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Abstract
Muonic molecular ions 6Li3+dμ and 7Li3+dμ are studied numerically. Using the complex
coordinate rotation method we found six rotational states (three for each isotope), which are
resonant states with the life-time of an order of picoseconds. These molecular systems may be of
interest for studying low-energy fusion reactions. A key quantity, Y 0 2∣ ( )∣ , the wave function
squared at the coalescence point of the nuclei is calculated for S states for both isotopes with a
precision better than 3%.
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1. Introduction

Low-energy interactions between atomic nuclei are of great
importance, they provide valuable information on the
nucleon–nucleon interaction [1], are used as input data in
astrophysics and cosmology [2, 3], light nuclear reactions are
involved in the primordial nucleosynthesis, the 7Li abundance
observed from halo dwarf stars presents a definite discrepancy
with our knowledge on the nuclear rates [4]. Very promising
physics of fast monoenergetic neutron sources is expected in
the laser-driven d+7Li reactions:

+  + +d nLi Be 15.03 MeV, 17 8 ( )

at keV energies [5].
Nucleus–nucleus collision data are not much available at

energies below the keV region [6]. At the same time nuclear
reactions occurring inside the stellar objects proceed dom-
inantly with these low energies. On the other hand when nuclei
are confined in a small molecular objects like muonic mole-
cules [7], the fusion reaction rate may be measured with

confident precision. In this case, the rate is proportional to the
probability density of two nuclei to be inside the fusion region:
Y 0 2∣ ( )∣ . The latter quantity may be obtained from ab initio
calculations of the nonrelativistic Schrödinger equation for this
molecule and then may be used in the experimental studies to
extract a proper astrophysical S-factor for this reaction.

In this paper we want to present precise numerical cal-
culations of the 6Lidμ and 7Lidμ quasibound states, which
may be of use for the study of the low energy reactions.
Existence of these states may be explained using the adiabatic
approximation. Figure 1 qualitatively illustrates the spectrum
of the considered system. The 3dσ potential in the separated
atom limit represents a cluster: dμ(nd=1)+Li3+ and is
attractive due to polarization effects. This potential allows for
bound states. Here nd and nLi are the principal quantum
numbers of a state of the muonic hydrogen-like deuterium
atom and lithium ion, respectively. Other adiabatic states,
which are below the 3dσ, converge to the cluster:
d+Li3+μ(nLi) with the principal quantum numbers nLi=1,
2 for the muonic lithium ion and are repulsive. Thus we have
four open channels below the dμ(nd=1) threshold and the
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bound states associated with the 3dσ potential. Due to non-
adiabatic coupling the adiabatic states become quasibound.

2. Variational expansion and the CCR method

The system of interest consists of three particles, a negative
muon of mass mμ and two nuclei of massesMa andMb, where
a, hereafter, stands for a lithium nucleus and b for the
deuteron. The Hamiltonian (in muonic atomic units:

= = =me m 1∣ ∣ ), after separating the center of mass
motion, can be written as

m m
=- D - D -  

- - + º +

H

r r R
T V

1

2

1

2

3 1 3
, 2

r r r r
1 2

1 2

1 2 1 2·

( )

where r1 and r2 are the vectors towards the muon from the
two nuclei, R denotes the distance between the nuclei, and
μi=mμMi/(mμ+Mi) are the reduced masses of the
respective muonic atoms (i=1, 2).

In order to solve the three-body Coulomb problem for a
quasibound state, we employ the Complex Coordinate Rota-
tion (CCR) method which has been successfully used in
atomic physics for studying properties of resonant states (see,
for example [8, 9], and references therein). The advantage of
this approach is that it has a rigorous mathematical back-
ground [10, 11].

The resonant state is defined as the solution of the
eigenvalue problem

q q q q- Y = =q
-H E H U HU0, , 3res

1( ( ) ) ( ) ( ) ( ) ( )

for the Hamiltonian H(θ) depended on dilation parameter θ.
This parameter scales all the coordinates of the system: rije

θ,
and for many known interactions, V(θ) is an analytical

function of θ and may be analytically continued into the
complex plane [12] (see section 13.10). Such a transformation
has a great computational advantage for systems with Cou-
lomb interactions [8, 9]. The kinetic and potential parts
transforms as q-exp 2( ) and q-exp( ), respectively, and the
Hamiltonian can be written as

q = +q q- -H Te Ve . 42( ) ( )
The continuum spectrum of H(θ) is rotated on the complex
plane around branch points (‘thresholds’) to ‘uncover’ reso-
nant poles situated on the unphysical sheet of the Reimann
surface in accordance with the Aguilar–Balslev–Combes
theorem [10]. The eigenfunction Ψθ obtained from
equation (3), is square-integrable and the corresponding
complex eigenvalue Eres=Er−iΓ/2 defines the energy Er

and the width of the resonance, Γ, the latter is being related to
the Auger rate as λA=Γ/ÿ.

In our numerical calculations we use the variational
method based on exponential expansion with randomly gen-
erated complex parameters. This approach has been devel-
oped in a variety of works [13–15]. Details and particular
strategy of choice of the variational nonlinear parameters and
construction of the basis sets that have been adopted in the
present calculations can be found in [16].

Briefly, the wave function for a state with a total orbital
angular momentum L and of a total spatial parity π=(−1)L

is expanded as follows (r2=r1−R):

å

å

Y =

=

+

p p

p a b g

a b g

+ =

=

- - -

- - -

 G R r r

G R r r C e

D e

R r R r, , , , ,

, , Re

Im , 5

LM
l l L

LM
l l

l l
L

l l
L

k

N

k
R r r

k
R r r

1 1 1 2

1 2
1

k k k

k k k

1 2

1 2
1 2

1 2
1 2

1 2

( ) ( ) ( )

( ) { [ ]

[ ]} ( )

where  R r,LM
l l

1
1 2 ( ) are the solid bipolar harmonics defined as

in [17],

= Ä R r Y YR r, ,LM
l l l l

l l LM1 1
1 2 1 2

1 2( ) { }

and the complex parameters, α, β, γ, are generated in a
pseudorandom manner [15, 18]:

a = + - +
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where x⌊ ⌋designates the fractional part of x, pα and qα are some
prime numbers, and [A1, A2] and [ ¢A1 , ¢A2] are real variational
intervals, which need to be optimized. Parameters βk and γk are
obtained in a similar way. When exponents αk, βk, and γk are
real, the method reveals slow convergence for molecular type
Coulomb systems. Thus the use of complex exponents allows to
reproduce the oscillatory behavior of the vibrational part of the
wave function and to improve convergence [15, 16].

The exact eigenvalues do not depend on the rotating
parameter θ, still when one has a numerical approximation
with the finite basis set one may expect only approximate
eigenvalues which, therefore, have such dependence. In this

Figure 1. Adiabatic potentials, = +W R R Z Z Rel el 1 2( ) ( ) , for
Z1=3 and Z2=1.  Rel( ) is the electron energy in the two-center
Born–Oppenheimer approximation. Inset is the 3dσ adiabatic
potential, which is responsible for existence of quasibound states.
The potential curves were calculated by us using the variational
approximation based on the spheroidal coordinates for the Coulomb
two-center problem.
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case, the resonance positions and widths are deduced from the
condition that a discrete complex eigenvalue is stabilized, i.e.

q
¶
¶

=
E

0, 7res ( )

with respect to variations of the complex dilation parameter
θ [19].

3. Results

To solve equation (3) numerically, the inverse iteration
method adapted to symmetric complex matrices has been
employed. This method is very efficient in computational
time and stable to round-off errors. To get the energy position
and width of resonant states of interest we use trial wave
functions with up to 7500 terms. An illustration of particular
calculations for the P state in 6Li3+dμ ion is shown on
figure 2. Taking the stationary point of the rotational
paths one gets parameters of the resonance: Er=
−13.568 077 29 eV and Γ/2=0.008 178 51 eV. Er is reck-
oned from the dμ(nd=1)+ 6Li3+ threshold energy. Other
results of our calculations are summarized in table 1. For the
states of L=0, 1 the numerical precision obtained corre-
sponds to a number of digits indicated in the table, while in
case of L=2 state we show in parentheses the error bars,

which were obtained by studying the convergence. Error bars
for the imaginary part are the same, since we define
numerically an eigenvalue as a point on the complex plain.

For the nuclear fusion reactions, which may occur from
these states, a key quantity is Y 0 2∣ ( )∣ , the squared amplitude
of the wave function at the coalescence point of two nuclei.
For the CCR formalism, the analytically dependent quantity is
Ψ2(0),

òY = Yq q dr r0 0, , 82 2( ) [ ( )] ( )

and this quantity may be calculated in the same way as the
energy: it becomes stationary when the variational wave
function solution approaches the exact wave function of the
system. In case of exact solution, Yq 02( ) is a constant function
of rotational angle j=Im[θ] and may be extrapolated to
j→0, to the real axis. In this way we get the following data
for Ψ2(0) for the S-state in 6Li3+dμ ion:

Y = - - ´ -i0 3.0 1 1.2 1 10 mau,2 19( ) [ ( ) ( )]

and

Y = - - ´ -i0 1.03 3 1.07 3 10 mau,2 19( ) [ ( ) ( )]

for the S-state in 7Li3+dμ ion. The corresponding values for
the physical quantity are:

mY = ´ - - d0 1.9 1 10 fm , for Li ,2 26 3 6∣ ( )∣ ( )

and

mY = ´ - - d0 8.8 1 10 fm , for Li .2 27 3 7∣ ( )∣ ( )

For the states with total orbital angular momentum L=1, 2
the fusion comes mainly via the P-wave mode and is strongly
suppressed. In these calculations in order to get convergent
results we had to increase the basis set to N=20 000 and use
multiprecision arithmetics with one hundred of decimal digits.

The values of masses adopted in our calculations: +M Li6 3

=10 961.898 2545me, +M Li7 3 =12 786.391 884me, Md=
3670.482 967 85me and mμ=206.768 2826me. The Rydberg
constant as a conversion coefficient to eV was
taken: =¥hcR 13.605 693 009 eV.

4. Conclusion

In conclusion, we want to state that we found six quasibound
states (three states for each isotope) supported by the 3dσ
adiabatic potential in the lithium deuteride muonic molecular
ions, and it is clearly seen from table 1 that the higher rota-
tional states should be unbound. For the first time, the reliable

Figure 2. Rotational paths, energy (Er), and half-width (Γ/2) of the
resonant state 6Li3+dμ(L=1). The three paths with dilatation
parameters (adl=eRe[ θ]): adl=0.99, 1.0, 1.01 and rotational
parameters j=Im[θ]=0.10, 0.11, K, 0.30 were used in
calculations.

Table 1. Complex CCR energies: Eres=Er+iΓ/2, for the states of 6Li3+dμ and 7Li3+dμ ions. Here Er is the ‘binding’ energy reckoned
from the dμ(n= 1) dissociation threshold and Γ is the width of the resonance (in eV).

L=0 L=1 L=2

6Lidμ 20.308 078 24+i0.006 769 20 13.568 077 29+i0.008 178 51 1.678 490(9)+i0.007 898
7Lidμ 21.455 950 14+i0.003 810 25 14.817 367 83+i0.005 095 16 2.929 779(3)+i0.005 726
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estimates for the probability density of the wave function at
R= 0, were obtained with the precision of about 3% or even
better. This is one of the key quantities for experimental
studying of the fusion rate for d+Li nuclear reactions. It
may allow to measure in the experiment the astrophysical S-
factor S(E) [20]:

ph
s h

p
=

-
=

 
S E

E
E

Z Z e

vexp 2
,

4
,1 2

2

0
( )

( )
( )

for the low-energy scattering of nuclei. Here σ(E) is the total
cross section of the fusion reaction, v is the relative incident
velocity. S(E) allows to account for the Coulomb repulsion
between charged nuclei. Thus S(E) is a slowly varying
function when E tends to zero.

We have to acknowledge that our previous attempt to
solve this problem [21] using the variational CCR calcula-
tions had failed due to less capable computers and, as a
consequence, much poor convergence of the expansion.

Acknowledgments

Support from the Russian Science Foundation under Grant
No.18-12-00128 is gratefully acknowledged.

ORCID iDs

V I Korobov https://orcid.org/0000-0003-3724-0270

References

[1] Friar J L 2002 The structure of light nuclei and its effect on
precise atomic measurements Can. J. Phys. 80 1337

[2] Boesgaard A M and Steigman G 1985 Big bang
nucleosynthesis: theories and observations Annu. Rev.
Astron. Astrophys. 3 313

[3] Cyburt R H, Fields B D, Olive K A and Yeh T-H 2016 Big
bang nucleosynthesis: present status Rev. Mod. Phys. 88
015004

[4] Fields B D 2011 The primordial lithium problem Annu. Rev.
Nucl. Part. Sci. 61 47

[5] Zhao J R et al 2016 A novel laser-collider used to produce
monoenergetic 13.3 MeV 7Li d n,( ) neutrons Nat. Sci. Rep.
6 27363

[6] Bogdanova L N, Gershtein S S and Ponomarev L I 1998
Nuclear fusion in the mesic molecule md He3 JETP Lett.
67 25

[7] Ponomarev L I 1990 Muon catalysed fusion Contemp. Phys.
31 219

[8] Reinhardt W P 1982 Complex coordinates in the theory of
atomic and molecular structure and dynamics Ann. Rev.
Phys. Chem. 33 223

[9] Ho Y K 1983 The method of complex coordinate rotation and
its applications to atomic collision processes Phys. Rep. 99 1

[10] Aguilar J and Combes J M 1971 A class of analytic
perturbations for one-body Schrödinger Hamiltonians
Commun. Math. Phys. 22 269

Balslev E and Combes J M 1971 Spectral properties of many-
body Schrödinger operators with dilatation-analytic
interactions Commun. Math. Phys. 22 280

[11] Simon B 1972 Quadratic form techniques and the Balslev-
Combes theorem Commun. Math. Phys. 27 1

[12] Reed M and Simon B 1978 Methods of Modern Mathematical
Physics. IV. Analysis of Operators (New York: Academic)

[13] Rosenthal C M 1971 The reduction of the multi-dimensional
Schrödinger equation to a one-dimensional integral equation
Chem. Phys. Lett. 10 381

[14] Thakkar A J and Smith V H Jr 1977 Compact and accurate
integral-transform wave functions. The S11 state of the
helium-like ions from H− through Mg +10 Phys. Rev. A 15 1

[15] Frolov A M and Smith V H Jr 1995 Universal variational
expansion for three-body systems J. Phys. B: At. Mol. Opt.
Phys. 28 L449

[16] Korobov V I 2000 Coulomb three-body bound-state problem:
variational calculations of nonrelativistic energies Phys. Rev.
A 61 064503

[17] Varshalovich D A, Moskalev A N and Khersonskii V K 1988
Quantum Theory of Angular Momentum (Singapore: World
Scientific)

[18] Korobov V I, Bakalov D and Monkhorst H J 1999 Variational
expansion for antiprotonic helium atoms Phys. Rev. A
59 R919

[19] Brändas E and Froelich P 1977 Continuum orbitals, complex
scaling problem, and the extended virial theorem Phys. Rev.
A 16 2207

[20] Thompson I J and Nunes F M 2009 Nuclear reactions for
astrophysics: principles Calculations and Applications of
Low-Energy Reactions (Cambridge: Cambridge University
Press)

[21] Rakityansky S A, Sofianos S A, Belyaev V B and Korobov V I
1996 Resonant nuclear transition in the md 6 Li muonic
molecule Phys. Rev. A 54 1242

4

J. Phys. B: At. Mol. Opt. Phys. 53 (2020) 065001 V I Korobov et al

https://orcid.org/0000-0003-3724-0270
https://orcid.org/0000-0003-3724-0270
https://orcid.org/0000-0003-3724-0270
https://orcid.org/0000-0003-3724-0270
https://doi.org/10.1139/p02-105
https://doi.org/10.1146/annurev.aa.23.090185.001535
https://doi.org/10.1103/RevModPhys.88.015004
https://doi.org/10.1103/RevModPhys.88.015004
https://doi.org/10.1146/annurev-nucl-102010-130445
https://doi.org/10.1038/srep27363
https://doi.org/10.1134/1.567642
https://doi.org/10.1080/00107519008222019
https://doi.org/10.1146/annurev.pc.33.100182.001255
https://doi.org/10.1016/0370-1573(83)90112-6
https://doi.org/10.1007/BF01877510
https://doi.org/10.1007/BF01877511
https://doi.org/10.1007/BF01649654
https://doi.org/10.1016/0009-2614(71)80315-9
https://doi.org/10.1103/PhysRevA.15.1
https://doi.org/10.1088/0953-4075/28/14/001
https://doi.org/10.1103/PhysRevA.61.064503
https://doi.org/10.1103/PhysRevA.59.R919
https://doi.org/10.1103/PhysRevA.16.2207
https://doi.org/10.1103/PhysRevA.54.1242

	1. Introduction
	2. Variational expansion and the CCR method
	3. Results
	4. Conclusion
	Acknowledgments
	References



