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Abstract
Weunravel the correlated tunneling dynamics of an impurity trapped in a doublewell and interacting
repulsively with amajority species of lattice trapped bosons. Upon quenching the tilt of the double
well it is found that the quench-induced tunneling dynamics depends crucially on the interspecies
interaction strength and the presence of entanglement inherent in the system. In particular, for weak
couplings the impurity performs a rather irregular tunneling process in the doublewell. Increasing the
interspecies coupling it is possible to control the response of the impurity which undergoes a delayed
tunnelingwhile themajority species effectively acts as amaterial barrier. For very strong interspecies
interaction strengths the impurity exhibits a self-trapping behavior.We showcase that a similar
tunneling dynamics takes place for twoweakly interacting impurities and identify its underlying
transportmechanisms in terms of pair and single-particle tunneling processes.

1. Introduction

Ultracold atoms offer a versatile platform for studyingmany-body effects in an extraordinarily controlled
manner. Apart from varying the external confining potential and its dimensionality [1–3], it is also possible to
tune the interaction strength between the atoms via Feshbach or confinement induced resonances [4, 5]. This
exquisite level of control over single component fermionic or bosonic ensembles can be extended tomixtures of
ultracold atoms such as Bose–Bose [6–16], Fermi–Fermi [17, 18] andBose–Fermi [19, 20]mixtures. In
particular, one-dimensional systems exhibit intriguing phenomena since they allow for correlations to appear in
the dilute regime [21–24].

In this context, especially strongly particle imbalancedmixtures have attracted a lot of interest recently. In
the extreme case such systems consist of a single impurity immersed in amajority species. These setups have
been studied theoretically [25–32] and experimentally [33–36], for a single impurity, serving as a simulator of
polaron physics, as well as formany impurities [37–42] and are indeed a subject of ongoing research.While the
ground state properties of a single impurity in a bath are to a certain extent well understood, less focus has been
placed on the transport properties and the emergent collisions of the impurity through the bath [43–46]. Indeed,
in these systems correlation effects, such as entanglement, are expected to be a crucial ingredient since the
impurities form a few-body subsystem [47].Moreover, the underlying trapping potential plays an important
role for the behavior of the impurity species, which has been analyzed for homogeneous systems [48–50],
harmonic confinements [51–55] as well as lattice potentials [33, 56, 57]. Themajority of the above-mentioned
investigations have been focusing on the case where both species are trapped in the same geometry.However,
introducing different trapping potentials for each species is expected to alter significantly the observed
dynamics. A setting of particular interest involves a bath of lattice trapped bosonswhich act asmultiplematerial
barriers for the tunneling dynamics of the impurity.

In the present workwe explicitly focus on an impurity which is confined in a one-dimensional double well
and interacts repulsively via contact interactionwith amajority species of bosons trapped in a lattice. For single
component bosons in a double well the analog of thewell-known superconducting Josephson junction can be
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established. The bosonic Josephson junction provides the testbed formany, also experimentally observed,
intriguing phenomena, such as Josephson oscillations,macroscopic quantum self-trapping [58–63] and
correlated pair tunneling [64–66]. Extensions of these phenomena tomulticomponent setups have also been
extensively studied, see for instance [67–70]. Herein, we extend these investigations by exploring the dynamics
of impurities in a doublewell immersed in a few-body bath of lattice trapped bosons. This gives rise to an
effective potential for the impurities whose shape strongly depends on the interspecies interaction strength.
Depending on the latter, one can realize tunneling scenarios which are beyond thewell-known regimes of
Josephson oscillation and quantum self-trapping and rely on the interspecies entanglement. This can be of
particular interest for future applications in atomtronics [71].

In our setupof a single impurity in a doublewell the dynamics is steeredby the repulsive coupling to the
majority species. Varying the interspecies interaction strengthweunravel different dynamical response regimes of
the impurity uponquenching the tilt of the doublewell. These regimes range fromrather irregular tunneling in the
doublewell for small interspecies interaction strengths to dynamical self-trapping in a single site for very strong
couplings [6, 7, 55]. For intermediate coupling strengthsweobserve a strong impact of thedensity distributionof
themajority species on the impurity’s tunneling dynamics. The impurity initially collideswith thematerial barrier
imposed by the density of themajority species and then tunnels to the corresponding other site of thedoublewell.
This offers a controlledway of transporting the impuritywithin thedoublewell. The entire tunneling process in the
case of intermediate interspecies interaction strengths is accompanied by a strong entanglement between the
subsystems revealing the complexity of this phenomenon.We remark that in the absenceof entanglement this
process does not take place. Additionally, in this case the self-trapping behavior is altered. Surprisingly,wefind that
thedynamics of the impurity canbedescribed in termsofWannier states [41, 42]which are associatedwith the
superposition of the effective time-averaged potential inducedby the density of themajority species and the double
well potential. This proves to be a valuable tool that captures the dynamics of the impurity adequately, even though
a strong entanglement persists throughout the dynamics [12, 46]. Due to the strong correlations appearing inour
system it is necessary toutilize an approachwhichoperates beyond lowest band andmean-field approximations,
such as theBose–Hubbardmodel orGross–Pitaevskii approximation.Thereforewe track the emergent non-
equilibriumdynamics by employing theMulti-LayerMulti-Configurational Time-DependentHartreeMethod for
atomicMixtures (ML-MCTDHX) [72–74] that enables us to capture all the important particle correlations.

Ourwork is structured as follows: in section 2we present the systemunder investigation and the employed
computationalmethodology. In section 3we unravel the quench-induced tunneling dynamics of the impurity,
revealing also the crucial role of the inter- and intraspecies correlations. Section 4 is dedicated to an in-depth
characterization of themicroscopic effects involved in the dynamical response of the impurity.We extend our
results to the case of twoweakly interacting impurities in section 5 and concludewith a summary of our findings
and a discussion of future directions in section 6.

2. Setup andmulti-configurational approach

2.1. Setup andHamiltonian
Our setup consists of two different species of bosonsA andB, also referred to as themajority species and the
impurity, respectively, which interact repulsively via a contact potential of strength gAB. Each species is confined
in a different one-dimensional optical potential at zero temperature. Experimentally this can be realized by
preparing e.g. 87Rb atoms in two different hyperfine states, i.e. = = - ñF m2, 2F∣ and = = - ñF m1, 1F∣ ,
thereby obtaining a two-species bosonicmixture. Utilizing the so-called ‘tune-out’wavelength [75, 76] it is
possible to create species-dependent potentials, such that the two species experience different optical potentials
[3]. ThemajorityA species, composed of bosons ofmassmA and interacting repulsively via a contact interaction
of strength gAA, is trapped in a six-well lattice potential. TheminorityB species on the other hand, consisting of
NB impurities ofmassmB interacting repulsively via a contact interaction of strength gBB, resides in an initially
tilted double well potential. The resultingmany-bodyHamiltonian of the system reads
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oscillator potential with frequencyωB and aGaussian potential characterized by awidthw and a height h.
Additionally, we superimpose a linear tilting potentialVtilt=αxi

B to the doublewell leading to an asymmetry
between the twowells, whose degree can be controlled by the parameterα. Assuming zero temperature we can
model the inter- and intraspecies interaction potential between the atoms via a bare delta potential with effective
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the transversal length scalewhich is

steered by the frequency of the transversal confinementω⊥perpendicular to theone-dimensional Bose gas. Apart
fromvaryingω⊥, it is possible to control the coupling strength ss¢g through the free space, three-dimensional

scattering length ss¢a0 which canbe tuned via Feshbach resonances inmagnetic or opticalfields [5, 77–80].
Throughout this workwe consider afixed number of bosons for themajority speciesNA= 8 and set

m=mA=mB. Asmentioned above, our setup can be experimentally realized by considering twohyperfine
states of 87Rb.Note that we have also simulated the corresponding dynamics of amass imbalanced system
consisting e.g. of a 87Rb bosonic ensemble and a 133Cs impurity. For this latter case we confirmed that an overall
similar phenomenology compared to themass balanced case occurs but the emerging tunneling regimes to be
presented below take place at smaller interspecies interaction strengths. The energy scales for theHamiltonian in
equation (1) are given in units of the recoil energy = E k m2r

2
0
2 ( ), whereas the length and time scales are

expressed in units of -k0
1 and w =- -Er r

1 1. For the lattice potential of themajority species we use a depth of
V0/Er=8. The harmonic part of the doublewell potential of the impurities has a harmonic oscillator frequency
of w w = 0.1 2r · and the barrier height andwidth are =-h E k 2r 0

1 and =-w k 10
1 , respectively.

Furthermore, the intraspecies interaction strength among the bosons of themajority species is kept fixed to the
value =-g E k 1AA r 0

1 . Hard-wall boundary conditions are imposed at p= -x k 30
1 .

In the following, we present the quench protocol which induces the tunneling dynamics. A sketch of the
employed procedure is depicted infigure 1. First, we obtain themany-body ground state of our system,
assuming the abovementioned parameters. Here, the tilting strength of the doublewell is set to a =-E k 0.1r 0

1

(the effect of a smaller tilting strength is analyzed in the Appendix), such that the impurities localize in the left
well of the asymmetric doublewell potential. To trigger the tunneling dynamics of the impurities the system is
quenched to a geometry, constituting a symmetric doublewell, i.e. the tilting strength is set toα= 0. Varying the
interspecies interaction strength gAB, we explore the dependence of the systemdynamics on gAB.

2.2. Approach to the correlatedmany-body dynamics
Tounravel the dynamics of the systemwe employML-MCTDHX [72–74]. As explicated below, this ab initio
method gains its efficiency from the time-dependent andwith the system co-moving basis set. In the first step,
the totalmany-bodywave function Y ñtMB∣ ( ) is expandedwith respect toMdifferent species functions Y ñs t∣ ( ) for
each of the speciesσ and expressed according to the following Schmidt decomposition [81]
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Here, the Schmidt coefficients l ti ( ) , in decreasing order, provide information about the degree of population
of the ith species function and thereby signify the degree of entanglement between the two species. In the case
that only one Schmidt coefficient is non-zero, the speciesA andB are not entangledwith each other and the
system can be described by a speciesmean-field ansatz (M= 1). However, in general it is necessary to provide
several species functions for the expansion of the totalmany-bodywave function, since entanglementmight
prove crucial for the adequate description of the systems dynamics.

Furthermore, the species wave functions Y ñs t∣ ( ) describing an ensemble ofNσ bosons are expanded in a set
of permanents, namely

åY ñ = ñs
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Suchanexpansionallowsus to take intraspecies correlationsof theσ-species into account.Moreover, in this expression
the vector = ¼s s sn n n, ,1 2( )

describes theoccupationsof the time-dependent single-particle functions (SPF)of the
speciesσ,which are further expanded in termsof a time-independentdiscrete variable representation [82]. The
notation s

sn N∣ indicates that for each sni theparticle number conservationconditionå =s
sn Ni i has tobe fulfilled.

For the timepropagationof themany-bodywave functionweemploy theDirac-Frenkel variational principle
dá Y ¶ - Y ñi tMB MB∣( )∣ [83–85]with the variationδΨMBandobtain the corresponding equationsofmotion [74, 86].

In conclusion, theML-MCTDHXmethod takes all inter- and intraspecies correlations into account and
gives us access to the completemany-bodywave function. In contrast to standard approaches, where thewave
function for solving the time-dependent Schrödinger equation is built upon time-independent Fock states with
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time-dependent coefficients, theML-MCTDHXmethod takes a co-moving time-dependent basis into account,
where the Fock states, spanned by the SPFs, as well as the coefficients are time-dependent. This concept of a
time-dependent basis reduces not only the required number of basis states and, hence, improves the
computational effort, but it also provides at the same time an accurate description of the system’smany-body
state.We note here that in order to ensure the convergence of ourmany-body simulations, to be presented
below,we have employedM=6 (M= 10) species and dA= 6, dB= 6 (dA= 6, dB= 6) SPFs respectively for the
case of a single (two) impurity atom(s). In this context we define the orbital configurationC=(M, dA, dB)which
determines the size of the truncatedHilbert space.

3. Correlated tunneling dynamics of a single impurity

In the followingwe consider amass-balanced bosonicmixture described by theHamiltonian of equation (1)
where themajority species consists ofNA= 8 and the impurity species ofNB= 1 particles.We initially prepare
our system in its ground state with a tilting strength of a =-E k 0.1R 0

1 for different interspecies interaction
strengths gAB. Due to the initial tilt the impurity is found to bewell localized in a single site of the doublewell
potential.Moreover, wefind that the impurity species exhibits a rather large spatial overlapwith themajority
species for small gAB (see figure 1(b))which of course reduces with increasing repulsive gAB (see figure 1(c)). In
particular, for small gAB themajority species occupies all sites of the lattice potential, such that the impurity
strongly overlapswith it (see figure 1(b)). However, for strong repulsive interactions themajority species
depopulates thewell of the lattice potential inwhich the impurity tends to localize, resulting in aweak spatial
overlap of the two species (see figure 1(c)). Upon quenching the tilting strength to a =-E k 0R 0

1 towards a
symmetric doublewell we initiate the tunneling dynamics, thus favoring the tunneling of the impurity to the
right well as the corresponding energy offset between the twowells vanishes, see alsofigure 1(a). As a
consequence the impurity becomesmobile, thereby collidingwith the lattice trappedmajority species which in
general acts as amaterial barrier for the impurity dynamics. Varying the interspecies interaction strengthwe find
four different regimes for the dynamical response of the impurity (see below).

As a first step, we quantify these regimes bymonitoring the time evolution of the one-body density

r = áY Y Y Y ñs s sx t t x x t,1
MB MB( ) ( )∣ ˆ ( ) ˆ ( )∣ ( )( ) †

of the corresponding subsystemsσ. The spectral decomposition of
theσ-species one-body density is given by

år = F Fs s s sx t n t x t x t, , , , 4
j

j j j
1 *( ) ( ) ( ) ( ) ( )( )

where nσ j(t) are the so-called natural populations andΦσ j(x, t) the corresponding natural orbitals. The dynamics
of rs x t,1 ( )( ) is presented infigure 2, for different interspecies interaction strengths gAB. As it can be seen rs x t,1 ( )( )

exhibits four distinct dynamical response regimes. For small interspecies interaction strengths, in our case
=-g E k 0.2AB R 0

1 , the impurity undergoes a rather complex tunneling dynamics to the other site of the double
well (figure 2(a)). This is a single-particle effect caused by the strong initial tilt and is therefore also present for
gAB=0. For short evolution times, i.e. w< <-t0 50r

1 , the impurity performs oscillations in the initial well
and then tunnels (see ellipse infigure 2(a)) to the other well. Here, the oscillations within each of the twowells,
which still persist even for gAB=0 (not shownhere), are caused by the rather strong initial tilt of the double well
and are not present for smaller tilts3 (see figure 11(a)). In this sense, themajority species barely affects the

Figure 1. (a) Schematic representation of our setup before (t = 0) and after the quench ( >t 0). Themajority species (blue balls)
resides in the lattice potentialVA. The impurity is embedded in a doublewell potentialVBwith an initially superimposed tilt potential
Vtilt of strength a =-E k 0.1r 0

1 . The quench is performed by setting the tilting strength to zero, thereby quenching to a symmetric
double well configuration.One-body density of themany-body ground state (t = 0) of the speciesσ for (b) =-g E k 0.2AB r 0

1 and
(c) =-g E k 4.0AB r 0

1 .We consider aminority species consisting ofNB = 1 particle and amajority species composed ofNA = 8
particles which interact repulsivelywith =-g E k 1.0AA r 0

1 .

3
Wenote that this tunneling behavior differs from that of a single particle in a doublewell potential in the case of smaller tilts, yielding a

single frequency Rabi tunneling.
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tunneling dynamics of the impurity and exhibits weak amplitudemodulations from its initial profile due to the
finite gAB (figure 2(e)).

However, for larger coupling strengths the impurity is strongly influenced by the density distribution of the
majority species, e.g. see figures 2(b) and (f). Themajority species distributes over the lattice such that r x t,A

1 ( )( )

is accumulated close to theminima of the lattice potential. Due to the repulsive interspecies interaction the
impurity has to overcome on top of the double well barrier these additionalmaterial barriers imposed by the
accumulation of the density of themajority species. This leads to an oscillation of the impurity through the
neighboring densitymaximumof theA species (see white rectangle infigure 2(b)). This tunneling through the
material barrier imposed by themajority species wewill refer to asmaterial barrier tunneling in the following.
Throughout this enduring oscillation process the impurity performs a transport [87, 88] to the other site of the
doublewell (see ellipse infigure 2(b))where it again encounters amaterial barrier of speciesA and pursues the
initialmaterial barrier tunneling behavior (see red rectangle infigure 2(b)). Compared to theweakly interacting
regime (figure 2(a)), in the intermediate regime the transport of the impurity to the other site of the double well
takes place in a very controlled and systematicmanner.Moreover, it is even possible to prolong the initial
material barrier tunneling process by further increasing the interspecies interaction strength (figure 2(c)). In this
case, the impurity undergoes aweak amplitude tunneling to the other site of the doublewell (see figure 8(c)), at
least within the considered evolution time. In the limit of very large gAB the impurity is trapped in the initial site
of the doublewell due to the strong interspecies repulsion (see figures 1(c) and 2(d)) and as a result we enter the
self-trapping regime.We remark that this self-trapping behavior is caused by the presence of themajority
species, in sharp contrast to thewell-known case of interacting bosons in a double well. Note also that the
impurity undergoes dipole-like oscillations within the left site of the doublewell. Also, we have checked that this
self-trapping behavior (see figure 2(d)) of the impurity persists up to w =-t 400r

1 evolution times (not
shownhere).

Considering the behavior of themajority species A, we observe the development of excitations of r x t,A
1 ( )( ) as

a back-action of the tunneling process of the impurity [12]. In particular, r x t,A
1 ( )( ) is transferred through the

lattice (figures 2(f) and (g)). Predominantly, this is the case for the inner fourwells. This behavior of themajority
species is caused by the repulsive interspecies interactionwhich leads in the course of the impurity tunneling to a
shift of the density of species A, thereby reducing the overlap between the species. In the extreme case (see

=-g E k 4.0AB R 0
1 )/ where the impurity remains localized in one site of the double well, themajority species

redistributes such that a density hole is formed in one lattice site (see figure 2(h)), in order to avoid the impurity.
Here, the overall density of themajority species barely changes in time due to the absence of the impurity’s
tunneling.

In order to quantify the dynamical response of the system even further it is convenient to analyze how
strongly the time-dependentmany-bodywave function deviates from the initial state Y ñ0∣ at t=0 in the course
of time. This is well captured by thefidelity = áY Y ñF t tMB 0

2( ) ∣ ( )∣ ∣ which is defined as the overlap between the
time-dependent and the initial wave function. Figure 3 shows thefidelity F(t) for various interspecies interaction

Figure 2.Temporal evolution of the one-body densities for (a)–(d) the impurity speciesB and (e)–(h) themajority speciesA upon
quenching the tilting strength from a =-E k 0.1R 0

1 to a =-E k 0R 0
1 . Each column corresponds to a different interspecies

interaction strength gAB, from left to right for =-g E k 0.2, 1.0, 2.0, 4.0AB R 0
1 . The dashed yellow line represents the doublewell

potential for the impurity species.We consider aminority species consisting ofNB = 1 particle and amajority species ofNA = 8
particles which interact repulsivelywith =-g E k 1.0AA r 0

1 .
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strengths corresponding to the four different tunneling regimes identified in the time evolution of the one-body
densities infigure 2.We clearly observe that the behavior of the fidelity is qualitatively driven by the one-body
density distribution of the impurity over time. For the cases inwhich the impurity tunnels to the other site of the
doublewell (figures 2(a) and (b)), thefidelity deviates significantly fromunity, i.e. Y ñtMB∣ ( ) deviates from the
ground state Y ñ0∣ . However, in the regimeswhere the tunneling of the impurity is suppressed the fidelity remains
close to unity, e.g. see F(t) for gAB=2.0, 4.0. In this sense, thefidelity evolution provides an indicator of the
tunneling process of the impurity and serves as afirst characterization for the tunneling (figures 2(a) and (b)) and
self-trapping regimes (figures 2(c) and (d)). Nevertheless, using solely thefidelity it is not possible to distinguish
between the different tunnelingmechanisms. In order to discern between the above-mentioned four possible
regimes of the impurity’s dynamical response it is useful to consider the integrated one-body density of the

impurity ò r
-

-
x t x, d

L

L

B2

4 1 ( )( ) , where L is the size of the system. This quantity provides the probability offinding

the impurity in one half of the initially populatedwell of the double well. Indeed, the integrated density allows to
distinguish between the emergent tunneling dynamics since it incorporates the effect of thematerial barrier. In
figure 4(a)we show the temporal evolution of this quantity for the correlatedmany-body approach4 for different
gAB.We clearly observe four distinct regimes for the response of the impurity which correspond to the one-body
densities infigures 2(a)–(d). Indeed, in regime I an irregular oscillatory pattern of the integrated density is found.
Regime II exhibits regular oscillations whose intensity decays in time. This corresponds to thematerial barrier
tunnelingwith afinal transfer of the impurity to the other site of the double well (seefigure 2(b)). In regime III
the oscillations of the integrated density remain stable in timewhich is due to thematerial barrier tunneling of
the impurity in the initially populatedwell without a transfer to the other site. Finally, in regime IVwefind a
higher-frequency oscillatory behavior with afinite amplitude throughout the evolution. This behavior
corresponds to the self-trapping regime (see figure 2(d)). Regarding the dependence of the tunneling behavior
on the different systemparameters see appendix B.

However, so far we did not get insight into the degree of the system’s correlation throughout the dynamics.
To unravel the degree of correlations which accompanies the tunneling dynamics of the impurity we distinguish
between inter- and intraspecies correlations. The former are described by the Schmidt coefficients
(equation (2)), which provide ameasure for the degree of entanglement between the subsystems, whereas the
latter can be inferred from the natural populations (see equation (4)). Since theB species consists of a single
particle, the natural populations of theB species coincidewith the Schmidt coefficients. Therefore, in the
followingwe invoke the deviation 1− nB1(t) as ameasure of entanglement between the subsystems.

Figure 3.Temporal evolution of the fidelity F(t) for different interspecies interaction strengths gAB upon quenching the tilting strength
to a =-E k 0R 0

1 .We consider aminority species consisting ofNB = 1 particle and amajority species consisting ofNA = 8 particles
which interact repulsively with =-g E k 1.0AA r 0

1 .

4
Themany-body approach refers to our treatmentwithinML-MCTDHX in contrast tomean-field approaches.
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Accordingly, 1− nA1(t) indicates the degree of intraspecies correlations of themajority species. The temporal
evolution of the depletion 1− nσ1(t) of themost populated natural orbital of theA and theB species is illustrated
infigure 5 for different gAB upon quenching the tilting strength.We observe that for small interspecies
interaction strengths, i.e. gAB=0.2, the subsystems aremainly disentangled throughout the dynamics, since
1− nB1(t)≈0. Increasing the interspecies interaction strength to =-g E k 1.0AB R 0

1 the subsystems become
strongly entangled in the course of time, i.e. 1− nB1(t)>0. This can be associatedwith tunneling of the
impurity to the other site of the double well and the involved increasing interspecies interaction between the
subsystems.Naturally, themotion of the impurity through themajority species has an impact on the natural
populations of theA species which is connected to the intrinsic tunneling processes of theA species in the lattice
potential (see figures 2(e)–(f)). Indeed, 1− nA1>0 independently of gAB and it ismaximized in the above-
described third tunneling region. Interestingly, the rather strong degree of entanglement remains in the self-
trapping regime for =-g E k 4.0AB R 0

1 , even though the impurity barely overlapswith themajority species.
In order to emphasize the importance of the entanglement between the subsystems for the tunneling

behavior of the impurity, we additionally perform calculations assuming only a single product state
Y ñ = Y ñ Ä Y ñMB A B∣ ∣ ∣ in equation (2), thereby neglecting all interspecies correlations. The dynamics of theσ-
species one-body densities employing a speciesmean-field ansatz, i.e. assuming a single product state between
the species but still including intraspecies correlations, are shown infigure 6. For =-g E k 0.2AB R 0

1 wefindno
visible differences between the fullmany-body approach and the speciesmean-field calculations. This is an
expected result, as the degree of entanglement is rather small for these interactions (see figure 5). However, as
soon as entanglement becomes important, wefind strong deviations in the corresponding one-body densities.
In particular, for =-g E k 1.0AB R 0

1 in the speciesmean-field case (see figure 6(b))wedonot observe the
previously predicted tunneling to the other site of the doublewell (see figure 2(b)). Furthermore, the one-body
density of the impurity for =-g E k 2.0AB R 0

1 exhibits additional oscillation frequencies in the species-mean field
scenario (see figure 6(c)) compared to the fullmany-body case (figure 2(c)). In the self-trapping regime,

=-g E k 4.0AB R 0
1 , the speciesmean-field calculations seem to capture the dynamics quite well atfirst glance.

However, on a closer inspection of the one-body density it turns out that the spatial position of the impurity
differs compared to the completemany-body approach, while the temporal oscillations of the density are also of
different amplitude and frequency, see figures 2(d) and 6(d). This general difference in the tunneling dynamics is
well captured by the integrated density shown infigure 4. Indeed, the speciesmean-field ansatz is not able to
recover regime II infigure 4(a), while the self-trapping regime III infigure 4(b) is strongly altered compared to
that one infigure 4(a) corresponding to regime IV in themany-body treatment. Even regime III infigure 4(a) is
quantitatively changedwhen using the speciesmean-field ansatz (seefigure 4(b) regime II). In this sense,
entanglement between the impurity and themajority species plays a crucial role, in order to describe the
dynamics correctly.

Figure 4.Temporal evolution of the integrated one-body density of the impurity ò r
-

-
x t x, d

L

L

B2

4 1 ( )( ) upon variation of the interspecies

interaction strength gAB for (a) the fullmany-body approach and (b) the speciesmean-field approach. The regimes I–IV in panel (a)
correspond to the one-body densities infigures 2(a)–(d). Regimes I, III in panel (b) correspond to the one-body densities in
figures 6(a) and (d), respectively, whereas regime II in panel (b) relates tofigures 6(c) and (d).We consider aminority species consisting
ofNB = 1 particle and amajority species ofNA = 8 particles which interact repulsively with =-g E k 1.0AA r 0

1 .
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4. Characterization of the impurity dynamics

To analyze the tunneling behavior of the impurity and the accompanying correlations due to the presence of the
majority species (see figure 2)wenext develop an effective potentialmodel for the impurity. This effective
potential is obtained by superimposing the time-averaged density of themajority species to the external double
well potential. To adequately describe the dynamical response of themajority species we employ the associated

Figure 5.Temporal evolution of the depletion - sn t1 1( ) of themost populated natural orbital of theA and theB species for different
interspecies interaction strengths gAB upon quenching the tilting strength to a =-E k 0R 0

1 . Note that the natural populations of theB
species coincide with the Schmidt coefficients sinceNB = 1, thereby describing also the degree of entanglement between the
subsystems.We consider aminority species consisting ofNB = 1 particle and amajority species composed ofNA = 8 particles which
interact repulsively with =-g E k 1.0AA r 0

1 .

Figure 6.Temporal evolution of the one-body densities for (a)–(d) the impurity speciesB and (e)–(h) themajority speciesA upon
quenching the tilting strength from a =-E k 0.1R 0

1 to a =-E k 0R 0
1 , assuming a speciesmean-field ansatz. Each column

corresponds to a different interspecies interaction strength gAB, ranging from left to right with =-g E k 0.2, 1.0, 2.0, 4.0AB R 0
1 . The

dashed yellow line represents the doublewell potential for the impurity species.We consider aminority species consisting ofNB = 1
particle and amajority species consisting ofNA = 8 particles which interact repulsively with =-g E k 1.0AA r 0

1 .
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Wannier functions. In particular, we project the completemany-bodywave function obtained viaML-
MCTDHXonto theseWannier functions in order to analyze the behavior of the impurity in afixed basis set.

4.1. Construction of the effective potential
Initially, we prepare our system such that it is given by the ground state of theHamiltonian (equation (1))with an
underlying asymmetric doublewell.With respect to the quenchedHamiltonian (t>0) our system and in
particular the impurity is energetically excited due to the tilting. This enables the impurity to tunnel through the
potential barrier of the double well into the right well. However, asmentioned in section 3, for specific
interspecies interaction strengths this residual energy appears to be not large enough to overcome the potential
barrier. Therefore, the impurityB rather performs a tunneling in the initial site of the doublewell through the
material barrier imposed by the one-body density of themajority species (see figure 2(c)).

In the following, we aim at understanding this tunneling behavior using an effective potential for the
impurity.We remark that this effective potential serves only as a tool for an analysis of the underlying tunneling
processes. Integrating out themajority species we arrive at the following effective potential for the impurity

r= +V x t N g x t V x, , . 5B B
A AB A

B
B

B
eff

1( ) ( ) ( ) ( )( )

This effective potential is composed by the doublewell potentialVB and the one-body density of themajority
species rA

1( ) beingweighted by the number of particlesNA and the interspecies interaction strength gAB. Note that

r x t,A
B1 ( )( ) is calculatedwithin the correlatedmany-body approach and thereby includes all necessary

correlations. r x t,A
B1 ( )( ) cannot be recoveredwithin amean-field approach. To proceed, we average this effective

potential over time and obtain a Time-Averaged Effective Potential (TAEP)

ò=V x
T

V x t t
1

, d , 6B B
T

B B
eff

0
eff( ) ( ) ( )

whereTdenotes the total propagation time.Wecan justify this time-average by the small one-bodydensity
deformations of themajority species over time. Furthermore,we remark that equation (5) is a speciesmean-field
effective potential and, therefore, only assumes a single product state. Even thoughwehave seen infigure 5 that the
entanglement between the subsystemsplays a crucial role this ansatz turns out to be a powerful tool to analyze the
basic aspects of the tunneling behavior of the impurity and gives an intuitive understanding [12, 46, 91]. The time-
averaged effective potentials are depicted infigure 7(a) for the four interspecies interaction strengths

=-g E k 0.2, 1.0, 2.0, 4.0AB r 0
1 corresponding to the four tunneling regimes already discussed in section3. For

weak interspecies interaction strengths, e.g. =-g E k 0.2AB r 0
1 , theTAEP resembles the shapeof thedoublewell

potentialVB, and only small deviations are visible raised from the superimposed one-bodydensity of themajority
species.Moreover, the height of the central potential barrier of theTAEP (≈0.89Er) is approximately the same as
for thedoublewellVBwith a value of p »h w2 0.80( ) at xB= 0.Therefore, one can assume that the tunneling
dynamics of the impurity in theTAEPwoulddiffer onlymarginally compared to thebehavior of a single particle
confined in the doublewellVB, i.e. for gAB=0. Since in theTAEP theone-body density rA

1( ) of themajority species

isweighted by the interspecies interaction strength gAB, the spatial distribution of rA
1( ) becomesmore pronounced

for increasing gAB. Consequently, for a larger gABweobserve the appearanceof sixmaximaon top of the double
well structure,which stem from themajority species trapped in theminimaof the lattice potentialVA.Wefind that
for an interspecies interaction strength of =-g E k 1.0AB r 0

1 the density of themajority species distributes such that
weobtain a nearly parity symmetricTAEPwith respect to x=0 (seefigure 7(d)).

In the following, we refer to thefirst, second, etcmaximumof the TAEP ordered from left to right excluding
the case of =-g E k 0.2AB r 0

1 due to the small deviations of the TAEP from the double well structure. Increasing
the interspecies interaction strength eventually breaks the spatial symmetry of the TAEPw.r.t. x=0, which can
be readily seen e.g. at =-g E k 2.0AB r 0

1 and =-g E k 4.0AB r 0
1 (see figures 7(e) and (f)). In particular, the TAEP

for =-g E k 4.0AB r 0
1 exhibits a distinct asymmetry. Here, the secondmaximumof the TAEP is strongly

suppressed compared to the othermaxima. This can be attributed to the fact that the one-body density of the
majority species rA

1( ) in the secondwell ofVA, counted from the left, coincides with the position of the second

maximumof the TAEP.Here, rA
1( ) is strongly depopulated compared to the otherwells ofVA (see figure 2(h))

which leads to the suppression of the secondmaximumof the TAEP. Focusing on themaxima of the TAEP
especially, on the third and fourthmaximum,we can interpret thesemaxima as the potential barriers that the
impurity has to overcome in order to tunnel from the left to the right side of the TAEP.We observe that the
correspondingmaxima heights increase with increasing gAB, which indicates that the effective potential barrier
for the impurity also increases with gAB.

In the following, we investigate this effective potential barrier that separates the left from the right side of the
TAEP. For this purpose, we calculate the relative differenceD = L - L Li imax,

eff
2
eff

2
eff( ) between the second

maximumheight L2
eff and third and fourthmaximumheight, L3

eff and L4
eff , of the TAEP,where i=3,4.

Figure 7(b) shows the relative differenceD imax, , which serves in the following as ameasure for the effective
potential barrier, in dependence on the interspecies interaction strength gAB. For values below =-g E k 1.0AB r 0

1
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the effective potential barrierD » 0imax, for i= 3, 4meaning that themaxima barely deviate. For values above

=-g E k 1.0AB r 0
1 the third and fourthmaximumheight of the TAEP become larger than the second one,

breaking in thismanner the symmetry of the TAEP. For large interspecies interaction strengths, e.g.
=-g E k 4.0AB r 0

1 , the effective potential barrierΔmax,i abruptly increases which is also due to the absence of rA
1( )

in the secondwell of the lattice potential and, subsequently, the lowering of the secondmaximumheight of the
TAEP. The abrupt increase of the effective potential barrierΔmax,i intuitively leads to the assumption that for
large interspecies interaction strengths, e.g. =-g E k 4.0AB r 0

1 , a tunneling of the impurity from the left to the
right TAEP should be strongly suppressed, as already seen in the one-body density (see figure 2(d)) obtained
within the completemany-body approach.

Let us also describe the tunneling behavior of the impurity in terms of states that are highly localized in the
minima of the TAEP. Since, for sufficiently strong interspecies interaction strengths gAB the TAEP resembles a
lattice with five sites (see figure 7(a))we calculate five of those functions. For this purpose, we construct an

effectiveHamiltonian = - +  V x
B

m x
B B

eff 2

d

d effB

2 2

2
ˆ ( )( )

( )
using the TAEP. For the localized functions we use the

notion of generalizedWannier functions [89, 90]which have the advantage that they can be also obtained in the
presence of a non-periodic potential. To obtainfive generalizedWannier functions wi

B( ) wefirst calculate thefive

energetically lowest eigenfunctions of
B

eff
ˆ ( )

. Using these eigenfunctions as a basis we diagonalize the position

operator X̂ yielding eigenstates which are highly localized in theminima of the TAEP. For simplicity, we shall
call the generalizedWannier functions in the followingWannier functions and, further, wewill refer to thefirst,
second, etc.Wannier function as theWannier function localized in the first, second, etc well of the TAEP.

Figures 7(c)–(f) presents the absolute squares of theWannier functions together with the TAEPs for the four
different tunneling regimes corresponding to the interspecies interactions strengths =-g E k 0.2, 1.0,AB r 0

1

2.0, 4.0. For =-g E k 0.2AB r 0
1 (figure 7(c))wefind, compared to the results for larger gAB, the largest overlap

between theWannier functions. This indicates that thoseWannier functions are rather ill-defined. The reason
can be found in the TAEPwhich resembles for small interspecies interaction strengths, e.g. =-g E k 0.2AB r 0

1 ,
more a doublewell than a lattice potential. Increasing gAB (see figures 7(d)–(f)), theWannier functions become
more localized in theminima of the TAEP and, therefore, are suited for the further analysis of themany-body
wave function.

In summary, we have developed an effective one-bodyHamiltonian using a TAEP for the purpose of
constructing generalizedWannier functions from the eigenfunctions of this effective one-bodyHamiltonian.
This procedure resulted in functionswhich are highly localized in thewells of the TAEP for sufficiently large
interspecies interaction strengths gAB. Projecting theseWannier functions onto the fullmany-bodywave

Figure 7. (a)Time-Averaged Effective Potential (TAEP) (equation (6)) for the four different interspecies interaction strengths gAB
corresponding to the four tunneling regimes of the impurity. (b)The relative difference of the height between the secondmaxima and
the third and fourthmaxima of the TAEPD imax, (seemain text for definition) depending on gAB. (c)TheTAEP (gray lines) for

=-g E k 0.2AB r 0
1 together with the correspondingWannier functionswhich are calculated from the effectiveHamiltonian

constructed by the TAEP. (d)-(f)The same as in (c), but for different gABʼs, viz. =-g E k 1.0AB r 0
1 , =-g E k 2.0AB r 0

1 and
=-g E k 4.0AB r 0

1 , respectively.We consider aminority species consisting ofNB=1 particle and amajority species withNA=8
particles which interact repulsivelywith gAA/Erk0

−1=1.0.
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function, obtained in the course of our numerical simulations, we are in the following able to get a deeper insight
into the tunneling dynamics of the impurity.

4.2.Dynamical response in terms ofWannier states
In the following discussion, we analyze the results of the correlatedmany-body calculations utilizing the
Wannier functions derived in the previous sectionmore specifically. Therefore, we project the ithWannier
function wi

B( ) onto themany-bodywave function and thereby receive the time-dependent probability P wB
i

B1, ( )( )

that the impurity occupies the ithwell of the TAEP. This probability is defined as

= á Y ñP w w . 7B
i
B

i
B1,

MB
2( ) ∣ ∣ ∣ ( )( ) ( )

Before discussing the results, let us comment on theWannier functions as a basis set for the species wave
function of the impurity. By summing up thefive occupation probabilities of theWannier functions, we obtain
for each time instant of the evolution ameasure for the accuracy of this basis representation. For our results we
find thatå >P w 0.95i

B
i

B1, ( )( ) so thatwe can consider theWannier functions as an adequate basis set for
describing the tunneling dynamics of the impurity. The time evolution of the probability P wB

i
B1, ( )( ) for the four

distinct tunneling regimes corresponding to =-g E k 0.2, 1.0, 2.0, 4.0AB r 0
1 is shown infigure 8. In the

following, we aim at understanding the respective one-body densities rB
1( ) obtained from themany-body

calculation (see figures 2(a)–(d))with the aid of the occupation probabilities P wB
i

B1, ( )( ) . Starting from
=-g E k 0.2AB r 0

1 (figures 8(a1) and (a2)), we observe a rather irregular time evolution of the occupation
probabilities. Here,manyWannier functions are occupied simultaneously indicating that the state of the
impurity consists of a superposition of the correspondingWannier functions. Atfirst glance the behavior of the
time evolution of P wB

i
B1, ( )( ) at =-g E k 1.0AB r 0

1 depicted infigures 8(b1) and (b2) is similar compared to the
one in panel (a1) and (a2). In both cases we observe a reduction of the occupation probabilities of the first and
secondWannier function, representing the left side of the TAEP, and an increase of P wB

i
B1, ( )( ) of the fourth and

fifthWannier function, representing the right side of TAEP. This gradual depopulation of the left and
subsequent population of the right side of the TAEP reflects precisely the observed tunneling process observed in
the one-body density rB

1( ) of the impurity. However, wefind that at =-g E k 1.0AB r 0
1 the transfer of the

occupation probabilities from the left to the right side of the TAEP ismore uniform than at =-g E k 0.2AB r 0
1 .

Initially, we observe an exchange of probability between the first and secondWannier states (see
figure 8(b1)), which represents thematerial barrier tunneling process in the initial site of the double well.
Eventually, probability is transferred from thefirst and second to the fourth and fifthWannier state (see
figure 8(b2)), reflecting the controlled tunneling behavior observed infigure 2(b). Partially, this can be
understood in terms of the TAEPwhich exhibits a lattice structure on top of the doublewell, while being still
spatially symmetric with respect to x=0. For stronger interspecies interaction strengths, e.g. =-g E k 2.0AB r 0

1

and =-g E k 4.0AB r 0
1 , the first twoWannier functions are predominantly occupied. As shown infigure 8(c), for

times directly after the quench the firstWannier function is themost occupied one, whereas for larger times the
occupation probability for the secondWannier function becomes the dominant one.We can understand this
intuitively by inspecting the corresponding TAEPdepicted in figure 7(e). Here, the TAEP exhibits a global
minimum in the secondwell whichmakes it energetically favorable for the impurity to reside there.

Figure 8.Probability P wB
i

B1, ( )( ) of themany-bodywave function to occupy a specificWannier function (see legend), which is localized
to onewell in the corresponding TAEP. The probability P wB

i
B1, ( )( ) is shown in panels for four different interspecies interaction

strengths =-g E k 0.2, 1.0, 2.0, 4.0AB r 0
1 in the panels (a)–(d), respectively. Panel (a1) and (a2) refer to =-g E k 0.2AB r 0

1 , while panel
(b1) and (b2) refer to =-g E k 1.0AB r 0

1 .We consider aminority species consisting ofNB = 1 particle and amajority species with
NA = 8 particles which interact repulsively with =-g E k 1.0AA r 0

1 .
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Furthermore, the first and second occupation probability exhibit a strong counterwise oscillation behavior.
Comparing this with the oscillation of the one-body density of the impurity around a potential barrier imposed
by themajority species (seefigure 2(c)), wefind very good agreement.Moreover, wefind that the occupation
probability for the otherWannier functions, i.e. the third fourth and fifth, are strongly suppressed, but seem to
continuously increase over time. Therefore onemight assume that for sufficiently long evolution times the
impurity eventually tunnels to the right side of the TAEP.

Turning to the occupation probabilities at =-g E k 4.0AB r 0
1 (figure 8(d)), we observe that the occupation

probabilities of the third, fourth and fifthWannier function are close to zero during the entire time propagation.
We can understand this in terms of an effective potential barrier that separates the left side of the TAEP from the
right sidew.r.t. x=0.Here, the value for the relative differenceD imax, for =-g E k 4.0AB r 0

1 ismuch larger than
for the other considered interspecies interaction strength gAB (see figure 6(b)) and, therefore, it is very unlikely
that the impurity will tunnel to the right side of the TAEP even for later times. Additionally, the occupation
probabilities of the first and secondWannier function perform a counterwise oscillation, likewise to the
probabilities at =-g E k 2.0AB r 0

1 (figure 8(c)). In contrast to the aforementioned oscillation of the occupation

probabilities, we observe for =-g E k 4.0AB r 0
1 almost twice the number of oscillation periods during the

dynamics as well as a reduction of the amplitudes. A hint for understanding this gives again the corresponding
TAEP (see figure 6(f)). Here, the secondmaximumheight is strongly suppressed and the first and second
Wannier functions have a large overlap. From this we can infer that the species wave function of the impurity
consistsmainly of a superposition of the first and secondWannier functionwhose contributions oscillate
over time.

In conclusion, we generated localizedWannier functions associatedwith the TAEP and projected themonto
the time-dependentmany-bodywave function.Having this at handwewere able to describe themany-body
impurity dynamics in terms of the evolution of the occupation probabilities of the respectiveWannier functions.
As a natural next step, we shall investigate the two-body correlations between the impurity and themajority
species.More precisely, we determine the discrete correlation function associatedwith the impurity occupying a
specificwell of the TAEP and a single particle of themajority species occupying a certainwell of the lattice
potentialVA.

First we generateWannier functions associatedwith the single-particleHamiltonian for themajority species

= - +  V x
A

m x A
A

2

d

d A

2 2

2
ˆ ( )( )

( )
, following the procedure explained above5. Furthermore, we determine the one-

body probability for a particle of themajority species to occupy the jthwell of the lattice potentialVA by
projecting themany-bodywave function onto theWannier function wj

A( ), thereby constructing the probability

= á Y ñP w wA
i

A
i

A1,
MB

2( ) ∣ ∣ ∣( ) ( ) . The conditional probability = áY Y ñP w w O,AB
i

A
j
B

ij
2,

MB
2

MB( ) ∣ ˆ ∣( ) ( ) ( )
offinding a single

particle of themajority species in the ithwell ofVA and at the same time the impurity in the jthwell of the TAEP
is defined as the expectation value of the following operator

å= ñá Ä ñá
=

O
N

w w w w
1

, 8ij
A l

N

i
A l

i
A l

j
B

j
B2

1

, ,
A

ˆ ∣ ∣ ∣ ∣ ( )( ) ( ) ( ) ( ) ( )

with respect to themany-bodywave function Y ñMB∣ . The summation runs over the number of particles of the
subsystemA. The discrete two-body correlation function is then given by

=g w w
P w w

P w P w
,

,
. 9AB

i
A

j
B

AB
i
A

j
B

A
i
A B

j
B

2,
2,

1, 1,
( )

( )

( ) ( )
( )( ) ( )

( ) ( )

( ) ( )

This function provides information about the correlation between a single particle of themajority species
localized at the ithwell ofVA and the impurity species localized at the jthwell of the TAEP. In case the discrete
correlation function g w w,AB

i
A

j
B2, ( )( ) ( ) equals unity the particle of themajority species and the impurity are

termed uncorrelated since the conditional probability equals the unconditional one. However, if
g w w,AB

i
A

j
B2, ( )( ) ( ) is larger (smaller) than unity the impurity and the particle of themajority species are said to be

correlated (anti-correlated) [15, 73].
The time evolution of the discrete correlation function for the impurity occupying the secondWannier

function w B
2
( ) of the TAEP and the particle of themajority species occupying one of the sixWannier functions of

the lattice potentialVA is shown infigure 9.We choose to present only results for g AB2, where the impurity is
occupying the secondWannier state w B

2
( ) since for this casewe are already able to observe and analyze all relevant

properties of the discrete correlation function. Figures 9(a)–(c2) depict g AB2, for the interspecies interaction
strengths =-g E k 1.0, 2.0, 4.0AB r 0

1 , respectively6. At =-g E k 1.0AB r 0
1 (figure 9(a)), we observe that initially

the system is rather uncorrelated and develops stronger correlations for larger time.Here, the particle of the

5
Note that theWannier functions are sorted from the left to right regarding the sites of the lattice potential.

6
Here, we do not show the results for =-g E k 0.2AB r 0

1 , because as alreadymentioned before theWannier basis is ill-defined in this case.
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majority species in the fourth/fifthwell ofVA and the impurity species in the secondwell ofV B
eff show an

increasing correlation amplitude over time, whereas an anti-correlation between the particle of themajority
species in the second/thirdwell ofVA and the impurity species in the secondwell ofV B

eff occurs. The particle of
themajority species being in the first and sixthwell exhibits a similar correlation behavior with the impurity in
the secondwell.We note that the strongest correlation (anti-correlation) occurs within the time intervals where
the impurity tunnels to the right side of the TAEP (see figure 2(b)).

Turning to the discrete correlation functions at =-g E k 2.0, 4.0AB r 0
1 , depicted infigures 9(b1), (b2) and

(c1), (c2)wefind that the system is in both cases slightly two-body correlated. Predominantly, this is the case for
=-g E k 4.0AB r 0

1 where the impurity exhibits a self-trapping behavior, showing only aweak distinct correlated
or anti-correlated behavior between the impurity in the secondwell of the TAEP and one particle of themajority
species in a specificwell of the lattice potential (see figures 9(c1) and (c2)). However, infigure 9(b1)we observe
an oscillating correlation behavior between themajority species in the thirdwell ofVA and the impurity species
in the secondwell ofV B

eff . Here, g w w,AB A B2,
3 2( )( ) ( ) oscillates between the anti-correlated and uncorrelated case

whichmight be associatedwith thematerial barrier tunneling of the impurity in the initial site of the doublewell
(see figure 2(c)). Concluding, we observe an overall decrease of the discrete correlationwith increasing
interspecies interaction strength, which appears to be related to themanifestation of the self-trapping of the
impurity.

5. Correlated tunneling dynamics of two impurities

So farwe have investigated the tunneling dynamics of a single impurity coupled to amajority species and found
that the tunneling behavior can be steered by varying the interspecies interaction strength gAB. In the following
we unravel whether a similar controlled tunneling process can be realized employing two impurities. For this
purpose, we consider twoweakly interacting impurities, i.e. they interact repulsively via a contact potential of
strength =-g E k 0.2BB r 0

1 , embedded in the same potential setup as shown infigure 1. The parameters for the

majority species remain unchanged compared to the single impurity case, i.e.NA= 8 and =-g E k 1.0AA r 0
1 . The

tunneling process is induced by performing the same quench protocol as in the case of a single impurity. Due to a
tilting potentialVtilt theminority species is initially prepared in the left side of the double wellVB. SettingVtilt

suddenly to zerowemonitor the respective tunneling dynamics.
Figures 10(a)–(d) present the one-body densities r x t,B

1 ( )( ) of the two impurities for varying interspecies

interaction strengths. As it can be seen, the dynamics of r x t,B
1 ( )( ) forNB= 2 resemble the one-body densities in

the case of a single impurity (seefigures 2(a)–(d)). Forweak interspecies interaction strengths, i.e.
=-g E k 0.2AB r 0

1 , we again observe a rather irregular tunneling dynamics of the impurity species (see
figure 10(a)). Increasing gAB, also forNB= 2 the impurity species performs amaterial barrier tunnelingwithin
the initially populatedwell and finally tunnels to the other well (see figure 10(b)). A further increase of gABfinally
yields a self-trapping behavior of the impurity species due to the strong repulsion (see figure 10(d)). As a result
also a systemwith two impurities exhibits the aforementioned four tunneling regimes. However, introducing an

Figure 9.Temporal evolution of the discrete two-body correlations g w w,AB
i

A B2,
2( )( ) ( ) between the impurity occupying the second site

of the TAEP and one particle of themajority species occupying the ith site of the lattice for interspecies interaction strengths (a)
=-g E k 1.0AB r 0

1 , (b1), (b2) =-g E k 2.0AB r 0
1 and (c1), (c2) =-g E k 4.0AB r 0

1 . In panel (c1)we explicitly exclude the results for
g w w,AB A B2,

2 2( )( ) ( ) , because here the occupation probability P wA A1,
2( )( ) is very small during the time propagation leading to an artificial

amplification of g w w,AB A B2,
2 2( )( ) ( ) (see equation (9)).We consider aminority species consisting ofNB = 1 particle and amajority

species consisting ofNA = 8 particles which interact repulsively with =-g E k 1.0AA r 0
1 .
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additional impurity to the system leads to a shift of the tunneling regimes (see figures 10(b) and (c))with respect
to the interspecies interaction strength ( =-g E k 0.2, 0.8, 1.3, 4.0AB r 0

1 ). Therefore, we can conclude that also
for two impurities we are able to control the quench induced tunneling process via the coupling to themajority
species.

Having identified the existence of the four tunneling regimes of the impurity species the question that arises
is whether the impurities tunnel pairwise through the potential landscape, whichwewould refer to as pair
tunneling, orwhether they tunnel individually, whichwewould call single particle tunneling. To expose the
underlyingmechanismswe present infigures 10(e)–(h) the conditional probability P w w,BB

i
B

j
B2, ( )( ) ( ) of

detecting one impurity in theWannier state wi
B( ) and the other impurity in theWannier state wj

B( ). Here, wewill

refer to wi
B( ) as the generalizedWannier states associatedwith the TAEPwhichwe introduced in section 4.1 (see

also equation (6)). Figures 10(e) and (f) show the conditional probability P w w,BB
i

B
i

B2, ( )( ) ( ) that the two

impurities occupy the sameWannier state for interspecies interaction strengths =-g E k 0.8AB r 0
1 (figure 10(e))

and =-g E k 1.3AB r 0
1 (figure 10(f)). Thus, we focus on the two cases where amaterial barrier tunneling of the

impurity species takes place orwhere the latter process is accompanied by a subsequent tunneling to the other
site of the double well. Infigure 10(e)we observe a decreasing probability P w w,BB

i
B

i
B2, ( )( ) ( ) tofind both

impurities in the secondWannier state, whereas the probability to detect both impurities in the fourthWannier
state increases. This probability transfer indicates a pair tunneling from the left to the right side of the TAEP
w.r.t. x=0. Additionally, the impurities perform thematerial barrier tunneling as a pair, which can be inferred
from the alternating increase and decrease of P w w,BB B B2,

1 1( )( ) ( ) and P w w,BB B B2,
2 2( )( ) ( ) . A schematic

representation of this process is illustrated infigure 10(i) assuming the TAEP at =-g E k 0.8AB r 0
1 . For the

investigation of the single particle tunnelingwe show infigures 10(g) and (h) the conditional probability tofind
one impurity in the secondWannier state and the other impurity in anotherWannier state for the above-
mentioned gAB. A decrease of the probability tofind one impurity in the second and one impurity in the first
Wannier state P w w,BB B B2,

2 1( )( ) ( ) is observed for times up to w =-t 100r
1 (figure 10(g)), while the conditional

probability P w w,BB B B2,
2 4( )( ) ( ) increases. This suggests a tunneling of one impurity from thefirst well of the TAEP

to the fourthwell, whereas the other impurity remains in the secondwell. This process is depicted infigure 10(j).

Figure 10. (a)-(d)Temporal evolution of the one-body density of the two impurities for =-g E k 0.2, 0.8, 1.3, 4.0AB r 0
1 , respectively.

The dashed yellow line represents the double well potential for the impurity species. Conditional probability P w w,BB
i

B
j
B2, ( )( ) ( ) to find

one impurity in theWannier state wi
B( ) associatedwith the TAEP and another impurity in wj

B( ) at (e), (g) =-g E k 0.8AB r 0
1 and at (f),

(h) =-g E k 1.3AB r 0
1 . (i) Sketch of a pair-particle tunneling process and (j) of a single-particle tunneling process w.r.t. the TAEP for

=-g E k 0.8AB r 0
1 .
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Wenote that this is one ofmany single particle tunneling processes that can take place. In this sense, the
tunneling process of the impurity species is rather complex, consisting of single particle and pair tunneling
processes.

Concludingwe have realized the four tunneling regimeswhichwe previously identified infigures 2(a)–(d)
also for twoweakly interacting impurities coupled to amajority species. This implies that it is also possible to
control the tunneling process of two impurities via the interspecies interaction strength. Eventually, we have
characterized the tunneling processes underlying the dynamical response of the impurity species in terms of
single particle and pair tunneling processes [55].

6. Conclusions and outlook

Wehave investigated the correlated tunneling dynamics of impurities trapped in a double well potential and
immersed in a lattice trappedmajority species. The tunneling dynamics was initiated by implementing an
initial tilt of the double well, thereby localizing the impurity species in one of the wells, and quenching this to a
symmetric potential configuration. In case of a single impurity we have identified four different tunneling
regimes w.r.t. the interspecies interaction strength. For very weak interspecies interaction strengths the
tunneling of the impurity can be characterized as rather complex, exhibiting no regular or repetitive structure.
However, increasing the coupling to themajority species leads to a regular tunneling behavior of the impurity,
which consists of an initial material barrier tunneling due to the presence of themajority species and is
followed by a transfer of the impurity to the other site of the double well. Additionally, this effect is
accompanied by a strong entanglement between the subsystems. A further increase of the interspecies
interaction strength leads to a solematerial barrier tunneling in the initial site of the double well for long time
intervals and finally for very large couplings forces the impurity to localize in the initially populated well and
being self-trapped.

In order to gain insight into the underlyingmicroscopic processes of the emergent correlated tunneling
dynamics, we have constructed a time-averaged effective potential (TAEP) based on the one-body density of
themajority species. Depending on the interspecies interaction strength, this effective potential exhibits an
additional structure in each site of the double well, thus explaining thematerial barrier tunneling. Increasing
the coupling to themajority species, the TAEP is predominantly formed by the one-body density of the
majority species and the presence of the double well is ofminor consequence, resulting in the observed self-
trapping of the impurity.Moreover, the generalizedWannier states associatedwith this potential allowed for a
characterization of the impurity’s dynamical response as well as the involved correlations.We concluded our
study with an investigation of twoweakly repulsively interacting impurities whichwe prepared analogously to
the case of a single impurity.Wewere able to identify the previous four tunneling regimes for smaller
interspecies interaction strengths, being shifted to =-g E k 0.2, 0.8, 1.3, 4.0AB r 0

1 respectively, compared to
the scenario of a single impurity. Employing again the TAEPwe have developed an understanding of the
tunneling dynamics, which consists of a superposition of pair tunneling as well as single particle tunneling
processes.

There are various interesting research directions that prove to be promising for future investigations relying
on thefindings of the current work. A direct extension involves the inclusion of spin degrees of freedombetween
the impurities. Here, the possible formation of an analog of a Cooper-pair in the course of the tunneling
dynamics would be of immediate interest. Another straightforward directionwould be to consider quench
protocols which also include a variation of the interspecies interaction strengths. For example, onemight think
of a subsequent interaction quench after a transfer of the impurity in order to prevent tunneling to the initially
populated site. Also, dynamically driving the corresponding parameters of the systemmight be useful for
transferring the impurity species in amore controlled and systematicmanner.
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AppendixA. Tunneling dynamics for smaller tilting strength

In the followingwe demonstrate that a certainminimal tilting strengthα is necessary for observing the tunneling
dynamics as infigure 2wherewe considered a single impurity and a =-E k 0.1R 0

1 . Figure 11 shows the
temporal evolution of the one-body densities of the impurity (figures 11(a)–(d)) and themajority species
(figures 11(e)–(h)) using a tilting strength a =-E k 0.01R 0

1 , within the fullmany-body approach. Analogously
to the previous discussion in section 3, we induce the dynamics by initially tilting the double wellVB of the
impurity with a tilting strengthα and let the system evolve in time for a = 0. However, in the present case
lowering the initial tilting strength to a =-E k 0.01R 0

1 leads to a smaller initial energy offset between the sites
ofVB.

For weak gAB, i.e. =-g E k 0.2, 1.0AB r 0
1 , we find a rather regular tunneling of the impurity from the

left to the right side of the doubleVB (see figures 11(a) and (b)). Comparing this with the dynamical response
of an impurity for an initial tilting strength of a =-E k 0.1R 0

1 (see figure 2(b))we find nomaterial barrier
tunneling triggered by the density of themajority species. The difference between the two initial tilting
strengths is also evident for larger interspecies interaction strengths, e.g. =-g E k 2.0, 4.0AB r 0

1 . Here, the
impurity essentially remains localized throughout the dynamics and does not perform any oscillations
(see figures 11(c) and (d)). Furthermore, the one-body density of themajority species behaves accordingly
and does not exhibit a distinctive dynamics compared to the a =-E k 0.1R 0

1 . Namely, rA
1( ) remains well

localized at the sites of the lattice potential during the propagation (see figures 11(e)–(h)). These observations
lead to the conclusion that indeed a sufficiently high initial tilting strengthα is needed in order to observe a
material barrier tunneling with a subsequent controlled transfer of the impurity to the other side of the
double well.

Appendix B.Dependence of the tunneling process on the systemparameters

Wehave analyzed the tunneling behavior of the impurity species for a specific choice of the intraspecies
interaction strength gAA of themajority species and the barrier height h. Infigure 12we show that the qualitative
behavior of the tunneling dynamics discussed in themain text can be recovered for significantly varying gAA
andh. As ameasure for the characteristic dynamical response of the impuritywe again investigate the temporal

evolutionof the integrated one-bodydensity of the impurity ò r
-

-
x t x, d

L

L

B2

4 1 ( )( ) . The latter enables us to distinguish

between the different tunneling regimes, for afixed interspecies interaction strength of =-g E k 1.0AB R 0
1 . This

value lies in regime II infigure 4(a), whereweobserve amaterial barrier tunnelingwithin the initially populated
wellwith afinal transport of the impurity to the other site of the doublewell. Infigure 12(a)weobserve that an
increase of gAA leads to a faster revival of thematerial barrier tunneling in the initially populatedwell.Decreasing

Figure 11.One-body density of (a)–(d) the impurity and (e)–(h) themajority species using a tilting strength a =-E k 0.01R 0
1 within

the fullmany-body approach. The results in each column correspond to the same interspecies interaction strength gAB, ordered from
left to right with =-g E k 0.2, 1.0, 2.0, 4.0AB r 0

1 .We consider aminority species consisting ofNB=1 particle and amajority species
withNA=8 particles which interact repulsively with gAA/Erk0

−1=1.0.
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gAA leads to a temporal prolongationof thematerial barrier tunneling and thereby adelayed transfer of the impurity
to the other site of the doublewell.

A similar process can be observed when increasing the height of the double well barrier (see figure 12(b)).
However, at a certain height of the barrier, e.g. =-h E k 5.0r 0

1 , the impurity is barely able to tunnel to the
other site of the double well within the considered time interval and solely performs thematerial barrier
tunneling in the initial well. In contrast, a sufficiently small barrier height, e.g. =-h E k 1.0r 0

1 , leads to a less
dominantmaterial barrier tunneling within the initial well since the impurity can be easily transferred to the
other well.

Finally, we have investigated the dependence of the impurity’s dynamical response on the initial tiltα (see
figure 12(c)). For small tilts wefind almost no oscillations in the initially populatedwell and the impurity is
directly transferred to the other site of the double well (see alsofigure 11(b)). For increasing tiltsα the oscillations
due to thematerial barrier tunneling becomemore prominent and thereby the tunneling to the otherwell is
delayed. In this sense, wefind that thematerial barrier tunneling can be recovered for various parameters of the
system.

AppendixC. Convergence of themany-body simulations

In the following we briefly discuss the convergence behavior of our results. As discussed in section 2
the size of theHilbert space is given in terms of the orbital configuration =C M d d, ,A B( ). Here,M describes
the number of species functions in the Schmidt representation (see equation (2)), while dσwith s Î A B,{ }
refer to the number of SPFs building the time dependent number states ñsn t∣ ( )

(see equation (3)). In the
process of increasing the number of species functions and SPFs it is possible to recover the solution of the
many-body wave function with an increasing accuracy. Due to the exponentially increasing size of the
Hilbert space it is computationally prohibitive to use toomany species and SPFs. However, we are
able to obtain numerical solutions which incorporate all the necessary correlations and go beyond
mean-field approximations utilizingML-MCTDHX.We determine the effect of the truncation of the
Hilbert space by investigating as a representative example the integrated one-body density of the

impurity ò r
-

-
x t x, d

L

L

B2

4 1 ( )( ) upon varying the orbital configurationC. In figure 13 we show the latter for

an interspecies interaction strength of =-g E k 1.0AB R 0
1 (see figure 2(b)). Note that =-g E k 1.0AB R 0

1 lies
in the interval where the degree of correlations is maximized (see figure 5). As it can be seen, increasing the
size of theHilbert space systematically it is possible to achieve convergence. Based on these findings the
orbital configurationC=(6, 6, 6) has been employed in all many-body calculations presented in the
main text.

Figure 12.Temporal evolution of the integrated one-body density of the impurity ò r
-

-
x t x, d

L

L

B2

4 1 ( )( ) upon variation of (a) the

intraspecies interaction strength gAA, (b) the barrier height h and (c) the tiltα for an interspecies interaction strength of
=-g E k 1.0AB R 0

1 . For each variation the remaining parameters have been fixed to the values as introduced in section 2.1. The yellow
lines correspond to the parameter choice in themain text.We consider aminority species consisting ofNB = 1 particle and amajority
species ofNA = 8 particles which interact repulsively with =-g E k 1.0AA r 0

1 .
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