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Abstract

Wereport the results of a combined neutron diffraction and total scattering study of the orientational
order-disorder phase transitions in potassium cyanide, KCN. The diffraction data are analysed in
terms of the spontaneous strains that accompany the phase transitions. The total scattering data are
analysed using the Reverse Monte Carlo method, which gives direct access to the distribution of
atomic positions and hence molecular orientations in each phase. Incorporating information from
diffuse scattering in this way provides a means to measure the coefficients of the orientation
distribution function up to almost arbitrarily high orders, and furthermore has the advantage that this
function is naturally positive everywhere. The results for the cubic phase show that the distribution of
orientations never exceeds 25% difference from an isotropic distribution.

1. Introduction

1.1. Orientationally disordered crystals

Orientational disorder is a common phenomenon in molecular crystals or inorganic crystals.® Often, at least in
the first phases found on cooling below the melting point, the disorder is dynamic, with the molecules or
molecular ions undergoing rotational motion across a continuous distribution of molecular orientations, or
jump rotations between a well-defined set of distinct orientations. Examples range from molecular crystals [1]
such as fullerenes [2] to polyatomic ions in metal-organic frameworks [3] and even hemes in proteins [4].
Orientational disorder may lead to anomalous materials properties, such as reversible amorphisation under
pressure [5] and giant barocaloric effects [6]. For this reason, understanding orientational disorder in materials
plays an important role in understanding and tuning [7] such properties of materials.

One simple and intensively studied case is that of the cyanide ion, CN ™, in metal cyanides [8]. CN™ exhibits
two types of orientational disorder in metal cyanides. In the cristobalite-like group-12 metal cyanides Zn(CN),
[9]and Cd(CN), [10], the cyanide ions can be treated as electric dipoles with static head-to-tail orientational
disorder. Apparently this disorder persists to low temperature in Zn(CN),, but recently reorientational motion
and short-range order have been identified in Cd(CN), [10]. On the other hand, in the alkali metal cyanides
NaCN, KCN and RbCN with the rocksalt structure, the cyanide molecular ions have a much broader
distribution of orientations and show rotational diffusion [11] rather than jump motions [12]. In fact, as we will

® Inthe past orientationally-disordered materials were called ‘plastic crystals’ as a result of their mechanical properties, but the scientific
community later preferred the term we use here. However, as orientationally disordered crystals have come back into fashion, sometimes
people are rediscovering the older name! For the good reasons why the name ‘plastic crystals’ was replaced by the name ‘orientionally
disordered crystals’ we choose to work with the latter name.
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see below, the first phase transition on cooling after freezing involves ordering of the elastic quadrupole
moments rather than of the molecular electrical dipole moments.

1.2. Methods to quantify the spatial part of orientational disorder from experiment

The atomic structure of crystals with continuous orientational disorder is not easy to study using conventional
methods such as Bragg diffraction, because it is not reasonable to identify discrete sites for the positions of
atoms. Instead, the atomic structure must be described in terms of a continuous distribution of molecular
orientations. A common approach is to expand these distribution functions in terms of an appropriate basis of
‘rotator functions’ such as symmetry-adapted spherical harmonics [13, 14]. This process reduces the problem of
describing the structure to that of determining the appropriate coefficients for the basis functions, which might
be done in analysis of Bragg diffraction data using a standard least-squares refinement of the Bragg diffraction
data. However, this method has two related problems. First is that it is only practical to relatively low order,

and second, as a consequence the resulting distribution function is not necessarily positive for all possible
orientations, although there have been some practical suggestions how to solve this by fitting instead an effective
rotational potential [15, 16].

An alternative approach is to analyse a set of large molecular configurations. In the past this typically meant
analysis of configurations generated by the molecular dynamics simulation method, but from an experimental
approach this is now possible using neutron total scattering data together with the Reverse Monte Carlo (RMC)
method [17-19]. One recent example of this technique for studying orientational disorder was an investigation
of crystalline adamantane [20], but in this case the molecules were found to be confined to be in either of two
preferred orientations rather than with a continuous distribution. If the orientational probability distribution
function is expanded in terms of orthonormal functions,

P() =) cr Ko (Q) (1)
7

it follows that the coefficients ¢, can be calculated directly from the statistical averages ¢, = (K, (f2)) evaluated
from a set of independent configurations. This is not subject to the problem of only allowing low-order terms
and thus can be developed to arbitrary accuracy. To date this approach has never been applied to analysis of
orientational disorder from total scattering and RMC data. This analysis will be discussed in more detail below.

In factitis now relevant to develop this experimental approach, because some of the new optoelectronic
materials that are attracting a lot of interest contain molecular ions such as methylammonium or formamidinium
that are free to rotate. One example is the hybrid perovskite solar cell material methylammonium lead iodide
(MAPDbI;), which has been investigated in a huge number of studies, yet still facing the problem of characterising
the orientational disorder from experimental data. MAPbI; undergoes two phase transitions at ambient pressure
involving changes in the degree of orientational order, and it has been shown that these correlate with its
temperature-dependent dielectric properties [21]. The methylammonium includes a C-N bond, a direct analogue
of the cyanide ion in KCN, for example, and indeed a recent study by molecular dynamics simulation of MAPbI;
compared the ordering to that of KCN from single-crystal diffraction, suggesting that the methylammonium ions
are somewhat more isotropic, although again the spherical harmonic expansion was terminated at very low
order [22].

For these reasons it is timely to return to the example of KCN. Here we take this material as a case study in the use
of the neutron total scattering method to provide information about the distribution of orientations—and hence of
electric dipole and elastic quadrupole moments—in an orientationally- disordered or partially-ordered crystal.

1.3. The phase transitions in KCN
Below its melting point (907 K), potassium cyanide exists in three distinct crystalline phases [23]. From 168 K up
to its melting point, KCN has the well-known rock salt structure with space group Fm3m [23, 24]. The cyanide
anions occupy sites of the full cubic point symmetry (m3m) and therefore there is three-dimensional
orientational disorder. At 168 K is a phase transition involving considerable but not complete ordering of the
cyanide orientations [23]. The crystal structure of this phase is orthorhombic, space group Immm. The cyanide
anions have their long axes parallel to the orthorhombic [010] axis (equivalent to the (110) axes in the cubic
phase) but with head-to-tail disorder of the electric dipoles [24, 25]. The ordering can be described as involving
the molecular elastic quadrupole moments. It is well established that the ordering couples linearly to the
softening of the C,4 shear elastic constant as a result of coupling between the translations and rotations [26-31],
meaning that the phase transition is a proper ferroelastic phase transition. At 83 K there is a second phase
transition to a fully-ordered structure of orthorhombic space group Pmnm [23, 32]. This has ordering of the
electric dipole moments in a proper antiferroelectric arrangement [23, 33].

The atomic structures of the three crystalline phases of KCN are illustrated in figure 1. This figure shows the
relationship between the phases, and illustrates the change in orientational ordering.
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Figure 1. The structure of KCN viewed along the c axis in (a) the low-temperature phase (below 83 K), (b) the intermediate-
temperature phase (83 K to 168 K) and (c) the high-temperature phase (above 168 K) with black, cyan and purple balls representing
carbon, nitrogen and potassium atoms respectively. The grey lines represent a pseudo-rhombohedral or a cubic cell containing the
same set of atoms. In the low-temperature phase, the cyanide ions align along the y axis with the same direction within one layer
(shown as red dashed lines) and adjacent layers point in opposite directions. This is known as head-to-tail order. In the intermediate-
temperature phase, the cyanide ions lose head-to-tail order while still aligning along the b axis. In the high-temperature phase, the
cyanide anions are no longer restrained to align along b and orient randomly over the full unit sphere.

1.4. Outline of this paper
Although the main thrust of this paper is towards a new quantification of the orientational distribution in KCN,
we take a wider look too at the sequence of phase transitions. At the time when KCN was being studied before,
there was little opportunity to measure the structure across a wide range of temperatures, and in addition to our
total scattering measurements presented here we also consider in more detail than before the nature of the
structural changes as a function of temperature. In particular, we can analyse spontaneous strains which give
high-precision information about the changes in order, and it seems that until now there are only sketchy
reports of the crystal structure of the low-temperature ordered phase.

In the next section we consider the methods we used, both experiment and analysis. We then consider the
crystal structure analysis in more detail in section 3. This is followed in section 4 by our analysis of the
orientation distribution functions from neutron total scattering and RMC analysis.

2. Experimental and analysis methods

2.1. Sample

The samples of KCN were obtained commercially from (as then) the Aldrich company. Quoted purity by
standard assay was more than 98%, with the largest cited contaminant being Na as a replacement for K at the
level of 0.5%. Samples were ground within a glove box in a dry atmosphere, and then immediately loaded into
the sample can (see below) whilst still within the glove box.

2.2. Neutron scattering measurements
Two sets of neutron scattering experiments were performed in this study. A set of neutron powder diffraction
measurements were performed using a 10-detector array on the E3 spectrometer/diffractometer on the NRU
nuclear reactor at the Chalk River Laboratories [34]. The second set were a combination of neutron diffraction
and total scattering measurements performed on the GEM diffractometer at the ISIS pulsed spallation neutron
source in the UK [35]. The data from ISIS are publicly available’. The data reduction for the NRU data was
performed using in-house software, and for the ISIS data using the MANTID software [36].

In both cases the sample was contained within thin-walled vanadium cans. Temperatures were controlled by
standard cryostats.

2.3. Analysis of diffraction data

The crystal structures of KCN were refined using the the GSAS /EXPGUT programs [37-39]. Starting
coordinates for the intermediate temperature phase were taken from literature values with disordered
occupancy of the C/N sites. For the low-temperature phase the structure was taken as an antiferroelectic
ordering of the electric dipole moments of the intermediate-temperature phase. The disordered high-
temperature phase has no well-defined positions for the C/N atoms, but nevertheless such positions are

7 The data can be accessed with http://doi.org/10.5286/ISIS.E.RB13786-n (n = 1-7).
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Figure 2. Representative fits from RMC simulation at 250 K of (a) Bragg pattern, (b) total scattering function and (c) pair distribution
function. (d) shows the variation of x* with number of RMC moves proposed in a log-log scale.

required for standard Rietveld analysis and so were selected to lie parallel to the cubic unit cell axes. Backgrounds
were fitted using Chebychev polynomials.

2.4. Total scattering data and the reverse Monte Carlo analysis

The total scattering data were transformed to the appropriate scattering functions i(Q) and pair distribution
functions D(r) using standard procedures; we have described these functions in several previous publications,
including one where they are compared with other functions to be found in the literature [40, 47]. The function
D(r) is the sine Fourier transform of the scattering function Qi(Q). To extract ((Q) from the scattering data
requires account to be taken of the background scattering within the instrument, and the scattering and beam
attenuation by the sample container and sample environment. These are obtained in separate measurements,
together with a normalisation measurement of a vanadium rod, and the final normalised scattering function i
(Q) was formed using the GUDRUN package [41, 48].

The Reverse Monte Carlo simulation was performed using the RMCprofile code [42]. Configurations of
the low-temperature phaseuseda 12 x 10 x 8supercell based on the refined crystal structure, set up using the
data2config/RMCcreate code [43]. The configuration for the intermediate-temperature phase was set up
in a similar manner, but using an option to randomly rotate the cyanide molecular ions by 180° about the
normal to the molecular axis. The configuration for the cubic phasewasa8 x 8 x 8 supercell of the cubic
phase, using an option to give each cyanide molecular ion a random orientation. The RMC simulations were
carried out for 2 315 263 steps in total until convergence (see figure 2(d), giving 70.1 accepted moves per atom
and an average move acceptance rate of 18.6%. For each temperature we generated 100 independent
configurations for analysis.

3. Rietveld analysis of KCN: lattice parameters and spontaneous strain

3.1. Crystal structure refinements

The atomic structure of the ordered Pmnm phase has atomic coordinates K (i, i — U, i), C (%, Ve i) and N

(%, I i) The atomic structure of the partially-ordered Immm phase has atomic coordinates K (0, 0, 0) and

4
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Table 1. Crystal structure data for the low-temperature ordered phase of KCN, space group symmetry Pmnm (number 59). Atomic

coordinates are of the form i, Vs i for atom type K, and of the form (%, 7, i) for atom types C and N. These results were obtained
by Rietveld refinement of the diffraction data from the GEM diffractometer at ISIS.

T(K) a(d) b@&) cd) atom y Ui (A% Uy, (A% Uss (A%
20 4.186 31(3) 5.245 79(5) 6.074 88(5) K 0.2283(4) 0.87(4) 1.46(7) 0.91(4)
C 0.6418(2) 1.81(6) 1.07(6) 1.21(6)
N 0.8610(2) 1.87(4) 1.39(5) 1.80(5)
25 4.186 70(3) 5.245 15(5) 6.075 27(5) K 0.2289(5) 0.99(5) 1.58(8) 0.89(4)
C 0.6417(2) 1.90(7) 1.14(7) 1.13(7)
N 0.8610(2) 1.89(5) 1.38(5) 1.94(6)
30 4.187 18(3) 5.244 11(6) 6.076 05(5) K 0.2284(4) 1.05(5) 1.68(8) 1.00(5)
C 0.6418(2) 1.94(7) 1.00(7) 1.36(7)
N 0.8609(1) 1.96(5) 1.55(5) 1.90(6)
35 4.190 26(3) 5.238 84(5) 6.080 12(5) K 0.2288(5) 1.20(5) 1.86(9) 1.13(5)
C 0.6427(3) 2.14(7) 1.57(9) 1.37(7)
N 0.8614(2) 2.16(5) 1.33(7) 2.10(6)
40 4.190 18(3) 5.239 23(5) 6.079 83(5) K 0.2287(4) 1.10(5) 1.68(8) 1.00(5)
C 0.6418(2) 2.17(7) 1.28(7) 1.38(7)
N 0.8610(2) 2.20(5) 1.60(5) 2.12(6)
45 4.190 27(3) 5.239 08(5) 6.079 89(5) K 0.2282(4) 0.97(6) 1.60(8) 0.98(5)
C 0.6424(2) 2.21(7) 1.14(7) 1.49(7)
N 0.8612(2) 2.16(5) 1.71(5) 2.03(6)
50 4.192 49(3) 5.235 46(5) 6.083 65(5) K 0.2298(4) 1.14(4) 1.83(6) 1.10(4)
C 0.6420(2) 2.19(6) 1.19(6) 1.34(6)
N 0.8612(1) 2.31(5) 1.82(5) 2.24(5)

Table 2. Crystal structure data for the intermediate-temperature partially-ordered phase of KCN, space group symmetry Immim

(number 71). K has atomic coordinates (0, 0, 0). Cand N have atomic coordinates of the form (0, 7 %), both with occupancy 0.5. These
results were obtained by Rietveld refinement of the diffraction data from the GEM diffractometer at ISIS.

T(K) a(d) b(&) c®) atom y U, (&%) Uy, (A7) Us; (A%
100 4.220 03(3) 5.194 26(5) 6.131 57(5) K — 2.19(2) — —
C/N 0.110 61(6) 3.76(2) 3.15(2) 2.98(2)
110 4.221 39(4) 5.192 28(6) 6.133 14(5) K — 2.24(2) — —
C/N 0.110 36(7) 3.85(2) 3.21(2) 3.09(2)
120 4.225 76(4) 5.186 62(7) 6.138 20(5) K — 2.34(2) — —
C/N 0.110 34(7) 4.08(2) 3.33(2) 3.25(2)
130 4.233 41(4) 5.176 63(6) 6.146 60(5) K — 2.55(2) — —
C/N 0.109 97(7) 4.51(2) 3.50(2) 3.54(2)
140 4.252 04(6) 5.151 08(10) 6.165 99(8) K — 2.69(4) — —
C/N 0.109 29(10) 4.65(4) 3.36(3) 3.75(3)
150 4.254 04(4) 5.148 72(7) 6.167 98(5) K — 2.94(3) — —
C/N 0.108 93(8) 5.30(3) 4.1003) 4.14(3)
160 4.260 60(4) 5.139 46(8) 6.174 61(6) K — 3.17(3) — —
C/N 0.108 57(8) 5.70(3) 4.33(3) 4.47(3)
170 4.269 92(4) 5.125 87(8) 6.183 55(6) K — 3.33(3) — —
C/N 0.107 95(9) 6.14(3) 4.65(3) 4.66(3)
180 4.281 94(5) 5.107 74(10) 6.195 51(7) K — 3.61(4) — —
C/N 0.107 23(12) 6.61(4) 4.93(4) 5.03(4)

C/N (0, u, %), with fractional occupancy of 0.5 for both atom types. The atomic structure of the disordered

Fm3m phase has K (0, 0, 0), and in our refinement we set the coordinates for C/N of the form (%, U, 0) with

fractional occupancy of 1/12 for both atom types, as an over-simplified model in order to be able extract lattice
parameters. Results for the crystal structure of all three phases refined from the GEM data are given in tables 1-2.
We believe that this is the first time that the crystal structure of the Pmnm phase has been reported in detail.

3.2. Spontaneous strains from the lattice parameters

The variations of the lattice parameters of the cubic and orthorhombic phases with temperature are shown in
figure 3(a), using the scaled parameters a’ = V2aand b’ =
values that will tend towards the value of the lattice parameter of the cubic phase. To interpret the lattice

2 b for the orthorhombic phase in order to give
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Figure 3. (a) Lattice parameters of KCN. In this diagram the values of a (blue points) and b (magenta points) have been multiplied by
V2 in order to compare better with the data for the c axis (red points) and the values of the cubic lattice parameter (black points). The
cubic values extrapolated below the temperature of the cubic phase are obtained from (abc)'/?, using the scaled values. Filled circles
represent data from ISIS, and open circles represent data from Chalk River Laboratories. (b) Crystal structure of the intermediate-
temperature KCN of space group Immm, viewed down the orthorhombic c axis. The large pink atoms are potassium, and the small
grey dumbbells represent the cyanide anions with head-to-tail disorder. The orthorhombic b axis is parallel to the orientations of the
cyanide anions. The thin lines give the outline of the orthorhombic unit cell with orthogonal axes. The dashed line represents the unit
cell that corresponds to the cubic face-centred lattice, with axes rotated by 45° about the orthorhombic c axis. This diagram highlights
the shear strain ¢, on transforming from cubic to orthorhombic symmetry.

parameters, it is instructive to look at the crystal structure viewed down the orthorhombic c axis, figure 3(b). The
cyanide anions orient along one of the cubic (110) axes, which corresponds to the orthorhombic b axis. This
leads to an expansion of the b lattice parameter on cooling compared with its value in the cubic phase, with a
corresponding reduction in the size of the a and c axes.

Itis striking that the volume of the unit cell appears to show no change in passing through the cubic—
orthorhombic phase transition. We can therefore define the parameter ay = (a’' V’ ©)'/3, such that ag acts as
the extrapolation of the cubic a lattice parameter to low temperature. We define the three axial spontaneous
strains as

! !/
q=d =0, VoA - @)
a0 a0 ao

Their dependence on temperature from the experimental data are shown in figure 4(a).

The axial strains can be combined to create three symmetry-adapted strains [44]. The first is the totally-
symmetric volume strain:

=6+ 6+ 6 (3)
The second is the tetragonal strain, namely an expansion along b with a shrinkage in the two orthogonal
directions:
1
a=—=Q26 —a— ) 4

V3
The third is the shear strain, which in the axial setting of the orthorhombic phase is defined as
€ — € — €] (5 )

These three strains are shown in figure 4(b). As expected, €, is small across the whole range of temperatures. And
also, as expected, ¢ is the largest, but €, is not insignificant in size.

In figure 5 we show that over the range of the intermediate-temperature Immm phase ¢, x €. This linearity
is slightly broken in the low-temperature phase. As will be discussed below, this linear relation is unexpected and
unexplained.

3.3.Landau free energy function

In order to understand the strain behaviour associated with the phase transition, we obtained the form of the
Landau expansion of the free energy associated with the Fm3m—Immm phase transition from the ISOTROPY
software [45]:
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G(Q = 3a(T — TQ* + 1bQ* + =cQ® + X\Qés + X Q% + M Q%
+ 2(Ch + 2 el + 1(Cf = Cher + 1Chied (6)

where Qis the order parameter, which at this point does not need to be physically defined but will be associated
with the orientational order of the cyanide molecular anions. The Ci? parameters are the bare elastic constants,
noting that the actual values of the elastic constants themselves will vary with temperature, including,
significantly, a softening of Cy4. At equilibrium, the three strains can be obtained by minimisation of the free

energy:
96 _%Q + Ches = 0 =
866
96\ +HCh e =0 =
Oe,
0G
— = \Q%+ %(Clol - Cloz)ft =0 =
Oet

Ag
b= ——5 @)
e
3
€= ———Q? 8)
o+ 208 (
2)\t 2
€t = —— Q (9)
- b
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(a) K atoms (b) C atoms (c) N atoms

Figure 6. Representation of the atomic density within a slice of one unit cell viewed down the [001] direction for fractional coordinates
0.4 < z < 0.6. (a)—(c) shows the atomic density for each atom type at 200 K. Yellow indicates the maximum values of the atomic
density, and deep blue indicates the minimum values of the atomic density.

Substitution back into equation (6) gives

Ao 1 (/DA A 1
GQ =0T~ |To+ 55|+ |50 - T | e (10)
2 [ ( " ach, Uoch+ach, ch-ch)T e

From these equations we see that the linear coupling between the shear strain €5 and order parameter causes an
increase in the phase transition temperature, and that quadratic coupling between the other two strains and
order parameter lead to a decreased value of the fourth-order coefficient. The significant size of this coupling
leads to the phase transition becoming first-order (discontinuous). The analysis suggests that we expect

— ¢ o €2, consistent with the fact that e, captures the full symmetry change from Fm3m to Immm as a proper
ferrroelastic phase transition, whereas the strain ¢, would preserve a 4-fold rotation axis in addition to other
symmetry operations. This analysis is not consistent with the linear relationship between €5 and —¢; seen in the
experimental data, figure 5; it is not at all clear to us how such a clear linear relationship can exist.

4. Orientational order and local atomic structure from neutron total scatteringand RMC
simulation

4.1. Atomic distributions

The spatial distribution of individual atoms in the unit cell was constructed by collapsing each configuration
onto one unit cell, and merging the results from many independent RMC simulations. Figures 6(a)—(c) shows
the density profile for each atom type at the cubic phase. Figure 6(a) reflects the large amount of thermal motion
of the K atom as seen in the size of the atomic displacement parameter from the Rietveld analysis, table 2. The
distribution of C and N atoms is wider in extent. What is interesting from figures 6(b) and (c) are that the
distribution of C and N atoms are centred in the middle of the unit cell, rather than the distribution of Cand N
atoms forming a spherical shell. Thus the orientational disorder is accompanied by a high degree of translational
disorder.

The corresponding atomic distributions for the intermediate-temperature (100 K) partially-ordered Immm
phase are shown in figures 7(a)—(c), and for the low-temperature (20 K) ordered Pmnm phase in figures 7(d)—(f).
The reduction in translation disorder is clear, and now we see also the distinct sites for C and N atoms. In the
intermediate phase there is head-to-tail disorder of the cyanide molecular ions, which is clearly seen in the
distribution of C and N atoms.

4.2. Information from pair distribution functions

The partial PDFs g(r) for K-K, K—(C/N) and (C/N)—(C/N) are shown in figures 8—10 respectively. For the K-K
PDF (figure 8), the high-temperature data show broad peaks at positions consistent with the face-centred cubic
arrangement of ions, and in the lower-temperature phases the transition to the orthorhombic phases results in
the splitting of these peaks, with the positions being very similar in the two orthorhombic phases but with the
expected sharpening of the peaks on cooling through the phase transition from 100 K to 10 K. The peaks up to a
distance of around 7 A in the PDF for the two lower-temperature phases correspond to peaks in the PDF of the
high-temperature phase, with the expected broadening, but after 7 A the peaks positions of the cubic phase are
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Figure 7. Representation of the atomic density within a slice of one unit cell viewed down the [001] direction for fractional coordinates
0.4 < z < 0.6. (a)—(c) shows the atomic density for each atom type at 140 K. Yellow indicates the maximum values of the atomic
density, and deep blue indicates the minimum values of the atomic density. (d)—(f) shows the atomic density for each atom type at

20 K.

10 T T T T T T

r (A#)

Figure 8. K—K partial PDF g(r) for temperatures 20 K (black), 100 K (dark red), 200 K (intermediate red) and 250 K (red), with vertical
displacement to separate the results for the different phases.

clearly out of register with those in the orthorhombic phases, reflecting the change in symmetry. The first peak in
the PDF of the orthorhombic phase is actually comprised of three peaks, at mid-point distances of around 4.2,
4.4and 4.6 A. The first peak in the PDF of the cubic phase is centred on position a/~/2, and it is broad to the
extent that it encompasses the distribution of peaks in the low-temperature phases. The second distinct peak in
the PDF for the data at 10 K becomes a shoulder in the data for 100 K, and is subsumed within the tail of the first
peakin the cubic phase. The fact that the first peak in the PDF of the cubic phase encompasses the distribution of
peaks within the low-temperature orthorhombic peaks suggests that there are local distortions of the unit cell
that reflect the local orientations of the CN molecular anions. The same can be said of the second peak too,

The K-C and K-N g(r) results (figure 9) for 10 K show two peaks ataround 3.1 and 3.8 A, which correspond
to two cases in which the K atom lies equidistant from both atoms in the CN molecular anion and where the K..
CN and K...NC connections are almost straight lines. It is interesting that we see the same basic form of this g(r)
for the cubic phase too for both the same first pair of peaks and beyond, albeit with expected broadening. Clearly
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Figure 9. K—C (solid lines) and K-N (dashed lines) partial PDF g(r) for temperatures 20 K (black), 100 K (dark red), 200 K
(intermediate red) and 250 K (red), with vertical displacement to separate the results for the different phases.

~
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Figure 10. C—C (solid lines), N-N (dashed lines) and C-N (dash-dot lines) partial PDF g(r) for temperatures 20 K (black), 100 K (dark
red), 200 K (intermediate red) and 250 K (red), with vertical displacement to separate the results for the different phases. For clarity we
have excluded the bonded C-N neighbours within the cyanide anion.

the first peak should be the same because it is the nearest-neighbour contact between a K atom and either a C or
N atom, but itis interesting that the second peak remains into the high-temperature disordered phase, but
broadened and with a midpoint shifted to lower distance. The remaining peaks for the cubic phase are consistent
with the positions expected for the cation—anion distance in the rocksalt structure with broadening due to the
orientational disorder of the cyanide anions.

The C-C, C-N and N-N g(r) results are shown in figure 10. For the cubic phase, there is no difference
between C and N, reflecting the orientational disorder, and the g(r) function for both is similar to that for the
K-K g(r) (figure 8) with broadening of peaks reflecting the orientational disorder. In the low-temperature phase,
the C—C and N-N distributions are almost identical, and due to the ordering these are not the same as the C-N
distribution.

4.3. Molecular orientational distribution function

As the simplest type of molecule possible, the cyanide molecular anions consist of only two atoms and therefore
containing only one chemical bond. The orientational distribution can be described quantitatively by the bond
orientational distribution function P(£2). Here Q2 represents the polar angles (6, ¢), where 8 is the zenith angle
(0 < 0 < m)and ¢is the azimuthal angle (0 < ¢ < 2m). P(€2) describes the probability of a C-N bond lying
within a given element of solid angle d2 = sin6 df d¢.

10
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We expand P({2) in an orthonormal basis of ‘rotator functions’ S;(€2):

P() =) aiSi() €3))

where the S; are themselves linear combinations of spherical harmonics Y} (£2) [31]. It will always be convenient
to take real combinations such as

YRy = %((—D"’Y?(Q) +Y.")) m>0 (12)

where the ‘C’ refers to the fact that this function is proportional to cos(m¢) ® [46]. Further combinations may be
required, and particular values of mand £ excluded altogether, depending on the molecular site symmetry. Here
we give only a brief explanation of the mathematics relevant to this particular system; full details for all
crystallographic point groups are tabulated in the reference by Bradley and Cracknell [46]. With appropriate
normalisation applied, we have ¢, = 1.

In the low-temperature Pmnm phase of KCN, the cyanide ions occupy sites of mm?2 point symmetry. The
appropriate functions S,(£2) are Y, (€2) with even values of m. In the intermediate-temperature Immm phase,
the point symmetry is mmm, and we again take a basis of Y/ (£2) but now require both mand £ to be even.
Finally, in the high-temperature Fm3m phase, the cyanide molecular anions are on sites of m3m point
symmetry. The relevant basis terms are linear combinations of Y>(§2) for various m values, where £ must be
even but the # = 2 term is also forbidden by symmetry. These functions are known as the Kubic harmonic
functions, and are tabulated in the literature in Cartesian form as well as in terms of the spherical harmonics
[14,47], and are given for convenience in the appendix.

As noted earlier, the coefficients in the bond orientational distribution function can be obtained directly by
forming the average value of the relevant harmonic from the RMC configurations, in contrast to fitting to data as
in diffraction experiments [ 14]. Here we can compare the calculated distribution function directly with that
formed from histograms of bond orientations in the configurations. The form of P({2) for the disordered cubic
phase for two arcs of €2 are shown in figures 11(a) and (b) for temperatures 200 K and 250 K respectively. These
show the function calculated from the histogram and from the form of P(€2) of equation (1). Values of the
coefficients ¢, were evaluated from averaging over around 100 independent configurations, and are given in
table 3, and compared to values obtained from molecular dynamics simulations [25]. All values are small
compared with ¢, = 1, indicative of a high degree of disorder as seen in figures 11(a) and (b), where the
fluctuations from the uniform value P(§2) = 1/4m do not exceed 10%. There is a very slight preference for
ordering along the cubic (100) directions, and a very slight preference away from the (111) directions, with no
obvious preference for the (110) directions, the directions in which the cyanide molecular anions order in the
two lower-temperature orthorhombic phases. The results appear to show a slightly less uniform distribution at
250 K than at 200 K, but the difference is very small and may not be significant. The RMC results for the
coefficients ¢, are similar to those from the simulations [25], particularly in so far as the coefficients for £ > Oare
remarkably small. Although the coefficients determined by a single-crystal neutron diffraction study [48]
presented in table 3 appear slightly different—albeit with a relatively high error—the bond orientational
distribution function has some similarities to the results presented here but with larger variance from uniform
distribution.

The coefficients for the low-temperature Immm phase at 20 K and 50 K, and for the intermediate-
temperature Pmnm phase at 100 Kand 140 K, are given in tables 4 and 5 respectively. The bond orientation
functions are shown in figure 12, showing a much higher degree of orientational order as expected. The degree of
orientational order/disorder described by the orientation distribution function of each phases is highlighted by
calculating the three-dimensional representations as shown in figure 13, together with views of representative
RMC configurations.

The picture that emerges from this analysis is that there is almost uniform distribution of orientations of the
cyanide anions in the high-temperature cubic phase. The small preference for or against particular orientations
is only of order of 10% of the uniform distribution. On the other hand, we see a much greater degree of
quadrupolar ordering (that is orientational ordering of the bond ignoring the direction of the dipole moment) in
the lower-symmetry phases, and complete ordering on the low-temperature phase. Furthermore, in the low-
temperature phase the widths of the distribution function reflect and increase in librational motion on heating
from 20 K to 100 K.

8 We follow the results and notation of Bradley and Cracknell [46], but note that since they do not include the Condon-Shortley phase factor
in their definition of Y} (£2), neither do they need or include the factor of (—1)". The equation is given here in the form that we believe will be
most useful to a modern reader; in particular this form is compatible with the spherical harmonic functions built in to most popular scientific
computing systems, including Mathematica and the SciPy Python library, and with the International tables for Crystallography.
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(a) Bond orientation distribution for KCN at 200 K.
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(b) Bond orientation distribution for KCN at 250 K.

Figure 11. Bond orientation distribution function for the CN molecular anion in KCN at two temperatures in the disordered cubic
phase at two temperatures, a) 200 Kand b) 250 K. In both cases the points represent averages from many RMC configurations, and the
red lines are calculated from the Kubic harmonic expansion with coefficients calculated from the configurations. The left panels show
orientations in the directions from (001) to (110}, and the right panels show the directions from (110) to (100). The broken black line
atf(§2) = 1/4m shows the value for a uniform distribution.

5. Conclusions

In this paper we have used neutron scattering methods—Bragg scattering analysed by the Rietveld method, and
total scattering analysed by the Reverse Monte Carlo method—to study the orientational- ordering phase
transition in KCN in more detail than was previously possible. Bragg scattering has primarily given information
about the lattice parameters, which in turn give information on the spontaneous strains that accompany the
phase transitions. The strains are coupled to each other and to the degree of order as determined by the
symmetry of the free energy function, enabling us to quantify the change in the degree of order within the
intermediate and low-temperature phases. That said, there is a linear relationship between the shear and the
tetragonal strain that is very difficult to understand.

The orientational order in each phase of KCN has been evaluated from the atomic configurations generated
by the RMC method. We have shown that the distribution of orientations of the CN bonds does not vary
significantly from random, with the largest deviation being around 25% in favour of orientations in the cubic
(100) directions and showing a reduction of similar size in the (111) directions. We were able to obtain good
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Table 3. Calculated values of the coefficients ¢, of the Kubic harmonic
expansion of the bond orientation distribution function P(£2) defined in
equation (1). RMC results are compared with values calculated in a molecular
dynamics simulation [25] and single crystal neutron diffraction study

(SCND) [48].

Method

and T (K) C4 Cs s 10
RMC 200 0.019(2) 0.013(2) 0.024(2) —0.004(3)
RMC 250 0.079(2) —0.003(2) 0.016(2) 0.000(2)
MD 184 0.04 0.12 — —
MD 287 0.03 0.06 — —
SCND 180 —0.018(16) 0.22(14) — —
SCND 295 —0.132(22) 0.23(18) — —

Table 4. The values of the coefficients
for the m = 0 spherical harmonics
terms in the bond orientational
distribution function for the RMC
configurations of the low-temperature
Pmnm phase of KCN. By
normalisation ¢y = 1.

1 20K 50 K
1 —1.6525(2) —1.6543(1)
2 1.9507(7) —1.881(2)
3 —2.039(1) 1.720(3)
4 1.993(2) —1.545(3)
5 —1.871(3) 1.369(4)
6 1.716(3) —1.198(4)
7 —1.554(3) 1.038(4)
8 1.396(4) —0.892(3)
9 —1.248(3) 0.759(3)
10 1.110(3) 1.956(5)
11 —0.981(3) —2.048(1)
12 0.860(2) 0.200(2)

Table 5. The values of the
coefficients for the m = 0 spherical
harmonics terms in the bond
orientational distribution function
for the RMC configurations of the
intermediate-temperature Immm
phase of KCN. By normalisation

= 1.

1 100 K 140 K
2 1.7757(3) 1.8337(4)
4 1.4138(6) 1.553(1)
6 0.756(1) 0.918(2)
8 0.236(2) 0.419(3)
10 —0.051(2) 0.165(2)
12 —0.143(3) 0.066(1)

agreement between histograms of the bond orientation distribution function formed from the atomic
configurations with an expansion of the bond orientation distribution function in terms of symmetry-adapted
orientational functions. We are able to take the expansion of the distribution function to high order and
therefore maintain positive-definiteness, a problem that is encountered when fitting to diffraction data. For
future studies of orientational order, we believe that the experience described here should prompt the use of

similar methods.
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Figure 12. A slice view of spherical harmonic expansion and cyanides orientation distribution for KCN at 20 K, 50 K, 100 K and

140 K. Each subplot demonstrates the direction from (010) to (001). The black dots represent the orientation distribution directly
counted from the RMC output configuration and the red curve represents the orientation distribution function calculated from cubic
harmonics. There is a broken black line at f(§2) = 1/4 indicating the uniformly distributed states.
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Figure 13. RMC configurations showing instantaneous orientations of the cyanide anions (top) for one temperature in each of the
three phases (250 K for the high-temperature disordered cubic Fm3m phase, 100 K for the intermediate-temperature Immm phase,
and 20 K for the low-temperature Pmnm phase). The three-dimensional representations of the bond orientation distribution function
in each case calculated from the Kubic and spherical harmonics are given in the lower part.

Appendix. Kubic harmonics

We give here the first five Kubic harmonics in both Cartesian and polar form. Note that the conventional
Cartesian form [47] differs by a factor of /47 from the polar form given by Bradley and Cracknell [46].

Ko=1= Jar (Y9 (A.la)

21 7 5
K= 2L6q -3 - m(\/g Yo+ \/g y;)c) (A1b)

_ V13 o \F 0_\/7 he
K¢ = Sﬁ(4628+21Q 17)_m( 8Y6 8Y6 (A.1c)

J561 99 28 65
Ky = ~——(65Q% — 2085 — 94Q + 33) = Var| | = Yo+ | =y} 4+ |— Y& A.ld
=5, (65Q Q+33) 192 8 192 8 192 8 (A.1d)
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In the Cartesian equations, Q = x* + y* + z*and S = x*y*2*, where x = sin 6 cos ¢, y = sin 6 sin ¢
and z = cos .
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