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Abstract

Data from the Laser Interferometer Gravitational Wave Observatory (LIGO) and Virgo detectors have confirmed
that stellar-mass black holes can merge within a Hubble time, leaving behind massive remnant black holes. In some
astrophysical environments such as globular clusters and active galactic nucleus disks, it may be possible for these
remnants to take part in further compact-object mergers, producing a population of hierarchically formed black
holes. In this work, we present a parameterized framework for describing the population of binary black hole
(BBH) mergers, while self-consistently accounting for hierarchical mergers. The framework casts black holes as
particles in a box that can collide based on an effective cross section, but allows inputs from more detailed
astrophysical simulations. Our approach is relevant to any population that is comprised of second- or higher-
generation black holes, such as primordial black holes or dense cluster environments. We describe some possible
inputs to this generic model and their effects on the black hole merger populations and use the model to perform
Bayesian inference on the catalog of black holes from LIGO and Virgo’s first two observing runs. We find that
models with a high rate of hierarchical mergers are disfavored, consistent with previous population analyses.
Future gravitational-wave events will further constrain the inputs to this generic hierarchical merger model,
enabling a deeper look into the formation environments of BBHs.

Unified Astronomy Thesaurus concepts: Black holes (162); Gravitational waves (678); Compact binary stars (283)

1. Introduction

The Advanced Laser Interferometer Gravitational Wave
Observatory (LIGO; the LIGO Scientific Collaboration 2015)
and Virgo (Accadia et al. 2012) detectors have discovered and
will continue to discover gravitational waves (GWs) from
coalescing binary black holes (BBHs) and neutron stars. So far,
several tens of BBH detection candidates have been reported in
O3, LIGO’s current observing run, and several hundreds more
detections are expected over the next five years (The LIGO
Scientific Collaboration & the Virgo
Collaboration 2016a, 2016b). As the cosmic census these
surveys provide grows more comprehensive, these observa-
tions will discriminate between formation scenarios of
compact-object binaries (Mandel & O’Shaughnessy 2010;
Breivik et al. 2016; Nishizawa et al. 2016; Rodriguez et al.
2016). A few formation scenarios invoke “hierarchical” growth
of BBHs in which some black holes are themselves products of
previous mergers. These hierarchical mergers could occur in
globular clusters (Portegies Zwart & McMillan 2002; Gültekin
et al. 2006), active galactic nucleus (AGN) disks (see, e.g.,
McKernan et al. 2012, 2019; Bartos et al. 2017; Yang et al.
2019), or nuclear star clusters (Antonini & Rasio 2016).
Alternatively, the hierarchical merger components could have
been produced in the early universe due to primordial density
fluctuations forming primordial black holes (Clesse & García-
Bellido 2015, 2017; Belotsky et al. 2019). Notably, hierarchical
growth produces distinctive signatures in the mass and spin
distribution (Fishbach et al. 2017; Gerosa & Berti 2017;
Kimball et al. 2019; McKernan et al. 2019; Yang et al. 2019),

the most generic of which is a population of spinning black
holes. For some realizations of these models’ parameters,
several groups have made predictions about the black hole
mass and spin distribution (Rodriguez et al. 2016; Belczynski
et al. 2017; McKernan et al. 2019). Additional investigations
have assessed whether existing observations are compatible
with these models, focusing on the individual event GW
170729 (Chatziioannou et al. 2019; Kimball et al. 2019; Yang
et al. 2019).
In this work, we introduce a generic, parameterized frame-

work that accounts for BBHs that form through hierarchical
mergers. The method treats black holes as particles in a box
that undergo collisions based on an effective cross section. This
framework can incorporate a wide range of submodels and
prescriptions, enabling one to create models that are purely
phenomenological or instead heavily based on detailed
astrophysical investigations and simulations. We provide a
concrete implementation of our framework, including astro-
physically realistic initial conditions. Using existing GW
observations, we perform Bayesian inference on our para-
meterized model.
Our paper is organized as follows. In Section 2, we describe

our framework for hierarchical mergers and some parameter-
izations within the framework, illustrating them with simple
examples. We also describe our fiducial initial conditions for
BBH populations. In Section 3, we show how to constrain this
parameterized model through comparison with GW observa-
tions from LIGO and Virgo’s first and second observing runs.
In Section 4, we discuss the results of our parameter inference
on the LIGO-Virgo data, the overall efficacy of our framework,
and possible extensions to the parameterizations explored
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herein. Finally, we summarize the results of our investigation in
Section 5.

2. Parameterized Hierarchical Formation of BBHs

2.1. General Framework

We employ a flexible method for self-consistently generating
mass and spin distributions for BBHs that include a
subpopulation of hierarchical mergers. Rather than model the
complex dynamics of individual stellar environments, we build
a parameterized phenomenological model that describes the
aggregate properties of merging binaries in the local universe
using volume-averaged coupling coefficients. Our framework
incorporates three generic physical processes. First, black holes
coagulate when pairs of compact objects merge into single
compact objects that may remain in the population. Second, we
allow for depletion, where some compact objects leave dense
environments and no longer have an opportunity to merge with
other objects. Finally, we allow for augmentation, where some
process introduces new compact objects to the hierarchical
interacting environment (e.g., BHs from stellar collapse or
AGN disk dynamics).

Following similar investigations (Lissauer 1993; Christian
et al. 2018), we model these effects with a Monte Carlo
procedure, designed to approximate a continuous-time coagu-
lation equation (Smoluchowski 1916), which has the qualita-
tive form
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where x denotes black hole parameters, ( )f x t; denotes the BH
parameter distribution function at time t, ( )G ¢x x t, ; denotes a
volume-averaged interaction rate (i.e., coagulation), and r(x; t)
and d(x; t) are the augmentation and depletion rates of black
holes with parameters x at time t. The first integral describes the
accumulation of black holes with parameters x due to mergers
of pairs of black holes with parameters ¢ x x, . The delta
function enforces that the final parameters x are produced by a
merger of BHs with parameters ¢ x x, . The function ( )¢x x x,rem

computes the remnant parameters from merger component
parameters x and ¢x .8 The second integral accounts for the
decrease of black holes with parameters x due to mergers with
other black holes with parameters ¢x , and its integrand

( ) ( ) ( )¢ G ¢f x t f x t x x t; ; , ; is equivalent to the merger rate as a
function of parameters. In the absence of augmentation or
depletion, the total number of black holes ò fdx decreases as

( ) ( ) ( )/ ò- ¢G ¢ ¢dxdx x x t f x t f x t1 2 , ; ; ; , as each merger reduces
the total number of black holes by one. (The factor of 1/2 is a
statistical factor to avoid overcounting).

Given an initial condition f (x, t0), an interaction rate
( )G ¢x x t, ; , a map between merger components and remnants

( )¢x x x,rem , and prescriptions for augmentation and depletion,
the solution ( )f x t; can in principle be computed. This

approach is highly modular and can incorporate complex
dynamical physics via the coagulation, augmentation, and
depletion functions. Additionally, existing black hole popula-
tion models can be extended to include hierarchical merger
effects in our framework. With this framework in hand, we first
describe our method for computing these hierarchical merger
distributions and then turn to astrophysically motivated choices
for these functions and their application to GW data.

2.2. Monte Carlo Implementation

To solve Equation (1), we perform an iterative procedure on
a sample of black holes. First, a “natal” black hole sample is
chosen, i.e.,samples from ( )f x t, 0 . Then at each step, a set
fraction w of the black holes are merged based on the
coagulation coupling, and the final mass, spin, and kick
velocity are computed for the merger remnants. The kick
velocities of these remnant black holes determine whether they
are reintroduced to the overall sample of black holes or if they
are removed due to leaving the environment. Meanwhile, new
black holes formed from nonhierarchical processes can be
added to the sample. The fraction that are merged at each
iteration is a proxy for the timescale on which these mergers
can occur. If the fraction is small, few mergers will occur at
each iteration, but the mergers that do occur will have the
opportunity to merge again in the next iteration, allowing more
unequal-generation mergers. This approximates continuous
coagulation. If on the other hand the fraction is of order unity,
most of the black holes will merge during each time step. In the
latter scenario, the black holes in the sample will typically be of
the same generation at each time step, as if some process
delayed their reentrance to the population immediately after
coagulation. Here we fix this fraction w to 5% as a large time
step that still reasonably approximates continuous evolution;
we expand on the fraction size in Appendix B and note that
future work could allow this to be a free parameter. We
summarize our full Monte Carlo procedure below:

1. Sample N black holes from the natal population. Each BH
has a mass and spin parameter. Call this sample S.

2. Pair wN black holes randomly from S, weighted by the
coagulation coupling prescription, where w is the fraction
of BHs that merge at each iteration.

3. Compute the final mass, spin, and kick velocity for the
black hole pairs to create a new sample of postmerger
black holes called S′ and remove any black holes that
were paired from S.

4. Remove black holes from S′ based on their kick velocities
using a model for black hole depletion.

5. Sample more black holes based on the augmentation
prescription and call this sample S .

6. Set È È= ¢ S S S S .
7. Repeat steps 2–6 until the maximum number of desired

iterations is reached.

2.3. Model Prescriptions and Parameterizations

In this section, we describe our inputs to Equation (1), which
we have chosen to be simple, computationally efficient, and
astrophysically motivated. Notably, the choices we make here
all assume an isotropic interaction environment, with randomly
oriented spins, which may not be well suited to some
environments such as AGN disks. However, we emphasize

8 If the remnant mass of merging black holes was exactly the sum of the
merging components, then ( )¢ = + ¢m m m m m,rem , but since energy is
radiated in GWs from the coalescence, ( )¢ < + ¢m m m m m,rem .
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that alternative effects can be readily incorporated into this
framework if desired. To limit the scope of our investigations,
augmentation is not considered in this work, but future studies
could include it.

2.3.1. Coagulation

For simplicity, we assume the volume- and time-averaged
interaction rate Γ depends only on binary masses ( )¢m m, , with
a parametric form

⎛
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(This single interaction term is designed to capture the average
effect of interactions throughout the volume, on the long
timescales over which the BH mass distribution evolves
appreciably through hierarchical mergers.) We include the

total binary mass dependence ( )( )+ ¢m m

M

a

ref
for two reasons. First,

bigger black holes have larger “cross-sectional areas” with
which they can interact with other objects. In the limiting case
of spheres in a gas with radii r, one would expect

( ) ( )G ¢ µ + ¢r r r r, 2. To account for the complex dynamics
of interacting black holes, we do not fix the power to 2 and
instead let it vary, and since a black hole’s Schwarzchild radius
is directly proportional to its mass, we replace radii with
masses. The second effect this term accounts for is dynamical
friction, which brings more massive black holes to dense
centers of clusters where they can merge. The second term

( )h
h

b

ref
depends on the symmetric mass ratio η to account for a

possible preference for mergers to choose more equal or
unequal masses (see, e.g., Fishbach & Holz 2019). In globular
clusters, for example, mass segregation may favor equal-mass
mergers over those of unequal mass (Sollima 2008; Park et al.
2017; Rodriguez et al. 2019).

Although we assume that the black hole spins do not
influence the interaction rate, we do keep track of the spin
magnitudes of the black holes and calculate final black hole
spins from initial component parameters. We use fits to
numerical relativity simulations from Tichy & Marronetti
(2008) for ( )¢x x x,rem , the final mass and spin of a remnant
black hole given the masses and spins of the individual
components. To further simplify our calculations, we assume
the hierarchical environment is isotropic, so only spin
magnitudes χ need to be tracked since spin orientations are
random. As such, we can simply write x=(m, χ) in this
prescription.

2.3.2. Depletion

Remnant black holes experience recoil kicks that may eject
the remnant from the environment and prevent it from merging
again with another object. Here we consider two cases: 1.no
depletion and 2.cluster depletion. In the first case, we assume
no black holes leave the environment; in the second, we use the
“V459” fits to numerical relativity simulations from Zlochower
& Lousto (2015) for recoil velocities with a prescription for the
distribution of cluster escape velocities to calculate the
depletion rate. We parameterize the depletion based on the
magnitude of the recoil velocity vkick and ignore the recoil
direction, although future studies could incorporate the recoil

direction to account for anisotropy in the merger environment.
For cluster depletion, we assume that black holes are in star
clusters with a variety of density profiles and hence a variety of
central escape velocities. We write the escape probability as:

⎡
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The Heavyside function enforces that remnants with kick
velocities larger than the cluster escape velocity are ejected.
The cluster escape potential is given by a Plummer model and
the black holes are always assumed to be at the centers of
clusters. The last line of terms describes the distribution of
cluster masses M and effective radii r0 in the Plummer model.
We take these cluster masses and radii to be log-normally
distributed and parameterized by μM, σM, mr0

, and sr0, but
emphasize that other choices could be made for all of these
depletion prescriptions.

2.3.3. Natal Populations

The final ingredient we need to specify in our model is the
initial distribution of masses and spins ( )f x t; 0 . We hereafter
refer to this as the “natal” distribution, and take it to be the
distribution of black hole parameters formed at black hole birth.
A variety of choices could be made, but here we restrict
ourselves to two cases. The first case is a simple power-law
mass function in component masses with lower and upper mass
cutoffs

⎧⎨⎩( ) ( )µ
a-  

p m
m m m m, if
0, otherwise.

4min max

In all cases we use the fiducial value mmin=5 Me for the sake
of simplicity. For the other parameters, we either fix them to
fiducial values of α=2.35 (from a Salpeter initial mass
function (IMF)) and =m M20max (from early stellar
evolution modeling), or we allow the data to tune them,
assuming uniform priors. The blue curves in Figure 1 show two
examples of black hole natal mass distributions with the
Salpeter prescription. The fiducial Salpeter mass distribution
for black holes is a basic model that assumes that the fraction of
mass retained from stellar birth to black hole formation,
m/mZAMS, is constant across all masses. This is unlikely to be
true in reality, as the processes undergone by a star depend
strongly on its mass. To take things a step further in
complexity, we still assume the mass distribution follows a
power law, but with an index α that differs from the IMF’s
value. This is still fairly unrealistic, as the black hole natal mass
spectrum is not expected to be this simple, but this at least lets
the data determine the general trend of the spectrum.
Our second model has a better footing in physical principles,

but loses some flexibility. We assume a pure Salpeter IMF for
the zero-age main-sequence (ZAMS) masses in the range
[ ) ¥ M5, and evolve them to black holes using the Fryer et al.
(2012) Rapid model. (Our calculations implicitly adopt the
same wind mass-loss model as employed in that study.) This
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introduces an additional hidden variable, the stellar metallicity
Zmetal for each progenitor star. The red and green curves in the
bottom panel of Figure 1 show our inferred progenitor
distributions for two choices of Z. In principle, this should be
a random variable, obeying some distribution that may
correlate with the IMF. For simplicity, however, and motivated
by the approximate similarity between these two distributions,
we fix this to a constant Zmetal* , assumed to be the same for
every progenitor.

Now we turn to to the black hole natal spins. Black hole
natal spins remain a matter of considerable observational and
theoretical debate. Motivated by LIGO’s observations and
recent modeling (Belczynski et al. 2017; Farr et al. 2018; The
LIGO Scientific Collaboration & the Virgo Collaboration 2018;
Fuller & Ma 2019), we adopt a simple fiducial choice: all BHs
in our original population have small characteristic spin
magnitudes, drawn from a Beta distribution with mean
(χ)= 0.047 and Var(χ)= 0.002. We also assume that the spin
directions in the natal population are randomly oriented, but
again we emphasize that other choices could be made.

2.3.4. Merger Rates

As described in Section 2.2, our Monte Carlo procedure
works with a finite set of black holes. We take these black holes
to be a proxy for the entire population and assume that the
overall merger rate of black holes is simply a scaled population
of those generated in our Monte Carlo simulations. We also
stipulate that the merger rate density is constant in comoving
volume. Future studies could certainly incorporate more
detailed effects, but here we opt for simplicity. In the following

section, we show normalized distributions of the masses and
spins of black holes, but in Section 3 we present inference
results that allow the merger rate density to be inferred by
the data.

2.4. Characterizing the Parameters

To elucidate the effect of each of the parameters described in
the previous section, we take the reader through a sequence of
examples. The examples we present here are primarily for
illustration and do not necessarily represent parameters that
describe the observed population of black hole mergers to date.
Note that the histograms and kernel density estimate curves
shown here are not explicitly used in our analysis; they are
simply representations of the samples from our Monte Carlo
procedure.

2.4.1. Time Evolution

As hierarchical mergers occur, a secondary population of
high-mass, high-spin black holes begins to form alongside the
natal population. In our Monte Carlo procedure, the time
evolution of the population is reduced to individual time steps,
as described in Section 2.2. Figure 2 illustrates how the
population changes with each time step. Starting with a
Salpeter IMF with =m M20max and Beta-distribution spin
magnitudes as the natal population (which we take as our
fiducial natal population) we evolve the population forward for
three iterations, allowing 5% of the black holes to merge at
each step and setting the coupling strength to a= 2 and b= 0.
The red, blue, and black lines show the distributions of the total
masses of mergers for time steps 0, 1, and 2, respectively.
Since the remnant black holes inherit angular momentum

from their parents and from their orbit, hierarchical mergers
also produce a strong evolution of BH spins (Fishbach et al.
2017; Gerosa & Berti 2017). With successive mergers, the total
mass distribution tends toward higher masses, and an island of
high-mass, high-spin black holes begins to grow. Figure 3
shows 90% and 99.9% confidence intervals for the joint mass–
spin distributions at T= [0, 1, 2]. Notably, hierarchical mergers
of comparable-mass binaries introduce a characteristic peak
near c 0.7, which is why the top panel of Figure 3 shows a
surplus of black holes near that spin magnitude. Generically,

Figure 1. Four different scenarios for initial black hole mass distributions. Blue
curves denote a Salpeter-like power law, with the solid (dashed) line
corresponding to an upper mass cutoff of 20Me (45Me). Red curves denote
the Fryer rapid model, with the solid (dashed) line corresponding to a
metallicity of 0.0002 (0.02).

Figure 2. The total mass distribution of BBH mergers at three successive time
steps evolving from a Salpeter natal distribution (α = 2.35) with coupling
parameters a=2 and b=0. The smooth curves overlaid on the histograms are
kernel density estimates of the Monte Carlo samples and are shown purely to
guide the eye.
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hierarchical mergers should produce a similar subpopulation of
high-mass, high-spin black holes, since general relativity
predicts that a postmerger remnant black hole is always more
massive than either of its premerger components and its final
spin is away from zero. The χeff versus chirp mass distribution
in the lower panel shows that while χ1 tends to be large for the
hierarchically produced mergers, the χeff distribution is
smoothed out around 0, since the black hole spin directions
are isotropically distributed.

2.4.2. Coupling Strength

The overall mass and spin distributions are sensitive to the
average coupling strength of black holes. Figure 4 shows the
total mass distribution (top panel) and the primary mass
distribution (bottom panel) after four time steps for different
values of a and b. Increasing the total mass coupling parameter
a drives the most massive mergers to occur, causing the total
mass distribution to quickly expand to higher masses, while
increasing the symmetric mass-ratio coupling b simply forces
most mergers to be of equal-mass components. Cranking up a
and b simultaneously gives particularly interesting behavior. In
those cases, the heaviest black holes take place in mergers, and
the products of those mergers are likely to merge again, which
can create multiple distinct peaks in the mass distributions. As
a result, in the Salpeter natal distribution example, our
procedure produces a characteristic “smoothed staircase” mass

distribution, with “steps” in the mass distribution appearing at
multiples of the primordial maximum mass mmax,0. At very
high mass, these “step” features become smoothed out.
The mass ratio and spin distributions also have characteristic

features. When a is large but b is small, a population of highly
unequal mass mergers can be produced, as seen in the purple
curves of Figure 5. A near-flat mass ratio distribution (shown in
green) is found for a=2 and b=0 in this case, because the
natal mass distribution power-law slope (α= 2.35) is nearly
matched to the total mass coupling, so the dearth of higher
mass black holes is exactly counteracted by their higher
likelihood of participating in mergers. As b is increased, the
distribution begins to favor equal-mass mergers, as shown in
the black curve.
Figure 6 shows contours of the joint primary mass and χ1

distribution for different coupling strengths after four time
steps. While a high-mass, high-spin subpopulation is present in
all the cases considered here, they are notably affected by the
coupling strength parameters. When b is large, the subpopula-
tion is more concentrated at χ1∼0.7, because the mergers
tend to be equal mass and therefore have a similar final
remnant spin.

Figure 3. Joint mass–spin distributions for three successive time steps. Top: the
spin amplitudes of the more massive merger component vs. their masses.
Bottom: the effective spin parameter χeff vs. the binary chirp mass. The
contours represent 90% and 99.9% contour intervals for mergers at time steps
T=0 (red), T=1 (blue), and T=2 (black).

Figure 4. Mass distributions for different coupling parameters after four time
steps. Top: the total mass distribution of mergers for a=2, b=0 (green),
a=4, b=0 (purple), and a=4, b=20 (black). Bottom: the distribution of
masses of the more massive merger components. The distributions are evolved
from the fiducial Salpeter distribution.
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2.4.3. Depletion

The most widely proposed hierarchical scenario involves
hierarchical formation in globular clusters. Merging black holes
will be very frequently ejected from these low binding energy
environments, strongly suppressing the prospects for hierarch-
ical mergers through multiple generations (Favata et al. 2004;
Merritt et al. 2004; Gerosa & Berti 2019; Rodriguez et al.

2019). To illustrate how depletion impacts the observed merger
distributions, we incorporate the cluster depletion model from
Section 2.3.2 into a hierarchical merger population. Figure 7
plots three total mass distributions, one without depletion
effects, one with “light” clusters ( m = ´ M5 10M

4 , m = 10r0

pc, s s= = 1M r0 ), and one with “heavy” clusters
( m = ´ M5 10M

5 , m = 5r0
pc, s s= = 1M r0 ). These hierarch-

ical distributions are evolved forward four time steps from a
fiducial natal distribution under these three depletion prescrip-
tions and with a=2, b=0. This figure shows that as the
confining potentials become shallower, remnant black holes are
kicked from the environment so that hierarchical mergers are
strongly suppressed, as known from previous work.

2.4.4. Natal Distributions

As we have seen in the previous examples, the hierarchical
distributions produced in our framework contain imprints of the
natal populations. Figure 8 plots three hierarchical merger total
mass distributions after three time steps assuming the strong
coupling parameters a=4, b=20. Unsurprisingly, the natal
distributions with support at higher masses quickly evolve to
have high-mass mergers. Additionally, the more complex

Figure 5. The distribution of mass ratios q=m2/m1 (top) and component
masses (bottom) after four time steps for = =a b2, 0 (green), a=4, b=0
(purple), and a=4, b=20 (black), evolved from our fiducial Salpeter
distribution.

Figure 6. Contours of the joint m1–χ1 distribution after four time steps for
a=2, b=0 (green), a=4, b=0 (purple), and a=4, b=20 (black),
evolved from the fiducial Salpeter distribution.

Figure 7. Escape probabilities and the total mass distribution of mergers for
different depletion prescriptions. Top: the escape probability as a function of
the kick velocity for “light” (blue curve, m = ´ M5 10M

4 , m = 10r0
pc,

s s= = 1M r0 ) and “heavy” clusters (orange curve, m = ´ M5 10M
5 , m = 5r0

pc, s s= = 1M r0 ). Bottom: the total mass distribution for no depletion (red),
“light” cluster depletion (black), and “heavy” cluster depletion (blue). The
coupling parameters are set to = =a b2, 0.
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structure in the Fryer natal mass distributions is imprinted in
the evolved hierarchical distributions, while the Salpeter-based
mass distributions are more smoothed out. In sum, the natal
distribution is crucially important to the evolution of the mass
distribution when hierarchical mergers can take place.

3. Constraining Hierarchical Formation with GW
Observations

We use an updated version of the POPMODELS population
inference code (Wysocki et al. 2019) to compare our
hierarchical formation model to real GW observations from
GWTC-1 (the LIGO Scientific Collaboration & the Virgo
Collaboration 2019). For each collection of observations ,
this code evaluates the inhomogeneous Poisson likelihood

( ) ( ) ( ∣ ) ( )( ) ò l l lL µ Lm- L

=

  e d ℓ p, , 5
n

N

n
,

1

where ( ) ( ∣ )l l=ℓ p dn n is the likelihood of data dn given binary
parameters λ, ( )m L, is the expected number of detections,
is the merger rate, and Λ refers to any relevant model
parameters: all parameters needed to characterize our hier-
archical evolution equations, along with the choice of
metallicity and initial conditions. Unlike Wysocki et al.
(2019), we evaluate the integrals ( ) ( ∣ )ò l l l Ld ℓ pn by using
Monte Carlo integration via samples drawn from our
hierarchical model ( ∣ )l Lp , combined with an analytic like-
lihood ( )lℓn .

We perform inference with four models, which are described
in Table 1. The right-hand side describes prescriptions for fixed
values and priors in each model. The posterior distributions on
our inference parameters are shown in Figures 9–11. Model 1 is
our most basic phenomenological model, the natal distribution
having a power law in component mass and zero spin. The
number of iterations and mass coupling parameters are inferred
from the data. The blue curves in the right panel of Figure 9
show that the data have a slight preference for ~a 2 and a
strong preference for large b values around b∼30. The overall
rate density of mergers in our hierarchical model h, shown in
the left panel, is consistent with the rates inferred in the LIGO
Scientific Collaboration & the Virgo Collaboration (2018).
Additionally, the natal distribution power-law index and
maximum mass are constrained to similar values to those

found in the LIGO Scientific Collaboration & the Virgo
Collaboration (2018), as seen in the blue curves of Figure 10.
Given that our hierarchical model reduces to a nonhierarchical
model in the low–time step limit and the data favors fewer time
steps, it is not surprising that our natal population parameters
match the overall population parameters in the LIGO Scientific
Collaboration & the Virgo Collaboration (2018). The inference
on the number of time steps is shown in Figure 9 in terms of the
variable Ngen=T+ 1, which is the highest allowed generation
of black holes in the population.
The most widely proposed hierarchical scenario, however,

involves hierarchical formation in globular clusters. Merging
black holes will be very frequently ejected from these low
binding energy environments, strongly suppressing the pro-
spects for hierarchical merger (Gerosa & Berti 2019; Rodriguez
et al. 2019). Model 2 adds a depletion prescription to Model 1
with fixed cluster mass and radius distribution parameters. In
this case, similar coupling and natal distribution parameters to
Model 1 are inferred, which is shown in orange in Figures 9
and 10. Notably there is a slight preference for higher total
mass couplings a for Model 2 compared to Model 1, because
the depletion effects strongly suppress hierarchical mergers,
and therefore higher masses from the natal population are
favored. The strong depletion in this case also results in no
preference on the number of time steps.
We then allow the cluster mass and radius distribution

parameters to vary in Model 3. The results of inferring cluster

Figure 8. Total mass distributions after three time steps for different natal mass
distributions. The coupling strength parameters are a=4, b=20.

Table 1
Hierarchical Merger Models Fit to O1/O2 Data

Model Description

Model 1 Natal population: power law in component mass

=m M5min

[ ]a Î -3, 5 , uniform
[ ]Îm 15, 50max , uniform

[ ]c = 0.047
[ ]c =Var 0.002

Coagulation parameters:
aä[1, 6], uniform
bä[1, 100], log uniform
Tä[0, 9], uniform
w=0.05

Model 2 Same as Model 1, except Tä[0, 5] and
Beta-distribution natal spins
[ ] [ ]c Î 0, 1 , uniform

Var[χ]ä[0.25], uniform
Depletion

m = ´ M5 10M
5

m = 5r0
pc

s s= = 1M r0

Model 3 Same as Model 2 except
[ ] m Î M10 , 10M

5 10 , uniform

[ ]m Î 5, 5r
5

0
pc, uniform

Model 4 Mixture of Model 2 and Model A of the LIGO Scientific Colla-
boration & the Virgo Collaboration (2018)

Model 5 Same as Model 1 except
Fryer rapid SN natal population
Mixture with Model A of the LIGO Scientific Collaboration &
the Virgo Collaboration (2018)
T=2
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sizes are shown in Figure 11. Interestingly, the cluster radii and
masses are pushed to large values, far greater than those of real
star clusters. This is partially an artifact of the parameterization
chosen here. The gravitational potential in the Plummer profile
is sensitive only to the ratio of cluster mass to cluster radius, so
if we consider the ratios of μM to mr0

, the inferred values are
roughly similar in gravitational potential to the fixed values
used in Model 2. In other words, the data prefer somewhat
shallow potentials wherein hierarchical mergers are suppressed.
A future parameterization may instead opt for a distribution of
gravitational potentials rather than cluster parameters.

Next we consider two mixture models. In the first (Model 4),
we fit a mixture of our Model 2 with Model A from the LIGO
Scientific Collaboration & the Virgo Collaboration (2018).
Then in Model 5 we create a mixture of Model A and our
hierarchical model applied to the Fryer rapid SN natal
population with no depletion and exactly 3 time steps of
evolution. In these mixture analyses, we simultaneously fit the
parameters of Model A (power-law index, maximum mass
cutoff, overall rate) and the parameters of the hierarchical
model. Figure 10 shows the distributions of population
parameters for the “field” (Model A) and “hierarchical”

Figure 9. Inferred hierarchical parameters with depletion effects, for the five models listed in Table 1. Top: hierarchical merger rates and cluster parameters for
hierarchical mergers with depletion effects considered. Note that the fiducial model, based on globular clusters, vastly underestimates the inferred cluster scales.
Bottom: merger cross-section indices for hG µ Ma b, for different models both with and without depletion. Note that the only significant difference comes from using
the Fryer natal population.
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mixtures. The mixtures complicate the picture significantly.
Model 4 (shown in red) in particular has little discerning power
on its underlying population parameters due to the additional
model freedom. Model 5 (purple) on the other hand, for which
the natal distribution and number of time steps are fixed, shows
some interesting behavior. In particular, the “field” (i.e., Model
A) component parameters are driven to a near-flat distribution
in component masses with a slightly lower mass cutoff than for
the other models’ considered inferences. Meanwhile, the
coagulation parameters a and b are pushed to lower values.
These shifts in the inferred parameters are likely due to fixing
the number of time steps to 3 with no depletion. Fixing the
number of time steps to 3 favors the existence of some
hierarchical mergers that tend to be higher mass. To counteract
the buildup of too many high-mass black holes compared with
the data, the mass distribution of the field population is cut off
at a lower mmax and the coagulation mass coupling is
decreased. Also, the inferred metallicity Zm of the natal
population also slightly favors higher values, which pushes the
natal mass distribution to lower masses, alleviating some of the
unwarranted buildup of high-mass black holes. Lastly, the
contribution of the hierarchical population is subdominant to
the field population, as seen in Figure 11.

4. Discussion

A hierarchical formation scenario provides an efficient way
to produce binaries that would otherwise be challenging to
generate: high masses, exceptional mass ratios, and character-
istically high spins. The identification of binaries with

characteristically extreme properties could provide a clear
indication of hierarchical formation. In this section we explore
our posterior predictive constraints on these scenarios, within
the framework of the constrained fiducial model described
above. We also discuss further extensions of the models
presented here and the overall effectiveness of this framework.

4.1. Posterior Predictive Distributions

Figure 12 shows our inferred posterior mass distributions,
both intrinsic and detection-weighted, which resemble the
conclusions in the LIGO Scientific Collaboration & the Virgo
Collaboration (2018). Specifically, we infer a mass distribution
for the more massive component in merging black holes (m1)
that is approximately a power law between 10 Me and 30 Me,
followed by a rapid decrease at higher mass. Notably, this
figure shows characteristic decay and “echo” features at about
30 Me, inherited by our formation model; these features could
be probed by future observations and used to better constrain
hierarchical formation.

Figure 10. Impact of depletion on power-law parameters. Field and hierarchical components are denoted with f and h subscripts, respectively.

Figure 11. Inferred rates and metallicities for model 5. We infer merger rates
for both the hierarchical componenth and the nonhierarchical componentf .

Figure 12. Inferred m1,source distributions for Models 1–5. Shown are the
median (solid line), posterior predictive (dashed line), and 90% credible
intervals (shaded region).
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Figure 13 shows our inferred mass ratio distribution.
Because GWTC-1 does not include a significant component
of asymmetric binaries, our posterior necessarily strongly
favors hierarchical models that preferentially produce binaries
with q;1. Constraints on binary mass ratios will very
strongly constrain prospects for hierarchical formation, parti-
cularly insofar as some hierarchical scenarios produce
significant numbers of highly asymmetric mergers (Yang
et al. 2019).

4.2. Possible Extensions

In this article, we have shown a few possible model choices
and prescriptions, but as we have emphasized, many other
choices could be made. For example, our parameterizations of
the coagulation coupling and cluster depletion are essentially
phenomenological, but future work could incorporate the
results of N-body simulations that evolve clusters of stars and
black holes as well as incorporate observational constraints on
star clusters.

Our current parameterization also assumes that there is no
evolution of the rate or mass and spin distributions with
redshift. Given the evolution of the cosmic star formation rate,
it is likely that the rate of black hole mergers is increasing
between z=0 to z∼1, and analysis of available GW data has
already lent weak support to that hypothesis (Fishbach et al.
2017; the LIGO Scientific Collaboration & the Virgo
Collaboration 2018). Additionally, properties of the environ-
ments in which black holes merge (such as the distribution of
cluster potentials) could have changed over cosmic time,
leading to observable differences in the mass and spin
distributions between low and high redshifts.

Another possible extension to our model would be to
consider more complex mixtures of populations. We briefly
considered a “field” plus “cluster” mixture population here, but
if mergers are occurring in AGN disks, globular clusters, in the
field, and from a primordial population, more mixture
components would need to be added. More GW data will be
needed before embarking on such investigations, as the number
of parameters of such a complex mixture will proliferate.

Lastly, we note that this work has not considered neutron
stars. After this work reached maturity, we became aware of a
similar investigation targeting hierarchical formation of neutron

stars (Gupta et al. 2019). Nevertheless, our framework could
neatly incorporate neutron stars by substituting in a neutron-
star natal distribution and a model for neutron-star merger
remnant masses, spins, and kick velocities. The main new
addition in a hierarchical population based on neutron-star
mergers would be the need to incorporate an equation of state.

4.3. Efficacy of this Hierarchical Merger Population
Framework

Our phenomenologically parameterized framework provides
an efficient way to characterize the contribution of hierarchical
mergers to a compact binary population and to interpret BH
mass measurements as constraints on this subpopulation. We
can use GW measurements to infer the natal mass and spin
distribution, as well as the evolution parameters. Of course, our
model cannot completely disambiguate these two features
without other observational or physical input. As a trivial
example, any set of GW observations can be explained by a
nonhierarchical population and a suitably overfit natal mass and
spin distribution. If, however, physical constraints limit the
flexibility of the natal BH binary distribution to populate parts
of parameter space, then the presence of merging BHs in those
distinctive regions provides evidence for hierarchical forma-
tion. In such a scenario, our framework enables us to provide
first constraints on a hierarchical merger interpretation.
In this work, motivated by LIGO’s observations in GWTC-

1, we have emphasized formation scenarios with strong
effective coupling to produce a BBH population that favors
comparable-mass mergers. We expect that more theoretically
motivated choices for these interaction exponents will favor a
wider range of mass ratios. As noted in previous work
(McKernan et al. 2019), high–mass ratio binaries could be a
distinctive signature of certain hierarchical growth scenarios.
The presence or absence of high-mass or high–mass ratio
binaries strongly constrains our model parameters and the
overall hierarchical merger rate.
Another characteristic feature of some hierarchical merger

scenarios is a “smoothed staircase” or multimodal pattern in the
mass distributions. In the simplest case where the natal
population is just composed of black holes with mass Mnatal,
“harmonics” of the natal mass should appear in the black hole
mass spectrum at multiples of Mnatal. If the natal distribution is
sufficiently complex, such harmonics may be blended out, but
as shown in Figure 2, there are intermediate cases where
smoothed-out harmonics or “staircases” are still noticeable.
Conversely, many mass and spin distributions cannot be

naturally produced from hierarchical evolution. If hierarchical
formation is proposed to explain a subpopulation of high-spin
or high-mass or high–mass ratio binaries, then the relative
merger rate of this feature is often bounded above. For
example, we would need sufficient numbers of low-mass BHs
to explain a population of high-mass, high-spin BHs entirely
through hierarchical formation.
Once an observed population is fit with a realization of a

hierarchical population, our Monte Carlo method enables
computation of some interesting quantities. In principle, each
Monte Carlo sample has an associated “family tree” that tracks
successive mergers that the black hole had previously

Figure 13. Inferred m2/m1 distributions for Models 1–5. Shown are the median
(solid line), posterior predictive (dashed line), and 90% credible intervals
(shaded region).
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undergone.9 Thus one can evaluate the probability that a given
black hole was hierarchically formed and underwent n previous
mergers. Alternatively, upper limits can be set on the rate of
hierarchical mergers if none are suspected in the GW sample.

5. Conclusions

Observing hierarchically formed black holes is an exciting
prospect for GW detectors. We have presented here a self-
consistent framework for generating black hole merger
populations that includes hierarchical formation. This frame-
work evolves arbitrary natal black hole populations, enabling
any existing black hole distributions to be extended to include
hierarchical mergers. With the cases we explore here, our fits
suggest that scenarios with many hierarchical mergers are
disfavored.

In this work, we simulate coagulation and depletion effects
while assuming the BBH population is not continuously
repopulated from another reservoir of black holes. We will
explore self-consistent repopulation in later work. We also
perform simplified averaging, not allowing for a distribution of
initial conditions like metallicity or for trends versus redshift.
Our scheme ignores higher order correlations and multibody
effects, thus averaging everything into an effective cross
section that is constant. Our approximation is reasonable in the
limit of weak hierarchical reprocessing dominated by a low-
mass seed population; we defer more sophisticated averaging to
future work. Additionally, we adopt a simple dependence of Γ
on total mass, allowing it to increase without bound according
to a single power law as the binary mass increases. More
detailed investigations will produce more complex dependence
of Γ on mass. The results of our inference on GWTC-1 with
partially constrained versions of our model framework show
consistency with the LIGO Scientific Collaboration & the
Virgo Collaboration (2018), but more detections are required to
make more definitive statements about whether hierarchical
formation of black holes is at work. Our fits to GWTC-1 hint
that hierarchical merger scenarios are not required to fit the
population, but are also not ruled out by the population.
However, the conclusions drawn herein are subject to the
simplifying assumptions made for this preliminary analysis.
Incorporation of more astrophysically motivated inputs to the
framework will be necessary to put the tightest constraints on
the formation environments and scenarios. With the wealth of
black hole merger detections we expect to see in the coming
years, the prospects for uncovering hierarchically formed black
holes are promising, and the framework we have presented
herein is well suited for such investigations.

The general purpose hierarchical population code will be
released for public use in the near future.
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Appendix A
Semianalytic Approach to Hierarchical Mergers

In the text, we consistently employ a concrete Monte Carlo
implementation of hierarchical mergers. This powerful method
allows us to efficiently incorporate the best merger physics, but
uses discrete generations. In this appendix, for pedagogical
purposes we provide a toy model implementation of a true
continuous-time coagulation equation. In this approach, we
consider only the evolution of binary mass, assuming no mass
is lost during mergers; we neglect spins and depletion. After
these simplifications, our model is essentially analytically
tractable, and can be understood by both perturbation theory
and direct numerical simulation. In this appendix, we present a
few supplementary illustrations of these hierarchical calcula-
tions to further illuminate our model’s behavior at very high
mass and in the absence of depletion.
As our first example, to illustrate the parameters ζ and a,

Figure A1 shows the results of evolving Equation (1) starting
with an initial power-law mass distribution through different
ranges of interaction parameter ζ=1, for two choices of a and
for b=0. The dotted curves show the results of a direct
numerical time integration; the solid curves show our Monte
Carlo procedure; and different colors indicate different choices
for x and a, respectively.
This example first shows how the parameter ζ controls the

effective number of generations at the reference parameters,
absorbing factors present in the overall interaction time T and
in the interaction cross section Γ. As expected based on
perturbative arguments, higher-order generations increase in
significance in proportion to x g for g the number of
generations. At very high mass, the hierarchical mass
distribution approaches an exponentially decaying function of
m, which increases exponentially with x2.10

Second, this example shows how the coagulation equation
successively reprocesses each generation, potentially with
different interaction scales. In this example and generally in
the usual case that a, b>0, binaries with smaller masses or
more asymmetric mass ratios by construction interact even less
frequently. Conversely, within our framework high-mass
binaries rapidly undergo multiple generations of mergers. As
a result, in this power-law example, our procedure produces a
characteristic “smoothed staircase” mass distribution, with
“steps” in the mass distribution appearing at multiples of the

9 The evolutionary tree of each black hole is not tracked in our
implementation of the Monte Carlo method, but future upgrades to the code
will integrate this tracking.

10 Using an ansatz ( ) ( )= -f m x g x e m, Am z, we can see a stationary
exponential high-mass solution exists for b=0.
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primordial maximum mass mmax,0. At very high mass, these
“step” features become smoothed out.

Third, this example shows the importance of the interaction
cross section: because we adopt b=0 (no preference to any
mass ratio) and because low-mass BHs are dramatically more
prevalent than high-mass binaries, the overall merger rate

( ) ( )¢ G ¢f x f x x x, for binaries with one massive component x is
overwhelmingly dominated by mergers where ¢x is drawn from
this scenario’s ubiquitous low-mass black holes. As a result of
these frequent minor mergers, features in the mass spectrum
proportional to the primordial maximum mass are rapidly
smoothed out, both in x and as we go to higher multiples of the
maximum mass, except for the first feature.

In sum, our coalgulation model naturally “builds up” self-
consistent hierarchical populations, producing mass distribu-
tions that can (but need not) possess clear features reflecting the
number of generations and any sharp cutoffs present in the seed
distribution.

As our second example, we consider how features of the
high-mass mass distribution are inherited from the low-mass
mass spectrum, using a broad, featureless power-law distribu-
tion initially ( ) µ a-f m m at low mass. For simplicity and
unlike in the example used above, we consider interactions
with b 1, insuring that almost all mergers occur between
comparable-mass binaries.

Qualitatively speaking, coagulation requires the formation
rate of BHs with mass m2 must be ( )G µ a-f m ma2 2 , a slope
that can be shallower or steeper than the low-mass slope (− α)
depending on the sign of a−α. Evidently, as corroborated by
Figure A2, larger a favors higher mass black holes and a more
extended tail in the mass distribution. As in the previous
example, at very high masses the distribution decays
exponentially, with a coefficient that depends on a.

Appendix B
Changing the Merging Fraction

Rather than use a continuous-time coagulation equation,
which implicitly allows BH remnants to participate in
subsequent hierarchical mergers immediately, we employ
discrete time steps with a specific fraction w of BHs that
participate in mergers at each iteration. As w 0, our
algorithm converges to continuous coagulation, because the
population changes slowly over many iterations, ensuring that

( )D Df x t t, is small at each step and that postmerger remnant
black holes are immediately available to merge again. As w

increases, our iterative process increasingly differs from
continuous evolution. In effect, w encodes a “recycling delay
time,” i.e.,the time for a postmerger remnant black hole to be
reintegrated into the population. We emphasize that while
larger w loses fidelity to the continuous coagulation equation,
high w can still model a real compact-object population. For
example, it is conceivable that all natal black holes merged at
an early time (i.e., w=1), and then all participate in second-
generation mergers at later times.
As a concrete example, we apply our algorithm to our

fiducial power-law natal population using different w values
while holding constant the total number of mergers. In other
words, we ensure wT is a constant, where T is the number of
iterations of our Monte Carlo method. The coupling constants a
and b are set to 0. Figure B1 shows the total mass distribution
of mergers after =T 2, 4, 8, 16 iterations with

=w 0.08, 0.04, 0.02, 0.01, respectively. At lower masses,
the distributions roughly agree, but only the small w cases
have tails extending to higher masses, since those cases are
closer to continuous coagulation wherein there is no recycling
delay time and postmerger remnants are free to remerge
immediately.
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Figure A1. Synthetic mass distribution as a function of x due to hierarchical mergers with a=2, b=0 and no depletion, starting with a truncated power-law
distribution at x=0. Colors and legend denote different choices for x. The right panel uses a log-linear scale to highlight exponential decay at large mass.

Figure A2. Illustration of the evolving mass distribution: logarithm of the mass
spectrum vs. mass.
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