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Abstract
This paper is devoted to improving the general Kudryashov method by a new and general
auxiliary equation. So, a new method is introduced, which we call ‘the general improved
Kudryashov method’, to produce exact solutions for nonlinear evolution equations arising
in mathematical physics. As application examples, exact traveling wave solutions for the
combined Korteweg–de Vries and modified Korteweg–de Vries (KdV–mKdV) equation
and the (2+1)-dimensional Zakharov–Kuznetsov equation are obtained. These solutions
can be classified as solitary and periodic wave solutions. Some of the obtained solutions
are graphically sketched.
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1. Introduction

Nonlinear evolution equations play an important role in phy-
sics and applied sciences. Searching for exact traveling wave
solutions of nonlinear evolution equations in mathematical
physics plays a crucial role in miscellaneous fields of science
and engineering, such as soliton theory, plasma physics, non-
linear optics, fluid dynamics, biophysics and many others. So,
many powerful methods have been introduced, such as the
homogeneous balance method [1, 2], the tanh method [3], the
tanh-coth method [4], the modified tanh-coth method [5–7],
the inverse scattering method [8], Hirota’s bilinear method [9],
the sine-cosine method [10], the ( )/¢G G -expansion method
[11], the ( )¢G G G, 1 -expansion method [12], the Exp-
function method [13], F-expansion method [14–16] and so on.

Consider a nonlinear partial differential equation (NPDE)
in polynomial form

( ) ( )xW ¼ =x xx xxxs u u u u, , , , , , 0, 1.1s

where ( )x Î ´ + s, is the independent variable and u is
the dependent variable. Applying the variable traveling
transformation

( ) ( ) ( )x v v x= = - u s u s, , , 1.2

we change (1.1) to a nonlinear ordinary differential equation
(NODE)

( ) ( )vQ ¢  ¢¢¢ ¼ =u u u u, , , , , 0, 1.3

where ≔¢
v
d

d
. In 2012, Kudryashov [17] proposed his

method for finding exact solutions of the NPDE (1.1). He
looked for exact solutions taking into account the expression

( )v a c= å =u i
x

i
i

0 where c =
+ v
1

1 e
which is a solution of

the equation c c= -c
v

.d

d
2 A modified Kudryashov method
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was introduced by replacing the natural exponential function
ve by the general exponential function va in [18–21]. In these
research articles, authors found exact solutions of the NPDE
(1.1) by using the expansion ( )v a c= å =u i

x
i

i
0 where

c =
 va

1

1
which is a solution of the equation =c

v
d

d
( )c c-aln .2 Thereafter, some authors [22–25] applied a

general Kudryashov method to explore exact solutions
of the NPDE (1.1). They used a rational type expansion

( )v a c b c= å å= =u i
x

i
i

j
x

j
j

0 0 where c =
+ vC

1

1 e
which is a

solution of the equation c c= -c
v

.d

d
2 Recently, some

authors have discussed the improvement of the Kudryashov

method. S M Ege [26, 27] first extend and improved the
Kudryashov method by new auxiliary equation. Abdus Salam
and Habiba [28] improved the general Kudryashov method
given in [22] by introducing the auxiliary equation

sc c s= - ¹ Îc
v

, 0 .d

d
3 This equation has the general

solution c =
s



+ v
.

C

1

e2

In this paper, we improve the general Kudryashov method
given in [22] by a general auxiliary equation ( )c v¢ =

( ) ( )sc v c v s- < Î ¹ Î n, 1 , 0 .n So, we present a
very straightforward and effective method called general
improved Kudryashov method for exact solutions of nonlinear
evolution equations. The merits of the introduced method lie in
two directions. Firstly, it leads to both the solitary and periodic
solutions. Secondly, the solution strategy, by this method and the
computing system Mathematica, is of utter simplicity, and can
be easily extended to all types of nonlinear evolution equations.
Moreover, If =n 2 and =n 3 our general auxiliary equation
reduces to the auxiliary equations used in [17, 22] and [28],
respectively. Hence, a novel improved Kudryashov method for
finding exact solutions of nonlinear evolution equations in
mathematical physics is introduced. As application examples,
new sets of exact solutions for the combined KdV–mKdV
equation and the (2+1) dimensional Zakharov–Kuznetsov
equation are presented.

2. Demonstration of the general improved
Kudryashov method

Consider the NPDE (1.1) together with the variable traveling
transformation (1.2) and the transformed NODE (1.3). For
simplicity, we integrate the NODE (1.3), provided that all
terms include derivatives, and set the integration constants to
be zero. Subsequently, the transformed NODE (1.3) can be

solved by expanding its general solution in the form

( )
( )

( )
( )å

å
v

a c v

b c v
= =

=

u , 2.1i

x
i

i

j

y
j

j
0

0

where ( )a b = ¼ = ¼i x j y, 0, 1, , , 0, 1, ,i j are constants to
be determined and χsolves the general auxiliary equation

( ) ( ) ( )
( )

c v sc v c v s¢ = - < Î ¹ Î n, 1 , 0 .
2.2

n

Solving equation (2.2), gives a set of general solutions in
the form

The positive numbers x and y can be specified by balancing
the linear and nonlinear terms of highest order in
equation (1.3). Inserting equations (2.1) and (2.2) into
equation (1.3), yields an algebraic equation in χand its
powers. Equating the coefficients of the terms that containing
the same power forχto zero, gives an algebraic system of
equations in a b,i j and  . With the help of the computer
symbolic system Mathematica, we can obtain a b,i j and  .
Eventually, by using these values and the solutions (2.3) of
equation (2.2), we can produce exact traveling wave solutions
of equation (1.1). In fact, equation (2.2) has many solutions
unlike the solutions given in equation (2.3). But we only
consider the solutions (2.3), because they have interesting and
effective properties.

In the following section, our method is applied for =n 5
to find exact traveling wave solutions of the combined KdV–
mKdV equation and the (2+1)-dimensional Zakharov–Kuz-
netsov equation.

3. Applications

3.1. The combined KdV–MKdV equation

The KdV and mKdV are known as solitary equations which
have been extensively researched. The nonlinear terms of the
KdV and mKdV equations usually arise simultaneously in
many physical problems such as fluid mechanics, quantum
field theory and plasma physics. These nonlinear terms con-
struct a nonlinear evolution equation called the combined
KdV–mKdV equation

( ) ( )
d r

x
+ + + =

Î ´
x x xxx

+ 
u uu u u u

s

0,

, . 3.1
s

2

Here, we apply the general improved Kudryashov method to
investigate the combined KdV–mKdV equation (3.1). By

⎧

⎨
⎪⎪

⎩
⎪⎪

( ) ( )

[( ) ]

[( ) ]

[( ) ] [( ) ]

c v =

= ¼

= ¼

= ¼

s v

s v

s v s v

+ -


+ -


+ -


+ -

-

-

- -

n

n

n

, 2, 4, 6, 8, ,

, 3, 7, 11, 15, ,

, , 5, 9, 13, 17, .

2.3

C n

C n

C n

i

C n

1

exp 1

1

exp 1

1

exp 1 exp 1

n

n

n n

1

1

1 1

2
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using the transformation (1.2), we can convert (3.1) into a
NODE

( )d r- ¢ + ¢ + ¢ + ¢¢¢ = u uu u u u 0. 3.22

Integrating the NODE (3.2) and setting the integration con-
stants to be zero, gives

( )d r
- + + +  = u u u u

2 3
0. 3.32 3

Taking the homogeneous balance between ¢¢u and u3, we get
x=y+4. Let y=1, then x=5. Hence, we can put the
traveling wave solution of equation (3.1) in the form

( )

( )

v
a a c a c a c a c a c

b b c
=

+ + + + +
+

u .

3.4

0 1 2
2

3
3

4
4

5
5

0 1

Substituting equations (3.4) and (2.2) with =n 5 into
equation (3.3), gives an algebraic equation inχand its
powers. Equating the coefficients of the terms that containing
the same power forχto zero, yields an algebraic system of
equations in ( )a b = =i j, 0, 1, 2, 3, 4, 5, 0, 1i j and ò (see
appendix A). Solving the obtained system by Mathematica,
we have the following sets of solutions.

Case A.

⎧

⎨
⎪
⎪

⎩
⎪
⎪

( )

( )
( ) ( )

( )

a a a

a a a a

b b b b

= =

=  =  = = 

= = =

a b b a b b d a b b d a r

a r b a b d a b d a r

b

b r

b

b r
b s
r

a b d a r

b

- + +

+ + - +

+

3.5

, ,

, , 0, ,

, , ,

0 0 1
36 180 12 3 2

6 3 2

2
155

102 6
3

10

96
4 5

96

0 0 1 1
3 2

6

0 0
2

1 0
2

0 1 0
2

1 0 0

0
2

0
2

0 0 0 0 0

0
3

1
2

0
2

1

1

0 0 0

0
2

where α0, β0 and β1 are free constants. Substituting the values
(3.5) into (3.4) and using (2.3), yields traveling wave

solutions of equation (3.1) as follows

⎡
⎣
⎢⎢

⎤
⎦⎥

( )
[ ( )]

[ ( )]

( [ ( )])

( [ ( )]) ( [ ( )])
( )

x
s f x

b b s f x

a
b r

b
s f x

b
s f x

b s
s f x

=
+

 +

´
+


+

+
+

+
+

u s
C s

C s

A

C s

C s C s

,
exp 4 ,

exp 4 ,

102 6

155

exp 4 ,

255

exp 4 ,

2448

exp 4 ,
,

3.6

1
1 0

0

1
2

0
3

1
3

1
3

4

4

1
2

3
4

5
4

⎡
⎣
⎢⎢

⎤
⎦⎥

( )
[ ( )]

[ ( )]

( [ ( )])

( [ ( )]) ( [ ( )])
( )

x
s f x

b b s f x

a
b r

b
s f x

b
s f x

b s
s f x

=
+

 +

´
+


+


+


+

u s
C s

i C s

A
i

C s

i
C s

i
C s

,
exp 4 ,

exp 4 ,

102 6

155

exp 4 ,

255

exp 4 ,

2448

exp 4 ,
,

3.7

2
1 0

0

1
2

0
3

1
3

1
3

4

4

1
2

3
4

5
4

where

( )
( ) ( )

a b b a b b d a b b d a r
a r b a b d a b d a r

=
- + +
+ + - +

A
36 180 12 3 2

6 3 2
0 0

2
1 0

2
0 1 0

2
1 0 0

0
2

0
2

0 0 0 0 0

and

⎡
⎣⎢

⎤
⎦⎥( ) ( )

f x x
a b d a r

b
= -

+
s s,

3 2

6
.0 0 0

0
2

Figure 1 shows the behaviour of the solution u1(ξ, s) for
σ=0.0002, ρ=C=1, δ=0.002, α0=0.005, β0=0.05
and β1=0.5.

Figure 1. (a) 3D plot of the solution ( )xu s,1 . (b) 2D plot of the solution ( )xu s,1 at =s 0. Here, σ=0.0002, ρ=C=1, δ=0.002,
α0=0.005, β0=0.05 and β1=0.5.

3
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Case B.

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

( )

( )

( )

a a

a a a a a

b b b b

= =

= = = =

= = =

b d r b d

r

b d r b d

r

a b s a r

b s
a b
b

d d d r r

r

- - - -

- -

- - -

3.8

, ,

, , , 0,

, , ,

0
9 384 3

8 1
3 128 3

8

2
813 8

120 3
306

72 4 4 5

0 0 1 1
3 9 384 64

32

0
2

0 1
2

1

4 0
2 2

4
2

1
2 2

4 0

1

2

where a b,4 0 and b1 are free constants.
Substituting the values (3.8) into (3.4) and using (2.3),

yields traveling wave solutions of equation (3.1) as follows

⎡
⎣
⎢⎢

⎤
⎦⎥ ( )

( )
[ ( )]

[ ( )]

( [ ( )])
( )
( [ ( )])

( [ ( )])

( [ ( )])

x
s f x

b b s f x

b d r b d
r

b d r b d

r s f x

a b s a r

b s s f x
a b

b s f x

a
s f x

=
+

 +

´
- -


- -

+

+
-

+


+

+
+

3.9

u s
C s

C s

C s

C s

C s

C s

,
exp 4 ,

exp 4 ,

9 384 3

8

3 128 3

8 exp 4 ,

813 8

120 exp 4 ,
306

72 exp 4 ,

exp 4 ,
,

3
1 0

0
2

0

1
2

1

4 0
2 2

4
2

1
2 2

4 0

1

4

4

4

1
4

1
2

3
4

⎡
⎣
⎢⎢

⎤
⎦⎥

( )
[ ( )]

[ ( )]

( [ ( )])
( )
( [ ( )])

( [ ( )])

( [ ( )])
( )

x
s f x

b b s f x

b d r b d
r

b d r b d

r s f x

a b s a r
b s s f x

a b
b s f x

a
s f x

=
+

 +

´
- -


- -

+

+
-

+


+

+
+

u s
C s

i C s

i
C s

C s

i
C s

C s

,
exp 4 ,

exp 4 ,

9 384 3

8

3 128 3

8 exp 4 ,

813 8

120 exp 4 ,
306

72 exp 4 ,

exp 4 ,
, 3.10

4
1 0

0
2

0

1
2

1

4 0
2 2

4
2

1
2 2

4 0

1

4

4

4

1
4

1
2

3
4

where

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( )

( )
f x x

d d d r r
r

= -
- - -

s s,
3 9 384 64

32
.

2

Figure 2 shows the behaviour of the solution u3(ξ, s) for
ρ=0.0001, σ=C=1, δ=6.7, α4=0.02, β0=1.5 and
β1=0.002.

Figure 2. (a) 3D plot of the solution u3(ξ, s). (b) and (c) 2D plots of the solution u3(ξ, s) at s=0 and s=1, respectively. Here, ρ=0.0001,
σ=C=1, δ=6.7, α4=0.02, β0=1.5 and β1=0.002.
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Case C.

where α0 and β1 are free constants.
Substituting the values (3.11) into (3.4) and using (2.3),

yields traveling wave solutions of equation (3.1) as follows

where

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( )f x x

d d d r r
r

= -
- + - -

s s,
3 9 528 88

32
.

2 2

Figure 3 shows the behaviour of the solution u5(ξ, s) for
ρ=0.0001, σ=C=1, δ=2.5, α0=−0.005, and β1=
−0.002.

3.2. The (2+1)-dimensional modified Zakharov–Kuznetsov
equation

In [29], Schamel constructed the (2+1)-dimensional modified
Zakharov–Kuznetsov equation:

( )
( ) ( )

m n

x z

+ + + =

Î ´
x xzz xxx

+ 
u u u u u

s

0,

, , , 3.14

s
2

2

which portrays the ion-acoustic waves inside a cold-ion
plasma when the behavior of the electrons does not isothermal
during their passway of the wave. According to the trans-
formation:

( ) ( ) ( )x z v v x z= = + - u s u s, , , , 3.15

Equation (3.14) can be converted into a NODE

( )m n- ¢ + ¢ + ¢¢¢ = u u u u2 0. 3.162

Integrating the NODE (3.16) and putting the constants of
integration to be zero, yields

( )m
n- + +  = u u u

3
2 0. 3.173

Balancing u3 with ¢¢u gives =x 5 and =y 1. Therefore,
we can set the traveling wave solution of equation (3.14) in

the form

( )

( )

v
a a c a c a c a c a c

b b c
=

+ + + + +
+

u ,

3.18

0 1 2
2

3
3

4
4

5
5

0 1

substituting equations (3.18) and (2.2) with n=5 into
equation (3.17), gets an algebraic equation inχand its
powers. Equating the coefficients of the terms that containing
the same power forχto zero, gives an algebraic system of
equations in αi, βj(i=0, 1, 2, 3, 4, 5, j=0, 1) and ò (see
appendix B). Solving this system by Mathematica, we have
the following sets of solutions.

Case I.

⎧
⎨⎪
⎩⎪

( )

a a a a a a a a s

b b
m
n

n

= = = = = = -

= =  = -a 

0, , 0, 2 ,

0, , 16 ,

3.19

i

0 1 1 2 3 4 5 1

0 1 4
1

where α1 is a nonzero free parameter.
Substituting the values (3.19) into (3.18) and using

(2.3), gets traveling wave solution of equation (3.14) as
follows

( )
( )

[ ( )]
( )x z

s

s x z n
= 

-

+ + +

n
m

u s
i

C s
, ,

4 1 2

exp 4 16
. 3.201

Figure 4 shows the behaviour of the solution u1(ξ, ζ, s) for
μ=0.1, ν=−1, σ=0.25 and C=1.

( )
( [ ( )]) ( )

( )( [ ( )])
( )x

a r s f x b d d r

a r d d r s f x b r
=

+  - + -

- + - + 
u s

C s

C s
,

528 exp 4 , 66 3 9 528

8 3 9 528 exp 4 , 528
, 3.125

0 1
2

0
2

1

1
4

1
4

( )
( [ ( )]) ( )

( )( [ ( )])
( )x

a r s f x b d d r

a r d d r s f x b r
=

+  - + -

- + - + 
u s

C s i

C s i
,

528 exp 4 , 66 3 9 528

8 3 9 528 exp 4 , 528
, 3.136

0 1
2

0
2

1

1
4

1
4

⎧
⎨⎪

⎩⎪ ( )
( )

( )a a a a a a a

b d d r b b

= = = = = =

= - + - = =

b d d r

r

a d d d r r

r

- + -

- + - -

, , 0,

3 9 528 , , ,
3.11

0 0 1
3 9 528

8 2 3 4 5

0 66
2

1 1
3 9 528 88

32

1
2

0
2 2

5
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Case II.

where β1 and β2 are free parameters.
Substituting the values (3.21) into (3.18) and using (2.3),

gets traveling wave solution of equation (3.14) as follows

⎛
⎝⎜

⎞
⎠⎟

( )

[ ( )]
( )

x z
n
m

s
s x z n

=

´ +
+ + +

u s i

C s

, , 4
3

1
4

exp 4 16
.

3.22

2

Figure 5 shows the behaviour of the solution u1(ξ, ζ, s) for
μ=C=1 and ν=σ=−1.

Case III.

where β1 is free parameters.
Substituting the values (3.23) into (3.18) and using (2.3),

gets traveling wave solution of equation (3.14) as follows

⎡
⎣⎢

⎤
⎦
⎥⎥

( ) ( [ ( )]) ( )

( )( [ ( )])

( )
( )( [ ( )]) ( )

x z
s y x z

b
b m n

n n
mn

b n n s y x z

m n s

b n s y x z

= 
+ -

-


- + +


+

- +

u s
C s

C s

C s

, ,
exp 4 , , 9 23

2 1
3

5 2 1 37 exp 4 , ,

3

5 2 1 exp 4 , ,
,

3.24

3
1

1
2

2

1
2

2 2

1
2

1
4

1
2

Figure 3. (a) 3D plot of the solution u5(ξ, s). (b)–(d) 2D plots of the solution u5(ξ, s) at s=0, s=0.5 and s=1, respectively. Here,
ρ=0.0001, σ=C=1, δ=2.5, α0=−0.005, and β1=−0.002.
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Figure 6 shows the behaviour of the solution u3(ξ, ζ, s) for
μ=ν=C=1, σ=2 and β1=−0.0002.

4. Conclusive remarks

This section is devoted to some conclusive remarks.

Remark 1. According to the identity q q= +qe cosh sinh ,
our traveling wave solutions, obtained by the general
improved Kudryashov method, can be handily converted to
solitary wave solutions. For example, the solution ( )xu s,1 of
the combined KdV–mKdV equation can be converted to a

solitary wave solution as follows
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where Aand ( )f x s, are given in Case A. Also, the solution
( )x zu s, ,1 of the (2+1)-dimensional modified Zakharov–

Kuznetsov equation can be converted to a solitary wave

Figure 4. (a)–(c) 3D plots of the solution u1(ξ, ζ, s) ats=0, 0.2 and 0.4, respectively. Here, μ=0.1, ν=−1, σ=0.25 and C=1.

7

Phys. Scr. 95 (2020) 045212 A-A Hyder and M A Barakat



solution as follows
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Remark 2. Using the identity q q= +qe cos i sin ,i our
traveling wave solutions, obtained by the general improved
Kudryashov method, can be easily converted to periodic wave
solutions. For example, the solution ( )xu s,1 of the combined
KdV–mKdV equation can be converted to a periodic wave
solution as follows

where Aand ( )f x s, are given in Case A. Also, the solution
( )x zu s, ,1 of the (2+1)-dimensional modified Zakharov–

Kuznetsov equation can be converted to a periodic wave
solution as follows
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Remark 3. This paper improved the general Kudryashov
method [22] by a general auxiliary equation
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Figure 5. (a)–(c) 3D plots of the solution u2(ξ, ζ, s) at s=0,0.2and0.4, respectively. Here, μ=C=1andν=σ=−1.
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which has numerous general solutions depend on the natural
number n, see (2.3). If =n 2, equation (4.5) reduces to the
auxiliary equation ( ) ( ) ( )c v sc v c v¢ = -2 which used in
[17, 22] together with the expansion (2.1) to produce a families of
exact solutions for some nonlinear evolution equations. Also, for
=n 3, equation (4.5) reduces to the auxiliary equation
( ) ( ) ( )c v sc v c v¢ = -3 which used in [28] together with

the expansion (2.1) to produce a family of exact solutions for
some nonlinear evolution equations. In our work, we just used
equation (4.5) for =n 5. But one can use it for many values of
the natural number nand obtain new pairwise disjoint sets of
exact solutions. Moreover, we apply our method for the combined
KdV–mKdV equation and the (2+1)-dimensional Zakharov–
Kuznetsov equation as application examples. But, in fact, one can
use it to solve many nonlinear evolution equations arising in
mathematical physics, such as Hirota-Satsuma coupled KdV,
Sawada-Kotera, Zhiber–Shabat and KdV–Burgers equations.

5. Conclusion

In this paper, the general Kudryashov method is improved by a
novel auxiliary equation. So, a new method to constructing exact
solutions for nonlinear evolution equations is introduced. This
method is called the general improved Kudryashov method. The
main merit of the general improved Kudryashov method over the

others lies in the fact that it uses a particularly straightforward and
effective algorithm to obtain exact solutions for a large number of
nonlinear evolution equations. Also, a great variety of exact
solution can be derived easily on choosing the parameters that
appeared. We apply this method to explore exact traveling wave
solution for the combined KdV–mKdV equation and the (2+1)-
dimensional Zakharov–Kuznetsov equation. These solutions
include solitary and periodic wave solutions. Also, some of the
obtained solutions are graphically sketched.

Besides that, our approach generalizes some previous
approaches. It is based on improving the general Kudryashov
method [22] by the general auxiliary equation (2.2) which has
various general solutions depend on the natural number n. If
=n 2 and3our approach reduces to the approaches presented in

[17, 22] and [28], respectively. In our work, we just used our
general auxiliary equation for =n 5. But one can use it for
many values of the natural number nand obtain new pairwise
disjoint sets of exact solutions. In our point of view, there is no
any demerit in applying our approach to finding exact solutions
for nonlinear evolution equations.
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Appendix A

The system of algebraic equations in αi, βj (i=0, 1, 2, 3, 4,
5, j=0, 1) for the combined KdV–mKdV equation
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Appendix B

The system of algebraic equations in (a b =i, 0, 1, 2 , 3,i j

)=j4, 5, 0, 1 for the (2+1)-dimensional Zakharov–Kuz-
netsov equation
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