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Abstract
This paper introduces a model of Grover’s algorithm suitable for implementation in a linear
photonic chip. We compare two known realizations of its main components, two-qubit CZ gates,
in order to define optimal chip architecture. The algorithm operation is simulated considering
directional coupler imperfection influence on the scheme parameters. We also determined
tolerance boundaries for distortions of the coupler dimensions.
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1. Introduction

Optical systems that use photonic degrees of freedom play a
key role in quantum information science and communication.
During the ultimate decade scientists proposed optical
implementations of all basic quantum computing operations,
including Grover’s search and Shor’s quantum factoring
algorithms [1, 2]. Another actively studied direction in optical
quantum computing is boson sampling [3].

Until recently photonic quantum computing demonstra-
tions have been realized using bulk optical elements [4].
Because of their large size and inherent instability this
approach hinders the development of scalable quantum
computing systems. A promising way of solving this problem
is using integrated photonic schemes composed of linear
optical elements (directional couplers (DCs) and phase shif-
ters). Recently the authors of [5] demonstrated the possibility
of creating large-scale quantum photonic chip using various
materials. Paper [6] describes a six-mode universal system
integrated into a single photonic chip that is sufficient to
implement all possible linear optical protocols up to the size
of that circuit.

Universal quantum computing system is an optical
circuit that would allow to reconstruct any quantum algorithm
using unitary transformations of the quantum information
carriers. Unfortunately, in a realistic scenario such approach

overcomplicates the scheme leading to increasing number of
errors and lower fidelity. For example, Mach–Zehnder inter-
ferometer—key element of universal optical quantum com-
putation—increases optical length of the chip and makes it
more expensive in comparison with regular DC that could be
used instead if universality is not required. An alternative lies
in development of a specific quantum circuits for solving
certain problems. A specially designed chip will have sig-
nificantly fewer distortions than the universal system making
such implementation more efficient. For example, Grover’s
algorithm single chip implementation can be useful in
quantum networking for the purposes of calculating optimal
signal routing [7–9]. The Grover’s algorithm based on bulk
optics has been offered to date [10]. However, an algorithm
model suitable for realization in an optical chip has not been
proposed yet.

Both bulk and on-chip implementations have several
common limitations. The bottleneck of any quantum comput-
ing system is a two-qubit gate. For instance, Grover’s algo-
rithm implementation requires at least two of them. Optical
two-qubit gate implementation is limited because of weak
photon-photon interaction [11]. In order to to solve this pro-
blem, linear optical quantum computation (LOQC) protocols
were developed. Today it is possible to create a full set of
universal unitary gates using linear optical elements [12]. Knill,
Laflamme, and Milburn (KLM) showed that a two-qubit gate
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can be constructed using linear optical elements, auxiliary
photons, and measurement [13]. In their paper, KLM proposed
a probabilistic CNOT with success probability P=1/16. This
probability can be increased further if its gates generate
entangled states used as a resource for the implementation of a
controlled unitary operation based on quantum teleportation
[13]. Later an alternative CNOT gate implementation with
P=1/9 was presented in [14]. It uses two photons and two
auxiliary modes (a two-photon CZ gate). Theoretical study of
correlations between perturbations of two-photon CNOT cir-
cuit parameters and its performance was given in [15]. Both of
these gates have been demonstrated experimentally on optical
chips [6, 16, 17]. Other limiting factors of optical realizations
of quantum algorithms include propagation and coupling los-
ses, photon generation and detection efficiency and imperfec-
tions of the optical scheme. The latter include fabrication
inaccuracy of DCs and phase shifters and dark counts of
photon detectors.

In this work we propose a Grover’s algorithm model that
can be implemented in an integrated optical waveguide cir-
cuit. We consider using two above mentioned CNOT reali-
zations and choose the optimal one. We also simulate the
algorithm taking DC imperfections into consideration. To
determine the tolerance for direction coupler technological
parameters, we simulate algorithm operation with DC dis-
tortions in length and separation of the central coupling
region. In the end we investigate how the proposed circuit
scales with a larger number of qubits.

2. The Grover’s algorithm in LOQC

The Grover’s algorithm identifies one of N elements, marked
by an oracle, with order N uses of the oracle [18]. The
search problem can be represented by function f (x)=1 if x is
a solution, otherwise f (x)=0. The quantum oracle, repre-
sented by unitary operator O, recognizes solutions to the
problem. Detailed algorithm description can be found in [11].
Here we consider a simplified quantum circuit of the algo-
rithm (figure 1) which allows us to reduce the number of
errors sources. The scheme consists of the following unitary
operators: X, Z are Pauli gates, I is identity gate, CZ is
controlled Pauli Z, and H is Hadamard gate. Here we sub-
stitute CNOT with CZ, using CNOT=(I⊗H)(CZ)
(I⊗H) and reducing the Hadamard gates. In the classical
Grover’s circuit [11] the oracle uses an auxiliary qubit, while
in this proposed circuit the oracle is performed by a combi-
nation of CZ and X. The marked state is specified inside the
oracle, it is defined by whether the X gates (in the dashed

box) are applied. Thus, if the marked state is ñ10∣ after oracle
we get f yÄ ñ = ñ + ñ - ñ + ñ = ñI X CZ 00 01 10 11( ) ∣ ∣ ∣ ∣ ∣ ∣
(omitting the normalization). The next part of the scheme is
equivalent to the inversion operator Ä ÄH H Z Z CZ( )( )

yÄ ñ = ñH H 10( )∣ ∣ , hence we find the marked state ñ10∣ .
Abovementioned limitations allow for efficiently creating

only two-qubit algorithm implementations. Currently only
two-qubit LOQC gates have been demonstrated [16, 17]. In
the work we study two-qubit Grover’s algorithm, thereby
restricting the search space to N=4 states.

To represent a qubit we use spatial mode separation
approach (dual-rail encoding). Such schemes consist of sev-
eral conventional optical elements, i.e. phase shifters and
DCs. The Hamiltonian of a phase shifter is:
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Here reflection and transmission coefficients are q=R sin ,2

q= - =T R1 cos2 , respectively. One-qubit gates used for
modeling the scheme and their implementations in dual-rail
encoding LOQC are given in table 1. The phase factor pro-
vides a unitary transformation.

Using these elements we can construct an optical
implementation of the circuit in figure 1. The resulting circuit
is shown in figure 2. A detailed scheme of Hadamard gate is
in figure 3. In order to prepare a superposition, the input state
is set to ñ00∣ , which is equivalent to ñ1010∣ in dual-rail
encoding Fock state. Optimal CZ gate will be chosen in the
following section.

Figure 1. Grover’s algorithm scheme. When II (two-qubit identity
gate) is applied in the dashed box, state ñ11∣ is marked. Similarly one
can apply XI for marking ñ01∣ , IX for ñ10∣ , XX for ñ00∣ .

Table 1. Quantum gates and their linear optical implementations.

Quantum gates Linear optical implementations

=
-

Z 1 0
0 1

⎜ ⎟
⎛
⎝

⎞
⎠ Phase delay f=π

=X 0 1
1 0

⎜ ⎟
⎛
⎝

⎞
⎠ DC with transmission coefficient T=1

=I 1 0
0 1

⎜ ⎟
⎛
⎝

⎞
⎠ DC with transmission coefficient T=0

=
-

H 1 1
1 1

1

2 ( ) DC with transmission coefficient
T=0.5 (up to phase factors), figure 2

f f
f f
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Mach–Zehnder interferometer, f is
phase shift 0 or π
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Two-qubit in accordance with LOQC
protocols

2

Phys. Scr. 95 (2020) 045102 E Samsonov et al



3. Optimal implementation of a two-qubit CZ gate

The scheme in figure 2 contains two CZ gates, their matrix
form is given in table 1. It is possible to use one of the two
existing LOQC implementations, two-phonon CZ and KLM
CZ (see section 1).

3.1. Two-photon CZ gate

Let us first consider a two-photon CZ gate, which has rela-
tively high probability (P=1/9). LOQC Grover’s algorithm
possible implementation with a two-photon CZ gate is given
in figure 4.

In this paper we show that the two-photon CZ gate is not
valid option for performing the algorithm. Let us prove this
statement by calculating a state at the scheme output if for
example a state ñ01∣ is marked. Let the input state be:

fñ = c t , 41 1∣ ( )† †

where c1
† and t1

† are creation operators for the first control and
target modes consistently. According to (equation (3)), the
equations for CZ gate relating the control (C) and the target
(T) input modes to their corresponding outputs are:

= +C C v
1

3
2 , 5c1out 1( ) ( )

= - +C C T
1

3
2 , 62out 2 1( ) ( )

= +T C T
1

3
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= +T T v
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2 . 8t2out 2( ) ( )

Relating equation for one-qubit gates are described by
(equations (1), (2)). The operators are applied to the state in

(equation (4)) successively according to the linear algebra
laws. Superposition state before a first CZ gate is:

y ñ = + + + ñc t c t c t c t
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2
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Then the state after the first CZ gate is:
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After post-selection we can neglect some external states
when there is photon in auxiliary mode. But the other
external states will contribute to the error because we do not
perform a measurement right after the first CZ gate. As a
result, the output state after a second part of the algorithm is
given by:

y ñ = - ñ - ñ

+ ñ + ñ +

1

9
2 1010 2 1001

0110 2 0101 ext . 11

out∣ ( ∣ ∣

∣ ∣ ) ( )

We can see that the Grover’s algorithm with 1/9-
probability CZ gate does not allow to identifies the marked
state because of the two-photon gate error. We find from the
calculations that even if we change the Grover’s circuit
design the two-photon CZ gate will contribute the critical
error in the algorithm work.

3.2. KLM CZ gate

Now we shall analyze the KLM CZ gate, which allows to
avoid the errors of the previous one. The reason for this is that
in KLM gate a successful operation is heralded by two of the
four detectors, and the gate flips the sign of the ñ11∣ state
probability amplitude [12]. Hence we know exactly when the
operation was successful and can use two gates con-
sequentially. The only practical limitation of this operator is
low probability (P=1/16). Even though there are methods
of increasing it, here we consider the simplest implementation
of the protocol. KLM gate significantly reduces Grover’s
algorithm efficiency but allows it to proceed without mis-
takes. There already exist implementations of two-qubit gates

Figure 2. Optical realization of Grover’s algorithm. The numbers indicate the reflection coefficients R, the dashed line denotes phase sign
change. Directional couplers at the end of the Mach–Zehnder interferometers can be omitted, since (HH=I).

Figure 3. Detailed scheme of a linear optical Hadamard gate.
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with projections measurements and post-selection in bulk
with polarization qubits [19] and on an optical chip [20].
Authors achieved fidelities close to unity. In this paper we
propose to use KLM CZ gate in optical implementation of
Grover’s algorithm. This approach is similar to one shown in
[20], however we do not aim to make the chip universal and
fully re-configurable. We suggest that such simplified chips
can be used to perform sub-routines of more complex pro-
blems. The final version of proposed scheme for algorithm
implementation with KLM CZ gates is given in figure 5.

4. Algorithm simulation in presence of DC
distortions

Now let us consider errors in the algorithm that appear due to
DC dimensional inaccuracy that always remains an issue
during fabrication process. A DC is a key element of LOQC,
and its imperfections make a significant contribution to error
rate in one-qubit linear optical gates [21, 22]. We present
simulation results of the algorithm implementation given in
figure 2 with errors introduced by direction coupler parameter
deviations. Here we consider only errors from single-qubit

Figure 5. LOQC Grover’s algorithm implementation with two-cubit KLM gate.

Figure 4. LOQC Grover’s algorithm implementation with two-photon CZ gate.

Figure 6. Simulating result of the Grover’s algorithm with coupler
splitting coefficients randomly tilted in range (0.5±0.034).

Figure 7. Splitting coefficient variation depending on separation and
coupling length errors. Center of the figure corresponds to an ideal
case with splitting coefficient of 0.5.
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gates, assuming that KLM gate works perfectly when the
photons are detected in respective ancillary channels.

In order to fully estimate algorithm errors one should also
consider single-photon sources and detectors. It is known that
the output success probability of a source above 0.7 and the
total system (optics and detectors) efficiency above 0.9 will
allow to achieve performing simple KLM gate without post-
selection [23]. Current LOQC experiments require extensive
post-selection and long measurement times and involve only
about six photons. Full description of the algorithm work
should include simulating single-photon devices, which will
be done in future works.

For our simulations we used the parameters of existing
silica-on-silicon DCs [21]. Modeling was performed using
QuTiP library [24] in Python. Figure 6 presents and example
of simulation results for a splitting coefficient error±0.034,
showing the output states for each marked state. It can be seen
that error probability does not exceed 0.011.

Coupler dimensions that contribute the most to error rate
are its length and waveguide separation in the coupling region
[25]. To determine the conditions under which the algorithm
operates stably we performed a simulation varying both
parameters.

We began with calculating silica-on-silicon DC splitting
coefficient for different values of length and separation dis-
tortions using finite element method (FEM) in Matlab mode
solver [26]. We used exponential approximation to describe
coupling length as a function of separation. The splitting

coefficient C can be written as:

D D = + + D t- +DC l s a L l l, sin e , 12s s2
int 0( ) ( ( ) ) ( )( ( ) )

where Lint is the coupling region length, l0 is effective cou-
pling length of the transition region, s is separation between
two waveguides in the coupling region, Δl and Δs are dis-
tortions of coupling length and separation, respectively.
Symbols a and τ denote approximation parameters obtained
from FEM simulation, their values are 1.05×10−3 and
129.15, respectively. Values of coupling region length and
separation were chosen so that C is equal to 0.5 in zero errors.
For silica-on-silicon waveguides these values are Lint+l0=
7650 nm and s=300 nm. Equation (12) gives us a map of
splitting coefficient values depending on dimensional errors
(figure 7). In order to observe the effect of distortions on in
the Grover’s algorithm, we applied the splitting deviations
calculated for different values of Δl and Δs into Hadamard
matrices.

According to (equation (3)), unitary operator for Hada-
mard gate with an arbitrary DC can be calculated as:

= -
-

-
-

= -
- -

C
C C

C C

C C

C C

H i 0
0 1

1 i

i 1
i 0
0 1

1

1
. 13

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( ) ( )( )

( )

By replacing the ideal splitting coefficient with a distorted one
we get a Hadamard gate with distortions. To simulate these
distortions we used Monte-Carlo approach, randomly choosing

Figure 10. Mean success probabilities of Grover’s algorithm with
different qubit count.

Figure 8. State identification probability during N runs of Grover’s algorithm, the marked state is ñ00∣ . Commentary is given in the text.

Figure 9. Minimum (blue), maximum (orange) and mean (green)
success probabilities obtained from Monte-Carlo simulations for
different splitting coefficient errors.
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splitting coefficient for every Hadamard gate in a single step
within boundaries which correspond to a certain set of dist-
ortion values.

Figure 8 illustrates the algorithm success probability for
N=1000 Monte-Carlo steps for two different levels of
splitting coefficient distortion. The marked state is ñ00∣ . On
the left graph splitting coefficient error is±16% corresp-
onding to Δl=±100 nm and Δs=±10 nm. On the right
graph the error is±50%, Δl=±350 nm and Δs=±30 nm.
For other marked states the results show similar behavior.

This model gives us performance estimation for the pro-
posed Grover’s algorithm realization on a photonic chip. We
performed simple statistical analysis of data obtained from
Monte-Carlo simulations for different values of splitting coef-
ficient error. Note that for every point of splitting coefficient
error in this data has a form shown in figure 8. Figure 9 shows
minimum, mean and maximum values of algorithm success
probabilities obtained from these simulations as functions of
splitting coefficient error. One can see that while minimal
success probability drops fast, the mean value declines much
slower and does not fall below 0.95. Similar performance was
achieved for two-qubit quantum processor in [20]. This indi-
cates that in a lot of cases the algorithm works even for very
large errors. Situation changes if we consider higher number of
qubits. In this paper we also consider Grover’s algorithm
schemes with larger qubit count—3, 4 and 5 qubits. It is known
that scalability is one of the main challenges for LOQC as
well as for other physical implementations. We can construct
n-qubit Grover’s algorithm according to figure 11. We simu-
lated these schemes using the same approach and looked at the
mean success probabilities of each (figure 10). As one can see
mean probabilities drop much faster with the increase of qubit
count. During the calculation we found that success prob-
abilities for some cases are not exactly equal to 1. To create a
fair comparison we considered probabilities relative to the ideal
case of respective qubit count. We also plotted success prob-
abilities versus the qubit count and fitted it with the decreasing
exponential (figure 12). It is hard to see the exponential decay

for the case of 10% error rate however if we move to higher
rates (30% and 50%) we can see the trend more clear. This
approximation can be used to estimate decrease of success
probabilities for Grover’s algorithm with qubit count much
larger than classical computer could simulate. For example if
we consider 50-qubit Grover’s algorithm with the 10% error
rate we get the estimate value of success probability equal to
0.17. We want to note that 10% error rate could correspond to
dimensional errors of DCs based on Si3N4 calculated in [25].

5. Conclusion

We proposed two-qubit Grover’s algorithm optical scheme
which can be integrated into a chip. Our analysis shows that it is
necessary to use KLM CZ gates instead of two-photon CZ gates
with higher success probability, due to mode matching errors of
the latter. Also, in general it is more preferable to use gates with
projection measurements as it allows for post-selection of the
output and thus allows for mitigation of two-qubit gate errors
that come from probabilistic nature of LOQC. We modeled the
algorithm performance taking into consideration DC distortions
in Hadamard gates. Finally we determined algorithm tolerances
against distortions in technological parameters of DCs. Our
analysis shows that mean success probability scales slowly with
error splitting ratio and does not fall below 0.8 for two-qubit
algorithm. However, mean probability begin to drop much faster
if we consider higher number of qubits. We calculated mean
success probabilities of 3, 4 and 5-qubit Grover’s algorithm. Our
analysis shows that success probabilities attenuate exponentially.
This trend can be considered as a scalability problem with
respect to dimensional errors of DCs in LOQC.
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