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Abstract

Recent exoplanet observations reported a large number of multiple-planet systems, in which some of the planets
are in a chain of resonances. The fraction of resonant systems to non-resonant systems provides clues about their
formation history. We investigated the orbital stability of planets in resonant chains by considering the long-term
evolution of planetary mass and stellar mass and using orbital calculations. We found that while resonant chains
were stable, they can be destabilized by a change of∼10% in planetary mass. Such a mass evolution can occur by
atmospheric escape due to photoevaporation. We also found that resonant chains can be broken by a stellar mass
loss of 1%, which would be explained by stellar winds or coronal mass ejections. The long-term mass change of
planets and stars plays an important role in the orbital evolutions of planetary systems, including super-Earths.

Unified Astronomy Thesaurus concepts: Exoplanet dynamics (490); Exoplanet formation (492); Exoplanet
evolution (491)

1. Introduction

Recent observations have revealed that the orbital architecture
of exoplanet systems is composed of multiple planets in close-in
orbits (e.g., Fabrycky et al. 2014; Weiss et al. 2018b). Almost all
the members of these systems have radii less than 4 Earth radii,
suggesting that these are not giant planets but sub-Neptunes or
super-Earths. Their orbital periods are within ∼100 days (Weiss
et al. 2018a). Their orbital distribution provides insights about
their formation history. In particular, information about orbital
resonances provides useful constraints (Ogihara et al. 2018).
Although several planetary systems are in chains of resonances
(Mills et al. 2016; MacDonald et al. 2016; Gillon et al. 2017),
most multiple-planet systems are not (Fabrycky et al. 2014; Winn
& Fabrycky 2015). The number of planets in resonant chains is
between four and seven, which is larger than the average number
of Kepler planets (3.0± 0.3, Zhu et al. 2018).

Theoretical studies showed that planets are trapped in resonant
chains through orbital migration (e.g., Terquem & Papaloizou
2007; Ogihara & Ida 2009). The number of planets in resonant
chains determines whether such resonant chains will remain for
long periods of time. When the number of planets is large, the
orbit crossing time is short, thereby leading to breaking the chain
after gas dispersal. Matsumoto et al. (2012) showed that there
exist a critical number for orbital instability. When the number
of planets in resonances is smaller than the critical number
(∼10), which depends on orbital properties, the system can be
significantly stabilized. Compared with non-resonant systems,
the orbit crossing time becomes longer by several orders of
magnitude.

Several studies have focused on reproducing the small
fraction of resonant chains in observed super-Earth and sub-
Neptune systems. Izidoro et al. (2017) performed 120 N-body
simulations and showed that the fraction of systems in resonant
chains is larger than that of super-Earths observed by Kepler. In
addition, the typical number of planets in resonant chains is not
consistent with observations. In their simulation results, the
number of planets in resonant chains is typically between 6 and
10, which is larger than the typical number of planets in

observed super-Earths (i.e., between four and seven). These
discrepancies indicate that resonant chains can be destabilized
even when the number of planets in the chain is smaller than
the critical number obtained in the previous study of
Matsumoto et al. (2012). Some additional mechanisms likely
play roles in breaking resonant chains.
In this study, we investigate the effect of the long-term mass

evolution of planets and stars. Close-in planets that grow in the
gas disk would accrete H/He atmospheres that come from the
protoplanetary disk (Ikoma & Hori 2012). These atmospheres
escape from planets by photoevaporation (e.g., Valencia et al.
2010; Lopez & Fortney 2013; Owen 2019; Hori & Ogihara
2020), core-powered mass loss (Ginzburg et al. 2016; Gupta &
Schlichting 2019), and the Parker wind (Owen & Wu 2016).
Planets can lose10% of their mass through atmospheric
escape.
Stars also lose mass. Currently, the Sun loses mass via

the solar wind (e.g., McComas et al. 2000) and coronal mass
ejections (e.g., Munro et al. 1979; Jackson & Howard 1993;
Yashiro et al. 2006). Observations showed that the stellar mass-
loss rate increases as magnetic activity increases (Wood et al.
2002, 2005; Güdel 2004). Stars have large mass-loss rates at
young ages since their activities are stronger (Ribas et al. 2005;
Aarnio et al. 2012; Suzuki et al. 2013). Stars can lose∼0.1%–1%
of their mass in the first 1Gyr (Wood et al. 2002). Stellar mass
loss is known as a possible solution to the faint young Sun
paradox (Sagan & Mullen 1972; Feulner 2012).
Such mass evolutions affect the orbital stability of planets in

resonant chains. Previous studies of the orbital stability of
planets not present in resonant chains showed that the orbital
crossing timescale was a decreasing function of the mass ratio
between the planets and central star (Chambers et al. 1996;
Zhou et al. 2007). Similar dependencies are obtained for
resonant chains (Matsumoto et al. 2012). This suggests that
resonant chains can be destabilized when stars lose their
masses. Moreover, the orbital stability of planets in resonant
chains would be affected by the evolutions of semimajor axes
induced by the stellar mass evolution (Minton & Malhotra
2007). However, it is not clear whether such small changes in
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masses (∼0.1%–10%) will make the planetary system in
resonant chains unstable. Instead, the planetary mass loss may
further stabilize resonant chains because the orbital separation
scaled by the Hill radius becomes larger.

We have investigated the orbital instability of planets in
resonant chains by considering the long-term mass evolution of
planets and stars. We consider the mass evolution of planets
and stars separately. We show that their mass-loss events make
the resonant planets unstable, especially when the number of
planets is close to the critical number (Matsumoto et al. 2012).
The structure of this paper is as follows. Our numerical model
is described in Section 2. We show our results for the planetary
mass evolution in Section 3 and those for stellar mass evolution
in Section 4. Our conclusions are presented in Section 5.

2. Model

2.1. Overview

We follow Matsumoto et al. (2012) to calculate the orbital
crossing time of planets in the chain of resonances. At first, we
form the system of planets in the chain of p+1:p resonances
through orbital migration in a gaseous disk. Then we calculate
orbital crossing times of these systems by N-body simulations,
including gas depletion, using the depletion timescale tdep. The
first one is called the capture simulation, and the latter one is
the stability simulation.

In the stability simulations, we consider two models: one is the
planetary mass evolution, and the other is the stellar mass
evolution. A schematic picture of the stability simulations is shown
in Figure 1. Planets initially have the same mass (Minit) around the
central star whose initial mass is 1 solar mass ( =M M1init* ). The
initial planetary mass is taken as a parameter, = -M M10init

5
 and

- M10 4
. Either planetary mass or stellar mass evolves with tml.

The innermost planet is located at 0.1au and the semimajor axes
of the other planets are given by the p+1: p resonances.
According to our settings for the resonant values p and Minit, the
orbital separations normalized by the Hill radius (Δa/rH where

= + +r M M a a2 3 2iH
1 3

i 1*[ ( )] ( ) , M is the planetary mass, ai
is the semimajor axis of the i-th innermost planet, M* is the stellar

mass), and they become equal values (e.g., Matsumoto et al. 2012;
Weiss et al. 2018b). The Hill radius changes according to the mass
evolution of planets or stars as m m= -r rH H,init

1 3
init

1 3, where
μ=M/M* and μinit=Minit/M*init. All planets share their orbital
planes. Our parameters are summarized in Table 1. Our models are
named from the initial planet–star mass ratio and the resonant
value p. In this paper, we mainly focus on the m p4 3 models where
10−4Me mass planets are in 4:3 resonant chains for a clear
presentation. The results of the other models are presented in
Appendices B and C.
In stability simulations, we perform calculations until the

distance between the planets is less than the Hill radius or the
system is stable over 107 yr. This upper time limit corresponds
to 108.5 TKep of the planet at 0.1 au around 1 solar mass star
where TKep is the orbital period. First, we perform N-body
simulations fixing the planetary mass and stellar mass as a
reference for each model. We repeat these simulations until we
find the critical number of planets in resonances for orbital
stability (Ncrit) by increasing the total number of planets in the
system (N). We perform three simulations with different initial
locations of planets. Second, we consider the time evolution of
the planetary mass and stellar mass.
We name simulations based on the model (i.e., initial mass

and resonant commensurability) and additional parameters (i.e.,
number of planets and final mass). For example, in a simulation
called m p4 3_N M6 0.9li , six planets with an initial mass of 10−4

Me are in 4:3 resonances and their masses decrease to 0.9 times
the initial value at the end of the simulation. In the following
section, we explain our model in detail. Key quantities are
summarized in Table 2.
We usually perform one simulation for each case. We then

choose 26 cases in which N<Ncrit from m p4 3, m p5 5, and
m p5 4 models. To account for the chaotic nature of the orbital
evolution of multiple-planet systems, we perform 2 additional
simulations in 21 cases and 4 additional simulations in 5 cases.
While previous studies suggested that the standard deviation of
the logarithm orbital crossing time of planets that are not in
resonances is 0.2dex (Rice et al. 2018; Hussain & Tamayo
2020), standard deviations of 85% of our cases with additional
simulations are less than 0.2dex. Their median and average
values are 0.084dex and 0.13dex, respectively. The reason
why the standard deviation of the crossing time of planets in
resonances is smaller than that for non-resonant planets is

Figure 1. Schematic figure of the stability simulations. Protoplanets with mass
Minit are in p+1:p resonant chains around the star with mass M*init in the gas
disk. The gas disk dissipates in =t 10 yrdep

3 . Either planetary mass or stellar
mass evolves with tml. In the case of planetary mass evolution, the final mass of
the planets is Mlast. In the stellar case, the final mass of the star is M last* .

Table 1
Models

Model
Initial Plane-
tary Mass Resonance

Initial Orbital
Separation

Critical
Number

(M Minit ) (p+1: p) (Da rH,init) (Ncrit)

μ4p3 10−4 4:3 4.72 6
μ4p2 10−4 3:2 6.63 7
μ4p1 10−4 2:1 11.2 9
μ5p5 10−5 6:5 6.45 7
μ5p4 10−5 5:4 7.89 6
μ5p3 10−5 4:3 10.2 13

Note. Summary of our models. In our models, the initial planetary mass
(Minit/Me) and resonant value p are parameters. The initial orbital separations
(Da rH,init) are derived from these parameters and are shown in this table. The
critical number of planets in each model (Ncrit) is our numerical results. When
the number of planets in the resonant chains is equal or less than Ncrit, planets
do not cause orbital instability in our simulations without mass evolutions.
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probably because angular relations of planets in resonant chains
are similar when planets are in a resonant chain with small
libration angles of their resonant angles.

2.2. N-body Method and Migration Model

The orbits of protoplanets are calculated by numerically
integrating the equation of motion. We adopt the fourth-order
Hermite integrator (e.g., Kokubo & Makino 2004) with the
hierarchical timestep (Makino 1991). We consider the specific
forces of eccentricity damping due to tides from the gas disk as
a drag force (Fdamp) and type-I migration (Fmig), respectively.
These forces are given by

= - W +qF
t

A v r A v
1

0.78
2 , 1r

e
r
c

r
s

rdamp, K( [ ] ) ( )

= - W +q q q qF
t

A v r A v
1

0.78
2 , 2

e

c s
rdamp, K( [ ] ) ( )

=
W

qF
r

t2
, 3

a
mig,

K ( )

where te is the eccentricity damping timescale, ta is the
migration timescale, vr and vθ are radial and azumuthal velocity
components, r is the orbital radius, and ΩK is the Keplerian
frequency, respectively. The numerical factors are given by
(Tanaka & Ward 2004)

= =A A0.057, 0.176, 4r
c

r
s ( )

= - =q qA A0.8686, 0.325. 5c s ( )

For the timescales of eccentricity damping and migration, we
follow the formalism of Tanaka & Ward (2004) and Tanaka
et al. (2002),
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S
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where Σg is a surface density of the gas disk, q is the power-law
index of the surface density ( = S = -q rdln dln 3 2g ), cs is the
sound speed, vK is the Kepler velocity, and fe and fa are coefficients.
We adopt a power-law disk similar to the minimum-mass

solar nebula model (e.g., Hayashi 1981; Ida & Lin 2004),

S =
-

-f
r

2400
1au

g cm , 8g g

3 2
2⎜ ⎟⎛

⎝
⎞
⎠ ( )

= ´
-

-c
r

1.0 10
1au

cm s . 9s
5

1 4
1⎜ ⎟⎛

⎝
⎞
⎠ ( )

Although the sound speed depends on the luminosity of the
central star in the optically thin disk, we neglect this
dependence for simplicity. The surface density vanishes at
the inner edge (redge), with a hyperbolic tangent function of
width, Δr=10−3 au. In capture simulations, the surface
density is constant and fg=1. In stability simulations, where
planets are in resonances, we decrease the surface density with
time (t) as

= -f
t

t
exp , 10g

dep

⎛
⎝⎜

⎞
⎠⎟ ( )

where tdep is the timescale of disk gas depletion. We take
tdep=103 yr. Observations suggested that the disk lifetime and
its dissipation time are∼106 yr (Haisch et al. 2001; Ribas et al.
2014, e.g.,) and∼105 yr (Williams & Cieza 2011), respec-
tively. Therefore, our assumption of tdep=103 yr is shorter
than observationally inferred values. Note, however, that it has
been shown that when the depletion timescale is longer than the
libration timescale of resonant chains and thus the gas depletion
is adiabatic, the orbital crossing time does not depend
sensitively on tdep (Matsumoto et al. 2012). In addition, it is
suggested that the gas in the inner disk dissipates earlier (Ribas
et al. 2014). Recent theoretical studies suggest that the gas in
the inner disk can be quickly removed by magnetically driven
disk winds (Suzuki et al. 2010, 2016; Bai & Stone 2013).
We put the planets in a p+1:p resonant chain from the

inner edge by the eccentricity trap and slow migration. The
eccentricity trap is the mechanism by which the planet located
at the inner edge receives angular momentum due to the partial
planet-disk interaction in an orbit (Ogihara et al. 2010). The
eccentricity trap occurs when te is much shorter than ta, and
Δr/redge is small. The resonant capture condition is given by
Ogihara & Kobayashi (2013). When the migration timescale is
longer than the critical timescale, planets are trapped in a
certain resonance. According to the ta and te conditions, we
take fa�50 and fe�1.

Table 2
Key Quantities

Quantities Explanations

tcross The orbital crossing time
N The number of planets
p Commensurability of planets p+1:p
Mli The ratio between the last and initial planetary mass (equal to Mlast/Minit)
M li* The ratio between the last and initial stellar mass (equal to M Mlast init* * )
tml The timescale for the planetary mass or stellar mass evolution (104 yr)
fml The number fraction of planets that experience mass evolution in a system
tcross,Z07 The orbital crossing timescale of planets not present in resonances (Equation (A1))
tdep The timescale of disk gas depletion (103 yr)
tdrag The timescale for stabilizing planets by disk gas (Equation (A2))
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2.3. The Evolution of the Mass of the Star and Planets

In the first tml of stability simulations, either planetary mass
or stellar mass evolves with time. We take the mass-loss
timescale (tml) and the mass ratio between the initial and final
mass ( =M M Mli last init for planets or =M M Mli last init* * * for
stars) as our parameters. The number fraction of the planets that
experience mass evolution ( fml) is also our parameter. In our
fiducial cases, we put fml=1, which means that all planets
experience mass evolution. The exponential function gives the
mass evolution. For the change of planetary mass, we assume

= =M M
t

t

M

M
M

M

M
exp ln . 11

t t

init
ml

last

init
init

last

init

ml⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟ ( )

After tml, M no longer grows and is equal to Mlast. The stellar
mass evolves in the same way. The parameter range of
M Mlast init is from 0.5 to 1.5 and that of M Mlast init* * is from
0.5 to 1. The timescale of mass loss takes different values for
different mass-loss mechanisms. We adopt tml=104 yr unless
otherwise stated. As there is a wide range of variations in the
mass-loss timescale, we investigate the dependence of the orbit
crossing time on tml in Section 3.3. As a reference, the mass-
loss timescale induced by the atmospheric expansion after the
disk dispersal is about 104–105yr (Owen & Wu 2016). Other
mechanisms induce a mass loss with longer timescales of about
107–109yr (Owen & Wu 2017; Gupta & Schlichting 2019;
Hori & Ogihara 2020).

3. Results for the Planetary Mass Evolution

3.1. Typical Evolution

At first, we show the typical time evolution of planets with
planetary mass evolution. Figure 2 shows the time evolution of
planets in the m p4 3_N M6 0.9li case. Six planets whose mass is
initially 10−4Me are in 4:3 resonances and their final mass is
0.9 times the initial value. The masses of planets decrease
exponentially, and they reach their final values at 104yr
(bottom panel). Eccentricities of planets keep their initial values
(10−2) in the first ∼104 yr. Libration widths of resonant
angles begin to increase at t;8×103 yr and they begin
circulations one after another after 104yr has passed. Then,
eccentricities begin to increase due to secular perturbation. The
second and third innermost planets cause orbital crossing at
1.5×104 yr. It is worth noting that the critical number of
planets in this resonant chain is six (Matsumoto et al. 2012);
therefore, these six planets do not cause orbital instability
within 107yr without considering the mass change. This
indicates that the system is destabilized because of the effect of
mass change. This result is interesting because the orbital
separation divided by the Hill radius expands as the planetary
mass decreases, which should stabilize the system more (e.g.,
Chambers et al. 1996).

Here, we compare the orbital crossing timescale of
´1.5 10 yr4 with other timescales to consider the effect of the

resonant chain. The orbital crossing is hindered by eccentricity
damping due to gas drag (Iwasaki et al. 2001, 2002). The orbit
stable timescale due to disk gas is tdrag=8.6×103 yr in the
m p4 3_N M6 0.9li case (see Appendix A). This explains why the
libration width of the resonant angles does not grow in the first
8×103 yr. The crossing timescale of planets that are not present
in resonant chains is = ´t 1.8 10 yrcross,Z07

2 (see Appendix A).

This indicates that systems without resonant relationships
undergo orbital instability soon after gas depletion. The actual
orbital crossing time in this simulation is approximately
t t1.7cross drag . The orbital crossing time is longer than

+t tdrag cross,Z07 due to the resonant effect, i.e., the evolution
time of resonant angles from libration to circulation.

3.2. Dependence on the Amplitude of the Planetary Mass
Evolution

We perform simulations changing N and Mlast/Minit to see
the dependencies of the orbital crossing time. The dependence
of the orbital crossing time on N in the cases without mass loss
is well described by the critical number (Ncrit); the planets in
resonant chains are stable in N�Ncrit, and they cause orbital
instabilities in N>Ncrit (Matsumoto et al. 2012, e.g., Figure 3
in this paper). The critical number increases as Da rH,init
increases, which is also the case for the mass evolution
(Table 1). In this section, we explain our results using the m p4 3
model. In simulations with different models, we observe
similar dependencies on N and Mlast/Minit. The details of our
results in the other models are shown in Appendix B.
Figure 3 shows the orbital crossing time as functions of N

(the left panel) and Mlast/Minit (the right panel) in the μ4p3
model. In the simulations without mass loss (the points with
black edges in the left panel), the planets are always stable for
N 6. That is, Ncrit=6 in this case. However, when we

consider the planetary mass loss, the planets cause orbital
instability even in N�Ncrit. In the N=5 case, the planets are
stable when 0.5�Mlast/Minit�1.4, and they cause orbital

Figure 2. Time evolution of planets in the m p4 3_N M6 0.9li case, where six
planets whose mass is initially 10−4Me are in 4:3 resonances. These planets
lose their mass in the first 104yr. The top panel is the evolution of semimajor
axes and pericenter and apocenter distances. The semimajor axes are plotted as
solid red lines, and the pericenter and apocenter distances are dashed green
lines. The orbital crossing between the second and third innermost planets
occurs at 1.5×104 yr. The middle panel is the evolution of resonant angles
(j). The bottom panel is the evolution of the planetary mass normalized by the
initial value (M/Minit).

4

The Astrophysical Journal, 893:43 (12pp), 2020 April 10 Matsumoto & Ogihara



instability when Mlast/Minit=1.5. In the N=6(=Ncrit) case,
orbital instabilities occur when Mlast/Minit�0.92 and 1.004�
Mlast/Minit except for Mlast/Minit=0.8. These indicate that the
planets in resonant chains are less stable as their number
increases even in N�Ncrit, and the planets cause orbital
instability with a small mass change of 0.1%–10% when
N=Ncrit. The results also show that the amount of the mass
gain to cause orbital instabilities is smaller than that of the
mass loss.

In the μ4p3 model, the transition from the stable resonant
chain to the unstable one occurs at N=7. In one of the three
simulations without any mass change, the planets with N=7
undergo orbital instability. We considered the planetary mass
evolution for this initial condition. We found that the planets
with N=7 are stable only when they experience 0.1% mass
loss or 0.1% mass gain. In simulations with more mass loss or
mass gain, the systems cause orbital instabilities.

Knowing the orbital crossing time of planets in resonant chains
that cause orbital instabilities would assist our judgment of
whether planets in resonant chains are stable. We compared the
orbital crossing time in unstable cases with tcross,Z07 and tdrag
(Equations (A1) and (A2)) in the right panel of Figure 3. In the
μ4p3 model, tcross,Z07 is always shorter than tdrag, and the disk gas
depletion determines the orbital crossing time of planets that are
not in resonant chains. The orbital crossing time is almost equal to
tdrag when 1.1<Mlast/Minit. In contrast, the orbital crossing time
is obviously longer than tdrag when Mlast/Minit<0.9. The orbital
crossing time increases as Mlast/Minit decreases, while tdrag stays
almost constant. This feature is common regardless of the
relationship between N and Ncrit. The orbital crossing time in
N=6, 7, and 8 contains similar values to the Mlast/Minit range.
This reflects the longer orbital crossing time of smaller planets in
the same resonances (Table 1 and Appendix B). While the
relationship between tcross, tcross,Z07, and tdrag is different among
our models (see Appendix B, Figures B1–B5), the dependencies
of tcross on Mlast/Minit are similar. When 0.9�Mlast/Minit�1.1,
the orbital crossing times are sometimes significantly longer than

tdrag. This mass evolution range is the transition from the stable
resonant chain to the unstable one (see above N= 6 cases). The
resonant effect partially works on the planets and their crossing
time is longer than tdrag.
In some models, planets are stable when Mlast/Minit=0.5

even in N>Ncrit (e.g., m p5 5 model in Appendix B.1). This is
because planets in resonant chains are more stable when their
masses are small. This means that there is a suitable range of
planetary mass loss for planets to bring about orbital instability.
The unstable condition of the planets in resonant chains is
0.5Mlast/Minit0.9 when N;Ncrit. This corresponds to
the situation that around 10%–50% masses of planets are
composed of envelopes that are lost. Such planetary mass loss
occurs when planets are located at 0.1 au (e.g., Lopez et al.
2012; Owen & Wu 2013).

3.3. Dependence on the Timescale of Mass Evolution

While we set tml=104 yr in our fiducial case, the timescale
of the planetary mass evolution or stellar mass evolution would
be longer than 104yr. We examined the dependence of the
orbital crossing time of planets in resonant chains on the
timescale of the planetary mass evolution. Figure 4 shows the
crossing time as a function of the timescale of the planetary
mass evolution.
For a clear presentation, we show orbital crossing times in

three of five cases where we performed simulations. The
crossing time increases as the timescale of the planetary mass
evolution increases. In most cases, the crossing time is well
expressed by the power-law function of tml. These dependen-
cies are between 0.16 and 0.80, which are weaker than the
linear relationship.3 Even when planets in resonant chains
experience mass evolution on longer timescales, they cause
orbital instabilities.

Figure 3. Orbital crossing time of planets in the μ4p3 model is shown. The orbital crossing time is normalized by the Kepler time at 0.1au (tcross/TKep). When the
planets do not become unstable in simulations, we plot markers with upper arrows. Left: the orbital crossing time is plotted as a function of N. The color map is
representative of the ratio between the final and initial planet mass ratio (Mlast/Minit). The points with black edges are the results without mass loss (Mlast/Minit=1.0)
simulations. Right: the orbital crossing time is plotted as the function of Mlast/Minit. The orbital crossing time of planets in N Ncrit is plotted as circle markers, and it
is triangular in N>Ncrit. The vertical dashed line showsMlast/Minit=1.0. The dotted line shows tdrag, and the dashed line shows =t e 0cross,Z07( ˜ ). The solid line is the
fitting line for local short crossing times, = - +t T M Mlog 1.6 log 5.6cross Kep last init( ) ( ) .

3 The dependencies of tcross on tml in the other two cases are as follows:
=C 0.38ml1 and =C 4.3ml2 in the m p5 5_N M6 1.01li case; Cml1=0.16 and

Cml2=5.6 in the m p5 5_N M7 0.95li case.

5

The Astrophysical Journal, 893:43 (12pp), 2020 April 10 Matsumoto & Ogihara



We found that the planets do not cause orbital instability
when the mass evolution timescale is shorter than∼tdrag. The
planets in resonant chains are stable when tml/tdrag is less than
0.41–4.8.4 The longer mass evolution timescale is suitable to
cause orbital instabilities of planets in resonant chains. When
tml<tdrag, planets are recaptured into the resonant chain due to
gas drag. To evaluate the gas drag effect, we performed
simulations changing the onset time of planetary mass
evolution in five cases. We found that the onset time of
planetary mass evolution does not affect the orbital crossing
time even in cases where planetary mass evolution begins
after tdrag.

3.4. Dependence on the Fraction of Planets with Mass Change

The mass-loss rates of the planets in resonant chains are not
uniform since the inner planets receive the stronger incident
flux of the stellar radiation. Some inner planets would lose their
mass, while the other outer planets will not lose theirs. We
simulated this situation considering the number fraction of the
planets that experience mass evolution ( fml).

Figure 5 shows the dependence of the crossing time on fml in
four of five cases where we performed simulations. Although
the behavior of the crossing time on fml is not straightforward,
we found several trends. We found that the stability of most
systems does not depend on fml for fml>0.5. In these systems,
planets cause orbital instabilities when their inner halves
experience mass losses. We also noticed that the resonant chain

can be destabilized even when fml<0.2. This means that the
resonant chain can be broken even when only the innermost
planet undergoes the atmospheric loss. It is important to note,
however, that most cases are stable when <f 0.2ml , as shown
in Figure 5.

4. Results for the Stellar Mass Evolution

4.1. Typical Evolution

We then investigated whether the stellar mass loss induces
the orbital instability of planets in resonant chains. As stated in
Section 1, stars can lose their masses by∼0.1%–1% in the first
1Gyr. Figure 6 shows the time evolution of planets in the
m p4 3_N M6 0.95li* case, where six - M10 4

 mass planets are in
4:3 resonances around the central star whose final mass is
0.95Me. The stellar mass decreases exponentially in the first
104yr, which causes expansions of semimajor axes of planets
(Minton & Malhotra 2007). Although the evolutions of
semimajor axes are suppressed in the first∼103 yr due to the
remnant gas, the change in semimajor axes after t∼103 yr is
evident. We found that the libration widths of their resonant
angles begin to increase at 2.3×104 yr, and they begin
circulations at 2.4×104 yr. As their eccentricities increase, the
fourth and fifth innermost planets cause orbital crossing at

´2.5 10 yr4 . Hence, we found that the stellar mass loss can
also destabilize the resonant chain. The orbital crossing time is
longer than =t 95 yrcross,Z07 and = ´t 4.6 10 yrdrag

3 . The
behavior of the orbital crossing time with the stellar mass loss
is similar to that with the planetary mass loss.
The stellar mass evolution causes the expansion of

semimajor axes. Both stellar mass and semimajor axes affect
the Kepler times of planets. In this section, orbital crossing

Figure 4. Dependence of the orbital crossing timescale on the timescale of the
planet mass evolution (tml). The vertical lines show tdrag of each setup. The
dotted lines are the fitting lines ( = +t T C t T Clog logcross Kep ml1 ml Kep ml1( ) ( ) )
for each case: Cml1=0.80 and Cml2=3.5 in the m p5 5_N M5 0.95li case;

=C 0.47ml1 and =C 3.7ml2 in the m p5 4_N M8 1.05li case; =C 0.60ml1 and
=C 2.5ml2 in the m p4 3_N M6 0.9li case.

Figure 5. Dependence of the crossing timescale on the number fraction of
planets that experience the mass evolution ( fml).

4 In most cases, the boundary values of t tml drag are less than 1. The details
are as follows: tml/tdrag=0.41 in the m p5 5_N M5 0.95li case; tml/tdrag=0.58
in the m p5 5_N M6 1.01li case; =t t 0.41ml drag in the m p5 5_N M7 0.95li case;

=t t 4.8ml drag in the m p5 4_N M8 1.05li case; tml/tdrag=0.93 in the
m p4 3_N M6 0.9li case.
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times are not normalized by the Kepler time of the innermost
planet.

4.2. Dependence on the Amplitude of the Stellar Mass
Evolution

We then looked at the dependence of parameters on the orbit
crossing time. Figure 7 shows the orbital crossing time as
functions of N (the left panel) and M Mlast init* * (the right panel)
in the μ4p3 model (see Appendix C for models μ5p5 and μ5p4).
Similar to the planetary mass evolution, planets cause orbital
instabilities when stars lose their masses. Compared with the
planet mass-loss simulations (Figure 3), the smaller amount of
mass loss leads to instability in the system. For the N=5 cases,
we found that five planets are responsible for the orbital instability
when =M M 0.95last init* * and 0.90. In the N=6 cases, orbital
instabilities occur when M M 0.996last init* * except for

=M M 0.98last init* * . Therefore, only 0.4% of the mass change
due to stellar mass loss can destabilize the resonant chain. The
stellar mass-loss rates that observations suggested (Wood et al.
2002) are enough to bring about the orbital instabilities of planets,
especially in N=Ncrit cases.

5. Conclusions

We investigated the orbital stability of planets in resonant
chains including the mass evolution of planets or stars. We
performed N-body simulations in six models for calculations in
the planetary mass evolution and three models in the stellar
mass evolution. Through these calculations, we obtained the
orbital crossing times of planets in resonant chains. The
features of these orbital crossing times are summarized as
follows.

1. When the mass evolution of planets or stars is not
considered, resonant chains are stable when N�Ncrit;
however, they cause orbital instabilities when N>Ncrit.

2. When the planetary mass (either mass loss or mass gain)
changes more than about 10%, resonant systems with
N=Ncrit usually undergo orbit crossing and resonant
chains can be broken. Even when the mass change is
small (∼1%), systems with closer resonances can
undergo orbital instability. In other words, the critical
number for orbital instability decreases by one or two.

3. When the amount of mass change is larger, resonant
systems with <N Ncrit can be destabilized.

4. Systems in which all planets undergo mass evolution are
more vulnerable to orbital instability than systems in
which only a small fraction of planets exhibit mass
change. It is important to note, however, that, depending
on resonant configurations, resonant chains can also be
destabilized for systems in which only one or two planets
lose their masses.

5. The stellar mass evolution can also induce resonant
breaking. The system can be destabilized even when the
star loses only a minimal amount of mass (<1%), which
is plausible based on the stellar evolution.

The results of this paper provide interesting insights. One
reason for this is that, although the planetary mass loss can
stabilize the system, resonant systems are destabilized due to
the mass loss. In addition, other studies may draw on the results
of this research. For example, in Izidoro et al. (2017), the
fraction of resonant systems that undergo orbital instabilities is
inconsistent with the observed super-Earth systems: more
fractions of resonant systems are formed than of observed
systems; the formed resonant systems tend to have more
planets than the observed systems. By incorporating mass
evolutions into N-body simulations, more resonant systems
would cause orbital instabilities and the observed systems
would be reproduced more naturally.
We can also discuss the origin of the observed systems in

resonant chains. Most of the observed planets in resonant
chains are located at 0.1 au (Mills et al. 2016; MacDonald
et al. 2016; Jontof-Hutter et al. 2016; Gillon et al. 2017). These
planets received strong stellar radiation, which causes planetary
mass loss. We suggest two scenarios that explain why these
planets remain in resonant orbits. One is that the number of
planets is less than Ncrit−2 of the resonant chains. In this case,
planets do not cause orbital instabilities even if they lost 10%
of their mass. The other one is that these planets did not
experience mass loss since they did not have massive
primordial atmospheres (Hori & Ogihara 2020).
We thank Doug Lin, Gabriele Pichierri, Yasunori Hori,

Shinsuke Takasao, and Munehito Shoda for fruitful discussions.
We thank the anonymous referee for constructive comments that
helped us to improve the manuscript. This work was achieved
using the grant of NAOJ Visiting Joint Research supported by the
Research Coordination Committee, National Astronomical Obser-
vatory of Japan (NAOJ), National Institutes of Natural Sciences
(NINS). Numerical simulations were carried out on the PC cluster
at the Center for Computational Astrophysics, National Astro-
nomical Observatory of Japan, and in Academia Sinica Institute
for Astronomy and Astrophysics (ASIAA).

Figure 6. Same as Figure 2, but for the m p4 3_N M6 0.95li* case where the star
loses its mass in the first 104yr. The orbital crossing between the fourth and
fifth innermost planets occurs at 2.5×104 yr.
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Appendix A
Stabilization due to the Disk Gas

In this section, we estimate the orbital crossing time of planets
in a depleting gas disk. These planets are stabilized by eccentricity
damping emanating from the disk gas (Iwasaki et al. 2001, 2002).
As the gas depletes, the timescale of eccentricity damping (te)
becomes longer. When te becomes longer than the orbital crossing
time of planets, their eccentricities are no longer damped, and the
orbital crossing time becomes equal to those in the gas-free
condition.

First, we estimated the orbital crossing timescale of the
planets that were not present in resonant orbits, which is a well-
studied area of research (e.g., Chambers et al. 1996; Yoshinaga
et al. 1999; Zhou et al. 2007; Smith & Lissauer 2009; Pu &
Wu 2015; Rice et al. 2018). We used the empirical fitting
formula in Zhou et al. (2007) to estimate the orbital crossing
timescale, which includes the dependence of the planet–star
mass ratio. In the empirical equation, the orbital crossing
timescale (tcross,Z07) is described as
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where e0 is the initial eccentricities of the planets, and h is the
reduced Hill radius of the planets ( =h r aH ). The mass
evolutions of planets and stars affect tcross,Z07 via logμ. The
orbital crossing timescale becomes shorter as μ increases.

Now, we derive the stabilization timescale of the depleting
disk gas. Considering te is equal to tcross,Z07, the timescale of the
stabilization due to e-damping (tdrag) is estimated as

=
=

t t
t
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⎞
⎠
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which is∼10tdep.
5 After tdrag has passed, eccentricity damping

is no longer effective, and the planets not present in resonances
would become unstable in tcross,Z07. The maximum value
between tcross,Z07 and tdrag approximately gives the orbital
crossing timescale of non-resonant planets. In the estimation of
tdrag, we substitute M=Mlast and =M M last* * .

Appendix B
Results of Each Planetary Mass Evolution Model

We performed simulations in models μ5p5, μ5p4, μ5p3,
μ4p2, and μ4p1, including the planetary mass evolution. In
this section, we show the results of these models, which
exhibit a similar tendency to the results in the μ4p3 model.
We found that more mass gain is needed to bring about orbital
instabilities when the orbital separations are larger or the
number of planets is smaller. Similarly, in mass-loss cases, the
mass change range where planets cause orbital instabilities is
smaller, as the orbital separations are larger or the number of
planets is smaller.

B.1. μ5p5 Model

The orbital crossing time in the μ5p5 model is shown as
functions of N and M Mlast init in Figure B1. In this case, the
critical number is Ncrit=7. In N=7 cases, planets are stable
in 0.99�Mlast/Minit�1.002. The transition from the stable
to the unstable resonances is between Mlast/Minit=1.003 and
1.01 in mass-gain cases. Planets cause orbital instabilities
when 1.05�Mlast/Minit. In the mass-loss cases, while planets
cause orbital instabilities in 0.93�Mlast/Minit�0.98 except
for Mlast/Minit=0.96, they are stable in 0.92�Mlast/Minit.
This suggests that there are three regimes for orbital
crossing times: planets do not cause orbital instabilities in
slight mass loss cases; planets cause orbital instabilities in
moderate mass-loss cases; planets are stable in resonant
chains in large mass-loss cases. The orbital crossing
time of planets in large separation resonant chains is longer
(Matsumoto et al. 2012); that is, the orbital crossing time

Figure 7. Same as Figure 3, but for the orbital crossing time as a function of M Mlast init* * in the μ4p3 model. In the right panel, the vertical dashed line shows
=M M 1.0last init* * , and the dotted line shows tdrag. Note that tcross,Z07 does not appear in this panel since tcross,Z07 is shorter than 103yr.

5 In Equation (A2), we transformed the base of the logarithm from e to 10,
which results in a factor of 2.3.
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is longer, as planets are smaller in the same resonant chains
(Table 1 and Section A.3). Moreover, planets are stable in

=M M 0.5last init simulations even in N=8 cases.

B.2. μ5p4 Model

The orbital crossing time in the μ5p4 model is in Figure B2.
In this case, the critical number is Ncrit=6. The transition of
the orbital stability of planets without mass loss is from N=7
to 9. In N=8 cases and some N=9 simulations, planets are
stable over 108.5TKep. In transition, slight mass loss leads
planets toward stable orbits. In N=7 cases, planets are stable
in M M 0.99last init and 1.005�Mlast/Minit�1.1.

The mass changes to bring about orbital instabilities are as
follows. In N=6 cases, planets cause orbital instabilities in
Mlast/Minit�1.4. In N=8 cases, orbital instabilities occur
in =M M 0.993last init , 0.95�Mlast/Minit�0.98, and Mlast/
Minit�1.2.

The local short crossing time (see the solid line) steeply
increases as Mlast/Minit decreases than tcross,Z07 (the dashed line).
When Mlast/Minit=0.5, the orbital crossing time is longer than
108.5TKep, even in N=10.

B.3. μ5p3 Model

The orbital crossing time in the μ5p3 model is in Figure B3.
The critical number is Ncrit=13, which is larger than the
critical number in the μ4p3 model (Ncrit=6). Planets are more
stable when their masses are small in the same resonances.
Dependencies of Ncrit are understood by the orbital crossing
time of planets not present in resonant orbits (Matsumoto et al.
2012). The orbital crossing timescale is longer when planetary
mass decreases because their mutual perturbations are weaker
(Section A). The same applies to the orbital stability of planets
in resonant chains. In this model, planets do not cause orbital
instability in 0.5�Mlast/Minit�1.5 when N�11.

Figure B1. Same as Figure 3, but for the orbital crossing time of planets that initially have 10−5M* in 6:5 resonances (Model μ5p5). The solid fitting line for local
short crossing times is = - +t T M Mlog 5.0 log 6.4cross Kep last init( ) ( ) .

Figure B2. Same as Figure 3, but for the orbital crossing time of planets that initially have 10−5M* in 5:4 resonances (Model μ5p4). The solid fitting line for local
short crossing times is = - +t T M Mlog 6.0 log 6.5cross Kep last init( ) ( ) .
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Figure B3. Same as Figure 3, but for the orbital crossing time of planets that initially have 10−5M* in 4:3 resonances (Model μ5p3). The solid fitting line for local
short crossing times is = - +t T M Mlog 1.5 log 5.7cross Kep last init( ) ( ) .

Figure B4. Same as Figure 3, but for the orbital crossing time of planets in 3:2 resonances (Model μ4p2). The solid fitting line for local short crossing times
is = - +t T M Mlog 3.2 log 6.1cross Kep last init( ) ( ) .

Figure B5. Same as Figure 3, but for the orbital crossing time of planets in 2:1 resonances (Model μ4p1). The solid fitting line for local short crossing times
is = - +t T M Mlog 4.3 log 7.5cross Kep last init( ) ( ) .
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The conditions under which the planets cause orbital
instabilities are as follows. In N=12 cases, planets cause orbital
instabilities in Mlast/Minit=0.995,  M M1.005 1.01last init ,
and  M M1.4 last init. In N=13 cases, planets cause orbital
instabilities in  M M0.991 0.999last init , and 1.3�Mlast/
Minit. The orbital crossing time in the mass-loss simulations tends
to be longer than that in the mass-gain simulations. In large
Da rH,init models, planets tend to stay in resonant chains. Planets
are stable even in N=15 when Mlast/Minit�0.6. It is important
to note that the estimated orbital crossing time of planets not
present in resonant chains (tcross,Z07) is longer than 10

8.5TKep when
Mlast/Minit�0.6.

B.4. μ4p2 Model

The orbital crossing time in the μ4p2 model is in Figure B4.
The critical number is Ncrit=7. The transition of the orbital
stability of planets without mass loss is from N=8 to 10. The
orbital crossing time in this model shows a similar tendency to
that in the μ5p3 model. The planets do not tend to cause orbital
instabilities in the mass-loss simulations but tend to bring about
orbital instabilities in the mass-gain simulations. The planets
cause orbital instabilities in the mass-gain simulations when

1.1�Mlast/Minit and N=6 while N�Ncrit planets do not
cause orbital instabilities in the mass-loss simulations. When
Mlast/Minit�0.8, planets are stable, even in N=12.

B.5. μ4p1 Model

The orbital crossing time in the μ4p1 model is in Figure B5.
The critical number is Ncrit=9. The transition of the orbital
stability of planets without mass loss is N=10. In this model,
planets do not cause orbital instabilities within 108.5TKep in
N�9, even if we consider the mass evolution in
0.5�Mlast/Minit�1.5. It is worth noting that tcross,Z07 is
longer than T108.5

Kep in Mlast/Minit<1.25.

Appendix C
Stellar Mass Evolution Results of Each Model

We performed simulations in models μ5p5 and μ5p4,
including the stellar mass evolution. We showed the orbital
crossing times in these models as functions of N and
M Mlast init* * in Figures C1 and C2. These figures have similar
features to Figure 7. When N∼Ncrit planets are in resonant
chains, they cause orbital instabilities when stars lose a few
percentages of their masses.

Figure C1. Same as Figure 7, but for the μ5p5 model.
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