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Abstract
Continuing Chen and Chen (2015 Nonlinearity 28 3535) and (2016 
Nonlinearity 29 1798) which deal with the cases of two equilibria and three 
equilibria respectively, in this paper we investigate the global dynamics 
of a cubic Liénard system with global parameters in the case of exact one 
equilibrium. After analyzing qualitative properties of all equilibria and 
judging the number of limit cycles, we give the bifurcation diagram and all 
global phase portraits. Our method in judging the number of limit cycles is 
to construct a parameter transformation such that in new parameter space 
the vector field is rotated about multiple parameters and, hence, is essential 
different from the methods used in previous publications. Associated with the 
results of last two publications, we get a positive answer to conjecture 3.2 of 
Khibnik et al (1998 Nonlinearity 11 1505) for general parameters about the 
existence of some function whose graph is exactly the surface of the double 
limit cycle bifurcation and therefore solve this conjecture completely.
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1.  Introduction

Khibnik, Krauskopf and Rousseau in [15] investigated the global bifurcation diagram of the 
following cubic Liénard system

{
ẋ = y,
ẏ = µ1 + µ2x + µ3y − x3 − x2y,� (1.1)

where (µ1,µ2,µ3) ∈ R3 are parameters and ẋ, ẏ denote dx/dt, dy/dt respectively. As men-
tioned in [2, section 1] and [3, section 1], the readers can find many detailed results about 
the research of some cubic Liénard systems in [6–9, 11, 14, 19, 20], which are omitted in 
this paper to avoid repetition. Clearly, system (1.1) has at most three equilibria. The global 
dynamical behaviors of system (1.1) for the case of multiple equilibria were completely given 
in [2, 3] for general parameters. Up to now, for general parameters the investigation of global 
dynamical behavior of system (1.1) is unfinished only for the case of one equilibria. On the 
other hand, a conjecture was described in [15, conjecture 3.2] as ‘the surface of double limit 
cycles is the graph of some function µ3(µ1,µ2)’. The answer to this conjecture helps us make 
clear that how many times double limit cycle bifurcations happen and, hence, determine the 
cyclicity of system (1.1). A positive answer to this conjecture was given in [15] for sufficiently 
small µ1,µ2,µ3 by bifurcation methods of near-Hamiltonian systems. However, for general 
parameter (µ1,µ2,µ3) ∈ R this conjecture is still open. Positive answers were given in [2, 3] 
only for the cases of two equilibria and three equilibria respectively but, for the case of one 
equilibrium it is still open.

When µ1 = 0, system (1.1) is a normal form of a degenerate Bogdanov–Takens system 
with symmetry. In some classical monographs such as [1, 5, 12, 16], the bifurcation dia-
gram of system (1.1)|µ1=0  for sufficiently small µ2 and µ3 and local phase portraits near 
the origin O : (0, 0) were given. Moreover, the bifurcation diagram of system (1.1)|µ1=0  
for general (µ2,µ3) ∈ R2 and global phase portraits were investigated completely in [4]. 
Therefore, we only need to discuss µ1 �= 0. Note that system (1.1) can be transformed into 
ẋ = y, ẏ = −µ1 + µ2x + µ3y − x3 − x2y by x → −x, y → −y. Thus, without loss of general-
ity, in this paper we assume that µ1 > 0 in (1.1).

In this paper we continue to investigate the global dynamics of system (1.1) and consider 
the last case that (1.1) has a unique equilibrium. Since µ1 > 0, it is easy to check that (1.1) has 
a unique equilibria if and only if 4µ3

2 − 27µ2
1 < 0. When 4µ3

2 − 27µ2
1 < 0, system (1.1) has a 

unique equilibrium (ρ0, 0), where

ρ0 :=
3

√
µ1

2
−
√

µ2
1

4
− µ3

2

27
+

3

√
µ1

2
+

√
µ2

1

4
− µ3

2

27
> 0� (1.2)

because µ1 > 0. Clearly,

ρ3
0 =


 3

√
µ1

2
−

√
µ2

1

4
− µ3

2

27
+

3

√
µ1

2
+

√
µ2

1

4
− µ3

2

27




3

= µ1 + µ2ρ0.� (1.3)

By (1.3) and 4µ3
2 − 27µ2

1 < 0, we get for µ2 � 0

3ρ2
0 − µ2 � 3µ2/3

1 − µ2 >

(
27
4
µ2

1

)1/3

− µ2 > 0.
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Thus, we always have 3ρ2
0 − µ2 > 0. Let ν :=

√
3ρ2

0 − µ2. By global homeomorphism 

transformation

x → νx + ρ0, y → ν2y + ν(µ3 − ρ2
0)x − ρ0ν

2x2 − ν3x3

3
, t → t

ν
,

system (1.1) can be rewritten as
{

ẋ = y − (λ3x + 2λ1λ2x2 + λ1x3),
ẏ = −(x + 2λ2x2 + x3),

� (1.4)

where

λ1 :=
ν

3
, λ2 :=

3ρ0

2ν
, λ3 :=

ρ2
0 − µ3

ν
� (1.5)

are regarded as new parameters. Equilibrium (ρ0, 0) of (1.1) is moved to equilibrium O : (0, 0) 
of (1.4). From the expression of ρ0 given in (1.2), for a given µ1 we get

∂ρ0

∂µ2
=

µ2
2

54

(
µ2

1

4
− µ3

2

27

)−1/2


(
µ1

2
−

√
µ2

1

4
− µ3

2

27

)−2/3

−

(
µ1

2
+

√
µ2

1

4
− µ3

2

27

)−2/3



=
3µ1

9
(

µ1
2 −

√
µ2

1
4 − µ3

2
27

)4/3

+ 9
(

µ1
2 +

√
µ2

1
4 − µ3

2
27

)4/3

+ µ2
2

> 0,

which means ρ0 < 3
√

4µ1  because µ2 < 3µ2/3
1 / 3

√
4. Associated with (1.3), we get 

1/4 < µ1/ρ
3
0 � 1 when µ2 � 0. Thus,

µ2

ρ2
0
= 1 − µ1

ρ3
0
∈
[

0,
3
4

)
,

implying

λ2 =
3ρ0

2ν
=

3
2

(
3 − µ2

ρ2
0

)−1/2
{
∈ (0,

√
3/2) if µ2 < 0,

∈ [
√

3/2, 1) if µ2 � 0.

Therefore, in system (1.4) we assume that (λ1,λ2,λ3) ∈ G := R+ × (0, 1)× R. Our main 
results are given in the following theorem.

Theorem 1.1.  The bifurcation diagram of (1.4) consists of the following curves:

	(a)	�the Hopf bifurcation surface H1 := {(λ1,λ2,λ3) ∈ G|
√

6/4 < λ2 < 1, λ3 = 0};
	(b)	�the Hopf bifurcation surface H2 := {(λ1,λ2,λ3) ∈ G| 0 < λ2 <

√
6/4, λ3 = 0};

	 (c)	�the double limit cycle bifurcation surface DL := {(λ1,λ2,λ3) ∈ G|
√

6/4 < λ2 < 1, 
λ3 = ϕ(λ1,λ2)}, where ϕ(λ1,λ2) is continuous on R+ × (

√
6/4, 1) and satisfies

0 < ϕ(λ1,λ2) <
(

1 − 3
√
Υ(λ2)

)
λ1.

		 Here Υ(λ2):=2λ2
2(9 −8λ2

2)
2/27 ∈ (2/27, 1) is decreasing on λ2 ∈ (

√
6/4, 1). Moreover,
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ϕ(λ1,λ2) =
9λ3

1(λ
2
1 + 9)

512

(
λ2−

√
6

4

)2

+O



∣∣∣∣∣λ2−

√
6

4

∣∣∣∣∣
3

� (1.6)

		 for (λ1,λ2) ∈ R+ × (
√

6/4 − ε,
√

6/4 + ε), where ε > 0 is sufficiently small.

The bifurcation diagram and global phase portraits of (1.4) are shown in figure 1, where

I := {(λ1,λ2,λ3) ∈ G| λ3 < 0};

II := {(λ1,λ2,λ3) ∈ G| 0 < λ3 < ϕ(λ1,λ2),
√

6/4 < λ2 < 1};

III := {(λ1,λ2,λ3) ∈ G| λ3 > ϕ(λ1,λ2),
√

6/4 < λ2 < 1}

∪ {(λ1,λ2,λ3) ∈ G| λ3 > 0, 0 < λ2 �
√

6/4}.

Figure 1.  The bifurcation diagram and global phase portraits of (1.4) for λ1 = λ̂1.
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Here we do not distinguish nodes from foci because of the topologically equivalence. In 
order to give a complete study for system (1.1) having exactly one equilibrium and answer 
conjecture 3.2 of [15] for general parameters, in this paper we investigate the global dynam-
ics of its equivalent system (1.4) for (λ1,λ2,λ3) ∈ G. Our main result is stated in theorem 
1.1, from which we give a positive answer to conjecture 3.2 of [15] for general parameters in 
the case of exact one equilibrium. Associated with the results given in [2–4], we get that the 
cyclicity of system (1.1) is 3 for general parameters and it only happens in the case of three 
equilibria. These 3 limit cycles have locations as shown either in [3, figures 2(a) and (c)] or 
in [3, figure 4(b)].

This paper is organized as follows. In section 2 qualitative properties of O is analyzed, 
Hopf bifurcation and Bautin bifurcation are discussed. In section  3 the existence of limit 
cycles and the double limit cycle bifurcation surface are investigated in all regions of the 
parameter space G . In section 4 we give a proof of theorem 1.1 and some concluding remarks 
such as the positive answer to conjecture 3.2 of [15] for general parameters, the essential dif-
ference of methods from methods used in [2, 3] and the domain of the function µ3(µ1,µ2) 
determining the double limit cycle bifurcation surface.

2.  Hopf bifurcation and Bautin bifurcation

In this section we give three lemmas to study Hopf bifurcation, Bautin bifurcation and the 
equilibria at infinity.

Lemma 2.1.  System (1.4) has a unique equilibrium O : (0, 0), which is an unsta-
ble node, an unstable focus, a stable focus, a stable node when λ3 � −2, −2 < λ3 < 0, 
0 < λ3 < 2, λ3 � 2 respectively. When λ3 = 0, O is a stable (resp. an unstable) weak focus 
of order one for 0 < λ2 <

√
6/4 (resp. 

√
6/4 < λ2 < 1). In the case of 0 < λ2 <

√
6/4(resp. √

6/4 < λ2 < 1), a unique limit cycle bifurcates from O via Hopf bifurcation when λ3 changes 
from 0 to a small negative (resp. positive) constant and this unique limit cycle is stable (resp. 
an unstable), where ε > 0 is sufficiently small.

Proof.  Simple computation shows that for system (1.4) the Jacobian matrix at O is

JO :=
(
−λ3 1
−1 0

)
,

which has eigenvalues −λ3/2 ±
√

λ2
3/4 − 1. Thus, O is an unstable node, an unstable focus, 

a stable focus, a stable node when λ3 � −2, −2 < λ3 < 0, 0 < λ3 < 2, λ3 � 2 respectively.
Since O of system (1.4) is a center-focus when λ3 = 0, one needs to consider its nonlineari-

ties and compute Lyapunov constants. By (2.32) of [5, p. 211], we compute the first Lyapunov 
constant l1 = λ1(8λ2

2 − 3)/8. Therefore, O is a stable (resp. an unstable) weak focus of order 
one for 0 < λ2 <

√
6/4 (resp. 

√
6/4 < λ2 < 1) because λ1 > 0. It is easy to see that the clas-

sical Hopf bifurcation happens when λ2 �=
√

6/4 and the value of λ3 changes from 0. That is, 
in the case of 0 < λ2 <

√
6/4 (resp. 

√
6/4 < λ2 < 1) one limit cycle bifurcates from O when 

the value of λ3 changes into a small negative (resp. positive) constant from 0 and it is stable 
(resp. an unstable).� □ 

In lemma 2.1, the origin O is a weak focus of order one when λ3 = 0 and λ2 �=
√

6/4 and 
the case classical Hopf bifurcation happens. As indicated in [15, proposition 2.1], the Bautin 
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bifurcation (Hopf bifurcation of order two, see [16]) happens when (λ1,λ2,λ3) lies in a suf-
ficiently small neighborhood of point B : (

√
6/4, 0) in the plane λ1 = λ̂ ∈ R+. However, the 

expression of the local double limit cycle bifurcation curve is not given in [15, proposition 
2.1]. In the following lemma, we give a local bifurcation diagram and local phase portraits for 
system (1.4).

Lemma 2.2.  As shown in figure 2, for O of system (1.4) the local bifurcation diagram in a 
sufficiently small neighborhood of B : (

√
6/4, 0) in parameter plane λ1 = λ̂1 consists of the 

following curves:

	 (i)	�local Hopf bifurcation curves

H+ := {(λ2,λ3)| 0 < λ2 −
√

6/4 < ε1,λ3 = 0},

H− := {(λ2,λ3)| − ε1 < λ2 −
√

6/4 < 0,λ3 = 0};

	(ii)	�local double limit cycle bifurcation curve

DL :=


(λ2,λ3)

∣∣∣∣∣∣
λ3=

9λ̂3
1(λ̂

2
1 + 9)

512

(
λ2−

√
6

4

)2

+O



∣∣∣∣∣λ2−

√
6

4

∣∣∣∣∣
3

 , 0<λ2−

√
6

4
<ε2


 ,

		 where ε1, ε2 > 0 is sufficiently small.

Figure 2.  Bautin bifurcation diagram in parameter plane λ1 = λ̂1.
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Proof.  By lemma 2.1, we get the information of local Hopf bifurcation curves. In the fol-
lowing, we just investigate the local double limit cycle bifurcation curve.

When λ3 = 0, system (1.4)|λ1=λ̂1
 can be rewritten as

ż = iz +
λ2

2
(λ̂1 + i)(z + z̄)2 +

1
8
(λ̂1 + i)(z + z̄)3� (2.1)

by z = x + iy and t → −t . By (2.1) and section 8.3 of [16, chapter 8], we further compute the 
first Lyapunov constant and obtain

L1 = (
3
8
− λ2

2)λ̂1.

When λ2 =
√

6/4, we further get

L2 =
3

64
(λ̂3

1 + 9λ̂1) > 0.

Thus, O of system (1.4)|λ1=λ̂1
 is a stable weak focus of order 2 when (λ2,λ3) = (

√
6/4, 0). On the 

other hand, let the eigenvalues of the Jacobian matrix JO of system (1.4)|λ1=λ̂1
 be −µ± i

√
1 − µ2. 

We get µ = λ3/2. Associated with the expression of the first Lyapunov constant L1, we obtain 
a mapping (λ2,λ3) → (µ, L1), which is regular at (λ2,λ3) = (

√
6/4, 0). Then, all conditions 

of theorem 8.2 of [16, chapter 8] hold. Thus, system (1.4)|λ1=λ̂1
 can be reduced to the follow-

ing complex normal form

ż = (β1 + i)z + β2z|z|2 + z|z|4 + O(|z|6),� (2.2)

where β1 = µ and β2 =
√

L2L1. By theorem 8.3 of [16, chapter 8], system (2.2) is locally 
topologically equivalent near the origin to the following system

ż = (β1 + i)z + β2z|z|2 + z|z|4.� (2.3)

By [16, p 312], system (2.3) has a local double limit cycle bifurcation curve

D̃L := {(β1,β2)| β2
2 − 4β1 = 0, β2 < 0}.

That is, one semi-stable limit cycle either bifurcates into one stable limit cycle and one unsta-
ble limit cycle or disappears when (β1,β2) changes from D̃L to outside. Thus, for system (2.2) 
the local double limit cycle bifurcation curve is

{
(β1,β2)| β1 = β2

2/4 + o(β2
2), − ε < β2 < 0

}

by the Malgrange Preparation theorem (see theorem 1.10 of [5, chapter 3]). Therefore, from 
the expressions of β1,β2,µ, L1, L2 we get the local double limit cycle bifurcation curve DL as 
given in this lemma for system (1.4)|λ1=λ̂1

.� □ 

In order to obtain the global phase portraits, we need the properties of equilibria at infinity 
besides the local bifurcations of O given in lemmas 2.1 and 2.2. Poincaré transformations (see 
[22]) are usually used for analysis of equilibria at infinity and Briot-Bouquet transformations 
are usually used to blow up the degenerate equilibria of high orders(see [10, 22]). In the fol-
lowing lemma we give the properties of equilibria at infinity for system (1.4) but, we omit its 

H Chen and X Chen﻿Nonlinearity 33 (2020) 1443
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proof because the proof method is well-known and the analysis is similar to the case of two 
equilibria studied in [2, lemma 3.2].

Lemma 2.3.  As shown in figure 3, system (1.4) with λ1 > 0 has four equilibria at infin-
ity I±A , I±B , where I+A , I−A  lie on the line y = x/λ1 in the upper half-plane and the lower one 
respectively, I+B , I−B  lie on y -axis in the upper half-plane and the lower one respectively. I±A  
are unstable star nodes and I±B  are degenerate equilibria, where the neighborhood of I±B  is a 
union of two hyperbolic sectors.

3.  Nonlocal limit cycles

In this section we study the existence of limit cycles in whole phase plane for system (1.4) 
as well as the number if they exist. We split the parameter space G  into 6 regions as follows.

(c1)



λ1 > 0,
0 < λ2 < 1,
λ3 < 0

(c2)



λ1 > 0,√

6/4 < λ2 < 1,
λ3 = 0

(c3)




λ1 > 0,
0 < λ2 �

√
6/4,

λ3 = 0
(c4)




λ1 > 0,
0 < λ2 �

√
6/4,

λ3 > 0.

(c5)




λ1 > 0,√
6/4 < λ2 < 1,

λ3 �
(

1 − 3
√
Υ(λ2)

)
λ1,

(c6)




λ1 > 0,√
6/4 < λ2 < 1,

0 < λ3 <
(

1 − 3
√
Υ(λ2)

)
λ1,

where Υ(λ2) is defined in theorem 1.1 for λ2 ∈ (
√

6/4, 1). It is not hard to check that 
Υ(λ2) ∈ (2/27, 1) is decreasing.

Lemma 3.1.  When condition (c1) or (c2) holds, system (1.4) has a unique limit cycle, which 
is stable.

Proof.  By [15, proposition 2.2] the infinity of system (1.4) is always repelling. On the other 
hand, when condition (c1) or (c2) holds, the unique equilibrium O is unstable as analyzed 
in section 2. Thus, (1.4) has at least one limit cycle by the Annular of Poincaré–Bendixson 
Theorem.

To prove the uniqueness, let

F(x) := λ3x + 2λ1λ2x2 + λ1x3

and

g(x) := x + 2λ2x2 + x3

for x ∈ R in (1.4) for convenience and let

z(x) :=
∫ x

0
g(s)ds = x4/4 + 2λ2x3/3 + x2/2

and for z ∈ [0,+∞) functions x1(z), x2(z) be the branches of the inverse of z(x) for 
x � 0, x � 0 respectively. Define

H Chen and X Chen﻿Nonlinearity 33 (2020) 1443
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F1(z) := F(x1(z)), F2(z) := F(x2(z)).

It is easy to see that F1(z) �≡ F2(z).
When condition (c1) holds, F(x) has three zeros 0,

x̃1 := −λ2 +
√
λ2

2 − λ3/λ1, x̃2 := −λ2 −
√
λ2

2 − λ3/λ1.� (3.1)

Then, F1(z)  <  0, >  0 for all z ∈ (0, z(x̃1)), z ∈ (z(x̃1),+∞) respectively. Since

z(x̃1)− z(x̃2) = λ2

(
4λ2

2

3
− 2 +

2λ3

3λ1

)√
λ2

2 −
λ3

λ1
� 0

and F2(z)  >  0 for all z ∈ (0, z(x̃2)), we obtain that F2(z)  >  0 for all z ∈ (0, z(x̃1)). Thus, 
condition 1 of [21, theorem 2] holds. Similarly, F2(z)  <  0, =  0, >  0 when z ∈ (z(x̃2),+∞), 
z = z(x̃2), z ∈ (0, z(x̃2)) respectively. Moreover,

F′
2(z) = F′(x)/g(x) = (3λ1x2 + 4λ1λ2x + λ3)/(x + 2λ2x2 + x3) < 0

when z > z(x̃2) because x < x̃2. Thus, condition 2 of [21, theorem 2] holds. Since x1(z) is 
increasing and

F1(z)F′
1(z) = (λ3 + 2λ1λ2x + λ1x2)(λ3 + 4λ1λ2x + 3λ1x2)/(1 + 2λ2x + x2),

which is also increasing for all x ∈ (x̃1,+∞) corresponding to (z(x̃1),+∞), condition 3 of 
[21, theorem 2] holds. To prove that condition 4 of [21, theorem 2] holds, we claim that

F1(z)− F2(u) = F′
1(z)− F′

2(u) = 0� (3.2)

has at most one solution (z, u) satisfying z > z(x̃1) and u  >  0. Clearly, it is equivalent to prove 
that there exists at most one (x̂1, x̂2) ∈ R2 such that

F(x̂1) = F(x̂2),
F′(x̂1)

g(x̂1)
=

F′(x̂2)

g(x̂2)
� (3.3)

and x̂2 < 0 < x̃1 < x̂1. Let µ := x̂1 + x̂2. From the first equality of (3.3) one can obtain that 

µ ∈ (−4λ2/3 +
√

4λ2
2 − 3λ3/λ1/3, x̃1) because x̂2 < 0 < x̃1 < x̂1. Furthermore, from the 

Figure 3.  Equilibria at infinity.
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second equality of (3.3) we obtain that h(µ) = 0, where

h(µ) := 3µ4 + 16λ2µ
3 +

(
28λ2

2 − 3 +
6λ3

λ1

)
µ2 +

(
16λ2λ3

λ1
− 6λ2 + 16λ3

2

)
µ

+
2λ2

3

λ2
1
+

8λ2
2λ3

λ1
− 2λ3

λ1
.

Moreover, by

lim
µ→−∞

h(µ) = +∞,

h(x̃2) =
λ3

λ1

(
1 − λ3

λ1

)
< 0,

h(−2λ2) = −2λ3

λ1

(
1 − λ3

λ1

)
> 0,

h(x̃1) =
λ3

λ1

(
1 − λ3

λ1

)
< 0,

lim
µ→+∞

h(µ) = +∞,

we obtain that in (−4λ2/3 +
√

4λ2
2 − 3λ3/λ1/3, x̃1) function h(µ) has at most one zero. 

Thus, (3.2) has at most one solution (z, u) satisfying z > z(x̃1) and u  >  0. We secondly claim 
that F1(z)− F2(z) = 0 has a unique root z0  >  0. In fact, by the definitions of F1 and F2 it is 
equivalent to prove that there exist a unique (x̂1, x̂2) ∈ R2 such that x̂2 < 0 < x̂1 and

F(x̂1) = F(x̂2), z(x̂1) = z(x̂2).� (3.4)

From the first equation of (3.4) we have x̂1x̂2 = κ2 + 2λ2κ+ λ3/λ1, where κ := x̂1 + x̂2. By 
x̂1x̂2 < 0, we have κ ∈ (x̃2, x̃1). Associated with the second equality of (3.4), s(κ) = 0, where

s(κ) := κ3 + 4λ2κ
2 +

(
8λ3

λ1
+

16λ3
2

3
− 2

)
κ+

8λ2λ3

3λ1
.� (3.5)

Moreover, by

lim
κ→−∞

s(κ) = −∞,

s(x̃2) = 2λ2 −
4λ4

2

3
− 19λ2λ3

3λ1
+

(
2 − 4λ3

2

3
− 7λ3

λ1

)√
λ2

2 −
λ3

λ1

> 0,

s(x̃1) = 2λ2 −
4λ4

2

3
− 19λ2λ3

3λ1
+

(
4λ3

2

3
+

7λ3

λ1
− 2

)√
λ2

2 −
λ3

λ1

< 2λ2 −
4λ4

2

3
− 19λ2λ3

3λ1
+

(
4λ3

2

3
+

7λ3

λ1
− 2

)
λ2

=
2λ2λ3

λ1

� 0,
lim

κ→+∞
s(κ) = +∞,
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there exist a unique (x̂1, x̂2) ∈ R2 such that ̂x2 < 0 < x̂1 and (3.4) holds. Thus, F1(z)− F2(z) = 0 
has a unique root z0  >  0. Furthermore, F′

1(z0) � F′
2(z0) and z0 ∈ [z(x̃1), z(x̃2)] because 

F1(z) < F2(z) and F1(z) > F2(z) when z ∈ (0, z(x̃1)) and z ∈ (z(x̃2),+∞) respectively. Note 
that z0 = z(x̃1) = z(x̃2) if λ2 = 0, implying that condition 4 of [21, theorem 2] holds in the 
case that λ2 = 0. In the case that λ2 �= 0, if condition 4 of [21, theorem 2] does not hold, there 
exists some (z̃, ũ) ∈ R2 such that z(x̃1) < z̃ � ũ < z(x̃2), F1(z̃) = F2(ũ) and F′

1(z̃) < F′
2(ũ). 

Furthermore, by F2(z) > F1(z) for z ∈ (z(x̃1), z0) and F1(z) increases for z > z(x̃1) we have 
z̃ < z0 < ũ. Let F−1

1  be the inverse of F1(z) for z > z(x̃1). By the Intermediate Value Theorem 
function

w(u) := F′
1

(
F−1

1 [F2(u)]
)
− F′

2(u)

has at least one zero in (0,z0] because

w(0+) = F′
1

(
F−1

1 [F2(0+)]
)
− F′

2(0
+)

= F′
1

(
F−1

1 (0+)
)
− F′

2(0
+)

= F′
1(z(x̃1)

+)− F′
2(0

+)

=
F′(x̃+1 )
g(x̃+1 )

− F′(0−)
g(0−)

=
2λ3 − 2λ1λ

2
2 + 2λ1λ2

√
λ2

2 − λ3/λ1

(λ2 −
√

λ2
2 − λ3/λ1)(1 − λ3/λ1)

−∞

= −∞

and

w(z0) = F′
1

(
F−1

1 [F2(z0)]
)
− F′

2(z0) = F′
1

(
F−1

1 [F1(z0)]
)
− F′

2(z0) = F′
1(z0)− F′

2(z0) � 0.

Similarly, function w(u) has at least one zero in (ũ, z(x̃2)) because

w(ũ) = F′
1(F

−1
1 [F2(ũ)])− F′

2(ũ) = F′
1(F

−1
1 [F1(z̃)])− F′

2(ũ) = F′
1(z̃)− F′

2(ũ) < 0

and

w(z(x̃2)) = F′
1(F

−1
1 [F2(z(x̃2))])− F′

2(z(x̃2))

= F′
1(F

−1
1 [F1(z(x̃1))])− F′

2(z(x̃2))

= F′
1(z(x̃1))− F′

2(z(x̃2))

= F′(x̃1)/g(x̃1)− F′(x̃2)/g(x̃2)

=
2λ3 − 2λ1λ

2
2 + 2λ1λ2

√
λ2

2 − λ3/λ1

(λ2 −
√

λ2
2 − λ3/λ1)(1 − λ3/λ1)

−
2λ3 − 2λ1λ

2
2 − 2λ1λ2

√
λ2

2 − λ3/λ1

(λ2 +
√

λ2
2 − λ3/λ1)(1 − λ3/λ1)

=
4λ1

√
λ2

2 − λ3/λ1

1 − λ3/λ1

> 0.
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So, in (0, z(x̃2)) function w(u) has at least two zero u1, u2. Let

z1 := F−1
1 (F2(u1)) > z(x̃1), z2 := F−1

1 (F2(u2)) > z(x̃1).

Then

F1(z1) = F1
(
F−1

1 (F2(u1))
)
= F2(u1), F′

1(z1) = F′
1

(
F−1

1 (F2(u1))
)
= F′

2(u1),

i.e. (z, u) := (z1, u1) is a solution of F1(z)− F2(u) = F′
1(z)− F′

2(u) = 0. Similarly, 
(z, u) := (z2, u2) is also a solution of F1(z)− F2(u) = F′

1(z)− F′
2(u) = 0. This contradicts 

that F1(z)− F2(u) = F′
1(z)− F′

2(u) = 0 has at most one solution (z, u) satisfying z > z(x̃1) 
and u  >  0. Thus, condition 4 of [21, theorem 2] also holds in the case that λ2 �= 0. Therefore, 
when (c1) holds, system (1.4) has at most one limit cycle and it is stable if it exists by [21, 
theorem 2].

When condition (c2) holds, it is obvious that F1(z) = 2λ1λ2x2 + λ1x3 > 0 for all z  >  0, 
i.e. condition 1 of [21, theorem 2] holds. One can check that x ∈ (−∞,−2λ2), x = −2λ2, 
x ∈ (−2λ2, 0) correspond to z ∈ (2λ2

2 − 4λ4
2/3,+∞), z = 2λ2

2 − 4λ4
2/3, z ∈ (0, 2λ2

2 − 4λ4
2/3) 

respectively. Simple computations show that F2(z)  <  0, =  0, >  0 when 
z > 2λ2

2 − 4λ4
2/3, z = 2λ2

2 − 4λ4
2/3, z < 2λ2

2 − 4λ4
2/3 respective, which implies that

F′
2(z) = F′(x)/g(x) = λ1(4λ2 + 3x)/(1 + 2λ2x + x2) < 0

when z > 2λ2
2 − 4λ4

2/3. Thus, condition 2 of [21, theorem 2] holds. Since x1(z) is increas-
ing and F1(z)F′

1(z) = λ2
1x2(2λ2 + x)(4λ2 + 3x)/(1 + 2λ2x + x2) is also increasing for all 

x ∈ (0,+∞) corresponding to z ∈ (0,+∞), condition 3 of [21, theorem 2] holds. As in the proof 
for (c1), one can prove that F1(z)− F2(u) = F′

1(z)− F′
2(u) = 0 has a unique (z, u) := (ẑ, û). 

On the other hand, if F′
1(z

∗) < F′
2(u

∗) for (z∗, u∗) satisfying F1(z∗) = F2(u∗) and u∗ � û, then 
by the Intermediate Value Theorem function w(u) := F′

1(F
−1
1 [F2(u)])− F′

2(u) has at least one 
zero in (u∗, z(−2λ2)) because

w(−2λ2) = F′
1(F

−1
1 [F2(−2λ2)])− F′

2(−2λ2)

= F′
1(F

−1
1 [F1(0)])− F′

2(−2λ2)

= F′
1(0)− F′

2(−2λ2)

= 6λ1λ2

> 0,

w(u∗) = F′
1(F

−1
1 [F2(u∗)])− F′

2(u
∗)

= F′
1(F

−1
1 [F1(z∗)])− F′

2(u
∗)

= F′
1(z

∗)− F′
2(u

∗)

< 0.

So, there exists a u1 ∈ (u∗, z(−2λ2)) such that F1(z1)− F2(u1) = F′
1(z1)− F′

2(u1) = 0 
and u1 > u∗ � û, where z1 := F−1

1 [F2(u1)]. This contradicts that F1(z)− F2(u) =

F′
1(z)− F′

2(u) = 0 has a unique (z, u) := (ẑ, û). Thus, F′
1(z) � F′

2(u) for all (z, u) satisfying 
F1(z) = F2(u) and u � û. Similarly, F′

1(z) < F′
2(u) for all (z, u) satisfying F1(z) = F2(u) and 

u < û. As in the proof for (c1), one can prove that F1(z)− F2(z) has a unique zero z0. We 
have z0 � û because F′

1(z) < F′
2(u) for all (z, u) satisfying F1(z) = F2(u) and u < û. Fur-
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thermore, associated with the increasing of F1(z) we obtain that F1(z) � F1(u) < F2(u) when 
0 < z � u < û. Thus, there is no (z, u) ∈ R2 satisfying F1(z) = F2(u) and 0 < z � u < û. 
Associated with that F′

1(z) � F′
2(u) for all (z, u) satisfying F1(z) = F2(u) and u � û, we have 

F′
1(z) � F′

2(u) for all (z, u) satisfying F1(z) = F2(u) and 0 < z � u, i.e. condition 4 of [21, 
theorem 2] holds. Therefore, when (c2) holds, system (1.4) has at most one limit cycle and it 
is stable if it exists by [21, theorem 2].� □ 

Lemma 3.2.  System (1.4) has no limit cycles when one of conditions (c3), (c4), (c5) holds.

Proof.  Assume that condition (c3) holds. Considering (3.4) by the same method as in the 
proof of lemma 3.1, one can obtain that F1(z)− F2(z) has no zeros, where F1, F2 are defined 
in the proof of lemma 3.1. By [2, proposition 2.1] system (1.4) has no limit cycles when con-
dition (c3) holds.

For parameter regions

S1 := {(λ1,λ2,λ3)|λ3 � λ1λ
2
2,λ1 > 0, 0 � λ2 �

√
6/4} ⊂ (c4)

S2 := {(λ1,λ2,λ3)|λ3 � λ1λ
2
2,λ1 > 0,

√
6/4 < λ2 < 1} ⊂ (c5),

let

E(x, y) :=
∫ x

0
g(s)ds +

y2

2
= z(x) +

y2

2
.� (3.6)

Clearly,

dE
dt

= −g(x)F(x) = −λ1x2(1 + 2λ2x + x2)

(
λ3

λ1
+ 2λ2x + x2

)
� 0.

Here ‘=’ does not hold along any orbits except equilibrium O. Thus, system (1.4) has no limit 
cycles by Poincaré’s tangency method (see [22, p 195]).

If x̂2 < 0 < x̂1 and (3.4) holds, we have x̂1x̂2 = κ2 + 2λ2κ+ λ3/λ1 and s(κ) = 0, 
where κ := x̂1 + x̂2 and s(κ) is defined as (3.5). When λ2

2 − λ3/λ1 > 0, one can obtain that 
κ ∈ (x̃2, x̃1) because x̂1x̂2 < 0, where x̃1, x̃2 are given in (3.1). On the other hand, it is easy to 
check that s′(κ) < 0 (resp. s′(κ) > 0) when κ ∈ (κ2,κ1) (resp. κ �∈ [κ2,κ1]), where

κ1 := −4λ2/3 +
√

6(1 − λ3/λ1)/3, κ2 := −4λ2/3 −
√

6(1 − λ3/λ1)/3.

For region (c4) \ S1, i.e. {(λ1,λ2,λ3)|0 < λ3 < λ2
2λ1, 0 � λ2 �

√
6/4}, we have

κ1 − x̃1 =

√
6(1 − λ3/λ1)

3
− λ2

3
−
√
λ2

2 − λ3/λ1

�

√
6(1 − λ3/λ1)

3
−

√
6

12
−
√

3/8 − λ3/λ1

=
7/24 + λ3/(3λ1)√

6(1 − λ3/λ1)/3 +
√

3/8 − λ3/λ1
−

√
6

12

>
7/24√

6/3 +
√

3/8
−

√
6

12

= 0,
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i.e. x̃1 < κ1. Similarly, x̃2 > κ2. Thus, we obtain that (x̃2, x̃1) ⊂ (κ2,κ1) and s(κ) is a decreas-
ing for κ ∈ (x̃2, x̃1) and, hence

s(κ) > s (x̃1)

= 2λ2 −
4λ3

2

3
− λ2λ3

3λ1
−
(

2 − 4λ2
2

3
− λ3

λ1

)√
λ2

2 −
λ3

λ1

> 2λ2 −
4λ3

2

3
− λ2λ3

3λ1
−
(

2 − 4λ2
2

3
− λ3

λ1

)
λ2

=
λ2λ3

3λ1

> 0.

Therefore, we still get that there is no (x̂1, x̂2) ∈ R2 such that x̂2 < 0 < x̂1 and (3.4) holds, 
which means that F1(z)− F2(z) has no zeros in (0,+∞). By [2, proposition 2.1] system (1.4) 
has no limit cycles.

Consider parameter region (c5) \ S2, i.e.
{
(λ1,λ2,λ3) :

(
1 − 3

√
Υ(λ2)

)
λ1 � λ3 < λ2

2λ1,λ1 > 0,
√

6/4 < λ2 < 1
}

.

One can check that

1 − 3
√
Υ(λ2) < λ2

2, 4λ2
2 − 6 + 4λ2

√
9/2 − 3λ2

2 > 0

for all λ2 ∈ (
√

6/4, 1). Let

η0 :=
(

4λ2
2 − 6 + 4λ2

√
9/2 − 3λ2

2

)
λ1/3.

For (λ1,λ2,λ3) satisfying λ3 � η0 and λ2 �
√

42/7 in (c5) \ S2, we have κ2 < x̃2 < x̃1 � κ1. 
Thus, for κ ∈ (x̃2, x̃1)

s(κ) > s(x̃1)

= 2λ2 −
4λ3

2

3
− λ2λ3

3λ1
−
(

2 − 4λ2
2

3
− λ3

λ1

)√
λ2

2 −
λ3

λ1

� 2λ2 −
4λ3

2

3
− λ2λ3

3λ1
−
∣∣∣∣2 − 4λ2

2

3
− λ3

λ1

∣∣∣∣λ2

= 2λ2 −
4λ3

2

3
− λ2λ3

3λ1
+min

{
−
[

2 − 4λ2
2

3
− λ3

λ1

]
λ2,

[
2 − 4λ2

2

3
− λ3

λ1

]
λ2

}

= min

{
2λ2λ3

3λ1
, 4λ2 −

8λ3
2

3
− 4λ2λ3

3λ1

}

> 0,

�

(3.7)

implying that there is no (x̂1, x̂2) ∈ R2 such that x̂2 < 0 < x̂1 and (3.4) holds. Thus, 
F1(z)− F2(z) has no zeros in (0,+∞). By [2, proposition 2.1] system (1.4) has no limit cy-
cles. For (λ1,λ2,λ3) satisfying λ3 � η0 and λ2 >

√
42/7 in (c5) \ S2, we have κ1 � x̃2. Thus, 

for κ ∈ (x̃2, x̃1)
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s(κ) > s(x̃2)

= 2λ2 −
4λ3

2

3
− λ2λ3

3λ1
+

(
2 − 4λ2

2

3
− λ3

λ1

)√
λ2

2 −
λ3

λ1

� 2λ2 −
4λ3

2

3
− λ2λ3

3λ1
−
∣∣∣∣2 − 4λ2

2

3
− λ3

λ1

∣∣∣∣λ2

> 0

as in (3.7), implying that there is no (x̂1, x̂2) ∈ R2 such that x̂2 < 0 < x̂1 and (3.4) holds. Thus, 
F1(z)− F2(z) has no zeros in (0,+∞). By [2, proposition 2.1] system (1.4) has no limit cy-
cles. For (λ1,λ2,λ3) satisfying λ3 < η0 in (c5) \ S2, we have κ2 < x̃2 < κ1 < x̃1. Thus,

min s(κ) = s(κ1)

=
72λ2 − 64λ3

2

27
− 4

9

(
1 − λ3

λ1

)√
6 − 6λ3

λ1

�
72λ2 − 64λ3

2

27
− 4

9
3
√
Υ(λ2)

√
6 3
√

Υ(λ2)

=
72λ2 − 64λ3

2

27
− 4

9

√
6Υ(λ2)

= 0

for k ∈ (x̃2, x̃1). Then s(κ) has at most one zero in (x̃2, x̃1). Therefore, there is at most one 
pair of (x̂1, x̂2) ∈ R2 such that x̂2 < 0 < x̂1 and (3.4) holds, implying that F1(z)− F2(z) has 
at most one zero in (0,+∞). On the other hand, by expressions of F1(z) and F2(z) we obtain 
that F1(z)− F2(z) > 0 for either sufficiently small z or sufficient great z in (0,+∞). Thus, 
F1(z)− F2(z) � 0 for all z ∈ (0,+∞). Otherwise, F1(z)− F2(z) has at least two zeros. By  
[2, proposition 2.1] system (1.4) has no limit cycles.� □ 

Lemma 3.3.  System (1.4) has at most two limit cycles when condition (c6) holds. Moreover, 
the interior one and the outer one are unstable and stable respectively if there exist exactly 
two limit cycles.

Proof.  By the expression of Υ(λ2), it is easy to get λ2
2 > λ3/λ1 and F′(x) has two zeros

x1 :=
(
−2λ2 +

√
4λ2

2 − 3λ3/λ1

)
/3, x2 :=

(
−2λ2 −

√
4λ2

2 − 3λ3/λ1

)
/3

when (c6) holds. Furthermore, when x > x̃1,

dE
dt

= g(x)ẋ + yẏ = −g(x)F(x) = −x2(x2 + 2λ2x + 1)(λ3 + 2λ1λ2x + λ1x2) � 0

along orbits of (1.4), where x̃1, E(x, y) are given in (3.1) and (3.6) respectively. Thus, every 
limit cycle (if exists) surrounds P1 : (x̃1, 0).

For two adjacent limit cycles, there are three possibilities of their locations as shown in fig-
ures 4(a)–(c), where both of them surround or pass through P2 : (x2, F(x2)) as in figure 4(a), 
neither of them surrounds P2 as in figure 4(b), P2 lies between γ1 and γ2 as in figure 4(c). In 
the proof of [2, lemma 4.3], to prove that the maximum number of limit cycles is no more than 
2 we used the following important inequality
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∮

γ2

F′(x)dt >
∮

γ1

F′(x)dt
� (3.8)

for two adjacent limit cycles γ1 and γ2, where γ1 lies in the interior of γ2. However, for our 
system (1.4) we can prove inequality (3.8) when these two adjacent limit cycles located as 
shown in figure 4(a), but are not able to prove it when they located as shown in figures 4(b),(c). 
Thus, the method in the proof of [2, lemma 4.3] can not be used to prove this lemma and in 
the following we give a new method to prove it.

Let λ̃3 := λ3 − λ1 and take (λ1,λ2, λ̃3) as new parameter for the equivalent system
{

ẋ = y − [λ̃3 + λ1(1 + 2λ2x + x2)]x,
ẏ = −(1 + 2λ2x + x2)x.

� (3.9)

of system (1.4). Consider (λ1,λ2, λ̃3) satisfying

λ1 > 0,
√

6/4 < λ2 < 1, − λ1 < λ̃3 < − 3
√
Υ(λ2)λ1

which corresponds to (c6) for (λ1,λ2,λ3). It is not hard to check that the vector field of system 
(3.9) is rotated about λ1 and λ̃3. This means that the amplitudes of stable limit cycles decrease 
and the amplitudes of unstable limit cycles increase when λ1(resp. λ̃3) increases and the other 
two parameters are fixed by [17, 18].

If there are exactly 3 limit cycles, the inner one is unstable, the middle one is semi-stable 
and the outer one is stable by the stability of O and the qualitative properties of equilibria at 
infinity given in section 2. Then there exist 4 limit cycles after a perturbation. Thus, we always 
can obtain 4 or more than 4 limit cycles if the number of limit cycles is greater than 2. There-
fore, without loss of generality we assume that the adjacent 4 limit cycles closest to O are 
γ1, ..., γ4 and γ1, γ3 are unstable, γ2, γ4 are stable. Now we do the following process.

	Step 1:	� Lessen λ1 till γ2, γ3 coincidence. Note that this always can happen because it is 
proved in [15, subsection 3.2] that there are at most two limit cycles when λ1 is 
sufficiently close to 0. Then we have a stable γ4, a semi-stable γ̃23 and an unstable γ1. 
Moreover, γ̃23 is internally stable and externally unstable.

	Step 2:	� Greaten λ̃3. We get two new limit cycles γ2, γ3 from γ̃23. We continue to greaten λ̃3 
till either γ1, γ2 coincidence or γ3, γ4 coincidence. Note that this coincidence must 
happen because there is no limit cycles when λ̃3 = − 3

√
Υ(λ2)λ1, which is given for 

(c5) in lemma 3.2. Without loss of generality, we assume that γ1, γ2 coincidence. 
We get a stable γ4, an unstable γ3 and a semi-stable γ̃12. Moreover, γ̃12 is internally 
unstable and externally stable.

	Step 3:	� Lessen λ1. Besides stable γ4 and unstable γ3, we get two new limit cycles γ2, γ1 from 
γ̃12. Moreover, γ2 is stable and γ1 is unstable. Then turn to Step 1.

On the other hand, by [17, theorem B] both the changes of λ1 and λ̃3 in the above steps 
are not sufficiently small because the distances among given γ1, ..., γ4 are not sufficient small. 
Thus, we stop the aforementioned process in finite steps when either λ1 is sufficiently close 
to 0 or λ̃3 = − 3

√
Υ(λ2)λ1. Then the number of limit cycles is greater than 2, contradicting 

the result ‘zero’ given in lemma 3.2 and the result ‘at most 2’ given in [15, subsection 3.2]. 
Therefore, there are at most 2 limit cycles when (c6) holds. By the stability of O and the quali-
tative properties of equilibria at infinity given in section 2 the interior one and the outer one 
are unstable and stable respectively if there exist exactly 2 limit cycles.� □ 
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In order to analyze global dynamical behavior, we need to obtain more information when 
(c6) holds because in lemma 3.3 we only know the maximum of limit cycles. Therefore, we 
give the following lemma.

Lemma 3.4.  When condition (c6) holds, there exists one continuous function ϕ(λ1,λ2) for 

λ1 > 0 and 
√

6/4 < λ2 < 1 such that 0 < ϕ(λ1,λ2) <
(

1 − 3
√
Υ(λ2)

)
λ1 and

	 (i)	�when 0 < λ3 < ϕ(λ1,λ2), system (1.4) has exactly two limit cycles, and the inner (resp. 
outer) one is unstable (resp. stable); 

	(ii)	�when λ3 = ϕ(λ1,λ2), system (1.4) has a unique limit cycle, which is internally unstable 
and externally stable; 

	(iii)	�when ϕ(λ1,λ2) < λ3 <
(

1 − 3
√
Υ(λ2)

)
λ1, system (1.4) has no limit cycles; 

where for fixed λ1,λ2 the amplitudes of all stable (resp. unstable) limit cycles are decreasing 
(resp. increasing) with respect to λ3. Moreover, ϕ(λ1,λ2) has a local expression for suffi-
ciently small positive λ2 −

√
6/4 as given in (1.6).

Proof.  System (1.4) has exactly one limit cycle when λ3 = 0 and 
√

6/4 < λ2 < 1 and it is 
stable as given in lemma 3.1. Besides this limit cycle, one can easily obtain another one via the 
classic Hopf bifurcation when λ3 changes into a small positive constant. Note that for system 

Figure 4.  Discussion about limit cycles for condition (c6). (a) Surrounding or passing 
through P2. (b) neither of γ1 and γ2 surrounds P2. (c) P2 lies between γ1 and γ2.
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(1.4) the Lyapunov constant l1 = λ1(8λ2
2 − 3)/8 when λ3 = 0, which means that the classic 

Hopf bifurcation curve is the whole line λ3 = 0 except point (λ2,λ3) = (
√

6/4, 0) for fixed 
λ1. Then, when 

√
6/4 < λ2 < 1, for sufficiently small λ∗

3 > 0 system (1.4)λ3=λ∗
3
 has exactly 

two limit cycles, denoted by L1 and L2 for the inner one and the outer one respectively. Thus, 
L1 is unstable and L2 is stable.

Now we greaten λ3. Since for system (1.4)
∣∣∣∣
y − F(x) −g(x)
(y − F(x))′λ3

(−g(x))′λ3

∣∣∣∣ = −x2(1 + 2λ2x + x2) � 0,

by [17, 18] the vector field of system (1.4) is rotated about λ3 and the amplitudes of sta-
ble (resp. unstable) limit cycles decrease (resp. increase) when λ3 increases and the other 
two parameters are fixed. Thus, the amplitude of L2 (resp. L1) decreases (resp. increases) 
when λ3 increases from λ∗

3. On the other hand, by lemma 3.2 there is no limit cycles when 

λ3 =
(

1 − 3
√
Υ(λ2)

)
λ1. Thus, there exist some values of λ3 in 

(
λ∗

3 ,
(

1 − 3
√

Υ(λ2)
)
λ1

)
 

such that there is a unique limit cycle. Denote the minimum of such values by ϕ(λ1,λ2). 
That is, there exist exactly two limit cycles when 0 < λ3 < ϕ(λ1,λ2) and a unique one when 
λ3 = ϕ(λ1,λ2). Moreover, the unique limit cycle is internally unstable and externally stable. 
Conclusions (i) and (ii) are proven.

By transformation x → x, y → y + F(x), system (1.4) is changed
{

ẋ = y,
ẏ = −(x2 + 2λ2x + 1)x − (λ3 + 4λ1λ2x + 3λ1x2)y,� (3.10)

which deduces a differential equation

dy
dx

= − (x2 + 2λ2x + 1)x
y

− (λ3 + 4λ1λ2x + 3λ1x2).� (3.11)

Let Π(ρ,λ1,λ2,λ3) be the Poincaré return map of system (3.10) for ρ > 0. By the continuous 
dependence of solutions on parameters and initial values, Π(ρ,λ1,λ2,λ3) is continuous. By the 
Comparison theorem (see [13, chapter 1, corollary 6.3]) for (3.11) we get that Π(ρ,λ1,λ2,λ3) 
is decreasing in λ3, i.e. Π(ρ,λ1,λ2,λ3) > Π(ρ,λ1,λ2,λ3 + ε) for 0 < ε � 1. Then the suc-
cessor function P(ρ,λ1,λ2,λ3) := Π(ρ,λ1,λ2,λ3)− ρ is continuous in (ρ,λ1,λ2,λ3) and 
decreasing in λ3. P(ρ,λ1,λ2,λ3) < 0 when ρ  is either sufficiently small or sufficiently large 
because of the stability of O and the instability of equilibria at infinity. Thus, P has a maxi-
mum value. Let

f (λ1,λ2,λ3) := max
ρ>0

P(ρ,λ1,λ2,λ3).

The continuity of f  follows directly from the continuity of P. In the following we 
prove the decreasing monotonity of f  with respect to λ3. There exists a ρ∗ such that 
f (λ1,λ2,λ3 + ε) = P(ρ∗,λ1,λ2,λ3 + ε), where ε is a given sufficiently small positive con-
stant. Therefore,

f (λ1,λ2,λ3)− f (λ1,λ2,λ3 + ε)

= f (λ1,λ2,λ3)− P(ρ∗,λ1,λ2,λ3) + P(ρ∗,λ1,λ2,λ3)− f (λ1,λ2,λ3 + ε)

= f (λ1,λ2,λ3)− P(ρ∗,λ1,λ2,λ3) + P(ρ∗,λ1,λ2,λ3)− P(ρ∗,λ1,λ2,λ3 + ε)

� P(ρ∗,λ1,λ2,λ3)− P(ρ∗,λ1,λ2,λ3 + ε)

> 0,

H Chen and X Chen﻿Nonlinearity 33 (2020) 1443



1461

implying f (λ1,λ2,λ3) is decreasing in λ3. By lemma 3.2,

f
(
λ1,λ2,

(
1 − 3

√
Υ(λ2)

)
λ1

)
< 0

because system (1.4) has no limit cycles when λ3 =
(

1 − 3
√

Υ(λ2)
)
λ1. By last paragraph, 

f (λ1,λ2,λ3) > 0 for λ3 ∈ (0,ϕ(λ1,λ2)) and f (λ1,λ2,ϕ(λ1,λ2)) = 0. The continuity of 
ϕ(λ1,λ2) follows from the continuity of f  in (λ1,λ2,λ3) and its monotonity in λ3. Finally 

f (λ1,λ2,λ3) < 0 when ϕ(λ1,λ2) < λ3 <
(

1 − 3
√

Υ(λ2)
)
λ1, implying that system (1.4) has 

no limit cycles. Conclusion (iii) is proven.� □ 

4.  Proof of theorem 1.1 and concluding remarks

In this section we give a proof for Theorem 1.1 for the global bifurcation diagram and global 
phase portraits of system (1.4).

Proof of theorem 1.1.  By lemmas 2.1 and 2.2, the qualitative properties of O and the 
Hopf bifurcation surface of system (1.4) can be obtained. Moreover, from the analysis in the 
proof of lemma 3.4 the Hopf bifurcation surface is global as given by H1 and H2. By lemma 
2.3, the qualitative properties of equilibria at infinity are obtained. By lemma 3.4 we obtain 
the double limit cycle bifurcation surface DL. We summarize all global phase portraits by 
the results of lemmas 3.1,...,3.4 and finally get the bifurcation diagram for general parameter 
(λ1,λ2,λ3) ∈ G as given in figure 1.� □ 

Figure 5.  The domain D̂.
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In the remainder of this paper we give some concluding remarks as follows.

Remark 4.1.  As shown in figure 1, there are two limit cycles when (λ1,λ2,λ3) lies in region 
II. Since there is a unique equilibrium O, these two limit cycles are adjacent, i.e. there is no 
equilibria between them. When we prove that there exist at most such two limit cycles in the 
proof of lemma 3.3, we have to develop a new method different from the method used in [2, 3]. 
In fact, the method of [2, 3] has an essential requirement that the integrals of divergence along 
these two limit cycles satisfy inequality (3.8). However, (3.8) does not hold generally in this 
paper as pointed out in the proof of lemma 3.3. Thus, the investigation of system (1.1) for the 
case of one equilibrium has essential difference from [2, 3] for the case of multiple equilibria.

Remark 4.2.  In [2, 3], we give bifurcation diagram and global phase portraits for system 
(1.1) in the case of multiple equilibria as introduced in section 1. However, in these phase por-
traits given in [2, 3] the limits of orbits connecting the equilibria at infinity are undetermined 
when there is no limit cycles surrounding all equilibria. In this paper, we can observe that the 
limit of an orbit connecting the equilibria at infinity is either a limit cycle or the equilibrium 
O. So, it is determined and depends on whether there exist limit cycles. That is, in this paper 
we find all global phase portraits of system (1.1) for the case of one equilibrium.

Remark 4.3.  As mentioned in the above two remarks, in this paper we investigate system 
(1.1) for the case of one equilibrium, which is transformed into a globally equivalent system 
(1.4). The original parameter (µ1,µ2,µ3) is also transformed into new parameter (λ1,λ2,λ3). 
In the following we give a positive answer in the case of one equilibrium to conjecture 3.2 of 
[15] by transforming our results given in theorem 1.1 for (1.4) into results for (1.1). In fact, 
system (1.1) has a unique equilibrium if and only if either µ1 = µ2 = 0 or 4µ3

2 − 27µ2
1 < 0. 

When µ1 = 0, system (1.1) can be rewritten as
{

ẋ = y − (bx + x3),
ẏ = ax − x3,

� (4.1)

where a = µ2/9, b = −µ3/3. So, a � 0 when (1.1) has a unique equilibrium. System (4.1) is 
actually system (5) of [4], in which the double limit cycle bifurcation curve is given as

{(a, b) ∈ R2| b = ϕ2(a), a > 0}.� (4.2)

(a) (b)

Figure 6.  The global phase portraits for HLrn1 and DLn1.
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Here ϕ2(a) is a decreasing function given in [4, proposition 3]. Hence, when µ1 = 0, the 
double limit cycle bifurcation does not happen for system (1.1) having a unique equilibrium. 
When µ1 > 0 and 4µ3

2 − 27µ2
1 < 0, by (1.5) and theorem 1.1 the double limit cycle bifurca-

tion surface of system (1.1) is the graph of

µ3 = ρ2
0 − νϕ(ν/3, 3ρ0/(2ν))

= ρ2
0 −

√
3ρ2

0 − µ2 ϕ



√

3ρ2
0 − µ2

3
,

3ρ0

2
√

3ρ2
0 − µ2


 ,

where ρ0 is given in (1.2). Here ϕ is given in theorem 1.1. Therefore, associated with the in-
variance for µ1 as mentioned in section 1 we get that in the case of one equilibrium the double 
limit cycle bifurcation surface of system (1.1) is the graph of

µ3 = ρ̂2 −
√

3ρ̂2 − µ2 ϕ

(√
3ρ̂2 − µ2

3
,

3ρ̂

2
√

3ρ̂2 − µ2

)

for (µ1,µ2) satisfying

µ1 �= 0, 4µ3
2 − 27µ2

1 < 0, 3ρ̂2 + µ2 > 0,� (4.3)

where

ρ̂ :=
3

√
|µ1|

2
−
√

µ2
1

4
− µ3

2

27
+

3

√
|µ1|

2
+

√
µ2

1

4
− µ3

2

27
> 0.

Note that 3ρ̂2 + µ2 > 0 comes from the requirement 
√

6/4 < λ2 < 1 for ϕ(λ1,λ2).

Remark 4.4.  Associated with the results given in [2, 3], conjecture 3.2 of [15] has a com-
plete positive answer. That is, the double limit cycle bifurcation surface DL of system (1.1) is 
the graph of a function µ3 = µ3(µ1,µ2) indeed. Let D̂ be the domain of this function. In the 
following, we analyze D̂ to study how wide it is. Since we investigate (1.1) for three cases, i.e. 
single equilibrium, two equilibria and three equilibria, D̂ ⊂ R2  has three subsets. By remark 
4.3, the set defined by (4.3) in R2 is the first subset of D̂. By [2, section 5], the second subset 
of D̂ is the set defined by µ1 �= 0 and 4µ3

2 − 27µ2
1 = 0. By (4.2) and [3, section 5], the third 

subset of D̂ is the set defined by 4µ3
2 − 27µ2

1 > 0. Thus, the domain D̂ of µ3(µ1,µ2) can be 
expressed as
{
(µ1,µ2) ∈ R2

∣∣ 4µ3
2 − 27µ2

1 > 0
}
∪
{
(µ1,µ2) ∈ R2

∣∣ 4µ3
2 − 27µ2

1 � 0,µ1 �= 0, 3ρ̂2 + µ2 > 0
}

as in figure 5, where the pink part is the first set and the green part is the second set of the 
above union. On the other hand, although we only give the existence of µ3(µ1,µ2) but do 
not know its expression, the readers can find some information about the range of the value 
µ3(µ1,µ2) from [2–4] and this paper.

Remark 4.5.  In this remark we point out some clerical errors in [2, 3]. In line  −8 on page 
3650 of [2],

D̃L :=
{
(µ1,µ3) : µ3 = 2 3

√
2µ2

1 + 3 3
√

µ1/2 φ(− 3
√

µ1/2), µ1 �= 0
}
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should be

D̃L :=

{
(µ1,µ3) : µ3 = 2 3

√
2µ2

1

{
+3 3

√
µ1/2 φ(− 3

√
µ1/2) if µ1 < 0,

−3 3
√

µ1/2 φ( 3
√
µ1/2) if µ1 > 0.

}
.

In line  −6 on page 3650 of [2],

µ3 = 2 3

√
2µ2

1 + 3 3
√
µ1/2 φ(− 3

√
µ1/2), where µ1 �= 0

should be

µ3 = 2 3

√
2µ2

1

{
+3 3

√
µ1/2 φ(− 3

√
µ1/2) if µ1 < 0,

−3 3
√

µ1/2 φ( 3
√
µ1/2) if µ1 > 0.

In table 2 on page 1804 of [3], for HLrn1 the information ‘1; unstable’ for small limit cycle 
surrounding Er should be revised as ‘0’ and for HLrn3 the information ‘1’ for small limit cycle 
surrounding El should also be revised as ‘0’. On page 1804 of [3], figures 4(d) and (i) should 
be replaced by figures 6(a) and (b), respectively.
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ẋ = y − Σ3
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