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Abstract

We unravel the correlated tunneling dynamics of an impurity trapped in a double well and interacting
repulsively with a majority species of lattice trapped bosons. Upon quenching the tilt of the double
well it is found that the quench-induced tunneling dynamics depends crucially on the interspecies
interaction strength and the presence of entanglement inherent in the system. In particular, for weak
couplings the impurity performs a rather irregular tunneling process in the double well. Increasing the
interspecies coupling it is possible to control the response of the impurity which undergoes a delayed
tunneling while the majority species effectively acts as a material barrier. For very strong interspecies
interaction strengths the impurity exhibits a self-trapping behavior. We showcase that a similar
tunneling dynamics takes place for two weakly interacting impurities and identify its underlying
transport mechanisms in terms of pair and single-particle tunneling processes.

1. Introduction

Ultracold atoms offer a versatile platform for studying many-body effects in an extraordinarily controlled
manner. Apart from varying the external confining potential and its dimensionality [ 1-3], it is also possible to
tune the interaction strength between the atoms via Feshbach or confinement induced resonances [4, 5]. This
exquisite level of control over single component fermionic or bosonic ensembles can be extended to mixtures of
ultracold atoms such as Bose—Bose [6—16], Fermi—Fermi [17, 18] and Bose—Fermi[19, 20] mixtures. In
particular, one-dimensional systems exhibit intriguing phenomena since they allow for correlations to appear in
the dilute regime [21-24].

In this context, especially strongly particle imbalanced mixtures have attracted alot of interest recently. In
the extreme case such systems consist of a single impurity immersed in a majority species. These setups have
been studied theoretically [25-32] and experimentally [33-36], for a single impurity, serving as a simulator of
polaron physics, as well as for many impurities [37—42] and are indeed a subject of ongoing research. While the
ground state properties of a single impurity in a bath are to a certain extent well understood, less focus has been
placed on the transport properties and the emergent collisions of the impurity through the bath [43—46]. Indeed,
in these systems correlation effects, such as entanglement, are expected to be a crucial ingredient since the
impurities form a few-body subsystem [47]. Moreover, the underlying trapping potential plays an important
role for the behavior of the impurity species, which has been analyzed for homogeneous systems [48—50],
harmonic confinements [51-55] as well as lattice potentials [33, 56, 57]. The majority of the above-mentioned
investigations have been focusing on the case where both species are trapped in the same geometry. However,
introducing different trapping potentials for each species is expected to alter significantly the observed
dynamics. A setting of particular interest involves a bath of lattice trapped bosons which act as multiple material
barriers for the tunneling dynamics of the impurity.

In the present work we explicitly focus on an impurity which is confined in a one-dimensional double well
and interacts repulsively via contact interaction with a majority species of bosons trapped in a lattice. For single
component bosons in a double well the analog of the well-known superconducting Josephson junction can be
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established. The bosonic Josephson junction provides the testbed for many, also experimentally observed,
intriguing phenomena, such as Josephson oscillations, macroscopic quantum self-trapping [58—63] and
correlated pair tunneling [64—66]. Extensions of these phenomena to multicomponent setups have also been
extensively studied, see for instance [67—70]. Herein, we extend these investigations by exploring the dynamics
of impurities in a double well immersed in a few-body bath of lattice trapped bosons. This gives rise to an
effective potential for the impurities whose shape strongly depends on the interspecies interaction strength.
Depending on the latter, one can realize tunneling scenarios which are beyond the well-known regimes of
Josephson oscillation and quantum self-trapping and rely on the interspecies entanglement. This can be of
particular interest for future applications in atomtronics [71].

In our setup of a single impurity in a double well the dynamics is steered by the repulsive coupling to the
majority species. Varying the interspecies interaction strength we unravel different dynamical response regimes of
the impurity upon quenching the tilt of the double well. These regimes range from rather irregular tunneling in the
double well for small interspecies interaction strengths to dynamical self-trapping in a single site for very strong
couplings [6, 7, 55]. For intermediate coupling strengths we observe a strong impact of the density distribution of
the majority species on the impurity’s tunneling dynamics. The impurity initially collides with the material barrier
imposed by the density of the majority species and then tunnels to the corresponding other site of the double well.
This offers a controlled way of transporting the impurity within the double well. The entire tunneling process in the
case of intermediate interspecies interaction strengths is accompanied by a strong entanglement between the
subsystems revealing the complexity of this phenomenon. We remark that in the absence of entanglement this
process does not take place. Additionally, in this case the self-trapping behavior is altered. Surprisingly, we find that
the dynamics of the impurity can be described in terms of Wannier states [41, 42] which are associated with the
superposition of the effective time-averaged potential induced by the density of the majority species and the double
well potential. This proves to be a valuable tool that captures the dynamics of the impurity adequately, even though
astrong entanglement persists throughout the dynamics [12, 46]. Due to the strong correlations appearing in our
system it is necessary to utilize an approach which operates beyond lowest band and mean-field approximations,
such as the Bose-Hubbard model or Gross—Pitaevskii approximation. Therefore we track the emergent non-
equilibrium dynamics by employing the Multi-Layer Multi-Configurational Time-Dependent Hartree Method for
atomic Mixtures (ML-MCTDHX) [72—-74] that enables us to capture all the important particle correlations.

Our work is structured as follows: in section 2 we present the system under investigation and the employed
computational methodology. In section 3 we unravel the quench-induced tunneling dynamics of the impurity,
revealing also the crucial role of the inter- and intraspecies correlations. Section 4 is dedicated to an in-depth
characterization of the microscopic effects involved in the dynamical response of the impurity. We extend our
results to the case of two weakly interacting impurities in section 5 and conclude with a summary of our findings
and a discussion of future directions in section 6.

2. Setup and multi-configurational approach

2.1. Setup and Hamiltonian

Our setup consists of two different species of bosons A and B, also referred to as the majority species and the
impurity, respectively, which interact repulsively via a contact potential of strength g4 5. Each species is confined
in a different one-dimensional optical potential at zero temperature. Experimentally this can be realized by
preparing e.g. ¥’ Rb atoms in two different hyperfine states, i.e. |F = 2, mp = —2)and |[F = 1, mp = —1),
thereby obtaining a two-species bosonic mixture. Utilizing the so-called ‘tune-out’ wavelength [75, 76] it is
possible to create species-dependent potentials, such that the two species experience different optical potentials
[3]. The majority A species, composed of bosons of mass 1,4 and interacting repulsively via a contact interaction
of strength g4 4, is trapped in a six-well lattice potential. The minority B species on the other hand, consisting of
Npimpurities of mass mp interacting repulsively via a contact interaction of strength gzp, resides in an initially
tilted double well potential. The resulting many-body Hamiltonian of the system reads

N A i d
H= —————— + Vycos?(k x,-A)) +g S(xft — xh
;( 2my (dx)? 0 0 AA ; i
J B
s R2 42 1 2, Bya h (xB)? 5 . .
+ —_ - ; + _ M + Bl + s Byl
;( 2mg (dxiB)z 5 mBWB(x ) ,—Zﬂ_w exp w? ax B g (x Xj )
N Ny
+ g0 00 — x]B). 0

i=1j=1

Here, the lattice potential V; = V; cos?(kox;*) of the majority species is characterized by its depth V;, and wave
vector ko = 7/I'where [ denotes the distance between two successive minima of the potential. The double well of
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B 2 . . . .
the impurities V3 = %mB wix?)? + %W exp (— (zwi ) is constructed by the combination of a harmonic

oscillator potential with frequency wg and a Gaussian potential characterized by a width wand a height h.
Additionally, we superimpose a linear tilting potential Vi, = ax? to the double well leading to an asymmetry
between the two wells, whose degree can be controlled by the parameter . Assuming zero temperature we can
model the inter- and intraspecies interaction potential between the atoms via a bare delta potential with effective

’ N\ —1
2%’ 2) | ag” . .
"o (1 _ /2 1a ) where o and o refer to the corresponding species A and B
Mygai V2a

couplingstrength g, =

[4]. Here, Myp = 4™ represents thereduced massand a, = | " _ the transversal length scale which is
my + mp Mapw

steered by the frequency of the transversal confinement w, perpendicular to the one-dimensional Bose gas. Apart
from varyingw  , it is possible to control the coupling strength g, through the free space, three-dimensional
scattering length ag’ " which can be tuned via Feshbach resonances in magnetic or optical fields [5, 77-80].

Throughout this work we consider a fixed number of bosons for the majority species Ny = 8 and set
m = m, = mp. As mentioned above, our setup can be experimentally realized by considering two hyperfine
states of ™ Rb. Note that we have also simulated the corresponding dynamics of a mass imbalanced system
consisting e.g. of a *’ Rb bosonic ensemble and a '**>Cs impurity. For this latter case we confirmed that an overall
similar phenomenology compared to the mass balanced case occurs but the emerging tunneling regimes to be
presented below take place at smaller interspecies interaction strengths. The energy scales for the Hamiltonian in
equation (1) are given in units of the recoil energy E, = /%%kg /(2m), whereas the length and time scales are
expressed in units of k, ' and w, ' = /E, . For the lattice potential of the majority species we use a depth of
Vo/E, = 8. The harmonic part of the double well potential of the impurities has a harmonic oscillator frequency
of w/w, = 0.1 - /2 and the barrier height and width are h/E, k; ' = 2and w/k; ' = 1, respectively.
Furthermore, the intraspecies interaction strength among the bosons of the majority species is kept fixed to the
value g, , /E,ky ' = 1. Hard-wall boundary conditions are imposed at x/ky ' = 3.

In the following, we present the quench protocol which induces the tunneling dynamics. A sketch of the
employed procedure is depicted in figure 1. First, we obtain the many-body ground state of our system,
assuming the above mentioned parameters. Here, the tilting strength of the double well is set to a./E, k, ' = 0.1
(the effect of a smaller tilting strength is analyzed in the Appendix), such that the impurities localize in the left
well of the asymmetric double well potential. To trigger the tunneling dynamics of the impurities the system is
quenched to a geometry, constituting a symmetric double well, i.e. the tilting strength is set to o« = 0. Varying the
interspecies interaction strength g, 5, we explore the dependence of the system dynamics on g4 .

2.2. Approach to the correlated many-body dynamics

To unravel the dynamics of the system we employ ML-MCTDHX [72—74]. As explicated below, this ab initio
method gains its efficiency from the time-dependent and with the system co-moving basis set. In the first step,
the total many-body wave function [Uyp(#)) is expanded with respect to M different species functions |¥(¢)) for
each of the species o and expressed according to the following Schmidt decomposition [81]

M
(1) = > VO TAD) @ [TE@)). @
i=1

Here, the Schmidt coefficients |/ A;(¢) , in decreasing order, provide information about the degree of population
of the ith species function and thereby signify the degree of entanglement between the two species. In the case
that only one Schmidt coefficient is non-zero, the species A and B are not entangled with each other and the
system can be described by a species mean-field ansatz (M = 1). However, in general it is necessary to provide
several species functions for the expansion of the total many-body wave function, since entanglement might
prove crucial for the adequate description of the systems dynamics.

Furthermore, the species wave functions |U9(#)) describing an ensemble of N, bosons are expanded in a set
of permanents, namely

[U7(1) = > Con(D(1)). 3)

ﬁglNo

Such an expansion allows us to take intraspecies correlations of the o-species into account. Moreover, in this expression
the vector 1% = (n, ny,...) describes the occupations of the time-dependent single-particle functions (SPF) of the
species o, which are further expanded in terms of a time-independent discrete variable representation [82]. The
notation 77| N, indicates that for each n; the particle number conservation condition Y, # = N, has to be fulfilled.
For the time propagation of the many-body wave function we employ the Dirac-Frenkel variational principle
(6Wypl(10; — H)|Wyp) [83—85] with the variation ¥ and obtain the corresponding equations of motion [74, 86].
In conclusion, the ML-MCTDHX method takes all inter- and intraspecies correlations into account and
gives us access to the complete many-body wave function. In contrast to standard approaches, where the wave
function for solving the time-dependent Schrédinger equation is built upon time-independent Fock states with
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Figure 1. (a) Schematic representation of our setup before (¢ = 0) and after the quench (¢ > 0). The majority species (blue balls)
resides in the lattice potential V4. The impurity is embedded in a double well potential V with an initially superimposed tilt potential
Viir of strength a./E, ko ' = 0.1. The quench is performed by setting the tilting strength to zero, thereby quenching to a symmetric
double well configuration. One-body density of the many-body ground state (t = 0) of the species o for (b) g, / E k;' = 0.2and
(©) 45 JE-ky! = 4.0. We consider a minority species consisting of Ny = 1 particle and a majority species composed of N, = 8
particles which interact repulsively with g, , JE kgt = 1.0.

time-dependent coefficients, the ML-MCTDHX method takes a co-moving time-dependent basis into account,
where the Fock states, spanned by the SPFs, as well as the coefficients are time-dependent. This concept of a
time-dependent basis reduces not only the required number of basis states and, hence, improves the
computational effort, but it also provides at the same time an accurate description of the system’s many-body
state. We note here that in order to ensure the convergence of our many-body simulations, to be presented
below, we have employed M = 6 (M = 10) species and d4 = 6, dg = 6 (d4 = 6, dg = 6) SPFs respectively for the
case of a single (two) impurity atom(s). In this context we define the orbital configuration C = (M, d,, dg) which
determines the size of the truncated Hilbert space.

3. Correlated tunneling dynamics of a single impurity

In the following we consider a mass-balanced bosonic mixture described by the Hamiltonian of equation (1)
where the majority species consists of Ny = 8 and the impurity species of Ng = 1 particles. We initially prepare
our system in its ground state with a tilting strength of o/ Egk, ' = 0.1 for different interspecies interaction
strengths g4 p. Due to the initial tilt the impurity is found to be well localized in a single site of the double well
potential. Moreover, we find that the impurity species exhibits a rather large spatial overlap with the majority
species for small g4 (see figure 1(b)) which of course reduces with increasing repulsive g4 5 (see figure 1(c)). In
particular, for small g4 5 the majority species occupies all sites of the lattice potential, such that the impurity
strongly overlaps with it (see figure 1(b)). However, for strong repulsive interactions the majority species
depopulates the well of the lattice potential in which the impurity tends to localize, resulting in a weak spatial
overlap of the two species (see figure 1(c)). Upon quenching the tilting strength to o/ Egk, ' = 0 towardsa
symmetric double well we initiate the tunneling dynamics, thus favoring the tunneling of the impurity to the
right well as the corresponding energy offset between the two wells vanishes, see also figure 1(a). Asa
consequence the impurity becomes mobile, thereby colliding with the lattice trapped majority species which in
general acts as a material barrier for the impurity dynamics. Varying the interspecies interaction strength we find
four different regimes for the dynamical response of the impurity (see below).

As afirst step, we quantify these regimes by monitoring the time evolution of the one-body density
pfjl) (x, 1) = (Upp(1) |‘i/;(x)\i/g(x) |Upp(1)) of the corresponding subsystems o. The spectral decomposition of
the o-species one-body density is given by

pPG 1) =Y ngi (D) PFi(x, )Py, 1), 4)
j

where n,, j(t) are the so-called natural populations and ®, j(x, t) the corresponding natural orbitals. The dynamics
of pg) (x, t)is presented in figure 2, for different interspecies interaction strengths g4 5. As it can be seen pg) (x, 1)
exhibits four distinct dynamical response regimes. For small interspecies interaction strengths, in our case
8.5/Erky ' = 0.2, the impurity undergoes a rather complex tunneling dynamics to the other site of the double
well (figure 2(a)). This is a single-particle effect caused by the strong initial tilt and is therefore also present for
gap = 0.For short evolution times, i.e. 0 < t/w, ' < 50, the impurity performs oscillations in the initial well
and then tunnels (see ellipse in figure 2(a)) to the other well. Here, the oscillations within each of the two wells,
which still persist even for g4 = 0 (not shown here), are caused by the rather strong initial tilt of the double well
and are not present for smaller tilts” (see figure 11(a)). In this sense, the majority species barely affects the

? We note that this tunneling behavior differs from that of a single particle in a double well potential in the case of smaller tilts, yielding a
single frequency Rabi tunneling.
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Figure 2. Temporal evolution of the one-body densities for (a)—(d) the impurity species B and (e)—(h) the majority species A upon
quenching the tilting strength from o/Ezky ' = 0.1to a/Egk, ' = 0. Each column corresponds to a different interspecies
interaction strength g, 5, from left to right for g, /Egky ' = 0.2, 1.0, 2.0, 4.0. The dashed yellow line represents the double well
potential for the impurity species. We consider a minority species consisting of N3 = 1 particle and a majority species of Ny = 8
particles which interact repulsively with g, , /E, k¢ ' = 1.0.

tunneling dynamics of the impurity and exhibits weak amplitude modulations from its initial profile due to the
finite g4 (figure 2(e)).

However, for larger coupling strengths the impurity is strongly influenced by the density distribution of the
majority species, e.g. see figures 2(b) and (f). The majority species distributes over the lattice such that pg) (x, t)
is accumulated close to the minima of the lattice potential. Due to the repulsive interspecies interaction the
impurity has to overcome on top of the double well barrier these additional material barriers imposed by the
accumulation of the density of the majority species. This leads to an oscillation of the impurity through the
neighboring density maximum of the A species (see white rectangle in figure 2(b)). This tunneling through the
material barrier imposed by the majority species we will refer to as material barrier tunneling in the following.
Throughout this enduring oscillation process the impurity performs a transport [87, 88] to the other site of the
double well (see ellipse in figure 2(b)) where it again encounters a material barrier of species A and pursues the
initial material barrier tunneling behavior (see red rectangle in figure 2(b)). Compared to the weakly interacting
regime (figure 2(a)), in the intermediate regime the transport of the impurity to the other site of the double well
takes place in a very controlled and systematic manner. Moreover, it is even possible to prolong the initial
material barrier tunneling process by further increasing the interspecies interaction strength (figure 2(c)). In this
case, the impurity undergoes a weak amplitude tunneling to the other site of the double well (see figure 8(c)), at
least within the considered evolution time. In the limit of very large g the impurity is trapped in the initial site
of the double well due to the strong interspecies repulsion (see figures 1(c) and 2(d)) and as a result we enter the
self-trapping regime. We remark that this self-trapping behavior is caused by the presence of the majority
species, in sharp contrast to the well-known case of interacting bosons in a double well. Note also that the
impurity undergoes dipole-like oscillations within the left site of the double well. Also, we have checked that this
self-trapping behavior (see figure 2(d)) of the impurity persists up to ¢ /w, ' = 400 evolution times (not
shown here).

Considering the behavior of the majority species A, we observe the development of excitations of p(;) (x, t)as
aback-action of the tunneling process of the impurity [ 12]. In particular, pg) (x, t)is transferred through the
lattice (figures 2(f) and (g)). Predominantly, this is the case for the inner four wells. This behavior of the majority
species is caused by the repulsive interspecies interaction which leads in the course of the impurity tunneling to a
shift of the density of species A, thereby reducing the overlap between the species. In the extreme case (see
845/ Erky ' = 4.0) where the impurity remains localized in one site of the double well, the majority species
redistributes such that a density hole is formed in one lattice site (see figure 2(h)), in order to avoid the impurity.
Here, the overall density of the majority species barely changes in time due to the absence of the impurity’s
tunneling.

In order to quantify the dynamical response of the system even further it is convenient to analyze how
strongly the time-dependent many-body wave function deviates from the initial state |¥) at t = 0in the course
of time. This is well captured by the fidelity F(t) = |(¥yp(t)|Yy) |> which is defined as the overlap between the
time-dependent and the initial wave function. Figure 3 shows the fidelity F(¢) for various interspecies interaction
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Figure 3. Temporal evolution of the fidelity F(¢) for different interspecies interaction strengths g, 3 upon quenching the tilting strength
to a/Egky ' = 0. We consider a minority species consisting of N = 1 particle and a majority species consisting of N, = 8 particles
which interact repulsively with g, /E, kg ' = 1.0.

strengths corresponding to the four different tunneling regimes identified in the time evolution of the one-body
densities in figure 2. We clearly observe that the behavior of the fidelity is qualitatively driven by the one-body
density distribution of the impurity over time. For the cases in which the impurity tunnels to the other site of the
double well (figures 2(a) and (b)), the fidelity deviates significantly from unity, i.e. |¥p(¢)) deviates from the
ground state [¥). However, in the regimes where the tunneling of the impurity is suppressed the fidelity remains
close to unity, e.g. see F() for g4 = 2.0, 4.0. In this sense, the fidelity evolution provides an indicator of the
tunneling process of the impurity and serves as a first characterization for the tunneling (figures 2(a) and (b)) and
self-trapping regimes (figures 2(c) and (d)). Nevertheless, using solely the fidelity it is not possible to distinguish
between the different tunneling mechanisms. In order to discern between the above-mentioned four possible

regimes of the impurity’s dynamical response it is useful to consider the integrated one-body density of the

impurity j; ;L//z ¢ Pg) (%, t)dx, where Lis the size of the system. This quantity provides the probability of finding

the impurity in one half of the initially populated well of the double well. Indeed, the integrated density allows to
distinguish between the emergent tunneling dynamics since it incorporates the effect of the material barrier. In
figure 4(a) we show the temporal evolution of this quantity for the correlated many-body approach” for different
gap- We clearly observe four distinct regimes for the response of the impurity which correspond to the one-body
densities in figures 2(a)—(d). Indeed, in regime I an irregular oscillatory pattern of the integrated density is found.
Regime II exhibits regular oscillations whose intensity decays in time. This corresponds to the material barrier
tunneling with a final transfer of the impurity to the other site of the double well (see figure 2(b)). In regime III
the oscillations of the integrated density remain stable in time which is due to the material barrier tunneling of
the impurity in the initially populated well without a transfer to the other site. Finally, in regime IV we find a
higher-frequency oscillatory behavior with a finite amplitude throughout the evolution. This behavior
corresponds to the self-trapping regime (see figure 2(d)). Regarding the dependence of the tunneling behavior
on the different system parameters see appendix B.

However, so far we did not get insight into the degree of the system’s correlation throughout the dynamics.
To unravel the degree of correlations which accompanies the tunneling dynamics of the impurity we distinguish
between inter- and intraspecies correlations. The former are described by the Schmidt coefficients
(equation (2)), which provide a measure for the degree of entanglement between the subsystems, whereas the
latter can be inferred from the natural populations (see equation (4)). Since the B species consists of a single
particle, the natural populations of the B species coincide with the Schmidt coefficients. Therefore, in the
following we invoke the deviation 1 — np, () as a measure of entanglement between the subsystems.

* The many-body approach refers to our treatment within ML-MCTDHX in contrast to mean-field approaches.
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Figure 4. Temporal evolution of the integrated one-body density of the impurity j; ;L//z 4 p(;) (x, t)dx upon variation of the interspecies

interaction strength g, for () the full many-body approach and (b) the species mean-field approach. The regimes I-IV in panel (a)
correspond to the one-body densities in figures 2 (a)—(d). Regimes L, Il in panel (b) correspond to the one-body densities in

figures 6(a) and (d), respectively, whereas regime I in panel (b) relates to figures 6(c) and (d). We consider a minority species consisting
of N = 1 particle and a majority species of N = 8 particles which interact repulsively with g, , /E.k, ' = 1.0.

Accordingly, 1 — n,4,(¢f) indicates the degree of intraspecies correlations of the majority species. The temporal
evolution of the depletion 1 — n,,(f) of the most populated natural orbital of the A and the B species is illustrated
in figure 5 for different g 5 upon quenching the tilting strength. We observe that for small interspecies
interaction strengths, i.e. g4 = 0.2, the subsystems are mainly disentangled throughout the dynamics, since
1 — np () & 0. Increasing the interspecies interaction strength to g, , /Erky ' = 1.0 the subsystems become
strongly entangled in the course of time, i.e. 1 — #15,(#) > 0. This can be associated with tunneling of the
impurity to the other site of the double well and the involved increasing interspecies interaction between the
subsystems. Naturally, the motion of the impurity through the majority species has an impact on the natural
populations of the A species which is connected to the intrinsic tunneling processes of the A species in the lattice
potential (see figures 2(e)—(f)). Indeed, 1 — 1,4, > 0independently of g4p and it is maximized in the above-
described third tunneling region. Interestingly, the rather strong degree of entanglement remains in the self-
trapping regime for g, , /Erky ' = 4.0, even though the impurity barely overlaps with the majority species.

In order to emphasize the importance of the entanglement between the subsystems for the tunneling
behavior of the impurity, we additionally perform calculations assuming only a single product state
[Unvp) = |¥) ® |Pp)in equation (2), thereby neglecting all interspecies correlations. The dynamics of the o-
species one-body densities employing a species mean-field ansatz, i.e. assuming a single product state between
the species but still including intraspecies correlations, are shown in figure 6. For g, , /Egk, ' = 0.2 we find no
visible differences between the full many-body approach and the species mean-field calculations. This is an
expected result, as the degree of entanglement is rather small for these interactions (see figure 5). However, as
soon as entanglement becomes important, we find strong deviations in the corresponding one-body densities.
In particular, for g, , / Erky ' = 1.0 in the species mean-field case (see figure 6(b)) we do not observe the
previously predicted tunneling to the other site of the double well (see figure 2(b)). Furthermore, the one-body
density of the impurity for g, , /Erk, ' = 2.0 exhibits additional oscillation frequencies in the species-mean field
scenario (see figure 6(c)) compared to the full many-body case (figure 2(c)). In the self-trapping regime,
8.5/ Erky ' = 4.0, the species mean-field calculations seem to capture the dynamics quite well at first glance.
However, on a closer inspection of the one-body density it turns out that the spatial position of the impurity
differs compared to the complete many-body approach, while the temporal oscillations of the density are also of
different amplitude and frequency, see figures 2(d) and 6(d). This general difference in the tunneling dynamics is
well captured by the integrated density shown in figure 4. Indeed, the species mean-field ansatz is not able to
recover regime IT in figure 4(a), while the self-trapping regime Il in figure 4(b) is strongly altered compared to
that one in figure 4(a) corresponding to regime IV in the many-body treatment. Even regime Il in figure 4(a) is
quantitatively changed when using the species mean-field ansatz (see figure 4(b) regime II). In this sense,
entanglement between the impurity and the majority species plays a crucial role, in order to describe the
dynamics correctly.
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Figure 5. Temporal evolution of the depletion 1 — #,, () of the most populated natural orbital of the A and the B species for different
interspecies interaction strengths ga g upon quenching the tilting strength to o./Eg ko ' = 0. Note that the natural populations of the B
species coincide with the Schmidt coefficients since N3 = 1, thereby describing also the degree of entanglement between the
subsystems. We consider a minority species consisting of Ny = 1 particle and a majority species composed of N4 = 8 particles which
interact repulsively with g, /E. k¢ ' = 1.0.
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Figure 6. Temporal evolution of the one-body densities for (a)—(d) the impurity species B and (e)—(h) the majority species A upon
quenching the tilting strength from o/Egky ' = 0.1to a/Egk, ' = 0, assuming a species mean-field ansatz. Each column
corresponds to a different interspecies interaction strength g4, ranging from left to right with g, , /Erk, ' = 0.2, 1.0, 2.0, 4.0. The
dashed yellow line represents the double well potential for the impurity species. We consider a minority species consisting of Ny = 1
particle and a majority species consisting of Ny = 8 particles which interact repulsively with g, , JE-kgt = 1.0.

4. Characterization of the impurity dynamics

To analyze the tunneling behavior of the impurity and the accompanying correlations due to the presence of the
majority species (see figure 2) we next develop an effective potential model for the impurity. This effective
potential is obtained by superimposing the time-averaged density of the majority species to the external double
well potential. To adequately describe the dynamical response of the majority species we employ the associated
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Wannier functions. In particular, we project the complete many-body wave function obtained via ML-
MCTDHX onto these Wannier functions in order to analyze the behavior of the impurity in a fixed basis set.

4.1. Construction of the effective potential
Initially, we prepare our system such that it is given by the ground state of the Hamiltonian (equation (1)) with an
underlying asymmetric double well. With respect to the quenched Hamiltonian (¢t > 0) our system and in
particular the impurity is energetically excited due to the tilting. This enables the impurity to tunnel through the
potential barrier of the double well into the right well. However, as mentioned in section 3, for specific
interspecies interaction strengths this residual energy appears to be not large enough to overcome the potential
barrier. Therefore, the impurity B rather performs a tunneling in the initial site of the double well through the
material barrier imposed by the one-body density of the majority species (see figure 2(c)).

In the following, we aim at understanding this tunneling behavior using an effective potential for the
impurity. We remark that this effective potential serves only as a tool for an analysis of the underlying tunneling
processes. Integrating out the majority species we arrive at the following effective potential for the impurity

V(B 1) = Nagz oV (xB, 1) + Va(xP). 5)

This effective potential is composed by the double well potential Vzand the one-body density of the majority
species p(Al) being weighted by the number of particles N and the interspecies interaction strength g, 5. Note that
p(AD (xB, t)is calculated within the correlated many-body approach and thereby includes all necessary

correlations. p(Al) (xB, t) cannot be recovered within a mean-field approach. To proceed, we average this effective
potential over time and obtain a Time-Averaged Effective Potential (TAEP)

o by _ L [T s B
Ve (x7) = 7 Js Ve (x°, t)dt, (6)

where T denotes the total propagation time. We can justify this time-average by the small one-body density
deformations of the majority species over time. Furthermore, we remark that equation (5) is a species mean-field
effective potential and, therefore, only assumes a single product state. Even though we have seen in figure 5 that the
entanglement between the subsystems plays a crucial role this ansatz turns out to be a powerful tool to analyze the
basic aspects of the tunneling behavior of the impurity and gives an intuitive understanding [ 12, 46, 91]. The time-
averaged effective potentials are depicted in figure 7(a) for the four interspecies interaction strengths

g.5/Erko ' = 0.2, 1.0, 2.0, 4.0 corresponding to the four tunneling regimes already discussed in section 3. For
weak interspecies interaction strengths, e.g. g, /E k; ' = 0.2, the TAEP resembles the shape of the double well
potential Vg, and only small deviations are visible raised from the superimposed one-body density of the majority
species. Moreover, the height of the central potential barrier of the TAEP (x0.89E,) is approximately the same as
for the double well Vi with a value of 11/ (/27 w) ~ 0.80 at x” = 0. Therefore, one can assume that the tunneling
dynamics of the impurity in the TAEP would differ only marginally compared to the behavior of a single particle
confined in the double well V3, i.e. for g4 = 0. Since in the TAEP the one-body density p(Al) of the majority species
is weighted by the interspecies interaction strength g4 s, the spatial distribution of pg) becomes more pronounced
for increasing g4 g. Consequently, for a larger g, s we observe the appearance of six maxima on top of the double
well structure, which stem from the majority species trapped in the minima of the lattice potential V,. We find that
for an interspecies interaction strength of g, , /E, kg ' = 1.0 the density of the majority species distributes such that
we obtain a nearly parity symmetric TAEP with respect to x = 0 (see figure 7(d)).

In the following, we refer to the first, second, etc maximum of the TAEP ordered from left to right excluding
the case of g, /E, kg ' = 0.2 due to the small deviations of the TAEP from the double well structure. Increasing
the interspecies interaction strength eventually breaks the spatial symmetry of the TAEP w.r.t. x = 0, which can
bereadilyseene.g. at g, /E, kg ' = 2.0and g, /E, ko ' = 4.0 (see figures 7(e) and (f)). In particular, the TAEP
for g,3/E ko ' = 4.0 exhibits a distinct asymmetry. Here, the second maximum of the TAEP is strongly
suppressed compared to the other maxima. This can be attributed to the fact that the one-body density of the
majority species pg) in the second well of V4, counted from the left, coincides with the position of the second
maximum of the TAEP. Here, p(f;) is strongly depopulated compared to the other wells of V4 (see figure 2(h))
which leads to the suppression of the second maximum of the TAEP. Focusing on the maxima of the TAEP
especially, on the third and fourth maximum, we can interpret these maxima as the potential barriers that the
impurity has to overcome in order to tunnel from the left to the right side of the TAEP. We observe that the
corresponding maxima heights increase with increasing g4, which indicates that the effective potential barrier
for the impurity also increases with g4 p.

In the following, we investigate this effective potential barrier that separates the left from the right side of the
TAEP. For this purpose, we calculate the relative difference A,y ; = (Afff — Agff) / Agff between the second
maximum height AST and third and fourth maximum height, A$ and AS®, of the TAEP, where i=3,4.

Figure 7(b) shows the relative difference A, ;> Which serves in the following as a measure for the effective
potential barrier, in dependence on the interspecies interaction strength g 5. For values below g, , /E, kg ' = 1.0

9
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Figure 7. (a) Time-Averaged Effective Potential (TAEP) (equation (6)) for the four different interspecies interaction strengths g, 5
corresponding to the four tunneling regimes of the impurity. (b) The relative difference of the height between the second maxima and
the third and fourth maxima of the TAEP A, ; (see main text for definition) depending on g . (c) The TAEP (gray lines) for

g4/ Erkg " = 0.2 together with the corresponding Wannier functions which are calculated from the effective Hamiltonian
constructed by the TAEP. (d)-(f) The same as in (c), but for different g45’s, viz. g, /E, ko ' = 1.0, g,,/E/ ko ' = 2.0 and
g4/ Erko ' = 4.0, respectively. We consider a minority species consisting of Ny = 1 particle and a majority species with Ny = 8

particles which interact repulsively with g44/Eky ' = 1.0.

the effective potential barrier A, ; & 0 for i = 3,4 meaning that the maxima barely deviate. For values above
g3/ E-kg ' = 1.0 the third and fourth maximum height of the TAEP become larger than the second one,
breaking in this manner the symmetry of the TAEP. For large interspecies interaction strengths, e.g.
g5/ Er-kg ' = 4.0, the effective potential barrier A,y ; abruptly increases which is also due to the absence of p(/i)
in the second well of the lattice potential and, subsequently, the lowering of the second maximum height of the
TAEP. The abrupt increase of the effective potential barrier A, ; intuitively leads to the assumption that for
large interspecies interaction strengths, e.g. g, , /E,ky ' = 4.0, a tunneling of the impurity from the left to the
right TAEP should be strongly suppressed, as already seen in the one-body density (see figure 2(d)) obtained
within the complete many-body approach.

Let us also describe the tunneling behavior of the impurity in terms of states that are highly localized in the
minima of the TAEP. Since, for sufficiently strong interspecies interaction strengths g4 5 the TAEP resembles a

lattice with five sites (see figure 7(a)) we calculate five of those functions. For this purpose, we construct an
” &
T 2m (dxP)
notion of generalized Wannier functions [89, 90] which have the advantage that they can be also obtained in the
presence of a non-periodic potential. To obtain five generalized Wannier functions w® we first calculate the five

effective Hamiltonian 7:{(6?2 = + V2 (x®) using the TAEP. For the localized functions we use the

energetically lowest eigenfunctions of ’}:[(e?f) . Using these eigenfunctions as a basis we diagonalize the position
operator X yielding eigenstates which are highly localized in the minima of the TAEP. For simplicity, we shall
call the generalized Wannier functions in the following Wannier functions and, further, we will refer to the first,
second, etc. Wannier function as the Wannier function localized in the first, second, etc well of the TAEP.

Figures 7(c)—(f) presents the absolute squares of the Wannier functions together with the TAEPs for the four
different tunneling regimes corresponding to the interspecies interactions strengths g, ; /E, k; ' = 0.2, 1.0,
2.0, 4.0.For g, / E, k' = 0.2 (figure 7(c)) we find, compared to the results for larger g4 5, the largest overlap
between the Wannier functions. This indicates that those Wannier functions are rather ill-defined. The reason
can be found in the TAEP which resembles for small interspecies interaction strengths, e.g. g, /E ky ' = 0.2,
more a double well than a lattice potential. Increasing g4 5 (see figures 7(d)—(f)), the Wannier functions become
morelocalized in the minima of the TAEP and, therefore, are suited for the further analysis of the many-body
wave function.

In summary, we have developed an effective one-body Hamiltonian using a TAEP for the purpose of
constructing generalized Wannier functions from the eigenfunctions of this effective one-body Hamiltonian.
This procedure resulted in functions which are highly localized in the wells of the TAEP for sufficiently large
interspecies interaction strengths g, 3. Projecting these Wannier functions onto the full many-body wave

10



10P Publishing

New J. Phys. 22 (2020) 023027 F Theel et al

_____ i=1 ——i=2 i=3 i=4——i=5
0.8 1 "»
N @] N GO os{ct A posoa o [1(d)
AN INAVA A O
0.6 \ (LR RN ! R i
{ A [EAARVA AN AR ,
K AN WV T U ARG ik
031 % T TV A D 0644 Lol il i T VAR ARNRREATI
& VIV AN NIRVAVAVADNRSS i Yo lov oy J»l-!\l\l\.l\l\_i-j-l_l-,;\!’
VSN l\/' i \‘\I’\/‘\\”\ 'i” v \\" ‘\’I v NN =T ] v Hlk ' 1
5 00 : : 04l h n JRAAA AR AARAA
- . -1 I 1 Vhvrya
L 2 BA R A || PR,
-0 1 Ve Voo "o Y
ey Py ot
03] A S RTRTRIATAT AT
(Y VY sesdbell >
0.0 : - L X — 0.0 ¢ L : "
0 100 200 0 100 200 0 100 200 0 100 200
tjwt tw ! tw ! tjwt

Figure 8. Probability P'-# (w/®)) of the many-body wave function to occupy a specific Wannier function (see legend), which is localized
to one well in the corresponding TAEP. The probability P2 (WI-(B ) is shown in panels for four different interspecies interaction
strengths g, /E, ko' = 0.2, 1.0, 2.0, 4.0 in the panels (a)—(d), respectively. Panel (al) and (a2) refer to 84 /E, ko' = 0.2, while panel
(bl)and (b2) referto g,, /E ky ! = 1.0. We consider a minority species consisting of Nz = 1 particle and a majority species with

N, = 8 particles which interact repulsively with g, , /E, k; ' = 1.0.

function, obtained in the course of our numerical simulations, we are in the following able to get a deeper insight
into the tunneling dynamics of the impurity.

4.2. Dynamical response in terms of Wannier states

In the following discussion, we analyze the results of the correlated many-body calculations utilizing the
Wannier functions derived in the previous section more specifically. Therefore, we project the ith Wannier
function w® onto the many-body wave function and thereby receive the time-dependent probability P-5 (w(®))
that the impurity occupies the ith well of the TAEP. This probability is defined as

PYE(w®) = |(wP|Typ) 2. %)

Before discussing the results, let us comment on the Wannier functions as a basis set for the species wave
function of the impurity. By summing up the five occupation probabilities of the Wannier functions, we obtain
for each time instant of the evolution a measure for the accuracy of this basis representation. For our results we
find that }_; P8 (wi(B )) > 0.95 so that we can consider the Wannier functions as an adequate basis set for
describing the tunneling dynamics of the impurity. The time evolution of the probability P1# (w!) for the four
distinct tunneling regimes corresponding to g, /E, k; ' = 0.2, 1.0, 2.0, 4.0 is shown in figure 8. In the
following, we aim at understanding the respective one-body densities pg) obtained from the many-body
calculation (see figures 2(a)—(d)) with the aid of the occupation probabilities P18 (wi(B ). Starting from
& / E, k, ' = 0.2 (figures 8(al) and (a2)), we observe a rather irregular time evolution of the occupation
probabilities. Here, many Wannier functions are occupied simultaneously indicating that the state of the
impurity consists of a superposition of the corresponding Wannier functions. At first glance the behavior of the
time evolution of P18 (Wi(B )) at g / E,k, ' = 1.0 depicted in figures 8(b1) and (b2) is similar compared to the
onein panel (al) and (a2). In both cases we observe a reduction of the occupation probabilities of the first and
second Wannier function, representing the left side of the TAEP, and an increase of P"-3 (wi(B)) of the fourth and
fifth Wannier function, representing the right side of TAEP. This gradual depopulation of the left and
subsequent population of the right side of the TAEP reflects precisely the observed tunneling process observed in
the one-body density pg) of the impurity. However, we find thatat g, , /E, k; ' = 1.0 the transfer of the
occupation probabilities from the left to the right side of the TAEP is more uniform thanat g, , /E, ks ' = 0.2.
Initially, we observe an exchange of probability between the first and second Wannier states (see
figure 8(b1)), which represents the material barrier tunneling process in the initial site of the double well.
Eventually, probability is transferred from the first and second to the fourth and fifth Wannier state (see
figure 8(b2)), reflecting the controlled tunneling behavior observed in figure 2(b). Partially, this can be
understood in terms of the TAEP which exhibits a lattice structure on top of the double well, while being still
spatially symmetric with respect to x = 0. For stronger interspecies interaction strengths, e.g. g, /E, k; ' = 2.0
and g, /E ky ' = 4.0, the first two Wannier functions are predominantly occupied. As shown in figure 8(c), for
times directly after the quench the first Wannier function is the most occupied one, whereas for larger times the
occupation probability for the second Wannier function becomes the dominant one. We can understand this
intuitively by inspecting the corresponding TAEP depicted in figure 7(e). Here, the TAEP exhibits a global
minimum in the second well which makes it energetically favorable for the impurity to reside there.
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Furthermore, the first and second occupation probability exhibit a strong counterwise oscillation behavior.
Comparing this with the oscillation of the one-body density of the impurity around a potential barrier imposed
by the majority species (see figure 2(c)), we find very good agreement. Moreover, we find that the occupation
probability for the other Wannier functions, i.e. the third fourth and fifth, are strongly suppressed, but seem to
continuously increase over time. Therefore one might assume that for sufficiently long evolution times the
impurity eventually tunnels to the right side of the TAEP.

Turning to the occupation probabilities at g, / E,ky ! = 4.0 (figure 8(d)), we observe that the occupation
probabilities of the third, fourth and fifth Wannier function are close to zero during the entire time propagation.
We can understand this in terms of an effective potential barrier that separates the left side of the TAEP from the
right side w.r.t. x = 0. Here, the value for the relative difference A,y ; for g,5/E ko ' = 4.0 is much larger than
for the other considered interspecies interaction strength g4 3 (see figure 6(b)) and, therefore, it is very unlikely
that the impurity will tunnel to the right side of the TAEP even for later times. Additionally, the occupation
probabilities of the first and second Wannier function perform a counterwise oscillation, likewise to the
probabilitiesat g, , /E, k, ' = 2.0 (figure 8(c)). In contrast to the aforementioned oscillation of the occupation
probabilities, we observe for g, , /E,k; ' = 4.0 almost twice the number of oscillation periods during the
dynamics as well as a reduction of the amplitudes. A hint for understanding this gives again the corresponding
TAEP (see figure 6(f)). Here, the second maximum height is strongly suppressed and the first and second
Wannier functions have a large overlap. From this we can infer that the species wave function of the impurity
consists mainly of a superposition of the first and second Wannier function whose contributions oscillate
over time.

In conclusion, we generated localized Wannier functions associated with the TAEP and projected them onto
the time-dependent many-body wave function. Having this at hand we were able to describe the many-body
impurity dynamics in terms of the evolution of the occupation probabilities of the respective Wannier functions.
As a natural next step, we shall investigate the two-body correlations between the impurity and the majority
species. More precisely, we determine the discrete correlation function associated with the impurity occupying a
specific well of the TAEP and a single particle of the majority species occupying a certain well of the lattice
potential V4.

First we generate Wannier functions associated with the single-particle Hamiltonian for the majority species
O
"= 2m (dx?)?
body probability for a particle of the majority species to occupy the jth well of the lattice potential V4 by

projecting the many-body wave function onto the Wannier function W}A), thereby constructing the probability

PHA (W) = | (W™ [Wyp) |- The conditional probability P24 (w4, W](B)) = (Ul éi](-z) |Wypp) of finding a single
particle of the majority species in the ith well of V4 and at the same time the impurity in the jth well of the TAEP
is defined as the expectation value of the following operator

+ Vi (x4), following the procedure explained above’. Furthermore, we determine the one-

N,

A (2) 1 &

05" = 2w (™ @ wi®) (wiP), ()
Al=1

with respect to the many-body wave function |¥yp). The summation runs over the number of particles of the
subsystem A. The discrete two-body correlation function is then given by

2,AB (., (A) . (B)
P>4% (w; ™, w; )

PI’A(WI-(A))PLB(W](.B))' (9)

A B
gz,AB(Wi( ), W](‘ )) —

This function provides information about the correlation between a single particle of the majority species
localized at the ith well of V4 and the impurity species localized at the jth well of the TAEP. In case the discrete
correlation function g248 (w®), W}B )) equals unity the particle of the majority species and the impurity are
termed uncorrelated since the conditional probability equals the unconditional one. However, if

g B (W, W](B)) is larger (smaller) than unity the impurity and the particle of the majority species are said to be
correlated (anti-correlated) [15, 73].

The time evolution of the discrete correlation function for the impurity occupying the second Wannier
function wi? of the TAEP and the particle of the majority species occupying one of the six Wannier functions of
the lattice potential V,, is shown in figure 9. We choose to present only results for g>45 where the impurity is
occupying the second Wannier state wi? since for this case we are already able to observe and analyze all relevant
properties of the discrete correlation function. Figures 9(a)—(c2) depict g>48 for the interspecies interaction
strengths g, , / E ks ' = 1.0, 2.0, 4.0, respectively’. At g / E, ky ' = 1.0 (figure 9(a)), we observe that initially
the system is rather uncorrelated and develops stronger correlations for larger time. Here, the particle of the

Note that the Wannier functions are sorted from the left to right regarding the sites of the lattice potential.

6 Here, we do not show the results for g, /E ks ' = 0.2, because as already mentioned before the Wannier basis is ill-defined in this case.
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Figure 9. Temporal evolution of the discrete two-body correlations g247 (w4, w{®) between the impurity occupying the second site
of the TAEP and one particle of the majority species occupying the ith site of the lattice for interspecies interaction strengths (a)
up/E-kg ! = 1.0,(b1),(b2) g,5/E kg ' = 2.0 and (c1),(c2) g, /E kg = 4.0. Inpanel (c1) we explicitly exclude the results for
2B (Wi, wiP), because here the occupation probability P4 (wi?) is very small during the time propagation leading to an artificial
amplification of g24B (Wi, wiB)) (see equation (9)). We consider a minority species consisting of Ny = 1 particle and a majority
species consisting of N, = 8 particles which interact repulsively with g, , / E k' = 1.0.

majority species in the fourth/fifth well of V, and the impurity species in the second well of V% show an
increasing correlation amplitude over time, whereas an anti-correlation between the particle of the majority
species in the second /third well of V; and the impurity species in the second well of V5 occurs. The particle of
the majority species being in the first and sixth well exhibits a similar correlation behavior with the impurity in
the second well. We note that the strongest correlation (anti-correlation) occurs within the time intervals where
the impurity tunnels to the right side of the TAEP (see figure 2(b)).

Turning to the discrete correlation functions at g, , / E kg ' = 2.0, 4.0, depicted in figures 9(b1), (b2) and
(c1), (c2) we find that the system is in both cases slightly two-body correlated. Predominantly, this is the case for
g5/ Er-kg ' = 4.0 where the impurity exhibits a self-trapping behavior, showing only a weak distinct correlated
or anti-correlated behavior between the impurity in the second well of the TAEP and one particle of the majority
species in a specific well of the lattice potential (see figures 9(c1) and (c2)). However, in figure 9(b1) we observe
an oscillating correlation behavior between the majority species in the third well of V4 and the impurity species
in the second well of V5. Here, g248 (w{), wiP)) oscillates between the anti-correlated and uncorrelated case
which might be associated with the material barrier tunneling of the impurity in the initial site of the double well
(see figure 2(c)). Concluding, we observe an overall decrease of the discrete correlation with increasing
interspecies interaction strength, which appears to be related to the manifestation of the self-trapping of the
impurity.

5. Correlated tunneling dynamics of two impurities

So far we have investigated the tunneling dynamics of a single impurity coupled to a majority species and found
that the tunneling behavior can be steered by varying the interspecies interaction strength g4 5. In the following
we unravel whether a similar controlled tunneling process can be realized employing two impurities. For this
purpose, we consider two weakly interacting impurities, i.e. they interact repulsively via a contact potential of
strength g, /E ko' = 0.2, embedded in the same potential setup as shown in figure 1. The parameters for the
majority species remain unchanged compared to the single impurity case, i.e. Ny = 8and g, , /E, k, ' = 1.0. The
tunneling process is induced by performing the same quench protocol as in the case of a single impurity. Dueto a
tilting potential Vy;, the minority species is initially prepared in the left side of the double well V. Setting Vi
suddenly to zero we monitor the respective tunneling dynamics.

Figures 10(a)—(d) present the one-body densities pg) (x, t) of the two impurities for varying interspecies
interaction strengths. As it can be seen, the dynamics of pg) (x, t) for Ng = 2 resemble the one-body densities in
the case of a single impurity (see figures 2(a)—(d)). For weak interspecies interaction strengths, i.e.
g3/ E-kg ' = 0.2, we again observe a rather irregular tunneling dynamics of the impurity species (see
figure 10(a)). Increasing g4 3, also for Ny = 2 the impurity species performs a material barrier tunneling within
the initially populated well and finally tunnels to the other well (see figure 10(b)). A further increase of g4 finally
yields a self-trapping behavior of the impurity species due to the strong repulsion (see figure 10(d)). As a result
also a system with two impurities exhibits the aforementioned four tunneling regimes. However, introducing an
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Figure 10. (a)-(d) Temporal evolution of the one-body density of the two impurities for g, /E, kg = 0.2, 0.8, 1.3, 4.0, respectively.
The dashed yellow line represents the double well potential for the impurity species. Conditional probability P28 (w®, W;B ) to find
one impurity in the Wannier state w'® associated with the TAEP and another impurity in W;B ) at (e), (g) g,5/Erky ' = 0.8andat (f),
(h) g,5/E ko' = 1.3.() Sketch of a pair-particle tunneling process and (j) of a single-particle tunneling process w.r.t. the TAEP for
gu3/Erko ' = 08.

additional impurity to the system leads to a shift of the tunneling regimes (see figures 10(b) and (c)) with respect
to the interspecies interaction strength (g, ; / E ky 1= 0.2, 0.8, 1.3, 4.0). Therefore, we can conclude that also

for two impurities we are able to control the quench induced tunneling process via the coupling to the majority
species.

Having identified the existence of the four tunneling regimes of the impurity species the question that arises
is whether the impurities tunnel pairwise through the potential landscape, which we would refer to as pair
tunneling, or whether they tunnel individually, which we would call single particle tunneling. To expose the
underlying mechanisms we present in figures 10(e)—(h) the conditional probability P>5 (w(®, w(®) of
detecting one impurity in the Wannier state w® and the other impurity in the Wannier state W}B ). Here, we will

refer to w'® as the generalized Wannier states associated with the TAEP which we introduced in section 4.1 (see
also equation (6)). Figures 10(e) and (f) show the conditional probability P>E2 (wi(B), wi(B ) that the two
impurities occupy the same Wannier state for interspecies interaction strengths g, , /E, k' = 0.8 (figure 10(e))
and g, / E k' = 1.3 (figure 10(f)). Thus, we focus on the two cases where a material barrier tunneling of the
impurity species takes place or where the latter process is accompanied by a subsequent tunneling to the other
site of the double well. In figure 10(e) we observe a decreasing probability P>55 (w®, w(®) to find both
impurities in the second Wannier state, whereas the probability to detect both impurities in the fourth Wannier
state increases. This probability transfer indicates a pair tunneling from the left to the right side of the TAEP
w.r.t.x = 0. Additionally, the impurities perform the material barrier tunneling as a pair, which can be inferred
from the alternating increase and decrease of P25 (w,®), w®) and P28 (w{®), wiP). A schematic
representation of this process is illustrated in figure 10(i) assuming the TAEP at g, , /E, k; ' = 0.8. For the
investigation of the single particle tunneling we show in figures 10(g) and (h) the conditional probability to find
one impurity in the second Wannier state and the other impurity in another Wannier state for the above-
mentioned g4 . A decrease of the probability to find one impurity in the second and one impurity in the first
Wannier state P25 (wiP), w®)) is observed for times up to ¢t /w, ' = 100 (figure 10(g)), while the conditional
probability P25 (w{B) B} increases. This suggests a tunneling of one impurity from the first well of the TAEP
to the fourth well, whereas the other impurity remains in the second well. This process is depicted in figure 10(j).
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We note that this is one of many single particle tunneling processes that can take place. In this sense, the
tunneling process of the impurity species is rather complex, consisting of single particle and pair tunneling
processes.

Concluding we have realized the four tunneling regimes which we previously identified in figures 2(a)—(d)
also for two weakly interacting impurities coupled to a majority species. This implies that it is also possible to
control the tunneling process of two impurities via the interspecies interaction strength. Eventually, we have
characterized the tunneling processes underlying the dynamical response of the impurity species in terms of
single particle and pair tunneling processes [55].

6. Conclusions and outlook

We have investigated the correlated tunneling dynamics of impurities trapped in a double well potential and
immersed in alattice trapped majority species. The tunneling dynamics was initiated by implementing an
initial tilt of the double well, thereby localizing the impurity species in one of the wells, and quenching this to a
symmetric potential configuration. In case of a single impurity we have identified four different tunneling
regimes w.r.t. the interspecies interaction strength. For very weak interspecies interaction strengths the
tunneling of the impurity can be characterized as rather complex, exhibiting no regular or repetitive structure.
However, increasing the coupling to the majority species leads to a regular tunneling behavior of the impurity,
which consists of an initial material barrier tunneling due to the presence of the majority species and is
followed by a transfer of the impurity to the other site of the double well. Additionally, this effect is
accompanied by a strong entanglement between the subsystems. A further increase of the interspecies
interaction strength leads to a sole material barrier tunneling in the initial site of the double well for long time
intervals and finally for verylarge couplings forces the impurity to localize in the initially populated well and
being self-trapped.

In order to gain insight into the underlying microscopic processes of the emergent correlated tunneling
dynamics, we have constructed a time-averaged effective potential (TAEP) based on the one-body density of
the majority species. Depending on the interspecies interaction strength, this effective potential exhibits an
additional structure in each site of the double well, thus explaining the material barrier tunneling. Increasing
the coupling to the majority species, the TAEP is predominantly formed by the one-body density of the
majority species and the presence of the double well is of minor consequence, resulting in the observed self-
trapping of the impurity. Moreover, the generalized Wannier states associated with this potential allowed for a
characterization of the impurity’s dynamical response as well as the involved correlations. We concluded our
study with an investigation of two weakly repulsively interacting impurities which we prepared analogously to
the case of a single impurity. We were able to identify the previous four tunneling regimes for smaller
interspecies interaction strengths, being shifted to g, , /E, ko ' = 0.2, 0.8, 1.3, 4.0 respectively, compared to
the scenario of a single impurity. Employing again the TAEP we have developed an understanding of the
tunneling dynamics, which consists of a superposition of pair tunneling as well as single particle tunneling
processes.

There are various interesting research directions that prove to be promising for future investigations relying
on the findings of the current work. A direct extension involves the inclusion of spin degrees of freedom between
the impurities. Here, the possible formation of an analog of a Cooper-pair in the course of the tunneling
dynamics would be of immediate interest. Another straightforward direction would be to consider quench
protocols which also include a variation of the interspecies interaction strengths. For example, one might think
of a subsequent interaction quench after a transfer of the impurity in order to prevent tunneling to the initially
populated site. Also, dynamically driving the corresponding parameters of the system might be useful for
transferring the impurity species in a more controlled and systematic manner.
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Figure 11. One-body density of (a)—(d) the impurity and (e)—(h) the majority species using a tilting strength a/Egk, ! = 0.01 within
the full many-body approach. The results in each column correspond to the same interspecies interaction strength g4, ordered from
left to right with g, , JE kgt = 0.2, 1.0, 2.0, 4.0. We consider a minority species consisting of Nz = 1 particle and a majority species
with N4 = 8 particles which interact repulsively with gaa/E ko '=1.0.

Appendix A. Tunneling dynamics for smaller tilting strength

In the following we demonstrate that a certain minimal tilting strength « is necessary for observing the tunneling
dynamics as in figure 2 where we considered a single impurity and o/Egk, ' = 0.1. Figure 11 shows the
temporal evolution of the one-body densities of the impurity (figures 11(a)—(d)) and the majority species
(figures 11(e)—(h)) usinga tilting strength o/ Egk, ' = 0.01, within the full many-body approach. Analogously
to the previous discussion in section 3, we induce the dynamics by initially tilting the double well V; of the
impurity with a tilting strength « and let the system evolve in time for « = 0. However, in the present case
lowering the initial tilting strength to ot/ Egk, ' = 0.01 leads to a smaller initial energy offset between the sites
of V.

Forweak gap, i.e. g,5/E ko ' = 0.2, 1.0, we find a rather regular tunneling of the impurity from the
left to the right side of the double Vg (see figures 11(a) and (b)). Comparing this with the dynamical response
of an impurity for an initial tilting strength of o,/ Egk, ' = 0.1 (see figure 2(b)) we find no material barrier
tunneling triggered by the density of the majority species. The difference between the two initial tilting
strengths is also evident for larger interspecies interaction strengths, e.g. g, /E;ky ' = 2.0, 4.0. Here, the
impurity essentially remains localized throughout the dynamics and does not perform any oscillations
(see figures 11(c) and (d)). Furthermore, the one-body density of the majority species behaves accordingly
and does not exhibit a distinctive dynamics compared to the o/Egk, ' = 0.1. Namely, p'}’ remains well
localized at the sites of the lattice potential during the propagation (see figures 11(e)—(h)). These observations
lead to the conclusion that indeed a sufficiently high initial tilting strength «v is needed in order to observe a
material barrier tunneling with a subsequent controlled transfer of the impurity to the other side of the
double well.

Appendix B. Dependence of the tunneling process on the system parameters

We have analyzed the tunneling behavior of the impurity species for a specific choice of the intraspecies
interaction strength g4 4 of the majority species and the barrier height 4. In figure 12 we show that the qualitative
behavior of the tunneling dynamics discussed in the main text can be recovered for significantly varying g4
and h. As a measure for the characteristic dynamical response of the impurity we again investigate the temporal

~L/4
evolution of the integrated one-body density of the impurity f, L//Z pg) (x, t)dx. The latter enables us to distinguish
between the different tunneling regimes, for a fixed interspecies interaction strength of g, , /Erk, ' = 1.0. This
value lies in regime II in figure 4(a), where we observe a material barrier tunneling within the initially populated

well with a final transport of the impurity to the other site of the double well. In figure 12(a) we observe that an
increase of g4 4 leads to a faster revival of the material barrier tunneling in the initially populated well. Decreasing

16



10P Publishing

New J. Phys. 22 (2020) 023027 F Theel et al
1.0
(@) e a/Ek =05 | | (b) owER=w | a/E k5! =0.010
gas/Edigt = 1.0 /Byt =20 —— o/Eky' =0.025
. 0.8 e gaa/Edy =20 | ] e h/Eky =30 a/Ekyt = 0.050
2 . e gaa/Ed =50 | | 4 e BBk =50 ceem a/Ekgt = 0075
o a/Eky" = 0.100
= : — a/Ek;' =0.200
QU

a/E.ky' = 0.300

s

Figure 12. Temporal evolution of the integrated one-body density of the impurity L ;I;/; p(B”(x, t)dx upon variation of (a) the

intraspecies interaction strength g, 4, (b) the barrier height 4 and (c) the tilt « for an interspecies interaction strength of

%45/ Erky ' = 1.0.For each variation the remaining parameters have been fixed to the values as introduced in section 2.1. The yellow
lines correspond to the parameter choice in the main text. We consider a minority species consisting of N = 1 particle and a majority
species of N, = 8 particles which interact repulsively with g, , /E, k¢ ' = 1.0.

gaa leads to atemporal prolongation of the material barrier tunneling and thereby a delayed transfer of the impurity
to the other site of the double well.

A similar process can be observed when increasing the height of the double well barrier (see figure 12(b)).
However, at a certain height of the barrier, e.g. h/E, k, ' = 5.0, the impurity is barely able to tunnel to the
other site of the double well within the considered time interval and solely performs the material barrier
tunneling in the initial well. In contrast, a sufficiently small barrier height, e.g. h/E, k, ' = 1.0,leads to aless
dominant material barrier tunneling within the initial well since the impurity can be easily transferred to the
other well.

Finally, we have investigated the dependence of the impurity’s dynamical response on the initial tilt « (see
figure 12(c)). For small tilts we find almost no oscillations in the initially populated well and the impurity is
directly transferred to the other site of the double well (see also figure 11(b)). For increasing tilts c the oscillations
due to the material barrier tunneling become more prominent and thereby the tunneling to the other well is
delayed. In this sense, we find that the material barrier tunneling can be recovered for various parameters of the
system.

Appendix C. Convergence of the many-body simulations

In the following we briefly discuss the convergence behavior of our results. As discussed in section 2

the size of the Hilbert space is given in terms of the orbital configuration C = (M, d,, dg). Here, M describes
the number of species functions in the Schmidt representation (see equation (2)), while d, with o € {A, B}
refer to the number of SPFs building the time dependent number states |77 (t)) (see equation (3)). In the
process of increasing the number of species functions and SPFs it is possible to recover the solution of the
many-body wave function with an increasing accuracy. Due to the exponentially increasing size of the
Hilbert space it is computationally prohibitive to use too many species and SPFs. However, we are

able to obtain numerical solutions which incorporate all the necessary correlations and go beyond
mean-field approximations utilizing ML-MCTDHX. We determine the effect of the truncation of the

Hilbert space by investigating as a representative example the integrated one-body density of the

impurity f, ;L//z ! p%U (x, t)dx upon varying the orbital configuration C. In figure 13 we show the latter for

an interspecies interaction strength of g, , /Erk; ' = 1.0 (see figure 2(b)). Note that g, , /Erk, ' = 1.0 lies
in the interval where the degree of correlations is maximized (see figure 5). As it can be seen, increasing the
size of the Hilbert space systematically it is possible to achieve convergence. Based on these findings the
orbital configuration C = (6, 6, 6) has been employed in all many-body calculations presented in the
main text.
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Figure 13. Temporal evolution of the integrated one-body density of the impurity L ;L//; £ (x, t)dx upon varying the orbital

configuration C for an interspecies interaction strength of g, , /Erkg ' = 1.0. The system consists of a minority species with Ny = 1
particle and a majority species of N4 = 8 particles which interact repulsively with g, , /E, ky ' = 1.0.
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