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Abstract

We consider a magnetized dusty plasma, which composed of low-temperature and high-
temperature ions, electrons, and dust particles. The dynamical behaviors can be described by a
(341)-dimensional Zakharov—Kuznetsov equation (ZKE). Interestingly, a type of completely
localized solitary waves, which are different from the line solitons, of ZKE are obtained
analytically and approximately for the first time. This kind of solitary wave is also confirmed
numerically by the Petviashvili method. Both the analytical and numerical results indicate that
the amplitude of the localized wave is proportional to its velocity and inverse proportional to the
nonlinear interaction strength. A finite difference scheme with second-order accuracy is
presented to make the long-time nonlinear evolution of ZKE. The numerical results indicate that

the localized solitons are always dynamically stable. Moreover, the collision between two
solitary waves is investigated numerically. The results show that both elastic and inelastic

collision exist when two localized solitary waves colliding.
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1. Introduction

It is accepted that most matter in the Universe is in the plasma
state, in which the dust is a omnipresent ingredient. Dusty
plasmas are the ionized gases containing small particles of solid
matter since they discovered in laboratory and in space [1, 2]. It
has wide applications in the fields of laboratories, industrial
plasma processing, and astrophysics [3—6]. Thus, the study of
dust plasma physics has became a new branch of physics at the
end of last century [2, 7]. There are many research subjects in the
frontier of dust plasma [8—14]. Among them, one of the popular
subjects in dusty plasmas is studying the linear and nonlinear
waves. Nonlinear wave theory is applied in a variety of physical
systems, such as ordinary metals, semiconductors, super dense
astrophysical environments, nano-devices, and in laser-plasma
experiments [15-18], nonlinear hydroelastic waves, biologically-
inspired pumping systems, thermoelasticity in dipolar materials
[19-21], and so on. Many researchers are interested in the study
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of nonlinear waves. Dusty plasma supports mainly two types of
acoustic waves, respectively, high frequency dust ion acoustic
waves (DIAWSs) involving mobile ions and static dust grains, and
a low frequency dust acoustic waves (DAWSs) involving mobile
dust grains [22, 23]. More than a decade ago, Rao, Shukla, and
Yu [24] predicted the existence of nonlinear DAWSs in an
unmagnetized dusty plasma for the first time. The existence of
DIAWSs was predicted by Shukla and Silin [25]. Both the DIAWs
and the DAWs have been observed in the Earth’s lower-iono-
spheric regions as well as in many laboratory experiment [26].
The Zakharov—Kuznetsov equation (ZKE) can be used to
describe the small but finite amplitude DAWs in a magnetized
two-ion-temperature dusty plasma with dust size distribution
[27]. [28] also obtained the ZKE for weakly nonlinear ion-
acoustic waves in a strongly magnetized lossless plasma in
two dimensions. In addition, a class of traveling wave solu-
tions for the electric field potential, electric field and magnetic
field of the ZKE have been presented. In [29], the authors
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considered a 3D dusty plasma system which consists of
massive, negatively charged dust fluid in the presence of an
external static magnetic field. They found that the 3D ZKE
can also be employed to describe the time-evolution of dust-
acoustic solitary waves in such a nonlinear system. In part-
icular, a finite difference scheme was established to study the
transverse instability of the line solitons. The numerical
results indicate that a localized solitary wave will be formed
when the line soliton is unstable. However, by our best
knowledge, most work is focused on the transverse stability
of line solitons [30] and less work has been done on the
properties of the localized wave. Strictly speaking, the line
soliton is not completely localized.

In this paper, we consider a magnetized dusty plasma,
which composed of low-temperature and high-temperature
ions, electrons, and dust particles. The dynamical behaviors is
assumed to be described by a 3D ZKE. Interestingly, a type of
completely localized solitary waves, which are different from
the line solitons, are obtained analytically and approximately
for the first time. This kind of solitary wave is also confirmed
numerically by the Petviashvili method. Both the analytical
and numerical results indicate that the amplitude of the
localized wave is proportional to its velocity and inverse
proportional to the nonlinear interaction strength. A finite
difference scheme with second-order accuracy is presented to
make the long-time nonlinear evolution. The numerical
results exhibit that the localized solitons are always dynami-
cally stable. Moreover, the collision between two solitary
waves is investigated numerically. The results show that both
elastic and inelastic collision exist when two localized solitary
waves colliding.

2. The localized solitary wave solution of ZKE

When a magnetized dusty plasma system composed of low-
temperature and high-temperature ions, electrons, and dust
particles with a large amount of negative charge is considered,
by using the reductive perturbation method, the 3D ZKE is
again obtained, which reads [27]
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with « denotes the nonlinear strength, § and ~y are the dis-
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quantities are dimensionless. Here, vy is the linear dust
acoustic velocity, 8, = Ty/T,, 8 = Ti/T,. Ty, Ti, T, denote
the temperature of low temperature ions, high temperature
ions and electrons, respectively. 1; = njo/Zaohq0s ttn = Nino/
Zaonao, Zao 1s the number of charges on undisturbed dust
particles. ng, n;o, nio are respectively the undisturbed
number density of dust particles, low temperature ions and

high temperature ions. The physical meaning of other sym-
bols are the same as in [27]. For a typical dusty plasma
[31, 32], the dimension quantities read .o ~ n;y ~ 103 cm 3,
ngo ~ 10°em™>, Ty~ Ty, ~2.5eV , T, ~ 0.025eV, Z, ~
1000, my ~ 1.74 x 107> kg. One then can get a ~ 1 167.93.
For another typical dusty plasma [33], .o ~ njo ~ 10° cm >,
ngo ~ 10°ecm™>, T, ~ T; ~ 0.1eV, Z; ~ 10, my ~ 10" kg,
one can obtain o ~ —501.74. We see that the nonlinear
strength « can be both positive and negative, implying that
both bright solitons and dark solitons can exist in such a
nonlinear system. For convenient, in the following, we only
consider the two-dimensional case. Thus, we have 0% =0.

Then equation (1) becomes
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We now try to seek the localized solitary waves observed
in [27] analytical and approximately. Suppose that the wave
propagates along ¢ direction with velocity ¢, then one can
make the traveling wave transformation

o (& m ) =ulx, y), x=E—ct,y=n.
After which, equation (2) can be translated to
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Here, the integration constant is set to be zero because of
locality. Assuming that the localized wave is a Gaussian
profile one, then it can be expressed as

“
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where A and W (W > 0) is the amplitude and width of the
wave, respectively. B is a positive constant. Both of them will
be determined later. (xo, yo) is the center position of the wave
and it can be arbitrary. Note that, in general, equation (4) is
not an exact solution of equation (3). Substituting equation (4)
into the left hand of equation (3) yields the residual error
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equation (4) may be an exact solution to equation (3) if e = 0.
However, unfortunately, this is not the case because
equation (4) is only an approximated one. We then think that
the smaller the ¢ is, the better the u is. A natural choice is to
minimize the magnitude of e, which can be measured by its

2-norm |[e|l, = 1lfazdxdy.

with G = exp[ One can see that
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Figure 1. Amplitudes of the localized solitary waves, given by equation (7), change with ,; under different . (a) Z; = 2.0, my = 1.5,
B =0.1,vg =18 (b) Z; = 1.0, my = 1.0, 8; = 1.5, vy = 1.0. Other parameters are taken as s = 1.0, ¢ = 1.0, 5, = 1.5, v = 1.0.

For the sake of simplicity, we minimize |||3 instead of
|le]l2, just as the least square method does. Then we have
O3 _ o OllE _ o Al _,

0A ow OB
Although equation (6) can be solved exactly, but the
expressions are rather lengthy. A relatively easy way is to
solve it in a semi-numerical manner, which can be performed
easily in Mathematica software by the NSolve command.
The results read

(6)
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The solitary wave given by equation (4) is completely loca-
lized because it satisfies u(£oo, y) = u(x, o00) = 0. Now
we take a deeply analysis on its properties based upon
equations (4) and (7). Both W, B and ||¢|j3 are positive leads to

sgn(c) = sgn(B) = sgn(y),

where sgn(x) is the sign function. If G > 0, then one has
¢ > 0, suggesting that the solitary wave propagates along &
direction under this situation. While it travels along —¢&
direction when @ < 0. Therefore, the wave propagating
direction is totaly determined by (. The amplitude of the
solitary wave, i.e. A, is proportional to its velocity ¢ and
inverse proportional to nonlinear strength «, implying that a
faster wave has larger peak than a lower one. This property is
similar to the KdV soliton. If a and ¢ have the same sign, then
A > 0 and equation (4) represents a bright soliton. On the
contrary, equation (4) is a dark soliton when ¢ and « have
different sign. We know that o can be both positive or
negative in experiments, so both bright solitons and dark
solitons can be excited in such a nonlinear system. From the
expression of ||¢|[3, it is obviously that |||[3 is proportional to
¢ when other parameters are fixed, implying that this loca-
lized solution is appropriate only when |c| is small enough.
In ZKE (1), all the physical parameters, such as the linear
acoustic velocity, effective temperature, dust particle mass
and charge number and so on, are absorbed in the nonlinear
coefficient . So a fixed « corresponds various combination

of other parameters. For a typical plasma, the parameters read
Wy g, ~ 0.1-1000, By, B> ~ 0.1-2 [33]. To see it more
clearly, figure 1 depicts the change for the amplitude A of
solitary waves, given by equation (7), with respect to y; under
different p;,. From figure 1(a), it is obviously that A decreases
as yy; increases. Especially, it decreases rapidly when y; is
near zero. For a fixed 1, it can also be noted that A decreases
when i, increases. In figure 1(a), A is always positive, indi-
cating that all the localized solitary waves are bright solitons
under these parameters. Figure 1(b) displays another case that
A is always negative, i.e. the localized solitary waves are dark
solitons. Note that the amplitude of the soliton should be
regarded as |A| with this situation. We see from figure 1(b)
that A decreases as y; increases, which means the amplitude
of dark solitons increases as ; increases. This is differ from
the case in figure 1(a), where the amplitude of bright solitons
decreases when y; increases.

Figure 2 shows the change for A versus (3, with different
(B>. One can easily see that both in figures 2(a) and (b), A
increases as (; increases when other parameters are fixed.
However, A is always positive in figure 2(a), while it is
negative in figure 2(b). Therefore, the solitons are bright
soliton in figure 2(a) and dark soliton in figure 2(b). We can
come to the conclusion that the amplitude of bright (dark)
soliton increases (decreases) when (3; increases. In experi-
ments, one can observe the bright soliton or dark soliton via
adjusting the physical parameters, such as p, 1y, 31, B2, and
SO on.

Solution (4) is no longer valid when |c| is not small. Then
we can numerically find the localized solitary waves by the
Petviashvili method [34-36]. This method is an effective
numerical method for calculating localized solitary waves to
many nonlinear problems in modern mathematical physics.
Convergence conditions for constant-coefficient equations
with power-law nonlinearity were obtained by Pelinovsky and
Stepanyants. This approach is also extended to solve more
general wave equations. It often converges faster than other
methods [36] and is easy to implement in Matlab. Now we
apply the Petviashvili method to seek the localized solitary
waves of ZKE (2) by solving equation (3). For the sake of
simplicity and without loss of generality, we take v = (. If it
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Figure 2. Amplitudes of the localized solitary waves, given by equation (7),change with 3, under different 5,. (a) s = 1.5, u;, = 2, v = 0.1
(b) s = 1.0, py, = 1.2, v = 1.2. Other parameters are taken as Z; = 1.0, my = 1.0, ¢ = 1.0, v = 1.0, y; = 0.1.

is not so, this can be achieved by mathematical transforma-
. N 8
tion 1) = \/; n.

Apply the 2D Fourier transformation on both sides in
equation (3), one can obtain

Fo| 2o ®)
u = R N N B
c+ Bk + k)

where F[*] and F ![] represents the 2D Fourier transforma-
tion and inverse Fourier transformation, respectively. They
are defined as

FFOI= [ 1P ar,

Iy (h _L P\ ik PAL
F [F(k)]_%fF(k)e dk

with 7 = (x, y), k= (kx, ky). From equation (8), an iteration
equation can be established

| saru

—2 " | n=0,1,2,...., (9
¢+ Bk + k)

1= F

where n is the iteration index. However, this iteration is
generally divergent or converges to the trivial solution u = 0.
To overcome this trouble, introducing the stability factor

(cu, — BV ?uy, u,)
] .
<5aun2, u,,>

Here, V? is the 2D Laplacian operator. The inner product
for two functions f(¥) and g(¥) is defined as (f, g) =
f f(#)g*(#)dr, < denotes the complex conjugate. Then the
iteration equation (9) is rewritten as

S, =

%ozf[unz]

— 5 |\n= 0,1,2,....
¢+ BUE kD)
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It is worthy remarkable that ¢ must has the same sign as
to eliminate the singularity of equation (10). Thus we have
sgn(c) = sgn(F) again, just as before.

As an example, figure 3(a) shows the profile of a bright
soliton for « = 6, 3 = 3, ¢ = 1 and figure 3(b) illustrates a
dark soliton when o = 6, 8 = —3, ¢ = —1. Both the bright
soliton and dark soliton are obtained by the above Petviashvili
method. We noticed that it converges to the wanted results
rapidly, even if |c| is large. The initial condition for iterating is
taken as the analytical and approximated solution given
before. The computation domain is set to be x, y € [—30, 30]
and the grids numbers are N, = N, = 512. When |c| is small
or (3 is large, the computation domain should be enlarged
because the soliton becomes ‘fatter’.

Figure 4 displays how the amplitude of localized solitary
wave varies with its velocity ¢ or nonlinear strength & when 3
is fixed. We find that A increases as ¢ increases (see
figure 4(a)) and A is proportional to its velocity c if « is given,
implying that a faster soliton has larger amplitude than a
slower one. In figure 4(b), it can be seen easily that A decrease
as « increases when c¢ is given. Heuristically, from
equation (7), one can guess that maybe A is inverse propor-
tional to c. This is indeed the case. To see this more clearly,
in figure 4(b), the black line shows a inverse proportional
function expressed as A = 23.919 564/« for ¢ = 5, which is
nearly same as the numerical result. All these results agree
qualitatively with the analytical results given by equation (7).
However, for quantitative, it is also noted that the analytical
result is less than corresponding numerical result. Further
computation shows that A does not depend on the dispersion
coefficient 5. But (3 affects the width of soliton, as shown in
equation (7).

3. Nonlinear dynamic stability and collision of
localized solitary waves

Now we numerically investigate the nonlinear dynamic stability
of the localized solitary waves given by the Petviashvili method
in previous section. At the initial time f = 0, a white noise is
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Figure 4. Amplitude of the localized solitary wave of 2D ZKE (3 = 3) (a) A versus ¢ when « is fixed (b) A versus « when c is fixed.

added to the wave. One can explore the stability by observing
the long-time evolution of the disturbed solitary wave. If the
amplitude of the soliton does not vary significantly, and the
wave profile can be held well, then the solitary wave is dyna-
mically stable. Otherwise, it is dynamically unstable.

Firstly, we present a finite difference scheme for time-
evolution of 2D ZKE (2)

1 a
Eél ¢?J,p + wﬁpl + ¢T,j,p) o ((ZSTI; + ¢?,j,p)

8AE
LR
4AE Lj.p Lj.p
b —L 826 4+ 4y =0, (11)
NN Jp Jop
where
o ;l,j’p - dﬁj; o ?,j,p’
6§¢¥,j,p = ¢;l,j +1p ;l,jfl,p
62(]57,.1'& = (b?,j +2p 2¢ﬁi+l,p
2011, — 2y
67275§¢¥,j,p = il,j+1,p+1 - 2¢¥,j+l,p
+ ¢?,j+l,p—l - ?,j—l,p-‘rl
+ 2¢?,j71,p - ijfl,pfl

At is the temporal step and A¢, An is spatial step along & and
n directions, respectively. ¢1';, represents the numerical value
of ¢1(&, 1y, t,) in node (j, p, n) at nth layer. The numerical
scheme (11) is a two-layer implicit one and its truncation

error reads

1
T (&) My 1) = E[2¢l,zzt + 3ady , b1 + 3Py P ¢,
+ 3a¢l¢l,tt£ + 3ﬁ¢l,zt§£§ + 3’7¢1,zt£7m];€,pAt2
1

+ O + 12001 e + 3001 geeee
+ 27¢1,f§£7m ?,pAgz + 0(A§4)

1 n
* E%bl,&mmlj,p An* + 0(An)

— O(A2 + AL+ AP,
(12)

Therefore, this scheme is a second-order accuracy one. The
numerical stability can be analyzed approximately by the so-

called ‘coefficient-frozen’ method [37]. Let gbfj* [1 + gzﬁfjp be a

0 NI
constant o, and suppose ¢1,j,p = VreldeiAela,PAn where qc
and g,, are arbitrary real numbers. Then one can get the error

growth factor G = iji , where
_ABAICS?  aoAICeSe  4yAICSS,
V= NG AEAT?
A A
Ce= cos(qg2 5), S, = sin(q"’2 K), (k = &, 1.

Thus, the numerical scheme is absolutely stable because of
|G|*> = 1. When the numerical method is performed (The
Matlab software is employed.), periodic boundary conditions
are used in both ¢ and 7 directions.
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Figure 5. Contour plots of the wave profiles under disturbance at t = 0 and ¢ = 250.
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Figure 6. Collision of two localized solitary waves described by the 2D ZKE (o = 6, 8 = 3,¢; = 1, &0 = —30). (a,b,c) ¢ = 0.5, &0 =0

(de,f) c = 0.1, &0 = 30.

Figures 5(a) and (b) is the contour plot of a disturbed
localized solitary wave at time t = 0 and ¢ = 250, respec-
tively, for « = 6, 8 =3, ¢ = 1. At initial time ¢ = 0, the
soliton is perturbed by adding a white noise, with amplitude
0.01. The wave profile is displayed in figure 5(a). Figure 5(b)
illustrates the soliton profile after a long-time evolution by the
numerical scheme (11). One can see that the wave shape is
kept well after long enough time. The numerical result also
indicate that the amplitude of the wave is nearly invariant,
suggesting that the localized solitary wave is dynamically
stable. The computation domain is set to be £ € [—30, 30],
n € [-15, 15] and the grids numbers are N = 256,
N,, = 128. The temporal step is taken as Ar = 0.0001.

We also numerically investigated the nonlinear stability
of the localized solitary wave under many other parameters.
All the numerical results declare that the wave is dynamically
stable. Therefore, this type of soliton has strong anti-inter-
ference capability.

Wave collision is a very popular phenomenon in plasma.
There are two kinds of collision between two waves. One is
the waves propagate with opposite direction, which is called
head-on collision; the other is that the waves propagate in the
same direction, which is called catching up with collision.
Due to the previous numerical results, the localized solitary
waves described by the 2D ZKE are always dynamically
stable. Now we numerically investigate the collision between
two localized solitary waves. Because the parameter ( is
already fixed for a given ZKE, thus the two solitons must

propagate along the same direction, which leads the collision
is the so-called ‘catching up with collision’. At initial time
t = 0, these two solitons, which are given by the Petviashvili
method, are placed apart from each other. Without loss
of generality, the soliton with higher amplitude (named
soliton 1) is placed at position (&g 1,0) and another with lower
amplitude (named soliton 2) is placed at position (& ,0)
(o1 < &). They are far enough with each other. The
amplitude and velocity of soliton 1 (soliton 2) is denoted by
A (A3) and ¢ (cp), respectively. The computation domain is
set to be £ € [—120, 120], n € [—-60, 60] and the grids
numbers are N = 512, N, = 256. The temporal step is
adopted as Ar = 0.001.

Figures 6(a)—(c) are contour plots at different time for the
collision of two solitary waves, where the difference between
their amplitudes is not too large (A;/A, = 2). Soliton 1 gra-
dually catches up with soliton 2 and collides. Then passes
soliton 2 until they separate again. Radiation with very small
amplitude will be excited during collision. When the collision
finished, both the amplitude, velocity and waveform of two
solitons are approximately restored as before. Therefore, this
type of collision can be regarded as the elastic collision.

Figures 6(d)—(f) depict the collision process of another
two solitary waves, where the difference between their
amplitudes is large (A, /A, = 10). Soliton 1 gradually catches
up with soliton 2 and collides. Because soliton 1 is ‘thin’ and
soliton 2 is ‘fat’, soliton 1 will be engulfed by soliton 2 when
the collision occurred. After a while, when the collision
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finished, soliton 1 is released from soliton 2 and restore its
velocity and amplitude as before. However, soliton 2 is split
into two fragments. Its waveform is completely damaged and
unable to return to previous state. Thus, this collision is not a
elastic collision.

4. Conclusion

A magnetized dusty plasma, which composed of low-temp-
erature and high-temperature ions, electrons, and dust parti-
cles, is considered. The dynamical behaviors can be described
by a 3D ZKE. A type of completely localized solitary waves
of ZKE are obtained analytically and approximately for the
first time. This kind of solitary wave is also confirmed
numerically by the Petviashvili method. Both the analytical
and numerical results indicate that the amplitude of the
localized wave is proportional to its velocity and inverse
proportional to the nonlinear interaction strength. A finite
difference scheme with second-order accuracy is presented to
make the long-time nonlinear evolution of ZKE. The num-
erical results indicate that the localized solitons are always
dynamically stable. Moreover, the collision between two
solitary waves is investigated numerically. The results show
that both elastic and inelastic collision exist when two loca-
lized solitary waves colliding.
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