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Abstract
In this work, we demonstrate a simple and effectivemethod to design and realize variousWeyl
semimetal (WSM) states in a three-dimensional periodic circuit lattice composed of passive electric
circuit elements such as inductors and capacitors (LC). The experimental accessibility of such LC
circuits offers a ready platform for the realization of not only variousWSMphases but also for
exploring transport properties in topological systems. The characteristics of such LC circuits are
described by the circuit admittancematrices, which aremathematically related to theHamiltonian of
the quantum tight-bindingmodel. The system can be switched between the Type-I andType-IIWSM
phases simply by an appropriate choice of inductive or capacitive coupling between certain nodes. A
peculiar phasewith aflat admittance band emerges at the transition between the Type-I andType-II
Weyl phases. Impedance resonances occur in the LC circuits at certain frequencies associatedwith
vanishing eigenvalues of the admittancematrix. The impedance readout can be used to classify the
Type-I andType-IIWSM states. A Type-IWSM shows impedance peaks only at theWeyl points
(WPs)whereas a Type-IIWSMexhibitsmultiple secondary peaks near theWPs. This impedance
behaviour reflects the vanishing and non-vanishing density of states at theWeyl nodes in the Type-I
andType-IIWSMphases, respectively.

1. Introduction

Exotic topological phases ofmatter have emerged as one of themost exciting branches of condensedmatter
physics in the past decades due to their exceptional electronic properties [1–3]. Although gapped topological
materials such as topological insulators [4–6], integer quantumHall insulators [7, 8] and topological
superconductors [9] have attracted a lot of attention, the physics of topological gaplessmaterials [10] has
recently gainedmore prominence due to their novel properties. A three-dimensional topological gapless system
can be characterized by the nature of its band degeneracy points where two bands touch each other in
momentum space. These band degeneracy points are classified as eitherDirac [11] orWeyl points (WP) [12, 13]
depending on their symmetries. Dirac points appear only when both time-reversal [14] and inversion symmetry
[15] are conserved in a system.On the contrary,WPs emerge if either or both symmetries are broken. Although
both types of band touching points appear and annihilate pair-wise,WPs aremore robust against perturbations
thanDirac points. One important class of topological system that hostsWPs are calledWeyl semimetals (WSMs)
[16–19].WSMs disperse linearly in all three spatial directions in the vicinity of theWPs. Since the linear
dispersion around theWPs can be described by theWeylHamiltonian involving all three Paulimatrices, small
perturbations do not lift the energy degeneracy but only displace theWPs inmomentum space. Besides
fundamental properties such as themassless and chiral nature of the bulk carriers and large carriermobility
[20, 21],WSM states also exhibit unusual transport phenomena like the quantum anomalousHall effect [22],
large positivemagnetoresistance [23], Klein tunnelling [24, 25], chiral anomaly [26, 27] and novel quantum
oscillations [28, 29]. These exotic features and inherent robustness against disordermakeWSMs promising

candidate for future generation nanoelectronics, spintronics [30] and valleytronics [31] devices.WSMs can be
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further classified as Type-I andType-II based on the tilt of theWeyl cones around theWPs [32, 33]. Type-I
WSMs aremarked by the existence of point-like iso-energy surfaces at theWPs, and the simultaneous presence
of carriers with both signs of group velocities near theWPs [34, 35]. In contrast, in the Type-IIWSMphase,
potential energy terms dominate over the kinetic energy terms in the energy relation. Thismodifies the
dispersion relation in such away that only one sign of group velocity exists along certain directions near theWPs.
Moreover, there is a finite density of states (DOS) at theWPs.When the kinetic and potential energy contribute
equally, the transition between the Type-I andType-II phases arises where one of the bands become completely
flat with vanishing group velocity. This is the so-called Type-III [36] orCritical-typeWSMphase [37]. However,
realizingWSMstates in condensedmatter systems and tailoring their properties are experimentally challenging.
For instance, carrier doping inWSMsmay compromise the stability of theWeyl phases due to broken
translational symmetry [38]. Additionally, it is usually difficult to achieve transitions between different
topologicalWSMphases (Types-I, II, III) in a givenmaterial, and thus to formheterojunctions ofWSMs of
different phases [23, 39, 40]. There is hence a need for alternative platforms to realize gapless topological states.
Researchers have studied various artificial systems such as photonic crystals [41], metamaterials [42, 43] and
quantum resonators [44]. However, thesemethods all comewith their own experimental complexities and
limitations. Recently, topological states were realized in periodic electrical circuits consisting of inductors and
capacitors (LCnetworks) known as topoelectrical (TE) circuits [36, 45]. Under the TE framework,many striking
phenomena have been demonstrated such as the quantum spinHall insulator state [46], magnet-less Floquet
topological insulator state [47], topological photonic state [48], and edgemodes in the SSHmodel [49]. A key
advantage of electrical networks is the flexibility of experimental realization, as the circuits can be implemented
even on simple printed circuit boards. Additionally, circuit parameters in electrical networks can bemore readily
adjusted and tuned, compared to latticemodel properties of realmaterials.

In this paper, we demonstrate the realization of Type-I andType-IIWSMphases in a three-dimensional TE
circuit network.We relate the admittancematrix of a TE circuit to the tight-bindingHamiltonianmatrix of a
condensedmatter system. The resultant admittance band structure in a LCmodel resembles the energy
dispersion [50]. The transition between Type-I andType-IIWSMphases can be readily effected by tuning the
coupling between certain nodes.Moreover, we realize a distinct topological phase at the transition between the
Type-I andType-II phases, by isolating these nodes. This so-calledCritical-type phase is characterized by the
emergence of aflat admittance spectrum for one of the bands.We additionally derive the impedance spectrum
and relate it to the circuit Green’s functions [51]. The impedance spectra of the TE circuits corresponding to
differentWSMphases show significant differences. The Type-IWSM impedance spectrum ismarked solely by
distinctive peaks at theWPs.On the contrary, the Type-IIWSM impedance dispersion exhibits not only
impedance peaks at theWPs but alsomultiple secondary peaks along the tilt direction inwave-vector space.
Finally, the intermediate Critical-type phase is characterized by a high impedance region between twoWPs
which signifies theflat dispersion of the electron or hole bands there. In short, TE circuits provide an accessible
and tunable platform to design andmodel distinct topological phases and transitions inWSMs, while their
impedance spectra provide a signature of the different phases.

2. Topoelectrical circuitmodel

Here, we consider a periodic (along all directions) LC circuit, shown infigure 1, which comprises of two
sublatticesA andB. In anAC circuit, the admittanceY of any two-terminal device component (resistor,
capacitor, inductor etc) can be expressed as = a a

-Y I V 1where Iα andVα are the current and the potential
difference across the circuit component, respectively. In general, Iα andVα are complex numbers [52]. By
applyingKirchhoff’s current law (KCL) at nodesA andB in the unit cell at =r x y z, ,( )

of the circuitmodel
shown infigure 1, we have:
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whereω is the frequency of the alternating current,C1 andC2 are the intra- and inter-cell coupling capacitances
along the x direction andCy is the coupling along the y direction between lattice points on the sameA/B
sublattice. The lattice circuitmodel in the x–y plane is connected symmetrically with capacitorsCAz andCBz,
respectively, betweenA–A andB–B sites of adjacent layers along the z axis.Cn denotes the next nearest lattice
interaction betweenA–A orB–B sub-lattice nodes along both the x and y directions. TheA andB lattice points
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are grounded by capacitors 2CBz and 2CAz respectively, and an additional inductance L that serves to adjust the
offset ‘potential’. Note that the capacitorsCBz can be replaced by inductors LB ( w= - -L CB Bz

2 1( ) ) to switch the
WSMphase of the circuit (see later). The schematic diagramof the various capacitive and inductive couplings in
the LC circuit is depicted infigure 1. Using the Fourier transformation = åk rV Ve k ri( ) ( )( · )

  
, equations (1) and

(2) can be expressed inmomentum k space, in analogy to the tight binding (TB) approach in a crystal lattice
model [53]. The relation between voltage and current distribution in k space can then be expressed in terms of
the Laplacianmatrix equation [36, 49]

=k k ki L v , 3Weyl( ) ( ) ( ) ( )
  

where =k V k V kv ,A B T( ) [ ( ) ( )]
  

and =k I k I ki ,A B T( ) [ ( ) ( )]
  

are the vectors representing the potential and
current distribution at theA andB sublattice nodes in k space, respectively. kLWeyl( )


denotes the admittance

matrix (Laplacianmatrix)which is analogous to theHamiltonian in condensedmatter physics [36], and can be
expressed as

w w
s s s s
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where s s s, ,x y z( ) are the Paulimatrices corresponding to theA/B sublattice pseudospin degree of freedomand
σ0 is the 2×2 identitymatrix. The admittance spectrum,which corresponds to the energy dispersion in the
quantumTBmodel [36], is obtained from the eigenvalues of wkL iWeyl( ) ( )


in equation (4):

=  + + + + -E d C C k C k C k C C kcos 2 cos sin cos , 5x y y x Az Bz z0 1 2
2

2
2 2( ) ( ) ( ) ) ( )

where w= + + - + - + - + + --d C C C L C k C k C C k2 2 1 cos 2 1 cos 2 cosy n x n y Az Bz z0 1 2
2 1( ) ( ) ( ) ( )( ).

Here, the ‘energy’E refers to the admittance (divided by wi ) of the circuit. The energy spectrum is gapless at the
charge neutrality point orWP inwhich the two eigenvalues of equation (5) are equal. This equality is satisfied by
the following conditions

= =k ksin cos 0, 6x z ( )
+ + =C C k C kcos 2 cos 0. 7x y y1 2 ( )

Without loss of generality, we consider all capacitances and inductances as having non-negative values,
> -C C C2 y 2 1( ) and + >C C C2 y1 2 . The solution set of equation (6) is then

p p p=  k k, 0, 2 , , 2x z( ) {( ) ( )}, which reduces equation (7) to

h+ + =C C C k2 cos 0, 8y y1 2 ( )

where η=1 for p= k k, 0, 2x z( ) ( ) and η=−1 for p p= k k, , 2x z( ) ( ). However, for our parameter
range, no real solution of ky exists in the first Brillouin zone for η=1. For η=−1, we obtain two pairs ofWPs
in k spacewhich are located at p p=  - w C C C, arccos 2 , 2y2 1( ( ) ) )

. For - >C C C2 y2 1∣( )∣ , no band
touching points exist. The type ofWPs hosted by the Laplacian in equation (4), either Type-I or Type-II, depends

Figure 1. Illustration of a TE circuit lattice to realize variousWSMphases. Periodic boundary conditions are considered along all
directions. (a)The circuit representation in the x–y plane, where eachA-type (red dot)node is connected to aB-type node (green dot)
byC1, and the repeating units are connected byC2 in the x direction. All alternate lattice sites along the y direction are connected byCy.
Nodes of the same type are coupled to each other byCn in the x–y plane. (b)The circuit representation in the x–z plane. AllA–A
couplings are capacitive in naturewithmagnitudeCAz, while theB–B coupling can be tuned to be in-phase (out-of-phase)with respect
to theA–A coupling by selecting capacitive (inductive) hopping strengthsCBz ( w= -L CB Bz

2 1∣ ∣ ∣( ) ∣), respectively, along the zdirection.
(c)Additionally, allA(B)nodes are connected to ground by common inductor L in parallel with capacitor 2CBz (2CAz) respectively.
The common inductor L determines not only the resonant frequency of the circuit but also the effective offset ‘potential’ of the TE
circuit.

3

New J. Phys. 22 (2020) 023025 SMRafi-Ul-Islam et al



on the values ofCn,CAz andCBz, which determine the d0 term in equation (5). These parameters do not shift the
WPs in the k-space but onlymodify the tilt of theWeyl dispersion cones. Figure 2 shows the evolution of the
resonant admittance band structures and iso-admittance contour plots for differentWSMphases. The resonant
frequency is given by

w = + + + - + + + - -L C C C C C k k C C k2 4 2 cos cos 2 cos , 9r y n n x y Az Bz z1 2
1 2( ( ( ) ( )( ) ( )

whereωr corresponds to the frequency at which theσ-independent terms in theHamiltonian vanish. As shown
infigure 2(a), when the hopping parameters between theA andBnodes along the zdirection have opposite signs,
a Type-IWSMdispersion is obtained. In contrast, when the coupling between two similar sites along the z
direction has the same signs, theWSMphase changes to Type-II (figure 2(g)). TheCritical-type phase between
twoWSMphases is depicted infigure 2(d), corresponding to zero coupling between two adjacentB–Bnodes
along the z axis. As shown infigure 2(b), for the Type-IWSMphase, the constant admittance (iso-admittance)
contour is a closed loop in the ky–kz plane that encompasses theWPs. In contrast, the iso-admittance contours
for Type-IIWSMare hyperbolic and connect theWPswith different chiralities, as shown infigure 2(h) for both
energy bands. The contours for the transitional Critical-type phase between Type-I andType-IIWSMs are
distinct from the other two types, as depicted infigure 2(e). For this phase, theWPs are connected by the zero-
admittance contour lines for the electron (upper) bandwhile for the hole (lower) admittance band, vanishing

Figure 2.Admittance band analysis for TE circuitmodel for differentWSMphases at resonant frequencywith commonparameters
C1=0.716mF,C2=0.716mF,Cy=0.167mF,Cn=0mF and L=1mH, (a) ‘Energy’ (admittance) spectrum corresponding to
Type-IWSM,with inductiveB–B coupling along the zdirectionwith parametersCAz=0.5mF, w= - - -L CB Az

2 1 and kx=π. (b) Iso-
admittance contour plot of the upper and lower admittance bands of a Type-IWSM in (a), projected on the ky–kz plane. The red dots
denoteWPs aroundwhich the iso-admittance curves form closed admittance surfaces. (d) Flat admittance bandswith two pairs of
WPs for Critical-typeWSM (transition phase between Type-I andType-IIWSM)with same parameters as (a) but with zero coupling
between theB–B sites along the z axis. (e) Iso-admittance contour plot of the upper and lower admittance bands of a Critical-type
WSM in (b), projected on the ky–kz plane. The upper band shows a zero energy contour line that connects two oppositeWPs at
ky=±π/2. This denotes the flat band feature at the transition point of Type-I andType-IIWSM. (g)Admittance spectrum
corresponding to Type-IIWSMphasewith capacitive coupling betweenB–B andA–A also sites along the kz direction,CAz=0.5mF,
CBz=0.2mF and kx=π. Both upper and lower bands show group velocity of the same sign around theWPs in contrast to the Type-I
dispersion of (a), opposite velocities. (h) Iso-admittance contour plot of the admittance bands of a Type-IIWSM in (g), projected on
the ky–kzplane. Due to the hyperbolic dispersion of Type-IIWSM, the iso-admittance contour lines do not enclose theWPs.However,
the number and position ofWPs have not changedwith respect to Type-I andCritical-typeWSM. (c), (f), (i)Constant admittance
cross section atE=0, for admittance spectra in (a), (d) and (g) for the Type-I, Critical-type andType-IIWSM, respectively. Type-I
WSMhosts no states at the nodal energy. Critical-typeWSMphase exhibits straight line bulk-like states betweenWPs. In Type-II
WSM, electron and hole pockets emerge at Fermi energywhich touches theWPs.
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admittance is obtained for the rest of Brillouin zone along the kz direction for a specific value of ky that satisfies
equation (7). Anothermethod to classify the differentWSMphases in the TE circuitmodel is by noting the
existence offintieDOS in the vicinity ofWPs, as shown infigures 2(c), (f) and (i). Infigure 2(c), there is zeroDOS
nearWPs in the Type-IWSMwhere theB–B coupling along the z direction is comprised of an inductor LB. In
figure 2(f), for the transitional Critical-typeWSMwhere there is zero coupling between nearestB sites, theWPs
are linked by a single arc of bulk states. Finally, in the Type-IIWSMwhere theB–B coupling along the z direction
is comprised of a capacitorCBz, the resulting tilt of the admittance band gives raise to non-zero localDOS for
electron and hole bands in the vicinity ofWPs. These are clearly visible infigure 2(i), where there isfinite DOS at
the nodal admittance giving rise to the electron and hole pockets in the ky–kz plane.

3. Low admittance general Laplacian and classification

To further examine the properties of the Laplacian equation (4), we perform a linear expansion of the Laplacian
near the band touching points in k space. The general formof the linear Laplacian can be expressed as

w s l s s l s s= + + + + + +- q v q v q v q t q t q t q vLi , 10x x y y y x z z z x x y y z z
1

Weyl 0 0 0( ) ( ) ( ) ( ) ( )

where º = - q q q q k w, ,x y z( )  
is the small displacement from theWPs, vx=C2, q=v C2 siny y ,

= -v C Cz Az Bz( ), tx=0, q=t C2 siny n , = +t C Cz Az Bz( ),
w q= + + - + + - + +-v C C C L C C C C2 4 2 1 cos 2y n n Az Bz0 1 2

2 1( ) ( ) ( ), q = -C C Carccos 2 y2 1(( ) ) and
l = 1 for the k and ¢k valleys respectively. v0 is a constant ‘potential’ offset which can be tuned to zero or any
other arbitrary value by varying the inductance L. The tilt of theWeyl dispersion cones along the ki direction
increases with t vi i∣ ∣. TheWeyl phases can be classified based on this ratio: Type-I with <t v 1i i∣ ∣ (i= x, y, z)
(figure 3(a)), Type-II with >t v 1i i∣ ∣ (figure 3(c)) andType III with =t v 1i i∣ ∣ (figure 3 (b)). In the vicinity of
theWP, the slope of the dispersion cone, which represents the group velocity, has opposite (same) signs for
opposite signs of qz in a Type-I (Type-II)WSM,while at the transition value =t vi i∣ ∣ ∣ ∣, one of the electron or hole
bands has zero group velocity and hence aflat dispersion relation, which corresponds to theCritical-type phase.
From equation (10), the linearized admittance spectra of the two bands are given by

l c= + + + +E t q t q t q v A, 11x x y y z z 0( ) ( )

whereχ=±1 for electron and hole bands respectively and = + +A v q v q v qx x y y z z
2 2 2 2 2 2 . The group velocities

of the upper and lower bands are expressed by c l c=  = + + c
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As can be seen in equation (12), electrons and holes can propagate along the opposite or the same directions
depending on the respective circuit parameters. In the x-direction, the velocity is purely determined by the
kinetic term (coefficient ofσi), and the particle and hole bands showopposite gradient with respect to qx.
However, for the y and z directions there is a combination of kinetic and potential terms (coefficient ofσ0
associatedwith the dispersion tilt) in the group velocity expressions. If the potential termdominates over the
kinetic term along any direction, the upper and lower bandswill have the same sign of group velocity resulting in

Figure 3.Numerical admittance dispersions for the Type-I, Critical-type andType-IIWSMphases of a LC circuit lattice networkwith
60 nodes and open boundary conditions along the y direction and periodic boundary conditions in the x and z directions.C1=0.716
mF,C2=0.95mF,Cy=0.167mF,Cn=0mF, L=1mHand kx=π. (a)Admittance spectrum as a function of kz for
CAz=−CBz=0.5mF, with band degeneracy at twoType-IWPs. (b)Admittance spectrum for theCritical-typeWSMwith
CAz=0.5mF andCBz=0mF. There are zero-admittance states between the twoWPs. (c)Admittance spectrumof the Type-IIWSM
systemwithCAz=0.5mF andCBz=0.2mF. The value of the positiveCBz is sufficiently large to tilt the two bands such that bothwill
have group velocity of the same sign.
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a Type-IIWSM.Conversely, if the kinetic termdominates along all directions, then the two bandswould exhibit
group velocities of opposite signs (Type-IWSM). Let us consider the case where the tilt exists along the y
direction. The corresponding velocities +Vg

y and -Vg
y will have the same signs if >C Cn y∣ ∣ ∣ ∣, giving rise to Type-

IIWPs. Conversely, if <C Cn y∣ ∣ ∣ ∣, wewould obtain Type-IWPs, where the two admittance bands have opposite
signs of admittance gradient along the y direction. At the critical coupling value =C Cn y∣ ∣ ∣ ∣, the amplitudes of
the potential and kinetic hopping terms along the y axis are equal. This corresponds to theCritical-type phase,
with aflat hole band close to theWPs (with vanishing velocity -Vg

y ), while the electron band retains afinite
group velocity +Vg

y . Interestingly, the second-nearest hopping along the x axis via the coupling capacitanceCn

does not contribute to the tilt in that direction (n.b. tx=0 in equation (10)), but rather contributes to the offset
‘potential’ term,whichmay also be adjusted by tuning the common inductor L.

Thus far in our analytical derivation, we have considered an infinite LC circuit in all three directions. For the
numerical verification of our analytical predictions, we consider a nanoribbon geometry in a LC circuitmodel
with afinite width of ly=30 unit cells in the y-direction, under open boundary conditions. Here,multiple sub-
bands are present due to the quantum confinement along the y direction.We consider the evolution of the
admittance dispersion through the differentWSMphases as theB–B coupling parameter along the z-direction,
CBz, is varied at afixed kx=π andCAz, as shown infigures 3(a)–(c).With an inductive coupling between two
neighbouringB sites along the z direction, we have w= - -C LBz B

2 1( ) . Any non-zero value of LBwill result in a
dispersion tilt such that <t v 1z z∣ ∣ . The resulting Type-IWSMadmittance dispersion is shown infigure 3(a).
The dispersion relation consists of two symmetric bands touching each other at p= k 2z . TheDOS at the
WPs is zero and both signs of the admittance gradient are present in the vicinity of eachWP.When the inductor
LB is replacedwith a capacitorCBz, theB–B couplingCBz is in-phase with the correspondingA–A coupling,CAz.
In this case, bothwould have the same sign, so that >t vz z . In otherwords, for any positive value ofCBz,

+ > -C C C CAz Bz Az Bz( ) ( ) holds and so the Type-IIWSMwould result. This is reflected by the tipping over of
the admittance bands into two asymmetric branches with respect to kz (shown infigure 3(c)). The positions of
theWPs are not shifted but the dispersion acquires afinite DOS at the nodal admittance—the lineE=0 cuts
acrossmultiple states in the E–kzplot, spanning across the entire range of p p- < <kz , in contrast to the Type-
IWSM infigure 2(a)where theE=0 line cuts across only theWP states. Finally, for the case of zeroB–B
coupling (CBz= 0), one of the admittance bands exhibits aflat zero admittance state between the twoWPs
( p p- < <k2 2z )while the other shows zero admittance state elsewhere in the Brillouin zone, i.e.

p>k 2z∣ ∣ , as shown infigure 3(b). This represents the intermediate Critical-typeWSMsystem.

4. Impedance spectrumanalysis

In the previous section, we presented the admittance dispersions for the differentWSMphases of a TEmodel. In
this section, we consider the impedance of a TE circuit and show that it offers an experimentally convenient way
to distinguish the different topological phase of the TE circuit. The impedance readout of a TE circuit can be
obtained simply by connecting a fixed current source to two arbitrary nodes in the circuit andmeasuring the
potential difference between the nodes. This constitutes amore convenientmeasurement than a direct
determination of the admittance dispersion relation of the circuit.Moreover, the comparatively large
impedance readout (in the range of fewΩ to kΩ) compared to the admittance readout (in the range of a few
W-m 1) provides a bettermeasurement accuracy.We begin by analysing themathematical significance of the

impedance between any two lattice sites in a TE circuit. Consider a 2DTE circuit shown infigure 4 consisting of a
finite number of nodes along the y direction, and having an infinite number of nodes along both the positive and
negative x directions. Each node is capacitively coupled to its left and right neighbours byCx, its upper and lower
neighbours byCy, and to the ground by a common grounding capacitanceC.We also connect to every node an
additional wire throughwhich currentmay flowbetween the node and an external current supply. This wire is
denoted as the dotted linewith an arrowflowing into and out of the node, as shown infigure 4(b), and shall be
referred to as the ‘current wire’ subsequently.We label the nodes by their (x, y) coordinates so thatVx y, is the
voltage at the node located at (x, y). TheKCL at each node (except for those at the top and bottom rows) reads as

w
- + = + - + + -+ - - +

I
CV C V V V C V V V

i
2 2 . 13

x y
x y y x y x y x y x x y x y x y

,
, , 1 , 1 , 1, 1, ,( ) ( ) ( )

Let usfirst consider the case where =I 0x y, everywhere. Physically, this corresponds to leaving the current wire
at each node unconnected to any current source or sink. Equation (13)with =I 0x y, then has a similar form to
the Schrödinger equation for a quantummechanical TBHamiltonian [36], where the common grounding
capacitanceC is the analogue of the eigenenergy.More generally, the KCL for a TE circuit which has voltage
nodes connected to common grounding capacitancesC and current flowing through the current wires, can be
written as
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w
- + =C

i
v Hv

i
14( )

w = - ºCi H v Lvi , 15( ) ( )

where i is the vector of currents flowing through the current wires at every node and v is the vector of voltages at
every node.H is thematrix relating the voltages at the different nodes to one another, obtained by applying KCL
at every node but excluding the contribution of the common grounding capacitanceC, which ismoved to left
hand side of the equation (14). If Ix y, is set to 0 everywhere, equation (14) becomes an eigenvalue equation inC
and v, asmentioned earlier. In particular, ifH is afinite-sizedmatrix, then the systembecomes equivalent to an
infinite potential well systemwith a discrete eigenspectrumofC consistent with having =I 0x y, everywhere. In
equation (15), we defined wº -CL Hi ( )where L is the TE analogue of the inverse of theGreen’s function GTB

for a TB systemwithHamiltonianHTB, i.e. = -- EG HTB
1

TB( ). Let us consider the situationwhere the TE circuit
is translationally invariant along the x direction, resulting in the formof =V x y V y k x, exp i x( ) ( ) ( ).
Equation (15) then reduces to

w
- = - - - + -+ -

I
k x CV C V V V C V k

i
exp i 2 2 cos 1 16

x y
x y y y y y x y x

,
1 1( ) ( ) ( ( ) ) ( )

and the system ismathematically equivalent to a one-dimensional systemwith a kx dependent ‘on-site potential’
-C k2 cos 1x x( ( ) ). Equation (16) can be schematically written as

- =k xi L vexp i , 17x1 1 1( ) ( )( ) ( ) ( )

where the 1( ) subscript denotes a quasi one-dimensional system,where the effects of the infinite-length x
direction have been incorporated as a kx dependent on-site potential. In particular, for the nodes at x=0, we
have

= -v L i . 181 1
1

1 ( )( ) ( ) ( )

We then consider the situation depicted infigure 4(b)where two nodes at y=a and y=b are connected to a
current source supplying a current as IS (the subscript ‘S’ denotes source), while the other nodes are left
unconnected. This corresponds to setting = - = Ii ia b1 ; 1 , S( ) ( ) , = ¹c a bi 0, ,c1 , { }( ) . The resulting voltages at
nodes a and b,Va b can be read off from equation (18) as

= -- -V I IL L 19a a a a b1 ; ,
1

S 1 ; ,
1

S ( )( ) ( )

= - +- -V I IL L , 20b b b b a1 ; ,
1

S 1 ; ,
1

S( ) ( )( ) ( )

where -L i j1 ; ,
1

( ) is the ith row and jth columnmatrix element of -L 1
1

( )
). Denoting the potential difference across the

current source asD = -V V Vab a b, the impedance across the current supply is given by = DZ V Iab ab S so that

= + - -- - - -Z L L L L . 21ab a a b b a b b a1 ; ,
1

1 ; ,
1

1 ; ,
1

1 ; ,
1( ) ( )( ) ( ) ( ) ( )

Letting Ny be the number of lattice sites along the y direction, L 1( ) is then a ´N Ny y( )Hermitianmatrix, the
spectral decomposition of which is = å ñ áA a A ai i i i∣ ∣where ñai∣ is the ith eigenvector andAi its corresponding
eigenvalue, i.e. ñ = ñA a a Ai i i∣ ∣ . Hence, any function f (A) of thematrix can be expressed as

= å ñ áf A a f A ai i i i( ) ∣ ( ) ∣. Let us write the spectral decomposition of H 1( ) as = å ñ áh c hH j j j j1 ∣ ∣( ) with

Figure 4. (a) Schematic of a TE circuit with afinite number of nodes along the y direction and infinite length along the x direction. The
nodes are coupled to their left/right neighbours byCx, upper/lower neighbours byCy and the ground byC. Each node is connected to
an additional wire throughwhich currentmayflow in/out of the node. (b)The same circuit in (a)wherewe connect two arbitrary
nodes to a current source.
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ñ = ñh h cH j j i1 ∣ ∣( ) . By definition º -
w

CL H1
1

i 1( )( ) ( ) , so -L 1 has the spectral decomposition

åw
=

ñá

-
- h h

C c
L

1

i
22

j

j j

j
1
1 ∣ ∣

( )( )

and substituting the above into equation (21), we have

åw
=

+ - -

-
Z

h h h h h h h h

C c

1

i
23ab

j

j a j a j b j b j a j b j b j a

j

; ; ; ; ; ; ; ;* * * *
( )

åw
=

- -

-

h h h h

C c

1

i
24

j

j a j b j a j b

j

; ; ; ;* *( )( )
( )

åw
=

-

-

h h

C c

1

i
, 25

j

j a j b

j

; ;
2∣ ∣

( )

where hj a; is the ath element of hj. Equations (21) and (25) are the key formulae to evaluate the impedance
between any two arbitrary points.WhenC is one of the eigenvalues of H 1( ) and provided that -h hj a j b; ;∣ ∣ is not
simultaneously zero, the currentflowing through the current wires attached to the nodeswill be nearly zero,
leading to a sharp spike in the impedanceZab. This phenomenon is similar to that in quantum-dot (QD) systems
[54, 55], in which a resonance occurs in the transmission across the systemwhen the Fermi energy in the leads
coincides with one of the discrete energy levels in theQD.HereC plays the role of the lead Fermi energy and cj
the discrete energy levels in theQD.

The impedance spectra across thewhole circuit, i.e. between thefirst and last nodes ( =N n2 ) are plotted as
a function of kz at the resonant frequency for variousWSMphases (see figure 5). Here, we consider n=30 unit
cells so that there areN=60 alternatingA andB lattice points. As can be seen infigure 5, the impedance
distribution is symmetric about kz=0 for all types ofWSMphases but assume different profiles for different
phases. Figure 5(a) shows the impedance readout of a Type-IWSMTE circuit. The notable characteristic of the
impedance spectrum is the presence of two clear peaks at the k points corresponding to theWPs in the kz
direction. Thesemay be explained by considering equation (25) andfigure 3(a). Figure 3(a) shows the hole and
particle-like bands almost touching only at theWPs, where the admittancematrix is nearly zero. (The hole and
particle bands do not actually touch due to the small band gap as a result of the finite width.)Equation (25) shows
that the impedance between two points is dominated by the eigenvalues of the Laplacianmatrix closest toC=0,
and inversely proportional to these eigenvalues. Thus, large impedance peaks are observed in the vicinity ofWPs
of Type-I circuitmodel. At k values away from theWPs, the eigenvalues of electron and hole bands have
relatively large (non-zero)magnitudes, resulting in the decay of impedance readout (figure 5(a)). The impedance
spectrum along kz is plotted infigure 5(b) for Critical-typeWSMs. Aswe have seen from figure 3(b), the electron
and hole bands in the spectrum exhibit a flat band dispersion. The correspondingWPs aremarked by two
impedanceminima, but the corresponding impedance value is large and of the same order ofmagnitude as that
of the impedance peaks in Type-IWPs. At other k values between theWPs, the impedance exhibitsmuch larger
values by several orders ofmagnitude. The existence of large impedance over thewhole of the Brillouin zone
apart from theWPs is the direct consequence of the zero-admittance flat dispersion in the admittance spectrum.
Finally, the resonant impedance characteristics of a Type-IIWSM is illustrated infigure 5(c), which shows an

Figure 5. Impedance spectra for variousWeyl phases at resonant frequency between the first and last nodes (N = 60)withC1=0.72
mF,C2=0.95mF,Cy=0.167mF,Cn=0mF, L=1mHand p=kx . (a)Resonant impedance behaviour for Type-IWSMnetwork
that shows large impedance peaks at theWPs. (b) In the impedance spectrum for Critical-typeWSM system, the twoWPs aremarked
by deep troughs even though theirmagnitude is comparable to the peak impedance value of Type-IWSM.However, the other points
in k space show even larger impedance due to flat band nature at the transition phase. (c) Impedance spectrum for Type-IIWSM
system shows two primary peaks at theWPs andmultiple secondary impedance peaks around theWPs due to the non-zeroDOS in the
vicinity ofWPs arising from the electron and hole pockets.
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oscillatory response along themomentumdirection that is parallel to the tilt direction (i.e. the kz direction). The
primary impedance peaks occur at p= k 2z , just as in the Type-IWSM system, but in addition there are
multiple secondary peaks at other values of kz. The emergence of these secondary peaks is due to the presence of
eigenvalues with smallmagnitude of admittance, thus indicating the existence offiniteDOS in the proximity of
Type-IIWPs. This is in linewith the presence of hole and electron pockets as can be seen in the admittance
dispersion for Type-IIWSM shown infigure 3(c).

5. Conclusion

In conclusion, we have realized and characterized variousWSMphases in the admittance dispersion of three-
dimensional LC topoelectric circuit. The characteristics of such LC circuits are described by the circuit
admittancematrices, which are analogous to theHamiltonians of the quantum tight-bindingmodel. The
different phases of the circuit can be switched between one another by adjusting themagnitude and sign of the
capacitive/inductive coupling in the circuit lattice. An intermediate Critical-typeWSMphasewith aflat
admittance band emerges at the transition between theType-I andType-II phases. In practice, the impedance
readout of the circuit can be used to classify its topologicalWSMphases. To show this, we numerically calculated
the impedance between the terminal nodes using theGreen’s function analogy. The impedance spectra of the
differentWSMphases reveal different characteristics. The impedance spectrumof Type-IWSM shows peaks in
the vicinity ofWPswhereas a Type-IIWSMexhibitsmultiple secondary peaks in addition to themain peaks at
theWPs. This impedance behaviour reflects the vanishing and non-vanishingDOS at theWPs in the Type-I and
Type-IIWSMphases, respectively. The LC circuitmodel allows ready implementation ofWSMphases using
basic circuit elements. The accessibility and ease of fabrication of the LC circuitsmake them an ideal platform for
the design and characterization of topologicalWSM states and their transport properties.
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