(ϕ2)x]e(1−2ε)kxdx∫ L

0 e(1−2ε)kxϕ2dx

}

= inf
0�=ϕ∈H1(0,L)

{bddke(1−2ε)kLϕ2(L) + budkϕ2(0) +
∫ L

0 [dϕ
2
x + dε2k2ϕ2]e(1−2ε)kxdx∫ L

0 e(1−2ε)kxϕ2dx

−
εdkϕ2(L)e(1−2ε)kL − εdkϕ2(0) +

∫ L
0 rϕ2e(1−2ε)kxdx∫ L

0 e(1−2ε)kxϕ2dx

+
ε(1 − 2ε)dk2

∫ L
0 ϕ2e(1−2ε)kxdx∫ L

0 e(1−2ε)kxϕ2dx

}

= inf
0�=ϕ∈H1(0,L)

{ (bd − ε)dke(1−2ε)kLϕ2(L) +
∫ L

0 dϕ2
xe(1−2ε)kxdx + (bu + ε)dkϕ2(0)∫ L

0 e(1−2ε)kxϕ2dx

+
ε(1 − ε)dk2

∫ L
0 ϕ2e(1−2ε)kxdx −

∫ L
0 rϕ2e(1−2ε)kxdx∫ L

0 e(1−2ε)kxϕ2dx

}

�ε(1 − ε)dk2 − ||r||L∞(0,L),
� (16)

provided 0 < ε < min{bd, 1}. Let d → +∞, part (ii) follows directly from the above inequal-
ity.� □ 

Lemma 3.3.  For any given d, L, k > 0, bd  =  0, 0 < bu < +∞ and r(x) > 0 in (0, L), we 
obtain

	 (i)	�lim
d→0

τ1(d, dk, r) < 0; 

	(ii)	� lim
d→+∞

τ1(d, dk, r) = +∞.

Proof.  The proof is similar to that of lemma 3.2, and thus is omitted.� □ 

Lemma 3.4.  For any given d, L, k > 0 and r ∈ C0,γ([0, L], R+), if one of the following cas-
es holds: case (1) bu = bd = +∞; case (2) bu = +∞ and 0 � bd < +∞; case (3) bd = +∞ 
and 0 � bu < +∞; then, one obtains

	 (i)	�limd→0 τ1(d, dk, r) < 0; 
	(ii)	�limd→+∞ τ1(d, dk, r) = +∞.

Proof.  Since the proofs of these cases are similar, we only consider case (2), i.e. bu = +∞ 
and 0 � bd < +∞.
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Choosing x as a text function and recalling (15), one attains that limd→0 τ1(d, dk, r) < 0, 
which finishes (i). For (ii), one can continue to use the idea in lemma 3.2 (ii) (with easy modi-
fications) to establish the desired result.� □ 

Finally, we establish theorem 1.3.

Proof.  Based on theorem 1.2 and α1
d1

= α2
d2

= k∗, it suffices to consider the signs of 
τ1(d1, d1k∗, r) and τ1(d2, d2k∗, r). By lemma 3.1 (2), we know that τ1(d, dk∗, r) is strictly in-
creasing about d. Then it suffices to show that

lim
d→0

τ1(d, dk∗, r) < 0

and

lim
d→+∞

τ1(d, dk∗, r) > 0

which are immediately derived from lemmas 3.2–3.4.� □ 

4.  Discussion

In this paper, we primarily studied the population dynamics of a general model from river 
ecology as shown in system (1), where an interesting feature of the system structure lies in 
two parameters bu and bd appearing in the boundary conditions, which are used to measure 
the loss rates of individuals at the upstream and downstream ends, respectively. These two 
parameters, beside obviously important biological interpretations, also play a significant role 
in mathematics, as different values of them may yield different types of boundary conditions, 
including the standard Neumann, Robin and Dirichlet types.

For this general model, our first contribution is to establish a complete classification of all 
possible long time dynamical behaviors under certain mild conditions on system parameters; 
see theorem 1.1. This result provides a first angle to understand the global dynamics of system 
(1), and more importantly, it implies that the global dynamics could be determined by the 
local dynamics. Resting on this, we then further apply theorem 1.1 to discuss a special situ-
ation where two species are competing for the same resource. By regarding k or k*, b, c and 
diffusion rates as variable parameters, we obtain a more clear picture on the global dynamics 
of system (3); see theorems 1.2 and 1.3.

Although in the current work we have made some progress in understanding the general 
system (1), there are several important problems that are unsolved and deserve further invest
igation. The first one concerns the technical condition (H1), which, biologically means that the 
movement rates of diffusion and advection for two competitors are proportional. It is inter-
esting to explore to what extent this condition can be relaxed; see also [19]. The second one 
refers to the local stability of semi-trivial steady states, which, currently is well understood 
in the case of identical growth rate. What about the case of differing growth rates? Lastly, we 
should point out that even the existence of semi-trivial steady states is non-trivial in general 
due to the appearance of parameters bu and bd. For the homogeneous case, that is, the growth 
function is a constant, recently we made some new insights to this issue in [16]; but for general 
functions especially those that are admitted to change sign in the domain (0, L), it is far from 
being completely understood. We leave these interesting and challenging problems for future 
exploration.
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