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Abstract
Periodically driven quantum systemsmanifest various non-equilibrium features which are absent at
equilibrium. For example, discrete time-translation symmetry can be broken in periodically driven
quantum systems leading to an exotic phase ofmatter, called discrete time crystal (DTC). For open
quantum systems, previous studies showed thatDTC can be found onlywhen there exists ameta-
stable state in the undriven system.However, by investigating the simplest Bose–Hubbardmodel with
dissipation and time periodically tunneling, wefind in this paper that a 2TDTC can appear evenwhen
themeta-stable state is absent in the undriven system. This observation extends the understanding of
DTC and shedmore light on the physics behind theDTC. Besides, by the detailed analysis of simplest
two-sitesmodel, we show further that the two-sitesmodel can be used as basic building blocks to
construct large rings inwhich a nTDTCmight appear. These resultsmight find applications into
engineering exotic phases in driven open quantum systems.

1. Introduction

As an analog of the spatial symmetry breaking that leads to the formation of crystals, in 2012 FrankWilczek
proposed that time translation symmetry can be spontaneously broken in a similar way [1], leading to a new
phase called time crystal. The proposal of such a time crystal for time-independentHamiltonians inspires a lot of
discussions [2], and those studies found that such structures cannot exist in the ground state or any thermal
equilibrium states of a quantum system [3], because quantum equilibrium states are time-independent,
regardless of that the spontaneous breaking of continues time translation symmetry can occur for an excited
eigenstate [4]. By comparison, periodically driven Floquet systems posses discrete time translation symmetry,
and this symmetry can be further broken into super-lattice structures where physical observables exhibit a
period larger than that of the drive [5]. The early proposal for the realization of discrete time crystal (DTC)
require strong disorder to stabilize theDTCphase [5, 6]. Recently, the authors of [7] pointed out that theDTC
can generally exist in systemswithout disorder. The generalization of the concept ofDTC to discrete time
quasicrystals is also presented recently [8].

In practice, an ideally isolated system actually does not exist, and the coupling of system to external
environmentmay destroy the rigid time crystal behavior after a long time. This has been studied theoretically in
[9] and experimentally in [10, 11]. One thenmaywonderwhether a robust time crystal order can be found in
open system. The extension ofDTC to open quantum systemwith drive and dissipation attracts widespread
research interest recently. Concretemodels [12, 13] shown that theDTCorder can exist in open systemwith
appropriately engineered drive and dissipation. This predictionwas confirmed by the authors of [12]who
shown that themodifiedDickemodel with the help of sufficiently strong atom-photon coupling and photon loss
can exhibit time crystalline structure, and the same predictionwas reported in [13] that a dissipative Rydberg
model is also possible to possess time crystal order.

ForDTCs in open systems, there exist some physical observable Ô with expectation valueO(t), and
( ) ( )= +O t O t nT shows sub-harmonic response to the drivingfield of periodT. Here n is an integer and
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n�2. TheDickemodel exhibits a zero-temperature phase transition from anormal to a super-radiant phase
[12, 14]when the light–matter interaction increase. The parity symmetry of theDickemodel is spontaneously
broken in the super-radiant phase [12, 14]. Reference [12] utilizes this feature and drives the system in the super-
radiant phase to entail sub-harmonic dynamical responses. The sub-harmonic response of [13] originates from
the coexistence of two phases connected by first-order phase transition in dissipative Rydberg gas. Though the
physical realizations of these two proposals are different, both of them feature period-doubling n=2 and the
appearance ofDTC in these proposals relies on the existence ofmeta-stable state of the undriven system.

It is well known that Bose–Einstein condensates (BECs) in a double-well can exhibitmacroscopic quantum
self-trapping due to the inter-atomic interaction (nonlinear self-interaction in themean-field level) [15].Within
amean-field framework, the effect of decoherence on the dynamics of BECs in a double-well potential was
studied in [16]. It is found that the self-trapping can be either enhanced or spoiled by dissipation depending on
the specific formof condensate-environment coupling [16]. This stimulate us to study howBECs in a double-
well behave under periodic drivewhile they are subject to decoherence, and particularly whether the time crystal
order can be found in such a system.

In this work, we introduce a Bose–Hubbardmodel with quasi-local dissipation and time periodicmodulated
tunneling. Thismodel describes bosonic atoms tunneling in an optical lattice immersing in a large BECof atoms
[17]. Thismodel can be realized in optical lattice with current technology, for details, we refer to [17, 18].When
the time periodicmodulation is not switched on and the interaction is strong enough, ourmodel can exhibit
self-trapping, and themoderate quasi-local dissipation can help stabilize this system.

When the system is in the self-trapping regime, wefind in this paper that the system can exhibit sub-
harmonic responses to the periodicmodulation, a hallmark ofDTC. This corresponds to the case where ameta-
stable state in the undriven system exists, it is necessary to haveDTC.We further find that even the undriven
system is not in the self-trapping regime, the periodic drive can also turn the system to aDTC, this interesting
result is quite different from the earlier studies, for example in [13] the appearance ofDTC requiresmeta-stable
states in the undriven system. In addition, we show that period-n (n>2)DTC can be realized in large rings
based on two-site systems considered here. Though the period-nDTCs have already been demonstrated in the
closed quantum system [19], the period-nDTChas never been discussed in open quantum systems, and the
implementation of such a system is also lack. The realization of a period-n (n>2)DTC in an open system is the
the other interesting result of this work.

The remainder of thismanuscript is organized as follows: in section 2, we present a formal definition of time
crystal for open systems. In section 3, we introduce ourmodel. In section 4, we performFloquet analysis for our
system, and in section 5 amean-field analysis is given. The conclusion and discussions are presented in section 6.

2.Definition ofDTC

Similar to the spatial crystal, spontaneously breaking of the discrete time translation symmetry leads to the
concept ofDTC [5–7]. Taken an open quantum system as an example, the broken of time translation symmetry
requires the existence of a physical observable Ô that acts as an order parameter

( ) [ ˆ ( ) ˆ ] ( )r=O t t OTr , 1

to satisfy the following constraints: (A) discrete time translation symmetry breaking, i.e. ( ) ( )+ ¹O t T O t ,
while the Lindbladian ( ) t that governs the evolution of systempossesses discrete time translation symmetry

( ) ( )+ = t T t with periodT; (B) rigidity:O(t)possesses a fixed oscillation periodwithoutfine-tuned system
parameters; (C) persistence: the non-trivial oscillationwith thefixed periodmust persist for infinitely long time
in the thermodynamic limit. Such a definition ofDTC can be regarded as an open system generalization of the
definition in closed system [7].

3.Model

Wenow introduce a Bose–Hubbardmodel with dissipation andwill show that it satisfies all the constraints (A)–
(C) given in section 2. Themodel describesN bosonic atoms on an one-dimensional ring lattice with sites
M=2n, here n is an integer. The dynamics of thismodel is described by the Lindbladmaster equation

ˆ ( ) ( )[ ˆ ( )] [ ˆ ( ) ˆ ( )] [ ˆ ( )] ( )r r r r¶ = º - + t t t H t t ti , , 2t
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whereHamiltonian ˆ ( )H t reads

ˆ ( ) ( )( ˆ ˆ ˆ ˆ ) ˆ ˆ ( ˆ ) ( )
† †

å a= - + + + -+ +H t J t b b b b n
U

n n
2

1 , 3
l

l l l l l l l
l

l l1 1

and

[ ] ( ˆ ˆ {ˆ ˆ }) ( )† †å g* = * - * c c c c2 , . 4
l

l l l l l

Thefirst part ofHamiltonian represents the kinetic energy of bosons tunneling between adjacent lattice sites
with amplitude Jl (t). The second part represents the onsite potential, andαl is the onsite potential strength. The

last part represents the inter-atomic interaction, andUl is the onsite interaction strength. b̂l ( ˆ
†

bl ) are boson

annihilation (creation) operators on site l, and ˆ ˆ ˆ†
=n b bl l l are number operators. The jump operators in [ ]*

that represent the quasi-local dissipation are given by

ˆ ( ˆ ˆ )( ˆ ˆ ) ( )
† †

= + -+ +c b b b b , 5l l l l l1 1

and gl is the dissipative rate. For simplicity, we setUl=U,α2m=0, a a=-m2 1 , ( ) ( )=J t J tm o2 ,
( ) ( )=-J t J tm e2 1 and γl=γ. Herem=1, 2, 3,K , n.

The tunneling amplitude ( )J to e, are periodic functions of periodT, i.e. ( ) ( )+ =J t T J to e o e, , . Herewe define
driving frequencyω=2π/T.U>0 andU<0 represents repulsive and attractive interactions, respectively. In
the following, we consider attractive interactionsU�0 and tunneling amplitude ( ) >J t 0o e, for any given t.

Note that the Lindbladian ( ) t conserves the total particle number ˆ ˆ= åN nl l. For undriven systemwith
constant tunneling ( ) ( )=J t J 0o e o e, , ,α=0 and non-interacting atoms, themodel has amany-particle dark state

∣ ∣ !†ñ = ñ=b NBEC vacq
N

0 , corresponding to a state withmacroscopic occupation of quasi-momentum q=0.

Here, ˆ ˆ= åb b Meq l l
qli is the destruction operator for quasi-momentum q in the Bloch band [17]. In fact, as

shown in [17], this dark state is the unique steady state of thismaster equation, namely, all initial states will finally
evolve into ∣ ñBEC . The implementation of thismodel using cold atoms in optical lattices can be found in [17].

4. Floquet analysis

4.1. Floquet basics
Because the evolution of ourmodel system is governed by a periodT Lindbladian ( ) ( )+ = t T t , it is
convenient to define a Floquet propagator ( ) T , 0 ,

( ) [ ( ) ] ( ) ( )ò t t= º   T T, 0 exp d exp . 6
T

0
F

Here F plays the same role as Floquet propagator ( ) T , 0 , and can be treated as effective generator of the
stroboscopic time evolution ( ) T , 0 . In fact, according to the Floquet theorem [20, 21], the time evolution
operator can bewritten as ( ) ( ) ( )=  t t t, 0 exp F with ( ) t satisfying ( ) ( )= + t t T . ( ) t represents the
micro-motion in one driving period, and effective generator F governs the evolution at the time point nT
(n=1, 2, 3,K).

With the eigenmodes m̂j of Floquet propagator ( ) T , 0 given by the eigenvalue equation

( )[ ˆ ] ˆ ( )l= T m m, 0 , 7j j j

and non-degenerate eigenvaluesλj, as well as a given initial state ˆ ( )r 0 represented by

ˆ ( ) ˆ ( )år h= m0 , 8
j

j j

the density operator at any time instance of integermultiple of period can be given by

ˆ ( ) ( )[ ˆ ( )] [ ] ˆ ( )år r h q= =nT T n T m, 0 0 exp . 9n

j
j j j

Here ( )q l= Tlnj j . θj can also be regard as the eigenvalue of effective generator F. Because the propagator
( ) T , 0 is completely positive and trace-preserving [22], it possesses at least one eigenvalue equal to 1 (maybe

degenerate) and themodulus of the rest eigenvalues are less than 1 [23]. To simplify the representation, we label
the eigenvalues of ( ) T , 0 by their length in the complex plane in descending order ∣ ∣l=1 1 and ∣ ∣ ∣ ∣l l +j j 1 .

Denoting the real and image parts of θj as q j
Re and q j

Im, respectively, we have (∣ ∣)q l= Tlnj j
Re and

( )q l= Targj j
Im . Because ∣ ∣l  1j , q j

Re is a non-positive real number. q- j
Re can be viewed as the effective

relaxation rate ofmode m̂j, and t q= -1j j
Re is the lifetime ofmode m̂j. A zero q j

Re means m̂j has an infinite

lifetime, or say m̂j is stable. Themodewith non-zero q j
Re hasfinite lifetime. The time scale for the convergence of

a given initial state to the stationary state is determined by the largestfinite lifetime { }tt¹¥max jj
[24]. The
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imaginary part q j
Im is defined up to add integermultiple of driving frequency and characterizes the oscillation

behavior ofmode m̂j. In the following, we call q j
Re effective relaxation rate and q j

Im Floquet quasi-frequency.
If some eigenvalueλj of Floquet propagator is degenerate with algebraicmultiplicity blj

[25], and the
number of linearly independent eigenmodes corresponding to eigenvalueλj (i.e. geometricmultiplicity [25]) is
less than blj

.We canfind linearly independentmodes of form ˆ ( ) ˆ= å
b
=

-lm t m tj k l j k
l l

; 0
1

;
j , and the number of these

modes equals to blj
[25]. Here k denotes the differentmodes corresponding to the sameλj. The dynamics of

thesemodes is governed by equation ( )[ ˆ ] [ ] ˆ ( )q= nT m n T m nT, 0 expj k j j k;
0

; [25]. Then a given initial state can
be expanded by these linearly independentmodes, i.e. ˆ ( ) ˆr h= å m0 j k j k j k; ; ;

0 .We have

ˆ ( ) [ ] ˆ ( )r h q= ånT n T m nTexpj k j k j j k; ; ; . In this case, the eigenvalueλj or θj can also give the information about the

dynamics. Since ˆ ( )m tj k; is a polynomial of time t, it can not describe oscillating behavior, and the evolution over

long time is dominated by the exponential fast decay [ ∣ ∣ ]qµ -n Texp j
Re .

Sincewe are seeking for a time-crystal order related to the specific dynamics of the system, the Floquet
eigenvaluesλj can provide useful information. To satisfy the constraints (A) and (C) listed in section 2, we need
at least two long-lifemodes, the life time of them should approach infinity in the thermodynamic limit, and at
least one of these long lifemodes should has a non-zero Floquet quasi-frequency. If the initial states overlapwith
the long lifemodes that have non-zero Floquet quasi-frequency, we can expect to see the persistent oscillation in
(at least) one observable of the system. The rigidity constrain (B) in section 2 requires the oscillation frequency to
befixed. Typically, according to the Floquet formalism ( ) ( ) ( )=  t t t, 0 exp F , on top of the evolution given
by ( ) texp F , there is a trivial oscillationwith periodT given by ( ) t , the non-zero Floquet quasi-frequency of
the long lifemodes should be compatible with the driving frequency w p= T2 , such that the oscillation is still
periodic. This requires that the non-zero Floquet quasi-frequency of the long lifemodes takes the form
q w= m nj

Im with integer n=2, 3,K and = ¼ -m n1, 2, , 1. In general, the non-zero Floquet quasi-
frequency can be incommensurate with the drive, this would lead to the so called time quasi-crystal [26], but this
is beyond our scope of study in this work.

4.2. Two-sitemodel
Wefirst analyze ourmodel system for some limiting cases to gain some insights into the problem. The
dimension of theHilbert space of ourmodel is given by ( )! !( )!= + - -D N M N M1 1b . It involve a linear
space of dimension ofDb

2 to solve the spectrumof ( ) T , 0 . For the simplest caseM=2, we haveDb=1+N,
and the spectralmethod is feasible for relatively large number of particleN∼100. As a comparison, when
M=4 and 6, we haveDb=286 and 3003 formuch few particleN=10. The case withM>2will only be
treated in themean-field level. In the following, we analyze the two sitesmodel for some limiting cases to gain
insights into the problem, and the numerical results for the two sitesmodel with general parameters are also
presented.

For the sake of simplicity, we employ the following formof the tunneling strength

⎧⎨⎩( ) ( )
x

x
=

<
<


J t

J t

J t T

0
. 101

2

In this two steps driving setup, the Floquet propagator takes the form
( ) [ ( )( )] [ ( ) ]x x x= -  T T, 0 exp exp 0 . It is known that for two sitesmodel with constant tunneling, if the

inter-atomic interaction is largewith respect to the tunneling, and the condensate-environment coupling is
chosen properly, the condensate will be locked in one of the sites, depending on the initial population [16]. This
prediction is obtainedwithin amean-field framework in [16], where the number of atoms in the condensates is
supposed to be infinity and the quantumfluctuation is neglected, though it is desirable to study the problemwith
a full quantum treatment.

For the case of symmetric double wellα=0 and time-independent tunneling, we find that except one stable
mode m̂1of ( ) T , 0 with eigenvalueλ1=0, ameta-stablemode m̂2 emerges when the interaction strength is
larger than a critical value. The life time of m̂2 isfinite forfinite number of atoms, and it increases exponentially
as function of atomnumberN. In the case of symmetric doublewell, the Lindbladian ( ) t is invariant under the
transformation ,

( ) ( ) ( )=-  t t . 111

Here is an unitary transformation, defined by [ ] ˆ ( ) ˆ †* º * X X and ˆ [ ( ) ]† †pº +X b b b bexp i 21 2 2 1 . So the
stablemode m̂1 andmeta-stablemode m̂2 are also the eigenmode of . The eigenvalue of is just±1, because

= 12 . Thenwe conclude [ ˆ ] ˆ= m m1 1, because it is the steady-state over very long time. The numerical results
show that [ ˆ ] ˆ= - m m2 2. Bothmodes have Floquet quasi-frequency zero q = 0j

Im , then the linear superposition
of these twomodes can not showoscillatory behavior, but such a linear superposition has very long lifetime.We

4
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will show later that, the linear superposition of these twomodes can represent the trapping of atoms in one of
two sites. The lifetime of m̂2 is in fact the trapping timewhen the quantumfluctuation is considered.

Physically, the transformation represents flipping the atoms in thefirst site to the second site and
vice versa. If we initially load the atoms in one site, then perform aflip andwait some time, the atoms can relax
in the another sites due to self-trapping. Repeat this process, we can observe the period-doubling oscillation of
atom imbalance between the two sites. Specifically, this two steps dynamics can be given by Floquet propagator
of form

( ) [ ( )( )] ( )x x= -  T T, 0 exp . 12f

Denote the eigenvalue of m̂2 by l2, i.e. ( )[ ˆ ] ˆx = m l m2 2 2, note that the image part of l2 is zero. It is straightforward
to show

( )[ ˆ ] [ ( )] ˆ ( )x= - - T m l T m, 0 exp , 13f 2 2 2

and in the limit  ¥N , we have ( )[ ˆ ] ˆ= - T m m, 0f 2 2. m̂2 has Floquet quasi-frequency q w= 22
Im and the

effective relaxation rate ( )q x= -l T12
Re

2 in this case. The effective relaxation rate of the third eigenmode m̂3

of ( ) T , 0f is just ( )q x= -l T13
Re

3
Re where l3 is given by ( )[ ˆ ] ˆx = m l m3 3 3. l3

Re takes a non-zero value in the
largeN limit, so the long time dynamics of system is characterized by the first twomodes. To realize such Floquet
propagator, we can set x p=J 21 in equation (10). Besides, γNξ should be small enough so that dissipation in
the time interval [0, ξ) is negligible, and ∣ ∣J UN1 so the unitary part of evolution is given approximately by .
It is unclear whether themeta-stablemodewith Floquet quasi-frequency q w= 22

Im can still exist or not, when
the slight deviation of the first driving step [ ( ) ]xexp 0 from are considered.We study this question by
numerically solving equation (7) in the following subsection.

Suppose themeta-stablemodewith Floquet quasi-frequency q w= 22
Im can still exist when the

imperfections in the driving step are considered. If the evolution of system starts from a state
ˆ ( ) ˆ ˆ ˆr = + + å >m c m c m0 k k k1 2 2 2 and ¹c 02 . After time t q= -13 3

Re and in the largeN limit, the densitymatrix
at stroboscopicmoment t=nT is

ˆ ( ) ˆ ( ) ˆ ( )r = + -nT m c m1 , 14n
1 2 2

that shows sub-harmonic response to the driving field. Define the atom imbalance between the two sites

ˆ ( ˆ ˆ ˆ ˆ ) ( )
† †

= -O
N

b b b b
1

2
. 151 1 2 2

The expectation value of observable Ô with state given by equation (14) is

( ) [ ˆ ˆ ( )] ( ) [ ˆ ˆ ] ( )r= = -O nT O nT c m OTr 1 Tr . 16n
2 2

This shows period-doubling oscillation, a clear signature ofDTC.Here, we use the relation [ ˆ ˆ ] =OmTr 01 to
obtain equation (16), that comes from [ ˆ ] ˆ= m m1 1. If the two sites are asymmetric, i.e. a ¹ 0, there is no
symmetry constraint to m̂1, and generally [ ˆ ˆ ] ¹OmTr 01 ,O(nT) can acquire a non-zero basis.

4.3. Numerical results for themodel with two sites
First, we consider two symmetric sites, i.e.α=0. For Floquet propagator with tunneling of form equation (10),
thefirst three eigenvalues are calculated numerically, and the results are shown infigure 1. The panels (a) and (b)
infigure 1 plot the effective relaxation rate q2

Re and Floquet quasi-frequency q2
Im of the second eigenmode of

( ) T , 0 as functions of interaction strengthUN/J and tunneling J1/J, respectively. The particle numberNused
in the calculation offigures 1(a) and (b) areN=60. The dotted dash line infigures 1(a) and (b) indicates the
mean-field critical interaction strength ( )g= - -U N J N J2 8cr

2 of parent generator ( )x . The derivation of
Ucr is straightforward and can be found in section 5.

As shown infigure 1(a), on the right-hand side of the dotted dash line, the three regionswith
[ ( )]q g- < -Nln 12

Re are surrounded by dash lines. In these three regions, ∣ ∣q2
Re is several orders ofmagnitude

smaller than the natural relaxation rate γN. The Floquet quasi-frequency q2
Im of the second eigenmode of

( ) T , 0 in these three regions are 0, w 2 and 0 fromup to the bottom, respectively. The appearance ofmeta-
stablemodewith Floquet quasi-frequency q2

Im in themiddle region offigures 1(a) and (b) indicate the time
crystal phase is robust to themoderate deviation of driving parameters from the ideal case. The dash line in
figure 1(a) indicates x p=J 21 as a guide to the eyes. q = 02

Im in the up and bottom regions can be understood
as the rigid of themeta-stablemode of ( )x under time-dependent perturbations. Since for J1/J≈1 in the
bottom region, ( ) ( )x» 0 and ( ) [ ( ) ]x» T T, 0 exp . In the case J1/J=1, this relaxation is exact, i.e.

( ) [ ( ) ]x= T T, 0 exp . Such phenomenon is referred as time-dependent self-trapping of BECs [27], and the
self-trapping happens in a time-dependent state. In our case, the time-dependent self-trapping state is the time
periodic Floquet state, the atoms stillmainly occupy one of the two sites, but different from the time
independent case, the atoms can havemicro-motion near the trapping positionwith period driving. As for the
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upper region, the parameters J1≈8J, ( )x » 1, 0 and ( ) [ ( )( )]x x» - T T, 0 exp , the same argument also
applies.

The effective relaxation rates of the second and third eigenmodes of ( ) T , 0 for three different particle
numberN=30, 60 and 90 as functions of interaction strengthUN/J are shown infigure 1(c). For comparison,
the effective relaxation rates of the second and third eigenmodes of [ ( ) ]x Texp are also calculated and plotted in
figure 1(d) (the effective relaxation rates defined here are just the real part of the eigenvalues of parent generator

( )x ).We can see that in bothfigures 1(c) and (d), the effective relaxation rate of the second eigenmode drops
sharply to nearly zerowhen the interaction strength reaches a critical valueUcr. Thismeans the secondmodes
becomemeta-stable states.When the interaction strength reachesUcr, the effective relaxation rates of the third
modes also change, but are still of the same order of the natural relaxation rate γN. TheUcr offigures 1(c) and (d)
are very close for the symmetric two sites case.Wefind that the larger the particle number there is, the phase
boundary becomesmore clear. TheU dependent oscillation of the relaxation rate infigure 1(c) can be
understood from the fact ( ) [ ( )( )] [ ( ) ] [ ( )( )]x x x x x= - » -    T T T, 0 exp exp 0 exp . Because

( ) ( )=-  t t1 and = 12 , if m̂j satisfies eigenvalue equation [ ( ) ][ ˆ ] ˆx l= T m mexp j j j, we then have

[ ˆ ] ˆ=  m mj j and [ ( )( )] [ ˆ ] ˆ( )x x l- =  x- T m mexp j j
T T

j. The effective relaxation rate of Floquet
propagator ( ) T , 0 can be approximated by

(∣ ∣)( )q l= x-lnj j
T TRe* / [( ) ] (∣ ∣) ( )x l q x= - = -T T T T T Tln j j

Re . Here q j
Re denotes the relaxation rate of

propagator [ ( ) ]x Texp . Because ( ) 0 is a function ofU, but isU independent, with the increase ofU, the
approximation [ ( ) ]x » exp 0 becomesworse, and the exact effective relaxation rate of Floquet propagator
deviates from q j

Re*, leading to aU-dependent oscillation of the effective relaxation rate near q j
Re*.

Thefinite size scaling results of q3
Re and q2

Re of ( ) T , 0 as functions of particle numberN for three typical
interaction strengths used infigure 1(c) are plotted infigures 1(e) and (f) using lines with hollowmarkers,
respectively. The same results but for [ ( ) ]x Texp are also plotted infigures 1(e) and (f). As shown infigure 1(e),
we have relaxation rate ( ) [ ˜ ]q g k- = +N a b Nexp3

Re that approach a non-zero value a exponentially. The
value of a is of order 1. Infigure 1(f), we have relaxation rate ( ) [ ]q g k- µN Nexp2

Re . The factorκ for ( ) T , 0
and [ ( ) ]x Texp are plotted infigure 1(g) using lineswith dot and square symbols, respectively. For

Figure 1. (a) and (b): the effective relaxation rate q2
Re and Floquet frequency q2

Im of the second eigenmode of ( ) T , 0 as a function of
J1/J andUN/J. Dotted dash line in (a) and (b) indicates the critical interaction strength ( )g= - -UN J N J2 8 2 of parent generator

( )x obtained by themean-field theory. The dash lines in (a) enclose the regionwith ln[−θ2
Re/(γN)]<−1. The solid and dash lines in

(b) enclose the regionwhere q w= 22
Im and 0, respectively. The parameters used in (a) and (b) are J2=J=1, γ=0.1J/N,α=0,

T=2.5π/J, ξ=π/(8J) and the number of particle isN=60. (c) q2
Re and q3

Re of ( ) T , 0 as a function of interaction strengthUN/J
for three different particle numbersN=30, 60, 90, respectively. Except the tunneling strength J1/J=4, the other parameters used in
(c) are the same as in (a). (d) q2

Re and q3
Re of [ ( ) ]x Texp for three different particle numbersN=30, 60 and 90, the other parameters

used are the same as in (a). (e) and (f), thefinite size scaling results for q3
Re and q2

Re. The lines with hollow and solidmarkers for ( ) T , 0
and [ ( ) ]x Texp , respectively. The dash lines in (e) and (f) indicate the biased exponential fitting ˜+ ka be N and exponential fitting

kce N , respectively. Three different interaction strengthUN/J=−2.5,−3.5,−4.5 are chosen in (e) and (f) for comparison. The
other parameters used in (e) and (f) are the same as in (a). The factorsκ of the exponential fitting in (f) versusUN/J are plotted in (g),
lines with dotted and square symbols are plotted for ( ) T , 0 and [ ( ) ]x Texp , respectively.
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[ ( ) ]x Texp ,κmonotonically decrease as the increasing of interaction strength. For ( ) T , 0 ,κ hasmore
complicated relationwith the interaction strength.

Onemaywonder what role the quasi-local dissipation plays in the appearance of time-crystal order. In
figure 2(a), we plot the relaxation rate of the second and third eigenmodes of ( ) T , 0 as functions of quasi-local
dissipation strength γN/J. The relaxation rate of the second and third eigenmodes of propagator [ ( ) ]x Texp
are also plotted infigure 2(b) as a reference.We can see for sufficiently weak dissipation, for instance γN/
J≈0.04, infigure 2(a) there is a sharp change of ( )q g- N2

Re fromnearly zero to about 3 and 6 forN=110 and
30, respectively. But the reference infigure 2(b) is still nearly zero. This suggests that themeta-stablemodes are
more fragile when the dissipation is weak. Too strong dissipation also lifts ( )q g- N2

Re from zero for both
figures 2(a) and (b), but the process ismuch slowly. As shown infigures 2(a) and (b)near γN/J=0.4, except the
slowly increasing of ( )q g- N2

Re , there is a dip of ( )q g- N3
Re . The behavior of Floquet quasi-frequency versus

dissipation strength is similar with figure 1(b).With the increase of effective relaxation rate, the Floquet quasi-
frequency is no longer fixed to a particular value.

Figures 2(c) and (d) show the projections of the first eigenmodes of ( ) T , 0 (m̂1) and [ ( ) ]x Texp (ŷ1) on the
eigenstates ∣ ∣ñáO Oi i of operator Ô defined by equation (15), respectively. The eigenvaluesOi ranges from−0.5 to
0.5. The results infigures 2(c) and (d) are for the case ofN=30. Figures 2(e) and (f) show the same thing as (c)
and (d) but for larger particle numberN=110. Comparing the results infigures 2(c)–(f)with (a) and (b), we can
find the lifting of ( )q g- Nj

Re is accompanyingwith the changing of probability distribution on ∣ ∣ñáO Oi i . In the
case ofmoderate dissipation, the probability distribution of m̂1 and ŷ1 as a function ofOihave two symmetric
peaks, and themeta-stable states exit. The probability distribution on ∣ ∣ñáO Oi i of linear superposition of m̂1 (ŷ1)
with anothermeta-stablemode can have two asymmetric peaks, or in limit case only one peak that locates near
Oi=±0.5. So for undriven system, the initial atoms imbalance can sustain a very long time for large particles
number, andwhen  ¥N , the initial atoms imbalance can freeze permanently. If we switch on the periodic
modulation of tunneling, the initial loaded condensate in one of the two sites can jump back and forth between
the two sites.When the dissipation is strong enough, the two peaks infigures 2(c)–(f)merge into one peak
locating atOi=0 and themeta-stablemode disappears. For tooweak dissipation, though the two peaks also
exist for [ ( ) ]x Texp , the periodic driving turns the two peaks to broad distributions that have rich structures,
which ismore clearly for largerN.When such structures appear, the correspondingmean-field dynamics is
chaotic as show in section 5.

In the case a ¹ 0. Direct numerical results show that themeta-stablemode of ( ) T , 0 with Floquet
frequency q w= 22

Im also exist. The effective relaxation rates of the second and third eigenmodes of ( ) T , 0
with a ¹ 0 are shown infigure 3(b). Figure 3(a) shows the same thing but for [ ( ) ]x Texp as a comparison. The
Floquet frequency of the second eigenmode of [ ( ) ]x Texp and ( ) T , 0 is plotted infigures 3(c) and (d),

Figure 2. (a)The second and third effective relaxation rate of ( ) T , 0 as a function of dissipation strength gN J for twodifferent
particle numbersN=110 and 30. (b) is the same as (a), but for propagator [ ( ) ]x Texp . (c) and (e) show the projection of thefirst
eigenmode of ( ) T , 0 to the eigenstates of Ô . The particle numbers used in (c) and (e) isN=30 and 110, respectively. (d) and (f) are
respectively the same as (c) and (e), but for thefirst eigenmode of [ ( ) ]x Texp . The other parameters used are J2=J=1, J1=4J,
α=0,T=2.5π/J, ξ=π/(8J) andUN/J=−4.
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respectively.We can find fromfigures 3(a)–(d), the critical interaction strength for the appearance ofmeta-
stablemode of Floquet propagator ( ) T , 0 with quasi-frequencyω/2 is smaller than the interaction strength
needed for the appearance of zero frequencymeta-stablemode of the corresponding [ ( ) ]x Texp . So even the
undriven system is not in the self-trapping regime, the time crystal order can emerge due to the joint effect of
driving, interaction and dissipation. Figure 3(e) plots the scaling of the effective relaxation rate of the second
eigenmode of ( ) T , 0 as functions ofNwith four different interaction strengths, that also shows exponential
decay [ ]k~ Nexp . Figure 3(f) shows the periodic doubling oscillation of the imbalance Ô. The initial state

( ) ∣ ∣r = ñáN N0 0, 0, is used for the numerical simulation infigure 3(f). Here we define

∣ ˆ ˆ ∣ !( )!
† †( )

- ñ º ñ -
-

k N k b b k N k, vac
k N k

1 2 , k=0, 1,K,N. The slightly deviation of the initial state from
∣ ∣ñáN N0, 0, , i.e. choosing ( ) ∣ ∣r er= ñá +N N0 0, 0, p with small real number ε, can give results similar with

figure 3(f). Because the scaling factor ∣ ∣k = 0.015 is small when the interaction strength = -UN J 2.6, for
finite number of particleN=90, the corresponding relaxation time scale of the second eigenmode τ/T≈3 is
much short than the caseUN/J=−3.4 that has a relaxation time τ/T≈53. As shown infigure 3(f), the
oscillation of imbalance decaysmuch fast forUN/J=−2.6 thanUN/J=−3.4. Note that the projection of the
first eigenmode of ( ) T , 0 to the eigenstates of Ô also has double-peak structure similar with the caseα=0.
The projection of the first eigenmode of [ ( ) ]x Texp to the eigenstates of Ô only has one peak and the second
meta-stablemode has double-peak structure, the linear superposition of these twomodes are responsible for the
self-trapping feature of the undriven system.

We show the effective relaxation rate of ( ) T , 0 as functions of off-set potentialα infigure 4.Wefind that
strongerα can lead to a sharp change in the effective relaxation rate for the second eigenmode, and it destroys the
DTCphase too.Whenα is smaller than a critical value, the Floquet quasi-frequency of the second eigenmode
equals toω/2.

5.Mean-field analysis

First, we analysis the two sitesmodel within themean-field framework and compare the results with previous
one that consider quantumfluctuations. Thenwe switch to themean-field analysis of general 2n sitesmodels.

Figure 3. (a) and (b) are the effective relaxation rates of the second and third eigenmodes of propagator [ ( ) ]x Texp and ( ) T , 0
versus interaction strengthUN/J. (c) and (d) are for the Floquet frequency of the second eigenmodes of [ ( ) ]x Texp and ( ) T , 0 ,
respectively. The parameters used in (a)–(d) are J2=J=1, J1=4J,α=0.3J, γN/J=0.2,T=π/J, ξ=π/(8J). Three different
particle numbersN=30, 60, 90 are chosen for these plots. (e)The scaling of the effective relaxation rate of the second eigenmode of

( ) T , 0 versus particle numberN for four different interaction strengthUN/J=−3.4,−3.0,−2.6,−2.4, the dash lines indicate an
exponential fitting. The other parameters used in (e) are the same as in (b). (f)The evolution of density imbalance for two different
interaction strengthsUN/J=−3.4 (linewith square symbols) andUN/J=−2.6 (linewith dotted symbols), the other parameters
used are the same as in (b), except particle numberN=90.We assume the atomswas initially loaded in the second site, i.e.

( ) ∣ ∣r = ñáN N0 0, 0, .
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5.1.Mean-field analysis for two sitesmodel
For the two-mode Bose–Hubbardmodel described by equation (2), it is convenient to introduce the spin
operators defined by [23, 28]

( )

( )

( )

( )

† †

† †

† †

= +

= -

= -

S
N

b b b b

S
iN

b b b b

S
N

b b b b

1

2
,

1

2
,

1

2
.

17

x

y

z

1 2 2 1

1 2 2 1

1 1 2 2

^ ^ ^ ^ ^

^ ^ ^ ^ ^

^ ^ ^ ^ ^

These spin operators satisfy the commutation relations [ ˆ ˆ ] ˆe=l m lmn nS S S,
N

i with Levi-Civita symbol elmn . Using
these spin operators, theHamiltonian ˆ ( )H t and jumpoperator ĉ can be rewritten as

ˆ ( ) ( ) ˆ ˆ ˆ

ˆ ( ˆ ˆ ) ( )
a=- + + +

= -

H t J t NS NS UN S

c N S S

2 const .,

2 i , 18

x z z

z y

2 2

with irrelevant constant ( )a= - +U N UNconst. 2 42 . Since theHamiltonian ˆ ( )H t and the jump operator

ĉ conserve total particle numberN, ˆ ˆ ( )º å = += S N N NS 2 4i x y z i
2

, ,
2 2 is a constant ofmotion. The evolution

of the expectation value of spin operators ( ) [ ˆ ˆ ( )]rºS t S tTri i can be obtained using equation (2) and themean-
field equation for Si(t) is acquired by the assumption [ ˆ ˆ ˆ ( )] [ ˆ ˆ ( )] [ ˆ ˆ ( )]r r r»S S t S t S tTr Tr Tri j i j for largeN and
neglect the term in the order ofN−1, i.e.

( )
( )

( ) ( )

a g

a g
g

¶ = - - + +

¶ = + + -
¶ =- -

S S UNS S N S S

S J t S S UNS S NS S

S J t S NS S

2 8 ,

2 2 8 ,

2 8 , 19

t x y y z z y

t y z x x z y x

t z y z x

2 2

here, we have omitted the argument t in Si(t) for simplicity. The evolution of quantity = + +S S SS x y z
2 2 2 2

governed by equation (19) is also a constant ofmotion and this relation reduces the three equations in
equation (19) to two equations [23]

( ) ( ) ( ) ( )

( ) ( )
( )

( ) ( ) ( )
( )

( )

q f g q f

f
q
q

f a q g
f
q

¶ = +

¶ = + + -

J t N

J t UN N

2 sin 4 cos cos ,

2
cos

sin
cos cos 4

sin

sin
, 20

t

t

here θ andf are polar and azimuth angles by expressing S in the spherical coordinate system, i.e.

{ } { ( ) ( ) ( ) ( ) ( )} ( )f q f q q=S S S, , cos sin , sin sin , cos 2. 21x y z

Without the periodicallymodulated tunneling, i.e. J(t)=J is time-independent andα=0, the nonlinear
differential equations equation (19)with constraint condition + + =S S S 1 4x y z

2 2 2 have six different solutions
that satisfy ¶ =S 0t i (i=x, y, z). Three of the six solutions are not real. The stability analysis of the remaining
three solutions shows that two or one solutions are stable depending on the interaction strength.When

( )g< - -UN J N J2 8 2, there are two stable solutions. For the case ( )g> - -UN J N J2 8 2, there is one
unique stable solution { } { }=S S S, , 1 2, 0, 0x y z .

Figure 4. (a)The second and third effective relaxation rate of ( ) T , 0 as a function of off-set potentialα for two different particle
numbersN=60 and 30. (b) is the corresponding Floquet quasi-frequency. The other parameters used are J2=J=1, J1=4J,
T=π/J, ξ=π/(8J), γN/J=0.2 andUN/J=−4.

9

New J. Phys. 22 (2020) 023026 CMDai et al



Wenumerically integrate equation (20) to obtain the evolution of θ(t) andf(t). For the case of symmetric
doublewellα=0, the values of ( ) ( )q=O t cos 2 at t=nTwith integer n (500<n�550) are plotted in
figure 5(a). Similar with themaster equation approach, withmoderate dissipation, there are stable period
doubling limit circles as shown infigure 5(a). Figure 5(b) shows the evolution ofO(t)with three different
dissipation strength, linewith dotted symbols show the period doubling evolutionwithmoderate dissipation
γN/J=0.1. The lineswith square and triangle symbols infigure 5(b) show the system in the chaotic regimes
withweak and strong dissipation γN/J=0.02 and 0.48, respectively. Figures 5(c)–(e) show the trajectory of {θ,
f} at stroboscopic time nT (500<n�1000) for these three different dissipation strength. Figures 5(f)–(h) are
their quantum version by projecting thefirst eigenmode of propagator ( ) T , 0 to coherent states

∣ [ ( ) ˆ ( ) ˆ ] ∣
† †

q f q qñ = + ñfb b N, cos 2 e sin 2 vacN
1

i
2 [29]. The quantumversion show similar texture with the

mean-field one, except the broadening of texture due to the quantum fluctuations.
When the symmetry-breaking points bias a ¹ 0, themean-field equation also gives consistent results with

the originalmaster equation equation (2). As shown infigure 6(a), the undriven systemhas two stable steady
state solutionwhen the interaction strengthUN/J<−3.25. Figure 6(b) shows that the period doubling of the
driving system appears whenUN/J<−2.4.

The emergence ofDTC in our systemwithoutmeta-stable state can be understood as follows: choose the
steady state of the undriven system ρ1 as the initial state, and suppose the driving procedure over one periodT
can be divided into two stages, say 1(from t= 0 to t=ξ in thefirstT, and from t=T to t=T+ξ in the
secondT, and so on) and 2 (from t=ξ to t=T in thefirstT, and from t=T+ξ to t=2T in the secondT...).
1map ρ1 to a state [ ]r r= 2 1 1 that is not too close to ρ1, and thenmap ρ2 close to ρ1 again, i.e. ∣ ∣r r-2 1 is as

Figure 5. (a)The density imbalanceO(t) at time instance nT ( < n500 550) versus dissipation strength γN/J. (b)The evolution of
O(t) at stroboscopic time for three typical dissipation strength γN/J. The lines with square, dotted and triangle symbols in (b) are for
γN/J=0.02, 0.1 and 0.48, respectively. (c)–(e)The trajectory of {θ,f} at stroboscopic time nTwith 500<n�1000 for the three
typical dissipation strength used in (b). The results in (a)–(e) are calculated bymean-field equations and the initial states for the
simulations are randomly chosen. (f)–(h)The projection of thefirst eigenmode of ( ) T , 0 to ∣q fñ, for comparison, color in the
figures represent theweight on different ∣q fñ, . The parameters used in (f)–(h) isN=110, γN/J=0.02, 0.1 and 0.48, respectively.
The other parameters used are J2=J=1, J1=4J,α=0,T=2.5π/J, ξ=π/(8J) andUN/J=−4.

Figure 6.The density imbalanceO(t) at time instance nT (500<n�550) versus the interaction strengthUN/J. (a)The undriven
system, tunneling strength J(t)=J=1 is time-independent. (b)The periodic driving system. The other parameters used are the same
as infigure 3 and the initial states are chosen randomly. The dashed blue lines in panel (a) are the unstable real solutions of ¶ =S 0t i ,
i=x, y, z. The results in (a) and (b) are obtained by solving themean-field equations.
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large as possible and ∣ [ ] ∣r r-1 2 1 is as small as possible, here ∣( )∣... denotes the trace normof (...), i.e.

∣ ∣ [ ]†s s s= Tr . In the second stage, 2 is generated by the Lindbladian of the undriven system, for example,
[ ( )( )]x x= -  Texp2 in our case. 2 shouldmap ρ2 not far away from ρ2, i.e. [ ]r r= 3 2 2 and ∣ ∣r r-3 2 is

close to zero. Then after the first stage of the second driving periodT, we have [ ] [ ]r r r= =   4 1 2 1 1 1 3 , and
∣ ∣ ∣ [ ] [ ] ∣ ∣ [ ]∣ ∣ [ ] ∣r r r r r r r r r r- = - + - - + - »    04 1 4 1 2 1 2 1 1 3 2 1 2 1 by the aforementioned spirit of
construction.With allmentioned, in thefirst three stages in the two driving period 2T, the systembehaves like
being driven by an effective weak drive that steers the steady state ρ1 slightly from the equilibrium. At the final
stage of thefirst two driving period 2T, the systemwas driven from the state ρ4 to the equilibrium state ρ1 again.
Note that ρ1 is the steady state of the system.

When the effective weak drive   1 2 1 and thefinal stage dissipation process 2 balanceswell and notice that
2 is not required to havemeta-stable state, we can expect that an observable of the systemwould synchronize
with the drive at period 2Tfinally.

Indeed, the aforementioned scheme can be realized theoretically in our system, asfigures 7(a)–(c) show. In
figures 7(a)–(c), the parameters are chosen such that there is nometa-stable state for the undriven system. The
purple crosses infigures 7(a)–(c) indicate the initial state of the system in the {θ,f} parameter space and it is also
the steady state of undriven system. The lineswith arrowdenote the first (dash line) and the second stage (solid
line) of the driving procedure in one periodT. The number nT (n=1, 2, 3)near the lines denote the nth driving
period. Infigure 7(a), 1maps the initial state far away from its initial, the effective driving   1 2 1 and
dissipation 2 can not arrive at a balance, the state of systemmoves far away from the initial equilibriumposition
after every two driving period and finally stabilize at a position away from the steady state of the undriven system.
In this case, we can not have aDTC. Infigure 7(b), the effective driving and dissipation is properly balanced, after
a transient time, a rigid period-2T oscillation is formed. The state of system returns to a position that is almost
the steady state of the undriven system at 2nT times. Infigure 7(c), the drive at the first stagemaps the initial state
far away from the initial one, but the duration of the second stage of drive is too long, so the dissipation
dominates and the system returns to an equilibrium state near the steady state of the undriven system, leading to
an oscillationwith period-T. Figures 7(d)–(f) are the dynamics ofO(t) corresponding tofigures 7(a)–(c) at
integermultiple time of periodT. By this study, we alsofind that relatively strong interaction is favorable for the
required balance between   1 2 1 and 2.

Figure 8 shows the values ofO(t) at time nT (500<n�550)with different (dimensionless) driving periods
JT, the other parameters infigure 8 are chosen as the same as infigure 7. The three drives used infigure 7 are
indicated by blue dash lines(labeled by a,b,and c) infigure 8.We can find thatwith the drive ‘a’,O(t) can take only

Figure 7. (a)–(c)The trajectory (thin black dash lines) of the quantum system in space {θ,f}. The result is obtained by solving the
mean-field equation. The dimensionless interaction strength isUN/J=−3, so there is nometa-stable state in the systemwithout
drive. The purple crosses in (a)–(c) indicate the initial states of the evolution and they are also the equilibrium state of the undriven
system. The thick dash arrow lines indicate theflip process within one driving periodwhen t<ξ, while the thick solid lines indicate
the dissipation process when ξ<t<T. Three different driving periods JT=π/4,π/2 and 4π are chosen, corresponding respectively
to (a)–(c). The labels near the lines indicate the driving periods nT. (d)–(f) are the corresponding density imbalanceO(t) of sub-panel
(a)–(c) at integermultiple of periodT. The other parameters are the same as in figure 3 (b).
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value at nT(500<n�550), indicating that there is noDTC.Whereas with the drive ‘b’, two values can be taken
forO(t), suggesting that theDTC is of 2T. The feature of the systemwith drive ‘c’ is the same as ‘a’. From figure 8,
we observe that except the three typical drives indicated by dash lines (labeled by a, b and c), a wide range of
drives can be found that possess the same feature as discussed above. Besides, there is a crossover region between
JT=2π and JT=3π (around 2π in the figure), in this region, the evolution ofO(t) could takemany values, this
does notmean that there is aDTCof nT, as the valuesO(t)might increases if we prolong the observation time(for
example the observation time is nTwith 500<n�1000).

5.2.Mean-field analysis for 2n sitesmodel
For the ring lattice with 2n sites, themodulation of tunneling are
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Figure 9 is the pictorial representation of the ring lattice of sites 2n=6.Here, we focus the situation 2n=6 as
an example, but the similar results can be obtained for anyM=2n.

Intuitively, the two sitesmodel can be regard as the basic building block of themore complex large rings. As
shown infigure 9, the condensate isfirstly loaded on site 1. In thefirst half period, similar with the two sites
model, we can flip the condensate from site 1 to site 2, thenwait some time to trap the atoms in site 2. In the
second half period, we do exactly the same thing but flip the condensate from site 2 to site 3. Repeat such
procedure, wemight observe the clockwise circulation of the particles with period 3T. If initially load the atoms
on even site, the circulation can be anti-clockwise.

Figure 8.The density imbalanceO(t) at time instance nT (500<n�550) versus the driving period JT. The dimensionless interaction
strengthUN/J=−3, the other parameters used are the same asfigure 3(b). and the initial states are chosen randomly. The blue dash
lines with labels a, b and c indicate the three different driving periods used in figures 7(a)–(c), respectively. The result is obtained by
solving themean-field equations.

Figure 9. Illustration of a ring lattice of sites 2n=6with a driving lasting over one periodT. The red dot in the left panel represents the
initial state of BECs. The full driving process is formed by twoflipsmarkedwith blue dashed arrows.
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Toprobe such clockwise circulation, we define generalized imbalance

( ) ( ) ( )å= p

=

-

+O t n te . 24
j

n
j n

j
0

1
i2

2 1

Here, +n j2 1 is the expectation value of particle density at site +j2 1. The Fourier transformofO(t) is defined by

˜ ( ) ( ) ( )åw = w

¥ =

-O
W

O tlim
1

e . 25
W t

WT
t

0

i

If the atoms rotate clockwise, we have ( ) ~ pO kT e k ni2 , the phase pk n2 increase linearly as function of time,
and the Fourier spectrum ˜ ( )wO has a sharp peak atω/n, i.e. period nT time crystal. For the case 2n=6, we have
n=3 and a 3T period time crystal. The particle density ( ) ∣ ( )∣=+ +n t b tj j2 1 2 1

2 are calculated by themeanfiled
equation

[ ( )]
( )( )

( )( ) ( )

a
g
g

¶ = - + - +

+ + -

- + -

+ - -

- - - -

+ + +

b b Un b J b J b

n b b b b

n b b b b

i

2

2 . 26

t l l l l l l l l l

l l l l l l

l l l l l l

1 1 1

1 1 1 1

1 1 1

*

*

This equation is obtained by ( ) [ ˆ ˆ ( )]rºb t b tTrl l and the assumption [ ˆ ˆ ˆ ( )] [ ˆ ˆ ( )] [ ˆ ˆ ( )]
† †

r r r»b b t b t b tTr Tr Trk l k l .

Themeanfield approximation is done in the followingway. First, separate the field operator as ˆ ˆd= +b b bi i i,
where bi is the average value of the field and ˆdbi is the corresponding quantumfluctuation. Such approximation
is validwhen the (second order or high) quantum correlation is negligible compared to the average value of the
fields, i.e. ˆ ˆ d dá ñb b b bi j i j (note that ˆ ˆd dá ñ = á ñ =b b 0i j ), this happenswhen the coupling J between the two sites
is small. For two-sitemodel, themeanfield approximation shows agreementwith the exact one. For large
number of lattice sites, exact quantummechanical treatment is difficult due to the hugeHilbert space. The
validity of themean field approximationwith large number of lattice sites is still an open question, but in a recent
experimental work that studies driven-dissipative quantumphase transition in a one-dimensional Bose–
Hubbard chain [30], showed the agreement between the observation and themeanfield prediction. Early
theoretical work [29] found that the difference between the non-mean-field results and themean-field one can
be reduced by introducing decoherence. This is exactly the scope studied in this work.

Infigure 10(a), we plot the evolution of n1(t) for six sitesmodel.When γN/J=0.2, the evolution of n1(t)
show rigid oscillationwith period 3T. For γN/J=0.1, the system is in the normal phase, and the evolution n1(t)
is irregular(not periodic). Figure 10(b) shows the corresponding Fourier spectrum,when system is in the time
crystal phase, there is a sharp peak atωs=ω/3. Infigure 11, we show the Fourier spectrumof generalized
imbalance versus various parameters for a systemof six sites. It is clear that the rigid sub-harmonic response with
reduced frequencyω/3 is robust to the perturbation in the systemparameters.We alsofind that the result of six
sitesmodel is similar to that of two sitesmodel, the time crystal phase emerges when the interaction is strong and
the dissipation takes amoderate value.

6. Conclusion anddiscussions

To conclude, we study a Bose–Hubbardmodel with dissipation and periodically tunneling. In the simplest case
of only two sites, we study in detail the dynamics bymeans of Floquet–Lindblad formalism.When the two-site

Figure 10. (a)The evolution of the density at thefirst site in the systemof six sites. The parameters used in the calculations are J=1,
Jf/J=5,UN/J=−5.5,T=4π/J andα=0.1J. The linewith dotted symbols for γN/J=0.2 and linewith square symbols for γN/
J=0.1. (b)The corresponding Fourier spectrumof generalized imbalance, dot and square are for γN/J=0.2 and 0.1. The initial
states used in the calculations are n1/N=1 and ¹ =n N1 0l .
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system is in the self-trapping regime, we found that the system can exhibit sub-harmonic dynamical responses to
the periodic drive, forming aDTC. An periodic drive can also turn the system to aDTC even if there is no self-
traping in the system, this is different from the result in the earlier study that requiresmeta-stable states in the
undriven system. Furthermore, we have shown that period-n (n>2)DTC can be realized by using two sites
model as basic building blocks to construct large rings. The present resultsmightfind applications into
engineering exotic phases in driven open quantum systems.
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