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Abstract

In this work, we demonstrate a simple and effective method to design and realize various Weyl
semimetal (WSM) states in a three-dimensional periodic circuit lattice composed of passive electric
circuit elements such as inductors and capacitors (LC). The experimental accessibility of such LC
circuits offers a ready platform for the realization of not only various WSM phases but also for
exploring transport properties in topological systems. The characteristics of such LC circuits are
described by the circuit admittance matrices, which are mathematically related to the Hamiltonian of
the quantum tight-binding model. The system can be switched between the Type-I and Type-II WSM
phases simply by an appropriate choice of inductive or capacitive coupling between certain nodes. A
peculiar phase with a flat admittance band emerges at the transition between the Type-I and Type-II
Weyl phases. Impedance resonances occur in the LC circuits at certain frequencies associated with
vanishing eigenvalues of the admittance matrix. The impedance readout can be used to classify the
Type-Iand Type-II WSM states. A Type-I WSM shows impedance peaks only at the Weyl points
(WPs) whereas a Type-1I WSM exhibits multiple secondary peaks near the WPs. This impedance
behaviour reflects the vanishing and non-vanishing density of states at the Weyl nodes in the Type-1
and Type-II WSM phases, respectively.

1. Introduction

Exotic topological phases of matter have emerged as one of the most exciting branches of condensed matter
physics in the past decades due to their exceptional electronic properties [ 1-3]. Although gapped topological
materials such as topological insulators [4—6], integer quantum Hall insulators [7, 8] and topological
superconductors [9] have attracted alot of attention, the physics of topological gapless materials [10] has
recently gained more prominence due to their novel properties. A three-dimensional topological gapless system
can be characterized by the nature of its band degeneracy points where two bands touch each other in
momentum space. These band degeneracy points are classified as either Dirac [11] or Weyl points (WP) [12, 13]
depending on their symmetries. Dirac points appear only when both time-reversal [14] and inversion symmetry
[15] are conserved in a system. On the contrary, WPs emerge if either or both symmetries are broken. Although
both types of band touching points appear and annihilate pair-wise, WPs are more robust against perturbations
than Dirac points. One important class of topological system that hosts WPs are called Weyl semimetals (WSMs)
[16—-19]. WSMs disperse linearly in all three spatial directions in the vicinity of the WPs. Since the linear
dispersion around the WPs can be described by the Weyl Hamiltonian involving all three Pauli matrices, small
perturbations do not lift the energy degeneracy but only displace the WPs in momentum space. Besides
fundamental properties such as the massless and chiral nature of the bulk carriers and large carrier mobility

[20, 21], WSM states also exhibit unusual transport phenomena like the quantum anomalous Hall effect [22],
large positive magnetoresistance [23], Klein tunnelling [24, 25], chiral anomaly [26, 27] and novel quantum
oscillations [28, 29]. These exotic features and inherent robustness against disorder make WSMs promising
candidate for future generation nanoelectronics, spintronics [30] and valleytronics [31] devices. WSMs can be
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further classified as Type-I and Type-1I based on the tilt of the Weyl cones around the WPs [32, 33]. Type-1
WSMs are marked by the existence of point-like iso-energy surfaces at the WPs, and the simultaneous presence
of carriers with both signs of group velocities near the WPs [34, 35]. In contrast, in the Type-Il WSM phase,
potential energy terms dominate over the kinetic energy terms in the energy relation. This modifies the
dispersion relation in such a way that only one sign of group velocity exists along certain directions near the WPs.
Moreover, there is a finite density of states (DOS) at the WPs. When the kinetic and potential energy contribute
equally, the transition between the Type-I and Type-II phases arises where one of the bands become completely
flat with vanishing group velocity. This is the so-called Type-III [36] or Critical-type WSM phase [37]. However,
realizing WSM states in condensed matter systems and tailoring their properties are experimentally challenging.
For instance, carrier doping in WSMs may compromise the stability of the Weyl phases due to broken
translational symmetry [38]. Additionally, it is usually difficult to achieve transitions between different
topological WSM phases (Types-I, I, III) in a given material, and thus to form heterojunctions of WSMs of
different phases [23, 39, 40]. There is hence a need for alternative platforms to realize gapless topological states.
Researchers have studied various artificial systems such as photonic crystals [41], metamaterials [42, 43] and
quantum resonators [44]. However, these methods all come with their own experimental complexities and
limitations. Recently, topological states were realized in periodic electrical circuits consisting of inductors and
capacitors (LC networks) known as topoelectrical (TE) circuits [36, 45]. Under the TE framework, many striking
phenomena have been demonstrated such as the quantum spin Hall insulator state [46], magnet-less Floquet
topological insulator state [47], topological photonic state [48], and edge modes in the SSH model [49]. A key
advantage of electrical networks is the flexibility of experimental realization, as the circuits can be implemented
even on simple printed circuit boards. Additionally, circuit parameters in electrical networks can be more readily
adjusted and tuned, compared to lattice model properties of real materials.

In this paper, we demonstrate the realization of Type-I and Type-II WSM phases in a three-dimensional TE
circuit network. We relate the admittance matrix of a TE circuit to the tight-binding Hamiltonian matrix of a
condensed matter system. The resultant admittance band structure in a LC model resembles the energy
dispersion [50]. The transition between Type-I and Type-II WSM phases can be readily effected by tuning the
coupling between certain nodes. Moreover, we realize a distinct topological phase at the transition between the
Type-Iand Type-II phases, by isolating these nodes. This so-called Critical-type phase is characterized by the
emergence of a flat admittance spectrum for one of the bands. We additionally derive the impedance spectrum
and relate it to the circuit Green’s functions [51]. The impedance spectra of the TE circuits corresponding to
different WSM phases show significant differences. The Type-I WSM impedance spectrum is marked solely by
distinctive peaks at the WPs. On the contrary, the Type-II WSM impedance dispersion exhibits not only
impedance peaks at the WPs but also multiple secondary peaks along the tilt direction in wave-vector space.
Finally, the intermediate Critical-type phase is characterized by a high impedance region between two WPs
which signifies the flat dispersion of the electron or hole bands there. In short, TE circuits provide an accessible
and tunable platform to design and model distinct topological phases and transitions in WSMs, while their
impedance spectra provide a signature of the different phases.

2. Topoelectrical circuit model

Here, we consider a periodic (alongall directions) LC circuit, shown in figure 1, which comprises of two
sublattices A and B. In an AC circuit, the admittance Y of any two-terminal device component (resistor,
capacitor, inductor etc) can be expressed as Y = I, V,~! where I, and V,, are the current and the potential
difference across the circuit component, respectively. In general, I, and V,, are complex numbers [52]. By
applying Kirchhoff’s current law (KCL) at nodes A and Bin the unit cellat ¥ = (x, y, z) of the circuit model
shown in figure 1, we have:

(W) I, = V2, (G + Cy — W) + 4C, + 2Cp, + 2C, + 2Cu) — GVE,, — G VP,

X052 X,),2

- Cy(V£y+1,z + Vf,yfl,z) - CH(V)?Jrl,y,z + fol,y,z + V)éerl,z + Vaéyfl,z) - CAZ(Véy,erl + Vaéy,zfl)’ (1)

(w) P, = V2, (G + C — WL) '+ 4C, + 2Cg, + 2C, + 2Cy,) — G VL, — CVE .

X:0,2 X052
A A B B B B B B
- Cy(Vx,erl,z + Vx,yfl,z) - Cﬂ(Vx+1,y,z + fol,y,z + Vx,y+l,z + Vx,yfl,z) - CBZ(Vx,y,erl + Vx,y,zfl))
@)

where wis the frequency of the alternating current, C; and C, are the intra- and inter-cell coupling capacitances
along the x direction and C, is the coupling along the y direction between lattice points on the same A/B
sublattice. The lattice circuit model in the x—y plane is connected symmetrically with capacitors C,, and Cs,,
respectively, between A—A and B-B sites of adjacent layers along the z axis. C,, denotes the next nearest lattice
interaction between A—A or B—B sub-lattice nodes along both the x and y directions. The A and B lattice points
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Figure 1. [llustration of a TE circuit lattice to realize various WSM phases. Periodic boundary conditions are considered along all
directions. (a) The circuit representation in the x—y plane, where each A-type (red dot) node is connected to a B-type node (green dot)
by Cy, and the repeating units are connected by C, in the x direction. All alternate lattice sites along the y direction are connected by C,,.
Nodes of the same type are coupled to each other by C,, in the x—y plane. (b) The circuit representation in the x—z plane. All A-A
couplings are capacitive in nature with magnitude Cy,, while the B—B coupling can be tuned to be in-phase (out-of-phase) with respect
to the A—A coupling by selecting capacitive (inductive) hopping strengths Cg, (Lg| = |(w?Cp,)~"|), respectively, along the z direction.
(c) Additionally, all A(B) nodes are connected to ground by common inductor L in parallel with capacitor 2Cp, (2C,,) respectively.
The common inductor L determines not only the resonant frequency of the circuit but also the effective offset ‘potential’ of the TE
circuit.

are grounded by capacitors 2Cp, and 2C,4, respectively, and an additional inductance L that serves to adjust the
offset ‘potential’. Note that the capacitors Cp, can be replaced by inductors L (Lg = —(w?Cp,) ') to switch the
WSM phase of the circuit (see later). The schematic diagram of the various capacitive and inductive couplings in
the LC circuit is depicted in figure 1. Using the Fourier transformation V(E ) = eV (r), equations (1) and
(2) can be expressed in momentum k space, in analogy to the tight binding (TB) approach in a crystal lattice
model [53]. The relation between voltage and current distribution in k space can then be expressed in terms of
the Laplacian matrix equation [36, 49]

i(k) = Lye(k)v(k), )

where v(k) = [VA(K), VE()] andi(k) = [IA(k), I (k)]" are the vectors representing the potential and
current distribution at the A and B sublattice nodes in k space, respectively. LWeyl(E ) denotes the admittance
matrix (Laplacian matrix) which is analogous to the Hamiltonian in condensed matter physics [36], and can be
expressed as

(iw)*lLWeyl(I?) =G+ Cy+2C, — (WL) ' + 2C,(1 — cosky) + 2C,(1 — cosk,) + (Ca; + Cg,)
X (2 — cosk;))og — (G + Cycosk, + 2Cy cosky) o, — Cysink,o, — (Cy; — Cp;)cosk, oy, 4)
where (0, 0y, 0;) are the Pauli matrices corresponding to the A/B sublattice pseudospin degree of freedom and

opisthe2 x 2identity matrix. The admittance spectrum, which corresponds to the energy dispersion in the
quantum TB model [36], is obtained from the eigenvalues of Lyyeyi(k) / (iw) in equation (4):

E=d,+ \/(Cl + Cycosky 4+ 2C, cosky)? + (Cysinky)? + (Cy, — Cp;)cosk,)?, (5)

wheredy = G + C, + 2C, — (W2LY™' + 2C,(1 — cosky) + 2C,(1 — cos ky) + (Caz + Cp.)(2 — cosky).
Here, the ‘energy’ E refers to the admittance (divided by iw) of the circuit. The energy spectrum is gapless at the
charge neutrality point or WP in which the two eigenvalues of equation (5) are equal. This equality is satisfied by
the following conditions

sink, = cosk, = 0, (6)
G + Cycosk, + 2C, cosk, = 0. (7)
Without loss of generality, we consider all capacitances and inductances as having non-negative values,

2C, > (C; — G)and G, + C, > 2C,. The solution set of equation (6) is then
(ky, k) = {(0, £7/2), (w, £7/2)}, which reduces equation (7) to

G + nC, + 2C, cosk, = 0, (8)

wheren = 1for (ky, k,) = (0, +7/2)andn = —1 for (k,, k,) = (7, £7/2). However, for our parameter
range, no real solution of k, exists in the first Brillouin zone for = 1. For) = —1, we obtain two pairs of WPs
in k space which arelocated at w. = (m, farccos(C, — ) /2C,), +m/2). For|(C, — C)| > 2C,,noband
touching points exist. The type of WPs hosted by the Laplacian in equation (4), either Type-I or Type-II, depends
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Figure 2. Admittance band analysis for TE circuit model for different WSM phases at resonant frequency with common parameters
C; = 0.716 mF, C, = 0.716 mF, C, = 0.167 mF, C, = 0mFand L = 1 mH, (a) ‘Energy’ (admittance) spectrum corresponding to
Type-1 WSM, with inductive B-B coupling along the zdirection with parameters C,, = 0.5mF, L3 = —w~2C;} and k, = 7. (b) Iso-
admittance contour plot of the upper and lower admittance bands of a Type-I WSM in (a), projected on the k,—k, plane. The red dots
denote WPs around which the iso-admittance curves form closed admittance surfaces. (d) Flat admittance bands with two pairs of
WPs for Critical-type WSM (transition phase between Type-I and Type-II WSM) with same parameters as (a) but with zero coupling
between the B—Bsites along the z axis. (e) Iso-admittance contour plot of the upper and lower admittance bands of a Critical-type
WSM in (b), projected on the k,~k plane. The upper band shows a zero energy contour line that connects two opposite WPs at

k, = 4m/2. This denotes the flat band feature at the transition point of Type-Iand Type-II WSM. (g) Admittance spectrum
corresponding to Type-II WSM phase with capacitive coupling between B—B and A—A also sites along the k, direction, C,, = 0.5 mF,
Cp, = 0.2mFand k, = 7. Both upper and lower bands show group velocity of the same sign around the WPs in contrast to the Type-I
dispersion of (a), opposite velocities. (h) Iso-admittance contour plot of the admittance bands of a Type-IIl WSM in (g), projected on
the k,—k, plane. Due to the hyperbolic dispersion of Type-II WSM, the iso-admittance contour lines do not enclose the WPs. However,
the number and position of WPs have not changed with respect to Type-I and Critical-type WSM. (¢), (f), (i) Constant admittance
cross section at E = 0, for admittance spectra in (a), (d) and (g) for the Type-I, Critical-type and Type-II WSM, respectively. Type-I
WSM hosts no states at the nodal energy. Critical-type WSM phase exhibits straight line bulk-like states between WPs. In Type-1I
WSM,, electron and hole pockets emerge at Fermi energy which touches the WPs.

on the values of C,, C4, and Cg,, which determine the dy term in equation (5). These parameters do not shift the
WPs in the k-space but only modify the tilt of the Weyl dispersion cones. Figure 2 shows the evolution of the
resonant admittance band structures and iso-admittance contour plots for different WSM phases. The resonant
frequency is given by

wy = (L(G + C; + 2C, + 4C, — 2C,(cosky + cosk,) + (Ca, + Cp,)(2 — cosk,)"1/2, 9)

where w, corresponds to the frequency at which the o-independent terms in the Hamiltonian vanish. As shown
in figure 2(a), when the hopping parameters between the A and Bnodes along the z direction have opposite signs,
aType-I WSM dispersion is obtained. In contrast, when the coupling between two similar sites along the z
direction has the same signs, the WSM phase changes to Type-II (figure 2(g)). The Critical-type phase between
two WSM phases is depicted in figure 2(d), corresponding to zero coupling between two adjacent B-B nodes
along the zaxis. As shown in figure 2(b), for the Type-I WSM phase, the constant admittance (iso-admittance)
contour is a closed loop in the k,—k, plane that encompasses the WPs. In contrast, the iso-admittance contours
for Type-II WSM are hyperbolic and connect the WPs with different chiralities, as shown in figure 2(h) for both
energy bands. The contours for the transitional Critical-type phase between Type-I and Type-II WSMs are
distinct from the other two types, as depicted in figure 2(e). For this phase, the WPs are connected by the zero-
admittance contour lines for the electron (upper) band while for the hole (lower) admittance band, vanishing
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Figure 3. Numerical admittance dispersions for the Type-I, Critical-type and Type-II WSM phases of a LC circuit lattice network with
60 nodes and open boundary conditions along the y direction and periodic boundary conditions in the x and z directions. C; = 0.716
mF, C, = 0.95mF, C, = 0.167mF, C,, = 0mF,L = 1 mHand k, = 7. (a) Admittance spectrum as a function of k, for

Cp, = —Cp, = 0.5mF, with band degeneracy at two Type-I WPs. (b) Admittance spectrum for the Critical-type WSM with

Cya, = 0.5mFand Cp, = 0 mF. There are zero-admittance states between the two WPs. (c) Admittance spectrum of the Type-Il WSM
system with C4, = 0.5 mFand Cg, = 0.2 mF. The value of the positive Cg, is sufficiently large to tilt the two bands such that both will

have group velocity of the same sign.

admittance is obtained for the rest of Brillouin zone along the k, direction for a specific value of k, that satisfies
equation (7). Another method to classify the different WSM phases in the TE circuit model is by noting the
existence of fintie DOS in the vicinity of WPs, as shown in figures 2(c), (f) and (i). In figure 2(c), there is zero DOS
near WPsin the Type-I WSM where the B—B coupling along the z direction is comprised of an inductor Lg. In
figure 2(f), for the transitional Critical-type WSM where there is zero coupling between nearest B sites, the WPs
are linked by a single arc of bulk states. Finally, in the Type-Il WSM where the B-B coupling along the z direction
is comprised of a capacitor Cg,, the resulting tilt of the admittance band gives raise to non-zero local DOS for
electron and hole bands in the vicinity of WPs. These are clearly visible in figure 2(i), where there is finite DOS at
the nodal admittance giving rise to the electron and hole pockets in the k,—k, plane.

3. Low admittance general Laplacian and classification

To further examine the properties of the Laplacian equation (4), we perform a linear expansion of the Laplacian
near the band touching points in k space. The general form of the linear Laplacian can be expressed as

(i) Lwey() = (1:q,0y + A q,0x + v:q,02) + (t:q, + Atyq, + £:9,)00 + Vo00, (10)

where § = (q,, 4, q,) = k — . is the small displacement from the WPs, v, = C,, v, = 2C, sin 0,

v, = (Caz — Cpo), 1, = 0, t, = 2C,sin0,t, = (Cy, + C,),

w=GCG+ C+ 2C, — (WL) ! + 4C, + 2C,(1 — cos0) + 2(Cy, + Cg,), § = arccos((C, — ) /2C,) and
A = £1forthe kand k' valleys respectively. v, is a constant ‘potential’ offset which can be tuned to zero or any
other arbitrary value by varying the inductance L. The tilt of the Weyl dispersion cones along the k; direction
increases with |t; /v;|. The Weyl phases can be classified based on this ratio: Type-Iwith |t; /vi| < 1(i=x,y,2)
(figure 3(a)), Type-Il with |t; /v;| > 1(figure 3(c)) and Type Il with |t; /v;| = 1(figure 3 (b)). In the vicinity of
the WP, the slope of the dispersion cone, which represents the group velocity, has opposite (same) signs for
opposite signs of g, in a Type-I (Type-1I) WSM, while at the transition value |¢;| = |vj|, one of the electron or hole
bands has zero group velocity and hence a flat dispersion relation, which corresponds to the Critical-type phase.
From equation (10), the linearized admittance spectra of the two bands are given by

E = (txq, + Atyqy + t.q,) + vo + XA, (11)

where x = %1 for electron and hole bands respectivelyand A = \/ vy qx2 + vf q; + v} qz2 . The group velocities

2
o V. v v? L.
of the upper and lower bands are expressed by V, = V,E = (x xj" » Aty + xquy, t, + Xk ;qz . In the vicinity of
WPs (g, — 0,4, — 0,4, — 0), V, can be further approximated to
(Vg Vi, Vo) = (XCo, 2(Cy + XCy)sinb, (Caz + Cp) + X (Caz — Cp2)). 12)

As can be seen in equation (12), electrons and holes can propagate along the opposite or the same directions
depending on the respective circuit parameters. In the x-direction, the velocity is purely determined by the
kinetic term (coefficient of ;), and the particle and hole bands show opposite gradient with respect to g,.
However, for the y and z directions there is a combination of kinetic and potential terms (coefficient of o
associated with the dispersion tilt) in the group velocity expressions. If the potential term dominates over the
kinetic term along any direction, the upper and lower bands will have the same sign of group velocity resulting in




10P Publishing

New J. Phys. 22 (2020) 023025 SM Rafi-Ul-Islam et al

a Type-Il WSM. Conversely, if the kinetic term dominates along all directions, then the two bands would exhibit
group velocities of opposite signs (Type-I WSM). Let us consider the case where the tilt exists along the y
direction. The corresponding velocities V/ *and V¢~ will have the same signs if |C,| > |C,|, giving rise to Type-
IIWPs. Conversely, if |C,| < |C,|, we would obtain Type-I WPs, where the two admittance bands have opposite
signs of admittance gradient along the y direction. At the critical coupling value |C,| = |C,|, the amplitudes of
the potential and kinetic hopping terms along the y axis are equal. This corresponds to the Critical-type phase,
with a flat hole band close to the WPs (with vanishing velocity V™), while the electron band retains a finite
group velocity V7 *. Interestingly, the second-nearest hopping along the x axis via the coupling capacitance C,,
does not contribute to the tilt in that direction (n.b. ¢, = 0in equation (10)), but rather contributes to the offset
‘potential” term, which may also be adjusted by tuning the common inductor L.

Thus far in our analytical derivation, we have considered an infinite LC circuit in all three directions. For the
numerical verification of our analytical predictions, we consider a nanoribbon geometry in a LC circuit model
with a finite width of /, = 30 unit cells in the y-direction, under open boundary conditions. Here, multiple sub-
bands are present due to the quantum confinement along the y direction. We consider the evolution of the
admittance dispersion through the different WSM phases as the B-B coupling parameter along the z-direction,
Cp,,is varied at a fixed k, = mand C,,, as shown in figures 3(a)—(c). With an inductive coupling between two
neighbouring B sites along the z direction, we have Cy, = —(w?Lp)~!. Any non-zero value of Lg will result in a
dispersion tilt such that |t, /v,| < 1. The resulting Type-I WSM admittance dispersion is shown in figure 3(a).
The dispersion relation consists of two symmetric bands touching each other at k, = +7 /2. The DOS at the
WPs is zero and both signs of the admittance gradient are present in the vicinity of each WP. When the inductor
Lgis replaced with a capacitor Cg,, the B-B coupling Cp, is in-phase with the corresponding A—A coupling, Cy,.
In this case, both would have the same sign, so that £, > v,. In other words, for any positive value of Cg,,

(Caz + Cp;) > (Cy, — Cg,) holds and so the Type-II WSM would result. This is reflected by the tipping over of
the admittance bands into two asymmetric branches with respect to k, (shown in figure 3(c)). The positions of
the WPs are not shifted but the dispersion acquires a finite DOS at the nodal admittance—the line E = 0 cuts
across multiple states in the E-k, plot, spanning across the entire range of —m < k, < 7, in contrast to the Type-
I'WSM in figure 2(a) where the E = 0 line cuts across only the WP states. Finally, for the case of zero B—-B
coupling (Cp, = 0), one of the admittance bands exhibits a flat zero admittance state between the two WPs
(—7/2 < k, < w/2)while the other shows zero admittance state elsewhere in the Brillouin zone, i.e.

|k,| > 7/2,asshown in figure 3(b). This represents the intermediate Critical-type WSM system.

4. Impedance spectrum analysis

In the previous section, we presented the admittance dispersions for the different WSM phases of a TE model. In
this section, we consider the impedance of a TE circuit and show that it offers an experimentally convenient way
to distinguish the different topological phase of the TE circuit. The impedance readout of a TE circuit can be
obtained simply by connecting a fixed current source to two arbitrary nodes in the circuit and measuring the
potential difference between the nodes. This constitutes a more convenient measurement than a direct
determination of the admittance dispersion relation of the circuit. Moreover, the comparatively large
impedance readout (in the range of few €2 to k{2) compared to the admittance readout (in the range of a few
m$ 1) provides a better measurement accuracy. We begin by analysing the mathematical significance of the
impedance between any two lattice sites in a TE circuit. Consider a 2D TE circuit shown in figure 4 consisting of a
finite number of nodes along the y direction, and having an infinite number of nodes along both the positive and
negative x directions. Each node is capacitively coupled to its left and right neighbours by C,, its upper and lower
neighbours by C,, and to the ground by a common grounding capacitance C. We also connect to every node an
additional wire through which current may flow between the node and an external current supply. This wire is
denoted as the dotted line with an arrow flowing into and out of the node, as shown in figure 4(b), and shall be
referred to as the ‘current wire” subsequently. We label the nodes by their (x, y) coordinates so that V, , is the
voltage at the node located at (x, ). The KCL at each node (except for those at the top and bottom rows) reads as

L.
_i_wy + Cv;c,y = Cy(Vx,erl + ‘/x,yfl - 2‘/;,}/) + Cx(fol,y + \/x+1,y - 2\/96,}/)' (13)

Let us first consider the case where I, = 0 everywhere. Physically, this corresponds to leaving the current wire
at each node unconnected to any current source or sink. Equation (13) with I, , = 0 then has a similar form to
the Schrodinger equation for a quantum mechanical TB Hamiltonian [36], where the common grounding
capacitance Cis the analogue of the eigenenergy. More generally, the KCL for a TE circuit which has voltage
nodes connected to common grounding capacitances C and current flowing through the current wires, can be
written as
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Figure 4. (a) Schematic of a TE circuit with a finite number of nodes along the y direction and infinite length along the x direction. The
nodes are coupled to their left/right neighbours by C,, upper/lower neighbours by C, and the ground by C. Each node is connected to
an additional wire through which current may flow in/out of the node. (b) The same circuit in (a) where we connect two arbitrary
nodes to a current source.

L 4 Cv=Hv (14)
1w
=i = iw(C—H)v = Ly, (15)

whereiis the vector of currents flowing through the current wires at every node and v is the vector of voltages at
every node. His the matrix relating the voltages at the different nodes to one another, obtained by applying KCL
at every node but excluding the contribution of the common grounding capacitance C, which is moved to left
hand side of the equation (14). If I, is set to 0 everywhere, equation (14) becomes an eigenvalue equation in C
and v, as mentioned earlier. In particular, if H is a finite-sized matrix, then the system becomes equivalent to an
infinite potential well system with a discrete eigenspectrum of C consistent with having I, , = 0 everywhere. In
equation (15), we defined L = iw(C — H) where L is the TE analogue of the inverse of the Green’s function Gtg
for a TB system with Hamiltonian Hg, i.e. Gy = (E — Hrp). Let us consider the situation where the TE circuit
is translationally invariant along the x direction, resulting in the form of V (x, y) = V (y)exp(ik,x).

Equation (15) then reduces to

L
—Z exp(—ikex) = CV, — C, (Vi1 — Vo1 — 2V)) + 2C Vi (cos(ky) — 1) (16)
iw
and the system is mathematically equivalent to a one-dimensional system with a k, dependent ‘on-site potential’
2C,(cos(k,) — 1). Equation (16) can be schematically written as
i(l)exp(—ikxx) = L(l)V(l), (17)
where the (1) subscript denotes a quasi one-dimensional system, where the effects of the infinite-length x

direction have been incorporated as a k, dependent on-site potential. In particular, for the nodes atx = 0, we
have

vy = Ladiay (18)

We then consider the situation depicted in figure 4(b) where two nodes aty = aand y = bare connectedtoa
current source supplyinga current as I (the subscript ‘S’ denotes source), while the other nodes are left
unconnected. This corresponds to setting i(1y,, = —iqys = Is, iy, = 0, ¢ = {a, b}. Theresulting voltages at
nodes aand b, V, ;, can be read off from equation (18) as

Vo= La;;a,uls - La;;a>bls (19)
Vi = Laypp(—1Is) + Ligjpals, (20)

where L;); jis the ith row and jth column matrix element of L(’li). Denoting the potential difference across the
current source as AV,, = V, — Vj, theimpedance across the current supply is given by Z,, = AV, /I so that

Zah = (Lai;a,a + L(q};h,b o La%;a,b o La%;b,a)' 1)

Letting N, be the number of lattice sites along the y direction, L(y)is thena (N, x N,) Hermitian matrix, the
spectral decomposition of whichis A = 3 /|a;) A; (a;| where |a;) is the ith eigenvector and A;its corresponding
eigenvalue, i.e. Ala;) = |a;) A;. Hence, any function f(A) of the matrix can be expressed as

f(A) = X.lai) f (A)) {aj]. Let us write the spectral decomposition of Hyjyas Hgpy = Zj|hj> ¢j (hj| with
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Figure 5. Impedance spectra for various Weyl phases at resonant frequency between the first and last nodes (N = 60) with C; = 0.72
mF, C, = 0.95mF, C, = 0.167mF, C, = OmF,L = 1 mHand k, = 7. (a) Resonant impedance behaviour for Type-I WSM network
that shows large impedance peaks at the WPs. (b) In the impedance spectrum for Critical-type WSM system, the two WPs are marked
by deep troughs even though their magnitude is comparable to the peak impedance value of Type-I WSM. However, the other points
in k space show even larger impedance due to flat band nature at the transition phase. (c) Impedance spectrum for Type-II WSM
system shows two primary peaks at the WPs and multiple secondary impedance peaks around the WPs due to the non-zero DOS in the
vicinity of WPs arising from the electron and hole pockets.

Hy)|hj) = |h;j) ;. By definition L) = i(C — H(y)), so L has the spectral decomposition

L) = —Z (22)

—C]

and substituting the above into equation (21), we have

]a hja + h* — h;;‘ah]-;b — h}fbh-;a
= —Z (23)
C— Cj

b)(h] a T hj;b)

24
e (24)

—n

:—Z ]u_ ]bl ) (25)

G

where hj,, is the ath element of h;. Equations (21) and (25) are the key formulae to evaluate the impedance
between any two arbitrary points. When Cis one of the eigenvalues of H;) and provided that |k, — h;;| is not
simultaneously zero, the current flowing through the current wires attached to the nodes will be nearly zero,
leading to a sharp spike in the impedance Z,;,. This phenomenon is similar to that in quantum-dot (QD) systems
[54, 55], in which a resonance occurs in the transmission across the system when the Fermi energy in the leads
coincides with one of the discrete energy levels in the QD. Here C plays the role of the lead Fermi energy and ¢;
the discrete energy levels in the QD.

The impedance spectra across the whole circuit, i.e. between the first and last nodes (N = 2n) are plotted as
afunction of k, at the resonant frequency for various WSM phases (see figure 5). Here, we consider # = 30 unit
cells so that there are N = 60 alternating A and B lattice points. As can be seen in figure 5, the impedance
distribution is symmetric about k, = 0 for all types of WSM phases but assume different profiles for different
phases. Figure 5(a) shows the impedance readout of a Type-I WSM TE circuit. The notable characteristic of the
impedance spectrum is the presence of two clear peaks at the k points corresponding to the WPs in the k,
direction. These may be explained by considering equation (25) and figure 3(a). Figure 3(a) shows the hole and
particle-like bands almost touching only at the WPs, where the admittance matrix is nearly zero. (The hole and
particle bands do not actually touch due to the small band gap as a result of the finite width.) Equation (25) shows
that the impedance between two points is dominated by the eigenvalues of the Laplacian matrix closest to C = 0,
and inversely proportional to these eigenvalues. Thus, large impedance peaks are observed in the vicinity of WPs
of Type-I circuit model. At k values away from the WPs, the eigenvalues of electron and hole bands have
relatively large (non-zero) magnitudes, resulting in the decay of impedance readout (figure 5(a)). The impedance
spectrum along k, is plotted in figure 5(b) for Critical-type WSMs. As we have seen from figure 3(b), the electron
and hole bands in the spectrum exhibit a flat band dispersion. The corresponding WPs are marked by two
impedance minima, but the corresponding impedance value is large and of the same order of magnitude as that
of the impedance peaks in Type-1 WPs. At other k values between the WPs, the impedance exhibits much larger
values by several orders of magnitude. The existence of large impedance over the whole of the Brillouin zone
apart from the WPs is the direct consequence of the zero-admittance flat dispersion in the admittance spectrum.
Finally, the resonant impedance characteristics of a Type-II WSM is illustrated in figure 5(c), which shows an
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oscillatory response along the momentum direction that is parallel to the tilt direction (i.e. the k, direction). The
primary impedance peaks occur at k, = +7/2, just as in the Type-I WSM system, but in addition there are
multiple secondary peaks at other values of k,. The emergence of these secondary peaks is due to the presence of
eigenvalues with small magnitude of admittance, thus indicating the existence of finite DOS in the proximity of
Type-II WPs. This is in line with the presence of hole and electron pockets as can be seen in the admittance
dispersion for Type-II WSM shown in figure 3(c).

5. Conclusion

In conclusion, we have realized and characterized various WSM phases in the admittance dispersion of three-
dimensional LC topoelectric circuit. The characteristics of such LC circuits are described by the circuit
admittance matrices, which are analogous to the Hamiltonians of the quantum tight-binding model. The
different phases of the circuit can be switched between one another by adjusting the magnitude and sign of the
capacitive/inductive coupling in the circuit lattice. An intermediate Critical-type WSM phase with a flat
admittance band emerges at the transition between the Type-I and Type-II phases. In practice, the impedance
readout of the circuit can be used to classify its topological WSM phases. To show this, we numerically calculated
the impedance between the terminal nodes using the Green’s function analogy. The impedance spectra of the
different WSM phases reveal different characteristics. The impedance spectrum of Type-I WSM shows peaks in
the vicinity of WPs whereas a Type-II WSM exhibits multiple secondary peaks in addition to the main peaks at
the WPs. This impedance behaviour reflects the vanishing and non-vanishing DOS at the WPs in the Type-Iand
Type-II WSM phases, respectively. The LC circuit model allows ready implementation of WSM phases using
basic circuit elements. The accessibility and ease of fabrication of the LC circuits make them an ideal platform for
the design and characterization of topological WSM states and their transport properties.
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