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Abstract
Soliton molecules may exists in both experimental and theotetical aspects. In this work, we
investigate the (2+1)-dimensional B-type Kadomtsev–Petviashvili equation, which can be used
to describe weakly dispersive waves propagating in the quasi media and fluid mechanics. Soliton
molecules are generated by N-soliton solution and a new velocity resonance condition.
Furthermore, soliton molecules can become to asymmetric solitons when the distance between
two solitons of the molecule is small enough. Based on the N-soliton solution, we obtain some
novel interaction solutions which component of soliton molecules, breather waves and lump
waves by deal with part of parameters by applying velocity resonance, module resonance and
long wave limit method, and the interactions are elastic. Finally, some graphic analysis are
discussed to understand the propagation phenomena of these solutions.

Keywords: Soliton molecules, velocity resonance, asymmetric solitons, interaction solution
B-type Kadomtsev-Petviashvili equation
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1. Introduction

Soliton molecules, which is constructed from a number of
‘atoms’ each being a fundamental soliton, have been became
one of the most challenging open frontiers of the field [1].
Soliton molecules have been observed experimentally in
some fields [2–7]. Investigation on soliton molecules provides
a direct route to study the interactions between solitary waves,
and the formation and dissociation of soliton molecules are
closely related to many subjects [8]. Besides the significance
they bring to the fundamental understanding of soliton phy-
sics, soliton molecules also present the possibility of trans-
ferring optical data surpassing the limitation of binary coding
[9]. The soliton is a universal concept applicable to a large
class of solitary wave propagation effects that can be
observed in most branches of nonlinear science [10–19].

Lump solutions are the rationally localized solutions of
the nonlinear evolution equations. Lump solutions appear in

many physical phenomena, such as plasma, shallow water-
wave, optic media, Bose–Einstein condensate [20, 21]. The
nontrivial internal interaction between lumps can represent a
model of a strongwave turbulence. Lump solutions can be
regarded as the lump-type rogue wave, which is used to
describe nonlinear phenomena in oceanography. It becomes a
very interesting topic to investigate lump solutions of the
nonlinear evolution equations. Lump is a rational function
solution and localized in all directions in the space, lump
solutions for many integrable equations are obtained and
discussed in detail [22–25].

As the particular solutions of nonlinear systems, breath-
ers propagate steadily and localize in either time or space,
such as Akhmediev breathers [26] and Kuznetsov–Ma
breathers [27, 28]. Akhmediev breathers are periodic in space
and localized in time, while Kuznetsov–Ma breathers are
periodic in time and localized in space, these solutions for the
integrable equations have widely discussed. Another special
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type of analytic solution is the rogue wave localized in both
space and time, and it has peak amplitude usually more than
twice of the background wave height [29–33]. Besides, rogue
waves always appear from nowhere and disappear without a
trace, and they can be written in terms of the rational func-
tions of coordinates.

The interaction phenomenon becomes a very interest-
ing topic of the nonlinear evolution equations. As we
know, there will happen collision among different types of
solutions, it is mainly containing two kinds of collision, the
elastic collision and the non-elastic collision. The collision
of lump solutions are so widely discussed [34–36], lump
solutions will retain their shapes, amplitudes and velocities

after the collision with soliton solutions, which means the
collision is completely elastic [37]. On the contrary, there
are also other collisions that are completely non-elastic
[38]. According to different conditions, the collision will
change essentially. The propagation and interaction of the
bell-type, kink-type and periodic-depression solitons and
the evolution of the shock-wave solutions are investigated
in [39]. To the best of our knowledge, soliton molecules
interact with lump waves and breather waves have not been
studied yet.

Recently, Lou [40] introduced a new possible mech-
anism, the velocity resonant, to form soliton molecules of a
fluid model of the (1+1)-dimensional fifth order KdV, SK
and KK cases, and we extend the method to soliton molecules
of (2+1)-dimensional systems. In this work, we will consider
the following (2+1)-dimensional B-type Kadomtsev–Pet-
viashvili (BKP) equation
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where u=u (x, y, t) is a analytic function with scaled spatial
coordinates (x, y) and temporal coordinate t, the subscripts
mean partial derivatives, and ò is integration operator. The
BKP equation, as a subclass of the KP hierarchy, can be used
to describe weakly dispersive waves propagating in the quasi
media and fluid mechanics. Multiple soliton solutions,
rational solutions, periodic solutions and rouge wave solu-
tions were investigated [41–43].

The bilinear form of equation (1) have been given
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under the dependent variable transformation:
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where D is the Hirotas bilinear differential operator, and f=f
(x, y, t) is a real function of variables x, y and t. Based on the
Hirotas bilinear theory, equation (1) admits N-soliton solu-
tions as follows:
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with

and the sum taken all the possible conbinations of ρi=0, 1
(i=1, 2, L, N), where ki, pi (i=1, 2, L, N) are free
parameters.

The present paper is organized as follows. In section 2,
we aim to introduce a new velocity resonant condition firstly,
then soliton molecules are obtained based on N-soliton
formula with applying the velocity resonant condition, and
further we explore their fascinating dynamical behaviors. In
section 3, partial parameters are handled with velocity reso-
nant condition and long wave limit method, the interaction
solutions include soliton molecules, lump waves and breather
waves are derived. We present general restrictions on inter-
action solutions to generate m soliton molecules, s breather
waves and r lump waves. In the last section, we give the
conclusions of this paper.

2. Soliton molecules

To find nonsingular analytical resonant excitations from
equation (4) we apply a novel type of resonant conditions
( ¹  ¹ k k p p,i j i j), the velocity resonance,
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For N= 2 in equation (4), two-soliton solution exhibits
one soliton molection under the resonance condition. Figure 1
displays the molecule structure with paramreter selections
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If we change values of f1 and f2, the distance between
two solitons of the molecule will change repectively. When
two solitons interact with each other, the soliton molecule will
become one asymmetric soliton solution. Here we change
f = -2

9

2
in equation (8), see figure 2.

Two soliton molecules can be generated from four-soli-
ton, k1, p1, w1 and k2, p2, w2 satisfy equation (5), k3, p3, w3

and k4, p4, w4 satisfy equation (5) at the same time. Figure 3
displays the elastic interaction property for BKP equation
with N= 4 and with parameter selections
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As we can see in figure 3, height of wave peaks and
velocities are not changed except for phase after collision.

3. Some novel interaction solutions

In this section, some novel interaction solutions have been
investigated which are soliton molcelue interacting with
breather wave and lump wave. To our knowledge, soliton

Figure 1. Soliton molecule structure for BKP equation with parameter selections (8) at t=0. (a) 3-dimension plot. (b) Density plot.

Figure 2. Asymmetric soliton for the BKP equation with parameter selections (8) at t=0 except f = -2
13
3
. (a) 3-dimension plot.

(b) 2-dimension plot when x=0 at t=−1, t=0, t=1.
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molecules interact with lump waves and breather waves have
not been studied yet. We study the interaction solutions by
velocity resonance, module resonance and long-wave limit
method.

Interaction solution of one soliton molecule and breather
wave can be generated by four-soliton. Furthermore, ki, pi and
wi (i= 1, 2) should satisfy velocity resonance condition (5),
η3 and η4 should satisfy module resonance condition h h=3 4¯ .

For instance, taking parameters as follows
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Figure 4. (a) Interaction of a soliton molecule and a breather wave for BKP equation with parameter (10) at t=0. (b) Interaction of one
asymmetric soliton and one breather wave for BKP equation with the parameter selections (10) at t=0 except f2=−3.

Figure 3. Two-soliton molecules with parameter selection (9) at t=0. (a) 3-dimension plot. (b) Density plot.

Figure 5. Interaction of one soliton molecule and one lump wave for BKP equation with parameter (11).
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Figure 4 displays the interaction between one soliton mole-
cule and one breather wave. Specially, asymmetric soliton can
be generated by taking suitable values of f1, f2. And the
interaction of breathers, asymmetric solitons and soliton
molecules are elastic.

The long-wave limit method is a powerful technique to
get lump solution, based on the N-soliton solution (4), we can
obtain interaction solutions consisting of one soliton molecule
and one lump wave. For N=4, we taking a long wave limit
on k3, k4, p3, p4 (ò→0), k1, k2, p1, p2 satisfy volocity reso-
nance condition, parameters are as follows
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Figures 5 and 6 displayed one lump wave interact with
one soliton molecule and one asymmetric soliton respectively.
The collision are also elastic, and height of the lump wave
does not change before and after the collision.

For more general situation, interaction solutions include
m soliton molecules, s breather waves and r lump waves can
be constrained as follows
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If we set N=6, k1, k2, p1, p2 satisfy velocity resonant
condition, k5, k6, p5, p6 satisfy module resonance condition,
then taking a long-wave limit on k3, k4, p3, p4(ò→0), taking
parameters as follows
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then we obtain interaction solutions consisting one soliton
molecule, one lump wave and one breather wave, see figure 7.
The interaction solutions consisting one asymmetric soliton,
one lump wave and one breather wave is also obtained,
see figure 8. The interaction between these waves is also
elastic.

Figure 6. Interaction of one asymmetric soliton and one lump wave for BKP equation with parameter selections (11).

Figure 7. Interaction of one soliton molecule, one lump wave and one breather wave for BKP equation with parameter (13).
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4. Conclusions

In this paper, we investigate soliton molecules, asymmetric
solitons and interaction solutions of (2+1)-dimensional BKP
equation. Based on velocity resonance condition and general
N-soliton expression, we obtained soliton molecule by using
velocity resonance condition, see figures 1 and 3. When
taking suitable values of f, soliton molecule change to
asymmetric soliton, see figure 2. By employing velocity
resonance condition and module resonance condition on
wave numbers, we can get a new interaction solution con-
sisiting soliton molecules and breather waves, see figure 4.
Taking a long wave limit on part of parameters and
employing resonance condition on others, the new interac-
tion solutions consisitng soliton molecule and lump wave
can be obtained, see figures 5 and 6. By using velocity
resonance, module resonance and long-wave limit method to
different part of wave numbers, interaction solutions con-
sisting soliton moleules, asymmetric solitons, lump waves
and breather waves are obtained, see figures 7 and 8. These
interaction phenomena may have not been studied. At last,
we give the general restrictions to get these new interaction
solutions containing m soliton molecules, s breather waves
and r lump waves, and their interactions are elastic. The
method to construct soliton molecules and these new inter-
action solutions would be suitable to investigate other
models in mathematical physics and engineering.
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