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Abstract

Periodically driven quantum systems manifest various non-equilibrium features which are absent at
equilibrium. For example, discrete time-translation symmetry can be broken in periodically driven
quantum systems leading to an exotic phase of matter, called discrete time crystal (DTC). For open
quantum systems, previous studies showed that DTC can be found only when there exists a meta-
stable state in the undriven system. However, by investigating the simplest Bose—Hubbard model with
dissipation and time periodically tunneling, we find in this paper thata 2T DTC can appear even when
the meta-stable state is absent in the undriven system. This observation extends the understanding of
DTC and shed more light on the physics behind the DTC. Besides, by the detailed analysis of simplest
two-sites model, we show further that the two-sites model can be used as basic building blocks to
construct large rings in which a nT DTC might appear. These results might find applications into
engineering exotic phases in driven open quantum systems.

1. Introduction

As an analog of the spatial symmetry breaking that leads to the formation of crystals, in 2012 Frank Wilczek
proposed that time translation symmetry can be spontaneously broken in a similar way [1], leading to a new
phase called time crystal. The proposal of such a time crystal for time-independent Hamiltonians inspires a lot of
discussions [2], and those studies found that such structures cannot exist in the ground state or any thermal
equilibrium states of a quantum system [3], because quantum equilibrium states are time-independent,
regardless of that the spontaneous breaking of continues time translation symmetry can occur for an excited
eigenstate [4]. By comparison, periodically driven Floquet systems posses discrete time translation symmetry,
and this symmetry can be further broken into super-lattice structures where physical observables exhibit a
period larger than that of the drive [5]. The early proposal for the realization of discrete time crystal (DTC)
require strong disorder to stabilize the DTC phase [5, 6]. Recently, the authors of [7] pointed out that the DTC
can generally exist in systems without disorder. The generalization of the concept of DTC to discrete time
quasicrystals is also presented recently [8].

In practice, an ideally isolated system actually does not exist, and the coupling of system to external
environment may destroy the rigid time crystal behavior after along time. This has been studied theoretically in
[9] and experimentally in [10, 11]. One then may wonder whether a robust time crystal order can be found in
open system. The extension of DTC to open quantum system with drive and dissipation attracts widespread
research interest recently. Concrete models [12, 13] shown that the DTC order can exist in open system with
appropriately engineered drive and dissipation. This prediction was confirmed by the authors of [12] who
shown that the modified Dicke model with the help of sufficiently strong atom-photon coupling and photon loss
can exhibit time crystalline structure, and the same prediction was reported in [13] that a dissipative Rydberg
model is also possible to possess time crystal order.

For DTCs in open systems, there exist some physical observable O with expectation value O(#), and
O(t) = O(t + nT) shows sub-harmonic response to the driving field of period T. Here n is an integer and
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n > 2.The Dicke model exhibits a zero-temperature phase transition from a normal to a super-radiant phase
[12, 14] when the light—-matter interaction increase. The parity symmetry of the Dicke model is spontaneously
broken in the super-radiant phase [12, 14]. Reference [12] utilizes this feature and drives the system in the super-
radiant phase to entail sub-harmonic dynamical responses. The sub-harmonic response of [ 13] originates from
the coexistence of two phases connected by first-order phase transition in dissipative Rydberg gas. Though the
physical realizations of these two proposals are different, both of them feature period-doubling n = 2 and the
appearance of DTC in these proposals relies on the existence of meta-stable state of the undriven system.

It is well known that Bose—Einstein condensates (BECs) in a double-well can exhibit macroscopic quantum
self-trapping due to the inter-atomic interaction (nonlinear self-interaction in the mean-field level) [15]. Within
amean-field framework, the effect of decoherence on the dynamics of BECs in a double-well potential was
studied in [16]. It is found that the self-trapping can be either enhanced or spoiled by dissipation depending on
the specific form of condensate-environment coupling [ 16]. This stimulate us to study how BECs in a double-
well behave under periodic drive while they are subject to decoherence, and particularly whether the time crystal
order can be found in such a system.

In this work, we introduce a Bose—Hubbard model with quasi-local dissipation and time periodic modulated
tunneling. This model describes bosonic atoms tunneling in an optical lattice immersing in a large BEC of atoms
[17]. This model can be realized in optical lattice with current technology, for details, we refer to [17, 18]. When
the time periodic modulation is not switched on and the interaction is strong enough, our model can exhibit
self-trapping, and the moderate quasi-local dissipation can help stabilize this system.

When the system is in the self-trapping regime, we find in this paper that the system can exhibit sub-
harmonic responses to the periodic modulation, a hallmark of DTC. This corresponds to the case where a meta-
stable state in the undriven system exists, it is necessary to have DTC. We further find that even the undriven
system is not in the self-trapping regime, the periodic drive can also turn the system to a DTC, this interesting
result is quite different from the earlier studies, for example in [13] the appearance of DTC requires meta-stable
states in the undriven system. In addition, we show that period-n (n > 2) DTC can be realized in large rings
based on two-site systems considered here. Though the period-n DTCs have already been demonstrated in the
closed quantum system [19], the period-n DTC has never been discussed in open quantum systems, and the
implementation of such a system is also lack. The realization of a period-# (n > 2) DTCin an open system is the
the other interesting result of this work.

The remainder of this manuscript is organized as follows: in section 2, we present a formal definition of time
crystal for open systems. In section 3, we introduce our model. In section 4, we perform Floquet analysis for our
system, and in section 5 a mean-field analysis is given. The conclusion and discussions are presented in section 6.

2. Definition of DTC

Similar to the spatial crystal, spontaneously breaking of the discrete time translation symmetry leads to the
concept of DTC [5-7]. Taken an open quantum system as an example, the broken of time translation symmetry
requires the existence of a physical observable O that acts as an order parameter

O(t) = Tr[p(1)Ol, (1)

to satisfy the following constraints: (A) discrete time translation symmetry breaking, i.e. O(t + T) = O(¢),
while the Lindbladian £(#) that governs the evolution of system possesses discrete time translation symmetry
L(t + T) = L(t)with period T; (B) rigidity: O(¢) possesses a fixed oscillation period without fine-tuned system
parameters; (C) persistence: the non-trivial oscillation with the fixed period must persist for infinitely long time
in the thermodynamic limit. Such a definition of DTC can be regarded as an open system generalization of the
definition in closed system [7].

3.Model

We now introduce a Bose—Hubbard model with dissipation and will show that it satisfies all the constraints (A)—
(C) given in section 2. The model describes N bosonic atoms on an one-dimensional ring lattice with sites
M = 2n, here nis an integer. The dynamics of this model is described by the Lindblad master equation

dip(t) = LMOPp1)] = —ilH (1), p()] + DIHp()], @)
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where Hamiltonian H () reads
A Ao ATon U,
() = 32 = IO b + b b) + auih + i = 1), 3)
1

and

Dlx] =3 mQa ¢ — {&'a « ). 4)
I

The first part of Hamiltonian represents the kinetic energy of bosons tunneling between adjacent lattice sites
with amplitude J; (). The second part represents the onsite potential, and «, is the onsite potential strength. The

last part represents the inter-atomic interaction, and Uj is the onsite interaction strength. 151 (I;l' ) are boson

el e . . . ~p . .
annihilation (creation) operators onssite [, and /i; = b; b; are number operators. The jump operators in D[ * ]
that represent the quasi-local dissipation are given by

b=+ bl — b, 5)
and +; is the dissipative rate. For simplicity, we set U; = U, 0y, = 0, Qo1 = @, Lo (t) = Jo(2),
Jm—1(t) = J.(t)andy, = v.Herem = 1,2,3, ... ,n.

The tunneling amplitude J, . (¢) are periodic functions of period T, i.e. J,.(t + T) = J,.(t). Here we define
driving frequencyw = 27/T. U > 0and U < 0 represents repulsive and attractive interactions, respectively. In
the following, we consider attractive interactions U < 0 and tunneling amplitude J, .(¢) > 0 for any given .

Note that the Lindbladian £(#) conserves the total particle number N = >, ;. For undriven system with
constant tunneling J, . (t) = J,.(0), @« = 0and non-interacting atoms, the model has a many-particle dark state
|BEC) = b;lzvolva@ / NV, corresponding to a state with macroscopic occupation of quasi-momentum g = 0.
Here, l;q =3y l;leiq’ / VM is the destruction operator for quasi-momentum ¢ in the Bloch band [17]. In fact, as

shown in [17], this dark state is the unique steady state of this master equation, namely, all initial states will finally
evolve into |BEC). The implementation of this model using cold atoms in optical lattices can be found in [17].

4. Floquet analysis

4.1. Floquet basics
Because the evolution of our model system is governed by a period T Lindbladian £L(¢t + T) = L(¢),itis
convenient to define a Floquet propagator V(T, 0),

W(T, 0) = Texpl f " L) dr] = exp(LeT). 6)
0

Here Ly plays the same role as Floquet propagator V(T, 0), and can be treated as effective generator of the
stroboscopic time evolution V(T, 0). In fact, according to the Floquet theorem [20, 21], the time evolution
operator can be writtenas V(t, 0) = P(t)exp(Lgt) with P(t) satistying P(t) = P(t + T). P(t) represents the
micro-motion in one driving period, and effective generator Lr governs the evolution at the time point nT
(n=123,..).

With the eigenmodes #1; of Floquet propagator V(T, 0) given by the eigenvalue equation

W(T, 0)[ri;] = Ajrin, ()
and non-degenerate eigenvalues )\;, as well as a given initial state p(0) represented by

p0) = i, ®)
j

the density operator at any time instance of integer multiple of period can be given by

p(nT) = V'(T, 0)[p(0)] = 3 1, explnd; Tl ©)
j

Here ¢; = In(};) /T 0; can also be regard as the eigenvalue of effective generator Lr. Because the propagator
V(T, 0) is completely positive and trace-preserving [22], it possesses at least one eigenvalue equal to 1 (maybe
degenerate) and the modulus of the rest eigenvalues are less than 1 [23]. To simplify the representation, we label
the eigenvalues of V(T', 0) by their length in the complex plane in descending order 1 = |\ and [Aj] 2> [Aj].
Denoting the real and image parts of f; as 9?‘6 and 6’5“’, respectively, we have 9?6 = In(|\j) / T and
9?“1 = arg(\) / T.Because|Aj| < 1, 9?6 is a non-positive real number. — 9?6 can be viewed as the effective
relaxation rate of mode #zj, and 7; = —1 / 9?6 is the lifetime of mode 11;. A zero 0}“ means i; has an infinite
lifetime, or say #7; is stable. The mode with non-zero 0?6 has finite lifetime. The time scale for the convergence of
a given initial state to the stationary state is determined by the largest finite lifetime max ... {7} [24]. The
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imaginary part 9?‘“ is defined up to add integer multiple of driving frequency and characterizes the oscillation
behavior of mode #i;. In the following, we call H?e effective relaxation rate and 0?“ Floquet quasi-frequency.

If some eigenvalue \; of Floquet propagator is degenerate with algebraic multiplicity (3, [25], and the
number of linearly independent eigenmodes corresponding to eigenvalue ); (i.e. geometric multiplicity [25]) is
;Zf(; ! i ¢!, and the number of these
modes equals to 3, [25]. Here k denotes the different modes corresponding to the same ). The dynamics of

less than 3. We can find linearly independent modes of form ;1 (1) = >°

these modes is governed by equation V(nT, 0) [rﬁﬁ x] = exp[n0; T (nT) [25]. Then a given initial state can
be expanded by these linearly independent modes, i.e. p(0) = 34, krﬁﬁ « Wehave

p(nT) = 32;nx exp[nb; T1ri(nT). In this case, the eigenvalue A; or 0 can also give the information about the
dynamics. Since ;. (¢) is a polynomial of time ¢, it can not describe oscillating behavior, and the evolution over
long time is dominated by the exponential fast decay cexp[— n|9$e| T].

Since we are seeking for a time-crystal order related to the specific dynamics of the system, the Floquet
eigenvalues ); can provide useful information. To satisfy the constraints (A) and (C) listed in section 2, we need
atleast two long-life modes, the life time of them should approach infinity in the thermodynamic limit, and at
least one of these long life modes should has a non-zero Floquet quasi-frequency. If the initial states overlap with
the long life modes that have non-zero Floquet quasi-frequency, we can expect to see the persistent oscillation in
(atleast) one observable of the system. The rigidity constrain (B) in section 2 requires the oscillation frequency to
be fixed. Typically, according to the Floquet formalism V(¢, 0) = P(t)exp(Lgt), on top of the evolution given
by exp(Lgt), there is a trivial oscillation with period T given by P(¢), the non-zero Floquet quasi-frequency of
the longlife modes should be compatible with the driving frequency w = 27/ T, such that the oscillation is still
periodic. This requires that the non-zero Floquet quasi-frequency of the long life modes takes the form
Gi-m = mw/nwithintegern = 2,3,...andm = 1, 2,... , n — 1.In general, the non-zero Floquet quasi-
frequency can be incommensurate with the drive, this would lead to the so called time quasi-crystal [26], but this
is beyond our scope of study in this work.

4.2. Two-site model
We first analyze our model system for some limiting cases to gain some insights into the problem. The
dimension of the Hilbert space of our model is givenby D, = (N + M — 1)!/N!(M — 1)!.Itinvolve alinear
space of dimension of D to solve the spectrum of V(T, 0). For the simplest case M = 2, wehave D, = 1 + N,
and the spectral method is feasible for relatively large number of particle N ~ 100. As a comparison, when
M = 4and 6, we have D, = 286 and 3003 for much few particle N = 10. The case with M > 2 will onlybe
treated in the mean-field level. In the following, we analyze the two sites model for some limiting cases to gain
insights into the problem, and the numerical results for the two sites model with general parameters are also
presented.

For the sake of simplicity, we employ the following form of the tunneling strength

)R o<
I(t){]z E<t<T (10)

In this two steps driving setup, the Floquet propagator takes the form

W(T, 0) = exp[LENT — &]exp[L(0)&]. It is known that for two sites model with constant tunneling, if the
inter-atomic interaction is large with respect to the tunneling, and the condensate-environment coupling is
chosen properly, the condensate will be locked in one of the sites, depending on the initial population [16]. This
prediction is obtained within a mean-field framework in [16], where the number of atoms in the condensates is
supposed to be infinity and the quantum fluctuation is neglected, though it is desirable to study the problem with
a full quantum treatment.

For the case of symmetric double well @« = 0 and time-independent tunneling, we find that except one stable
mode iy of V(T, 0) with eigenvalue A\; = 0, a meta-stable mode #1, emerges when the interaction strength is
larger than a critical value. The life time of i, is finite for finite number of atoms, and it increases exponentially
as function of atom number N. In the case of symmetric double well, the Lindbladian £(¢) is invariant under the
transformation X,

XCHX = L®). (11)

Here X is an unitary transformation, defined by A x ] = X()X Tand X = exp[iw(hlT by + b; b1)/2]. So the
stable mode 71, and meta-stable mode 1, are also the eigenmode of X'. The eigenvalue of X is just 1, because
X% = 1. Then we conclude X[#] = iy, because it is the steady-state over very long time. The numerical results
show that AX[#1,] = —#1,. Both modes have Floquet quasi-frequency zero 0?“ = 0, then the linear superposition
of these two modes can not show oscillatory behavior, but such a linear superposition has very long lifetime. We
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will show later that, the linear superposition of these two modes can represent the trapping of atoms in one of
two sites. The lifetime of 1, is in fact the trapping time when the quantum fluctuation is considered.

Physically, the transformation X represents flipping the atoms in the first site to the second site and
vice versa. If we initially load the atoms in one site, then perform a flip A and wait some time, the atoms can relax
in the another sites due to self-trapping. Repeat this process, we can observe the period-doubling oscillation of
atom imbalance between the two sites. Specifically, this two steps dynamics can be given by Floquet propagator
of form

VH(T, 0) = exp[LE(T — O] X (12)

Denote the eigenvalue of 71, by L, i.e. L(&)[ri,] = L1y, note that the image part of I, is zero. It is straightforward
to show

Vi(T, 0)[rip] = —explL(T — )]z, (13)

andin thelimit N — oo, we have V(T 0)[#,] = —1it,. 171, has Floquet quasi-frequency 6 = w/2 and the
effective relaxation rate 5 = I,(1 — &/T) in this case. The effective relaxation rate of the third eigenmode 7z,
of V(T, 0)isjust 0% = I1Re(1 — ¢/T)wherelsis given by £(€)[#713] = Li13.15° takes a non-zero value in the
large N'limit, so the long time dynamics of system is characterized by the first two modes. To realize such Floquet
propagator, we can set J;£ = /2 in equation (10). Besides, yN¢ should be small enough so that dissipation in
the time interval [0, £) is negligible, and J; >> |UN] so the unitary part of evolution is given approximately by X
Itis unclear whether the meta-stable mode with Floquet quasi-frequency ™ = w/2 can still exist or not, when
the slight deviation of the first driving step exp[£(0)£] from X are considered. We study this question by
numerically solving equation (7) in the following subsection.

Suppose the meta-stable mode with Floquet quasi-frequency 5™ = w/2 can still exist when the
imperfections in the driving step are considered. If the evolution of system starts from a state
p0) = 1y + oy + Y i and g = 0. Aftertime 3 = —1/ 6%¢ and in the large N limit, the density matrix
at stroboscopic moment t = nT'is

p(nT) = rin + (= 1)1y, (14)

that shows sub-harmonic response to the driving field. Define the atom imbalance between the two sites
A P S
O =—(b by — b, by). 15
2N( 1 01— by b) 15)

The expectation value of observable O with state given by equation (14) is
OnT) = Tr[Op(nT)] = (=1)" ¢ Tr[##, O]. (16)

This shows period-doubling oscillation, a clear signature of DTC. Here, we use the relation Tr[Omy] = Oto
obtain equation (16), that comes from X[#1] = 1. If the two sites are asymmetric, i.e. & = 0, thereis no
symmetry constraint to #, and generally Tr[O#ni;] = 0, O(nT) can acquire a non-zero basis.

4.3. Numerical results for the model with two sites
First, we consider two symmetric sites, i.e. « = 0. For Floquet propagator with tunneling of form equation (10),
the first three eigenvalues are calculated numerically, and the results are shown in figure 1. The panels (a) and (b)
in figure 1 plot the effective relaxation rate #5¢ and Floquet quasi-frequency 6™ of the second eigenmode of
V(T, 0) as functions of interaction strength UN/J and tunneling J, /], respectively. The particle number N used
in the calculation of figures 1(a) and (b) are N = 60. The dotted dash line in figures 1(a) and (b) indicates the
mean-field critical interaction strength U, N /] = —2 — 8(yN/J)? of parent generator £(£). The derivation of
U, is straightforward and can be found in section 5.

As shown in figure 1(a), on the right-hand side of the dotted dash line, the three regions with
In[—6%¢ /(7N)] < —1are surrounded by dash lines. In these three regions, |#5°| is several orders of magnitude
smaller than the natural relaxation rate yN. The Floquet quasi-frequency 5™ of the second eigenmode of
V(T, 0) in these three regions are 0, w/2 and 0 from up to the bottom, respectively. The appearance of meta-
stable mode with Floquet quasi-frequency 5™ in the middle region of figures 1(a) and (b) indicate the time
crystal phase is robust to the moderate deviation of driving parameters from the ideal case. The dash line in
figure 1(a) indicates J;¢ = 7/2 asaguide to the eyes. 6™ = 0 in the up and bottom regions can be understood
as the rigid of the meta-stable mode of £(§) under time-dependent perturbations. Since for J; /] = 1in the
bottom region, £(0) ~ L(£)and W(T, 0) ~ exp[L(£) T]. Inthe case ], /] = 1, this relaxation is exact, i.e.
W(T, 0) = exp[L(&) T]. Such phenomenon is referred as time-dependent self-trapping of BECs [27], and the
self-trapping happens in a time-dependent state. In our case, the time-dependent self-trapping state is the time
periodic Floquet state, the atoms still mainly occupy one of the two sites, but different from the time
independent case, the atoms can have micro-motion near the trapping position with period driving. As for the
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Figure 1. (a) and (b): the effective relaxation rate 65° and Floquet frequency 6™ of the second eigenmode of V(T 0) as a function of
J1/Jand UN/J. Dotted dash line in (a) and (b) indicates the critical interaction strength UN /] = —2 — 8(yN /])? of parent generator
L(£) obtained by the mean-field theory. The dash lines in (a) enclose the region with In[—65¢/(4N)] < —1. The solid and dash lines in
(b) enclose the region where 0 = w/2and0, respectively. The parameters used in (a) and (b)areJ, = J = 1,y = 0.1J/N,a = 0,

T = 2.57/J, € = m/(8]) and the number of particleis N = 60. (c) 65 and 6% of (T, 0) as a function of interaction strength UN/J
for three different particle numbers N = 30, 60, 90, respectively. Except the tunneling strength J; /] = 4, the other parameters used in
(c) are the same as in (a). (d) 05 and 0% of exp[L(€) T]for three different particle numbers N = 30, 60 and 90, the other parameters
used are the same as in (a). (¢) and (f), the finite size scaling results for #5° and 6%, The lines with hollow and solid markers for V(T', 0)
and exp[L(£) T], respectively. The dash lines in (e) and (f) indicate the biased exponential fitting a + be™ and exponential fitting
ce"N, respectively. Three different interaction strength UN/J = —2.5, — 3.5, —4.5 are chosen in (e) and (f) for comparison. The
other parameters used in (e) and (f) are the same as in (a). The factors x of the exponential fitting in (f) versus UN/J are plotted in (g),
lines with dotted and square symbols are plotted for V(T', 0) and exp [L() T, respectively.

upper region, the parameters J; ~ 8], V(&, 0) ~ land (T, 0) ~ exp[L(&)(T — &)], the same argument also
applies.

The effective relaxation rates of the second and third eigenmodes of V(T 0) for three different particle
number N = 30, 60 and 90 as functions of interaction strength UN/] are shown in figure 1(c). For comparison,
the effective relaxation rates of the second and third eigenmodes of exp[L(£) T'] are also calculated and plotted in
figure 1(d) (the effective relaxation rates defined here are just the real part of the eigenvalues of parent generator
L(£)). We can see that in both figures 1(c) and (d), the effective relaxation rate of the second eigenmode drops
sharply to nearly zero when the interaction strength reaches a critical value U,,. This means the second modes
become meta-stable states. When the interaction strength reaches U, the effective relaxation rates of the third
modes also change, but are still of the same order of the natural relaxation rate yN. The U, of figures 1(c) and (d)
are very close for the symmetric two sites case. We find that the larger the particle number there is, the phase
boundary becomes more clear. The U dependent oscillation of the relaxation rate in figure 1(c) can be
understood from the fact V(T, 0) = exp[L({)(T — &)]exp[L(0)¢] =~ exp[L(E)(T — £)] X. Because
XL() X! = L(t)and X? = 1,if 17; satisfies eigenvalue equation exp[L(£) T1[#1;] = A;riyj, we then have
X[r;] = £jand exp[LEN(T — 1 Xry] = £ /\gr— /T 11;. The effective relaxation rate of Floquet
propagator V(T, 0) can be approximated by
H?e* = ln(|)\§<T75)/T|)/T = [T - f)/T] 1n(|)\j|)/T = G?C(T — f)/T. Here 9?6 denotes the relaxation rate of
propagator exp[L(€) T]. Because £(0) is a function of U, but X is U independent, with the increase of U, the
approximation exp[£(0)£] ~ X becomes worse, and the exact effective relaxation rate of Floquet propagator
deviates from 0?5 *, leading to a U-dependent oscillation of the effective relaxation rate near G?e*.

The finite size scaling results of 05 and 65° of V(T, 0) as functions of particle number N for three typical
interaction strengths used in figure 1(c) are plotted in figures 1(e) and (f) using lines with hollow markers,
respectively. The same results but for exp[£(£) T] are also plotted in figures 1(e) and (f). As shown in figure 1(e),
we have relaxation rate — 05 /(yN) = a + b exp[#N]that approach a non-zero value a exponentially. The
value of ais of order 1. In figure 1(f), we have relaxation rate —6%¢ /(yN) o exp[xN7]. The factor x for V(T, 0)
and exp[L(§) T]are plotted in figure 1(g) using lines with dot and square symbols, respectively. For
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Figure 2. (a) The second and third effective relaxation rate of V(T, 0) as a function of dissipation strength yN /] for two different
particle numbers N = 110 and 30. (b) is the same as (a), but for propagator exp[L£(£) T. (c) and (e) show the projection of the first
eigenmode of (T, 0) to the eigenstates of O.The particle numbers used in (¢) and (e) is N = 30 and 110, respectively. (d) and (f) are
respectively the same as (c) and (e), but for the first eigenmode of exp[L£(§) T]. The other parametersusedare J, = J = 1,]J; = 4J,
a=0,T=257/],§ =n/(8))and UN/] = —4.

exp[L(£) T], k monotonically decrease as the increasing of interaction strength. For V(T 0), x has more
complicated relation with the interaction strength.

One may wonder what role the quasi-local dissipation plays in the appearance of time-crystal order. In
figure 2(a), we plot the relaxation rate of the second and third eigenmodes of V(T 0) as functions of quasi-local
dissipation strength yN/J. The relaxation rate of the second and third eigenmodes of propagator exp[L£(§) T]
are also plotted in figure 2(b) as a reference. We can see for sufficiently weak dissipation, for instance YN/

J & 0.04, in figure 2(a) there is a sharp change of —#5° /(yN') from nearly zero to about 3 and 6 for N = 110and
30, respectively. But the reference in figure 2(b) is still nearly zero. This suggests that the meta-stable modes are
more fragile when the dissipation is weak. Too strong dissipation also lifts —%¢ / (yN') from zero for both
figures 2(a) and (b), but the process is much slowly. As shown in figures 2(a) and (b) near YN/J = 0.4, except the
slowly increasing of —#%¢ /(7N), there is a dip of —65° /(yN). The behavior of Floquet quasi-frequency versus
dissipation strength is similar with figure 1(b). With the increase of effective relaxation rate, the Floquet quasi-
frequency is no longer fixed to a particular value.

Figures 2(c) and (d) show the projections of the first eigenmodes of V(T, 0) (i) and exp[L(£) T () on the
eigenstates |O;) (O, of operator O defined by equation (15), respectively. The eigenvalues O; ranges from —0.5 to
0.5. The results in figures 2(c) and (d) are for the case of N = 30. Figures 2(e) and (f) show the same thingas (c)
and (d) but for larger particle number N = 110. Comparing the results in figures 2(c)—(f) with (a) and (b), we can
find the lifting of — 9?" / (yN) is accompanying with the changing of probability distribution on |O;) (O,|. In the
case of moderate dissipation, the probability distribution of 7i7; and #, as a function of O; have two symmetric
peaks, and the meta-stable states exit. The probability distribution on |O;) (Oj] of linear superposition of 77, ()
with another meta-stable mode can have two asymmetric peaks, or in limit case only one peak that locates near
O; = %0.5. So for undriven system, the initial atoms imbalance can sustain a very long time for large particles
number, and when N — 00, the initial atoms imbalance can freeze permanently. If we switch on the periodic
modulation of tunneling, the initial loaded condensate in one of the two sites can jump back and forth between
the two sites. When the dissipation is strong enough, the two peaks in figures 2(c)—(f) merge into one peak
locatingat O; = 0 and the meta-stable mode disappears. For too weak dissipation, though the two peaks also
exist for exp[L(£) T], the periodic driving turns the two peaks to broad distributions that have rich structures,
which is more clearly for larger N. When such structures appear, the corresponding mean-field dynamics is
chaotic as show in section 5.

In the case a = 0. Direct numerical results show that the meta-stable mode of V(T, 0) with Floquet
frequency 0™ = w/2 also exist. The effective relaxation rates of the second and third eigenmodes of V(T 0)
with o = 0 are shown in figure 3(b). Figure 3(a) shows the same thing but for exp[£(§) T] as a comparison. The
Floquet frequency of the second eigenmode of exp[£(£) T]and V(T, 0) is plotted in figures 3(c) and (d),
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Figure 3. (a) and (b) are the effective relaxation rates of the second and third eigenmodes of propagator exp[£(£) T]and W(T, 0)
versus interaction strength UN/]J. (c) and (d) are for the Floquet frequency of the second eigenmodes of exp[£(£) T]and W(T, 0),
respectively. The parameters usedin (a)~(d)are , = ] = 1,J; = 4/, = 0.3],7N/] = 0.2,T = /], § = 7/(8]). Three different
particle numbers N = 30, 60, 90 are chosen for these plots. (¢) The scaling of the effective relaxation rate of the second eigenmode of
W(T, 0) versus particle number N for four different interaction strength UN/J = —3.4, —3.0, —2.6, —2.4, the dash lines indicate an
exponential fitting. The other parameters used in (e) are the same as in (b). (f) The evolution of density imbalance for two different
interaction strengths UN/J = —3.4 (line with square symbols) and UN/J = —2.6 (line with dotted symbols), the other parameters
used are the same as in (b), except particle number N = 90. We assume the atoms was initially loaded in the second site, i.e.

p(0) = 10, N) (0, NI.

respectively. We can find from figures 3(a)—(d), the critical interaction strength for the appearance of meta-
stable mode of Floquet propagator V(T 0) with quasi-frequency w/2 is smaller than the interaction strength
needed for the appearance of zero frequency meta-stable mode of the corresponding exp[£(£) T]. So even the
undriven system is not in the self-trapping regime, the time crystal order can emerge due to the joint effect of
driving, interaction and dissipation. Figure 3(e) plots the scaling of the effective relaxation rate of the second
eigenmode of V(T, 0) as functions of N with four different interaction strengths, that also shows exponential
decay ~exp[xN]. Figure 3(f) shows the periodic doubling oscillation of the imbalance O. The initial state

p(0) =10, N) (0, N|is used for the numerical simulation in figure 3(f). Here we define

|k, N — k) = l;:kl;;(N_k)lvac>/ k(N — k)!,k = 0,1,...,N. Thesslightly deviation of the initial state from

|0, N) (0, N, i.e.choosing p(0) = |0, N) (0, N| + £pp with small real number ¢, can give results similar with
figure 3(f). Because the scaling factor || = 0.015 is small when the interaction strength UN /] = —2.6, for
finite number of particle N = 90, the corresponding relaxation time scale of the second eigenmode 7/T = 3 is
much short than the case UN/J = —3.4 that has a relaxation time 7/T = 53. As shown in figure 3(f), the
oscillation of imbalance decays much fast for UN/J = —2.6 than UN/J = —3.4. Note that the projection of the
first eigenmode of V(T 0) to the eigenstates of O also has double-peak structure similar with the case a = 0.
The projection of the first eigenmode of exp[ L (&) T'] to the eigenstates of 6] only has one peak and the second
meta-stable mode has double-peak structure, the linear superposition of these two modes are responsible for the
self-trapping feature of the undriven system.

We show the effective relaxation rate of V(T, 0) as functions of off-set potential v in figure 4. We find that
stronger « can lead to a sharp change in the effective relaxation rate for the second eigenmode, and it destroys the
DTC phase too. When « is smaller than a critical value, the Floquet quasi-frequency of the second eigenmode
equals to w/2.

5. Mean-field analysis

First, we analysis the two sites model within the mean-field framework and compare the results with previous
one that consider quantum fluctuations. Then we switch to the mean-field analysis of general 2# sites models.
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Figure 4. (a) The second and third effective relaxation rate of V(T, 0) as a function of off-set potential « for two different particle
numbers N = 60 and 30. (b) is the corresponding Floquet quasi-frequency. The other parametersusedareJ, = J = 1,]; = 4],
T=m/],£=n/@8]),YyN/] =02and UN/] = —4.

5.1. Mean-field analysis for two sites model
For the two-mode Bose-Hubbard model described by equation (2), it is convenient to introduce the spin
operators defined by [23, 28]

P P
Se = E(bl b, + b, by,
(L A N A (17)
D N A
1 ~in AT
S, = —(b'b, — b, by.
2N(1 1 2 2)

These spin operators satisfy the commutation relations Sy, §#] = %Q " S, with Levi-Civita symbol €,,,,,. Using

these spin operators, the Hamiltonian H (¢) and jump operator ¢ can be rewritten as

A(t) = —2] (H)NS; + aNS, + UN28. + const.,
¢=2N(S, —iS)), (18)
with irrelevant constant const.=(a« — U)N /2 + UN?2/4. Since the Hamiltonian H () and the jump operator
¢ conserve total particle number N, §* = > = (N + 2)N/4N?isa constant of motion. The evolution
of the expectation value of spin operators S;(t) = Tr[S; ﬁA (t)] canbe obtaiAned using eAquation (2) and the mean-
field equation for S() is acquired by the assumption Tr[S;S5; p(£)] ~ Tr[S;p(£)] Tr[S; p(¢)] for large Nand
neglect the term in the order of N ', i.e.
9,Sx = —aS, — 2UNS, S, + 8N (S; + S,),
0:S, = 2J (1)S; + aS, + 2UNS, S, — 8INS, S,
0,S; = —2J(t)S, — 8INS,S,, (19)

A

i:x,y,zSi

here, we have omitted the argument ¢in S,(£) for simplicity. The evolution of quantity > = S? + Sy2 + §?
governed by equation (19) is also a constant of motion and this relation reduces the three equations in
equation (19) to two equations [23]

0:0 = 2] (t)sin(¢p) + 4N cos(0)cos(¢),

0,6 = 2710 o5(6) + a + UN cos(0) — 4yN2D). (20)
sin(#) sin(6)
here # and ¢ are polar and azimuth angles by expressing S in the spherical coordinate system, i.e.
{Sx» Sy, S;} = {cos(¢)sin(0), sin(¢)sin(f), cos(F)} /2. (21)

Without the periodically modulated tunneling, i.e. J(f) = Jis time-independent and @ = 0, the nonlinear
differential equations equation (19) with constraint condition S + Sy2 +8r=1 / 4 have six different solutions
that satisfy 9,S; = 0 (i = x, y, z). Three of the six solutions are not real. The stability analysis of the remaining
three solutions shows that two or one solutions are stable depending on the interaction strength. When

UN/J < —2 — 8(yN/J)? there are two stable solutions. For the case UN /] > —2 — 8(yN/J)? there is one
unique stable solution {S,, S,, S;} = {1/2, 0, 0}.
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Figure 5. (a) The density imbalance O(f) at time instance nT (500 < n < 550) versus dissipation strength yN/J. (b) The evolution of
O(t) at stroboscopic time for three typical dissipation strength yN/J. The lines with square, dotted and triangle symbols in (b) are for
AN/J = 0.02, 0.1 and 0.48, respectively. (c)—(e) The trajectory of {6, ¢} at stroboscopic time nT with 500 < n < 1000 for the three
typical dissipation strength used in (b). The results in (a)—(e) are calculated by mean-field equations and the initial states for the
simulations are randomly chosen. (f)—(h) The projection of the first eigenmode of V(T, 0) to |6, ¢) for comparison, color in the
figures represent the weight on different |0, ¢). The parameters used in (f)—(h)is N = 110, yN/J = 0.02, 0.1 and 0.48, respectively.
The other parametersusedareJ, = J = 1,]; = 4/,a = 0,T = 2.57/],§ = w/(8])and UN/] = —4.
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Figure 6. The density imbalance O(#) at time instance nT (500 < n < 550) versus the interaction strength UN/J. (a) The undriven
system, tunneling strength J(f) = ] = 1is time-independent. (b) The periodic driving system. The other parameters used are the same
as in figure 3 and the initial states are chosen randomly. The dashed blue lines in panel (a) are the unstable real solutions of 9,S; = 0,

i = x, ¥,z Theresults in (a) and (b) are obtained by solving the mean-field equations.

We numerically integrate equation (20) to obtain the evolution of () and ¢(¢). For the case of symmetric
double well « = 0, the values of O(¢) = cos(#) /2 att = nTwithinteger n (500 < n < 550) are plotted in
figure 5(a). Similar with the master equation approach, with moderate dissipation, there are stable period
doubling limit circles as shown in figure 5(a). Figure 5(b) shows the evolution of O(f) with three different
dissipation strength, line with dotted symbols show the period doubling evolution with moderate dissipation
vN/J = 0.1. The lines with square and triangle symbols in figure 5(b) show the system in the chaotic regimes
with weak and strong dissipation YN/J = 0.02 and 0.48, respectively. Figures 5(c)—(e) show the trajectory of {0,
¢} atstroboscopic time nT (500 < n < 1000) for these three different dissipation strength. Figures 5(f)—(h) are
their quantum version by projecting the first eigenmode of propagator V(T, 0) to coherent states
10, ¢) = [cos(8/2) Z;IT + el?sin(6/2) l;;]N [vac) / VN [29]. The quantum version show similar texture with the
mean-field one, except the broadening of texture due to the quantum fluctuations.

When the symmetry-breaking points bias o = 0, the mean-field equation also gives consistent results with
the original master equation equation (2). As shown in figure 6(a), the undriven system has two stable steady
state solution when the interaction strength UN/J < —3.25. Figure 6(b) shows that the period doubling of the
driving system appears when UN/J < —2.4.

The emergence of DTC in our system without meta-stable state can be understood as follows: choose the
steady state of the undriven system p; as the initial state, and suppose the driving procedure over one period T
can be divided into two stages, say Vi(fromt=0tot = £inthefirst T,and fromt = Ttot = T + {inthe
second T,and soon)and V, (fromt = £tot = Tinthefirst T,and from¢ = T 4 £tot = 2T inthesecond T...).
V) map p; toastate p, = Vj[p,] thatis not too close to p;, and then map p, close to p; again, i.e.|p, — p;|isas
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Figure 7. (a)—(c) The trajectory (thin black dash lines) of the quantum system in space {6, ¢ }. The result is obtained by solving the
mean-field equation. The dimensionless interaction strength is UN/J = —3, so there is no meta-stable state in the system without
drive. The purple crosses in (a)—(c) indicate the initial states of the evolution and they are also the equilibrium state of the undriven
system. The thick dash arrow lines indicate the flip process within one driving period when t < &, while the thick solid lines indicate
the dissipation processwhen § < t < T. Three different driving periods JT = 7/4, /2 and 4 are chosen, corresponding respectively
to (a)—(c). The labels near the lines indicate the driving periods nT. (d)—(f) are the corresponding density imbalance O(t) of sub-panel
(a)—(c) at integer multiple of period T. The other parameters are the same as in figure 3 (b).

large as possible and |Vi[p,] — p,|is as small as possible, here |(...) | denotes the trace norm of (...), i.e.

lo| = Tr[/o'o]. Inthe second stage, 1}, is generated by the Lindbladian of the undriven system, for example,

V, = exp[LE(T — &]inour case. V, should map p, not far away from p,, i.e. p; = Wi[p,]and [p; — p,|is
close to zero. Then after the first stage of the second driving period T, we have p, = V,V,Vi[p,] = Vi[p;], and

lo, — ool = lpy — Vilp,] + Vilp,l — pol < WVilps — o511 + Vilp,] — oyl = 0bythe aforementioned spirit of
construction. With all mentioned, in the first three stages in the two driving period 2T, the system behaves like
being driven by an effective weak drive that steers the steady state p; slightly from the equilibrium. At the final
stage of the first two driving period 2T, the system was driven from the state p, to the equilibrium state p, again.
Note that p, is the steady state of the system.

When the effective weak drive M}, and the final stage dissipation process V; balances well and notice that
V), is not required to have meta-stable state, we can expect that an observable of the system would synchronize
with the drive at period 2T finally.

Indeed, the aforementioned scheme can be realized theoretically in our system, as figures 7(a)—(c) show. In
figures 7(a)—(c), the parameters are chosen such that there is no meta-stable state for the undriven system. The
purple crosses in figures 7(a)—(c) indicate the initial state of the system in the {6, ¢} parameter space and it is also
the steady state of undriven system. The lines with arrow denote the first (dash line) and the second stage (solid
line) of the driving procedure in one period T. The number nT (n = 1, 2, 3) near the lines denote the nth driving
period. In figure 7(a), V; maps the initial state far away from its initial, the effective driving V}), V) and
dissipation ), can not arrive at a balance, the state of system moves far away from the initial equilibrium position
after every two driving period and finally stabilize at a position away from the steady state of the undriven system.
In this case, we can not have a DTC. In figure 7(b), the effective driving and dissipation is properly balanced, after
atransient time, a rigid period-2T oscillation is formed. The state of system returns to a position that is almost
the steady state of the undriven system at 2nT times. In figure 7(c), the drive at the first stage maps the initial state
far away from the initial one, but the duration of the second stage of drive is too long, so the dissipation
dominates and the system returns to an equilibrium state near the steady state of the undriven system, leading to
an oscillation with period-T. Figures 7(d)—(f) are the dynamics of O(¢) corresponding to figures 7(a)—(c) at
integer multiple time of period T. By this study, we also find that relatively strong interaction is favorable for the
required balance between V,V,V), and V..

Figure 8 shows the values of O(f) at time nT (500 < #n < 550) with different (dimensionless) driving periods
JT, the other parameters in figure 8 are chosen as the same as in figure 7. The three drives used in figure 7 are
indicated by blue dash lines(labeled by a,b,and c¢) in figure 8. We can find that with the drive ‘@’, O(f) can take only
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Figure 8. The density imbalance O(t) at time instance #T'(500 < n < 550) versus the driving period JT. The dimensionless interaction
strength UN/J = —3, the other parameters used are the same as figure 3(b). and the initial states are chosen randomly. The blue dash
lines with labels a, b and ¢ indicate the three different driving periods used in figures 7(a)—(c), respectively. The result is obtained by
solving the mean-field equations.
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Figure 9. Illustration of a ring lattice of sites 2n = 6 with a driving lasting over one period T. The red dot in the left panel represents the
initial state of BECs. The full driving process is formed by two flips marked with blue dashed arrows.

valueatnT(500 < n < 550), indicating that there is no DTC. Whereas with the drive ‘D’, two values can be taken
for O(1), suggesting that the DTC is of 2T. The feature of the system with drive ‘c’ is the same as ‘a’. From figure 8,
we observe that except the three typical drives indicated by dash lines (labeled by a, b and ¢), a wide range of
drives can be found that possess the same feature as discussed above. Besides, there is a crossover region between
JT = 2mwand JT = 37 (around 27 in the figure), in this region, the evolution of O(#) could take many values, this
does not mean that there isa DTC of nT, as the values O() might increases if we prolong the observation time(for
example the observation time is nTwith 500 < n < 1000).

5.2. Mean-field analysis for 2n sites model
For the ring lattice with 2# sites, the modulation of tunneling are

J 0<<t<T/2—-¢
@) =) T/2-E<t<T/2, (22)
J T/2<t<T

and

T o<t <T—¢ )
D=1 1 e<iat (23)

Figure 9 is the pictorial representation of the ring lattice of sites 2nn = 6. Here, we focus the situation 2n = 6 as
an example, but the similar results can be obtained forany M = 2n.

Intuitively, the two sites model can be regard as the basic building block of the more complex large rings. As
shown in figure 9, the condensate is firstly loaded on site 1. In the first half period, similar with the two sites
model, we can flip the condensate from site 1 to site 2, then wait some time to trap the atoms in site 2. In the
second half period, we do exactly the same thing but flip the condensate from site 2 to site 3. Repeat such
procedure, we might observe the clockwise circulation of the particles with period 3T. If initially load the atoms
on even site, the circulation can be anti-clockwise.
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Figure 10. (a) The evolution of the density at the first site in the system of six sites. The parameters used in the calculations are ] = 1,
Ji/] = 5,UN/] = —5.5,T = 4m/Jand a = 0.1]. Theline with dotted symbols for yN/J = 0.2 and line with square symbols for YN/
J = 0.1. (b) The corresponding Fourier spectrum of generalized imbalance, dot and square are for yN/J = 0.2 and 0.1. The initial
states used in the calculationsaren;/N = land n; = 1/N = 0.

To probe such clockwise circulation, we define generalized imbalance

n—1
Ot) = Y e/ ™My (). (24)
j=0

Here, 1y is the expectation value of particle density at site 2j + 1. The Fourier transform of O(%) is defined by
- 1 Wz )
Ow) = lim —)» O(t)e ™. 25
@) = lim 23300 25)

If the atoms rotate clockwisle, wehave O(KT) ~ ei2™/n the phase 27tk /n increase linearly as function of time,
and the Fourier spectrum O(w) has a sharp peak at w/n, i.e. period nT time crystal. For the case 2n = 6, we have
n = 3anda 3T period time crystal. The particle density 1,1 (t) = |by;1(¢)|* are calculated by the mean filed
equation

0y = —ilouby + Umby — (ibiy + Ji—1bi-1)]
+ 2y (g + bbby — by)
— 2y + bk (b — bryy). (26)

This equation is obtained by b () = Tr[l;l,b (t)] and the assumption Tr[l;,:r l;l p()] ~ Tr[l;,:r p()] Tr[l;lﬁ(t)].
The mean field approximation is done in the following way. First, separate the field operator as by = b + 6b;,
where b; is the average value of the field and 8b;is the corresponding quantum fluctuation. Such approximation
is valid when the (second order or high) quantum correlation is negligible compared to the average value of the
fields, i.e. (6b; §I;]> < b;bj (note that (6b) = <6I;]> = 0), this happens when the coupling ] between the two sites
is small. For two-site model, the mean field approximation shows agreement with the exact one. For large
number oflattice sites, exact quantum mechanical treatment is difficult due to the huge Hilbert space. The
validity of the mean field approximation with large number of lattice sites is still an open question, but in a recent
experimental work that studies driven-dissipative quantum phase transition in a one-dimensional Bose—
Hubbard chain [30], showed the agreement between the observation and the mean field prediction. Early
theoretical work [29] found that the difference between the non-mean-field results and the mean-field one can
be reduced by introducing decoherence. This is exactly the scope studied in this work.

In figure 10(a), we plot the evolution of n,(¢) for six sites model. When yN/J = 0.2, the evolution of ()
show rigid oscillation with period 3T. For yN/J = 0.1, the system is in the normal phase, and the evolution #,(%)
isirregular(not periodic). Figure 10(b) shows the corresponding Fourier spectrum, when system is in the time
crystal phase, there is a sharp peak at w; = w/3. In figure 11, we show the Fourier spectrum of generalized
imbalance versus various parameters for a system of six sites. It is clear that the rigid sub-harmonic response with
reduced frequency w/3 is robust to the perturbation in the system parameters. We also find that the result of six
sites model is similar to that of two sites model, the time crystal phase emerges when the interaction is strong and
the dissipation takes a moderate value.

6. Conclusion and discussions

To conclude, we study a Bose-Hubbard model with dissipation and periodically tunneling. In the simplest case
of only two sites, we study in detail the dynamics by means of Floquet—Lindblad formalism. When the two-site
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Figure 11. The Fourier spectrum of the generalized imbalance versus various parameters for model with six sites. (a) The Fourier
spectrum for UN/J = —5.5,79N/J = 0.2 asa function of J; /J. (b) The Fourier spectrum for UN/J = —5.5, J;/] = 5 versus yN/J. (c)
The Fourier spectrum for YN/J = 0.2, ];/] = 5 varies with UN/J. The other parameters used in the calculationsare ] = 1, T = 47/]
and o = 0.1]. The initial states used in the calculationsare n,/N = land n; = 1/N = 0.

system is in the self-trapping regime, we found that the system can exhibit sub-harmonic dynamical responses to
the periodic drive, forming a DTC. An periodic drive can also turn the system to a DTC even if there is no self-
traping in the system, this is different from the result in the earlier study that requires meta-stable states in the
undriven system. Furthermore, we have shown that period-n (n > 2) DTC can be realized by using two sites
model as basic building blocks to construct large rings. The present results might find applications into
engineering exotic phases in driven open quantum systems.
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