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Abstract
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Propagation of electron acoustic solitary waves is studied in magnetized plasmas consisting of hot
and cold electrons and stationary ions in the presence of varying magnetic field. We show that a
space dependent magnetic field adds a dissipative term in the wave equation of motion without
presenting known dissipation sources. Localized waves propagating in such space dependent
magnetic field are governed by the modified KdV-Burgers equation. The numerical results show
that, this phenomenon leads to the formation of oscillatory backward moving shock waves in the
plasma. Characters of shock profile, according to the plasma parameters are discussed.
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1. Introduction

Nonlinear phenomena and their effects in physics have
received considerable attentions in the past few decades,
especially in the formation and propagation of solitary waves.
The study of nonlinear localized waves in plasmas as a reach
nonlinear media is an attractive subject in theoretical physics as
well as experimental and laboratory purpose. There are several
important phenomena in space environments and astrophysical
situations which can be understood only through nonlinear
analysis, such as the cusp region of the terrestrial magneto-
sphere [1, 2], geomagnetic tail [3] and description of dayside
auroral acceleration region [4, 5], beside experimental appli-
cations [6—10]. Electron acoustic (EA) waves is a special kind
of plasma wave fluctuations which may occur in media with
two distinct electron populations referred to cold and hot
electrons. The propagation of EA solitary waves (EASWs) in
different plasma systems has been studied by several authors in
unmagnetized two electron plasmas [11-13] as well as in
magnetized plasmas [14—18]. Large amplitude ion and EASWs
in unmagnetized plasmas also have been investigated by
Lakhina et al [19]. The nonlinear propagation of the EA waves
in magnetized plasma was considered by Dubouloz et al [14].
They have indicated that the electric field spectrum produced
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by an EASW is not significantly modified at the presence of a
constant magnetic field. The properties of obliquely propagat-
ing EASWs in magnetized plasmas have been studied by Mace
and Hellberg [17]. They showed that negative potential
EASWs corresponding to compression of the cold electron
density can be created in such media. Mamun et al [18] studied
properties of obliquely propagating EAWs in magnetized
plasmas. Their model supports EAWs with a positive potential,
which corresponds to a hole (hump) in the cold (hot) electron
number density. Ergun ef al [20, 21] observed that BEN bursts
in the dayside auroral zone have three-dimensional wave
structure by including the magnetic field effects. The external
magnetic field and the wave obliqueness are found to change
the properties of the EA waves significantly. In all mentioned
researches, external magnetic field has been considered as a
constant vector throughout the medium, but we know that in a
realistic situation, magnetic field is not a constant vector at all.
In this work, we have tried to treat the problem using numerical
solutions, beside an analytical evaluation using the small
amplitude perturbation technique. Such situation can be present
more realistic propagation of EASW in the earth atmosphere,
where the magnetic field clearly has spatial variations [22].
Outlines of this paper are as follows: the basic dynamical
equations governing our plasma model is presented in the
section 2. Modified Korteweg-de Vries-Burgers (mKdV-B)
equation is derived for nonlinear propagation of EA waves in
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the section 3. Localized solution of mKdV-B equation is
discussed and time evolution of the solution in the medium is
analyzed in section 4. The last section is devoted to some
concluding remarks.

2. Basic equations

We consider homogeneous plasmas consisting of a cold elec-
tron fluid, hot electrons obeying a Maxwellian distribution and
stationary ions in the presence of a space dependent external
magnetic field B = B(r)2. The nonlinear dynamics of EASWs
is extracted from the continuity and motion equations for cold
electrons, in addition to the Poisson’s equation [23] as:
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In the above equations, . (n;,) is the cold (hot) electron number
density normalized by its equilibrium values n.o (n,,0).u. is the
cold electron fluid velocity normalized bythe phase speed of
EA (C, = (kgT,/am,)'/?) in whichkg is the Boltzmann’s
constant,e is the electron charge, m, electron mass and
a = npo/neo. b(r) = (eB(r)/mc)/wy is the cold electron
cyclotron frequency normalized by the cold electron plasma
frequency wy. and ¢ is the electrostatic wave potential nor-
malized by kg T}, /e. The time and space variables are in units of
the cold electron plasma period w;cl and the hot electron Debye
radius \py,, respectively. The basic set of equation (1) can be
expanded as:
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As mentioned before, the Maxwellian distribution for hot
electrons is considered as follows:

ny = ev. 3)

3. Reductive perturbation method

In order to study the EASWs in the plasma model under
consideration, we construct a weakly nonlinear theory of

the electrostatic waves with small but finite amplitude
which leads to a scaling of the independent variables through

1
the stretched coordinates £ = e2(I,x + [,y + [,z — \f) and

T = sgt, where € is a small dimensionless parameter mea-
suring the weakness of the dispersion and nonlinearity.
Parameters /,, [, and I, are directional cosines of the wave
vector k along' the x, y and z axes, respectively, so that
IF+ lf + 12 = 1. The X is unknown phase velocity which
will be determined later. In the above transformation A is
normalized by C,. We also expand n, ttey , Uey, U, and @ in
power series of € as follows:
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_ 23/2 2
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_ 3/2 2
Uey = 3 %U10y + E2Uney + oon. 4)

Uy = Elley + E2Uney + e

o =cp + e¥py + .

Now we write equation set (2) in different powers of ¢
separately. From the lowest order of ¢ in the continuity
equation, the z component of the momentum equation and

. . —al} —al;
Poisson’s equation we have: nj, = %9"1’ U, = %Lpl and
A = [,. One can write the lowest order of the x and y com-

ponents of the momentum equation as:
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which are the x and y components of the cold electron drift,
arising due to the balance between the electric and Lorentz
forces respectively. We can also obtain the next higher order
of € in x and y components of the momentum equation as
follows:
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To the next higher order in ¢, from the continuity equation,
the z-component of the momentum equation and Poisson’s
equation, we obtain:
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Finally, from (5)—(7), the following nonlinear equation yields:
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Propagation of EASWs in non-uniform magnetized plasma
with hot and cold electrons and stationary ions is fully eval-
uated by the equation (8). In fact, the above equation is derived
for the magnetized plasma, affected by a varying magnetic field
which has been introduced for the first time. In the
equation (8), ‘b’ is a function of the variable magnetic field and
plays important role in characteristics of wave propagation in
the medium. The fourth term in the above equation gives us a
new kind of dissipation and obviously it depends on the var-
iation of magnetic field in space. For greater values of dis-
sipative term, strength of shock waves becomes dominant and,
in such cases, energy of solitary wave reduces due to radiation.
It can be found that equation (8) changes into the KdV
equation [16, 18, 23], when the magnetic field is a constant
vector. In other words, solitary wave solutions in plasmas with
space dependent magnetic field are not valid [23-27].

4. Numerical results and discussion
In this section, effects of variable magnetic field on the fea-

tures of the EASWs are explained. Equation (8) can be
written with more details as follows:
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The parameter b(£) in the above equation is related to the
variable magnetic field. Variation of b(¢£) acts as an important
parameter for creating shock wave profiles.

Equation (9) is called the modified KdV-Burgers
(mKdVB) equation while C(§) and D(§) are dissipation
coefficients. In a uniform magnetic field (C = D = 0),
evolution equation is a usual KdV equation [18, 23]. It means
that stable solitary waves in uniform magnetic fields move
without any dispersion. But our derived equation shows that
in a non-uniform magnetic field, solitary profiles emerge
backward propagating waves (which are called shock waves)
while interacting with varying magnetic field. Using
equations (9) and (10) we can estimate characteristics of these
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Figure 1. Magnetic field b(&)and its derivative g—z as functions of &.

waves. According to (10), dissipation coefficients (C and D)
are proportional to the % and % This means that smaller
magnetic fields create larger dissipation effects. It may be also

noted that, maximum value of C and D coefficients respect to
NG

the cosine direction is occurred for [, = ~——, thus the ampl-

itude of shock wave becomes larger when I. goes toward the
value I, = 0.577.

It is interesting, if we study behavior of EASW after
interacting with the variable magnetic field. We can expect
that such shock structures are observed in plasmas with space
dependent magnetic fields, like what happens in atmospheric
plasmas. For this reason, we consider a localized Gaussian
perturbation for magnetic field as:

b = bo(1 + bye ), (11)

where by is the background magnetic field and byb,, defines
strength of magnetic field perturbation. Indeed, in real situa-
tions (like atmospheric plasmas) variation of magnetic field
is very close to the Gaussian function (11). At positions
far from the varying magnetic field, the magnetic field is con-
stant (b = by). Figure 1 demonstrates magnetic field b(&) =

0.9(1 + 0.5e7%2%% and its derivative (b’ = g—lg) respect to &

The figure 1 clearly shows that dissipation term acts only
in the region of magnetic field perturbation. This means that
outside of the perturbation region, dissipative terms are absent
and therefore (9) reduces to the well-known KdV equation.
Thus, we can choose the solution of the KdV equation as
initial condition for numerical simulation of propagated wave
in the magnetic field perturbation.

Therefore, we assume that the stationary solution can be
expressed as ¢, = ¢,(x), where x = { — ur and u is the
soliton velocity. Stationary solitary wave solution is:

@) = saosechz(i), (12)
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Figure 2. Time evolution of the electron acoustic soliton while
interacting with the variable magnetic field 5(§) = 0.2(1 + 0.8¢3¢%)
with [, = 0.95, a = 0.5 and # = 0.3. Dashed line presents initial

solitary profile and solid line is the solitary wave profile after interaction
with the varying magnetic field.

T
-150

where ¢, = 3u/A is the soliton amplitude and w = 2/B/u
defines its width. It is clear that, the initial position of the
solitary solution should be located out of perturbation region.
We use numerical calculation for simulating the evolution of
the initial solution (soliton) in varying magnetic field. The
equation (9) has been solved using the fourth order Runge—
Kutta method for time derivation and finite difference method
for space derivations. The grid spacing has been chosen
A( = 0.001 and 0.005 (as cross check for numerical stability
of solution) and time grid spacing has been taken as Ar=
0.0001.

As C and D coefficients are complicated functions of
b(&) and its derivatives respect to spatial position, we use
some plots to explain effects of varying magnetic field on the
behavior of propagated EA waves. Figures present the
EASWs at t = 0 (far from the location of variable magnetic
field) and after the interaction when it has passed from the
varying magnetic field.

An important example of varying magnetic field is the
magnetic field of the earth atmosphere. The geomagnetic field
varies on a range of scales at different position of the atmosphere
[22]. Three components of earth magnetic field, usually assigned
as X (northerly intensity), Y (easterly intensity) and Z (vertical
intensity, positive downwards). Measurements show that, hor-
izontal magnetic field near the north pole are small (0—1000 nT).
It raises up to 40 000 nT at the equator and then decreases to
20000 nT at the south pole. Variation of horizontal magnetic
field has almost a bell-shaped pattern. Also there exists some
high intensity spots of magnetic field in the atmosphere. For
example total intensity of the earth magnetic field rapidly jump
to 65000 nT in —60(latitude):+120(altitude) while it is about
25000 nT in —60:0. The best curve for description these var-
iations is the Gaussian function as we have used as the magnetic
field perturbations in following calculations. Indeed, it is more
realistic perturbation. However, it is possible to find other shapes

(b=0.2(1+0.8™"))
m (b=0.2(1+0.8¢""))

150 00 50 E_, 0 ' 50
Figure 3. Time evolution of the electron acoustic soliton while
interacting with two different magnetic fields »(£) = 0.2(1 + 0.86’352)
and b(¢) = 0.2(1 + 0.8¢~03¢%) with fixed values of I, = 0.95,
a=05andu = 0.3.
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Figure 4. Time evolution of the electron acoustic soliton while
interacting with the variable magnetic field b(¢) = 0.2(1 + 0.8e=08¢)
with I, = 0.95, @ = 0.6 and u = 0.4.

of varying magnetic field in other physical situations. Please note
that our calculations is independent of the selected function for
the varying magnetic field.

Figure 2 shows EASWs evolution before and after inter-
acting with the varying magnetic field 5(¢) = 0.2(1 4 0.8e3¢)
with directional cosine I, = 0.95 at £ = —15 (initial position)
and ¢ = +12 (after the interaction). Initial soliton moves toward
the perturbation with initial speed # = 0.3. We expect to find a
solitary wave after passing through the perturbation, with different
amplitude and width in comparison with initial solitary wave.
According to the figure 2, the EA wave radiates some amount of
its energy during their traveling through the varying magnetic
field which is appeared like an oscillatory shock wave. It is
important to note that the shock wave starts to propagate from the
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Figure 5. Time evolution of the electron acoustic soliton while
interacting with the variable magnetic field b(¢) = 0.2(1 + 0.8e73¢)
with [, = 0.95, u = 0.4 and different values of a.

location of field perturbation. This means that shock structures in
the plasma is created by the magnetic field perturbations. In other
word, non-uniform magnetic field can act as a new source of
dissipation and creates backward moving oscillatory shock waves
in magnetized plasmas.

According to (11), one can find that narrower field per-
turbation (larger value for ) creates greater values of dis-
sipation coefficients and therefore shock profiles find larger
amplitudes. According to the figure 2, one can find that cre-
ated shock profile only propagated from the location of
magnetic field perturbation. This means that trajectory of
plasma particles spoil when reach the magnetic field pertur-
bation, but their path is restored into their previous situation
when they leave the perturbation area.

Figure 3 shows time evolution of initial solitary solution
(same as what we took in the figure 2) while interacting with
two different field perturbations b(§) = 0.2(1 + 0.8e 738
and b(¢) = 0.2(1 + 0.8¢7°3") with fixed values of
[,=0.95,a=0.5and u = 0.3. It is obvious that the shock
amplitude and radiated energy become greater when variation
of magnetic field perturbation respect to ¢ increases. The
figure also shows that the velocity of EA soliton increases
after passing through the magnetic field perturbation with
greater values of a.

Figure 4 shows that the backward moving shock wave is
still alive, even when the EASW is far away from the region
of perturbation after the interaction.

According to the figures 3 and 4 one can find that effects
of changing the strength of magnetic field is the same as
changing the width of perturbation. Deflections in the path of
plasma particles is related to the changing rate of background
magnetic. Therefore, amplitude and width create same effects.

According to (9) and (10), one can find that the ratio of
hot/cold electrons (value of the ‘a’ parameter) controls
amplitude and width of initial solitary wave. On the other
hand, strength of shock wave depends on the amplitude of

initial solitary solution. Therefore, we can say that amplitude
of shock waves increases when the population of hot elec-
trons decreases. Effects of parameter ‘a’ on the evolution of
waves in the medium during the interaction with variable
magnetic field b(¢) = 0.2(1 + 0.8e73¢") have been demon-
strated in the figure 5. If the strength of magnetic field
increases, the dispersion coefficient (B) become larger. In this
situation, the width of solitary waves become larger and thus
interaction time of soliton and perturbation increases and thus
shock waves find larger amplitude as one can find in the
figures 4 and 5.

We can present a preliminary explanation for the dis-
sipation term in the equation (8). It may be noted that we have
not considered any dissipative agent (like particle collision,
viscosity and ...) in our model. Path of plasma particle is
determined by the magnetic field. In the region of varying
magnetic field some particles experience larger magnetic field
and some other move under the influence of lower magnetic
field intensity. This means that plasma particles are deflected
while traveling through the magnetic field perturbation, and
indeed it is the reason of created disorders in the shape of
solitary profile.

5. Conclusion and remarks

The present study investigates the behavior of small ampl-
itude EASWs in plasmas containing a cold electron fluid, hot
thermal electrons and stationary ions under the influence of a
varying magnetic field. We have shown that the descriptive
equation for the propagation of the EA wave at the presence
of varying magnetic field is the mKdV-Burgers equation
instead of the usual KdV equation. In fact, the space depen-
dent magnetic field acts as a new source of dissipation. It is
interesting that we have not considered any dissipative
sources like particle interaction or temperature effects.
Numerical results show that the EASWs radiate some amount
of energy during their travelling through the varying magnetic
field. Radiated energy emerges as backward moving oscilla-
tory shock profiles. Characteristics of shock waves depend on
the strength of magnetic field variation and plasma para-
meters. We also showed that amplitude of shock profiles
increases when the ratio of hot/cold electrons is increased.
Our theoretical study confirms the existence of collisionless
shocks driven by a laser-produced magnetic piston [28].

Dissipation effects due to varying magnetic field is a
noticeable phenomenon which should be considered in
magnetized plasmas. It can change the stability conditions of
magnetized plasmas. Generating of shock waves in low
density magnetized plasmas where dissipative effects are
negligible can be explained by this issue. Specifications of
generated shock profiles depends on the plasma parameters
and characteristics of the environment.

This work should be extended to a large set of studies on
plasmas with different constituents and particle distributions
to understand the nature of dissipative effects of varying
magnetic fields.
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