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Abstract
The Darboux method is commonly used in the coordinate variable to produce new exactly
solvable (stationary) potentials in quantum mechanics. In this work we follow a variation
introduced by Bagrov, Samsonov, and Shekoyan (BSS) to include the time-variable as a
parameter of the transformation. The new potentials are nonstationary and define Hamiltonians
which are not integrals of motion for the system under study. We take the stationary oscillator of
constant frequency to produce nonstationary oscillators, and provide an invariant that serves to
define uniquely the state of the system. In this sense our approach completes the program of the
BSS method since the eigenfunctions of the invariant form an orthonormal basis for the space of
solutions of the related Schrödinger equation. The orthonormality holds when the involved
functions are evaluated at the same time. The dynamical algebra of the nonstationary oscillators
is generated by properly chosen ladder operators and coincides with the Heisenberg algebra. The
related coherent states are constructed and it is shown that they form an overcomplete set that
minimizes the quadratures defined by the ladder operators. The time-dependence of these states
relies on the basis of states and not on the complex eigenvalue that labels them. Some concrete
examples are provided.
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1. Introduction

The method introduced by Darboux in 1882 [1] (already
45 years before quantum mechanics was formally structured
by Heisenberg, Dirac and Schrödinger) was addressed to
apply infinitesimal calculus in the study of surfaces [2].
Darboux accomplished a transformation which leaves key
geometric properties of certain classes of surfaces unchanged
[1, 2]. The development of such a method shows chron-
ological gaps [3, 4], but the ideas that underlain the Darboux
transformation find a diversity of applications in con-
temporary physics and mathematics [3–14]. For a long time
the Darboux method (and its generalization developed by
Bäcklund) was applied in the study of solitons to construct
nonlinear superposition algorithms for the solutions of the

related equations [10, 11]. Unexpectedly, the models pro-
posed in the mid-eighties of last century to pair bosons and
fermions in the same picture were also associated with the
Darboux transformation [4]. As a result, the term super-
symmetric quantum mechanics came to denote the simplest of
such models and labeled a new branch of quantum physics,
which has grown stronger over the years [4, 12–14].

Remarkably, most of the works dealing with the super-
symmetric construction of exactly solvable potentials use the
Darboux transformation in the spatial variable only. A notable
exception is offered in the papers of Bagrov, Samsonov and
Shekoyan (BSS) [15–18], where a variation of the Darboux
transformation is introduced to include the time-variable as a
parameter. Thus, exactly solvable (nonstationary) time-depen-
dent potentials can be also constructed as Darboux-deformations
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of a given (stationary or nonstationary) potential, the solutions of
which are very well known.

The capability of solving nonstationary systems opens a
diversity of applications in the trapping of particles by
electromagnetic fields (see, e.g. [19–24]). However, such
systems are usually affected by external forces that either take
energy from them or supply energy to them. The corresp-
onding Hamiltonian is therefore not an integral of motion. In
this case no orthonormality of the basic solutions is expected
a priori, so the determination of the observables that define
uniquely the state of the system is an open problem in general.
The first clue to find the appropriate invariant for this class of
systems was provided by Ermakov in 1880 [25] (yes, a
contemporary of Darboux!). In connection with the New-
tonian law of motion of the parametric oscillator, Ermakov
introduced a nonlinear differential equation and showed that a
first integral is achieved by eliminating the frequency of
oscillation from both equations (a similar quantity can be
found in the position-dependent version of the Ermakov
equation [26, 27]).

The invariant problem for time-dependent oscillators has
been faced in different approaches [7, 20, 28–41]. Quite
recently, it has been used point transformations to obtain such
invariant as a natural consequence of getting nonstationary
oscillators as deformations of the stationary case [7, 41]. In
the present work the BSS method [15–18] is applied to
generate time-dependent oscillators that have a well defined
invariant and orthonormal basis of solutions.

Our interest is twofold:

(1) We complete the program started in [15–18] by
providing a mechanism to obtain invariants for the
time-dependent Hamiltonians constructed through the
BSS method. The orthonormality of the corresponding
bases of solutions is formally justified within our
approach.

(2) We show that the construction of generalized coherent
states is feasible for non- stationary oscillators. Indeed,
applied to the harmonic oscillator, our approach permits
to construct the ladder operators for the new time-
dependent oscillators in easy form. As these operators
close the Heisenberg algebra and factorize the invariant
of the nonstationary oscillators, the coherent states are
obtained as linear superpositions of the eigenstates of
the corresponding invariant.

Preliminary results were already reported by two of us in
[42], where the time-dependent solutions of the stationary
oscillator are used to construct a family of nonstationary
oscillators as well as their quantum states (an independent
model is developed in [43], some other similar results can be
consulted in [44, 45]).

In this work we first follow [46–48] to obtain time-
dependent wave-packets that have the profile of the Hermite–
Gauss modes of classical optics. These packets are then used
to produce the time-dependent Darboux transformations of
the stationary oscillator we are interested in. One of our main
results is the derivation of invariants for the time-dependent
oscillators that are obtained via the BSS method. The

invariant and the Hamiltonian of any of these nonstationary
oscillators are in general dissimilar, they coincide only when
the time-dependence is turned off (i.e. in the stationary case).
We also show that the intertwining operator used in the BSS
method is connected with the width of the wave-packets
generated for the new oscillators, a result so far unnoticed in
the literature on the matter. On the other hand, the coherent
states of the nonstationary oscillators reported here do not
preserve their form under time-evolution because they are
constructed with the eigenstates of the invariant, which are
time-dependent by themselves.

The paper is organized as follows. For the sake of
completeness, in section 2 we revisit the BSS method. The
construction and study of our nonstationary oscillators is
developed in section 3. We start by obtaining time-dependent
Gaussian wave-packets for the stationary oscillator
(section 3.1). Then, we generalize the above results by
deriving time-dependent wave-packets having the profile of
the Hermite–Gauss modes of classical optics (section 3.1.1).
Using the conventional ladder operators of the boson algebra
we construct the time-dependent ladder operators for such
wave-packets and provide a time-dependent invariant for the
stationary oscillator. In section 3.2 we use the time-dependent
wave-packets of the previous sections to explicitly derive the
nonstationary oscillators introduced in this work. We also
provide the corresponding invariant and show that an addi-
tional pair of ladder operators can be introduced to act on the
space of states of the new system (section 3.2.1). The con-
struction of the coherent states is developed in section 3.3.
Section 4 contains some concrete examples to show the
applicability of our approach. Some conclusions are given in
section 5. We provide the explicit construction of the invar-
iants reported throughout the paper in the appendix.

2. Time-dependent Darboux transformation

Based on the Darboux method [10], the BBS approach
[15, 16] considers a time-dependent differential operator

ˆ ( )[ ( )] ( )b= ¶ + ¶ = ¶ ¶L ℓ t x t x, , , 1x x

to pair the properties of two different Schrödinger operators

ˆ ( ) ( )¶ - ¶ = ¶ ¶ = H x t t k ai , , , 0, 1, 2t k t

ˆ ( ) ( ) ·

( )

= - ¶ + ¶ = ¶ ¶ =


H x t
m

V x t k

b

,
2

, , , 0, 1,

2

k x k x x x

2
2 2

by means of the intertwining relationship

ˆ [ ˆ ( )] [ ˆ ( )] ˆ ( )¶ - = ¶ - L H x t H x t Li , i , . 3t t0 1

In the previous equations it is assumed that one of the
Schrödinger operators is exactly solvable, with very well
known solutions, so the solutions of the other operator are
determined via the intertwining procedure. The latter means
that the subject of interest is the kernel of both Schrödinger
operators:
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[ ˆ ( )] ( )
[ ˆ ( )] ( ) ( )

f

y

¶ - =

¶ - =




H x t x t

H x t x t

i , , 0,

i , , 0. 4

t

t

0

1

Clearly, the functions ℓ(t) and β(x, t) introduced in (1) are
determined such that the Schrödinger equations (4) admit
normalizable solutions. Hereafter we assume that the solu-
tions of the equation associated to V0 (x, t) are already known.

The introduction of (1), (2a), and (2b) in (3), after some
simplifications, produces the set of equations

( ) ( ) ( ) ( ) ( )b- = + ¶ 
V x t V x t

t
ℓ t

m
x t a, , i

d

d
ln , , 5x1 0

2

( ) [ ( )

( )] ( ) ( )

b b

b

¶ + ¶

- ¶ + ¶ =

 
x t

m
x t

x t V x t b

i ,
2

,

, , 0. 5

t x

x x

2
2

2
0

The conventional (not time-dependent) Darboux transforma-
tion is immediately recovered from the above equations if
V0(x, t)=V0(x), for which we should make ℓ(t)=const and
β(x, t)=β(x). The first property that distinguishes the BBS
approach from the conventional Darboux method is that a
time-dependent potential V1(x, t) can be achieved even if the
initial potential is a function of the position only V0=V0(x),
with the time-dependent functions ℓ(t) and β(x, t) accordingly
determined (see section 3).

Similarly to the conventional case, we may introduce the
additional transformation

( ) ( ) ( )b = -¶x t u x t, ln , , 6x

with u(x, t) a new function to be determined. Introducing (6)
in (5b) yields

[ ˆ ( ) ( )] ( ) ( )¶ - + = H x t c t u x ti , , 0, 7t 0 1

where the time-dependent function c1(t) stems from the
integration with respect to x. Thus, u(x, t) is solution of the
initial Schrödinger equation for which the zero point energy,
represented by c1(t), is time-dependent in general. With no
loss of generality we now set c1(t)=0.

Providing a solution of (7) with no zeros in
( ) [ )Í ´ ¥V x t tDom , ,0 0 , according to (5a), the new

potential ( )V x t,1 might be a complex-valued function. In the
present work we are interested in real-valued potentials, so we
impose the condition

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )b+ ¶ = 

t
ℓ t

m
x tIm i

d

d
ln , 0, 8x

2

which is easily simplified to ∣ ( )∣ ( )= ¶ℓ t u x tln Im ln ,
t m x

d

d
2 2 2 .

Assuming that ℓ(t) is real-valued we have

{ }( ) [ ( )] ( )ò t t= ¶


ℓ t ℓ
m

u xexp d Im ln , , 9
t

x0
2

as well as the definition of the new potential

( ) ( ) ∣ ( )∣ ( )= - ¶


V x t V x t
m

u x t, ,
2

ln , , 10x1 0

2
2 2

where [ ( )]¶ u x tIm ln ,x
2 is a constant with respect to x. That is,

one arrives at the additional equation

⎛
⎝⎜

⎞
⎠⎟

( )
( )

( )¶ =
u x t

u x t
ln

,

,
0, 11x

3

*

with z* denoting the complex conjugation of Î z . The
latter result is a condition that grants a real-valued potential
V1(x, t) in equation (10). As usual in the Darboux transfor-
mations, the solutions ψ(x, t) of the new potential (10) can be
obtained from the action of the intertwining operator

( ) ˆ ( ) ( )y f=x t L x t, , . 12

Additionally, the missing state

( )
( ) ( )

( )y µx t
ℓ t u x t

,
1

,
13M

*

must be considered since it is also a solution of equation (4)
as well as orthogonal to all the states ψ(x, t) constructed
through equation (12). Indeed, it may be shown that ψM (x, t)
satisfies the equation ˆ†y =L 0M , from which it follows
( ˆ ) ( ˆ )†y f y f= =L L, , 0M M .

3. Nonstationary oscillators via the BSS approach

Consider a stationary oscillator with constant frequency ω0

that is defined by the potential

( ) ( ) ( )w= =V x t V x m x,
1

2
. 140 0 0

2 2

To obtain the intertwining operator (1) we have to solve the
Schrödinger equation (7) by finding a function u(x, t) which is
free of zeros in ( ) [ )= ´ ¥V x t tDom , ,0 0 . Our option is to
construct a wave-packet of the oscillator (14) with the
appropriate profile. Keeping this in mind, we first obtain the
basic solutions f(x, t) of the Schrödinger equation associated
to potential (14). Then, using such a basis, we get the trans-
formation function u(x, t).

3.1. Time-dependent wave-packets for the stationary oscillator

Following [37], let us assume that the wave-packet

⎧⎨⎩

}
( ) ( ) ( )[ ˆ ( )]

ˆ ( )[ ˆ ( )] ( ) ( )

f = - á ñ

+ á ñ - á ñ +


x t N t S t x x t

p t x x t K t

, exp i

i
i , 15

WP
2

is a solution of the Schrödinger equation (7) for the time-
independent potential (14), recall that we have made
c1(t)=0. The purely time-dependent functions S(t), K(t), and
the normalization factor N(t), are determined in the sequel. In
turn, the mean value of position is given by

ˆ ( ) ≔ ( )∣ ˆ∣ ( ) ( ) ( ) ( )òá ñ á ñ =


x t u t x u t xu x t xu x td , , . 16*

Hereafter we shall write ˆ ( ) ≔ ( )há ñx t t and ˆ ( ) ( )há ñ =p t m t ,

with ( ) ( ) =z t z t
t

d

d
.

3
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Comparing (15) with a conventional (normalized) wave-
packet of the stationary oscillator [49]

⎡
⎣⎢

⎤
⎦⎥

( )
[ ( ˆ) ]

( ˆ )
( ˆ)

ˆ ( ˆ ) ( )

p
F =

D

´ -
- á ñ
D

+
á ñ - á ñ



x
x

x x

x

p x x

1

2

exp
4

i , 17

WP 2 1 4

2

2

one realizes that the time-dependent function S(t) is in general
complex-valued S(t)=SR(t)+iSI(t), where the imaginary
part SI(t) should be related to the time-dependent position var-
iance ( ˆ) ( ) ˆ ( ) ˆ ( )D = á ñ - á ñx t x t x t2 2 2 through ( )

( ˆ) ( )
=

D
S tI x t

1

4 2 .

Besides, the maximum of the wave-packet is located at
( ) ( )h = á ñt x t and thus, must follow a classical trajectory.

Indeed, after substituting (15) in (7), one gets the condition for
normalization

( )
( )

( ) ( )


= -
N t

N t m
S t , 18

the nonlinear Riccati equation

⎜ ⎟⎛
⎝

⎞
⎠ ( ) w+ + =

 
m

S
m

S
2 2

0, 19
2

0
2

the expression for the K-function

( ) ˆ ( ) ˆ ( ) ( )= á ñ á ñ


K t p t x t
1

2
, 20

as well as the classical equation of motion obeyed by the max-
imum of the wave-packet

̈ ( ) ( ) ( )h w h+ =t t 0. 210
2

It is a matter of substitution to show that (19) decouples into the
system

( ) ( )
( )

( )
( )

( )a
a

l
a

l= = =

m

S t
t

t
S t

t

2
, , const, 22R I 2

where α(t) satisfies the Ermakov equation (see [37] for details):

⎜ ⎟⎛
⎝

⎞
⎠̈ ( ) ( )

( )
( )a w a

l
a

+ =


t t
m t

2 1
. 230

2
2

3

Notice that λ=0 produces the coincidence of equation (23) with
the Newtonian law of motion (21). Besides, it also yields SI=0
in (22), so the function fWP(x, t) introduced in (15) is reduced to
the real-valued function N(t) times a phase, which depends on x
and t. Thus, our approach considers l ¹ 0 in order to ensure a
nontrivial function SI(t) as well as a Gaussian-like wave-packet
fWP(x, t).

To solve the Ermakov equation (23) one may use a pair
of linearly independent solutions of (21), namely ( )a =t1

( )w -t tcos 0 0 and ( ) ( )a w= -t t tsin2 0 0 , to write [26]:

( ) { ( ) ( )
( )} ( )

a w w
w

= - + -
+ -

t a t t b t t

c t t

cos sin 2

sin . 24

2
0 0 0 0

2
0 0

1 2

The nonnegative parameters a, b, and c, are such that

⎛
⎝⎜

⎞
⎠⎟ ( )l

w
= -


b ac

m

2
. 25

0

2

Let us simplify the notation by making, without loss of
generality,l = w


m 0 . Hence = -b ac 4 . On the other hand,

using (22) in (18) we obtain the normalization factor

( )
( )

( )( )

a
= q-N t

N

t
e , 26t0 i

2

with N0 an integration constant which is fixed by normal-
ization, and

{ }
( )

( )

[( ) ( )] ( )

òq w
a t

t

w

=

= - + -

t

ac c t t

2
1

d

arctan 4 tan . 27

t

t

0 2

1

2
1 2

0 0

0

Therefore, the normalized wave-packet we are looking for
acquires the Gaussian form

⎜ ⎟⎛
⎝

⎞
⎠

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

( )
( )

ˆ ( )
( )

( )

( ) ( )
f

w
p a

w
a

=

´ -
- á ñ

q x-





x t
m

t

m x x t

t

,
2 e e

exp , 28

t x t

WP
0

1 4 i ,

0
2

i
2

where

( ) ( )
( )

[ ˆ ( )]

ˆ ( )[ ˆ ( )] ˆ ( ) ˆ ( )
( )

x
a
a

= - á ñ

+ á ñ - á ñ + á ñ á ñ



 

x t
m t

t
x x t

p t x x t p t x t

,
2

1 1

2
.

29

2

As indicated above, the imaginary part of S(t) defines the
time-evolution of the width of the wave-packet. Namely,

( )
( ˆ) ( ) ( )

= = l
aD

S tI x t t

1

4 2 2 produces the variance

( ˆ) ( ) [ ( )

( ) ( )] ( )
w

w

w w

D = -

+ - + -


x t

m
a t t

b t t c t t

4
cos

sin 2 sin . 30

2

0

2
0 0

0 0
2

0 0

Then, the width oscillates with period t = p
w0
, and is such that

⎜ ⎟

⎧

⎨
⎪⎪

⎩
⎪⎪

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

( ˆ) ( )

( )

w
t

w
t

D =

= +

=
+

+

= ¼




x t

m
a t n t

m
c t

n
t

n

4
,

4
,

2 1

2

,

0, 1, 2, 31

n

n

n

2 0
0

0
0

If a=c then ( ˆ) ( )Dx t2 oscillates (up to the constant defining
the units) between a+b and a−b with period t = p

w0
.

The expectation values ˆá ñx and ˆá ñp are obtained from the
solutions of the Newtonian equation (21). In short notation, it
may be shown that they obey the rule

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( ) ( )

ˆ ( )
ˆ ( )

( )  
= =

á ñ
á ñ

x t R t x t x t
x t

p t
a, , 320

where the rotation matrix

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟( )

( ) ( )

( ) ( )
( )

w
w

w

w w w
=

- -

- - -
R t

t t
m

t t

m t t t t
b

cos
1

sin

sin cos
32

0 0
0

0 0

0 0 0 0 0
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has the classical period t = p
wosc
2

0
. That is, in the phase-space,

the point ( )
x t describes a circumference that passes through

( )
x t0 over and over as the time reaches any integer multiple of
the period τosc [49].

3.1.1. Hermite–Gauss packets and their dynamical algebra.
Introducing the variable

⎜ ⎟⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥( )

ˆ ( )
( )

( )c
w

a
=

- á ñ


x t
m x x t

t
,

2
330

1 2

one may rewrite the Gaussian wave-packet (28) as follows

⎜ ⎟⎛
⎝

⎞
⎠( )

( )

( )

( ) ( )
( )f

w
p a

e

=

=

e q x
c

-
-


x t

m

t
,

2 e e
e ,

. 34

t x t
x t

0
0

1 4 i i ,
,

0
1

2

0 1
2

2

It is immediate to recognize the resemblance with the ground
state wave-function of the quantum harmonic oscillator. This
wave-packet can be also compared to the fundamental, one-
dimensional, off-axis Hermite–Gauss mode associated to
parabolic refractive index optical media, see e.g. [47]. In this
context, the variance ( ˆ)Dx 2 represents the oscillating beam
width that encodes all the information of the propagation
properties of the light beam along the optical axis. With this
in mind we follow [46] and propose the set of Hermite–Gauss
modes

( )
( )

( ( )) ( )
( ) ( )

f
a

j c=
e q x-

x t c
t

x t,
e e

, 35n n

t x t

n

i i ,n

as the basic solutions of the Schrödinger equation (4) for the
potential V0(x) given in equation (14). The constants cn must
be fixed by normalization. The straightforward calculation
shows that the new functions jn(χ) satisfy the (free of units)
eigenvalue problem of the quantum stationary oscillator of
mass and frequency both equal to 1,

⎡
⎣⎢

⎤
⎦⎥ ( ) ( )

c
c

e j c- + - = = ¼n
1

2

d

d 2
0, 0, 1, 2, 36n n

2

2

2

For e = +nn
1

2
the normalized solutions of (36) are well

known

( )
!

ˆ ( ) ( ) ( )j c j c j c
p

= = c+ -

n
a

1
,

1
e , 37n

n
0 0 1 4

22

where

⎛
⎝⎜

⎞
⎠⎟ˆ ( )

c
c= +a

d

d
, 381

2

are the boson ladder operators [ ˆ ˆ ] =- + a a, , with  the
identity operator, and

ˆ ( ) ( ) ˆ ( ) ( )

( )

j c j c j c j c= + =

= ¼

+
+

-
-a n a n

n

1 , ,

0, 1, 2,

39

n n n n1 1

From (37) and (35) we now introduce the operators (see
details in [46]):

ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ( )

( ) ( ) ( )

( ) ( ) ( )

=

= =

q x x

q x x

+ - + -

- - - + -
A a

A a n A A

e e e ,

e e e , , 40

t x t x t

t x t x t
A

i i , i ,

i i , i ,

which satisfy the oscillator algebra

[ ˆ ˆ ] [ ˆ ˆ ] ˆ ( )= = - +  A A n A A, , , . 41A

Note that ˆA are ladder operators for the eigenfunctions of n̂A,
which in turn can be rewritten as ˆ ˆ( ) ( )= x x-n ne eA

x t x ti , i , , with
ˆ ˆ ˆ= + -n a a the conventional boson-number operator. The
action of the above operators on the Hermite–Gauss modes
(35) is given by

ˆ ( ) ( )
ˆ ( ) ( ) ( )

f f

f f

= +

=

+
+

-
-

A x t n x t

A x t n x t a

, 1 , ,

, , , 42

n n

n n

1

1

and

ˆ ( ) ( ) ( )f f=n x t n x t b, , . 42A n n

That is, the time-dependent wave-packets (35) are
eigenfunctions of the modified number operator n̂A. In
coordinate representation, it may be shown that the time-
dependent ladder operators (42a) are written as follows

⎜ ⎟⎛
⎝

⎞
⎠

ˆ ( )

[ ˆ ˆ ( )] ( )[ ˆ ˆ ( )] ( )

( )a
w

=-

´ - á ñ - - á ñ

q+ - 



A t
m

p p t S t x x t a

ie

1

2
, 43

ti

0

*

⎜ ⎟⎛
⎝

⎞
⎠

ˆ ( )

[ ˆ ˆ ( )] ( )[ ˆ ˆ ( )] ( )

( )a
w

=

´ - á ñ - - á ñ

q- 



A t
m

p p t S t x x t b

ie

1

2
. 43

ti

0

Therefore, the functions fn(x, t) in (35) can be rewritten in the
familiar (short) form

( )
!

ˆ ( ) ( )f f= = ¼+
x t

n
A x t n a,

1
, , 0, 1, 2, 44n

n
0

Equivalently

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( )

( ) !

⟨ ⟩( )
( )

( )

( ) ( ) ( ) ⟨ ⟩( )
( )

/

f
w

p a

w
a

=

´
-

q x w
a

- + -
-





x t
m

t n

H
m x x t

t

b

,
2 e e

2
e

2
,

44

n

n t x t

n

m x x t
t

n

0
1 4 i 1

2 i ,

0

0
2

^

^

with Hn(z) the Hermite Polynomials [50]. In the case
ˆ ( )á ñ =x t 0 the functions fn(x, t) coincide with the well
known Hermite–Gauss modes [46]. For ˆ ( )á ñ ¹x t 0 this

5

Phys. Scr. 95 (2020) 044009 S C y Cruz et al



expression describes off-axis, tilted beams for which the wave
vector follows a trajectory given by (32a)–(32b).

On the other hand, the dynamical invariant operator

⎛
⎝⎜

⎞
⎠⎟

ˆ
[ ˆ ˆ ( )] { ˆ ˆ}

[ ˆ ˆ ( )]

[ ˆ ( ) ˆ ˆ ( ) ˆ ˆ ( ) ˆ ( )] ( )







a aa

a
a

aa

= - á ñ -

+ + - á ñ

+ á ñ + á ñ - á ñ á ñ

I

I m
p p t

m
x p

w
x x t

m
p t x x t p p t x t

,

4

2 , 45

0

2

2
2

2 0
2

2
2

can be obtained by eliminating the frequency ω0 from the
Newton equation of motion (21) and the Ermakov
equation (23), just as it was shown by Ermakov for the
parametric oscillator [25] (see the discussion on the matter
and further details in [37]). The constant =

w
I m
0 4 0

has been

introduced to provide the invariant Î with dimensions of
action. One may show that the Hermite–Gauss wave-packets
fn(x, t) defined in (35) are eigenfunctions of the invariant Î

with eigenvalue ( )+ n 1

2
. The latter is due to the fact that

the operator introduced in (45) can be rewritten in the form

( )ˆ ˆ ( ˆ ˆ )= + = ++ - I n A AA
1

2

1

2
. Thus, the operators (40)

factorize also the invariant Î since it commutes with the
modified number operator n̂A.

The invariant problem for time-dependent oscillators has
been faced in different approaches [7, 20, 28–41], including
its presence for the x-dependent Ermakov equation [26, 27]. A
more general treatment considers point transformations for
which the related invariant arises as a natural consequence of
deforming the stationary oscillator to get nonstationary
oscillators [7, 41]. In appendix we offer an alternative
derivation of the invariant (45). The relevant point here is that
the functions (35) satisfy the orthonormality condition

( ) ( ) ( )ò f f d=


x x t x td , , , 46n m n m,*

which holds when the involved functions are evaluated at the
same time (otherwise the orthogonality is not granted). Thus,
the set fn(x, t) forms a complete basis for the normalizable
solutions of the Schrödinger equation (4) defined by the
potential V0(x, t) we are dealing with.

3.2. Nonstationary oscillators

Following [42], for the transformation function we write

( )
( )

( ( )) ( )
( ) ( )

( )

a
c=

eq x
c

-
-u x t

t
F x t,

e e
e , . 47

t x t
x t

i i ,
,1

2
2

We look for a real-valued function ( )cc- Fe
1
2

2
, with no zeros

in [ )´ ¥ t ,0 , satisfying the eigenvalue equation of the
stationary oscillator for a given eigenvalue ε. Using (36) one
may verify that F(χ) satisfies the confluent hypergeometric
equation associated to the harmonic oscillator, the general

solution of which is written in the form

( )
( )

( ( )) ( )

( ) ( )

c e c

c e c

= -

+ -

F x t k F

k F

, 1 2 , ,

3 2 , , , 48

a

b

1 1
1

4

1

2
2

1 1
1

4

3

2
2

where ( )F a c z, ;1 1 stands for the confluent hypergeometric
function [50], and the constants ka, kb, ε, are to be determined.
Indeed, assuming that F(χ) fulfills our requirements, it is a
matter of substitution to show that condition (11) is satisfied,
so the potential (10), now written

( ) [ ( ( ))]
( )

( )w c
w

a
= - ¶ +

 
V x t m x

m
F x t

t
,

1

2
ln ,

2
, 49x1 0

2 2
2

2 0
2

is real-valued. Remark that the frequency of V1(x, t) is exactly
the same as the constant frequency ω0 of the stationary
oscillator (14). That is, the time-dependence of the new
potential (49) arises from the additive term included by the
Darboux transformation. In this respect, the nonstationary
oscillators represented by such a potential increase the num-
ber of exactly solvable time-dependent oscillators already
reported in the literature, where it is usual to find oscillators
with time-dependent frequency that are acted by a driving
force which also depends on time. The time-dependent term
included by the Darboux transformation in (49) would
represent external forces that either take energy from the
oscillator or supply energy to it. That is, depending on the
functions α(t) and F(χ(x, t)), we are facing a nonconservative
system which has no solutions with the property of being
orthogonal if they are evaluated at different times, similarly to
the inner product of the Hermite–Gauss modes (46). We give
full details of the related solutions and their properties in
section 3.2.1. Notice also that the term containing the function
α in (49) would represent a time-dependent zero point energy
which may be omitted (at the cost of producing just the dif-
ference of a global phase in the solutions, see e.g. [41]).

In turn, the β-function (6) acquires the form

( ) ˆ ( ) ( )[ ˆ ( )]

[ ( ( ))] ( )

b

c

=- á ñ - - á ñ

- ¶


x t p t S t x x t

F x t

,
i

2i

ln , , 50x

while the ℓ-function (9) is simply ℓ(t)=α(t). Recalling the
expression that connects the width (variance) of the wave-
packet (28) with the α-function (30), we immediately realize
that the function ℓ(t) is associated to the standard deviation

( ˆ) ( )Dx t2 of fWP(x, t) ≡ f0(x, t) as follows

( ) ( ) ( ˆ) ( ) ( )a
w

= = D


ℓ t t
m

x t
4

. 510 2

The derivation of the intertwining operator (1) is immediate
using (50) and (51). However, it is profitable to rewrite L̂ in
terms of the annihilation operator ˆ-A introduced in (40). The
straightforward calculation gives

( ) [ ( ( ))] ( )( )a c
w

= - ¶ + q- -


L t F x t

m
Aln , 2e , 52x

ti 0^ ^

where we have used (43b).
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3.2.1. Solutions and dynamical algebra for the time-dependent
oscillators. The construction of the solutions to the
Schrödinger equation defined by the nonstationary potential
(49) is given by the transformation

( ) ( )
( ) [ ( ( ))] ( )

( )

( )

( )

y f
a c f

w
f

=
=- ¶

+ = ¼q

+

-
-

x t L x t

t F x t x t

m n
x t n

, ,

ln , ,

2e , , 0, 1, 2,

53

n n

x n

t
n

1

i 0
1

^

On the other hand, the appropriate transformation function u
(x, t) defines a square-integrable missing state (13), which
must be added to the solutions. We may consider e < 1

2
to

write ψM(x, t) ≡ ψ0(x, t).
To get more insights about the new set of functions (53)

we have to emphasize that they are not eigenfunctions of the
Hamiltonian defined by the time-dependent potential (49).
The reason is that such a Hamiltonian is not an integral of
motion. Thereby, it is necessary to determine the first integral
(s) that may serve as observable(s) to define uniquely the new
oscillators. As indicated above, the existence of an invariant
for the time-dependent oscillators was mathematically shown
by Ermakov in 1880 [25]. In the present case, the
straightforward calculation shows that the functions ψ(x, t)
introduced in (53) are eigenfunctions of the invariant operator

⎡
⎣⎢

⎤
⎦⎥( ) ( )w

= -


I I I
m

G x t
4

, , 54G 0
0^ ^ ^ ^

with Î and I0 given in (45). The operator ˆ ( ˆ )G x t, corresponds
to the additive time-dependent term of V1(x, t), it is defined in
equation (A.4) of the appendix, where the derivation of ÎG is
developed in detail. Notice that turning off the operator
ˆ ( ˆ )G x t, both invariants coincide ˆ ˆ==I IG 0 , as expected.

Let us complete our program by following [15, 16] to
introduce an additional operator M̂ , which is assumed to act
on the space of states of the potential V1(x, t), as follows

ˆ ( ) ( ) ( )y f=M x t x t, , . 55

Using (53) one gets ˆ ( ˆ )f f=M L . Then ˆ ˆ = ML , which
means that M̂ reverts the action of L̂. The latter is significative
since we can construct a new pair of operators

ˆ ˆ ˆ ˆ ( )= 
B LA M , 56

such that

ˆ ( ) ( )
ˆ ( ) ( ) ( )
y y

y y

= +

=

+
+

-
-

B x t n x t

B x t n x t

, 1 , ,

, , . 57

n n

n n

1

1

That is, ˆB are the ladder operators in the space of states of
the new potential. Indeed, the straightforward calculation
yields the oscillator algebra

[ ˆ ˆ ] [ ˆ ˆ ] ˆ ˆ ˆ ˆ ( )= =  =- +   + -B B n B B n B B, , , , . 58B B

Therefore, we can write

( )
!

ˆ ( ) ( )y y= = ¼+x t
n

B x t n,
1

, , 0, 1, 2, 59n
n

0

3.3. Coherent states

The bare essentials of coherent states can be expressed as a
linear superposition

∣ ( )∣ ( )å gñ = ñ Î
Î

z f z z, , 60
n

n nCS

where the vectors ∣g ñn generate a (separable) Hilbert space ,
Ì  is an appropriate set of indices, and fn(z) is a set of

analytical functions permitting normalization [49]. The super-
positions (60) satisfy some specific properties that are requested
on demand. For instance, in the harmonic oscillator case it is
well known that the coherent states (i) are eigenvectors of the
annihilation operator with complex eigenvalue (ii) are displaced
versions of the vacuum state (iii) minimize the Heisenberg
uncertainty and (iv) are time-invariant. Any of the above prop-
erties can be used as a definition, then the other ones are
recovered as a consequence of the former. The simplest form of
obtaining a harmonic oscillator state with all the above proper-
ties is by using a linear superposition (60) where the vectors ∣g ñn
are the number states ∣ ñn ; such states are named after Glauber
[51] and are usually called coherent states. For systems other
than the harmonic oscillator not all the above properties can be
satisfied simultaneously. It is then common to use one of such
properties as a definition and to analyze how many of the other
properties are fulfilled (for a detailed classification and discus-
sion on the matter see the review paper [49]). The states so
constructed are known as ‘generalized coherent states’ (coherent
states for short if there is not ambiguity).

The relevance of the Hermite–Gauss modes introduced in
section 3.1.1 for the stationary oscillator (3), and the solutions
introduced in section 3.2.1 for the time-dependent oscillators
(49), is that both of them form an orthogonal basis for their
respective spaces of states. The latter, we insist, since they are
eigenfunctions of the invariant operators Î and ÎG, respec-
tively. Therefore, we are able to construct time-dependent
‘coherent’ superpositions (60) for either the stationary or the
nonstationary oscillators discussed in the previous sections.
Additionally, for both systems we have obtained a set of
operators that satisfy the oscillator algebra, so we have at
hand either the algebraic (Barut–Girardello) or the group
(Perelomov–Gilmore) approaches to define the coefficients fn
of the superposition (60). In the former picture one looks for
states satisfying the property (i) described above. The latter
picture uses property (ii) as definition of coherent state.

Let us start with the Hermite–Gauss modes, it is simple to
show that the superposition

( )
!

( ) ( )∣ ∣ åf f= Î-

=

¥

x t
z

n
x t z, e , , , 61z

z

n

n

n
0

1
2

2

is eigenvector of the operator ˆ-A with eigenvalue z. The
probabilities ∣ ( )∣f x t,z

2 follow the Poisson distribution and are
not time-dependent (see [52] and compare with [53]). By
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construction, the state fz(x, t) minimizes the uncertainty
associated to the quadratures

ˆ ( ˆ ˆ )

ˆ ( ˆ ˆ ) [ ˆ ˆ ] ( )

= +

= - =

+ -

+ -

q A A

p A A q p

1

2
,

i

2
, , i. 62

A

A A A

Besides, from (44a) it can be verified that

( ) ( )
ˆ ( ) ( ) ( )

∣ ∣ ˆf f

f

=

º

-
+

x t x t

D z x t

, e e ,

, , 63

z
z zA

A

0

0

1
2

2

where we have used the fact that f0(x, t) is annihilated by ˆ-A
as well as the conventional disentangling formula for the
Heisenberg–Weyl group [49]. Thus, the coherent sates (61)
are also displaced versions (in the complex z-plane) of the
fiducial state f0(x, t), which is time-dependent through the
function χ(x, t) defined in equation (33). Moreover, using (46)
it can be verified that the set fz(x, t) is overcomplete, just as
this occurs for the Glauber states.

To construct a first class of coherent states for the non-
stationary oscillators (49) we can use the action of the
operator L̂ introduced in (52). We immediately obtain

( ) ( ) ( ) ( )

[ ( ( ))] ( ) ( )( )

y f f a

c f

= = - ¶

´ + q w-


x t L x t x t t

F x t z x t

, , ,

ln , 2 e , . 64

z z z x

t m
z

i 0

^

As we can see, in contrast with the conventional coherent
states, neither fz(x, t) nor ψz(x, t) preserve their form when
they evolve in time. This is because their time-dependence is
not focused on the complex eigenvalue z, but in the basis of
states that are used to construct the superpositions.

Additionally, we can obtain the eigenfunctions of the
operator ˆ-B , which yields

( ) ˆ ( ) ( )

!
( ) ( )∣ ∣ å

y y

y

=

= Î

~

-

=

¥



x t D z x t

z

n
x t z

, ,

e , , , 65

z B

z

n

n

n

0

0

1
2

2

where we have used, again, the conventional disentangling
formulae for the Heisenberg–Weyl group. The latter states
minimize the uncertainty of their respective quadratures

ˆ ( ˆ ˆ )

ˆ ( ˆ ˆ ) [ ˆ ˆ ] ( )

= +

= - =

+ -

+ -

q B B

p B B q p

1

2
,

i

2
, , i, 66

B

B B B

and their probabilities are given out according with the (not
time-dependent) Poisson distribution. It is clear that the
coherent states ( )y x t,z are not invariant under time evolution
(the time-dependence is not defined by the complex eigen-
value z, as in the previous cases). Nevertheless, they form an
overcomplete set in the space of states of the nonstationary
oscillators V1(x, t) defined in (49).

4. Examples and discussion of results

Next we provide some specific examples to show the applic-
ability of our method. We have selected representative cases for
the nonstationary oscillators V1(x, t) as well as for the related
solutions ψn(x, t) and coherent states ψz(x, t). As indicated above,
we shall take e < 1

2
in order to get well defined missing states

ψM(x, t) ≡ ψ0(x, t), however such a selection does not limit our
approach since the oscillation theorems that apply for stationary
Hamiltonians are not directly valid in the present case. Addi-
tionally, recall that ψM(x, t) is orthogonal to any state ψ(x, t)
constructed through equation (53), no matter the value of ε. So
that any e  1

2
producing normalizable states ψM(x, t) may be

included in the set of solutions. Results in this direction will be
reported elsewhere.

4.1. Case ε ¼ �1
2

For e = - 1

2
the function (48) becomes

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )c

p
c= +cF k ke

2
Erf , 67a b

2

so that the operator L̂ and potential V1 are respectively given
by

⎜ ⎟⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥( ( )

( )

( )

( )

( )

/w
p c

c=-
+

+

+

c

q w

-

- -





L
m k

k k x t
x t

A

a

2
2 e

2 Erf ,
,

2e

68

b
x t

a b

t m

0
1 2 ,

i

2

0

^

^

and

⎜ ⎟⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

( )
( )

( ( )) ( )
( )

( )

w
a

w

p c
w

a

= -

´ ¶
+

-
c-






V x t m x
m t

m

k

k k x t t
b

,
1

2

2 2

e

2 Erf ,

2
.

68
x

b
x t

a b

1 0
2 2

2
0

1 2

,
0

2

2

To avoid singularities in ( )V x t,1 we take ∣ ∣ ∣ ∣> pk ka b2
.

Figure 1 shows the behavior of these potentials at two dif-
ferent times (measured in arbitrary units). We can identify a

Figure 1. Nonstationary oscillators V1(x, t) defined in equation (68b)
at two different times (arbitrary units). The gray filling is a reference
of the stationary oscillator (14). In all cases t0=0, m=1, ω0=0.5
(also in arbitrary units), and ka=0.89kb. The curves in red, dashed-
blue, and dotted-purple correspond to oscillators that departured
from the initial point ( ˆ ˆ )á ñ á ñx p,0 0 defined by (0,0), (3,0), and (3,1),
respectively. We have used α(t) with a=1 and c=4.
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local ‘deformation’ of these potentials with respect to the
stationary oscillator V0(x) defined in (14). Such a perturbation
oscillates around its initial position by following the parabola
that represents the stationary oscillator. The latter is better
appreciated in figure 2, where the time-evolution of the
nonstationary oscillators V1(x, t) is depicted.

The behavior of the three first states ψn(x, t) of the
nonstationary oscillators (68b) is exhibited in figure 3 for the
same parameters as those used in figures 1 and 2. The
value e = - 1

2
permitted the construction of the missing state

ψ0(x, t). Notice that such a packet concentrates its maximum
by following the time-dependent perturbation of the related

potential, as expected. The same global behavior is appre-
ciated for the wave-packets ψ1(x, t) and ψ2(x, t), where their
local maxima follow the potential perturbation as the time
goes on.

The coherent states ( )y x t,z of the potential (68b) are
shown in figure 4 for two different values of the complex
eigenvalue z and the same parameters as in the previous
figures. The case z=i (upper row in the figure) exhibits the
propagation of two maxima that obey their presence to the
logarithmic derivative of F(χ) in the first term of ψz(x, t), see
equation (64). Such an effect becomes negligible for other
values of z, as it can be noted in the plots of the lower row.

Figure 2. Time-evolution of the nonstationary oscillators V1(x, t) shown in figure 1 for the indicated values of the initial points ( ˆ ˆ )á ñ á ñx p,0 0 .

Figure 3. Probability densities of the three first Darboux deformed wave-packets ψn(x, t) associated with the potentials shown in figures 1
and 2.
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4.2. Case ε ¼ �3
2

In this case, the relevant results are the F-function

( ) [ ( )] ( )c c p c= + +cF k k ke Erf , 69a b a
2

as well as the operator

⎜ ⎟⎛
⎝

⎞
⎠

⎡
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⎤
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
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and the potential

⎜ ⎟⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

( )

( )
( )

( ) ( )
[ ( )] ( )

/w
a

w
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




b70
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2

2

2 e 1 2 Erf

e Erf

2
.x

a b a

a b a

1
0
2 2 2

0
1 2

2
0

2

2

2

The time-evolution of the nonstationary potential (70b) is
shown in figure 5 with similar values to those used in the
previous case. Notice that the global behavior of an

oscillating perturbation is also presented in this case. Similar
conclusions are obtained from figures 6 and 7, where we
show the time-evolution of the probability densities of the
wave-packets ( )y x t,n and coherent states ψz(x, t),
respectively.

5. Conclusions

We have obtained time-dependent wave-packets with the
Hermite–Gauss profile for the stationary oscillator of constant
frequency ω0. These states are not eigenfunctions of the
related Hamiltonian and are not orthonormal if the elements
in the product are evaluated at different times. Nevertheless,
we have shown that there exists an invariant operator ˆ ( )I t
which admits the Hermite–Gauss modes as eigenfunctions.
Then, such functions form an orthonormal basis for the space
of states of the stationary oscillator and differ from the
solutions of the related Schrödinger equation just by a time-
dependent phase.

The above described Hermite–Gauss wave-packets have
been used to construct time-dependent Darboux deformations
of the stationary oscillator via the method introduced in

Figure 4. Probability density of the coherent states ( )y x t,z for the indicated values of the initial point ( ˆ ˆ )á ñ á ñx p,0 0 and the eigenvalue z. The
other parameters are the same as those of figure 1.

Figure 5. Nonstationary oscillators V1(x, t) defined in equation (70b) for the indicated values of the the initial point ( ˆ ˆ )á ñ á ñx p,0 0 . In all cases
t0=0, m=1, ω0=0.5, and ka=1.7kb. We have used α(t) with a=1 and c=5.
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[15–18]. We have shown that the new nonstationary oscilla-
tors exhibit a local ‘deformation’ that oscillates along the
parabola that represents the potential of the stationary case. In
turn, the local maxima of the solutions also oscillate by fol-
lowing the deformation of the potential as the time goes on.

We have provided the invariant ÎG for the nonstationary
oscillators, so that the solutions reported here are eigenfunc-
tions of ÎG since the corresponding Hamiltonian is not an
integral of motion of the system. The invariant operator ÎG
coincides with the invariant Î of the Hermite–Gauss modes

Figure 6. Probability densities of the three first Darboux deformed wave-packets ψn(x, t) associated with the potentials shown in figure 5.

Figure 7. Probability density of the coherent states ψz(x, t) for the indicated values of the initial point ( ˆ ˆ )á ñ á ñx p,0 0 and the eigenvalue z. The
other parameters are the same as those of figure 5.
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when the time-dependence of the nonstationary oscillators
(represented by an additive operator Ĝ in the new Hamilto-
nian) is turned off.

We also provided the dynamical algebras for both sets of
functions, the Hermite–Gauss modes and the solutions to the
nonstationary oscillators, and show that they close the Heisen-
berg algebra. Then we have constructed the corresponding
coherent states, which form an overcomplete set while they
minimize the quadratures associated with the ladder operators.
Remarkably, the time-dependence of these states does not yields
on the complex eigenvalue z, but on the basis of solutions itself.

It is expected that our approach can be applied to study
either trapping of particles by electromagnetic fields [19–24],
or the propagation of electromagnetic signals [46–48]. Our model
can be extended to the case of non-Hermitian Hamiltonians
[26, 27], for which some interesting results have been reported
quite recently [45]. Immediate applications are available in
supersymmetric quantum mechanics [4, 12–14], which can be
used to model photonic systems with complex refractive index
[8, 54–57].
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Appendix. Invariant operator

Any invariant operator (first integral) ˆ ( )I t must satisfy the
Heisenberg equation

ˆ ( ) [ ˆ ( ) ( )] ˆ ( ) ( )= +
¶
¶

=
t

I t H t I t
t
I t

d

d

i
, 0. A.1

For time-dependent oscillators the operator ˆ ( )I t was achieved
in mathematical form by Ermakov [25]. Fundamental results
addressed to face nonstationary systems in quantum
mechanics were then reported by Lewis and Riesenfeld
[28, 29], and formalized by Dodonov and Man’ko [30, 31],
and by Glauber [20]. Over the time, some approaches have
been developed to study a wide diversity of quantum
mechanical problems (see, e.g. [32–40]), including the
application of the Ermakov equation in coordinate repre-
sentation (rather than using the time parameter) to construct
stationary non-Hermitian exactly solvable Hamiltonians
[26, 27]. Recent results show that the invariant ˆ ( )I t is a
natural consequence of point transformations when nonsta-
tionary oscillators are produced as deformations of the sta-
tionary case [7, 41]. The relevance of ˆ ( )I t is that one can find

a set of its eigenfunctions

ˆ ( ) ( ) ( )
( ) ( )

j l j
l l

=
¹ Î Ì 

I t x t x t

t n

, , ,

, , A.2
n n n

n n

which satisfy an orthonormality condition when the involved
functions are evaluated at the same time. Thus, the product
between ( )j x t,n and ( )j ¢x t,m is not necessarily δn,m if ¹ ¢t t .
The latter is relevant since nonstationary Hamiltonians ˆ ( )H t
are not integrals of motion for the related system, so that the
spectral problem defined by ˆ ( )H t is either cumbersome or
even intractable. In general, the eigenfunctions ( )j x t,n of
the invariant ˆ ( )I t are connected with the solutions of the
Schrödinger equation ( ) ˆ ( ) ( )j j¶ = x t H t x ti , ,t n n through a
time-dependent complex phase [29]. Namely, ( )j =x t,n

( )( )jq x te ,t
n

i n , with θn(t) to be determined.
To construct the invariant operator ÎG reported in

equation (54) we pay attention to the Hamiltonian defined by
the time-dependent potential (49):

( )
( )

[ ( ( ))]
( )

w
w

a
c

w
a

= - ¶ +
 

V x t m x
t

F x t
t

,
1

2

2
ln ,

2
.x1 0

2 2 0
2

2 0
2

That is, we use the Hamiltonian

( )
( )

( )
( )

( )w
w

a
w

a
= + - +

 
H t

p

m
m x

t
G x t

t2

1

2

2
,

2
, A.31

2

0
2 2 0

2
0

2
^ ^

^ ^ ^

where the operator ˆ ( ˆ )G x t, is defined such that

⟨ ∣ ( )∣ ⟩ [ ( ( ))] ( ) ( )y c y= ¶cx G x t F x t x t, : ln , , . A.42^ ^

From the well known structure of the Ermakov–Lewis–Rie-
senfeld invariant we now propose

ˆ ( ) ˆ ( ) ( ) ˆ ( ˆ ) ( )= +I t I t f t G x t, , A.5G

where the coefficient f (t) is to be determined. Equation (A.1)
is easily achieved by considering the relationships

[ ˆ ˆ ] [ ˆ ˆ ] { ˆ ˆ}
[ ˆ { ˆ ˆ}] ˆ [ ˆ { ˆ ˆ}] ˆ ( )

=- =
= = -


 

x p p x x p

x x p x p x p p

, , 2i , ,

, , 4i , , , 4i , A.6

2 2 2 2

2 2 2 2

along with the identity

[{ ˆ ˆ} ( ˆ)] ˆ [ ˆ ( ˆ)] ( )=x p f x x p f x, , 2 , , A.7

with ( ˆ)f x a smooth function of x̂. Besides, it is straightfor-
ward to show that

⎛
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Therefore
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where we have used that ˆ ( )I t is the dynamical invariant of Ĥ0.
By simple inspection one finds that ( ) = - wf t

m

4 0 provides
the root of equation (A.9).

After introducing the above parameters into equation (A.5)
we recover the expression (54) for the invariant ÎG. Clearly, if
the operator ˆ ( ˆ )G x t, is turned off, then ˆ ˆ==I IG 0 , with Î the
invariant reported in equation (45). The latter is quite natural by
considering that the operator ˆ ( ˆ )G x t, corresponds to the time-
dependent term that results from the difference V1(x, t)−V0(x).
Thus, if ˆ ( ˆ ) =G x t, 0 one has V1(x, t)=V0(x).
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