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Abstract
Onsager’s conjecture for the 3D Navier–Stokes equations  concerns the 
validity of energy equality of weak solutions with regards to their smoothness. 
In this note, we establish the energy equality for weak solutions in a large class 
of function spaces. These conditions are weak-in-time with optimal space 
regularity and therefore weaker than previous classical results. Heuristics 
using intermittency argument and divergence-free counterexamples are given, 
indicating the possible sharpness of our conditions.
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1.  Introduction

We consider the three-dimensional incompressible Navier–Stokes equations (3D NSE)

∂tu + (u · ∇)u = −∇p + ν∆u,
∇ · u = 0,
u(x, 0) = u0(x),
� (1.1)

where u(x, t) is the unknown velocity, p(x, t) is the scalar pressure, and ν > 0 is the kinematic 
viscosity. We also restrict attention to spatial domain Ω = R3 or T3.

It is known from classical results by Leray [19] that for divergence-free initial data u0 ∈ L2 , 
there exists a global in time weak solution to (1.1) that satisfies the following energy inequality:
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‖u(t)‖2
2 + 2ν

∫ t

t0
‖∇u‖2

2 � ‖u(t0)‖2
2,� (1.2)

for all t ∈ (0,∞) and a.e t0 ∈ [0, t] including 0. Weak solutions satisfying (1.2) are called 
Leray–Hopf weak solutions. These solutions enjoy an additional regularity L2

t H1
x and other 

analytic properties. For instance, regular (smooth) solutions are unique in the Leray–Hopf 
class. On the other hand, regular solutions to the 3D NSE satisfy the energy equality:

‖u(t)‖2
2 + 2ν

∫ t

t0
‖∇u‖2

2 = ‖u(t0)‖2
2.� (1.3)

A natural question which still remains open is whether the energy equality is valid for 
Leray–Hopf weak solutions or weak solutions in the energy class L∞

t L2
x ∩ L2

t H1
x. The differ-

ence between (1.3) and (1.2) is a possible presence of the anomalous energy dissipation due to 
nonlinearity. This phenomenon, predicted by Onsager [21], can occur as a result of the energy 
cascade in rough solutions to fluid equations. Moreover, Onsager’s conjecture says that the 
regularity threshold for the energy balance is given by the Hölder exponent 1/3.

For the 3D Euler equations the conjecture is basically settled. On the one hand, the energy 
conservation was established for weak solutions in L3Bα

3,∞, α > 1
3 in [8] (see [14] for a weaker 

condition), which was later weakened to L3B1/3
3,c0

 in [5]. On the other hand, the existence of 
anomalous dissipative weak solutions in spaces with less than Onsager regularity has been 
proved by several authors [2, 3, 9–13] using methods based on convex integration originated 
from the work of Nash on isometry problem in differential geometry [20]. Finally, building 
upon these works, Isett [15] constructed weak solutions in CtCα

x , for any α < 1
3, that fail to 

conserve energy, closing the conjecture from the other direction.
The next natural question is whether Onsager’s conjecture holds for the 3D NSE. Is the 

regularity threshold still 1/3? After all, the energy dissipation due to the viscous term weakens 
the energy cascade on high modes, so we might expect some improvements in the positive 
direction. Indeed, the energy equality was first proved by Lions for weak solutions in the class 

L4
t L4

x  [18], which was extended by Shinbrot [24] to Lq
t L p

x , 2
p + 2

q � 1 with p � 4. However, it 
turns out that all these results follow from the condition

u ∈ L3B1/3
3,∞,� (1.4)

that guarantees the energy balance for weak solution of the 3D NSE thanks to the energy flux 
estimate obtained in [5], see also [6] in the case of bounded domain. This can be done via a 
simple interpolation with the energy class L∞

t L2
x ∩ L2

t H1
x (see section 2.2). To the best of our 

knowledge, (1.4) has been the best energy balance condition until now. Even though some 
new Lq

t L p
x  conditions were recently obtained by Leslie and Shvydkoy [16] using local energy 

estimates, they can only be applied to regular solution up to the first blow-up time.
In this paper we establish the first genuine improvement of Shinbrot’s conditions. Indeed, 

our result implies the energy equality in the class Lq,w
t L p

x , 2
p + 2

q � 1 with p   >  4. Note that 
there are functions in these spaces that also belong to the energy class L∞

t L2 ∩ L2H1, but not 

the Onsager space L3B1/3
3,∞ (1.4) (See counterexamples in section 5). In other words, our result 

is not a consequence of the usual interpolation methods. This is done via analyzing the pos-
sible range of intermittency dimensions of flows exhibiting anomalous dissipation, and taking 
advantage of the locality of interactions between different Fourier modes. Another important 
consequence of our result is the energy balance for Leray–Hopf weak solutions whose pos-
sible blow-ups are all of Type-I.
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While for the 3D Euler equations the conjecture is basically settled in both directions, the 
existence of a weak solution to the 3D NSE that exhibits anomalous dissipation was not known 
until very recently. In [1], the authors show the nonuniqueness and anomalous dissipation of 
weak solutions in CtHβ

x  for some small β > 0 using the technique developed from settling 
Onsager’s conjecture for the 3D Euler equations. This motivates for a thorough investigation 
of the energy equality for the 3D NSE. The anomalous energy dissipation is a supercritical 
phenomenon, which suggests that the linear term does not play a major role. Nevertheless, it 
can still prohibit some anomalous energy dissipation scenarios.

1.1.  Main results

Recall that a weak solutions u(t) of the 3D NSE is a weakly continuous L2 valued function in 
the class u ∈ L2

t H1
x  satisfying (1.1) in the sense of distribution.

Theorem 1.1.  Suppose 1 � β < p � ∞ are such that 2
p + 1

β < 1. If a weak solution u(t) of 
the 3D NSE satisfies

u ∈ Lβ,w(0, T; B
2
β+ 2

p −1
p,∞ ),� (1.5)

then u(t) satisfies the energy equality on [0, T].

In view of Lq
t L p

x  conditions for energy equality, (1.5) is weaker than the result of Shinbrot 
[24]. It is worth noting that there are functions in the energy class L∞L2 ∩ L2H1 satisfying 

(1.5) that do not belong to the Onsager space L3B1/3
3,∞ (see section 5 for counterexamples). 

In other words, theorem 1.1 does not follow from the usual interpolation techniques that are 
commonly used to obtain energy balance results [18, 24]. To our knowledge, it is the first time 
that the locality in the energy flux estimate is being taken advantage of (see section 3). Another 
important point of the condition (1.5) is that it is weak-in-time with the optimal Onsager 

spacial regularity exponent 2
β + 2

p − 1. In contrast, Ladyzhenskaya–Prodi–Serrin regularity 
conditions [17, 22, 23] require 2

β + 3
p − 1 as spacial regularity in order to rule out possible 

blowups.
The fact that the condition (1.5) is weak-in-time allows us to obtain the energy equality for 

various Type-I blowups as an important corollary:

Corollary 1.2.  If a strong solution u(t) of the 3D NSE on [0, T) satisfies

‖u(t)‖B0
p,∞

�
1

(T − t)
1
2 −

1
p

, 0 < t < T ,� (1.6)

for some p   >  4, then u(t) does not lose energy at time T.

We note that the classical Type-I blowup ‖u(t)‖∞ � 1√
T−t, for which the loss of energy was 

ruled out by a recent result by Leslie and Shvydkoy [16], is covered by (1.6). In addition, when 
p < ∞, condition (1.6) is weaker than the critical 3D NSE scaling reflected in the following 
upper bound if a blowup at time T occurs (a classical result due to Leray [19]):

‖u(t)‖p �
1

(T − t)
1
2 −

3
2p

, p > 3.� (1.7)
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Remarkably, the worst intermittency dimension for (1.5) and (1.6) is d  =  1− in contrast to 
regularity criteria, such as (1.7), where d  =  0 is the worst case scenario (more on this in 
section 2).

Our last result extends previous conditions in the regime 2
p + 1

β � 1. Unlike theorem 1.1, 
the scaling of this result corresponds to extreme intermittency d  =  0, and thus the spacial 
regularity is different than that of theorem 1.1.

Theorem 1.3.  Suppose 1 � p � ∞, 0 < β � 3 so that 2
p + 1

β � 1. If a weak solution u(t) 
of the 3D NSE satisfies

u ∈ Lβ
(
0, T; B

5
2β+ 3

p −
3
2

p,∞
)
,� (1.8)

then u(t) satisfies energy equality on [0, T].

Note that only the regime 0 < β < 1 in (1.8) is new since in this case Lβ  is not a normed 
space and hence one can not use interpolation technique.

The rest of the note is organized as follows. In section 2 we give some heuristics using the 
intermittency dimension to show the sharpness of our result and summarize previous works on 
the conditions for the energy equality. Section 3 is devoted to preliminaries and tools we used, 
mainly the Littlewood–Paley theory and estimates involving the energy flux. Finally, we prove 
the main results in section 4 and give some counterexamples in section 5.

2.  Heuristics and comparison with previous results

2.1.  Heuristics

Consider the following scenario for the anomalous energy dissipation. Assume that at each 
time t, the total energy E = ‖u(t)‖2

2 is concentrated in a dyadic shell of radius λ(t) in the 
Fourier space. If the energy is of order one, the time it takes for it to transfer to the shell of 
radius 2λ is

T =
Energy

Flux
.

Assuming the flow has intermittency dimension d ∈ [0, 3] (see [7]), namely

‖u‖2 ∼ λ
d−3

2 ‖u‖∞,� (2.1)

it follows that

Flux ∼ λ
5−d

2 E3/2.
This implies that

λ(T∗ − T) ∼ (TE
1
2 )

2
d−5 ,

where T* is the time of blow-up. Now note that the range (1, 3] for the intermittency dimension 
d is eliminated because the linear term dominates in that regime and hence the solution is reg-
ular and has to satisfy the energy equality. Heuristically, the linear and nonlinear terms scale as

L = Enstrophy = λ2E, N = Flux = λ
5−d

2 E
3
2 .

A Cheskidov and X Luo﻿Nonlinearity 33 (2020) 1388



1392

Hence,

L > N, provided d > 1.

Moreover, one can actually exclude the case d  =  1 by noticing that the enstrophy behaves as

Enstrophy = ‖u(T∗ − T)‖2
H1 ∼ λ2E ∼ T

4
d−5 ,

which is not integrable when d � 1. Here we assumed that the energy E is of order one, i.e. 
some chunk of energy escapes to the infinite wavenumber. This suggests that the range for the 
intermittency dimension is d ∈ [0, 1).

Now we can compute the speed with which various norms are allowed to blow up, for 
instance

‖u(T∗ − T)‖Hα ∼ λα
√

E ∼ T
2α

d−5 .� (2.2)

Optimizing this over d ∈ [0, 1) we obtain that the extreme intermittency d  =  0 is the the 

‘worst’ (which is usually the case), and the condition u ∈ L
5

2α
t Hα

x  should imply the energy 

equality. In particular, we can see the familiar scaling u ∈ L3
t H

5
6
x  when α = 5/6.

This heuristics becomes more surprising when we look at Lp -based spaces. In particular, 
for L∞-based spaces we have

‖u(T∗ − T)‖Bα
∞,∞

∼ λα+ 3−d
2
√

E ∼ T
2α+3−d

d−5 .

Optimizing this over d ∈ [0, 1) again, we obtain that the intermittency d near 1 is the the 
‘worst’, which is unusual.

In general, for Lp -based spaces we have (interpolating between L2 and L∞)

‖u(T∗ − T)‖Bα
p,∞

∼ λα+(1− 2
p )

3−d
2
√

E ∼ T f (α,p,d),

where

f (α, p, d) =
2α+ (1 − 2

p )(3 − d)

d − 5
.� (2.3)

To find the ‘worst’ value of the intermittency dimension d, we must ask the following ques-
tion: What is the smallest possible value of the Bα

p,∞-norm at time T*  −  T so that the loss of 

energy can still occur at time T*? Observe that ∂∂d f  has the same sign as 1 − 2
p − α. Therefore,

d = 0 is the worst intermittency dimension for α > 1 − 2
p

,

d = 1− is the worst intermittency dimension for α < 1 − 2
p

.

In what follows we often use p  (space integrability exponent) and β = − 1
f  (time integrability 

exponent) to parametrize different cases. Simple algebra shows that

α < 1 − 2
p
⇔ 2

p
+

1
β

< 1 and α � 1 − 2
p
⇔ 2

p
+

1
β

� 1.

Then the following optimal smoothness exponent α can be obtained from (2.3):

α =

{
2
β + 2

p − 1, when 2
p + 1

β < 1,
5

2β + 3
p − 3

2 , when 2
p + 1

β � 1.
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2.2.  Comparison with previous works

If a weak solution of the 3D NSE belongs to the Onsager space L3B
1
3
3,∞, then it satisfies the 

energy equality. This follows from the estimate on the energy flux done in [5] and implies 
classical results on energy equality, such as [18, 24], via interpolation with the energy class 
L∞

t L2
x ∩ L2

t H1
x. We provide a concise argument below.

We will determine the range of parameters 1 � β � ∞, 1 � p � ∞, and α ∈ R so that the 

following embeddings hold: LβBα
p,∞ ∩ L2H1 ∩ L∞L2 ⊂ L3Bα′

p′,q′ ⊂ L3B
1
3
3,∞. The goal is to find 

the minimal space regularity exponent α given β and p . In view of Hölder interpolation in time 
and Besov interpolation in space, for x and y  satisfying 0 � x + y � 1, 0 � x � 1, 0 � y � 1 
we have the following relations:

1
3
= x · 1

β
+ y · 1

2
+ (1 − x − y)

1
∞

,� (2.4)

1
p′

= x · 1
p
+ y · 1

2
+ (1 − x − y)

1
2

,� (2.5)

α′ = x · α+ y · 1,� (2.6)

α′ � 3
(

1
p′

− 1
3

)
+

1
3

.� (2.7)

After substitutions we find α � ( 3
p + 2

β − 3
2 ) +

1
6x. So to find the minimal α we need to deter-

mine the range of x.

First, p′ � 3 in order to make sure that the Besov embedding Bα′

p′,q′ ⊂ B
1
3
3,∞ holds, which 

is equivalent to 1
x � 3 − 6

p  due to (2.5). Second, the inequality x + y � 1 is equivalent to 
1
x � 3 − 6

β
, and y � 0 is equivalent to 1x � 3

β
 thanks to (2.4).

Therefore given time integrability β and space integrability p , the minimal spacial regular-
ity exponent that implies the energy equality is

α =





2
β + 2

p − 1 β � 3 and p � β,
1
β + 3

p − 1 β � 3 and p � β,
5

2β + 3
p − 3

2 β � 3 and 1
β + 2

p � 1,
2
β + 2

p − 1 β � 3 and 1
β + 2

p � 1.

We can summarize classical results as follows.

Lemma 2.1 (Classical results).  If u(t) is a weak solution to the 3D NSE satisfying either 
one of following three conditions

u ∈ LβB
2
β+ 2

p −1
p,∞ for some

1
β
+

2
p
� 1 and p � β,� (2.8)

u ∈ LβB
5

2β+ 3
p −

3
2

p,∞ for some
1
β
+

2
p
� 1, 1 � β � 3, and p � 1,� (2.9)

u ∈ LβB
1
β+ 3

p −1
p,∞ for some β � 3 and 1 � p � β� (2.10)

then u satisfies energy equality.
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Remark 2.2.  Taking α = 0 and β = p = 4 we can see the L4
t L4

x  result by Lions [18]. More-

over, if u ∈ Lq
t L p

x  with 2q + 2
p = 1 and p � 4, then automatically u ∈ LβB0

p,∞ for β = 2p
p−2 � p. 

Thus lemma 2.1 recovers the result of Shinbrot [24] (see figure 1).

It is clear that theorem 1.1 improves classical results in the interior of the region where 
α = 2

β + 2
p − 1 (See figure 2). In particular, if u ∈ Lq,wL p with 2

q + 2
p = 1 and p   >  4, then 

u ∈ LβB0
p,∞ for β = 2p

p−2 < p, and hence our condition (1.5) is satisfied. Thus theorem 1.1 
extends the result of Shinbrot [24] to weak-in-time Lebesgue spaces. In addition figure  3 
shows that theorem 1.3 extends the condition (2.9) to the regime where 0 < β < 1.

It is worth noting that in [16] the authors were able to obtain better scaling (better space 

regularity exponent) than figure 1 in a small region where α = 1
β + 3

p − 1 for strong solutions 

1
p

1
β

1
3

1

1

1
2

1
3

2
p + 1

β = 1

α = 2
β + 2

p − 1

α = 1
β + 3

p − 1

α = 5
2β + 3

p − 3
2

Figure 1.  Regions for lemma 2.1.

1
p

1
β

1
3

1

1

1
2

1
3

2
p + 1

β = 1

Lβ,wB
2
β + 2

p −1
p,∞

Figure 2.  Regions for theorem 1.1.
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up to the first time of blowup. However at the moment it seems that figure 1 is optimal for 
general weak solutions in terms of space regularity exponent.

3.  Preliminaries

3.1.  Notations

We denote by A � B an estimate of the form A � CB with some absolute constant C, and 
by A ∼ B an estimate of the form C1B � A � C2B with some absolute constants C1, C2. We 
write ‖ · ‖p = ‖ · ‖L p  for Lebesgue norms. The symbol (·, ·) stands for the L2-inner product and 
Lβ,w stands for weak Lebesgue spaces. For any p ∈ N we let λp = 2 p be the standard dyadic 
number.

3.2.  Littlewood–Paley decomposition

We briefly introduce a standard Littlewood–Paley decomposition. For a detailed back-
ground on harmonic analysis we refer to [4]. Let χ : R+ → R be a smooth function so that 
χ(ξ) = 1 for ξ � 3

4, and χ(ξ) = 0 for ξ � 1. We further define ϕ(ξ) = χ(λ−1
1 ξ)− ϕ(ξ) and 

ϕq(ξ) = ϕ(λ−1
q ξ). For a tempered distribution vector field u let us denote

uq = F−1(ϕq) ∗ u for q > −1, u−1 = uq = F−1(χ) ∗ u,

where F  is the Fourier transform. We also use the notation u�q :=
∑

r�q ur .
We use the following version of Bernstein’s inequality, see for instance [4, pp 175].

Lemma 3.1.  Let r � s � 1. For any tempered distribution u ∈ S(R3)

‖uq‖r � λ
3( 1

s −
1
r )

q ‖uq‖s

holds for any −1 � q ∈ Z, where the positive implicit constant is universal and independent 
of q.

1
p

1
β

1
3

1

1

1
2

1
3

2
p + 1

β = 1

LβB
5
2β + 3

p − 3
2

p,∞

Figure 3.  Regions for theorem 1.3.
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Also let us finally note that the Besov space Bs
p,q is the space consisting of all tempered 

distributions u satisfying

‖u‖Bs
p,q

:=
∥∥λs

r‖ur‖p
∥∥

lq < ∞.

3.3.  Energy flux

Using (u�q)�q as test function, we have the following truncated energy equality:

1
2‖u�q(t)‖2

2 = 1
2‖u�q(t0)‖2

2 +

∫ t

t0

(
−ν‖∇u�q(s)‖2

2 +Π�q(s)
)

ds,� (3.1)

where Π�q  is the energy flux through the wavenumber λq:

Π�q =

∫
Tr((u ⊗ u)�q · ∇u�q) dx.� (3.2)

The next result was proven in [5], which we use for much of this paper.

Proposition 3.2 (Flux).  For any vector field u ∈ L2  we we have the following estimate for 
the energy flux:

|Π�q| �
[∑

r<q

λ
2
3
r ‖ur‖2

3λ
− 4

3
|r−q|

] 3
2

+

[∑
r�q

λ
2
3
r ‖ur‖2

3λ
− 2

3
|r−q|

] 3
2

.� (3.3)

4.  Proof of main results

4.1.  Energy equality for weak-in-time Onsager spaces

Recall that we denote the weak Lebesgue spaces by Lβ,w for 1 � p � ∞. Thanks to (3.1), 
theorem 1.1 is a direct consequence of the following.

Proposition 4.1.  Suppose a weak solution u on [0, T] satisfies

u ∈ Lβ,w(0, T; B
2
β+ 2

p −1
p,∞ ),� (4.1)

for some 2
p + 1

β < 1 and p > β > 0. Then we have

lim sup
q→∞

∫ T

0
|Π�q(s)| ds = 0.� (4.2)

Proof.  Throughout the proof we denote f (t) = ‖u(t)‖Bα
p,∞

 for any [0, T] and α = 2
β + 2

p − 1. 
Let us also define

Eq = {s ∈ [0, T] : f (s) � λ
2
β
q }.

It follows from (4.1) that |Eq| � λ−2
q . With this we split the energy flux as

∫ T

0
|Π�q(s)| ds �

∫

Eq

|Π�q(s)| ds +
∫

[0,T]\Eq

|Π�q(s)| ds.

A Cheskidov and X Luo﻿Nonlinearity 33 (2020) 1388
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Step 1: Bounding 
∫

Eq
|Π�q(s)| ds.

We first use the Hölder interpolation inequality to obtain
∫

Eq

|Π�q(s)| ds �
∫

Eq

∑
r

λr‖ur‖
2p−6
p−2

2 ‖ur‖
p

p−2
p λ

− 2
3

|r−q| ds.

It follows from the definition of Besov norms that
∫

Eq

|Π�q(s)| ds �
∫

Eq

∑
r

‖ur‖
2p−6
p−2

2 λ
1− αp

p−2
r λ

− 2
3

|r−q|f (s)
p

p−2 ds.� (4.3)

Since p
p−2 < β < p, we can choose ε > 0 small enough so that

p
p − 2

<
β

1 + ε
, ε1 :=

2
p − 2

(
p
β
− 1

)
+ 2ε′ > 0, and ε2 :=

2
p − 2

(
p
β
− 1

)
− 2ε′ > 0.

where ε′ = p
β( p−2)ε. Now we can use Hölder’s inequality to raise the power of f .

∫

Eq

|Π�q(s)| ds �
∑

r

λ
− 2

3
|r−q|

[ ∫

Eq

λ2
r‖ur‖2

2 ds
]1− p

β( p−2)−ε′

· λ2ε′
r

[ ∫

Eq

f
β

1+ε ds
] p

β( p−2)+ε′

· sup
t

‖u(t)‖ε1
2 ,

where we note that 1 − p
β( p−2) − ε′ > 0 thanks to the bound p

p−2 < β
1+ε .

Due to (4.1), we have the following bound on the distribution function:

λf (t) = |{s : |f (s)| > t}| � t−β .

Hence we obtain
∫

Eq

f
β

1+ε ds =
β

1 + ε

∫ ∞

λ
2
β
q

t
β

1+ε−1λf (t) dt �
∫ ∞

λ
2
β
q

t
−εβ
1+ε −1 dt � λ

−2ε
1+ε
q .

Since p
β( p−2) + ε′ = ε′(1+ε)

ε , then we have

λ2ε′
r

[ ∫

Eq

f
β

1+ε ds
] p

β( p−2)+ε′

� 1.

Using this bound and the fact that the energy is bounded we arrive at

∫

Eq

|Π�q(s)| ds �
∑

r

λ
− 2

3
|r−q|

[ ∫

Eq

λ2
r‖ur(s)‖2

2 ds
]1− p

β( p−2)−ε′

→ 0,

as q → ∞ due to the fact that
∫ T

0
‖∇u(s)‖2

2 ds < ∞.
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Step 2: Bounding 
∫
[0,T]\Eq

|Π�q(s)|ds.

Similarly to Step 1 we have
∫

[0,T]\Eq

|Π�q(s)|ds �
∫

[0,T]\Eq

∑
r

λr‖ur‖
2p−6
p−2

2 ‖ur‖
p

p−2 λ
− 2

3
|r−q| ds

�
∫

[0,T]\Eq

∑
r

λ
1− αp

p−2
r ‖ur‖

2p−6
p−2

2 λ
− 2

3
|r−q|f (s)

p
p−2 ds.

Hölder’s inequality in time gives

∫

[0,T]\Eq

|Π�q(s)| ds �
∑

r

λ
− 2

3
|r−q|

[ ∫

[0,T]\Eq

λ2
r‖ur‖2

2

]1− p
β( p−2)+ε′

· λ−2ε′
r

[ ∫

[0,T]\Eq

f
β

1−ε ds
] p

β( p−2)−ε′

· sup
t

‖u(t)‖ε2
2 ,

where ε′ and ε2 are as above. Using the distribution function again, we obtain

∫

[0,T]\Eq

f
β

1−ε ds =
β

1 + ε

∫ λ
2
β
q

0
t

β
1−ε−1λf (t) dt �

∫ λ
2
β
q

0
t

εβ
1−ε−1 dt � λ

2ε
1−ε
q .

Since p
β( p−2) − ε′ = ε′(1−ε)

ε , we have

λ−2ε′
r

[ ∫

Eq

f
β

1−ε ds
] p

β( p−2)−ε′

� 1.

Thus, reasoning as before,

∫

[0,T]\Eq

|Π�q(s)| ds �
∑

r

λ
− 2

3
|r−q|

[ ∫

[0,T]\Eq

λ2
r‖ur(s)‖2

2 ds
]1− p

β( p−2)+ε′

→ 0,

as q → ∞.� □ 

4.2.  Extension in the region 2p + 1
β � 1 and 0 < β � 3

In this case the proof is much simpler. We can use Sobolev or Bernstein’s inequalities since 
the intermittency dimension d is expected to be 0.

Proof of theorem 1.3.  Let us consider two sub-cases: p � 3 and 1 � p < 3.
First of all, when p � 3, by Hölder’s inequality we obtain:

‖ur‖3
3 � ‖ur‖

2p−6
p−2

2 ‖ur‖
p

p−2
p .
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Since p
p−2 � β, thanks to Bernstein’s inequality we have

‖ur‖3
3 � ‖ur(s)‖3−β

2 ‖ur(s)‖βp λ
3
2 +

3β
p − 3β

2
r .

In the second case, when 1 � p < 3, a direct application of Bernstein’s inequality also 
amounts to

‖ur‖3
3 � ‖ur(s)‖3−β

2 ‖ur(s)‖βp λ
3
2 +

3β
p − 3β

2
r .

Note that in both cases the power of λr is 3
2 + 3β

p − 3β
2 � 0 due to the fact that 2

p + 1
β � 1. 

Therefore for any p � 1 we can proceed as
∫ T

0
|Π�q(s)|ds �

∫ T∗

0

∑
r

‖ur(s)‖3−β
2 ‖ur(s)‖βp λ

5
2 +

3β
p − 3β

2
r λ

− 2
3

|r−q|ds.� (4.4)

Since 0 < β � 3 and the energy is bounded, the Dominated Convergence Theorem implies 
that

∫ T

0
|Π�q(s)|ds �

∫ T∗

0

∑
r

‖ur(s)‖βp λ
5
2 +

3β
p − 3β

2
r λ

− 2
3

|r−q|ds → 0 as q → ∞.

Therefore energy equality holds under condition (1.8).� □ 

5.  Some counterexamples

To demonstrate the sharpness of theorem 1.1 and the fact that it can not be obtained via inter-
polation methods, we construct vector fields that satisfy (1.5) but are not in the Onsager’s 

space L3
t B

1
3
3,∞.

Theorem 5.1.  For any T  >  0 and p,β ∈ R such that 1 � β < p � ∞ and 2
p + 1

β < 1, there 
exists smooth divergence-free vector fields u(x, t) on T3 × [0, T) such that

u ∈ L∞
t L2 ∩ L2

t H1 ∩ Lβ,w
t B

2
β+ 2

p −1
p,∞ ,� (5.1)

but

u �∈ L3
t B

1
3
3,∞.

To obtain such examples, we need the following lemma.

Lemma 5.2.  Let T  >  0 and p,β be as in theorem 1.1. Let λ(t) = 1√
T−t . For any γ > 0, 

there exists divergence-free zero-mean vector fields u(x, t) on T3 × [0, T) such that

	(1)	�The frequency of u(t) is around λ(log+ λ)−γ :
∥∥u(t)

∥∥
Ḣs ∼s [λ(log+ λ)−γ ]s for − 1 � s � 1.
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		 where log+ λ = ln(1 + |λ|).
	(2)	�The intermittency of u is 1−: for any 2 � q � ∞, there holds

‖u‖q ∼
[
λ(log+ λ)

αγp
p−2

]1− 2
q� (5.2)

		 where α = 2
p + 2

β − 1.
	(3)	�u(x, t) in smooth on [0, T) \ E × T3, E  =  {tn} for some sequence tn → T .

All implicit constants are independent of t.

In view of the heuristics in section 2, the above vector field has some addition logarithmic 
factors in the Lp  scaling that can not be captured by the intermittency exponent. Let us assume 
lemma 5.2 hold for the moment and proceed to prove theorem 5.1.

Proof of theorem 5.1.  Given p,β as in theorem 1.1, let us fix a constant γ  such that

1
2
< γ <

1
2

1 − 2
p

1 − 2
p − 1

β

� (5.3)

which is possible due to the assumptions on β and p .
Thanks to the above lemma, we have

‖u(t)‖Ḣ1 ∼ λ1(log+ λ)−γ ∼ 1

(T − t)
1
2 | ln(T − t)|γ

which implies that u ∈ L2
t H1 since γ > 1

2.
Denoting α = 2

p + 2
β − 1, using interpolations and the fact Ḣs = Bs

2,2 together with lemma 
5.2, it is not hard to show that

‖u(t)‖Bα
p,∞

∼ λαλ1− 2
p ∼ 1

(T − t)
1
β

which implies that u ∈ Lβ,w
t B

2
β+ 2

p −1
p,∞ . Therefore we have obtained (5.1).

To show it is not in the Onsager’s space, we notice that

‖u(t)‖
B

1
3
3,∞

∼ 1

(T − t)
1
3 | ln(T − t)|

2γ
3 [1− p

β( p−2) ]
.� (5.4)

Note that (5.3) implies that

2γ
3
[1 − p

β( p − 2)
] <

1
3

.

Then it follows from (5.4) that u �∈ L3
t B

1
3
3,∞.

Finally, to fix the issue of u(t) not being smooth on [0, T), we can simply multiply it by a 
suitable smooth cutoff in time so that it is supported away from the set E.� □ 
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Proof of lemma 5.2.  Choose a divergence-free mean-free vector field ϕ ∈ C∞
c (R3) such 

that

suppϕ ⊂ {x ∈ R3 : |x| � 1
2
} and

∫

R3
|ϕ|2 = 1.

Define for simplicity of notation

µ =
(
λ(log+ λ)

αγp
p−2

) 2
3

and σ = µ−1λ(log+ λ)−γ� (5.5)

and consider the rescaled function ϕ̃µ ∈ C∞
c (R3) :

ϕ̃µ = µϕ(µx).� (5.6)

So the support of ϕ̃µ is in the ball of radius 12µ
−1 centered at the origin.

Let ϕµ be the natural periodization of ϕ̃µ on T3 by means of the Poisson formula, then due 
to the small support property, we have

ϕµ = ϕ̃µ for all x ∈ [−1
2

,
1
2
]3.� (5.7)

We are ready to define the vector field u. Denoting �x� the smallest integer bigger or equal 
than x, let

u = ϕµ(�σ�x).� (5.8)

Then u is a divergence-free vector field defined on [0, T)× T3. Moreover, u(x, t) is smooth 
whenever σ(t) �∈ N.

Thanks to (5.6)–(5.8) we may conclude that

‖u‖L2(T3) = ‖ϕµ‖L2(R3) = 1.

As for the Lp  scaling, by the same reason we simply have

‖u‖q = ‖ϕµ‖q ∼q µ
3
2 −

3
q =

[
λ(log λ)

γp
p−2

]1− 2
q for all 2 � q � ∞.

Finally we prove the Ḣs estimates for −1 � s � 1. By interpolations it suffices to show 
that

‖∆u‖2 ∼ [λ(log+ λ)−γ ]2

and

‖∆−1u‖2 ∼ [λ(log+ λ)−γ ]−2

where we use the standard definition that on T3 the inverse Laplacian is zero-mean. The first 
estimate follows simply by the chain rule of differentiation and keeping track of the scalings. 
Let us show the latter one. Due to periodic rescaling (5.8), we have

‖∆−1u‖L2(R3) ∼ σ−2‖∆−1ϕµ‖L2(T3).
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Since ϕµ is the periodization of ϕ̃µ, which has zero mean and is supported in [0,1]3, the in-
verse Laplacian on R3 of ϕ̃µ agrees with the inverse Laplacian on T3 of ϕµ:

∆−1ϕµ = ∆−1ϕ̃µ for all x ∈ [0, 1]3.

Also by the Euclidean rescaling, we have

‖∆−1ϕ̃µ‖L2(R3) ∼ µ−2

which completes the proof:

‖∆−1u‖L2(R3) ∼ σ−2‖∆−1ϕµ‖L2(T3) ∼ σ−2‖∆−1ϕ̃µ‖L2(R3) ∼ [λ(log+ λ)−γ ]−2.
� □ 
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