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Abstract
We report the results of a combined neutron diffraction and total scattering study of the orientational
order-disorder phase transitions in potassium cyanide, KCN. The diffraction data are analysed in
terms of the spontaneous strains that accompany the phase transitions. The total scattering data are
analysed using the ReverseMonte Carlomethod, which gives direct access to the distribution of
atomic positions and hencemolecular orientations in each phase. Incorporating information from
diffuse scattering in this way provides ameans tomeasure the coefficients of the orientation
distribution function up to almost arbitrarily high orders, and furthermore has the advantage that this
function is naturally positive everywhere. The results for the cubic phase show that the distribution of
orientations never exceeds 25%difference from an isotropic distribution.

1. Introduction

1.1.Orientationally disordered crystals
Orientational disorder is a common phenomenon inmolecular crystals or inorganic crystals.6Often, at least in
thefirst phases found on cooling below themelting point, the disorder is dynamic, with themolecules or
molecular ions undergoing rotationalmotion across a continuous distribution ofmolecular orientations, or
jump rotations between awell-defined set of distinct orientations. Examples range frommolecular crystals [1]
such as fullerenes [2] to polyatomic ions inmetal-organic frameworks [3] and even hemes in proteins [4].
Orientational disordermay lead to anomalousmaterials properties, such as reversible amorphisation under
pressure [5] and giant barocaloric effects [6]. For this reason, understanding orientational disorder inmaterials
plays an important role in understanding and tuning [7] such properties ofmaterials.

One simple and intensively studied case is that of the cyanide ion, CN−, inmetal cyanides [8]. CN− exhibits
two types of orientational disorder inmetal cyanides. In the cristobalite-like group-12metal cyanides Zn(CN)2
[9] andCd(CN)2 [10], the cyanide ions can be treated as electric dipoles with static head-to-tail orientational
disorder. Apparently this disorder persists to low temperature in Zn(CN)2, but recently reorientationalmotion
and short-range order have been identified inCd(CN)2 [10]. On the other hand, in the alkalimetal cyanides
NaCN,KCNandRbCNwith the rocksalt structure, the cyanidemolecular ions have amuch broader
distribution of orientations and show rotational diffusion [11] rather than jumpmotions [12]. In fact, as wewill
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see below, thefirst phase transition on cooling after freezing involves ordering of the elastic quadrupole
moments rather than of themolecular electrical dipolemoments.

1.2.Methods to quantify the spatial part of orientational disorder from experiment
The atomic structure of crystals with continuous orientational disorder is not easy to study using conventional
methods such as Bragg diffraction, because it is not reasonable to identify discrete sites for the positions of
atoms. Instead, the atomic structuremust be described in terms of a continuous distribution ofmolecular
orientations. A common approach is to expand these distribution functions in terms of an appropriate basis of
‘rotator functions’ such as symmetry-adapted spherical harmonics [13, 14]. This process reduces the problemof
describing the structure to that of determining the appropriate coefficients for the basis functions, whichmight
be done in analysis of Bragg diffraction data using a standard least-squares refinement of the Bragg diffraction
data.However, thismethod has two related problems. First is that it is only practical to relatively low order,
and second, as a consequence the resulting distribution function is not necessarily positive for all possible
orientations, although there have been somepractical suggestions how to solve this byfitting instead an effective
rotational potential [15, 16].

An alternative approach is to analyse a set of largemolecular configurations. In the past this typicallymeant
analysis of configurations generated by themolecular dynamics simulationmethod, but from an experimental
approach this is nowpossible using neutron total scattering data together with the ReverseMonte Carlo (RMC)
method [17–19]. One recent example of this technique for studying orientational disorder was an investigation
of crystalline adamantane [20], but in this case themolecules were found to be confined to be in either of two
preferred orientations rather thanwith a continuous distribution. If the orientational probability distribution
function is expanded in terms of orthonormal functions,

åW = WP c K 1( ) ( ) ( )
ℓ

ℓ ℓ

it follows that the coefficients cℓcan be calculated directly from the statistical averages = á W ñc K ( )ℓ ℓ evaluated
froma set of independent configurations. This is not subject to the problemof only allowing low-order terms
and thus can be developed to arbitrary accuracy. To date this approach has never been applied to analysis of
orientational disorder from total scattering andRMCdata. This analysis will be discussed inmore detail below.

In fact it is now relevant to develop this experimental approach, because someof the newoptoelectronic
materials that are attracting a lot of interest containmolecular ions such asmethylammoniumor formamidinium
that are free to rotate.One example is the hybridperovskite solar cellmaterialmethylammonium lead iodide
(MAPbI3), which has been investigated in a hugenumber of studies, yet still facing the problemof characterising
the orientational disorder fromexperimental data.MAPbI3 undergoes twophase transitions at ambient pressure
involving changes in the degree of orientational order, and it has been shown that these correlatewith its
temperature-dependent dielectric properties [21]. Themethylammonium includes aC–Nbond, a direct analogue
of the cyanide ion inKCN, for example, and indeed a recent study bymolecular dynamics simulation ofMAPbI3
compared the ordering to that ofKCN fromsingle-crystal diffraction, suggesting that themethylammonium ions
are somewhatmore isotropic, although again the spherical harmonic expansionwas terminated at very low
order [22].

For these reasons it is timely to return to the example ofKCN.Herewe take thismaterial as a case study in theuse
of the neutron total scatteringmethod toprovide information about thedistributionof orientations—andhenceof
electric dipole and elastic quadrupolemoments—in anorientationally- disorderedor partially-ordered crystal.

1.3. The phase transitions inKCN
Below itsmelting point (907 K), potassium cyanide exists in three distinct crystalline phases [23]. From168 Kup
to itsmelting point, KCNhas thewell-known rock salt structure with space group Fm m3 [23, 24]. The cyanide
anions occupy sites of the full cubic point symmetry (m m3 ) and therefore there is three-dimensional
orientational disorder. At 168 K is a phase transition involving considerable but not complete ordering of the
cyanide orientations [23]. The crystal structure of this phase is orthorhombic, space group Immm. The cyanide
anions have their long axes parallel to the orthorhombic [010] axis (equivalent to the á ñ110 axes in the cubic
phase) butwith head-to-tail disorder of the electric dipoles [24, 25]. The ordering can be described as involving
themolecular elastic quadrupolemoments. It is well established that the ordering couples linearly to the
softening of theC44 shear elastic constant as a result of coupling between the translations and rotations [26–31],
meaning that the phase transition is a proper ferroelastic phase transition. At 83 K there is a second phase
transition to a fully-ordered structure of orthorhombic space groupPmnm [23, 32]. This has ordering of the
electric dipolemoments in a proper antiferroelectric arrangement [23, 33].

The atomic structures of the three crystalline phases of KCNare illustrated infigure 1. This figure shows the
relationship between the phases, and illustrates the change in orientational ordering.
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1.4.Outline of this paper
Although themain thrust of this paper is towards a newquantification of the orientational distribution inKCN,
we take awider look too at the sequence of phase transitions. At the timewhenKCNwas being studied before,
therewas little opportunity tomeasure the structure across awide range of temperatures, and in addition to our
total scatteringmeasurements presented herewe also consider inmore detail than before the nature of the
structural changes as a function of temperature. In particular, we can analyse spontaneous strains which give
high-precision information about the changes in order, and it seems that until now there are only sketchy
reports of the crystal structure of the low-temperature ordered phase.

In the next sectionwe consider themethodswe used, both experiment and analysis.We then consider the
crystal structure analysis inmore detail in section 3. This is followed in section 4 by our analysis of the
orientation distribution functions fromneutron total scattering andRMCanalysis.

2. Experimental and analysismethods

2.1. Sample
The samples of KCNwere obtained commercially from (as then) the Aldrich company.Quoted purity by
standard assaywasmore than 98%,with the largest cited contaminant beingNa as a replacement for K at the
level of 0.5%. Samples were groundwithin a glove box in a dry atmosphere, and then immediately loaded into
the sample can (see below)whilst still within the glove box.

2.2. Neutron scatteringmeasurements
Two sets of neutron scattering experiments were performed in this study. A set of neutron powder diffraction
measurements were performed using a 10-detector array on the E3 spectrometer/diffractometer on theNRU
nuclear reactor at theChalk River Laboratories [34]. The second set were a combination of neutron diffraction
and total scatteringmeasurements performed on theGEMdiffractometer at the ISIS pulsed spallation neutron
source in theUK [35]. The data from ISIS are publicly available7. The data reduction for theNRUdatawas
performed using in-house software, and for the ISIS data using theMANTID software [36].

In both cases the sample was containedwithin thin-walled vanadium cans. Temperatures were controlled by
standard cryostats.

2.3. Analysis of diffraction data
The crystal structures of KCNwere refined using the theGSAS/EXPGUI programs [37–39]. Starting
coordinates for the intermediate temperature phase were taken from literature valueswith disordered
occupancy of theC/Nsites. For the low-temperature phase the structure was taken as an antiferroelectic
ordering of the electric dipolemoments of the intermediate-temperature phase. The disordered high-
temperature phase has nowell-defined positions for theC/Natoms, but nevertheless such positions are

Figure 1.The structure of KCNviewed along the c axis in (a) the low-temperature phase (below 83 K), (b) the intermediate-
temperature phase (83 K to 168 K) and (c) the high-temperature phase (above 168 K)with black, cyan and purple balls representing
carbon, nitrogen and potassium atoms respectively. The grey lines represent a pseudo-rhombohedral or a cubic cell containing the
same set of atoms. In the low-temperature phase, the cyanide ions align along the y axis with the same directionwithin one layer
(shown as red dashed lines) and adjacent layers point in opposite directions. This is known as head-to-tail order. In the intermediate-
temperature phase, the cyanide ions lose head-to-tail order while still aligning along the b axis. In the high-temperature phase, the
cyanide anions are no longer restrained to align along b and orient randomly over the full unit sphere.

7
The data can be accessedwithhttp://doi.org/10.5286/ISIS.E.RB13786-n(n = 1–7).
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required for standard Rietveld analysis and sowere selected to lie parallel to the cubic unit cell axes. Backgrounds
werefitted usingChebychev polynomials.

2.4. Total scattering data and the reverseMonteCarlo analysis
The total scattering data were transformed to the appropriate scattering functions i(Q) and pair distribution
functionsD(r) using standard procedures; we have described these functions in several previous publications,
including onewhere they are comparedwith other functions to be found in the literature [40, 47]. The function
D(r) is the sine Fourier transformof the scattering functionQi(Q). To extract i(Q) from the scattering data
requires account to be taken of the background scatteringwithin the instrument, and the scattering and beam
attenuation by the sample container and sample environment. These are obtained in separatemeasurements,
togetherwith a normalisationmeasurement of a vanadium rod, and the final normalised scattering function i
(Q)was formed using theGUDRUN package [41, 48].

The ReverseMonte Carlo simulationwas performed using theRMCprofile code [42]. Configurations of
the low-temperature phase used a 12×10×8 supercell based on the refined crystal structure, set up using the
data2config/RMCcreate code [43]. The configuration for the intermediate-temperature phasewas set up
in a similarmanner, but using an option to randomly rotate the cyanidemolecular ions by 180° about the
normal to themolecular axis. The configuration for the cubic phase was a 8×8×8 supercell of the cubic
phase, using an option to give each cyanidemolecular ion a randomorientation. The RMC simulationswere
carried out for 2 315 263 steps in total until convergence (see figure 2(d), giving 70.1 acceptedmoves per atom
and an averagemove acceptance rate of 18.6%. For each temperature we generated 100 independent
configurations for analysis.

3. Rietveld analysis of KCN: lattice parameters and spontaneous strain

3.1. Crystal structure refinements

The atomic structure of the orderedPmnm phase has atomic coordinates K - u, ,1

4

1

4 K
1

4( ), C y, ,3

4 C
1

4( ) andN
y, ,3

4 N
1

4( ). The atomic structure of the partially-ordered Immm phase has atomic coordinates K (0, 0, 0) and

Figure 2.Representative fits fromRMCsimulation at 250 K of (a)Bragg pattern, (b) total scattering function and (c) pair distribution
function. (d) shows the variation ofχ2 with number of RMCmoves proposed in a log-log scale.
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C/N u0, , 1

2( ), with fractional occupancy of 0.5 for both atom types. The atomic structure of the disordered

Fm m3 phase hasK (0, 0, 0), and in our refinement we set the coordinates for C/Nof the form u, , 01

2( )with
fractional occupancy of 1/12 for both atom types, as an over-simplifiedmodel in order to be able extract lattice
parameters. Results for the crystal structure of all three phases refined from theGEMdata are given in tables 1–2.
We believe that this is the first time that the crystal structure of the Pmnm phase has been reported in detail.

3.2. Spontaneous strains from the lattice parameters
The variations of the lattice parameters of the cubic and orthorhombic phases with temperature are shown in
figure 3(a), using the scaled parameters ¢ =a a2 and ¢ =b b2 for the orthorhombic phase in order to give
values that will tend towards the value of the lattice parameter of the cubic phase. To interpret the lattice

Table 1.Crystal structure data for the low-temperature ordered phase of KCN, space group symmetry Pmnm (number 59). Atomic

coordinates are of the form y, ,1

4

1

4( ) for atom typeK, and of the form y, ,3

4

1

4( ) for atom types C andN. These results were obtained

by Rietveld refinement of the diffraction data from theGEMdiffractometer at ISIS.

T (K) a (Å) b (Å) c (Å) atom y U11 (Å
2) U22 (Å

2) U33 (Å
2)

20 4.186 31(3) 5.245 79(5) 6.074 88(5) K 0.2283(4) 0.87(4) 1.46(7) 0.91(4)
C 0.6418(2) 1.81(6) 1.07(6) 1.21(6)
N 0.8610(2) 1.87(4) 1.39(5) 1.80(5)

25 4.186 70(3) 5.245 15(5) 6.075 27(5) K 0.2289(5) 0.99(5) 1.58(8) 0.89(4)
C 0.6417(2) 1.90(7) 1.14(7) 1.13(7)
N 0.8610(2) 1.89(5) 1.38(5) 1.94(6)

30 4.187 18(3) 5.244 11(6) 6.076 05(5) K 0.2284(4) 1.05(5) 1.68(8) 1.00(5)
C 0.6418(2) 1.94(7) 1.00(7) 1.36(7)
N 0.8609(1) 1.96(5) 1.55(5) 1.90(6)

35 4.190 26(3) 5.238 84(5) 6.080 12(5) K 0.2288(5) 1.20(5) 1.86(9) 1.13(5)
C 0.6427(3) 2.14(7) 1.57(9) 1.37(7)
N 0.8614(2) 2.16(5) 1.33(7) 2.10(6)

40 4.190 18(3) 5.239 23(5) 6.079 83(5) K 0.2287(4) 1.10(5) 1.68(8) 1.00(5)
C 0.6418(2) 2.17(7) 1.28(7) 1.38(7)
N 0.8610(2) 2.20(5) 1.60(5) 2.12(6)

45 4.190 27(3) 5.239 08(5) 6.079 89(5) K 0.2282(4) 0.97(6) 1.60(8) 0.98(5)
C 0.6424(2) 2.21(7) 1.14(7) 1.49(7)
N 0.8612(2) 2.16(5) 1.71(5) 2.03(6)

50 4.192 49(3) 5.235 46(5) 6.083 65(5) K 0.2298(4) 1.14(4) 1.83(6) 1.10(4)
C 0.6420(2) 2.19(6) 1.19(6) 1.34(6)
N 0.8612(1) 2.31(5) 1.82(5) 2.24(5)

Table 2.Crystal structure data for the intermediate-temperature partially-ordered phase of KCN, space group symmetry Immm

(number 71). K has atomic coordinates (0, 0, 0). C andNhave atomic coordinates of the form y0, , 1

2( ), bothwith occupancy 0.5. These
results were obtained by Rietveld refinement of the diffraction data from theGEMdiffractometer at ISIS.

T (K) a (Å) b (Å) c (Å) atom y U11 (Å
2) U22 (Å

2) U33 (Å
2)

100 4.220 03(3) 5.194 26(5) 6.131 57(5) K — 2.19(2) — —

C/N 0.110 61(6) 3.76(2) 3.15(2) 2.98(2)
110 4.221 39(4) 5.192 28(6) 6.133 14(5) K — 2.24(2) — —

C/N 0.110 36(7) 3.85(2) 3.21(2) 3.09(2)
120 4.225 76(4) 5.186 62(7) 6.138 20(5) K — 2.34(2) — —

C/N 0.110 34(7) 4.08(2) 3.33(2) 3.25(2)
130 4.233 41(4) 5.176 63(6) 6.146 60(5) K — 2.55(2) — —

C/N 0.109 97(7) 4.51(2) 3.50(2) 3.54(2)
140 4.252 04(6) 5.151 08(10) 6.165 99(8) K — 2.69(4) — —

C/N 0.109 29(10) 4.65(4) 3.36(3) 3.75(3)
150 4.254 04(4) 5.148 72(7) 6.167 98(5) K — 2.94(3) — —

C/N 0.108 93(8) 5.30(3) 4.10(3) 4.14(3)
160 4.260 60(4) 5.139 46(8) 6.174 61(6) K — 3.17(3) — —

C/N 0.108 57(8) 5.70(3) 4.33(3) 4.47(3)
170 4.269 92(4) 5.125 87(8) 6.183 55(6) K — 3.33(3) — —

C/N 0.107 95(9) 6.14(3) 4.65(3) 4.66(3)
180 4.281 94(5) 5.107 74(10) 6.195 51(7) K — 3.61(4) — —

C/N 0.107 23(12) 6.61(4) 4.93(4) 5.03(4)
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parameters, it is instructive to look at the crystal structure viewed down the orthorhombic c axis, figure 3(b). The
cyanide anions orient along one of the cubic á ñ110 axes, which corresponds to the orthorhombic b axis. This
leads to an expansion of the b lattice parameter on cooling comparedwith its value in the cubic phase, with a
corresponding reduction in the size of the a and c axes.

It is striking that the volume of the unit cell appears to showno change in passing through the cubic–
orthorhombic phase transition.We can therefore define the parameter a0=(a′ b′ c)1/3, such that a0 acts as
the extrapolation of the cubic a lattice parameter to low temperature.We define the three axial spontaneous
strains as

=
¢ -

=
¢ -

=
-  a a

a

b a

a

c a

a
; ; 21

0

0
2

0

0
3

0

0

( )

Their dependence on temperature from the experimental data are shown infigure 4(a).
The axial strains can be combined to create three symmetry-adapted strains [44]. Thefirst is the totally-

symmetric volume strain:

= + +    3a 1 2 3 ( )

The second is the tetragonal strain, namely an expansion along bwith a shrinkage in the two orthogonal
directions:

= - -   1

3
2 4t 3 1 2( ) ( )

The third is the shear strain, which in the axial setting of the orthorhombic phase is defined as

= -   56 2 1 ( )

These three strains are shown infigure 4(b). As expected, òa is small across thewhole range of temperatures. And
also, as expected, ò6 is the largest, but òt is not insignificant in size.

Infigure 5we show that over the range of the intermediate-temperature Immm phase òt∝ò6. This linearity
is slightly broken in the low-temperature phase. Aswill be discussed below, this linear relation is unexpected and
unexplained.

3.3. Landau free energy function
In order to understand the strain behaviour associatedwith the phase transition, we obtained the formof the
Landau expansion of the free energy associatedwith the Fm m3 –Immm phase transition from the ISOTROPY
software [45]:

Figure 3. (a) Lattice parameters of KCN. In this diagram the values of a (blue points) and b (magenta points) have beenmultiplied by
2 in order to compare better with the data for the c axis (red points) and the values of the cubic lattice parameter (black points). The

cubic values extrapolated below the temperature of the cubic phase are obtained from (abc)1/3, using the scaled values. Filled circles
represent data from ISIS, and open circles represent data fromChalk River Laboratories. (b)Crystal structure of the intermediate-
temperature KCNof space group Immm, viewed down the orthorhombic c axis. The large pink atoms are potassium, and the small
grey dumbbells represent the cyanide anionswith head-to-tail disorder. The orthorhombic b axis is parallel to the orientations of the
cyanide anions. The thin lines give the outline of the orthorhombic unit cell with orthogonal axes. The dashed line represents the unit
cell that corresponds to the cubic face-centred lattice, with axes rotated by 45° about the orthorhombic c axis. This diagramhighlights
the shear strain ò4 on transforming from cubic to orthorhombic symmetry.
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l l l= - + + + + +
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whereQ is the order parameter, which at this point does not need to be physically defined butwill be associated
with the orientational order of the cyanidemolecular anions. The Cij

0 parameters are the bare elastic constants,
noting that the actual values of the elastic constants themselves will varywith temperature, including,
significantly, a softening ofC44. At equilibrium, the three strains can be obtained byminimisation of the free
energy:

l
l¶

¶
= + =  = -


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Q C
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Q0 7
6

6 44
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6 6
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0
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0
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12
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t t
11
0

12
0

2( ) ( )

Figure 4. (a)Axial spontaneous strains ò1 (blue), ò2 (magenta) and ò3 (red), as defined in equation (2). Filled circles represent data from
ISIS, and open circles represent data fromChalk River Laboratories. (b) Symmetry-adapted spontaneous strains òa (blue), òt (magenta)
and ò6 (red), as defined in equations (3)–(5). Filled circles represent data from ISIS, and open circles represent data fromChalk River
Laboratories.

Figure 5.Plot of the relationship between−òt and ò6. The straight line is the line thatfits through the data in the intermediate-
temperature Immm phase and passes through the origin. Filled circles represent data from ISIS, and open circles represent data from
Chalk River Laboratories.
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Substitution back into equation (6) gives

l l l
= - + + -

+
-

-
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⎝⎜

⎞
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⎞
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⎟⎟

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )

From these equations we see that the linear coupling between the shear strain ò6 and order parameter causes an
increase in the phase transition temperature, and that quadratic coupling between the other two strains and
order parameter lead to a decreased value of the fourth-order coefficient. The significant size of this coupling
leads to the phase transition becoming first-order (discontinuous). The analysis suggests that we expect
- µ t 6

2, consistent with the fact that ò6 captures the full symmetry change from Fm m3 to Immm as a proper
ferrroelastic phase transition, whereas the strain òt would preserve a 4-fold rotation axis in addition to other
symmetry operations. This analysis is not consistent with the linear relationship between ò6 and−òt seen in the
experimental data,figure 5; it is not at all clear to us how such a clear linear relationship can exist.

4.Orientational order and local atomic structure fromneutron total scattering andRMC
simulation

4.1. Atomic distributions
The spatial distribution of individual atoms in the unit cell was constructed by collapsing each configuration
onto one unit cell, andmerging the results frommany independent RMC simulations. Figures 6(a)–(c) shows
the density profile for each atom type at the cubic phase. Figure 6(a) reflects the large amount of thermalmotion
of theK atom as seen in the size of the atomic displacement parameter from the Rietveld analysis, table 2. The
distribution of C andN atoms is wider in extent.What is interesting fromfigures 6(b) and (c) are that the
distribution of C andN atoms are centred in themiddle of the unit cell, rather than the distribution of C andN
atoms forming a spherical shell. Thus the orientational disorder is accompanied by a high degree of translational
disorder.

The corresponding atomic distributions for the intermediate-temperature (100 K) partially-ordered Immm
phase are shown infigures 7(a)–(c), and for the low-temperature (20 K) ordered Pmnm phase infigures 7(d)–(f).
The reduction in translation disorder is clear, and nowwe see also the distinct sites for C andN atoms. In the
intermediate phase there is head-to-tail disorder of the cyanidemolecular ions, which is clearly seen in the
distribution of C andN atoms.

4.2. Information frompair distribution functions
The partial PDFs g(r) for K–K,K–(C/N) and (C/N)–(C/N) are shown infigures 8–10 respectively. For theK–K
PDF (figure 8), the high-temperature data showbroad peaks at positions consistent with the face-centred cubic
arrangement of ions, and in the lower-temperature phases the transition to the orthorhombic phases results in
the splitting of these peaks, with the positions being very similar in the two orthorhombic phases butwith the
expected sharpening of the peaks on cooling through the phase transition from100 K to 10 K. The peaks up to a
distance of around 7 Å in the PDF for the two lower-temperature phases correspond to peaks in the PDF of the
high-temperature phase, with the expected broadening, but after 7 Å the peaks positions of the cubic phase are

Figure 6.Representation of the atomic density within a slice of one unit cell viewed down the [001] direction for fractional coordinates
0.4<z<0.6. (a)–(c) shows the atomic density for each atom type at 200 K. Yellow indicates themaximumvalues of the atomic
density, and deep blue indicates theminimumvalues of the atomic density.
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clearly out of register with those in the orthorhombic phases, reflecting the change in symmetry. Thefirst peak in
the PDF of the orthorhombic phase is actually comprised of three peaks, atmid-point distances of around 4.2,
4.4 and 4.6 Å. Thefirst peak in the PDF of the cubic phase is centred on position a 2 , and it is broad to the
extent that it encompasses the distribution of peaks in the low-temperature phases. The second distinct peak in
the PDF for the data at 10 K becomes a shoulder in the data for 100 K, and is subsumedwithin the tail of the first
peak in the cubic phase. The fact that the first peak in the PDF of the cubic phase encompasses the distribution of
peakswithin the low-temperature orthorhombic peaks suggests that there are local distortions of the unit cell
that reflect the local orientations of theCNmolecular anions. The same can be said of the second peak too,

TheK–C andK–N g(r) results (figure 9) for 10 K show twopeaks at around 3.1 and 3.8Å,which correspond
to two cases inwhich theK atom lies equidistant fromboth atoms in theCNmolecular anion andwhere theK..
CN andK...NC connections are almost straight lines. It is interesting thatwe see the same basic formof this g(r)
for the cubic phase too for both the samefirst pair of peaks and beyond, albeit with expected broadening. Clearly

Figure 7.Representation of the atomic density within a slice of one unit cell viewed down the [001] direction for fractional coordinates
0.4<z<0.6. (a)–(c) shows the atomic density for each atom type at 140 K. Yellow indicates themaximumvalues of the atomic
density, and deep blue indicates theminimumvalues of the atomic density. (d)–(f) shows the atomic density for each atom type at
20 K.

Figure 8.K–Kpartial PDF g(r) for temperatures 20 K (black), 100 K (dark red), 200 K (intermediate red) and 250 K (red), with vertical
displacement to separate the results for the different phases.
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thefirst peak should be the same because it is the nearest-neighbour contact between aK atomand either aC or
N atom, but it is interesting that the second peak remains into the high-temperature disordered phase, but
broadened andwith amidpoint shifted to lower distance. The remaining peaks for the cubic phase are consistent
with the positions expected for the cation–anion distance in the rocksalt structure with broadening due to the
orientational disorder of the cyanide anions.

TheC–C,C–NandN–N g(r) results are shown infigure 10. For the cubic phase, there is no difference
betweenC andN, reflecting the orientational disorder, and the g(r) function for both is similar to that for the
K–K g(r) (figure 8)with broadening of peaks reflecting the orientational disorder. In the low-temperature phase,
the C–CandN–Ndistributions are almost identical, and due to the ordering these are not the same as theC–N
distribution.

4.3.Molecular orientational distribution function
As the simplest type ofmolecule possible, the cyanidemolecular anions consist of only two atoms and therefore
containing only one chemical bond. The orientational distribution can be described quantitatively by the bond
orientational distribution function P(Ω). HereΩ represents the polar angles (θ,f), where θ is the zenith angle
(0�θ�π) andf is the azimuthal angle (0�f�2π).P(Ω) describes the probability of a C–Nbond lying
within a given element of solid angle dΩ=sin θ dθ df.

Figure 9.K–C (solid lines) andK–N (dashed lines) partial PDF g(r) for temperatures 20 K (black), 100 K (dark red), 200 K
(intermediate red) and 250 K (red), with vertical displacement to separate the results for the different phases.

Figure 10.C–C (solid lines), N–N (dashed lines) andC–N (dash-dot lines)partial PDF g(r) for temperatures 20 K (black), 100 K (dark
red), 200 K (intermediate red) and 250 K (red), with vertical displacement to separate the results for the different phases. For clarity we
have excluded the bondedC–Nneighbours within the cyanide anion.
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Weexpand P(Ω) in an orthonormal basis of ‘rotator functions’ Si(Ω):

åW = WP c S 11
i

i i( ) ( ) ( )

where the Si are themselves linear combinations of spherical harmonics WY m( )ℓ [31]. It will always be convenient
to take real combinations such as

W = - W + W >-Y Y Y m1 0 12m m m m,c 1

2
( ) (( ) ( ) ( )) ( )ℓ ℓ ℓ

where the ‘c’ refers to the fact that this function is proportional to fmcos( ) 8 [46]. Further combinationsmay be
required, and particular values ofm andℓexcluded altogether, depending on themolecular site symmetry. Here
we give only a brief explanation of themathematics relevant to this particular system; full details for all
crystallographic point groups are tabulated in the reference by Bradley andCracknell [46].With appropriate
normalisation applied, we have c0=1.

In the low-temperature Pmnm phase of KCN, the cyanide ions occupy sites ofmm2 point symmetry. The
appropriate functions Si(Ω) are WY m,c ( )ℓ with even values ofm. In the intermediate-temperature Immm phase,
the point symmetry ismmm, andwe again take a basis of WY m,c ( )ℓ but now require bothm andℓto be even.
Finally, in the high-temperature Fm m3̄ phase, the cyanidemolecular anions are on sites of m m3 point
symmetry. The relevant basis terms are linear combinations of WY m,c ( )ℓ for variousm values, whereℓmust be
even but theℓ=2 term is also forbidden by symmetry. These functions are known as theKubic harmonic
functions, and are tabulated in the literature inCartesian form aswell as in terms of the spherical harmonics
[14, 47], and are given for convenience in the appendix.

As noted earlier, the coefficients in the bond orientational distribution function can be obtained directly by
forming the average value of the relevant harmonic from theRMCconfigurations, in contrast tofitting to data as
in diffraction experiments [14]. Herewe can compare the calculated distribution function directly with that
formed fromhistograms of bond orientations in the configurations. The formof P(Ω) for the disordered cubic
phase for two arcs ofΩ are shown in figures 11(a) and (b) for temperatures 200 K and 250 K respectively. These
show the function calculated from the histogram and from the formofP(Ω) of equation (1). Values of the
coefficients cℓwere evaluated fromaveraging over around 100 independent configurations, and are given in
table 3, and compared to values obtained frommolecular dynamics simulations [25]. All values are small
comparedwith c0=1, indicative of a high degree of disorder as seen infigures 11(a) and (b), where the
fluctuations from the uniform valueP(Ω)=1/4π do not exceed 10%.There is a very slight preference for
ordering along the cubic á ñ100 directions, and a very slight preference away from the á ñ111 directions, with no
obvious preference for the á ñ110 directions, the directions inwhich the cyanidemolecular anions order in the
two lower-temperature orthorhombic phases. The results appear to show a slightly less uniformdistribution at
250 K than at 200 K, but the difference is very small andmay not be significant. TheRMC results for the
coefficients cℓare similar to those from the simulations [25], particularly in so far as the coefficients forℓ>0are
remarkably small. Although the coefficients determined by a single-crystal neutron diffraction study [48]
presented in table 3 appear slightly different—albeit with a relatively high error—the bond orientational
distribution function has some similarities to the results presented here butwith larger variance fromuniform
distribution.

The coefficients for the low-temperature Immm phase at 20 K and 50 K, and for the intermediate-
temperaturePmnm phase at 100 K and 140 K, are given in tables 4 and 5 respectively. The bond orientation
functions are shown infigure 12, showing amuch higher degree of orientational order as expected. The degree of
orientational order/disorder described by the orientation distribution function of each phases is highlighted by
calculating the three-dimensional representations as shown infigure 13, togetherwith views of representative
RMCconfigurations.

The picture that emerges from this analysis is that there is almost uniformdistribution of orientations of the
cyanide anions in the high-temperature cubic phase. The small preference for or against particular orientations
is only of order of 10%of the uniformdistribution. On the other hand, we see amuch greater degree of
quadrupolar ordering (that is orientational ordering of the bond ignoring the direction of the dipolemoment) in
the lower-symmetry phases, and complete ordering on the low-temperature phase. Furthermore, in the low-
temperature phase thewidths of the distribution function reflect and increase in librationalmotion on heating
from20 K to 100 K.

8
We follow the results and notation of Bradley andCracknell [46], but note that since they do not include theCondon-Shortley phase factor

in their definition of WY m( )ℓ , neither do they need or include the factor of (−1)m. The equation is given here in the form that we believe will be
most useful to amodern reader; in particular this form is compatible with the spherical harmonic functions built in tomost popular scientific
computing systems, includingMathematica and the SciPy Python library, andwith the International tables for Crystallography.
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5. Conclusions

In this paper we have used neutron scatteringmethods—Bragg scattering analysed by the Rietveldmethod, and
total scattering analysed by the ReverseMonte Carlomethod—to study the orientational- ordering phase
transition inKCN inmore detail thanwas previously possible. Bragg scattering has primarily given information
about the lattice parameters, which in turn give information on the spontaneous strains that accompany the
phase transitions. The strains are coupled to each other and to the degree of order as determined by the
symmetry of the free energy function, enabling us to quantify the change in the degree of order within the
intermediate and low-temperature phases. That said, there is a linear relationship between the shear and the
tetragonal strain that is very difficult to understand.

The orientational order in each phase of KCNhas been evaluated from the atomic configurations generated
by the RMCmethod.We have shown that the distribution of orientations of the CNbonds does not vary
significantly from random,with the largest deviation being around 25% in favour of orientations in the cubic
á ñ100 directions and showing a reduction of similar size in the á ñ111 directions.Wewere able to obtain good

Figure 11.Bond orientation distribution function for the CNmolecular anion inKCNat two temperatures in the disordered cubic
phase at two temperatures, a) 200 K and b) 250 K. In both cases the points represent averages frommanyRMCconfigurations, and the
red lines are calculated from theKubic harmonic expansionwith coefficients calculated from the configurations. The left panels show
orientations in the directions from á ñ001 to á ñ110 , and the right panels show the directions from á ñ110 to á ñ100 . The broken black line
at f (Ω)=1/4π shows the value for a uniformdistribution.
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agreement between histograms of the bond orientation distribution function formed from the atomic
configurationswith an expansion of the bond orientation distribution function in terms of symmetry-adapted
orientational functions.We are able to take the expansion of the distribution function to high order and
thereforemaintain positive-definiteness, a problem that is encounteredwhen fitting to diffraction data. For
future studies of orientational order, we believe that the experience described here should prompt the use of
similarmethods.

Table 3.Calculated values of the coefficients cℓof theKubic harmonic
expansion of the bond orientation distribution function P(Ω) defined in
equation (1). RMC results are comparedwith values calculated in amolecular
dynamics simulation [25] and single crystal neutron diffraction study
(SCND) [48].

Method

andT (K) c4 c6 c8 c10

RMC200 0.019(2) 0.013(2) 0.024(2) −0.004(3)
RMC250 0.079(2) −0.003(2) 0.016(2) 0.000(2)

MD184 0.04 0.12 — —

MD287 0.03 0.06 — —

SCND180 −0.018(16) 0.22(14) — —

SCND295 −0.132(22) 0.23(18) — —

Table 4.The values of the coefficients
for them=0 spherical harmonics
terms in the bond orientational
distribution function for the RMC
configurations of the low-temperature
Pmnm phase of KCN. By
normalisation c0=1.

l 20 K 50 K

1 −1.6525(2) −1.6543(1)
2 1.9507(7) −1.881(2)
3 −2.039(1) 1.720(3)
4 1.993(2) −1.545(3)
5 −1.871(3) 1.369(4)
6 1.716(3) −1.198(4)
7 −1.554(3) 1.038(4)
8 1.396(4) −0.892(3)
9 −1.248(3) 0.759(3)
10 1.110(3) 1.956(5)
11 −0.981(3) −2.048(1)
12 0.860(2) 0.200(2)

Table 5.The values of the
coefficients for them=0 spherical
harmonics terms in the bond
orientational distribution function
for the RMCconfigurations of the
intermediate-temperature Immm
phase of KCN. By normalisation
c0=1.

l 100 K 140 K

2 1.7757(3) 1.8337(4)
4 1.4138(6) 1.553(1)
6 0.756(1) 0.918(2)
8 0.236(2) 0.419(3)
10 −0.051(2) 0.165(2)
12 −0.143(3) 0.066(1)
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Appendix. Kubic harmonics

Wegive here the first fiveKubic harmonics in bothCartesian and polar form.Note that the conventional
Cartesian form [47] differs by a factor of p4 from the polar form given byBradley andCracknell [46].

p= =K Y a1 4 A.10 0
0( ) ( )

p= - = +K Q Y Y b
21

4
5 3 4
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4
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Figure 12.A slice view of spherical harmonic expansion and cyanides orientation distribution forKCNat 20 K, 50 K, 100 K and
140 K. Each subplot demonstrates the direction from á ñ010 to á ñ001 . The black dots represent the orientation distribution directly
counted from theRMCoutput configuration and the red curve represents the orientation distribution function calculated from cubic
harmonics. There is a broken black line at f (Ω)=1/4π indicating the uniformly distributed states.

Figure 13.RMCconfigurations showing instantaneous orientations of the cyanide anions (top) for one temperature in each of the
three phases (250 K for the high-temperature disordered cubic Fm m3 phase, 100 K for the intermediate-temperature Immm phase,
and 20 K for the low-temperaturePmnm phase). The three-dimensional representations of the bond orientation distribution function
in each case calculated from theKubic and spherical harmonics are given in the lower part.
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In theCartesian equations,Q=x4+y4+z4 and S=x2y2z2, where q f=x sin cos , q f=y sin sin
and q=z cos .
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