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Abstract
Codimension-two bifurcations are fundamental and interesting phenomena 
in dynamical systems. Fold-Hopf and double-Hopf bifurcations are the most 
important among them. We study the unfoldings of these two codimension-
two bifurcations, and obtain sufficient conditions for their nonintegrability in 
the meaning of Bogoyavlenskij. We reduce the problems of the unfoldings to 
those of planar polynomial vector fields and analyze the nonintegrability of 
the planar vector fields, based on Ayoul and Zung’s version of the Morales–
Ramis theory. New useful criteria for nonintegrability of planar polynomial 
vector fields are also obtained. The approaches used here are applicable to 
many problems including circular symmetric systems.

Keywords: nonintegrability, fold-Hopf bifurcation, double-Hopf bifurcation, 
unfolding, planar polynomial vector field, Morales–Ramis theory
Mathematics Subject Classification numbers:37J30, 37G05, 34M15

1.  Introduction

Codimension-two bifurcations are fundamental and interesting phenomena in dynamical sys-
tems and have been studied extensively since the seminal papers of Arnold [4] and Takens 
[16]. Fold-Hopf and double-Hopf bifurcations are the most important among them, and now 
well described in several textbooks such as [10, 11]. For the former, fold (saddle-node) and 
Hopf bifurcation curves meet at the bifurcation point and its unfolding (or normal form) is 
given by
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ẋ1 = νx1 − ωx2 + αx1x3 − βx2x3,
ẋ2 = ωx1 + νx2 + βx1x3 + αx2x3,
ẋ3 = µ+ s(x2

1 + x2
2) + x2

3,
x = (x1, x2, x3) ∈ R3,� (1.1)

where µ, ν �= 0, ω > 0, α,β ∈ R, s = ±1 and the dot represents differentiation with respect to 
the independent variable t. For the latter, two Hopf bifurcation curves meet at the bifurcation 
point and its unfolding is given by

ẋ1 = −ω1x2 + (ν + s(x2
1 + x2

2) + α(x2
3 + x2

4))x1,
ẋ2 = ω1x1 + (ν + s(x2

1 + x2
2) + α(x2

3 + x2
4))x2,

ẋ3 = −ω2x4 + (µ+ β(x2
1 + x2

2)− (x2
3 + x2

4))x3,
ẋ4 = ω2x3 + (µ+ β(x2

1 + x2
2)− (x2

3 + x2
4))x4,

x = (x1, x2, x3, x4) ∈ R4,

�

(1.2)

where µ, ν �= 0, ω > 0, α,β ∈ R and s = ±1. The unfoldings (1.1) and (1.2) are universal, 
i.e. their bifurcation diagrams do not qualitatively change near the bifurcation points even if 
higher-order terms are included, in some cases, but they are not universal and may exhibit 
complicated dynamics such as chaos if higher-order terms are included, in the other cases. 
See [9, 11] for more details.

Recently, in [17], the nonintegrability of the unfolding (1.1) for fold-Hopf bifurcations was 
shown for almost all parameter values of ω  and α,β ∈ R when µ, ν �= 0. More precisely the 
following theorem was proved.

Theorem 1.1.  Let µ, ν,α,β,ω ∈ C. Suppose that µ, ν �= 0, α± ν/
√
−µ �∈ Q and 

2α �∈ Z�0 := {k ∈ Z | k � 0}. Then the complexification of (1.1) with s = ±1 is meromorphi-
cally nonintegrable near the x3-plane in C3.

Here the following definition of integrability due to Bogoyavlenskij [7] has been adopted.

Definition 1.2 (Bogoyavlenskij).  Consider systems of the form

ẋ = v(x), x ∈ D ⊂ Cn,� (1.3)

where n  >  0 is an integer, D is a region in Cn and v : D → Cn is holomorphic. Let q be an in-
teger such that 1 � q � n. Equation (1.3) is called (q, n − q)- integrable or simply integrable 
if there exist q vector fields v1(x)(:= v(x)), v2(x), . . . , vq(x) and n  −  q scalar-valued functions 
F1(x), . . . , Fn−q(x) such that the following two conditions hold:

	 (i)	�v1, . . . , vq are linearly independent almost everywhere and commute with each other, i.e.

[vj, vk] :=
∂vk

∂x
vj −

∂vj

∂x
vk = 0

		 for j, k = 1, . . . , q; 
	(ii)	�∂F1/∂x, . . . , ∂Fn−q/∂x are linearly independent almost everywhere and F1, . . . , Fn−q are 

first integrals of v1, . . . , vq, i.e.

∂Fk

∂x
vj = 0 for j = 1, . . . , q and k = 1, . . . , n − q.
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If v1, v2, . . . , vq  and F1, . . . , Fn−q are meromorphic and rational, respectively, then equa-
tion (1.3) is said to be meromorphically and rationally integrable.

Definition 1.2 is regarded as a generalization of the Liouville integrability for Hamiltonian 
systems since if a Hamiltonian system with n degrees of freedom is Liouville integrable, 
then there exist n functionally independent first integrals and n linearly independent vec-
tor fields corresponding to the first integrals (almost everywhere). The statement simi-
lar to that of the Liouville–Arnold theorem [5] also holds for integrable systems in the 
meaning of Bogoyavlenskij: if equation  (1.3) is integrable and the level set F−1(c) with 
F(x) := (F1(x), . . . , Fn−q(x)) is compact for c ∈ Cn−q, then it can be transformed to linear 
flow on the q-dimensional torus Tq . See [7] for more details.

For general Hamiltonian systems, Morales-Ruiz and Ramis [13] developed a strong 
method to present a sufficient condition for their meromorphic or rational nonintegrability. 
Their theory, which is now called the Morales–Ramis theory, states that complex Hamiltonian 
systems are meromorphically or rationally nonintegrable if the identity components of the 
differential Galois groups [8, 15] for their variational equations (VEs) or normal variational 
equations (NVEs) around particular nonconstant solutions such as periodic orbits are not com-
mutative. Moreover, the Morales–Ramis theory was extended in [14], so that weaker sufficient 
conditions for nonintegrability can be obtained by using higher-order VEs or NVEs. See also 
[12]. Furthermore, Ayoul and Zung [6] showed that the Morales–Ramis theory is also appli-
cable for detection of meromorphic or rational nonintegrability of non-Hamiltonian systems 
in the meaning of Bogoyavlenskij. For the proof of theorem 1.1 in [17], the generalization of 
the Morales–Ramis theory due to Ayoul and Zung was used. The following questions were 
also given in [17]:

	 •	�Is the unfolding (1.1) for fold-Hopf bifurcations meromorphically nonintegrable when 
α+ ν/

√
−µ ∈ Q, α− ν/

√
−µ ∈ Q or 2α ∈ Z�0? 

	 •	�Is the unfolding (1.2) of double Hopf bifurcations also meromorphically nonintegrable 
for almost all parameter values like (1.1)? 

In this paper, we study the nonintegrability of the unfoldings (1.1) and (1.2) for the fold-Hopf 
and double-Hopf bifurcations, respectively, in the meaning of Bogoyavlenskij, and give suf-
ficient conditions for their nonintegrability. Our main results are precisely stated as follows.

Theorem 1.3.  Let µ, ν,α,β,ω ∈ C. Suppose that one of the following conditions holds:

	 (i)	�µ �= 0, α �∈ Q and ν �= 0;
	(ii)	�µ �= 0, ν/

√
−µ /∈ Q and 2α− 1 /∈ Z�0;

	(iii)	�µ = 0, ν �= 0 and 2α− 1 /∈ Z�0.

Then the complexification of (1.1) with s = ±1 is meromorphically nonintegrable near the 
x3-plane in C3.

Theorem 1.4.  Let µ, ν,α,β,ω1,ω2 ∈ C. Suppose that one of the following conditions 
holds:

	 (i)	�µ �= 0, ν/µ /∈ Q, α /∈ Z�0 := {k ∈ Z | k � 0}, α+ ν/µ+ 2 �∈ Z�0 and 
βν − µs, (αµ+ ν)s − (βν − µs) �= 0;

	(ii)	�µ �= 0, α+ ν/µ /∈ Q, α /∈ Z�0 and βν − µs, (αµ+ ν)s − (βν − µs) �= 0;
	(iii)	�µ = 0, ν �= 0, α /∈ Z�0 and β �= s.

Then the complexification of (1.2) with s = ±1 is meromorphically nonintegrable near the 
(x1, x2)-plane in C4.
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Theorem 1.5.  Let µ, ν,α,β,ω1,ω2 ∈ C. Suppose that one of the following conditions 
holds:

	 (i)	�ν �= 0, µ/ν /∈ Q, βs /∈ Z�0, βs − µ/ν − 2 ∈ Z�0 and αµ+ ν,βνs − µ− (αµ+ ν) �= 0;
	(ii)	�ν �= 0, βs − µ/ν /∈ Q, βs /∈ Z�0 and αµ+ ν,βνs − µ− (αµ+ ν) �= 0;
	(iii)	�ν = 0, µ �= 0, βs /∈ Z�0 and α �= −1.

Then the complexification of (1.2) with s = ±1 is meromorphically nonintegrable near the 
(x3, x4)-plane in C4.

Note that α± ν/
√
−µ ∈ Q if and only if α, ν/

√
−µ ∈ Q. In particular, for (1.1), our suf-

ficient condition in theorem 1.3 is much weaker than that of theorem 1.1 except for α = 1/2, 
µ �= 0 and ν/

√
−µ /∈ Q. Thus, we provide (possibly partial) answers to the above questions 

raised up for (1.1) and (1.2) in [17].
Our approaches to prove the above main theorems are as follows. We first use the change 

of coordinate (x1, x2) = (r cos θ, r sin θ) to transform (1.1) to

ṙ = (ν + αx3)r, ẋ3 = µ+ sr2 + x2
3, θ̇ = ω + βx3.� (1.4)

The (r,x3)-components are independent of θ. Using the change of coordinates 
(x1, x2) = (r1 cos θ1, r1 sin θ1) and (x3, x4) = (r2 cos θ2, r2 sin θ2), we also transform (1.2) to

ṙ1 = r1(ν + sr2
1 + αr2

2), ṙ2 = r2(µ+ βr2
1 − r2

2), θ̇1 = ω1, θ̇2 = ω2.
� (1.5)

The (r1, r2)-components are independent of θ1 and θ2 . We show that one can reduce the non-
integrability of (1.1) and (1.2) to that of the (r,x3)-components of (1.4),

ṙ = (αx3 + ν)r, ẋ3 = µ+ sr2 + x2
3,� (1.6)

and the (r1, r2)-components of (1.5),

ṙ1 = r1(ν + sr2
1 + αr2

2), ṙ2 = r2(µ+ βr2
1 − r2

2),� (1.7)

respectively. See corollaries 2.3 and 2.4 below.
On the other hand, one of the authors and his coworkers [2] recently proposed an approach to 

obtain sufficient conditions for nonintegrability of such planar polynomial vector fields based 
on Ayoul and Zung’s version [6] of the Morales–Ramis theory [12–14]. Similar approaches 
based on the differential Galois theory were used earlier for linear second-order differential 
equations in [3] and special planar polynomial vector fields in [1]. We extend their discussions 
to obtain new criteria for nonintegrability of planar polynomial vector fields and apply them 
to (1.6) and (1.7) for proving theorems 1.3–1.5. The approaches used here are also applicable 
to many problems including circular symmetric systems.

The outline of this paper is as follows. In section 2 we give the key result to reduce the 
problems of (1.1) and (1.2) to those of (1.6) and (1.7), respectively. In section 3 we review a 
necessary part of Acosta-Humánez et al [2] for nonintegrability of planar polynomial vector 
fields and extend their discussion to give the other key result to analyze (1.6) and (1.7). The 
proof of theorem 1.3 is provided in section 4, and the proofs of theorems 1.4 and 1.5 are pro-
vided in section 5.
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2.  Reduction of the unfoldings to two-dimensional systems

Let m  >  0 be an integer and consider m  +  2-dimensional systems of the form

ẋ = f (x, y), ẏ = g(x, y), (x, y) ∈ D,� (2.1)

where D ⊂ C2 × Cm is a region containing m-dimensional plane {(0, y) ∈  
C2 × Cm | y ∈ Cm}, and f : D → C2 and g : D → Cm  are analytic. Assume that by the change 
of coordinates x = (x1, x2) = (r cos θ, r sin θ), equation (2.1) is transformed to

ṙ = R(r, y), ẏ = g̃(r, y), θ̇ = Θ(r, y), (r, y, θ) ∈ D̃ × C,� (2.2)

where D̃ ⊂ C× Cm is a region containing the m-dimensional y -plane {(0, y) ∈ C× Cm | y ∈ Cm},  
and R : D̃ → C, ̃g : D̃ → Cm  and Θ : D̃ → R are analytic. Note that ̃g(r, y) = g(r cos θ, r sin θ, y). 
We are especially interested in the (r, y)-components of (2.2),

ṙ = R(r, y), ẏ = g̃(r, y),� (2.3)

which are independent of θ. In this situation we have the following proposition.

Proposition 2.1. 

	 (i)	�Suppose that equation  (2.1) has a meromorphic first integral F(x1, x2, y) near 
(x1, x2) = (0, 0), and let F̃(r, θ, y) = F(r cos θ, r sin θ, y). If g̃j(0, y) �= 0 for almost all 
y ∈ D̃ for some j = 1, . . . , m, then

G(r, y) = F̃(r, θ̃j(yj), y)

		 is a meromorphic first integral of (2.3) near r  =  0, where y j  and g̃j(r, y) are the j th comp
onents of y  and g̃(r, y), respectively, and θ̃j(yj) represents the θ-component of a solution 
to

dr
dyj

=
R(r, y)
g̃j(r, y)

,
dy�
dyj

=
g̃�(r, y)
g̃j(r, y)

,
dθ
dyj

=
Θ(r, y)
g̃j(r, y)

, � �= j.� (2.4)

	(ii)	�Suppose that equation (2.1) has a meromorphic commutative vector field

v(x1, x2, y) :=




v1(x1, x2, y)
v2(x1, x2, y)
vy(x1, x2, y)


� (2.5)

		 with v1, v2 : D → C and vy : D → Cm near (x1, x2) = (0, 0). If Θ(0, y) �= 0 for almost all 
y ∈ D̃, then

(
ṽr(r, θ, y)
ṽy(r, θ, y)

)
=

(
v1(r cos θ, r sin θ, y) cos θ + v2(r cos θ, r sin θ, y) sin θ

vy(r cos θ, r sin θ, y)

)

� (2.6)
		 is independent of θ and it is a meromorphic commutative vector field of (2.3) near r  =  0.

Proof.  (i) Assume that F(x1, x2, y) is a meromorphic first integral of (2.1) near (x1, x2) = (0, 0) 
and g̃j(0, y) �= 0 for almost all y ∈ D̃ for some j = 1, . . . , m. Then F̃(r, θ, y) is a first integral 
of (2.2), so that

P B Acosta-Humánez and K Yagasaki﻿Nonlinearity 33 (2020) 1366
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∂G
∂r

(r, y)R(r, y) +
∂G
∂y

(r, y)g̃(r, y)

=
∂

∂r
F̃(r, θ̃j(yj), y)R(r, y) +

∂

∂y
F̃(r, θ̃j(yj), y)g̃(r, y)

=
∂F̃
∂r

(r, θ̃j(yj), y)R(r, y) +
∂F̃
∂y

(r, θ̃j(yj), y)g̃(r, y) +
∂F̃
∂θ

(r, θ̃j(yj), y)
dθ̃j

dyj
(yj)g̃j(r, y)

=
∂F̃
∂r

(r, θ̃j(yj), y)R(r, y) +
∂F̃
∂y

(r, θ̃j(yj), y)g̃(r, y) +
∂F̃
∂θ

(r, θ̃j(yj), y)Θ(r, y) = 0.

Here we have used the fact that θ̃j(yj) is the θ-component of a solution to (2.4). Note that 
F̃(r, θ, y) is meromorphic since so is F(x1, x2, y) and that the solution is analytic since so are 
R(r, y), g̃(R, Y),Θ(r, y). Thus, we obtain the desired result.
(ii) Assume that equation (2.5) gives a meromorphic commutative vector field of (2.1) near 
(x1, x2) = (0, 0) and Θ(0, y) �= 0. Let

ṽθ(r, θ, y) = −v1(r cos θ, r sin θ, y)
sin θ

r
+ v2(r cos θ, r sin θ, y)

cos θ

r
,

which is also meromorphic. Then

ṽ(r, y, θ) =




ṽr(r, θ, y)

ṽy(r, θ, y)

ṽθ(r, θ, y)




is also a commutative vector field of (2.2), i.e.

∂R
∂r

(r, y)ṽr(r, θ, y) +
∂R
∂y

(r, y)ṽy(r, θ, y)

− ∂ṽr

∂r
(r, θ, y)R(r, y)− ∂ṽr

∂y
(r, θ, y)g̃(r, y)− ∂ṽr

∂θ
(r, θ, y)Θ(r, y) = 0,

∂g̃
∂r

(r, y)ṽr(r, θ, y) +
∂g̃
∂y

(r, y)ṽy(r, θ, y)

−
∂ṽy

∂r
(r, θ, y)R(r, y)−

∂ṽy

∂y
(r, θ, y)g̃(r, y)−

∂ṽy

∂θ
(r, θ, y)Θ(r, y) = 0,

∂Θ

∂r
(r, y)ṽr(r, θ, y) +

∂Θ

∂y
(r, y)ṽy(r, θ, y)

− ∂ṽθ

∂r
(r, θ, y)R(r, y)− ∂ṽθ

∂y
(r, θ, y)g̃(r, y)− ∂ṽθ

∂θ
(r, θ, y)Θ(r, y) = 0.

�

(2.7)

Let (r, y, θ) = (r̄(t), ȳ(t), θ̄(t)) be a solution to (2.2) as in the proof of part (i). From (2.7) we 
see that χ = ṽ(r̄(t), ȳ(t), θ̄(t)) is a solution to the VE of (2.2) along the solution,

χ̇ =




∂R
∂r (r̄(t), ȳ(t)) ∂R

∂y (r̄(t), ȳ(t)) 0

∂g̃
∂r (r̄(t), ȳ(t)) ∂g̃

∂y (r̄(t), ȳ(t)) 0

∂Θ
∂r (r̄(t), ȳ(t)) ∂Θ

∂y (r̄(t), ȳ(t)) 0




χ.

P B Acosta-Humánez and K Yagasaki﻿Nonlinearity 33 (2020) 1366
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Hence,

χ =

(
ṽr(r̄(t), ȳ(t), θ̄(t))
ṽy(r̄(t), ȳ(t), θ̄(t))

)

is a solution to the VE of (2.3) along the solution (r̄(t), ȳ(t)),

χ̇ =




∂R
∂r (r̄(t), ȳ(t)) ∂R

∂y (r̄(t), ȳ(t))

∂g̃
∂r (r̄(t), ȳ(t)) ∂g̃

∂y (r̄(t), ȳ(t))


χ.

This means that

∂ṽr

∂θ
(r, θ, y)Θ(r, y) =

∂ṽy

∂θ
(r, θ, y)Θ(r, y) = 0,

along with (2.7). Since Θ(r, y) �= 0 for almost all y ∈ D̃ near r  =  0, we obtain the desired 
result.� □ 

Remark 2.2. 

	 (i)	�As in proposition 2.1(i), we can also show that if equation (2.1) has a first integral F(x1, x2, y) 
near (x1, x2) = (0, 0) and R(0, y) �= 0 for almost all y ∈ D̃, then G(r, y) = F̃(r, θ̃(r), y) is 
a first integral of (2.3) near r  =  0, where θ̃(r) represents the θ-component of a solution to

dy
dr

=
g̃(r, y)
R(r, y)

,
dθ
dr

=
Θ(r, y)
R(r, y)

.

	(ii)	�If equation (2.1) has a commutative vector field v(x1, x2, y) and Θ(r, y) ≡ 0, then by (2.7) 
equation (2.6) gives a commutative vector field of (2.3) for any θ ∈ C.

Using proposition 2.1 for (1.1) and (1.2) (once for the former and twice for the latter), we 
immediately obtain the following corollaries.

Corollary 2.3.  If the complexification of (1.1) is meromorphically integrable near 
(x1, x2) = (0, 0), then so is equation (1.6) near r  =  0.

Corollary 2.4.  If the complexification of (1.2) is meromorphically integrable near 
(x1, x2) = (0, 0) and near (x3, x4) = (0, 0), then so is equation  (1.7) near r1  =  0 and near 
r2  =  0, respectively.

We easily see that equations (1.4) and (1.5) satisfy g̃j(0, y) �= 0 for almost all y ∈ D̃ for 
some j = 1, . . . , m and Θ(0, y) �= 0 for any y ∈ D̃.

Remark 2.5.  The converses of corollaries 2.3 and 2.4 do not necessarily hold. Actually, 
even if equations (1.6) and (1.7) have first integrals, then the first integrals may not be mero-
morphic for the complexifications of (1.1) and (1.2), respectively. A similar statement is also 
true for commutative vector fields.

3.  Nonintegrability of planar polynomial vector fields

3.1.  General results

Consider planar polynomial vector fields of the form

ξ̇ = P(ξ, η), η̇ = Q(ξ, η), (ξ, η) ∈ C2,� (3.1)

P B Acosta-Humánez and K Yagasaki﻿Nonlinearity 33 (2020) 1366
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where P(ξ, η) and Q(ξ, η) are polynomials. Let Γ : η − ϕ(ξ) = 0 be an integral curve of (3.1) 
where ϕ(ξ) is assumed to be a rational function of ξ. So Γ represents a rational solution to the 
first-order differential equation

η′ =
Q(ξ, η)
P(ξ, η)

=: R(ξ, η),� (3.2)

which defines a foliation associated with (3.1) (or its orbits), where the prime denotes differ-
entiation with respect to ξ and R(ξ, η) is rational in ξ and η.

Let φ(ξ, η) denote the (nonautonomous) flow of the one-dimensional system (3.2) with 
φ(ξ0, η) = η for ξ0 fixed, and let (ξ0, η0) be a point on Γ, i.e. η0 = ϕ(ξ0). We are interested in 
the variation of φ(ξ, η) with respect to η around η = η0 at ξ = ξ0, which is expressed as

φ(ξ, η) = ϕ(ξ) +
∂φ

∂η
(ξ, η0)(η − η0) +

1
2
∂2φ

∂η2 (ξ, η0)(η − η0)
2 + · · · .

So we want to compute the above Taylor expansion coefficients

ϕk(ξ) =
∂kφ

∂ηk (ξ, η0), k ∈ N,

which are solutions to the equations in variation. Let

κk(ξ) :=
∂kR
∂ηk (ξ,ϕ(ξ)), k ∈ N.� (3.3)

Note that κk(ξ) is rational for any k ∈ N. The first- and second-order variational equations 
(VE1 and VE2) are given by

ϕ′
1 = κ1(ξ)ϕ1 (VE1)

and

ϕ′
1 = κ1(ξ)ϕ1, ϕ′

2 = κ1(ξ)ϕ2 + κ2(ξ)ϕ
2
1, (VE2)

respectively. The VE1 is linear but the VE2 is nonlinear. Letting χ21 := ϕ2
1 and χ22 := ϕ2, we 

can linearize the VE2 as

χ′
21 = 2κ1(ξ)χ21, χ′

22 = κ1(ξ)χ22 + κ2(ξ)χ21, (LVE2)

and refer to it as the second-order linearized variational equation (LVE2). We also refer to the 
VE1 as the LVE1. In a similar way, for any k  >  2, we obtain the kth-order variational equation 
VEk as

ϕ′
1 = κ1(ξ)ϕ1, ϕ′

2 = κ1(ξ)ϕ2 + κ2(ξ)ϕ
2
1, . . . ,

ϕ′
k = κ1(ξ)ϕk + · · ·+ 1

2
k(k − 1)κk−1(ξ)ϕ

k−2
1 ϕ2 + κk(ξ)ϕ

k
1. (VEk)

We can also linearize the VEk as

χ′
k1 = kκ1(ξ)χk1, χ′

k2 = (k − 1)κ1(ξ)χk2 + κ2(ξ)χk1, . . . ,

χ′
kk = κ1(ξ)χkk + · · ·+ 1

2
k(k − 1)κk−1(ξ)χk2 + κk(ξ)χk1, (LVEk)
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and refer to it as the kth-order linearized variational equation (LVEk), where 
χk1 = ϕk

1,χk2 = ϕk−2
1 ϕ2, . . . ,χkk = ϕk . We observe that the LVEk has a two-dimensional 

subsystem

χ′
k1 = kκ1(ξ)χk1, χ′

kk = κ1(ξ)χkk + κk(ξ)χk1� (3.4)

for any k � 2.
Let Gk be the differential Galois group of the LVEk and let G0

k be its identity component. 
Using the result of Ayoul and Zung [6] based on [12–14], we have the following theorem [2].

Theorem 3.1.  Assume that the VE1 has no irregular singularity at infinity and the planar 
polynomial vector field (3.1) is meromorphically integrable in a neighbourhood of Γ. Then for 
any k � 1 the identity component G0

k is abelian.

The statement of the above theorem also holds in a more general setting. See [6, 12–14] for 
the details. Obviously, G1 and G0

1 are subgroups of C∗ and abelian. However, Gk and G0
k may 

be non-abelian for k � 2.
Let

Ω(ξ) = exp

(∫
κ1(ξ) dξ

)
, θk(ξ) =

∫
κk(ξ)Ω(ξ)

k−1dξ� (3.5)

for k � 2. The subsystem (3.4) of the LVEk has two linearly independent solutions 
(χk1,χkk) = (0,Ω(ξ)) and (Ω(ξ)k,Ω(ξ)θk(ξ)). Let G̃  be the differential Galois group of (3.4) 
and G̃0 be its identity component. We have the following criterion for G0

k to be non-abelian.

Lemma 3.2.  Suppose that the following conditions hold for some k � 2:

	(H1) � Ω(ξ) is transcendental; 
	(H2) � θk(ξ)/Ω(ξ)

k−1 is not rational.

Then the identity component G0
k is not abelian.

Proof.  Assume that conditions (H1) and (H2) hold. Let σ ∈ G̃. We compute

σ(Ω(ξ))′

σ(Ω(ξ))
= σ

(
Ω′(ξ)

Ω(ξ)

)
= σ(κ1(ξ)) = κ1(ξ) =

Ω′(ξ)

Ω(ξ)
,

which yields

σ(Ω(ξ)) = C1Ω(ξ), C1 ∈ C∗.� (3.6)

So we have

σ(θk(ξ))
′ = σ(κk(ξ)Ω(ξ)

k−1) = Ck−1
1 κk(ξ)Ω(ξ)

k−1 = Ck−1
1 θ′k(ξ),

so that for some C2 ∈ C

σ(θk(ξ)) = Ck−1
1 θk(ξ) + C2.

Assume that C2  =  0 for any σ ∈ G̃. Let w(ξ) = θ′k(ξ)/θk(ξ) = κk(ξ)Ω(ξ)
k−1/θk(ξ). By 

the hypothesis, w(ξ) is not rational. However, we have

σ(w(ξ)) =
σ(θ′k(ξ))

σ(θk(ξ))
= w(ξ),
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which means that w(ξ) ∈ C(ξ). Thus, we have a contradiction. Hence, C2 �= 0 for some 
σ ∈ G̃. Taking (χk1,χkk) = (0,Ω(ξ)) and (Ω(ξ)k,Ω(ξ)θk(ξ)) as fundamental solutions to 
(3.4) and noting that Ω(ξ) is transcendental, we see that

G̃ ∼=
{(

c1 c2

0 ck
1

) ∣∣∣∣c1 ∈ C∗, c2 ∈ C
}

.

Hence, G̃0 = G̃ is not commutative. This yields the conclusion.� □ 

Let κk(ξ) = κkn(ξ)/κkd(ξ) for k ∈ N, where κkn(ξ) and κkd(ξ) are relatively prime polyno-
mials and κkd(ξ) is monic. We see that if deg(κkd) > deg(κkn), then κ1(1/ξ)/ξ is holomorphic 
at ξ = 0 so that the VE1 and consequently the LVEk have no irregular singularity at infinity 
for k � 2. Using theorem 3.1 and lemma 3.2, we immediately obtain the following theorem.

Theorem 3.3.  Suppose that deg(κ1d) > deg(κ1n) and conditions (H1) and (H2) hold for 
some k � 2. Then the planar polynomial vector field (3.1) is meromorphically nonintegrable 
in a neighbourhood of Γ.

Remark 3.4.  Suppose that condition (H1) does not hold. Then C1 in (3.6) can only take 
finitely many values, so that

G0
k ⊂







1 c12 c13 · · · c1k

0 1 c23 · · · c2k

...
. . . . . . . . .

...
0 · · · 0 1 ck−1,k

0 · · · 0 0 1




∣∣∣∣∣∣∣∣∣∣∣∣

c12, . . . , ck−1,k ∈ C




.

Thus G0
k is abelian.

If the variational equations have irregular singularities at infinity, then an obstruction for 
the existence of (meromorphic) first integrals and commutative vector fields may appear at 
infinity when the phase space is compactified. In such a case we can only discuss ‘rational’ 
nonintegrability instead of meromorphic one [12, 13]. Moreover, if deg(κ1d) � deg(κ1n), 
then the VE1 and consequently the LVEk have an irregular singularity at infinity for k � 2. 
Rational nonintegrability of (3.1) in this situation was extensively discussed in [2].

3.2.  Criteria for condition (H2)

It is often difficult to check condition (H2) directly in application of theorem 3.3 although it 
does not hold in only special cases. So we give useful criteria for condition (H2) below. They 
are extensively used in our proofs of the main theorems in sections 4 and 5. We begin with the 
following lemma.

Lemma 3.5.  If condition (H2) does not hold, i.e. θk(ξ)/Ω(ξ)
k−1 ∈ C(ξ), for k � 2, then 

there exist C3 ( �= 0) ∈ C, n ∈ Z�0 := N ∪ {0}, aj ∈ Z \ {0} and ξj ∈ C, j = 1, . . . , n, with 
ξj �= ξ� for j �= � , such that

κk(ξ) =
C3κ̂k(ξ)

κ1d(ξ)
∏n

j=1(ξ − ξj)aj+1 ,� (3.7)
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where

κ̂k(ξ) = (k − 1)κ1n(ξ)

n∏
j=1

(ξ − ξj)− κ1d(ξ)

n∑
j=1

aj

∏
��=j

(ξ − ξ�).� (3.8)

In particular, if n  =  0, then equation (3.7) reduces to κk(ξ) = C3κ1(ξ).

Proof.  Let w(ξ) = θ′k(ξ)/θk(ξ) as in the proof of lemma 3.2. We easily have

θk(ξ) = C3 exp

(∫
w(ξ)dξ

)

for some constant C3 �= 0. Hence,

θ′k(ξ) = C3w(ξ) exp
(∫

w(ξ)dξ
)

.� (3.9)

On the other hand, by (3.5)

θ′k(ξ) = κk(ξ)Ω(ξ)
k−1 = κk(ξ) exp

(
(k − 1)

∫
κ1(ξ)dξ

)
.� (3.10)

Assume that condition (H2) does not hold. Then w(ξ) = κk(ξ)Ω(ξ)
k−1/θk(ξ) is rational. 

Comparing (3.9) and (3.10), we cannot conclude that w(ξ) = (k − 1)κ1(ξ) but obtain

w(ξ) = (k − 1)κ1(ξ)−
n∑

j=1

aj

ξ − ξj
= C−1

3 κk(ξ)
n∏

j=1

(ξ − ξj)
aj

where n ∈ Z�0, aj ∈ Z \ {0} and ξj ∈ C, j = 1, . . . , n, with ξj �= ξ� for j �= � , since 
κ1(ξ),κk(ξ), w(ξ) ∈ C(ξ). This yields the desired result.� □ 

This lemma means that κk(ξ) has the very special form (3.7) with (3.8) if condition (H2) 
does not hold, and it is useful to determine whether condition (H2) holds. It is clear that the 
polynomial κ̂k(ξ) has a zero at ξ = ξj if κ1d(ξj) = 0, and κ̂k(ξj) �= 0 otherwise. For k � 2, we 
write

κkd(ξ) = κ1d(ξ)

n1∏
j=1

(ξ − ξ1j)
a1j

nk∏
j=1

(ξ − ξkj)
akj ,� (3.11)

where n� ∈ Z�0, ξ�j ∈ C and a�j ∈ Z \ {0}, j = 1, . . . , n�, if n� > 0 for � = 1, k , such that 
ξ1j is a root of κ1d(ξ) but ξkj is not, and ξ�j1 �= ξ�j2 if j1 �= j2. Note that akj  >  0, j = 1, . . . , nk, 
and a1j � −b1j but a1j �= 0, j = 1, . . . , n1, if nk and n1, respectively, are positive, where b1j  
is the multiplicity of the zero ξ1j for κ1d(ξ), since κkd(ξ) is a polynomial and κ1d(ξkj) �= 0, 
j = 1, . . . , nk. When n1  >  0, let

κ̄kb(ξ) = (k − 1)κ1n(ξ)

n1∏
j=1

(ξ − ξ1j)− κ1d(ξ)

n1∑
j=1

(a1j + bj − 1)
∏
��=j

(ξ − ξ1�),

� (3.12)
where b = (b1, . . . , bn1) with bj ∈ N, j = 1, . . . .n1. Obviously, κ̄kb(ξ) has a zero at ξ = ξ1j like 
κ̂k(ξ) by κ1d(ξ1j) = 0. We see that if b1j   >  1, i.e. the zero ξ1j is not simple for κ1d(ξ), then it is 
simple for κ̄kb(ξ) with any b ∈ Nn1, since κ1n(ξ1j) �= 0.
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Lemma 3.6.  Suppose that condition (H2) does not hold and n1  >  0, and fix j ∈ {1, . . . , n1}.

	 (i)	�If the zero ξ1j is not simple for κ̄kb0(ξ) with some b0 ∈ Nn1, then it is simple for κ1d(ξ) and 
κ̄kb(ξ) with bj �= bj0, where bj 0 is the j th element of b0 for j = 1, . . . , n1.

	(ii)	�If the zero ξ1j is simple for κ̄kb0(ξ) with some b0 ∈ Nn1, then so is it for κ̄kb(ξ) with bj = bj0.

Proof.  Assume that the zero ξ1j of κ̄kb0(ξ) is not simple. Then the zero ξ1j is simple for 
κ1d(ξ), i.e. b1j   =  1, or else it is simple for κ̄kb0(ξ) as stated above. Hence, if bj �= bj0, then the 
zero ξ1j is simple for

κ̄kb(ξ) = κ̄kb0(ξ)− κ1d(ξ)

n1∑
m=1

(bm − bm0)
∏
��=m

(ξ − ξ1�),� (3.13)

since it is a simple zero of the second term. Thus, we obtain part (i).
We next assume that the zero ξ1j is simple for κ̄kb0(ξ). As easily seen, if bj = bj0, then 

ξ = ξ1j is at least a double zero of the second term in (3.13). This means part (ii).� □ 
Define the polynomial

ρk(ξ) =(k − 1)κ1n(ξ)

nk∏
j=1

(ξ − ξkj)− κ1d(ξ)

nk∑
j=1

(akj − 1)
∏
��=j

(ξ − ξk�)

−
κ1d(ξ)

∏nk
j=1(ξ − ξ1k)∏n1

j=1(ξ − ξ1j)

n1∑
j=1

a1j

∏
��=j

(ξ − ξ1�).

�

(3.14)

Let ρ̄k(ξ) and ρ̃k(ξ) be the quotient and remainder, respectively, when κkn(ξ) is divided by 
ρk(ξ). So κkn(ξ) = ρ̄k(ξ)ρk(ξ) + ρ̃k(ξ). Let n̄ ∈ Z�0 be the number of distinct roots of ρ̄k(ξ), 
and let ξ̄j ∈ C and āj ∈ N, j = 1, . . . , n̄, denote its roots and multiplicities, respectively, if 
n̄ � 1:

ρ̄k(ξ) = C̄
n̄∏

j=1

(ξ − ξ̄j)
āj ,� (3.15)

where C̄ ∈ C is a nonzero constant. If deg(κkn) � deg(ρk), then we set n̄ = 0 and ρ̄k(ξ) ≡ C̄0, 
where C̄0 ∈ C is a constant which may be zero. We also consider the first-order differential equation


κ1d(ξ)

nk∏
j=1

(ξ − ξkj)


 z′ + ρk(ξ)z = κkn(ξ).� (3.16)

Let ρk0 be the leading coefficient of ρk(ξ) and let κ̄k(ξ) = κ̄kb(ξ) with b = (1, . . . , 1) ∈ Nn1, 
i.e.

κ̄k(ξ) = (k − 1)κ1n(ξ)

n1∏
j=1

(ξ − ξ1j)− κ1d(ξ)

n1∑
j=1

a1j

∏
��=j

(ξ − ξ1�).

Using lemmas 3.5 and 3.6, we obtain some effective criteria for condition (H2) as follows.

Proposition 3.7.  Let k � 2. Suppose that κ1n(ξ),κkn(ξ) �≡ 0 and κkn(ξ1j) �= 0, 
j = 1, . . . , n1. If one of the following conditions holds, then condition (H2) holds.

	 (i)	�akj  =  1 for some j = 1, . . . , nk;
	(ii)	�For each j = 1, . . . , n1, the zero ξ1j is not simple for κ̄k(ξ) or simple for κ̄kb(ξ) with some 

b ∈ Nn1 for each bj ∈ N.
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Moreover, if n1  >  0, then assume that for j = 1, . . . , n1 the zero ξ1j of κ̄kb(ξ) is simple when 
bj   >  1. If one of the following conditions holds, then condition (H2) holds:

	(iii)	�Equation (3.16) does not have a polynomial solution that has no root at ξ = ξ1j and ξk� 
for any j = 1, . . . , n1 and � = 1, . . . , nk;

	(iv)	�n = 0,

	(iva)	�ρk(ξ) ≡ 0 or ρ̃k(ξ) �≡ 0;
	and (ivb) � deg(κ1d) + nk �= deg(ρk) + 1 or −ρk0 /∈ N;

	 (v)	�n > 0 and deg(κ1d) + nk > max(deg(κkn), deg(ρk) + 1);
	(vi)	�n > 0, deg(κ1d) + nk < deg(ρk)− deg(ρ̄k) + 1 and

	(via)	�ρk(ξ) has a root at ξ = ξ1j or ξk� for some j = 1, . . . , n1 or � = 1, . . . , nk;
	or (vib) � ρk(ξ) �≡ κ1d(ξ)ρ̄

′
k(ξ)

∏nk
j=1(ξ − ξkj).

Recall that n1, nk, ξ1j, ξkj were defined in (3.11) and n̄ is the number of distinct roots of 
ρ̄k(ξ).

Proof.  Assume that κ1n(ξ),κkn(ξ) �≡ 0, κkn(ξ1j) �= 0 and condition (H2) does not hold. Then 
by lemma 3.5 equation (3.7) holds for n ∈ Z�0, aj ∈ Z \ {0} and ξj ∈ C, j = 1, . . . , n, with 
ξj �= ξ� for j �= � . Comparing (3.7) and (3.11) and noting that κkn(ξ1j) �= 0 for j = 1, . . . , n1, 
we can take

ξj = ξ1j for 1 � j � n1,
ξj+n1 = ξkj, aj+n1 = akj − 1 � 1 for 1 � j � nk,

ξj+n1+nk = ξ̂j, aj+n1+nk + 1 � 0 for 1 � j < n̂ = n − n1 − nk,
� (3.17)

where ξ̂j ∈ C, j = 1, . . . , n̂, such that ξ̂j �= ξ1�1 , ξk�k  for any �1 = 1, . . . , n1 and 
�k = 1, . . . , nk. Here we have used the fact that κ̂k(ξ),κ1d(ξ) �= 0 at ξ = ξkj and ξ̂� for 
j = 1, . . . , nk and � = 1, . . . , n̂. If n1  =  0 or nk  =  0, then the corresponding relation in (3.17) 
is ignored. In particular, akj � 2, j = 1, . . . , nk. So condition (i) does not occur.

Assume that n1  >  0. Since κkn(ξ1j) �= 0, one has a1j � 1 for j = 1, . . . , n1. Let 
âj = −aj+n1+nk � 1 for j = 1, . . . , n̂, and let b̂j ∈ N be the multiplicity of the zero ξ1j of κ̂k(ξ) 
for j = 1, . . . , n1. Again, via (3.7) and (3.11),

aj = a1j + b̂j − 1 � 1, 1 � j � n1,

so that equation (3.8) becomes

κ̂k(ξ) =

nk∏
j=1

(ξ − ξkj)
n̂∏

j=1

(ξ − ξ̂j)

(
(k − 1)κ1n(ξ)

n1∏
j=1

(ξ − ξ1j)

− κ1d(ξ)

n1∑
j=1

(a1j + b̂j − 1)
∏
��=j

(ξ − ξ1�)

)

− κ1d(ξ)

n1∏
j=1

(ξ − ξ1j)

( n̂∏
j=1

(ξ − ξ̂j)

nk∑
j=1

(akj − 1)
∏
��=j

(ξ − ξk�)

−
nk∏

j=1

(ξ − ξkj)
n̂∑

j=1

âj

∏
��=j

(ξ − ξk�)

)
.

�

(3.18)
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Suppose that condition (ii) holds. Then it follows from lemma 3.6 that the zeros ξ1j of 
κ̄kb(ξ), j = 1, . . . , n1, are all simple for b �= (1, . . . , 1) ∈ Nn1 although it may be simple even 
for b = (1, . . . , 1). Hence, if b̂j > 1 for some j ∈ {1, . . . , n1}, then we see via (3.18) that κ̂k(ξ) 
has a simple zero at ξ = ξ1j, since so does

κ̄kb̂(ξ) = (k − 1)κ1n(ξ)

n1∏
j=1

(ξ − ξ1j)− κ1d(ξ)

n1∑
j=1

(a1j + b̂j − 1)
∏
��=j

(ξ − ξ1�)

with b̂ = (b̂1, . . . , b̂n1) as well as κ1d(ξ1j) = 0. This yields a contradiction, so that b̂j = 1, i.e. 
κ̂k(ξ) has a simple zero at ξ = ξ1j for j = 1, . . . , n1. Let b̂j = 1, j = 1, . . . , n1, in (3.18). Then 
the zeros ξ = ξ1j, j = 1, . . . , n1, are all simple for κ̄k(ξ) since they are not simple for κ̂k(ξ) if 
not. Thus, condition (ii) does not occur.

We now assume that n1  >  0 and κ̄kb(ξ) has a simple zero at ξ = ξ1j if bj   >  1. From the 
above argument we see that for j = 1, . . . , n1 the zero ξ = ξ1j of κ̂k(ξ) is simple, i.e. b̂j = 1, so 
that aj = a1j �= 0. Using (3.7) and (3.17), we have

κkn(ξ) =
C3κ̂k(ξ)

∏n̂
j=1(ξ − ξ̂j)

âj−1

∏n1
j=1(ξ − ξ1j)

.

Substituting (3.8) into the above equation and using (3.14), we obtain

κkn(ξ) =C3

(
(k − 1)κ1n(ξ)

nk∏
j=1

(ξ − ξkj)

n̂∏
j=1

(ξ − ξ̂j)
âj

− κ1d(ξ)∏n1
j=1(ξ − ξ1j)

nk∏
j=1

(ξ − ξkj)

n̂∏
j=1

(ξ − ξ̂j)
âj

n1∑
j=1

a1j

∏
��=j

(ξ − ξ1�)

− κ1d(ξ)

( n̂∏
j=1

(ξ − ξ̂j)
âj

nk∑
j=1

(akj − 1)
∏
��=j

(ξ − ξk�)

−
nk∏

j=1

(ξ − ξkj)

n̂∏
j=1

(ξ − ξ̂�)
âj−1

n̂∑
j=1

âj

∏
��=j

(ξ − ξ̂�)

))

=ρk(ξ)ρ̂k(ξ) + ρ̂′k(ξ)κ1d(ξ)

nk∏
j=1

(ξ − ξkj)

�

(3.19)

where

ρ̂k(ξ) = C3

n̂∏
j=1

(ξ − ξ̂j)
âj .� (3.20)

Recall that âj = −aj+n1+nk, j = 1, . . . , n̂. We easily see that equation  (3.19) holds even if 
n1  =  0. Thus, ρ̂k(ξ) is a polynomial solution to (3.16), so that condition (iii) does not occur.

It remains to show that conditions (iv)–(vi) do not occur when condition (H2) does not hold 
under our other assumptions. The expression (3.19) gives a key for our proofs of the remaining 
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parts. Recall that n̄ and n̂ are, respectively, the numbers of distinct roots of ρ̄k(ξ) and ρ̂k(ξ). We 
need the following lemma.

Lemma 3.8. 

	 (i)	�If n̄ > 0, then n̂ > 0.
	(ii)	�If n̄ = 0 and one of the following conditions holds, then n̂ = 0:

		 (iia)	�deg(κ1d) + nk �= deg(ρk) + 1;
		 (iib)	�−ρk0 /∈ N.

Proof. Suppose that n̄ > 0. Then deg(κkn) > deg(ρk). However, if n̂ = 0, then the degree 
of the right hand side in (3.19) is deg(ρk). This is a contradiction. Thus, we obtain part (i).

Suppose that ̄n = 0. Then deg(κkn) � deg(ρk). If ̂n > 0 and deg(κ1d) + nk �= deg(ρk) + 1, 
then the degree of the right hand side in (3.19) becomes

deg(κ1d) + nk + deg(ρ̂k)− 1 or deg(ρk) + deg(ρ̂k),

depending on whether deg(κ1d) + nk > deg(ρk) + 1 or not, so that deg(κkn) > deg(ρk) for 
both cases. On the other hand, if n̂ > 0, −ρk0 /∈ N and deg(κ1d) + nk = deg(ρk) + 1, then the 
leading coefficient of the right hand side in (3.19) is

C3(ρk0 + deg(ρ̂k)) �= 0,

so that its degree becomes deg(ρk) + deg(ρ̂k) > deg(ρk). Thus, we have a contradiction if 
condition (iia) or (iib) holds. So we obtain part (ii).� □ 

We return to the proof of proposition 3.7. Suppose that n̄ > 0 and

deg(κ1d) + nk < deg(ρk)− deg(ρ̄k) + 1.

Then we have

deg(ρk) > deg(κ1d) + nk − 1,

so that deg(κkn) = deg(ρk) + deg(ρ̂k) by (3.19). Moreover, by lemma 3.8(i), n̂ > 0 and 
consequently deg(ρ̂k) > 0. Since deg(κkn) = deg(ρk) + deg(ρ̄k) by definition, we have 
deg(ρ̄k) = deg(ρ̂k), so that

deg(κ1d) + deg(ρ̂k) + nk − 1 < deg(ρk).

Hence, it follows from (3.19) that when κkn(ξ) is divided by ρk(ξ), the quotient ρ̄k(ξ) �≡ 0 
is equivalent to ρ̂k(ξ) and given by (3.15) with C̄ = C3, ξ̄j = ξ̂j, āj = âj and n̄ = n̂, and the 
remainder becomes

ρ̃k(ξ) = κ1d(ξ)ρ̄
′
k(ξ)

nk∏
j=1

(ξ − ξkj).

Thus, condition (vi) does not occur.
If n̄ = 0 and condition (ivb) holds, then by lemma 3.8(ii) n̂ = 0, so that by (3.19) 

ρ̄k(ξ) ≡ C3 �= 0 and ρ̃k(ξ) ≡ 0, i.e. condition (iva) does not hold. Hence, condition (iv) does 
not occur. If n̄ > 0 and deg(κ1d) + nk > deg(ρk) + 1, then by (3.19)

deg(κkn) � deg(κ1d) + nk

since n̂ > 0 by lemma 3.8(i). Hence, condition (v) does not occur. We complete the proof.� □
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Remark 3.9.  Suppose that κ1n(ξ),κkn(ξ) �≡ 0; κkn(ξ1j) �= 0, akj � 2 and the zero ξ1j of 
κ̄kb(ξ) is simple when bj   >  1 for j = 1, . . . , n1; and equation  (3.16) has a polynomial so-
lution of the form (3.20) such that ξ̂j �= ξ1�1 , ξk�k  for any j = 1, . . . , n̄, �1 = 1, . . . , n1 and 
�k = 1, . . . , nk. Then from the above proof we see that

θ′k(ξ)

θk(ξ)
= (k − 1)κ1(ξ)−

n1∑
j=1

a1j

ξ − ξ1j
−

nk∑
j=1

akj − 1
ξ − ξkj

+
n̂∑

j=1

âj

ξ − ξ̂j
∈ C(ξ).

Obviously, condition (H2) does not hold.

4.  Proof of theorem 1.3

We begin with theorem 1.3 for the unfolding (1.1) of fold-Hopf bifurcations.

Proof of theorem 1.3.  Based on corollary 2.3, we prove the meromorphic nonintegrability 
of (1.6) near the x3-plane. We set ξ = x3 and η = r and apply theorem 3.3 to (1.6) with assis-
tance of proposition 3.7. Hence, we only have to check deg(κ1d) > deg(κ1n), condition (H1) 
and the hypotheses of proposition 3.7.

Equation (3.2) becomes

r′ =
r(αx3 + ν)

x2
3 + sr2 + µ

,� (4.1)

where the prime represents differentiation with respect to x3. We take r  =  0 as the integral 
curve, i.e. ϕ(x3) = 0, and compute (3.3) as

κ2j−1(x3) = (2j − 1)!
(−s) j−1(αx3 + ν)

(x2
3 + µ) j

, κ2j(x3) = 0, j ∈ N.� (4.2)

Recall that s = ±1.
We first consider the case of µ �= 0. In addition, assume that α �∈ Q or ν/

√
−µ �∈ Q. Re-

placing r, x3 and ν  with 
√
−µ r, 

√
−µ x3 and 

√
−µ ν, respectively, we take µ = −1 and have 

α or ν �∈ Q. From (4.2) we easily see that deg(κ1d) > deg(κ1n) and compute

Ω(x3) = exp

(∫
αx3 + ν

x2
3 − 1

dx3

)
= (x3 + 1)(α−ν)/2(x3 − 1)(α+ν)/2,

so that condition (H1) holds since α− ν �∈ Q or α+ ν �∈ Q. We now only have to check the 
hypotheses of proposition 3.7.

Let k  =  2j   −  1 for j � 2. Assume that α �= ±ν. Then by (4.2)

κ1n(x3) = αx3 + ν �≡ 0, κ2j−1,n(x3) = (2j − 1)!(−s) j−1(αx3 + ν) �≡ 0,

κ1d(x3) = (x3 + 1)(x3 − 1), κ2j−1,d(x3) = κ1d(x3)(x3 + 1) j−1(x3 − 1) j−1,

from which n1  =  2, ξ11 = −1, ξ12 = 1, a11 = a12 = j − 1 and n2j −1  =  0. We compute (3.12) as

κ̄2j−1,b(x3) = (x3 + 1)(x3 − 1)((2( j − 1)(α− 1)− b1 − b2 + 2)x3 + 2( j − 1)ν + b1 − b2),
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where b = (b1, b2) ∈ N2. If and only if

α− ν �= b1 − 1
j − 1

+ 1
(

resp. α+ ν �= b2 − 1
j − 1

+ 1
)

,� (4.3)

then the zero x3  =  −1 (resp. x3  =  1) is simple for κ̄2j−1,b(x3). Hence, if α = ν + 1 and 
α = −ν + 1, respectively, then the zeros x3  =  −1 and x3  =  1 of κ̄2j−1(x3) are double as well 
as the zeros x3  =  1 and x3  =  −1 of κ̄2j−1,b(x3) are simple for any b ∈ N2. Thus, condition (ii) 
of proposition 3.7 holds when α = ν + 1 or − ν + 1.

Additionally, suppose that α �= ±ν + 1. Then for some j   >  1 both conditions in (4.3) hold, 
so that the zeros x3 = ±1 of κ̄2j−1,b(ξ) are simple for any b ∈ N2 even if α or ν ∈ Q. Equa-
tion (3.14) becomes

ρ2j−1(x3) = 2( j − 1)((α− 1)x3 + ν).

We see that n̄ = 0, deg(κ1d) + n2j−1 = deg(ρ2j−1) + 1 = 2 and

ρ̄2j−1(x3) =
(2j − 1)!(−s) j−1α

2( j − 1)(α− 1)
, ρ̃2j−1(x3) = − (2j − 1)!(−s) j−1ν

α− 1

if α �= 1, and that n̄ = 1 and

deg(κ1d) + n2j−1 = 2 > max(deg(κ2j−1,n), deg(ρ2j−1) + 1) = 1

if α = 1. So condition (iv) or (v) of proposition 3.7 holds, depending on whether α �= 1 or not, 
where the condition

−ρ2j−1,0 = −2( j − 1)(α− 1) �∈ N,� (4.4)

which holds for some j   >  1 if 2α− 1 �∈ Z�0, is required as well as ν �= 0 for the former. If 
α ∈ Q, then α± ν �∈ Q, and if α− ν or α+ ν ∈ Q, then α �∈ Q, since α or ν �∈ Q. Hence, if 
2α− 1 /∈ Z�0 and α �= 1, then one can take j   >  1 for which conditions (4.3) and (4.4) hold 
simultaneously.

We next assume that α = ν or −ν and α, ν �= 0. By (4.2)

κ1n(x3) = α �= 0, κ2j−1,n(x3) = (2j − 1)!(−s) j−1α �= 0,

κ1d(x3) = x3 ∓ 1, κ2j−1,d(x3) = κ1d(x3)(x3 + 1) j−1(x3 − 1) j−1,

from which n1  =  1, ξ11 = ±1, a11  =  j   −  1, n2j −1  =  1, ξ2j−1,1 = ∓1 and a2j −1,1  =  j   −  1, where 
the upper and lower signs are taken for α = ν and −ν, respectively. So we see that condition 
(i) of proposition 3.7 holds for j   =  2. Thus we obtain the desired result for µ �= 0.

We turn to the case of µ = 0. Let µ = 0 and let α �∈ Q or ν �= 0. From (4.2) we easily see 
that deg(κ1d) > deg(κ1n) and compute

Ω(x3) = exp

(∫
αx3 + ν

x2
3

dx3

)
= xα3 e−ν/x3 ,

so that condition (H1) holds. We check the hypotheses of proposition 3.7 for α, ν �= 0.
Let k  =  3. Assume that α, ν �= 0. Then by (4.2)

κ1n(x3) = αx3 + ν �≡ 0, κ3n(x3) = −6s(αx3 + ν),

κ1d(x3) = x2
3, κ3d(x3) = κ1d(x3)x2

3,

from which n1  =  1, ξ11 = 0, a11  =  2 and n3  =  0. We compute (3.12) as
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κ̄3b(ξ) = ((2(α− 1)− b + 1)x3 + ν)x3,

where b ∈ N, so that the zero x3  =  0 is simple for κ̄3b(ξ) with any b ∈ N. Equation (3.14) 
becomes

ρ2j−1(x3) = 2((α− 1)x3 + ν).

We see that n̄ = 0, deg(κ1d) + n3 = deg(ρ3) + 1 = 2 and

ρ̄3(x3) =
−6sα

2(α− 1)
, ρ̃3(x3) =

6sν
α− 1

�≡ 0

if α �= 1, and that n̄ = 1 and

deg(κ1d) + n3 = 2 > max(deg(κ3n), deg(ρ3)) = 1

if α = 1. So condition (iv) or (v) of proposition 3.7 holds, depending on whether α �= 1 or not, 
where condition (4.4) is required for the former. Thus, we complete the proof.� □ 

5.  Proofs of theorems 1.4 and 1.5

We now turn to the unfolding (1.2) of double-Hopf bifurcations and reduce the problem to 
(1.7) based on corollary 2.4, as in section 4. We set (ξ, η) = (r2, r1) or (r1, r2) and apply theo-
rem 3.3 to (1.7) with assistance of proposition 3.7 in a similar way as in the proof of theorem 
1.3. Equation (3.2) becomes

dr1

dr2
=

r1(sr2
1 + αr2

2 + ν)

r2(βr2
1 − r2

2 + µ)
� (5.1)

and

dr2

dr1
=

r2(βr2
1 − r2

2 + µ)

r1(sr2
1 + αr2

2 + ν)
� (5.2)

for (ξ, η) = (r2, r1) and (r1, r2), respectively. Recall that s = ±1.

Proof of theorem 1.4.  We consider (5.1) and take r1  =  0 as the integral curve, i.e. 
ϕ(r2) = 0. We compute (3.3) as

κ1(r2) = − αr2
2 + ν

r2(r2
2 − µ)

, κ2j(r2) = 0,

κ2j+1(r2) = −(2j + 1)!β j−1 (αβ + s)r2
2 + βν − µs

r2(r2
2 − µ) j+1

, j ∈ N.
�

(5.3)

We begin with the case of µ �= 0. Additionally, let α+ ν/µ �∈ Q or ν/µ �∈ Q. Replacing r1, 
r2 and ν  with 

√
µ r1, 

√
µ r2 and µν , respectively, we take µ = 1 and have α+ ν �∈ Q or ν �∈ Q. 

We easily see by (5.3) that deg(κ1d) > deg(κ1n) and compute

Ω(r2) = exp

(∫
− αr2

2 + ν

r2(r2
2 − 1)

dr2

)
= rν2 (r

2
2 − 1)−(α+ν)/2,

so that condition (H1) holds. If ν �∈ Q, α �∈ Z�0 and βν − s, (α+ ν)s − (βν − s) �= 0, then 
α+ ν,β �= 0; α+ ν = 0; or β = 0 and α+ ν �= 0, as well as α, ν �= 0. On the other hand, 
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if α+ ν �∈ Q, α �∈ Z�0 and βν − s, (α+ ν)s − (βν − s) �= 0, then ν,β �= 0; ν = 0 and 
α �= −1; or β = 0, as well as α,α+ ν �= 0. In the following, we check the hypotheses of 
proposition 3.7 separately for α+ ν,α, ν,β,βν − s �= 0, for α+ ν = 0 and ν,βν − s �= 0, 
for ν = 0 and α �= 0, and for β = 0 and α+ ν,α, ν �= 0. Here β may be zero in the second 
and third cases, and βν − s �= 0 also holds in the latter two cases.

Let k  =  2j   +  1 for j � 1. We first assume that α+ ν,α, ν,β,βν − s �= 0. Then by (5.3)

κ1n(r2) = −(αr2
2 + ν), κ2j+1,n(r2) = −(2j + 1)!β j−1((αβ + s)r2

2 + βν − s),

κ1d(r2) = r2(r2 + 1)(r2 − 1), κ2j+1,d(r2) = κ1d(r2)(r2 + 1) j(r2 − 1) j,

from which n1  =  2, ξ11 = −1, ξ2j+1,1 = −1, a11 = a12 = j and n2j +1  =  0, since 
(αβ + s) + (βν − s) = (α+ ν)β �= 0. We also compute (3.12) as

κ̄2j+1,b(r2) = −(r2 + 1)(r2 − 1)((2j(α+ 1) + b1 + b2 − 2)r2
2 − (b1 − b2)r2 + 2jν)

with b = (b1, b2) ∈ N. If and only if

α+ ν �= 1 − b1

j
− 1

(
resp.

1 − b2

j
− 1

)
,� (5.4)

then the zero r2  =  −1 (resp. r2  =  1) is simple for κ̄2j+1,b(r2). Hence, if α+ ν = −1, then the 
zeros r2 = ±1 of κ̄2j+1(r2) are double, so that condition (ii) of proposition 3.7 holds. Note that 
if α+ ν = −1 for ν �∈ Q, then α �∈ Q ⊃ Z�0 and (α+ ν)s − (βν − s) = −βν �= 0.

Suppose that α+ ν �= −1. If α+ ν > −1 or α+ ν + 2 �∈ Z�0, then there exists an integer 
j   >  0 such that both conditions in (5.4) hold, i.e. the zeros r2 = ±1 of κ̄2j+1,b(r2) are simple, 
for any b ∈ N2. Equation (3.14) becomes

ρ2j+1(r2) = −2j((α+ 1)r2
2 + ν).

If α �= −1, then n̄ = 0, deg(κ1d) + n2j+1 = deg(ρ2j+1) + 1 = 3 and

ρ̄2j+1(r2) =
(2j + 1)!β j−1(αβ + s)

2j(α+ 1)
,

ρ̃2j+1(r2) =
(2j + 1)!β j−1((α+ ν)s − (βν − s))

α+ 1
.

If α = −1 and (α+ ν)s − (βν − s) �= 0, i.e. β �= s, then n̄ = 2 and

deg(κ1d) + n2j+1 = 3 > max(deg(κ2j+1,n), deg(ρ2j+1) + 1) = 2.

Noting that (α+ ν)s − (βν − s) = −(α+ ν)(α+ 1)β when αβ + s = 0, we see that condi-
tion (iv) or (v) of proposition 3.7 holds if (α+ ν)s − (βν − s) �= 0, depending on whether 
α �= −1 or not, where the condition

−ρ2j+1,0 = 2j(α+ 1) /∈ N,� (5.5)

which holds for some j ∈ N if 2(α+ 1) /∈ N, is required for the former. Note that if 
2(α+ 1) /∈ N, then conditions (5.4) and (5.5) hold simultaneously for some j ∈ N. Moreover, 
if 2(α+ 1) is a positive odd number, then α /∈ Z�0 and condition (iii) holds for k  =  2j   +  1 
when j   >  0 is an odd number. Actually, if 2j(α+ 1) = 2�− 1, � ∈ N, and equation (3.16) has 
a polynomial solution, then it has the form
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z =
�∑

i=1

zir2i−1
2 , z1, . . . , z� ∈ C,

but never satisfies (3.16) since the left hand side of (3.16) has no even-order monomial. 
Thus, under our present assumptions, condition (H2) holds if α �∈ Z�0, α+ ν + 2 �∈ Z�0 and 
(α+ ν)s − (βν − s) �= 0.

We next assume that ν,βν − s �= 0 but α+ ν = 0. Then α �= 0. By (5.3)

κ1n(r2) = −α, κ2j+1,n(r2) = (2j + 1)!β j−1(βν − s),

κ1d(r2) = r2, κ2j+1,d(r2) = κ1d(r2)(r2 + 1) j(r2 − 1) j,

from which n2j +1  =  2, ξ2j+1,1 = −1, ξ2j+1,1 = 1, a2j+1,1 = a2j+1,2 = j and n1  =  0. Since 
βν − s �= 0, we have κ2j+1,n(r2) �≡ 0 and condition (i) of proposition 3.7 holds for j   =  1 even 
if β = 0.

We next assume that α �= 0 but ν = 0. Then (α+ ν)s − (βν − s) = (α+ 1)s. If β �= 0, 
then by (5.3)

κ1n(r2) = −αr2, κ2j+1,n(r2) = −(2j + 1)!β j−1((αβ + s)r2
2 − s),

κ1d(r2) = (r2 + 1)(r2 − 1), κ2j+1,d(r2) = κ1d(r2)r2(r2 + 1) j(r2 − 1) j,

from which n1  =  2, ξ11 = −1, ξ12 = 1, a11 = a12 = j, n2j +1  =  1, ξ2j+1,1 = 0 and a2j +1,1  =  1, 
so that condition (i) of proposition 3.7 holds. If β = 0, then

κ1n(r2) = −αr2, κ3n(r2) = −6s,
κ1d(r2) = (r2 + 1)(r2 − 1), κ3d(r2) = κ1d(r2)r2,

from which n3  =  1, ξ31 = 0, a31  =  1 and n1  =  0, so that condition (i) of proposition 3.7 holds. 
Note that κ2j+1,n(r2) ≡ 0 for j   >  1 when β = 0.

We finally assume that α+ ν,α, ν �= 0 but β = 0. By (5.3)

κ1n(r2) = −(αr2
2 + ν), κ3n(r2) = −6s,

κ1d(r2) = r2(r2 + 1)(r2 − 1), κ3d(r2) = κ1d(r2),

from which n1 = n3 = 0. Equation (3.14) becomes

ρ3(r2) = −2(αr2
2 + ν).

If 2α /∈ N, then n̄ = 0, ρ̄3(r2) ≡ 0, ρ̃3(r2) ≡ −6s �= 0 and −ρ30 = 2α /∈ N, so that condition 
(iv) of proposition 3.7 holds. Note that deg(κ1d) + n3 = deg(ρ3) + 1 = 3. Moreover, if 2α is 
a positive odd number, then α /∈ Z�0 and condition (iii) of proposition 3.7 holds for k  =  3, as 
in the above argument for the first case with α+ ν �= −1. Thus, we obtain the desired result 
for µ �= 0.

We turn to the case of µ = 0. Let µ = 0 and let α �∈ Q or ν �= 0. We easily see by (5.3) that 
deg(κ1d) > deg(κ1n) and compute

Ω(r2) = exp

(∫
αr2

2 + ν

r3
2

dr2

)
= rα2 e−ν/2r2

2 ,

so that condition (H1) holds. We check the hypotheses of proposition 3.7 for α,β, ν �= 0 and 
for β = 0 and α, ν �= 0.
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Let k  =  3. Assume that α,β, ν �= 0. Then by (5.3)

κ1n(r2) = −(αr2
2 + ν), κ3n(r2) = −6((αβ + s)r2

2 + βν),

κ1d(r2) = r3
2, κ3d(r2) = κ1d(r2)r2

2,

from which n1  =  1, ξ11 = 0, a11  =  2 and n3  =  0. Equations (3.12) and (3.14) become

κ̄3b(r2) = −r2((2(α+ 1) + b − 1)r2
2 + 2ν), ρ3(r2) = −2((α+ 1)r2

2 + ν),

where b ∈ N. The zero r2  =  0 of κ̄3b(r2) is simple for any b ∈ N. Suppose that α �= −1. Then 
deg(κ1d) + n3 = deg(ρ3) + 1 = 3. If αβ + s �= 0, then n̄ = 0 and

ρ̄3(r2) =
3(αβ + s)
(α+ 1)

, ρ̃3(r2) =
6(β − s)
α+ 1

,

and if αβ + s = 0, then n̄ = 0, ρ̄3(r2) ≡ 0 and ρ̃3(r2) ≡ −6βν �= 0. On the other hand, sup-
pose that α = −1. If αβ + s = −(β − s) �= 0, then n̄ = 2 and

deg(κ1d) + n2j+1 = 3 > max(deg(κ2j+1,n), deg(ρ2j+1) + 1) = 2.

Thus, we see that condition (iv) or (v) of proposition 3.7 holds if β �= s, depending on whether 
α �= −1 or not, where the condition α �∈ N, which follows from −ρ30 = 2(α+ 1) as in the 
above argument, is required for the former.

We finally assume that α, ν �= 0 but β = 0. By (5.3)

κ1n(r2) = −(αr2
2 + ν), κ3n(r2) = −6s,

κ1d(r2) = r3
2, κ3d(r2) = κ1d(r2),

from which n1 = n2j+1 = 0. Equation (3.14) becomes

ρ3(r2) = −2(αr2
2 + ν),

so that n̄ = 0, deg(κ1d) + n2j+1 = deg(ρ2j+1) + 1 = 3 and

ρ̄3(r2) ≡ 0, ρ̃3(r2) ≡ −6s �= 0.

Hence, then conditions (iv) and (iii) of proposition 3.7 holds if −ρ30 = 2α �∈ N and 2α is an 
odd number, respectively. Thus, we complete the proof.� □ 

Proof of theorem 1.5.  We consider (5.2) and take r2  =  0 as the integral curve, i.e. 
ϕ(r1) = 0. Replacing r1 with 

√
−s r1, we rewrite (5.2) as

dr2

dr1
=

r2(−r2
2 − βsr2

1 + µ)

r1(αr2
2 − r2

1 + ν)
,� (5.6)

which has the form of (5.1) with s  =  −1. Applying theorem 1.4 to (5.6), we easily obtain the 
desired result.� □ 
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