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Abstract
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A hydrodynamic two-fluid model encompassing inertialess electrons of arbitrary degree of
degeneracy and cold ions using the quasineutrality assumption are reduced to an effective

nonlinear Schrodinger equation (NLSE) which is used to investigate driven electrostatic plasma-
phonon excitations. The quantized frequency spectrum of these plasma-phonon excitations in a
one-dimensional quasineutral electron-ion plasma confined in rectangular potential well is

calculated. The spectrum shows a quadratic energy level increase quite similar to that of a single
electron confined in a hard box, with much reduced level spacings proportional to the electron-
to-ion mass ratio. The parametrically driven NLSE is also used to study the quantum Faraday
excitations in both weakly and fully nonlinear regimes by employing the pseudo-potential

technique. The quantization criterion for fully nonlinear driven quantum Faraday excitations in
an arbitrary degenerate plasma confined in a hard box of length [ is derived, and it is shown that

these excitations constitute a full frequency spectrum level starting with those of small
amplitude, high frequency sinusoidal plasma-phonon up to the topmost zero-frequency level

solitary plasma-phonon excitations (plasma-soliton level).

Keywords: quantum hydrodynamics, ion oscillations, Faraday waves

1. Introduction

Faraday waves [1] are well-known suitably driven parametric
excitations which occur on the surface of a variety of viscous
fluids. These oscillations which take place in a quantized
quantity of the driver frequency above a critical external force
amplitude appear as spectacular symmetric patterns on the
surface of liquids [2—4]. Despite numerous efforts to inves-
tigate these nonlinear patterns, many aspects of the excitations
are still poorly understood, due to the complexity of the
physical phenomenon. The complexity is basically due to the
large number of parameters which can be varied in the sys-
tem, such as the driving frequency and amplitude, the fluid
viscosity and other thermodynamic state parameters, different
kinds of fluid instabilities, etc [5, 6]. The theory, however,
may as well apply to microscopic environments such as
plasmas consisting multi-species atomic fluids. The problem
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may become more appealing when quantum effects arise due
to reduced inter-particle distances. However, no such exten-
sion has been considered in the past, mainly due to the lack of
theory for solid state plasmas such as metals, as a preferred
platform. Surface Faraday (gravity) waves has recently been
investigated in liquid metals [7] driven by frequencies in the
range 20-80 Hz, which show highly symmetric patterns. On
the other hand, electrostatic ion Faraday waves may be easily
excited using a lower band RF frequency drive around the ion
plasma frequency w; = +/4me’ny/m; in which ng is the ion
number density, e the unit charge, and m; the ion mass. There
are also recent suggestions for energy extraction by para-
metric Faraday wave resonance in a magnetic fluid [8].
Quantum effects play an important role in a broad range
of physical phenomena involving particle—particle and parti-
cle-potential interactions. In solids and dense plasmas the
nature of mutual interaction of constituent particles radically
change when the inter-particle distances is lowered either
by a pressure increase or temperature decrease beyond a

© 2020 IOP Publishing Ltd  Printed in the UK
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scale-length characteristic of quantum regime where over-
lapping of the single-particle wave functions start to emerge
[9]. However, recent studies of the quantum electron gas [10]
provides a new statistical interpretation of the quantum
effects, other than the conventional Copenhagen probabilistic
interpretation, based on the interference between single-par-
ticle and collective motion of constituent particles in a sta-
tistical ensemble. The study of statistical quantum effects has
a long scientific history of more than seven decades, and
started by the pioneering works of several prominent
researchers [11-17]. In recent years, the investigation of
collective quantum excitations has received a renewed interest
[18-34] due to its broad technological applications in the
rapidly developing fields of nano-electronics, quantum optics,
plasmonics, and quantum device fabrication [35-39].

Due to the large degree of freedom and complexity of
mutual interactions in quantum plasmas, the dynamic simu-
lation of decomposed wave functions of N > 10 number of
single-particle Schrodinger equations is a formidable task.
There are, however, other effective models such as quantum
kinetic [40] and hydrodynamic [41] models which funda-
mentally reduce the degree of complexity of the calculations.
Particularly, the quantum hydrodynamic approach has been
found to provide unique and far-reaching analytic results
which brings into view interesting aspects of collective
interactions in dense plasmas [42]. Using hydrodynamic
models to study basic plasma phenomena in quantum ionized
environments such as the electromagnetic wave propagations
and interactions, multistream quantum phenomena, wave
instabilities and various nonlinear effects reveal even more
collective aspects which are significantly distinguished from
the classical counterparts.

The quantum hydrodynamic model may also be cast into
a collective nonlinear Schrodinger equation (NLSE) for the
investigation of electrostatic ion excitations or a collective
NLSE-Poisson system for studying electron plasma oscilla-
tions in quantum plasmas [43]. The linearized Schrédinger-
Poisson model has been recently used to investigate quantum
features of a degenerate electron gas by means of a coupled
pseudo-force system [44]. Analytical and numerical studies of
the NLSE have found numerous applications in quantum
mechanics as well as in the description of quasi-monochro-
matic wave propagation in weakly nonlinear media [45],
including laser-plasma interaction, nonlinear optics, gravity
waves, etc. The NLSE is closely related to the Zakharaov
system [46—48] which is used to describe the propagation of
high-frequency waves and their coupling to low-frequency
oscillations, such as Langmuir oscillations in an ionized
plasma and their interaction with ion acoustic waves, and
interactions between the short- and long-wave gravitational
disturbances in the atmosphere [49]. The NLSE and Zakharov
systems in inhomogeneous plasmas [50-53] exhibit interest-
ing dynamics involving localized excitations, solitons and
chaos.

The aim of this paper is to use a quantum hydrodynamic
model of electrons and ions to investigate quantum Faraday
plasma-phonon excitations in a plasma with Fermi-degenerate

electrons. The paper is organized as follows. We provide the
mathematical model of quantum electrostatic ion excitations
in section 2. The quantized frequency spectrum of free elec-
trostatic plasma-phonon excitations of ions in the arbitrary
degenerate quasineutral electron gas is presented in section 3.
The weakly nonlinear quantum Faraday plasma-phonon
excitations in a parametrically driven ions in an arbitrary
degenerate electron fluid is studied in section 4. The fully
nonlinear quantum Faraday plasma-phonon excitations and
their wavefunction along with the corresponding quantized
frequency spectrum is investigated in section 5, and the
damped parametrically driven excitations are presented in
section 6. Finally, concluding remarks are given in section 7.

2. Mathematical model
The dynamics of quantum ion acoustic waves in electron-ion

plasmas is here studied using the following hydrodynamic
model [54] which includes the ion continuity equation,

M | (nw) = 0, (1a)
ot
the momentum equation for the cold ions,
m,-[a"" + (- V)u,] = —eV, (1b)
ot
the momentum equation for the inertialess electrons,
2 A J/n,
0 = evg— YR GgfAVne ) (1c)
Ne 6m, Jne
and Poisson’s equation,
A¢ = 4dme(n, — ny), (1d)

in which n,, n;, u;, P, and ¢ are the electron number density,
ion number density, ion fluid velocity, electron fluid pressure,
and electrostatic potential. Other parameters have their usual
meanings. The parameter ¢ is a correction for low-frequency
(w < kVE with Vg being the electron Fermi speed) wave
phenomena to the Bohm force in the hydrodynamic for-
mulation, defined as

_ Lizn[—exp (Bug)ILi—12[—exp (Brig)]
Lij s2[—exp (Bug) P

where 8 = 1/kgT with T being the electron temperature, i

denotes the equilibrium chemical potential of the electron

fluid, and Li,(z) is the polylogarithm function of order v and
argument z. The polylogarithm function has the integral form

o] v—1
! f al dr, v>0, (3)
'w)Jo exp(x—12) +1

£ ; )

Li,(—e?) = —

where IT' is the gamma function. For a given value of T, the
value of £ decreases from the limiting classical value of £ =1
for Bug < —1 to the limiting fully degenerate value £ = 1/3
for Bug > 1 in which limit ug ~ Er where Er = kgTF is
the Fermi energy of the system and Ty is the Fermi temper-
ature, dependent only on the electron number density. Note
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that in the fully degenerate limit, z>> 1, we have
lim,_, o Li,(—e?) = —z"/T'(v + 1) and in the classical limit,
7 < —1, we have Li,(—e?) =~ —e*.

A new generalized quantum hydrodynamic formalism
based on density functional theory has recently appeared,
which takes into account both the Hartree mean-field and
electron exchange-correlation potentials in an integral form
[55, 56] as a function of the local electron number density.
Moreover, a density functional exchange-correlation potential
[57] may be easily incorporated in the current hydrodynamic
model (1) as has been done in recent literature [58-60].
However, investigations based on kinetic theory [61] reveals
that such a time-independent density functional exchange
contribution to hydrodynamic formalism may give misleading
results for low phase speed phenomena such as ion acoustic
oscillations and may only provide reasonable results for fast
electron plasma excitations. It is also noted that the exchange-
correlation contribution to many-body system is independent
of the single-particle orbital but depends only on the local
fluid density [55].

For an isothermal electron fluid, the equation of state may
be written in the form [54]

ne = —NLiz o[ —exp (Bu)],

; N_.
R = — ELls r2l—exp (B, )
where the effective density of states of the electrons is given

by [36]
3/2
) ; )]

where A, is the electron thermal de Broglie wavelength. The
isothermal equation of state (4) may be written in the fol-
lowing compact form

N =

2y _me
A3 21372

e

—exp(Bu)]
—exp(Bp)]’

P — ne Li's/z[
B Liz |

Note that in the classical limit one arrives at Pe(is) = n.kgT
and in the complete degeneracy limit P* = (2/5)n kg T5.
The degeneracy parameter 6§ =Tg/T is a measure of the
degree of degeneracy of the electron fluid with the limits
6«1 and 6> 1 corresponding to the classical and fully
degenerate cases, respectively. Therefore, the model is valid
for electron-ion plasma with a wide range of non-relativistic
degrees of degeneracy.

On the other hand, the one-dimensional adiabatic
equation of state of electrons may be written as [62]

neoLis 2[ —exp(Bug)] (&)3
BLi3 o[ —exp(Bg)] '

In the classical limit for adiabatic equation of state one
obtains Pe(“d) = (n,/nq0)’n.kgT which corresponds to the
classical electron gas with the adiabatic index v = 3 in a gas

of degree of freedom D =1 with v = (D + 2)/D. In the

(6)

plad) —

(N

fully degenerate limit one has P("‘D (2/5)(n, /1) *n kg Tr
where n,q is the equilibrium electron number density.

3. Energy spectrum of plasma-phonon in a box

Using the Madelung transformations A = U(r, ) exp[iS(r, 1) /7]
with U(r, 1) = n(r,t) and VS(r, t) = m.u; the hydro-
dynamic set of equation (1) may in the quasineutrality limit
(n, ~ n; = n) be cast into the effective Schrodinger equation [43]
iﬁ% = —ﬂZANJr ap, (8)
ot 2m,
where o« = m,/m; and n = af/3. Note that in obtaining
equation (8) for low-frequency free ion-acoustic oscillations, we
applied the isothermal equation of state for electrons (6) via the
simplifying identity VP = nV y which can be readily confirmed
using definitions (4). In normalized units (¥ — W/ /ng) we can
write a one-dimensional version of equation (8) as

8/\/ 82J\/
“or Tox?
in which y is normalized to the plasmon energy E, = /v, with

= \/4me*ny/m, being the electron plasma frequency, and the
time and space coordinates are respectively normalized by 1/w),

and ), in which )\, =2n/k, is the plasmon length with
k, = \J2m.E, / /2 being the plasmon wavenumber. We first
consider linear ion plasma-phonon excitations in which the
electron fluid constitutes a homogeneous isothermal gas with the
equilibrium chemical potential ;& ~ py in which the singly
ionized ions oscillate with frequency w < kVg with Vi being the
Fermi speed. On the other hand, for standing waves with S = S(¢)
(u, = 0), equation (9) may be decomposed into the following
linear system using the separation of variables A(x, ) =
U(x)exp(—iwt),

d2_\I/ TR =0, k= LO‘“O’

dx? U

+ apN, )

(10)

where w is the normalized plasma-phonon (collective ion exci-
tations in a periodic crystal lattice is called a phonon) eigen-
frequency. It gives the plane wave solution for the wave function
of a free plasma-phonon

N(x, t) = Aexp(ikx — iwt). (11)

Note that, unlike plasmon excitations which are two-tone oscil-
lations, there is only one scale-length associated with
the plasma-phonon. Equation (9) may be generalized to
include an external potential ®(x) as compared to the internal
potential 1

8/\/ 82/\/
Yor Tox2
Let us now consider the energy levels of linear excitations in a
hard wall confining potential well of width [ (where [

is the plasma dimension), ie. PO0<x <) =0 and
®(x > 1, x <0)=o00. Analogous to standard quantum

+ [ap + @)IN. (12)
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mechanics problem of particle in a box one obtains the normal-
ized wavefunction and quantized wavenumbers

N(x) = sin(kx)exp(—iwt), k = ﬂ,

; 13)

where ¢ is an integer. Note that the spatial variation in the electron
(and ion) number density is obtained from n = NN* =
sin®(mgx/I). The quantized eigenfrequencies of the plasma-
phonon are

nwq?

p (14)

w = apy +
It is noted that the eigenfrequency w is limited from below to
apy + nm? /1% which clearly depends on the equilibrium che-
mical potential of the ambient electron gas. Note also that (13)
reduces to the plasmon energy eigenfrequencies [10] by taking
a=1 and & =3 appropriate for plasmon oscillations [54]. In the

U(x) =

Ceexp| - [deo = amy — 80 | + Coexp| - fdxo = ang — 809 |

(ions). A rough estimate of the plasma-phonon contribution to
the specific heat in the low-temperature, quasineutral limit
based on current model is

Cpp = f T YED ph ke,
0

dTr (15)

with the bosonic occupation function f(E,T) =
1/[exp(E/kgT) — 1]. Note that the ion plasma-phonon
excitation have density-dependent effective mass of m;;, =
(?E/dk?/7#*y"' = m;/n. The theory of plasma-phonon
excitations may be further elaborated by including the charge
screening effect similar to [63].

On the other hand, an analytic solution for the generalized
equation (12) can be found using the WKB approximation [64],
in the linear limit p 2 1. In the classically allowed region, away
from the turning points, the WKB solution reads

. (16)

YIO) + apy — wl/n

high frequency linear limit, by using the plasma-phonon fre-
quency spectrum, one can calculate some useful macroscopic
physical properties such as the heat capacity, optical response,
and thermal expansion for plasmas with arbitrary degrees of
electron degeneracy.

Collective plasma-ion excitations (plasma-phonon) are
quantum mechanical analog of phonons which are due to
lattice vibrations in solids. Phonons are known to play

o6(x) =

important role in heat capacity and heat transport in solids.
For instance, there can be two sources of heat capacity in
plasmas. The important one is due to electron plasma oscil-
lations which has recently been treated in [63]. The other
contribution comes from the plasma-phonon excitations.
Hence, from the quantized energy spectrum (14) of plasma-
phonon in quantum plasmas one can calculate the plasma-
phonon density of states (DoS) quite similar to those for
fermions in metals. The plasma-phonon energy spectrum and
DoS is however closely related to the energy level of elec-
trons in metals due to the fact that collective ion dynamics in
a plasma is coupled with the electron fluid motion via the
electrostatic perturbations (e.g. see equation (1)). Now
taking the normalized parabolic energy dispersion E =
€ — Qg = nk2/ 2 for the Bosonic plasma-phonon, the enu-
meration of available modes and taking into account the Pauli
exclusion principle for electrons leads to the plasma-phonon
DoS D(E) = 3N/(2nE) where N is the number of electrons

1 75, Ww—a
X\JW — by — WpX~ + ———
2ﬁ{\/ ° wo

For instance, for plasma confined in a parabolic external
potential ®(x) = wjx?, the approximate solution within the
potential is

Crexplid(x)] + C_exp[—id(x)]

Ux) = , (17
YIwdx® + apy — wl/n
where
/J’O) tan—] [w _ 2.2 }
0X/Jw — apg — wyx*] p. (18)

4. Weakly nonlinear driven excitations

Let us now consider the plasma-phonon excitations in the

weakly nonlinear limit. Parametrically driven NLSE
corresponding to (9) has the form [65-67]
2
i% + 7)8 N — ap (DN = Qexp(—iwsH)N*,  (19)
ot Ox?

where 2 and w, is the driving amplitude and frequency,
respectively. Assuming a solution on the form MN(x, t) =
W(x)exp(—iwgt/2), the autonomous equation governing the
motion of a plasma-phonon can be written as

Reh [wd/Z — au(l) — Q]\P o
7

The eigenfrequency and wave function of the plasma-phonon
in an infinite potential well of width [ (corresponding to the

(20)
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plasma-phonon oscillating in the pseudo-potential), employ-
ing the driven NLSE (20) in the linear limit (& 2 pg), is
found to be wy/2 and N(x, t) = A exp(iKx — iwyt/2) with
K= \/(wd/Z — apy — 2)/n. It is interesting to note that
stable driven plasma-phonon excitations require that
Q < wy/2 — apg, so that there is a distinct limit on maximum
amplitude of stable driven plasma-phonon. That is, for a given
driver frequency its amplitude must exceed a critical value in
order to parametrically excite a plasma-phonon.

Two notable differences appear in the characteristics of
driven plasma-phonon excitations compared to the free ones,
considered in section 5. The first is that the eigenfrequency of
driven oscillations are shifted to higher values compared to
those of free excitations. The second one is that the driven
excited plasma-phonon eigenfrequencies are exactly half of
that corresponding to the driver frequency. In other words, the
eigenfrequency spacings for parametrically driven plasma-
phonon in a potential width of length [ are twice of those for
free plasma-phonon in a hard box of the same length, i.e.

277772612 .

wg = 2Q + 2ot + Iz

21

Moreover, it is possible to obtain approximate analytic solu-
tion to the linearized driven NLSE (19) in the presence of an
arbitrary external potential, ®(x) using the WKB approx-
imation. Such a solution is given by (16) with the replacement
w— wy/2 — Q.

Here a discussion on the validity of the above considered
linearized NLSE and driven NLSE models is in order. While
the bold assumption ;1 >~ jiy may seem very liming, it is quite
reasonable in fully degenerate plasmas such as liquid metals
and nanometallic fluids to assume that the chemical potential
stays essentially unchanged during collective ion excitations.
In such systems in which the electron temperature is much
less that the characteristic Fermi temperature. The electron
temperature is not a characteristic parameter of the degenerate
system anymore and the chemical potential p is replaced with
a constant Fermi energy which is solely a function of the
electron number density. Therefore, the dynamics of ion
oscillations in fully degenerate plasmas which are ubiquitous
in nature are ruled by the nearly fixed Fermi energy.
Moreover, as the number density of the electrons decreases
and the plasma becomes partially degenerate, such as in
semiconductors, the temperature becomes a fundamental
parameter of ion and electron dynamic processes and the
changes in chemical potential cannot be ignored.

It is easily confirmed that equation (20) admits the fol-
lowing first integral

2
AL v =

& (22)

in which E’ is the energy eigenvalue of the plasma-phonon
[68] and the pseudo-potential corresponding to this

Hamiltonian reads

UMW) =E — V() = E — ﬁfw () UdD
n 1

— (M)(\Iﬂ — 1.

2 (23)

Using the expansion of the chemical potential around the
equilibrium value, we find

v
V(\I/):—gf 1o + (@ — AL
U OV ly—y
_ (M)(qﬂ — 1, (24)
2n
which is put in a simplified form of a Helmholtz potential as
V) = -S04 S0 (25)

where V, is an arbitrary reference potential denoting the
equilibrium point and the parameters ¢ and d are respectively
the dispersion and nonlinear coefficients given by

wa/2 — Q + 20,
2n '

_ _(ﬁ) Liz [ —exp(py/0)]

- n ) Liijal—exp(ug/0)]

where §=T/T, with T,=E,/kg being the characteristic
plasmon temperature. Taking Vo = ¢/2—d/3 brings the
equilibrium point ¥ = 1 to the origin which is more appro-
priate for analytic purpose. The pseudo-potential (25)
has another extremum value at ¥, =c/d given by
V,, = —c/(6d”). The energy E' of plasma-phonon oscillating
extreme between points U, and W3 which are roots of U
(¥) = 0 can vary in the range 0 < E’ < V,,. The plasma-
phonon energy range from very high frequency, low ampl-
itude linear excitations with energy E/ — 0 up to the low
frequency, high amplitude cnoidal and soliton plasma-phonon
which appear as Faraday ripples for E/ — V,,.

The solution to the energy equation is given by the int-
egral form

c:d—I—(

d:_z_o‘a_”

(26)

n On

U qu
v 2UW)

where x is the reference point of the oscillations and ¥, and
W3 > U, are the extreme points between which the plasma-
phonon oscillates in the corresponding pseudo-potential. The
integral (28) can be exactly solved in the current weakly
nonlinear limit (24). Taking xo = V, = 0, leads to the exact
analytic solution [68]

U(x) =T, + (U3 — By)en? [k (x — xp), m],

K = /@, me D=0

R
where cn is the Jacobi-elliptic function with U3 > U, > ¥,
being the crossing points of the pseudo-potential V() at
pseudo-energy level E/ and 0 < m < 1 is the modulus of

x—xp= 27)

(28)
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Jacobi-cn function having the limiting values m = 0 and
m = 1 which correspond respectively to sinusoidal and soli-
tary excitations. The roots W; are given in terms of the
potential parameters (26) as

2 4
p= o< Z) (294)
8\ d dZ d
Uy = + (1 Fiv3)c L a :Flﬁ)z, (29%)
8d 16dZ 16d
Z = (1636 c®d?E’ + 384d*E> — 768d%E' — c6)1/3.
(29¢)

The Jacobi-cn elliptic function has the limiting forms
cn(x, 0) = cos(x) and cn(x, 1) = sech(x). Also, In the sinu-
soidal excitation limit we have W, ~ W5, while in the soliton
limit ¥, ~ W, [68]. The weakly nonlinear driven excitations
studied in this section may also be extended to the case with
the hard wall rectangular potential well of length / similar to
the case of linear excitations. In that case the quantization of
weakly nonlinear excitation in the pseudo-potential conse-
quently leads to quantization of the eigenfrequencies and
amplitude of driver via descretization of the pseudo-energy
E'. Since, the cn-function cn? has a period 7 = 2K(m) with K
(m) being the complete elliptic integral of first kind, the
quantization condition for the weakly nonlinear plasma-pho-
non excitations readily become k' = 2¢’K(m)/l with ¢
being an integer characterizing the quantum number. It is
clear that the quantization condition is only satisfied for
specific values of the driver frequency w, and its amplitude 2
which are parametrically related to the energy E’ of the
plasma-phonon.

5. Fully nonlinear driven excitations

In order to study fully nonlinear driven Faraday plasma-
phonon excitations let us again use the isothermal equation of
state for the electron fluid, since it is assumed that the driving
frequency is much lower than the Fermi frequency of the
electrons, wg = kgVp, in which kg and Vg are Fermi wave
vector and speed, respectively. The fully nonlinear driven
NLSE governing these excitations is given by equation (19).
This equation admits the first integral

2
%(@) FV@) =0, UW) =E" — VD),  (30)

dx

in which E” is the energy eigenvalue of the corresponding
plasma-phonon. Appropriate integration of the pseudo-force
(30) leads to the pseudo-potential

UW)=E" — V(W) = E" — ﬁfq' 11(0) U
n Ji

(wd/2—Q (31)

T2 — 1) —
2 )( ) — Vo,

Therefore the analytical full form of pseudo-potential is given
by

VW) = ;—n{(u — 1) — [P (i) — PO (g}
2n
where we have
Pe(is)(ﬂ) _ eLjiS/z[—eXP(H/Q)] 02
Liz /o[ —exp(u/0)]
P (1) = OLis /o[ —exp (o /0)] (33)

Liz o[ —exp(po/0)]

The pseudo-potential (32) is complicated to handle analyti-
cally, since, the chemical potential p is a function of .
However, in the fully degenerate limit where p/6>>1 we
have P (W) = 26,0%/5 and pu = Ep = §,¥*3 where
6o = Tro/ T, is the normalized equilibrium value of the Fermi
temperature. The pseudo-potential for Faraday waves of ion
excitations in a fully degenerate electron gas is

v(w) = 2% [(\114/* Dz - 2w - 1)]
27 5
+ (7‘”‘1/2 il (34)

w2 — ] .

The nonlinear solution, which can only be evaluated
numerically, is given by the integral [68]

(35)

v

The pseudo-potential (32) (taking Vy =0) has an equilibrium
value V.4 = 0 corresponding to the rest point of the plasma-
phonon at ¥ = 1 and a maximum value V,, corresponding to
W,, which is the point at which the pseudo-potential max-
imizes. The pseudo-frequency eigenvalues of plasma-phonon
for given plasma parameters varies in the range 0 < E” < V,,
with the lower/upper limit corresponding to the sinusoidal/
soliton excitation pseudo-energy. Note that the roots ¥; in this
case follow the same ordering as before except that ¥; < 0 in
this case. The quantization condition in this case becomes
I = ¢"A in which A is the wavelength of an arbitrary-ampl-
itude plasma-phonon and ¢” is an arbitrary integer character-
izing the quantum number. The wavelength A is defined as

(36)

=l G

in which ¥, and W5 are the roots of U(V) = 0. Only for
quantized values of E” for given driving frequency w and
amplitude ) for electron gas of chemical potential 1 at
temperature 7, the condition [ = ¢”A is satisfied. It is, how-
ever, concluded that the linear excitation quantization of the
Schrodinger equation when E” — 0 is a very special case of
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the broader nonlinear Faraday quantization phenomena
described by the driven NLSE in the full range 0 < E” < V,,.

It is to be noted that the violation of quasineutrality in the
very high temperature limit may break down the validity of the
current model of microscopic Faraday excitations. For metals
and semiconductors which are considered as strongly coupled
plasmas with the quantum coupling parameter exceeding unity,
the effective ionic correlations lead to crystalline structure for-
mation with relatively large interionic binding energies. In such
a case the application of an RF source for high amplitude ion
fluid Faraday excitations may lead to excessive heat production
causing phase transitions and instabilities in the specimen. There
are, however, variety of liquid metals such as mercury, caesium,
rubidium, francium, gallium, and gallium-based alloys with low
pressure and temperature melting points or different metal-based
electrolytes for which Faraday wave experiment may be sui-
table. For these materials, a simple experimental setup may be
realized for excitation of atomic scale large-amplitude Faraday
waves, as follows. A flat RF transparent cylindrical container
with adjustable height directed at z axis may be filled with
appropriate liquid metal such as caesium with melting point
of 28.5°C or rubidium with melting point 39 °C. An external
low radio-frequency source with energy band around
E ~ \m,/m;E, in which E, = 7w, is the electron plasma
frequency can be axially applied to the specimen. Note that the
plasmon energy for caesium and rubidium are respectively
2.9¢eV and 3.4eV. Then a horizontal direct current (DC) probe
may be applied to study the Faraday quantization effect. Note
that the presence of fluid viscosity is critical and key parameter
in production of Faraday patterns on a liquid surface. In
quantum plasmas, however, this viscosity comes from weak ion
correlations of liquid metals due to quantum charge screening.
This parameter may be changed in an ionic metal-based elec-
trolyte by metallic atom concentrations. The viscous damping of
the fluid, which is considered in section 6, as a parameter can be
experimentally tuned to the desired value.

6. Parametrically driven damped excitations

Finally, let us consider parametrically driven damped exci-
tations of ions in arbitrary degenerate plasmas. The normal-
ized NLSE including the parametric driving force as well as
the damping term may be written as [65]

2

- - apN + iy N = Qexp(—iwg) N*, (37)
ot Ox
in which the last term in the left-hand side accounts for the
dissipative losses. Physically, the dissipative damping effect
arises due to electron-ion collisions in the plasma. Assuming a
wave function of form N(x, t) = ¥(x) exp[(—iw; /2 — Y)t],
(y > 0) we arrive at the following autonomous equation
2 _ _
v + wa/2 —ap =9 U= 0. (38)
dx? n
Note that equation (38) is identical to equation (20). In the linear
limit ;o >~ p we find a temporally decaying plane-wave solution

with the damping rate v

N(x, 1) = Aexp(ikx — iwgt/2)exp(—1),

k_\/wd/2ozuoﬂ
p .

(39

It is seen that (39) is a transient solution since at + — oo the
wave function and hence the number density n = NN * van-
ishes. Therefore, the stable solution in the presence of driving
force will be the sinusoidal one with half the frequency of the
periodic driving force.

7. Conclusion

In this paper we have studied the quantized frequency spectrum
of linear and fully nonlinear plasma-phonon excitations in a
quasineutral electron-ion plasma within the framework of
quantum hydrodynamic model. The set of hydrodynamic
equations is reduced to an effective NLSE from which the
quantized frequency spectrum of plasma-phonon excitations is
obtained. It was shown that the quantized frequency levels of
linear plasma-phonon excitations confined in a rectangular
potential well of length [ is similar to that of a single electron
confined in same infinite potential well except for much reduced
level spacings for ion plasma-phonon which is proportional to
the electron to ion mass-ratio. Several basic physical properties
of quasineutral quantum plasmas such as the ion plasma-phonon
contribution to heat capacity and thermal expansion can be
directly calculated using the obtained energy spectrum at low
temperature limit. We also investigated the quantized frequency
spectrum of weakly and fully nonlinear arbitrary amplitude
quantum Faraday excitations using the pseudo-potential method.
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