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Abstract
The paper, classically, presents an extended Klein–Gordon field system in 3+1 dimensions
with a special Q-ball solution. The Q-ball solution is energetically stable, that is, for any arbitrary
small deformation above the background of that, total energy always increases. The general
dynamical equations, just for this special Q-ball solution, are reduced to the known versions of a
complex nonlinear Klein–Gordon system, as its dominant dynamical equations.
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1. Introduction

The complex nonlinear Klein–Gordon (CNKG) systems with
the well-known non-topological Q-ball solutions, have been of
interest to physicist [1–48]. For the first time, such non-topo-
logical lumps was proposed in [1] and then called Q-balls [2].
Since the Lagrangian densities which bear the Q-ball solutions
have the global U(1) symmetry, then any Q-ball solution has a
specific charge Q and a specific rest frequency ωo. Q-balls are
interesting for gravitational waves production and different
cosmological scenarios [10–13]. They are also introduced as
dark matter candidates [14–18]. Moreover, the gauged Q-balls
have been of interest to many articles [19–37]. In general, there
is a vast literature on the stationary Q-balls, for example, one
can see [38] and the references therein.

Based on these motivations, the stability of Q-balls has
been intensively studied [39–48]. In general, the stability is the
main condition for a solitary wave solution to be a soliton. For
the topological solitary wave solutions, the stability is inherent.
But, for the non-topological solitary wave solutions, there are
different criteria for the stability depending on purposes. Spe-
cially, for the systems with non-topological Q-ball solution,
there are three well-known criteria that are called the classical
(Vakhitov–Kolokolov), the quantum mechanical and the fission
stability criteria, respectively. The classical stability criterion is
based on the examining dynamical equations when is linearized
for the small fluctuations above the background of the solitary
wave solution [39–50]. A solitary wave solution which is

classically stable, does not have any growing mode and then
can not spontaneously blowup to infinity. For the Q-ball solu-
tions, the classical criterion leads to the condition <

w
0Qd

d o
for

the stable ones [39–48]. The quantum mechanical criterion for a
typical Q-ball solution is based on the comparison between the
rest energy of that Eo and the rest energy of the lightest possible
scalar particle quanta. A Q-ball solution which is quantum
mechanically stable, can not decay to many free scalar particle
quanta. In general, if the ratio between the rest energy and the
charge is less than ω+ (i.e. Eo/Q<ω+), a quantum mechani-
cally stable Q-ball exists [42, 46], where ω+ (ω−) is the max-
imum (minimum) on the range of the possible rest frequencies

∣ ∣w w w- + o , which yield Q-ball solutions. A Q-ball may
decay into two or more smaller Q-balls, if such a Q-ball does
not fulfill the fission stability condition. It was shown that the
condition for the fission stability is identical to the condition of
the classical stability [42]. In other words, a Q-ball solution
which is classically stable would be stable against fission too.

There is another stability criterion, called the energetically
stability criterion [51]. If for a solitary wave solution, any
arbitrary (permissible or impermissible) deformation above the
background of that leads to an increase in the total energy, it
would be indeed energetically a stable solution. In other words,
an energetically stable solitary wave solution has the minimum
rest energy among the other (close) solutions. In this case,
unlike the Vakhitov–Kolokolov criterion [39–50], we examine
the energy density functional for the small variations instead of
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dynamical equations [51–54]. In general, none of the Q-ball
solutions are energetically stable objects [51].

In this paper in line with [51, 52], we are going to
introduce an extended KG system1 in 3+1 dimensions
which leads to a special energetically stable Q-ball solution.
We show that the general dynamical equations, just for this
special Q-ball solution, are reduced to the known versions of
a special CNKG system, as its dominant dynamical equations.
In [51, 52], there were introduced extended KG systems
which lead to special Q-ball solutions in 1+1 dimensions.
The main idea was to add a proper additional term F to the
original standard CNKG Lagrangian density, which guaran-
tees the uniqueness and energetically stability of one of its
Q-ball solutions. However, to bring this idea to life in 3+1
dimensions, unlike the pervious works in 1+1 dimensions
[51, 52], we have to reintroduce the additional term F using
three new scalar catalyzer fields ψ1, ψ2 and ψ3, whose roles in
dominant dynamical equations and other observable of the
special Q-ball solution are ineffective. In fact, these catalyzer
fields ψj ( j=1, 2, 3) must be included in the additional term
F to play the expected roles properly. This paper is, espe-
cially, in line with [51], hence the other complementary dis-
cussions are the same as those sufficiently presented in [51].

The organization of this paper is as follows: in the next
section, for the CNKG systems we will review the basic
equations and consider general properties of the related Q-ball
solutions, especially a CNKG system with Gaussian Q-ball
solution will be introduced in detail. In section 3, an extended
KG system with a special Q-ball solution will be introduced
in 3+1 dimensions. In section 4, the energetically stability
of the special Q-ball solution will be considered in general.
The last section is devoted to summary and conclusions.

2. Basic properties of the CNKG systems with the
Q-ball solutions

For a single complex scalar field f, the relativistic U(1) (or
the CNKG) Lagrangian densities with the Q-ball solutions are
defined as follows:

(∣ ∣) ( )f f f= ¶ ¶ -m
m V , 1o *

in which (∣ ∣)fV , the field potential, is a self-interaction term
which depends only on the modulus of the scalar field. By
varying this action with respect to f*, one obtains the field
equation

∣ ∣ ∣ ∣
( )f

f
f

f f
f
f

=
¶
¶

-  = -
¶
¶

= -
t

V V1

2

d

d
, 2

2

2
2

*

which is the same complex nonlinear Klein–Gordon equation
in 3+1 dimensions. Note that, through the paper, we take
the speed of light equals to one. To simplify equation (2), we
can change variables to the polar fields R(xμ) and θ(xμ) as

defined by

( ) ( ) [ ( )] ( )f q=x y z t R x y z t x y z t, , , , , , exp i , , , . 3

In terms of polar fields, equivalently, the Lagrangian density
(1) and the related dynamical field equation (2), respectively,
turn into

( ) ( ) ( ) ( )q q= ¶ ¶ + ¶ ¶ -m
m

m
m R R R V R , 4o

2

and

( ) ( )q q- ¶ ¶ = -m
mR R

V

R

1

2

d

d
, 5

( ) ( )q¶ ¶ =m
mR 0. 62

The related Hamiltonian (energy) density is obtained via the
Noether’s theorem:

· (∣ ∣)
( ) [ ( ) ] ( ) ( )

 

 
e ff f f f

q q

= +   +

= +  + +  +

V

R R R V R , 7

o

2 2 2 2 2

* *

where dot denotes differentiation with respect to t.
In general, the spherically symmetric Q-ball solutions are

introduced as follows:

( ) ( ) ( )
( ) ( )q w

= = + +
=

R x y z t R r R x y z

x y z t t

, , , ,

, , , , 8o

2 2 2

in which R(r) should be a localized function. For ansatz (8),
equation (6) is satisfied automatically and equation (5) would
be reduced to

⎜ ⎟⎛
⎝

⎞
⎠ ( )w= -

r r
r

R

r

V

R
R

1 d

d

d

d

1

2

d

d
. 9o2

2 2

Depending on different values of ωo, different solutions for R(r)
can be obtained. Accordingly, there are infinite spherically
symmetric Q-ball solutions which characterized by different rest
frequencies ∣ ∣w w w< <- +o . A moving Q-ball solution can be
obtained easily by a relativistic boost. For example, for a Q-ball
solution with rest frequency ωo, which moves in the x-direction
with a constant velocity = viv , we have:

( ) ( ( ) )
( ) ( )

g
q

= - + +
= m

m

R x y z t R x vt y z

x y z t k x

, , , ,

, , , , 10

2 2 2 2

in which g = - v1 1 2 , and kμ≡(ω, k)=(ω, k, 0, 0) is a
3+1 vector, provided  w= =kik v and ω=γωo.

For simplicity, to obtain different Q-ball solutions with
the Gaussian modules, one can use the following field
potential:

( ) [ ( )] ( )l= + -- - - -V R R l l a Rln , 11n2 2 2 2 1 2

in which, λ, l and a are dimensional parameters and n stands
for the number of spatial dimensions. This model (11), was
proposed for the first time in [4] and thoroughly examined in
[5]. By solving equation (9), the variety of Q-ball solutions as
a function of ωo can be obtained:

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )w= -R r A

r

l
exp

2
, 12o

2

2

1 Briefly, for a set of real scalar fields fj ( j=1, 2, L, N), the extended KG
systems have Lagrangian densities which are not linear in the kinetic scalars

f f= ¶ ¶m
mij i j [52, 53]. For example, in [7, 51–53, 55], the extended KG

systems are used.
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where ∣ ∣w ¥ 0 o , and

⎛
⎝⎜

⎞
⎠⎟

( )( ) ( ) ( ) ( )w
l w

=
+ --

A a
n l l

exp
2

. 13o
o

2 2n1
2

The total energy of a non-moving Q-ball solution can be
obtained and equated to the rest energy of that as

⎜ ⎟
⎡
⎣⎢
⎛
⎝

⎞
⎠

⎤
⎦⎥

( )

[( ) ( ) ( )]

( )

( )[( ) ] ( ( ) ) ( )



ò
ò

ò

w

q

w p

w w

= º

=  + +

= + +

= + -

¥

E m T

R R V R

R

r
R V R r r

C l l l

x

x

d

d

d

d
4 d

1

2
exp , 14

o o o

o

o o

00 3

2 2 2 3

0

2
2 2 2

2 2

where ( ) [ ( ) ]p p l= +-C l a n l2 expn 1 2 .
The Lagrangian density (1) is U(1) invariant like

electromagnetic theory and this yields to the conservation of
the electrical charge. So, according to the Noether theorem,
we can introduce a conserved electrical current density as

( ) ( ) ( )f f f f qº ¶ - ¶ = ¶m m m mj Ri 2 , 152* *

where ∂μj
μ=0. Therefore, the corresponding conserved

charge would be

( ) ( ( ) )

( )
ò òw w w w= = = -Q j R Cl lx xd 2 d exp .

16

o o o o
0 3 2 3 2

It is notable that both positive and negative signs of ∣ ∣wo (i.e.
∣ ∣w w= o o ) lead to the same solution for the differential

equation (9). They have the same rest mass (energy) but
different electrical charges (positive and negative). It is easy
to show that for the solutions with ωo>0 (ωo<0), the
electrical charge is positive (negative).

Now, we can study the stability of the Gaussian Q-balls
(12) based on the different known stability criteria. Since
w = ¥+ and condition Eo/Q<ω+ is fulfilled for all Q-balls
(12), thus all of them are quantum mechanically stable. The
condition <

w
0Qd

d o
leads to inequality ωo

2>1/2l2 (see [5]) for
the Q-balls (12) which are classically stable and stable against
fission too. In the next sections, we will show how adding a
proper term to the Lagrangian density (1) yields a special
energetically stable Q-ball solution as well.

3. An extended KG system with a special Q-ball
solution

Similar to the remarks made at the beginning of the section 4
(3) of the [51, 52], we are going to consider a new Lagrangian
density as follows:

[ ( ) ( )]
( )

q q= + = ¶ ¶ + ¶ ¶ - +m
m

m
m  F R R R V R F,

17
o

2

where F is considered to be a proper additional term whose
responsibility is to guarantee the uniqueness and the energe-
tically stability of a special Q-ball solution; meaning that, it

should behave as a stability catalyzer just for a special Q-ball
solution. Moreover, F and all of its derivatives should be zero
just for the special Q-ball solution. Suppose that the special
Q-ball solution is as follows:

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( ) ( )f w= =

-qr t R r
r

t, e exp
2

exp i , 18s s s
i

2
s

where w = 2s . In fact, it is one of the introduced Q-ball
solutions (12) for which l=λ=1, a=e1 and w w= =o s

t2 ; hence V(R)=−2R2ln R, ( )R rs = ( )-exp r

2

2

. Since

ωs
2>1/2, it is a classical stable Q-ball solution obviously.

In fact, we are going to build a new classical relativistic
field system in such a way that the general dynamical
equations belong to Lagrangian density (17) are reduced to
the same standard versions (5) and (6) just for the special
Q-ball solution (18), as its dominant dynamical equations.
Moreover, as we indicated before, this special Q-ball solution
(18) should be an energetically stable object. To meet these
requirements, we can propose a proper additional term in the
following form:

( )å=
=

F B , 19
i

i
1

12
3

in which B is considered to be a large number. Functionals
iʼs are defined as follows:

[ ] [ ]
[ ]
[ ]
[ ]
[ ]

( )

= = +

= + +

= + = +

= +

= + + +

= + + +

= + + +

= + + +

= + + +

= + + +

 



 















  
  
   
 
   
   
   
   
   
   

R R h

R h Rh

R h R h

R h

R h

R h

R h

R h R R

R h R R

R h R R

, ,

2 ,

, ,

,

2 ,

2 ,

2 ,

2 ,

2 ,

2 , 20

1
2

2 2
2

2
2

2 1

3
2

3
2

2 1 3 3

4
2

4
2

2 4 5
2

5
2

2 5

6
2

6
2

2 6

7
2

7
2

2 4 5 7

8
2

8
2

2 4 6 8

9
2

9
2

2 5 6 9

10
2

10
2

2 1
2

4 10

11
2
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2

2 1
2

5 11
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2

12
2

2 1
2

6 12

where

( )
( )
( )

( )
( )
( )

( )
( )
( ) ( )

q q
q

y y y

y y y

y y y
y y y y
y y y y
y y y y

y y
y y
y y

= ¶ ¶ - = ¶ ¶ -
= ¶ ¶

= ¶ ¶ + - +

= ¶ ¶ + - +

= ¶ ¶ + - +
= ¶ ¶ - +
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= ¶ ¶ - +

m
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m
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m
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m
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m
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m
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

R R R R

R

R R

R R

R R

R

R

R

R R R

R R R

R R R

2 ln , 2,

,

2 ln 1 ,

2 ln 1 ,

2 ln 1 ,

2 ln 1 ,

2 ln 1 ,

2 ln 1 ,

2 ln 1 ,

2 ln 1 ,

2 ln 1 . 21

1
2

2

3

4 1 1
2

1
2

5 2 2
2

2
2

6 3 3
2

3
2

7 1 2 1 2

8 1 3 1 3
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10 1 1
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and

⎡
⎣⎢

⎤
⎦⎥
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2
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in which ψ1, ψ2 and ψ3 are three new scalar fields which can
be called the catalyzer fields. We build this new system (17)
deliberately in such a way that there is just a unique non-
trivial common solution for twelve independent conditions

= 0i (i=1, 2, L, 12) as follows:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( ) ( )

q w

y

=
-

=

=
-

=

R
r

t

x
r

j

exp
2

, ,

exp
2

1, 2, 3 , 23

s

j
j

2

2

where x1=x, x2=y and x3=z. Note that, the form of R and
θ in (23) are the same components of the proposed special
Q-ball solution (18). Twelve conditions = 0i (i=1, 2, L,
12) can be considered as twelve independent PDEs for five
scalar fields R, θ, ψj ( j=1, 2, 3); therefore, except (23), there
should be no common solution as a rule. Moreover, since
twelve functionals iʼs (i=1, 2, L, 12) are introduced as
twelve independent linear combinations of iʼs, therefore,
both twelve independent conditions iʼs= 0 and iʼs= 0 are
equivalent.

Similar to [51, 52], if we do not use three catalyzer fields
ψj ( j=1, 2, 3), there are just three scalar functionals 1, 2

and 3 for which the conditions iʼs= 0 (i=1, 2, 3) lead to
infinite independent common solutions such as:

⎛
⎝⎜

⎞
⎠⎟

( ) ( )x
q w=

- +
=R

r
texp

2
, , 24s

2

where ξ is any arbitrary real number. Note that, the case ξ=0
is the same proposed special solution (18). In fact, for any
static module function R=R(x, y, z) along with θ=ωst,
conditions = 02 and = 03 are satisfied automatically.

Hence the condition = 01 is reduced to

( ) ( ) + =R R R2 ln 0, 252 2

which is a static nonlinear PDE in 3+1 dimensions with
infinite solutions such as R=exp(−(r+ξ)2/2). Therefore,
since three conditions iʼs=0 (i=1, 2, 3) in 3+1
dimensions do not yield a unique common solution, we have
to consider a more complected system (17) with three new
catalyzer fields ψj ( j=1, 2, 3). Now, twelve conditions
iʼs=0 (i=1, 2, L, 12) exist for five fields R, θ and ψj

( j=1, 2, 3) in such a way that the module field R contributes
in nine new conditions iʼs=0 (i= 4, 5,L, 12) and leads to
a unique common solution (23) for iʼs=0 (i=1, 2, L, 12)
simultaneously.

Using the Euler–Lagrange equations for the new
Lagrangian density (17), one can obtain the related dynamical
equations easily:

◻
⎡
⎣⎢

⎛
⎝⎜

⎞
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( )

( ) ( )
( )

( )
]

åq q- ¶ ¶ + + ¶
¶

¶ ¶

+ ¶
¶

¶ ¶
-

¶
¶

=

m
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2
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27
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i
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⎡
⎣
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⎛
⎝⎜

⎞
⎠⎟

⎤
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( ) ( )

( ) ( )
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¶
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¶
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-
¶
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m
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





j

2

0, 1, 2, 3 . 28

i
i i

i

j
i

i

j

i
i

j

1

12
2

2

In general, these equations, (26)–(28), are very complicated,
but there is a single special solution (23) for which all terms
which contain iʼs and i

2ʼs (i.e. the terms which are in the
brackets) would be zero simultaneously. Therefore, for the
special solution (23), equation (28) satisfies automatically and
equations (26) and (27) are reduced to

{ }( ) ( )q q- ¶ ¶ + =m
mR R

dV

dR

1

2
0, 29

{ ( )} ( )q¶ ¶ =m
mR 0, 302

which are the same as standard CNKG equations (5) and (6)
respectively. It is obvious that the set of the module part R and
the phase part θ of (23) satisfy equations (29) and (30) too, as
we expected. In other words, the complicated dynamical
equations (26)–(28) are reduced to the same simple original
dynamical equations (5) and (6) just for a special solution
(23), whose module and phase parts build a special Q-ball
solution (18); meaning that, the standard equations (5) and (6)
are now the dominant dynamical equations just for a special
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Q-ball solution (18). The other Q-ball solutions (12) of the
original Lagrangian density (1) are no longer the solutions of
the new system (17). The solution (23) should be called a
special Q-ball solution exactly, along with three catalyzer
fields ψ1, ψ2 and ψ3, but we can only call it ‘the special
(Q-ball) solution’ in the rest of the article for simplicity. Note
that, the additional term F in the new system (17) guarantees
the uniqueness of the special solution (23); meaning that,
there is just a unique special solution (23) for which all iʼs
(i=1, 2, L, 12) are zero simultaneously, or just for the
special solution (23) the dominant dynamical equations are
the same standard CNKG versions (5) and (6). Moreover, in
the next section we will show that F guarantees the energe-
tically stability of the special solution (23) as well.

It should be note that, since the Lagrangian density (17)
is essentially Poincaré invariant, instead of the special solu-
tion (23), any arbitrary spatially rotated version can be used
equivalently. For example, instead of (23) we can perform
any rotation about z-axis:
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where α is an arbitrary angle. Moreover, using a relativistic
boost, one can obtain easily the moving version of the special
solution (23). For example, if it moves in the x-direction, we
have
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where kμ≡(γωs, γωsv, 0, 0).

4. Energetically stability of the special solution

The energy-density of the new extended Lagrangian-density
(17), is
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After a straightforward calculation one obtains:
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All terms in the above relations are positive definite except
(35). Moreover, all brackets [L] in relations (36)–(47) are
multiplied by one of thei

2ʼs (i=1, 2, L, 12). Therefore, all
εiʼs (i=1, 2, L, 12) are positive definite and are zero
simultaneously just for the non-trivial special solution (23)
(and the trivial vacuum state R=0). For the other solutions,
at least one of the iʼs is a nonzero functional, thus at least
one of the εiʼs (i=1, 2, L, 12) would be a nonzero positive
definite function. Now, if one considers a system with a large
value of parameter B, then for other solutions, the term

eå =i i1
12 would be a large positive definite function which

leads to total energies larger than the rest energy of the special
solution (23).

More precisely, to confirm that the special solution (23)
is energetically stable, it is necessary to examine the energy
density (33) for any arbitrary small deformations above the
background of that when it is at rest. In general, any arbitrary
small deformed version of the special solution (23) can be
introduced as follows:
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where δR, δθ and δψj (small variations) are considered to be
any arbitrary small functions of space-time. Note that,
Rs=exp(−r2/2), θs=ωst and ( )y = -x rexp 2js

j 2 ( j=1,
2, 3). Now, if we insert (48) into εo and keep it to the first
order of δR and δθ, then it yields

⎤
⎦⎥

[( ) ( )]
[ · ( ) ( )

( ) ( ) ( ) ( )

e e de w

d d w

w dq d

= + »  + +

+   +

+ +

R R V R

R R R R

R
V R

R
R

2

1

2

d

d
. 49

o os o s s s s

s s s

s s
s

s

2 2 2

2

2

Note that, for the non-moving special solution (23), Rs =0,
q = 0s and q w= = 2s s . It is obvious that δεo is not

necessarily a positive definite function.
Now, let do this for the additional terms εi (i=1, 2, L,

12). If we insert a variation like (48) into εi (i=1, 2, L, 12),
it yields
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in which εis=0, = 0is and Cis referred to the special
solution (23). Since di and δCi are in the first order of
variations δR, δθ and δψj ( j=1, 2, 3), hence according to
equation (50), δεi would be in the second order of the var-
iations. Therefore, since in general Ci>0, according to
equation (50), δεi=εi (i=1, 2, L, 12) are always positive
definite for small variations (as were perviously obtained from
equations (36)–(47) generally).

In general, if for any arbitrary small deformations δR, δθ
and δψj, the variation of the energy density de de= +o

deå =i i1
12 to be always positive definite, certainly the

energetically stability of the special solution (23) is guaran-
teed properly. Since δεo is a linear functional of the first order
of variations and deå =i i1

12 is a linear functional of the second
order of variations, this requirement is not confirmed in
general. However, since δεiʼs (i=1, 2, L, 12) contain large
number B but δεo does not, therefore the comparison between

deå =i i1
12 , which are always positive definite, and δεo, which is

not necessarily positive, needs more considerations. For
example, for three cases B=1, B=102 and B=1040, it is
obvious that ∣ ∣ ( )d d<R B R 2 for the variations with the mag-
nitudes larger than ∣ ∣d >R 1, ∣ ∣d > -R 10 1 and ∣ ∣d > -R 10 20,
respectively. Exactly the same argument goes for the com-
parison between ∣ ∣deo and deå =i i1

12 . In other words, for
example, consider a system with B=1040, then the order of
magnitude of variations δR, δθ and δψj for which the special
solution (23) is not mathematically a stable object (i.e. the
variations for which (∣ ∣) ( ) ( ( ) )de de d> » O O O Bo i i

2 ), is
approximately less than 10−20, which is so small that physi-
cally can be ignored in the stability considerations! For such
so small variations, the total rest energy Eo may be reduced
with a very small amount equal to the integration of δεo over
the whole space which again is a very small unimportant
value. Therefore for a large value of B, the special solution
(23) is effectively an energetically stable object.

Note that, since scalars iʼs (or iʼs) are twelve inde-
pendent functionals of R, θ and ψj ( j=1, 2, 3), therefore, for
any arbitrary small deformations, at least one of iʼs changes
and takes non-zero values. Thus, according to equation (50)
and since B is considered to be a large number, deå =i i1

12

changes to be a large positive nonzero function which leads to
a large increase in the total energy. Although B is consider to
be a large number, but it does not affect the dominant
dynamical equations (5) and (6) and the observable of the
special solution (23).

If one considers a system with an extremely large value
of B, the other (stable) configurations of the fields R, θ and
ψj ( j=1, 2, 3), which are not close to the special solution
(23) and the vacuum state j=ψj=0, requires extreme
energy to be created. Thus the single non-trivial (stable)
configuration of the fields with the finite energy just would be
the special solution (23). Since there is not infinite energy in
the word, hence the other (stable) configuration of the fields
never can be possible to be created. In other words, the new
extended system just yields the special solution (23) as the
quantum of the system classically.

For a better understanding, for example, we consider six
different arbitrary deformations to show numerically how
larger values of parameter B lead to more stability. Six arbi-
trary deformations above the background of the special
solution (23) can be introduced as follows:
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Figure 1. Variations of the total rest energy E versus small ξ and different B at t=0. The figures (a)–(f) are related to different variations
(51)–(56), respectively. The case B=0 belongs to the same original CNKG system (4) with the potential (11), and clearly it is not an
energetically stable Q-ball solution, as we expected. As seen in the figure, the larger the values B the greater will be the increase in the total
energy for any arbitrary small variation above the background of the special Q-ball solution (23). Note that, all graphs cross a same point
(ξ=0, E≈27.84).

7

Phys. Scr. 95 (2020) 045302 M Mohammadi



⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )

( )

x
q w

y

=
- +

=

=
-

R
r

t

x
r

exp
2

, ,

exp
2

, 52

s

j
j

2

2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )

( ) ( )

x
q w

y
x

=
- +

=

=
- +

R
r

t

x
r

exp
2

, ,

exp
2

, 53

s

j
j

2

2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( ) ( )

q w

y x

=
-

=

= +
-

R
r

t

x
r

exp
2

, ,

1 exp
2

, 54

s

j
j

2

2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )

( )

x
q w

y

=
- +

=

=
-

R
r

t

x
r

exp
1

2
, ,

exp
2

, 55

s

j
j

2

2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )

( )

q x w

y

=
-

= +

=
-

R
r

t

x
r

exp
2

, 1 ,

exp
2

, 56

s

j
j

2

2

where j=1, 2, 3 and ξ is a small parameter which can be
considered as an indication of the amount of deformations
(variations). For all deformed solutions (51)–(56), the varia-
tion of the total energy versus ξ are shown in figure 1(a)–(f)
respectively. These figures show that clearly how the larger
values of the parameter B lead to more stability, i.e. the larger
values of B lead to further increase in the total energy versus
∣ ∣x . Note that, the case ξ=0 would be the same non-
deformed special solution (23) which its (rest) energy,
according to equation (14) with l=λ=1, a=e(1) and
w = t2o , is Eo≈27.84. Based on the figure 1(a)–(f), the
case ξ=0 would be a minimum for the systems with large
values of the parameter B. In other words, for the systems
with large values of parameter B, the special solution (23) is
stable against any arbitrary deformation. The complementary
arguments about these figures are the same as those written in
the section 5 of the [51].

5. Summary and conclusion

We reviewed some basic properties of the relativistic U(1)-
Lagrangian densities which bear Q-ball solutions. Especially
an example was introduced in 3+1 dimensions which yields
infinite Gaussian Q-ball solutions. Also, we reviewed all
stability criteria which are used for the Q-ball solutions in the
introduction. They are the classical, the fission, the quantum
mechanical and the energetically stability which were
explained to the extent necessary. Based on the different
stability criteria, we considered the stability of the introduced
Gaussian Q-ball solutions in detail. Since none of the Q-balls
are essentially energetically stable [51], we add a proper term

F to the original standard U(1)-Lagrangian density (4) to
guarantee the energetically stability of a special (Q-ball)
solution (23). Moreover, this proper additional term is con-
structed deliberately in such a way whose role in the domi-
nant dynamical equations and other properties of the special
(Q-ball) solution (23) being ineffective. Briefly, it behaves as
a stability catalyzer just for the special solution (23). In order
to fulfill the requested roles by the additional term F, three
new catalyzer fields ψj ( j=1, 2, 3) must be included.

The special (Q-ball) solution (23) is a single solution
among the others; meaning that, there is no other solutions
with the same properties of the special solution (23). In other
words, just for the special solution (23), all complicated
dynamical equations (26)–(28) and energy density function
(33) are reduced to the same original versions (5)–(7),
respectively. It was shown that for any arbitrary small var-
iation above the background of the special solution (23), the
total energy always increases. In other words, the special
solution (23) is energetically stable.
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