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Abstract.  We obtain the cumulants of conserved charges in generalized Gibbs 
ensemble (GGE) by a direct summation of their finite-particle matrix elements. 
The Gaudin determinant that describes the norm of Bethe states is written as 
a sum over forests by virtue of the matrix-tree theorem. The aforementioned 
cumulants are then given by a sum over tree-diagrams whose Feynman rules 
involve simple thermodynamic Bethe Ansatz (TBA) quantities. The internal 
vertices of these diagrams have the interpretation of virtual particles that carry 
anomalous corrections to bare charges. Our derivation follows closely the spirit 
of recent works Kostov et al (2017 Springer Proc. Math. Stat. 255 77–98) and 
(2019 Nucl. Phys. B 949 114817) and is valid for all relativistic integrable 
QFTs with diagonal scattering matrix. We also conjecture that the cumulants 
of total transport in generalized hydrodynamics (GHD) are given by the same 
diagrams up to minor modifications. These cumulants play a central role in 
large deviation theory and were obtained in Myers (2018 (arXiv:1812.02082)) 
using linear fluctuating hydrodynamics at Euler scale. We match our conjecture 
with the result of Myers (2018 (arXiv:1812.02082)) up to the fourth cumulant. 
This highly non-trivial matching provides a strong support for our conjecture.
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Introduction

The complex out-of-equilibrium physics [4] of many-body quantum systems calls for 
suitable testing grounds. One dimensional integrable models have proven to be promis-
ing candidates in view of their unorthodox relaxation [5, 6], possibility for analytical 
computation [7, 8] and realization in cold atom experiments [9–11]. To study their 
transport properties, a theoretical framework called generalized hydrodynamics (GHD) 
has recently been developed [12, 13]. GHD aims at providing a hydrodynamic descrip-
tion of integrable systems out of equilibrium while taking into account their infinite 
number of integrals of motion. It suggests that at long time the system can be regarded 
as a collection of mesoscopic-sized fluid cells. The state at each fluid cell is subjected 
to local entropy maximization and is described by a local generalized Gibbs ensemble 
(GGE). One can equivalently characterize a state by its set of conserved charge aver-
ages. The current carried by the state can be deduced from the microscopic continuity 
equation and the local equilibrium assumption. Quantities involving conserved charges 
and currents play a central role in the dynamics at Euler scale [14, 15].

A series of recent papers [1, 2, 16] aims at deriving ensemble average of observables 
from an exact summation of their matrix elements. For the partition function (open and 
closed systems) and one point function of local operators, it was surprisingly found that 
some thermodynamic structures already manifest themselves in finite particle matrix 

https://doi.org/10.1088/1742-5468/ab6846


Cumulants of conserved charges in GGE and cumulants of total transport in GHD: exact summation of matrix elements?

3https://doi.org/10.1088/1742-5468/ab6846

J. S
tat. M

ech. (2020) 023103

elements. In this paper we extend this idea to the cumulants of conserved charges in a 
GGE. We also conjecture that the cumulants of total transport currents in a station-
ary state possess the same structure. Hereupon we mean by a total current the time 
integrated current scaled by inverse time, taken in the infinite time limit. We expect 
that our derivation can provide insights on other quantities like the Drude weight or 
dynamical correlation functions at Euler scale.

Before presenting the novel aspects of this paper let us first recall the known meth-
ods to obtain these cumulants. The thermodynamic Bethe Ansatz (TBA) of GGE has 
been established in [17] where the authors also obtained the average of the conserved 
charges and their covariance. Higher cumulants are given by higher derivatives of the 
TBA free energy. Although this procedure is straightforward, the obtained expres-
sions cannot be considered as explicit. The reason is that they are written in terms of 
higher derivatives of the TBA free pseudo-energy, each one of which is the solution 
of an integral equation  that involves all the lower derivatives. On the other hand, 
cumulants of total currents in stationary states have only been recently considered. 
The covariance matrix is called the Drude self-weight in [18] for its similar appearance 
with the conventional Drude weight. In the same paper the authors also computed this 
quantity by combining the current sum rule [19] with the long wavelength limit of the  
charge–charge correlation function [20]. The cumulant generating function of the total 
currents (also known as the full counting statistics) plays an important role in large 
deviation theory and has been studied in [3]. By using linear fluctuating hydrodynam-
ics at Euler scale, the authors found a functional equation satisfied by this function. 
This constraint is tight enough for individual cumulants to be extracted, although case-
dependent manipulations are required for their explicit expressions.

Let us now summarize the results of this paper. In the first part we show that the 
cumulants of conserved charges in a GGE can be written as a sum over tree diagrams. 
The nth cumulant is given by a sum over rooted trees with n leaves, each of which 
carries a conserved charge. The internal vertices play the role of virtual particles that 
carry anomalous corrections to the bare charges. The weight of vertices and propaga-
tors are conveniently expressed in terms of TBA quantities. This derivation employs 
the same technique of [1, 2], namely expanding the Gaudin norm of Bethe states into 
a sum over forests. In the second part, we conjecture that the cumulants of total cur
rents are given by the exact same trees, up to only minor modifications of the weights. 
We compare our conjecture with the result of [3] and find perfect agreement up to the 
fourth cumulant.

Our systematic treatment not only reduces the computational complexity but also 
improves the conceptual understanding of these cumulants. First, the simple com-
binatorial structure of the cumulants of total currents potentially translates into an 
analytic property of the full counting statistics. It is interesting to find a new relation 
in addition to the one established in [3]. Second, such structure provides hints about 
what the corresponding matrix elements would look like. For the current average, this 
line of idea has been exploited in recent work [21]. Explicit expressions of these matrix 
elements would have significant impact on the understanding of related quantities, for 
instance the Drude weight. Last but not least, the observed similarity between the two 
families of cumulants suggests that one could think of a ‘free energy’ that generates the 
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time integrated currents in the same fashion that the usual TBA free energy generates 
the conserved charges.

The paper is structured as follows. In the first section we present basic ingredients 
of GHD and GGE. We also show how the first cumulants of conserved charges can be 
obtained from the GGE TBA free energy. In section 1 we first remind the technique 
of [1] to compute the partition function, or equivalently, to establish the TBA equa-
tion. We then use this technique to express the charge average and charge covariance 
as diagrams. Once the idea is clear, we present the generalization to higher cumulants. 
In section 3.1 we remind the result of [3] for the total transport cumulants. We then 
show, up to the fourth cumulant that they can be equivalently represented by the same 
diagrams. Finally we comment on how the conjecture could be proven.

1. GHD and GGE

1.1. Formulation of GHD

In this section we present in more detail the quasi-particle formulation of GHD outlined 
in the introduction.

Consider an isolated, out of equilibrium integrable system. After the relaxation 
time, a local steady state is reached at the mesoscopic-sized fluid cell centered around 
each point x in space. This state is described by an infinite set of GGE chemical poten-
tials β(x, t) = {β1(x, t), β2(x, t), ...}. The mean value of a local observable is given by

〈O(x, t)〉 = Tr[e
∑

j −βj(x,t)QjO]

Tr[e
∑

j −βj(x,t)Qj ]
,� (1)

where Qj =
∫
dxQj(x, t) is an infinite set of conserved charges with density Qj (x,t), the 

integration runs over the volume of the cell.
The variation of GGE chemical potentials accross neighboring cells is small com-

pared to the scale under consideration. In order to quantify this variation, one starts 
with the microscopic continuity equation

∂tQj(x, t) + ∂xJj(x, t) = 0.� (2)
Combined with the local equilibrium assumption, this leads to the equation of state 
describing transport between neighboring cells

∂t〈Q(x, t)〉+ ∂x〈J(x, t)〉 = 0.� (3)
The average of the conserved charges can be obtained from GGE TBA as follows.

Let us consider for simplicity a theory with only one particle type. The particle energy 
and momentum are parametrized by the rapidity variable θ: E = m cosh θ, p = m sinh θ. 
The conserved charges act diagonally on the basis of multi-particle wavefunctions

Qj|θ1, ..., θn〉 =
n∑

i=1

qj(θi)|θ1, ..., θn〉.� (4)
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We restrict to ‘fermionic’ case where these rapidities take dierent values. Particles 
undergo purely elastic scattering with two-to-two scattering phase S(θ, η) that depends 
on the dierence of rapidities, we denote K(θ, η) = −i∂θ logS(θ, η). The thermodynamic 
property of the state is encoded in the particle density ρ(x, t, θ). Space time dependence 
is implicitly understood from now. The Fermi–Dirac factor is parametrized by the so-
called pseudo energy ε: f = ρ/(ρ+ ρh) = 1/(1 + eε), where ρh denotes the density of 
holes. The pseudo-energy is the solution of the TBA equation

ε(θ) = w(θ)− T log[1 + e−ε](θ),� (5)
where w(θ) =

∑
j βjqj(θ) and T  is the convolution with the scattering kernel normalized 

as follows

Tψ(θ) ≡
∫

dη

2π
K(θ, η)ψ(η).� (6)

TBA quantities are conveniently expressed in terms of the dressing operation

ψdr = (1− T f)−1ψ� (7)

which shows how a bare quantity gets renormalized by interaction. In particular, the 
particle density is given by ρ = f( p′)dr/(2π). Charge averages can either be written as 
the product of bare charge eigenvalue and particle density or vice versa

〈Qj(x, t)〉 =
∫

dθρ(θ)qj(θ) =

∫
dp(θ)

2π
f(θ)qdrj (θ).� (8)

The current average was conjectured in [12]

〈Jj(x, t)〉 =
∫

dE(θ)

2π
f(θ)qdrj (θ) =

∫
dθveff(θ)ρ(θ)qj(θ), with veff ≡ (E ′)dr

( p′)dr
.

�
(9)

It was later proven in [16] for integrable quantum field theories and in [21] for spin 
chains. The quantity veff has the interpretation of eective velocity of quasi-particles 
propagating ballistically in local equilibrium.

The objects of study of this paper are the cumulants of conserved charges and those 
of total currents. In the next section we remind how the former can be obtained from 
GGE free energy, we also discuss the advantages and drawbacks of this direct approach.

1.2. Cumulants of conserved charges from GGE free energy

By construction (1), the cumulants of conserved charges are given by the derivatives 
of the free energy

F (β) = log Tr[e
∑

j −βj(x,t)Qj ] = L

∫
dp(θ)

2π
log[1 + e−ε(θ)]� (10)

with respect to the chemical potentials. Here L denotes the volume of the fluid cell, 
which is large compared to the microscopic length scale of the theory. The charge aver-
age is simply

〈Qj〉 = − ∂F

∂βj

= L

∫
dp

2π
f(θ)∂βj

ε(θ).� (11)
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The derivative of the pseudo-energy is nothing but the dressed charge eigenvalue qdrj . 
This can be seen by taking the derivative of the TBA equation (5) with respect to βj. 
Therefore, the charge average can be written as

1

L
〈Qj〉 =

∫
dp

2π
f(θ)qdrj (θ).� (12)

By translational invariance, this leads to the charge density average (8). The charge 
covariance matrix is given by

1

L
〈QjQk〉c =

∂2F

∂βjβk

=

∫
dp

2π

{
f(θ)[1− f(θ)]∂βk

ε(θ)∂βj
ε(θ) + f(θ)∂βk

∂βj
ε(θ)

}
.

One can eliminate the second derivative of the pseudo energy

∂βk
∂βj

ε(θ) =

∫
dη

2π
K(θ, η)

{
f(η)[1− f(η)]∂βk

ε(η)∂βj
ε(η) + f(η)∂βk

∂βj
ε(η)

}
,

�

(13)

by integrating this expression with the particle density measure. Using the fact that 
ρ = f( p′)dr/(2π) one can then write the charge covariance compactly as [17, 18]

1

L
〈QjQk〉c =

∫
duρ(u)[1− f(u)]qdrj (θ)qdrk (θ).� (14)

For the third cumulants, the same trick eliminates the third derivatives of the pseudo-
energy but leaves the second ones

1

L
〈QjQkQl〉c =

∫
dθρ(θ)[1− f(θ)][1− 2f(θ)]qdrj (θ)qdrk (θ)qdrl (θ)

+

∫
dθρ(θ)[1− f(θ)]

[
qdrj ∂βl

∂βk
ε+ qdrj ∂βl

∂βk
ε+ qdrj ∂βl

∂βk
ε
]
(θ).

�

(15)

This direct computation from free energy is clearly impractical for higher cumulants. 
There is no general rule to write the obtained expression in terms of fundamental TBA 
quantities like the particle density, the Fermi–Dirac factor or simple dressing opera-
tors. In the next section, we present a diagrammatic approach to compute cumulants of 
arbitrary order. The technique is based on the recent graph formulation of TBA [1, 2].

2. Diagrammatic formulation

2.1. Partition function as a sum over forests

The first step in computing the partition function Z(β) = Tr[e
∑

j −βjQj ] is to choose a 
complete basis that diagonalizes all the conserved charges. We employ Bethe’s hypoth-
esis and index each multiparticle wavefunction by a set of quantum numbers

φj = 2πnj, for integers nj, j = 1,N .� (16)
The rapidity variables θj are related to the Bethe numbers φj through Bethe–Yang 
equations

https://doi.org/10.1088/1742-5468/ab6846
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φj(θ1, ..., θN) = Lp(θj)− i
N∑
k �=j

logS(θj, θk).� (17)

At this point the partition function is written formally as a sum over mode numbers

Z(β) =
∑
N�0

∑
n1<n2<...<nN

e−w(n1,n2,...,nN ).
� (18)

In this expression, w is an implicit function of mode numbers: one has to solve the Bethe–
Yang equations (17) for rapidities and replace w(n1,n2, ...,nN) = w(θ1) + w(θ2)... + w(θN).

We aim at replacing this discrete sum by an integral over phase space. First we 
have to remove the constraint among mode numbers1. This can be done by inserting 
1− δ factors into the sum

Z(β) =
∑
N�0

1

N !

∑
n1,n2,...,nN

N∏
j<k

(1− δnj ,nk
)e−w(n1,n2,...,nN ).� (19)

After expanding the Kronecker delta symbols, we obtain an unrestricted sum with 
multiplicities (nr1

1 , ...,nrN
N ). Such tuple defines an (unphysical) Bethe state with 

r1 + ... + rN particles. This state is a linear combination of plane waves with momenta 
rjp(θj), j = 1, ...,N and thermal weight w(nr1

1 , ...,nrN
N ) = r1w(θ1) + ... + rNw(θN). The 

set of rapidities θ is now given by Bethe–Yang equations with multiplicities

φj = Lp(θj)− i
N∑
k �=j

rk logS(θj, θk) + π(rj − 1) = 2πnj, j = 1,N .� (20)

The combinatorial factors due to Kronecker delta symbols being glued together have 
been worked out in [2]

Z(β) =
∑
N�0

(−1)N

N !

∑
n1,...,nN∈ZN

∑
r1,..,rN∈NN

N∏
j=1

(−1)rj

rj
e−w(n

r1
1 ,...,n

rN
N ).� (21)

Now we can transform this sum to an integral over rapidities through equations (20)

Z(β) =
∑
N�0

(−1)N

N !

∑
r1,..,rn∈NN

N∏
j=1

(−1)rj

rj

∫
dθ1
2π

...
dθN
2π

detG(θr11 , ..., θrNN )e−r1w(θ1)....e−rNw(θN ).

The Jacobian of this change of variables encodes all information about the interacting 
theory

Gkj(θ
r1
1 , ..., θrNN ) =

[
Lp′(θk) +

∑
l �=k

rlK(θk, θl)
]
δkj − rkK(θk, θj)(1− δkj).� (22)

Its determinant is also known as the Gaudin determinant that describes the norm of 
the state

detG(θr11 , ..., θrNN ) = 〈θrNN , ..., θr11 |θr11 , ..., θrNN 〉.� (23)

1 For ‘bosonic’ and classical theories, see the end of this subsection.

https://doi.org/10.1088/1742-5468/ab6846
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In order to apply the matrix-tree theorem we consider the scaled matrix G̃kj = rjGkj. 
This newly defined matrix is the sum of a diagonal matrix and a Laplacian matrix

G̃kj = D̃kδjk + K̃kj,

Dk = Lrkp
′(θk), K̃kj = δkj

∑
l �=k

rkrlK(θk, θl)− (1− δkj)rkrjK(θk, θj).

The matrix-tree theorem then states that the determinant of G̃ is a sum over forests F  
that span the totally connected graph with vertices labeled by j = 1, ...,N. In each tree 
of the forest there is a vertex with the corresponding element of the matrix D inserted. 
We define this vertex as the root of the tree

det G̃ =
∑
F

∏
viroots

Di

∏
〈 jk〉 branches

rjrkK(θj, θk).� (24)

We can now write the partition function as

Z(β) =
∑
N�0

(−1)N

N !

∑
r1,..,rn∈NN

N∏
j=1

∫
(−1)rj

r2j

dθj
2π

e−rjw(θj)
∑
F

∏
jroots

Lrjp
′(θj)

∏
〈 jk〉

rjrkK(θj, θk).

The next step is to interchange the integral/sum over rapidity/multiplicity number 
and the sum over graphs. This leads to a sum over all possible forests that could be 
drawn on the space R× N. The prefactors can be absorbed into the weight of vertices 
and these graphs can be regarded as tree level Feynman diagrams with the following 
Feynman rules

� (25)

In particular, the free energy is given by the sum over tree graphs and can be written as

F (β) =

∫
dp(θ)

2π

∑
r�1

rYr(θ),� (26)

where Yr(θ) is the sum of all trees rooted at the point (θ, r). The combinatorial structure 
of these trees translates into a functional equation satisfied by their generating function 
(also known as the Schwinger–Dyson equation in the QFT language)

Yr(θ) =
(−1)r

r2
[
e−w(θ) exp

∑
s

∫
dη

2π
sK(η, θ)Ys(η)

]r
.� (27)

https://doi.org/10.1088/1742-5468/ab6846
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This equation can be understood diagramatically as follows (see figure 1).
In particular Yr(θ) = (−1)rY r

1 (θ)/r
2, and the equation  (27) for r  =  1 is the usual 

TBA equation with Y1(θ) = Y (θ) = e−ε(θ)

Y (θ) = e−w(θ) exp

∫
dη

2π
K(η, θ) log[1 + Y (η)], F (β) = L

∫
dp(θ)

2π
log[1 + Y (θ)].

Our machinery is robust: by fixing all the signs to positive, we obtain the bosonic TBA; 
by discarding the multiplicities we obtain the TBA of classical particles. The convo-
luted terms in the TBA equation of these theories are respectively − log(1− Y ) and Y.

In the following sections we address the cumulants of conserved charges. The main 
idea is to combine the normalization of states (23) with the fact that all conserved 
charges act diagonally on these states. We begin with the charge average.

2.2. Charge average

As the conserved charges act diagonally on the multi-particle wavefunctions

〈θrNN , ..., θr11 |Qj|θr11 , ..., θrNN 〉 =
N∑
i=1

riqj(θi)〈θrNN , ..., θr11 |θr11 , ..., θrNN 〉,� (28)

we can evaluate the nominator of the expression

〈Qj〉β =
Tr[e−

∑
βiQiQj]

Tr[e−
∑

βiQi ]

following the above steps. The result in a sum over forests with the same Feynman 
rules as (25). The only modification is that one vertex (θ, r) of the forest is marked with 
a charge insertion and carries an extra weight of rqj(θ) coming from (28). Contribution 
coming from un-inserted trees (vacuum diagrams) cancel with the denominator. As a 
result, the average of Qj is a sum over trees with a vertex marked with charge insertion. 
From this vertex one can always trace a unique path to the root of the tree (see figure 2).

At each node (θ, r) inside this spine, one can sum up the trees growing out of it 
while pulling the multiplicities r2 from the two adjacent propagators. The nodes at the 
two ends of the spine receive a multiplicity from the charge (or momentum deriva-
tive) insertion and a residual multiplicity from one propagator. This results in the  
Fermi–Dirac factor on every nodes along the spine

∑
r�1

r2Yr(θ) =
∑
r�1

(−1)r−1Y r(θ) =
Y (θ)

1 + Y (θ)
= f(θ).

Figure 1.  Diagrammatic representation of the TBA equation.

https://doi.org/10.1088/1742-5468/ab6846
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Moreover, the sum over spines each of which carries a Fermi–Dirac factor on its nodes 
is nothing but the dressing operation (7). We recover the expression (12) of the charge 
average

1

L
〈Qj〉 =

∫
dp

2π
f(θ)qdrj (θ).� (29)

2.3. Charge covariance

Consider now two conserved charges Qj and Qk. In evaluating the average of their 
product

〈QjQk〉 =
Tr[e−

∑
βiQiQjQk]

Tr[e−
∑

βiQi ]

the insertion of a complete basis is factorized

〈θrNN , ..., θr11 |QjQk|θr11 , ..., θrNN 〉 = 〈θrNN , ..., θr11 |θr11 , ..., θrNN 〉
N∑
i=1

riqj(θi)
N∑
i=1

riqk(θi).

� (30)
As a consequent, we obtain a sum over forests in which the two charges are inserted at 
two arbitrary vertices. Un-inserted sub-forests again cancel with the denominator. The 
two charges can fall on the same tree or on two dierent trees. The sum over the latter 
is factorized into the two charge averages. Therefore the charge covariance is given by 
the sum over trees with two charge insertions (see figure 3).

From each charge-inserted vertex, one can find a unique path down to the root of 
the tree. The two paths must join at some point (θ, r): a unique vertex linked to the root 
and the two leaves. Except for this vertex, all other vertices receive the Fermi–Dirac 

Figure 3.  Combinatorial structure of a tree with two leaves: there exists an internal 
vertex connected to the three external ones. We take this vertex as a reference 
point to sum over the trees.

+    
= +  

Figure 2.  Diagrammatic representation of the charge average.
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factor f  as explained above. At this vertex we can pull three multiplicities from the 
three adjacent propagators. This results in a special filling factor

∑
r�1

r3Yr(θ) =
Y (θ)

[1 + Y (θ)]2
= f(θ)[1− f(θ)].

The charge covariance involves three dressed quantities corresponding to the three 
spines coming out of this intersection point. We recover the expression (14)

1

L
〈QjQk〉c =

∫
dθ

2π
f(θ)[1− f(θ)]( p′)dr(θ)qdrj (θ)qdrk (θ).� (31)

2.4. Higher cumulants

After understanding the explicit examples of the charge average and charge covariance, 
generalization to higher cumulants is straightforward. The nth cumulant is given by a 
sum over all tree-diagrams with n  +  1 external vertices : a root with p′ inserted and n 
leaves carrying the n conserved charges. Their internal vertices live in phase space and 
will be integrated over. An external propagator connecting an internal vertex θ and an 
external vertex with an operator ψ is assigned a weight ψdr(θ), here ψ can either be the 
momentum derivative or the charges. An internal propagator connecting two internal 
vertices θ, η has a weight Kdr(θ, η), where

Kdr(u, v) = K(u, v) +

∫
dw

2π
K(u,w) f(w)Kdr(w, v).� (32)

An internal vertex θ of degrees d has a weight∑
r�1

(−1)r−1rd−1Y r(θ).

We summarize these rules in the following

� (33)

There is a simple recursive algorithm to generate all diagrams with n leaves. For each 
partition of n that is not the trivial one (n  =  n)

n = a1 + ... + a1︸ ︷︷ ︸
α1

+ a2 + ... + a2︸ ︷︷ ︸
α2

+... + aj + ... + aj︸ ︷︷ ︸
αj

, a1 < a2 < ... < aj
� (34)
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Figure 4.  Trees up to five leaves along with the partition used to generate them.
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we choose α1 trees with a1 leaves, ..., αj trees with aj  leaves. We then remove their 
roots and join them to a new common root. This algorithm translates into the following 
equation that determines the number dn of diagrams with n leaves

dn =
∑

p∈Pn, |p|>1

p=(a
α1
1 ,...,a

αj
j )

j∏
i=1

(
da1 + αi − 1

αi

)
.

� (35)

Some values of dn are given in the following table

n 1 2 3 4 5 6 7 8 9 10

dn 1 1 2 5 12 33 90 261 766 2312

We also list all diagrams with up to 5 leaves in figure 4.

The third cumulant 〈QjQkQl〉c can be read directly from the two diagrams with 
three leaves. The one on the left gives∫

dθ

2π
f(θ)[1− f(θ)][1− 2f(θ)]( p′)dr(θ)qdrj (θ)qdrk (θ)qdrl (θ).� (36)

The one on the right involves three permutations of vertices∫ ∫
dθ

2π

dη

2π
( p′)dr(θ) f(θ)[1− f(θ)] f(η)[1− f(η)]Kdr(η, θ)

[
qdrj (θ)qdrk (η)qdrl (η)

+qdrk (θ)qdrj (η)qdrl (η) + qdrl (θ)qdrj (η)qdrk (η)
]
.

�

(37)

This result agrees with expression (15) obtained from GGE free energy. Indeed, we can 
write the second derivative of pseudo-energy (13) in terms of the dressed propagator 
as follows

∂βl
∂βk

ε(θ) =

∫
dη

2π
f(η)[1− f(η)]Kdr(θ, η)∂βk

ε(η)∂βl
ε(η).

3. Cumulants of the total transport in GHD

In this section we consider non-equilibrium homogeneous stationary states. For unfa-
miliar readers, it is helpful to have a concrete example of such state before we discuss 
general results. In the so-called partitioning protocol, one brings two half-infinite sys-
tems which were previously thermalized at dierent global parameters (temperature, 
magnetic field,...) into contact and one lets this new system evolve unitarily. After a 
suciently long time, the current flowing through the contact point would reach a 
stationary value. The occupation number of the state at this point can be deduced [12] 
from the initial conditions

f(θ) = fL(θ)Θ(θ − θ∗) + fR(θ)Θ(θ∗ − θ).
� (38)
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In this equation, fL,R are respectively the occupation numbers of the asymptotic left 
and right subsystem and Θ is the Heavyside function. The transition point θ∗ is implic-
itly determined by the condition veff(θ∗) = 0. To remind, the eective velocity veff is 
obtained from the occupation profile f  via (9). The rest of the paper is model indepen-
dent, however one can always refer to the partitioning protocol for a physical picture 
of the following quantities.

Let us consider the cumulants of the total flow crossing the point x  =  0 scaled with 
inverse time

lim
t→∞

1

t

∫ t

0

dt1...

∫ t

0

dtn〈J1(0, t1)...Jn(0, tn)〉c.� (39)

These cumulants play a central role in the large deviation theory as they characterize 
the probabilities of rare events with significant deflection from their mean values [22]. 
We conjecture that they are given by the same diagrams presented in the previous sec-
tion, with only two modifications: the operator at the root is the energy derivative E ′ 
(instead of the momentum derivative) and each internal vertex θ of odd degree carries 
an extra sign of the eective velocity sign[veff(θ)].

We confirm our conjecture by a non-trivial matching with the result of [23] up 
to the fourth cumulant of the same current. We first remind how this quantity was 
derived in [14] and [3, 23].

3.1. Hydrodynamic approximation

The covariance matrix was first studied in [14] and named the ‘Drude self-weight’ 

Ds
ij ≡ lim

t→∞

∫ t

0

ds〈Ji(0, s)Jj(0, 0)〉c.

The name comes from its resemblance with the conventional Drude weight

Dij ≡ lim
t→∞

∫
dx〈Ji(x, t)Jj(0, 0)〉c.

The conventional Drude weight characterizes the zero-frequency conductancy in inte-
grable systems and controls important transport properties [24]. It was shown in [14] 
that the two quantities actually share similar expressions. If one can deduce from our 
conjecture the matrix element of the Drude self-weight, the same quantity for the 
Drude weight could potentially be obtained.

The derivation of [14] relies on the current sum rule [19] that allows the Drude self-
weight to be expressed in terms of the charge–charge correlation function

Ds
ij =

∫
dx|x|1

2

[
〈Qi(x, t)Qj(0, 0)〉c + 〈Qj(x, t)Qi(0, 0)〉c

]
� (40)

and the large distance limit of this correlator [20]. The result can be written as

Ds
ij =

∫
dθ

2π
(E ′)dr(θ)s(θ) f(θ)[1− f(θ)]qdri (θ)qdrj (θ),� (41)

where we have denoted for short s(θ) = sign[veff(θ)].
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In [3, 23] all the diagonal cumulants were studied at once by mean of their generat-
ing function

F (λ) =
∞∑
n=1

λn

n!
cn with cn = lim

t→∞

1

t

∫ t

0

dt1...

∫ t

0

dtn〈J(0, t1)...J(0, tn)〉c.� (42)

A functional equation satisfied by this function has been found by fluctuations from 
Euler-scale hydrodynamics. From this equation one can derive an explicit expression 
for each cumulant cn for any value of n. Nevertheless, such derivation requires special 
manipulation for each case. It seems possible however that the individual cumulants 
can be derived from the same principle without considering the generating function, see 
the discussion at the end of this section. In the following we remind the result of [23] 
for c2,3,4 and show that they possess the same combinatorial structure as the cumulants 
of the corresponding conserved charges.

The authors of [23] also considered a generating function with dierent variables. 
However they did not obtain neither a functional equation for such function nor explicit 
expressions for non-diagonal cumulants. According to our conjecture, these cumulants 
are straightforward to be written down. For instance, the third cumulant of three cur
rents Jj, Jk and Jl is given by

cijk =

∫
dθ

2π
(E ′)dr(θ) f(θ)[1− f(θ)][1− 2f(θ)]qdrj (θ)qdrk (θ)qdrl (θ)

+

∫
dθ

2π
(E ′)dr(θ) f(θ)[1− f(θ)]s(θ)qdrj (θ)

∫
dη

2π
Kdr(η, θ) f(η)[1− f(η)]s(η)qdrk (θ)qdrl (θ)

+ 2 other permutations.
�

(43)

3.2. Comparison with diagrams

In this section we show that the result of [3] is correctly reproduced by our diagrams.
The Drude self-weight is given by (41) and can be represented as the diagram in 

figure 3 with energy derivative at its root and the sign of the eecive velocity at its 
internal vertex (of degree 3).

The third cumulant was found to be

c3 =

∫
dθ

2π
(E ′)dr(θ) f(θ)[1− f(θ)]s(θ)qdr(θ)×

×
{
[1− 2f(θ)][qdr(θ)]2s(θ) + 3

[
(qdr)2(1− f)s

]∗dr
(θ)

}
,

�

(44)

where the star-dressing operator is defined as

ψ∗dr(θ) ≡ ψdr(θ)− ψ(θ).� (45)

The first term of (44) is given by the left diagram in figure 5, again with energy 
derivative at the root. The internal vertex of this diagram is of degree 4 so there is no 
sign of the eective velocity. The second term is given by diagram on the right which 
comes with a symmetry factor of 3. The internal vertices are both of degrees 3 so each 
comes with a sign of the eective velocity. The matching is easily seen with the follow-
ing writing of the star dressing operator in terms of the dressed propagator (32)
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Figure 5.  Two trees with three leaves.

ψ∗dr(θ) =

∫
dη

2π
Kdr(η, θ) f(η)ψ(η).� (46)

This identity also reveals the physical picture behind our diagrams: the integration 
over internal vertices is nothing but the contribution from virtual particles that carry 
anomalous corrections to the bare charges.

The fourth cumulant is considerably more complicated and constitutes a highly 
non-trivial check for our conjecture. The original formula of c4 as it was derived in [3] is

c4 =

∫
dθ

2π
(E ′)dr(θ) f(θ)[1− f(θ)]×

{
Y (θ)2 + 6Y (θ) + 6

[Y (θ) + 1]2
s(θ)[qdr(θ)]4

+3s(θ){[(1− f)s(qdr)2]dr(θ)}2 + 12s(θ)qdr(θ){(1− f)sqdr[(1− f)s(qdr)2]dr}dr(θ)

+6[ f(θ)− 2)[qdr(θ)]2[s(1− f)(qdr)2]dr(θ) + 4s(θ)qdr(θ)[(1− f)( f − 2)(qdr)3]dr(θ)

}
.

�

(47)

For convenience, we repeat here all diagrams with four leaves (see figure 6).
Due to the identity (46), our trees are naturally expressed in terms of the star dress-

ing operation. In order to compare them with (47), we repeatedly use the definition (45) 
to make appear the dressing operation. We then show that the discrepancies cancel 
each other. The integration variable θ in the formula (47) corresponds to the coordi-
nate of the internal vertex closest to the root of each tree. These vertices are always of 
degree at least 3, therefore we can factorize a factor f(θ)[1− f(θ)] from their weights. 
After this factorization, the contribution from the trees are (we omit the dependence 
on θ)

Figure 6.  Trees with four leaves along with their symmetry factors.
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	•	 �Tree (a)

Y 2 − 4Y + 1

(Y + 1)2
s(qdr)4 =

Y 2 + 6Y + 6

(Y + 1)2
s(qdr)4 − 5(1− f 2)s(qdr)4.

	•	 �Tree (b)

3s{[(1− f)s(odr)2]∗dr}2 = 3s{[(1− f)s(odr)2]dr}2

+3s(1− f)2(odr)4 − 6(1− f)(odr)2[(1− f)s(odr)2]dr.

	•	 �Tree (c)

12sqdr{(1− f)sqdr[(1− f)s(qdr)2]∗dr}∗dr = 12sqdr{(1− f)sqdr[(1− f)s(qdr)2]dr}dr

−12(1− f)(qdr)2[(1− f)s(qdr)2]dr − 12sqdr[(1− f)2(qdr)3]dr + 12(1− f)2s(qdr)4.

	•	 �Tree (d)

6(1− 2f)(qdr)2[(1− f)s(qdr)2]∗dr = 6( f − 2)(qdr)2[(1− f)s(qdr)2]dr

−6s( f − 2)(1− f)(qdr)4 + 18(1− f)(qdr)2[(1− f)s(qdr)2]dr − 18s(1− f)2(qdr)4.

	•	 �Tree (e)

4sqdr[(1− f)(1− 2f)(qdr)3]∗dr = 4sqdr[(1− f)( f − 2)(qdr)3]dr

−4s(qdr)4(1− f)( f − 2)− 12s(qdr)4(1− f)2 + 12sqdr[(1− f)2(qdr)3]dr.

The discrepancies indeed cancel each other.

3.3. Comments on the conjecture

There are two plausible ways to prove our conjecture.
First, one can try to derive the matrix elements of the product of total currents. One 

can then repeat the same steps of section 1 to perform their summation. The correct 
matrix elements must guarantee that the resulting diagrams have energy derivative at 
their root and sign of the eective velocity at their odd internal vertices. Concerning 
these two properties, the former is expected while the latter is more puzzling. Let us 
elaborate on this point.

In our proof of the current average [16] it was understood that the form factor of 
a current is very similar to that of the corresponding charge: both are given by trees, 
the only dierence being the operator at the root. It is then natural that any average 
involving currents, if it admits combinatorial structure of trees, would have the energy 
derivative at the roots.

As for the sign of the eective velocity, a naive guess would be to assign such sign 
for each bare propagator and for each external vertex. Most of them will cancel each 
other except for internal vertices of odd degrees. The flaw in this argument is that the 
weights of graph components should involve only bare quantities, like the ones in (25). 
Only after the graphs are summed over do we have renormalized (dressed) quantities, 
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see (33). The eective velocity is a dressed quantity and as such cannot be included in 
the weight of bare propagators. In most cases however, the sign of the eective veloc-
ity coincides with that of the rapidity and the above modification could in principle be 
implemented.

Second, one can regard the combinatorial structure of the charge cumulants as a 
result of successive derivatives on the free energy (10). Simply speaking these deriva-
tives generate branches and joints (internal vertices) of the trees. If one can prove the 
existence of a similar ‘free energy’ whose derivatives lead to cumulants of the total 
transport, it is natural that the same combinatorial structure would arise. Such free 
energy should not be confused with the generating function (42): what we seek for is the 
derivative with respect to the GGE chemical potentials, not the auxiliary variable λ.

This approach seems possible in view of the following identity, proven in [23]
∫ t

0

ds〈Ji(0, s)O(0, 0)〉c = −
∑
j

sign(A)ij
∂

∂βj

〈O(0, 0)〉� (48)

for any local observable O. Here A is the flux Jacobian matrix Aij = ∂〈Ji(0, 0)〉/∂〈Qj(0, 0)〉, 
and the sign is defined as the sign matrix of its eigenvalues. If one can show that this 
identity is still valid when the local operator O is replaced by the product of the total 
currents then one would be able to obtain their cumulants from successive derivatives 
of the current average.

Conclusion

In this paper we present a new approach that allows the cumulants of conserved 
charges in a GGE to be written as a sum over simple diagrams. The weights of these 
diagrams are readily obtained from TBA data. Our formalism provides an intuitive 
picture of these cumulants: external vertices are the bare charges while internal verti-
ces are virtual particles that carry anomalous corrections. We also conjecture that the 
same diagrams, with minor modifications, describe the cumulants of total transport 
currents in GHD. We confirm our conjecture by a non-trivial matching with the result 
of [3] obtained by linear fluctuating dynamics.

In future work, we would like to see the extension of this combinatorial structure 
in dynamical correlation functions and related quantities. The study of large scale 
correlation functions in GHD has been addressed in [15]. For the charge–charge and 
charge-current correlation functions, the same combinatorial structure continues to 
hold, with the inclusion of a space-time propagator. The situation is more subtle for the 
current-current correlator and the Drude weight. These quantities involve the inverse 
of a dressed quantity and it is currently not clear how such inversion could be repre-
sented in our formalism.
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