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Abstract
It is shown that the only Killing vector fields admitted by the Kerr–Newman
spacetime are those corresponding to the time independence and axial symme-
tries, and that the only conformal vector fields or projective collineations admit-
ted by the Kerr–Newman spacetime are the Killing vector fields. In addition,
it is shown that the Kerr–Newman spacetime admits no covariantly constant
vector fields or recurrent vector fields, and is of holonomy type R15. It is also
established that any Weyl conformal collineation, Weyl projective collineation
or curvature collineation admitted by the Kerr–Newman spacetime are the
Killing vector fields, and that the only Ricci or matter collineations admitted
by the Kerr–Newman spacetime are again Killing vector fields. Finally, some
analogous results are established for the Reissner–Nordström spacetime.

Keywords: black hole, symmetry, Kerr–Newman spacetime, collineation,
Killing vector, Reissner–Nordstrom spacetime

1. Introduction

The general theory of relativity provides a classical description of spacetime structure and
gravitation, and all physically possible spacetimes are solutions of Einstein’s field equations.
It is a consequence of the complexity of the field equations that there are no general methods to
obtain solutions, and physically meaningful exact solutions cannot be found except in the cases
of fairly high symmetry. For such exact solutions, it is of interest to investigate the maximal set
of symmetries for a number of reasons. For example, local continuous spacetime symmetries
give rise to first integrals for the geodesic equations or null-geodesic equations [1, 2], and to
conservation laws under some circumstances [3].

The black hole solutions are a particular class of solution which deserve particular atten-
tion, both from a theoretical [4, 5], and an astrophysical standpoint [6–9]. Black holes have
received heightened interest because of the recent report of the first image of a black hole [10].
Consideration has also been given to the existence of charged black holes [11].
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The Kerr–Newman spacetime [12, 13] represents the most general asymptotically flat,
stationary and axisymmetric electro-vacuum black hole solution in general relativity. The
Kerr–Newman solutions form a three-parameter family whose spacetime metric can be
written [14]

ds2 =−
(
Δ− a2 sin2 θ

Σ

)
dt2 −

(
2a sin2 θ(r2 + a2 −Δ)

Σ

)
dtdφ

+

[
(r2 + a2)2 −Δa2 sin2 θ

Σ

]
sin2 θdφ2 +

Σ

Δ
dr2 +Σdθ2 (1.1)

where

Σ = r2 + a2 cos2 θ, Δ = r2 + a2 + e2 − 2Mr

and M, a and e are constants. M is interpreted as the total mass, aM as the angular momentum
as measured at infinity, and e the total charge. When e = 0 the metric reduces to the Kerr
metric [15], when a = 0 it reduces to the Reissner–Nordström metric [16, 17], and when e =
a = 0 the Schwarzschild metric [18]. The Kerr–Newman solutions are Petrov type D with
repeated principal null vector fields [19]

l = Δ−1[(r2 + a2)∂t +Δ∂r + a∂φ]

n =
1
2
Σ−1[(r2 + a2)∂t −Δ∂r + a∂φ]. (1.2)

It is known that, of the standard spacetime symmetries, i.e., conformal vectors, projective,
curvature or Weyl collineations, the Schwarzschild spacetime admits only the four-dimensional
Killing vector algebra [20–22]. Further, the Kerr spacetime does not admit any of these stan-
dard spacetime symmetries, except the two independent Killing vector fields associated with its
axisymmetric and stationary properties [20, 22]. The vacuum and Petrov type D properties of
these spacetimes are very restrictive. However, it was shown in [23] that some of these results
hold for the electro-vacuum Reissner–Nordström spacetime, namely that the only conformal
or projective symmetries admitted are the Killing vector fields. It is of interest to determine
whether similar results hold for the Kerr–Newman spacetime.

A strong motivation for the investigation of such types of symmetries is the possibility
of determining a geometrical origin of the second rank irreducible Killing tensor and con-
formal Killing tensor fields admitted by the Kerr and Kerr–Newman spacetimes [24, 25].
Whereas conformal and projective symmetries are point symmetries, Killing tensor fields can
be regarded as dynamical symmetries [26]. It is well known that projective symmetries can
give rise to Killing tensor fields [1, 2] and it is natural to ask whether this is the case for the
Kerr and Kerr–Newman spacetimes. However, it has already been established that these pro-
jective symmetries do not give rise to the Killing tensor and conformal Killing tensor fields
in the case of the Kerr spacetime [22], and the present results provide a similar conclusion
for the Kerr–Newman spacetime. In addition, the results in [23] for the Reissner–Nordström
spacetime are supplemented by some additional findings.

The formal definitions of the various spacetime symmetries are given in section 2. Various
results regarding the conformal and projective symmetries of the Kerr–Newman spacetime
are established in sections 3 and 4 respectively. The curvature symmetries are addressed in
section 5.
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2. Spacetime symmetries

Let (M, g) denote a four-dimensional spacetime manifold with Lorentzian metric gab. Ra
bcd

and Ca
bcd are the Riemann curvature and Weyl tensors respectively, and Rab and Tab are the

Ricci and energy-momentum tensors respectively [27]. For Lie algebras A and B, the notation
A ⊃ B implies B is a subalgebra of A, and Ar shall denote a Lie algebra of dimension r.

Let X be a smooth vector field on M. The operator LX shall denote the Lie derivative
operator with respect to the vector field X. Define

hab = LXgab. (2.1)

The vector field X is said to be a conformal vector field if and only if

hab = 2ψgab (2.2)

where ψ is some function of the coordinates (conformal scalar). When ψ is not constant the
conformal vector field is said to be proper, and if ψa;b = 0 the conformal vector field is a
special conformal vector field. When ψ is a constant, X is a homothetic vector field and when
the constant ψ is non-zero X is a proper homothetic vector field. When ψ = 0, X is a Killing
vector field. The set of all conformal vector fields (respectively, special conformal vector fields,
homothetic vector fields and Killing vector fields) on M form a finite-dimensional Lie algebra
denoted by C (respectively, S, H and G), and C ⊃ S ⊃ H ⊃ G. Conformally related metrics
have the same Weyl tensor Ca

bcd . A vector field X satisfying the condition

LXCa
bcd = 0 (2.3)

is referred to as a Weyl conformal collineation. A vector field X which preserves the conformal
class of the metric, i.e., a conformal vector field, is a Weyl conformal collineation.

A vector field X is called a projective collineation if

hab;c = 2gabψc + gacψb + gbcψa (2.4)

for some closed smooth one-form ψ on M (so that ψ is locally a gradient). If hab;c = 0 on M
(equivalently ψa = 0 on M) X is called affine. If X is a projective collineation and is not affine
then it is a proper projective collineation. If hab is not a multiple of gab, X is called proper affine.
If hab is a multiple of gab then it follows from (2.4) that it is a constant multiple of gab, and then
X is a homothetic vector field. If X is a projective collineation and ψa;b = 0 then X is called
a special projective collineation. The set of all projective collineations (respectively, special
projective, affine) on M form a finite-dimensional Lie algebra denoted by P (respectively,
SP, A), and P ⊃ SP ⊃ A ⊃ H ⊃ G. The Weyl projective tensor [28]

Wa
bcd = Ra

bcd −
1
3

(δa
c Rbd − δa

dRbc) (2.5)

plays a similar role with regard connections as the Weyl tensor does in conformal rescaling
of the metric, i.e., projectively related metrics, or Levi-Civita connections [30], have the same
Weyl projective tensor. A vector field X satisfying the condition

LXWa
bcd = 0 (2.6)

is referred to as a Weyl projective collineation. A vector field X which preserves the geodesics
of the metric, i.e., a projective collineation, is a Weyl projective collineation.
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A vector field X satisfying the condition

LXRa
bcd = 0 (2.7)

is referred to as a curvature collineation. A vector field X is called a Ricci collineation if

LXRab = 0 (2.8)

and a vector field X is called a matter collineation if

LXTab = 0. (2.9)

References [1, 2, 29–32] give further details of the above symmetries.

3. Conformal symmetries

The conformal symmetries will be dealt with in order. The following results hold for a
conformal vector field X [31]

6ψa
;a = −2ψR − R,aX a (3.1)

LXRab = −2ψa;b − (ψc
;c)gab. (3.2)

For the Kerr–Newman spacetime, the Ricci scalar R = 0 and it follows that

ψa
;a = 0 (3.3)

LXRab = −2ψa;b. (3.4)

The rθ and θθ components of (2.2) give, respectively

ΔXθ
,r + Xr

,θ = 0 (3.5)

ΣXθ
,θ + rXr − a2 cosθ sinθXθ = ψΣ (3.6)

and the rθ and θθ components of (3.4) give, respectively

e2(ΔXθ
,r − Xr

,θ)Σ
−1Δ−1 = −2ψr;θ (3.7)

e2(ΣXθ
,θ − rXr + a2 cosθ sinθXθ)Σ−2 = −ψθ;θ. (3.8)

Much can be said from only these four equations. Taking appropriate linear combinations gives

Xθ
,r = −e−2Σψr;θ (3.9)

Xr
,θ = e−2ΣΔψr;θ (3.10)

2Xθ
,θ = (ψ − e−2Σψθ;θ) (3.11)

2rXr − 2a2 cosθ sinθXθ = (ψ + e−2Σψθ;θ)Σ. (3.12)

Theorem 1. The Kerr–Newman spacetime admits a maximal G2 spanned by the two
independent Killing vector fields

ξ = ∂t, η = ∂φ. (3.13)
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Proof. For a Killing vector field ψ = 0. It follows that

Xr
,θ = Xθ

,r = Xθ
,θ = 0 (3.14)

rXr − a2 cosθ sinθXθ = 0. (3.15)

Therefore

Xr = Xr(t, r,φ), Xθ = Xθ(t,φ). (3.16)

Assuming a �= 0, equation (3.15) can only be satisfied if

Xr = Xθ = 0. (3.17)

Thus, in the present coordinate chart, the only non-zero components of a Killing vector field can
be Xt and Xφ. In this case the tt, tr, tθ and tφ components of (2.2) give rise to four independent
equations which require both Xt and Xφ to be constants, and it follows that ξ and η in (3.13) are
the only two independent Killing vector fields. The results on axially symmetric spacetimes
[33–35] provide further insight into the nature of this G2 algebra. �

Lemma 1. The Kerr–Newman spacetime admits no covariantly constant or recurrent vector
fields, and is of holonomy type R15.

Proof. A covariantly constant vector field is necessarily a Killing vector field, and the only
two independent Killing vector fields are not covariantly constant, and neither is any linear
combination (with constant coefficients). A vector field v is recurrent if its covariant derivative
is proportional to itself va;b = vakb, k being the recurrence vector. A non-null recurrent vector
field is proportional to a covariantly constant vector field [27], of which there are none in the
Kerr–Newman spacetime. Spacetimes admitting a null recurrent vector field are algebraically
special [36, 37], and a null recurrent vector field must be an eigenvector of the Ricci tensor
[37], i.e., Rabv

b = Kva. For a Petrov type D spacetime any null recurrent vector field must be
the repeated principal null vector fields of the spacetime [37]. A straightforward calculation
of the covariant derivatives of the repeated principal null vector fields (1.2) shows that neither
are recurrent. A spacetime admitting no covariantly constant or recurrent vector fields is of
holonomy type R15 [38, 39]. �

It is noted that an alternative proof follows from the fact that the Riemann tensor for the
Kerr–Newman spacetime has (in the six-dimensional formalism [31]) rank 6. This forces the
holonomy type to be R15. If the rank of the Riemann tensor is 6 then there are no solutions to
Rabcdkd = 0 and hence by the Ricci identity there are no covariantly constant vector fields.

Theorem 2. Any homothetic vector field admitted by the Kerr–Newman spacetime is
necessarily a Killing vector field.

Proof. For a homothetic vector field ψ = ψ0 = constant. It follows that

Xθ
,r = Xr

,θ = 0, Xθ
,θ =

1
2
ψ0 (3.18)

rXr − a2 cosθ sinθXθ =
1
2
ψ0Σ. (3.19)

Therefore

Xr = Xr(t, r,φ), Xθ =
1
2
ψ0θ + Yθ(t,φ) (3.20)
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where Yθ(t,φ) is an arbitrary function of the arguments, in which case, assuming a �= 0,
equation (3.19) can only be satisfied if

ψ0 = Xr = Xθ = Yθ = 0. (3.21)

Thus any homothetic vector field will necessarily be a Killing vector field. �

Theorem 3. Any special conformal vector field admitted by the Kerr–Newman spacetime
is necessarily a Killing vector field.

Proof. Since ψa;b = 0 then either ψa is zero (i.e., X is a homothetic vector field), or ψa is a
covariantly constant vector field. From lemma 1 the Kerr–Newman spacetime admits no such
vector fields and so ψa = ψ,a = 0. Thus, any special conformal vector field admitted by the
Kerr–Newman spacetime is necessarily a homothetic vector field, and hence a Killing vector
field by theorem 2. �

It is noted that there are alternative proofs of the non-existence of proper special con-
formal vector fields. One such proof is given in [40] where all spacetimes admitting spe-
cial conformal vector fields are determined, and the Kerr–Newman spacetime is not one of
them.

Theorem 4. Any conformal vector field admitted by the Kerr–Newman spacetime is
necessarily a Killing vector field.

Proof. The proof is based on direct integration of equation (2.2) and related equations. The
θθrθ equation of (2.3) gives

ΔXθ
,r + Xr

,θ = 0. (3.22)

The following hold for the two repeated principal null vector fields (1.2) [31]

LXla = αla, (3.23)

LXna = βna (3.24)

where α and β are undetermined functions. Adding the θ components of the equations gives
Xθ

,r = 0 and it follows from this and equation (3.22) that

Xr = Xr(t, r,φ), Xθ = Xθ(t, θ,φ). (3.25)

The θ equation of (3.23) gives

(r2 + a2)Xθ(t, θ,φ),t + aXθ(t, θ,φ),φ = 0 (3.26)

and taking into account the r-dependence and the fact that a �= 0 gives Xθ
,t = Xθ

,φ = 0. Thus
Xθ = Xθ(θ). Combining the tθ and θφ equations of (2.2) give

Xt = Xt(t, r,φ), Xφ = Xφ(t, r,φ). (3.27)

The tr equation of (2.2) gives

Σ2Xr
,t −Δ(r2 + a2 cos2 θ − 2Mr + e2)Xt

,r

−Δ(2Mr − e2)a sin2 θXφ
,r = 0. (3.28)
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There is only one cos4θ term appearing in this equation, i.e., in the Σ2 term and it follows that
Xr

,t = 0. Equation (3.28) then reduces to

(r2 + a2 cos2 θ − 2Mr + e2)Xt
,r + (2Mr − e2)a sin2 θXφ

,r = 0. (3.29)

By separating this equation into terms involving, and not involving θ, it is concluded that
Xt

,r = Xφ
,r = 0. The rφ equation of (2.2) gives

ΣΔ−1Xr(r,φ),φ = 0 (3.30)

and hence Xr(r,φ),φ = 0. Thus, in summary

Xt = Xt(t,φ), Xr = Xr(r)

Xθ = Xθ(θ), Xφ = Xφ(t,φ). (3.31)

The θθ equation of (2.2) equated to Δ/2 times the rr equation of (2.2) gives

Δ−1(M − r)Xr(r) + Xr(r),r = Xθ(θ),θ (3.32)

which is clearly separable, i.e.,

Δ−1(M − r)Xr(r) + Xr(r),r = c1, Xθ(θ),θ = c1 (3.33)

These can be integrated to give

Xr(r) = c1Δ
1/2

∫
Δ−1/2dr + c3Δ

1/2

Xθ(θ) = c1θ + c2 (3.34)

where c1, c2, c3 are constants. Inserting this into the θθ equation of (2.2) gives

ψ = c1 +Σ−1[rXr(r) − a2 sinθ cosθ(c1θ + c2)]. (3.35)

Another expression for ψ can be obtained from equation (3.11),

ψ = 2c1 + e−2Σψθ;θ. (3.36)

Equating these expressions for ψ enables the constants c1, c2, c3 to be determined. A straight-
forward but lengthy calculation gives

c1 = 0, Xθ(θ) = c2, Xr(r) = Δ1/2

ψ = Σ−1[c3rΔ1/2 − c2a2 sinθ cosθ]. (3.37)

Inserting these back into equation (3.36) and expanding and separating functions of θ gives
c2 = c3 = ψ = 0. Since ψ = 0 then the only possibility is that the conformal vector field X
must be a Killing vector field. �

Corollary 1. Any Weyl conformal collineation admitted by the Kerr–Newman or Reiss-
ner–Nordström spacetime is necessarily a Killing vector field.

Proof. It was shown in [30] that for spacetimes which are nowhere of Petrov type N or O,
the Weyl conformal collineations coincide with the conformal vector fields of the spacetime.
Since the Kerr–Newman and Reissner–Nordström spacetimes are of Petrov type D then any
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Weyl conformal collineation is necessarily a conformal vector field and from theorem 4, and
the results established in [23], the result follows. �

4. Projective symmetries

As stated in section 2, Killing vector fields, homothetic vector fields and affine collineations
are all subcases of the projective collineations. In analogy with the section on conformal
symmetries, these shall be dealt with in order.

Theorem 5. Any affine collineation admitted by the Kerr–Newman spacetime is necessarily
a Killing vector field.

Proof. From lemma 1 the Kerr–Newman spacetime is of holonomy type R15. By
theorem 10.14 of [31] a spacetime of holonomy type R15 admits no proper affine
collineations. �

Theorem 6. Any special projective collineation admitted by the Kerr–Newman spacetime
is necessarily a Killing vector field.

Proof. The proof is identical to that for special conformal vector field in theorem 3, which
is based upon the fact that the Kerr–Newman spacetime admits no covariantly constant vector
fields. �

The projective collineation equation (2.4) contains second order derivatives of the compo-
nents of X and contains terms involving the derivatives of the projective scalar ψ. Solving this
set of equations is a daunting task and so it is pertinent to ask at the outset whether any other
approach is available. In contrast, the Weyl projective collineation conditions (2.6) only involve
the first derivatives of the components of X, and do not contain terms in the projective scalar
ψ. Although lengthy, these conditions allow the desired results to be obtained.

Theorem 7. Any Weyl projective collineation admitted by the Kerr–Newman spacetime is
necessarily a Killing vector field.

Proof. The conditions (2.6) can be written explicitly as

Wa
bcd,eX

e − We
bcdX a

,e + Wa
ecdXe

,b + Wa
bedXe

,c + Wa
bceXe

,d = 0. (4.1)

The θθrθ equation gives

Wθ
rrθX

r
,θ − Wr

θrθX
θ

,r = 0 (4.2)

and the θθtφ equation gives

Wθ
rtφXr

,θ − Wr
θtφXθ

,r = 0. (4.3)

These can be combined as a linear system of homogeneous equations in matrix form as
(

Wθ
rrθ −Wr

θrθ

Wθ
rtφ −Wr

θtφ

) (
Xr

,θ

Xθ
,r

)
= 0 (4.4)

which, upon evaluation of the components of W, is only consistent if

Xr
,θ = Xθ

,r = 0. (4.5)
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Various linear combinations of the eight equations trrθ, tθrθ, θttφ, θφtφ, φrrθ, φθrθ, rttφ, rφtφ
lead to the conditions

(r2 + a2)Xφ
,r − aXt

,r = 0

Xt
,θ − a sin2 θXφ

,θ = 0

(r2 + a2)Xθ
,t + aXθ

,φ = 0. (4.6)

From these it follows that the components of X take on the following form

Xt = Xt
1(t, r,φ) + Xt

2(t, θ,φ)

Xr = Xr(r), Xθ = Xθ(θ)

Xφ = Xφ
1 (t, r,φ) + Xφ

2 (t, θ,φ). (4.7)

It then follows that the equations of (4.1) separate into two distinct sets of homogeneous linear
equations. The first set contains terms linear in

Xt
1,r, Xt

2,θ, Xφ
1 ,r, Xφ

2 ,θ (4.8)

with coefficients comprising functions of r and θ, and the second set contains terms linear in

Xr, Xr
,r, Xθ, Xθ

,θ

Xt
1,t, Xt

1,φ, Xt
2,t, Xt

2,φ

Xφ
1 ,t, Xφ

1 ,φ, Xφ
2 ,t, Xφ

2 ,φ (4.9)

again with coefficients comprising functions of r and θ. The determinant of the matrix of
the first system of linear equations is non-zero, and it follows that the first system of linear
equations are satisfied if and only if

Xt
1,r = Xt

2,θ = Xφ
1 ,r = Xφ

2 ,θ = 0. (4.10)

Similarly, upon insertion of these conditions into the second set of linear equations, the deter-
minant of the matrix of the second system of linear equations is non-zero and the second system
of linear equations can only be satisfied if Xr = Xθ = 0 and Xt and Xφ are arbitrary constants.
Thus, the only possibility is that the Weyl projective collineations are the Killing vector fields
given in (3.13). �

Corollary 2. Any projective collineation admitted by the Kerr–Newman spacetime is
necessarily a Killing vector field.

Proof. A projective collineation is necessarily a Weyl projective collineation, and the result
follows from theorem 7. �

Theorem 8. Any Weyl projective collineation admitted by the Reissner–Nordström space-
time is necessarily a Killing vector field.

Proof. For the case a = 0 the equations (4.1)–(4.4) also apply, and again are only consistent
if

Xr
,θ = Xθ

,r = 0. (4.11)

9
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The equations (4.6) also apply in the case a = 0 and give Xφ
,r = Xt

,θ = Xθ
,t = 0 and the

equations trtφ, trrφ, φθtθ of equations (4.1) give Xr
,φ = Xt

,φ = Xφ
,t = 0. Thus

Xt = Xt(t, r), Xr = Xr(t, r)

Xθ = Xθ(θ,φ), Xφ = Xφ(θ,φ). (4.12)

The tttr, trtr and tθtθ equations of (4.1) then give

Xt = Xt(t), Xr = 0

Xθ = Xθ(φ), Xφ = Xφ(θ,φ). (4.13)

Finally, taking into account the rttr, tθtφ and tφtφ equations, the components of X satisfy

Xt(t),t = Xr = 0

Xθ(φ),φ + sin2 θXφ(θ,φ),θ = 0

cot θXθ(φ) + Xφ(θ,φ),φ = 0 (4.14)

which upon integration lead directly to the Lie algebra G4 of Killing vector fields

ξ = ∂t, η1 = ∂φ

η2 = cos φ∂θ − cot θ sin φ∂φ, η3 = sin φ∂θ + cot θ cos φ∂φ (4.15)

for the Reissner–Nordström spacetime. �

5. Curvature symmetries

The symmetries of the Riemann and Ricci tensors are investigated, the latter being of particular
interest since it is non-zero for the Kerr–Newman and Reissner–Nordström spacetimes. The
non-zero components of the Ricci tensor are

Rtt = e2Σ−3(Δ+ a2 sin2 θ), Rrr = −e2Σ−1Δ−1

Rθθ = e2Σ−1, Rφφ = −e2 sin2 θΣ−3[(r2 + a2)2 +Δa2 sin2 θ]

Rtφ = Rφt = −e2 a sin2 θΣ−3(Δ+ r2 + a2). (5.1)

Corollary 3. Any curvature collineation admitted by the Kerr–Newman spacetime is
necessarily a Killing vector field.

Proof. Curvature collineations are Weyl projective collineations [30], and the result
follows. �

Theorem 9. Any Ricci collineation admitted by the Kerr–Newman spacetime is necessarily
a Killing vector field.

10
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Proof. The proof proceeds by direct integration of equations (2.8). The rr, θθ, and rθ
equations of (2.8) are, respectively

ΣXr
,r + a2 sinθ cosθXθ + [(M − r)ΣΔ−1 − r]Xr = 0 (5.2)

ΣXθ
,θ + a2 sinθ cosθXθ − rXr = 0 (5.3)

ΔXθ
,r − Xr

,θ = 0. (5.4)

Subtracting the rr and θθ equations gives

Δ(Xr
,r − Xθ

,θ) + (M − r)Xr = 0. (5.5)

It is straightforward to show that this is equivalent to

Δ1/2(Δ−1/2Xr),r = Xθ
,θ (5.6)

and differentiating (5.4) with respect to θ gives

ΔXθ
,θr = Xr

,θθ. (5.7)

Inserting (5.6) into (5.7) gives

Δ
[
Δ1/2(Δ−1/2Xr),r

]
,r
= Xr

,θθ (5.8)

and since Δ,θ = 0, division by Δ1/2 gives

Δ1/2
[
Δ1/2(Δ−1/2Xr),r

]
,r
= (Δ−1/2Xr),θθ. (5.9)

Defining Y = Δ−1/2Xr then

Δ1/2(Δ1/2Y,r),r = Y,θθ (5.10)

and defining the new coordinate s by

∂s = Δ1/2∂r (5.11)

then

Y,ss = Y,θθ (5.12)

which is the one-dimensional wave equation. Note that (5.11) can be integrated to give

r(s) = −1
2

(a2 + e2 − M2 − e2s − 2Mes)e−s

s(r) = ln(r − M +Δ1/2). (5.13)

The general solution of (5.12) is

Y = Y1(ρ, t,φ) + Y2(ω, t,φ) (5.14)

11
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where Y1 and Y2 are arbitrary functions of their arguments and

ρ = s + θ, ω = s − θ

s =
1
2

(ρ+ ω), θ =
1
2

(ρ− ω). (5.15)

Writing equation (5.3) explicitly in terms of the coordinates t, ρ,ω,φ, and taking account of the
separability, establishes that Xr = 0 and Xθ = Xθ(t,φ). It then follows from (5.2) that Xθ = 0.

As a consequence of the fact that Xr = Xθ = 0 it follows that the tθ and θφ equations can
be combined in matrix form as(

f1 f2

f2 f3

) (
Xt

,θ

Xφ
,θ

)
= 0 (5.16)

where the fi are functions of r and θ. The determinant of the 2 × 2 matrix is ΔΣ2 sin2 θ and
it follows that Xt

,θ = Xφ
,θ = 0. Similarly the tr and rφ equations can be combined in matrix

form as (
g1 g2

g3 g4

) (
Xt

,r

Xφ
,r

)
= 0 (5.17)

where the gi are functions of r and θ. The determinant of the 2 × 2 matrix is Δ2Σ2 sin2 θ/2
and it follows that Xt

,r = Xφ
,r = 0. Thus

Xt = Xt(t,φ), Xφ = Xφ(t,φ). (5.18)

Finally, the remaining three equations, i.e., the tt, tφ and φφ equations, on account of their
functional dependence, separate to give

Xt
,t = Xt

,φ = Xφ
,t = Xφ

,φ = 0. (5.19)

In summary, Xr = Xθ = 0 and Xt and Xφ are arbitrary constants. Thus, the only possibility is
that the Ricci collineations for the Kerr–Newman spacetime are the Killing vector fields given
in (3.13). �

Theorem 10. Any Ricci collineation admitted by the Reissner–Nordström spacetime is
necessarily a Killing vector field.

Proof. The proof for the case a = 0 proceeds along similar lines to that for a �= 0. The rr,
θθ, and rθ equations of (2.8) are, respectively

(3Mr − 2r2 − e2)Xr + rΔXr
,r = 0 (5.20)

Xr − rXθ
,θ = 0 (5.21)

ΔXθ
,r − Xr

,θ = 0. (5.22)

Repeated use of these equations and their first derivatives gives

Xr
,θθ = f (r)Xr, f (r) = 1 − Mr−1 (5.23)

the general solution of which is

Xr = Xr
1(t, r,φ) sinh( f 1/2 θ) + Xr

2(t, r,φ) cosh( f 1/2θ). (5.24)

12
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equation (5.21) can then be integrated to give

Xθ = g(r)
[
Xr

1(t, r,φ) cosh( f 1/2θ) + Xr
2(t, r,φ) sinh( f 1/2θ)

]

g(r) = (r2 − Mr)1/2. (5.25)

Inserting (5.24) into equation (5.20), and separating gives Xr
1 = Xr

2 = 0 and hence Xr = 0.
Equation (5.22) then gives Xθ = Xθ(t,φ). The tt, tr, rφ equations then give Xt = Xt(θ,φ) and
Xφ = Xφ(t, θ,φ), and it follows that the tθ and tφ equations give Xt to be a constant, Xr = 0,
Xθ = Xθ(φ) and Xφ = Xφ(θ,φ). Finally, taking into account the remaining two equations, i.e.,
the θφ and φφ equations, the components of X must satisfy

Xt(t),t = Xr = 0

Xθ(φ),φ + sin2 θXφ(θ,φ),θ = 0

cot θXθ(φ) + Xφ(θ,φ),φ = 0 (5.26)

being identical to (4.14). Thus, the solution of the above equations leads directly to the G4 of
Killing vector fields ξ, η1, η2, η3 in (4.15) for the Reissner–Nordström spacetime. �

For both the Kerr–Newman and Reissner–Nordström spacetimes the Ricci scalar R = 0,
hence, Rab = κTab and the Ricci collineations and matter collineations coincide. Further, since
the Ricci tensor Rab is non-degenerate, the determinant of which is

det Rab = −e8Σ−6 sin2 θ (5.27)

it follows from the results in [32] that, since all Ricci collineations are Killing vector fields

LXRab = 0, LXRa
b = 0, LXRab = 0 (5.28)

for both the Kerr–Newman and Reissner–Nordström spacetimes.

6. Conclusion

It has been shown that the only Killing vector fields admitted by the Kerr–Newman spacetime
(1.1) are those corresponding to the time independence and axial symmetries

ξ = ∂t, η = ∂φ

and that there are no proper homothetic, conformal, affine or projective symmetries in the
Kerr–Newman spacetime. It is also established that any Weyl conformal, Weyl projective or
curvature collineation admitted by the Kerr–Newman spacetime are the Killing vector fields,
and that the only Ricci or matter collineations admitted by the Kerr–Newman spacetime are
again Killing vector fields.

In [23] it was established that the only conformal or projective symmetries admitted by
the Reissner–Nordström spacetime are the Killing vector fields. The results presented here

13
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for the additional types of symmetries in the Kerr–Newman spacetime apply equally well to
the Reissner–Nordström spacetime, where these symmetries coincide with the Killing vector
fields corresponding to the time independence and spherical symmetry, namely

ξ = ∂t, η1 = ∂φ

η2 = cos φ∂θ − cot θ sin φ∂φ, η3 = sin φ∂θ + cot θ cos φ∂φ.

For the Kerr–Newman spacetime, the only two independent Killing vector fields are ξ and
η given above, and only these Killing vector fields fulfill the conditions of theorem 11.1 of [27]
(based on [41, 42]). Hence the Maxwell field Fab, the non-zero components of which are given
by

Ftr = −Frt = −e(r2 − a2 cos2 θ)Σ−2

Ftθ = −Fθt = 2ea2 r sin θ cos θΣ−2

Frφ = −Fφr = −ea sin2 θ(r2 − a2 cos2 θ)Σ−2

Fθφ = −Fφθ = 2ear sinθ cosθ(r2 + a2)Σ−2 (6.1)

inherits the (maximal) symmetry of these two independent Killing vector fields, i.e., the time-
independence and axial symmetry. A similar statement can be made for the Killing vector fields
ξ, η1, η2, η3 for the Reissner–Nordström spacetime.

It is noted that in the case of vacuum spacetimes, any Weyl projective collineations are
necessarily curvature collineations [1, 2] and it follows from results in [22] that any Weyl
projective collineations in the Schwarzschild or Kerr spacetimes are necessarily Killing vector
fields.

It is worthy of note that the second rank irreducible Killing tensor and conformal Killing
tensor fields in the Kerr and Kerr–Newman spacetimes can be obtained from the tensor rep-
resenting the square of the geodesic angular momentum in the Schwarzschild and Reissner–
Nordström spacetimes through an extension of the Newman–Janis algorithm [43, 44], although
the precise interpretation of this mechanism is unclear.

Thus, of the symmetry types considered in this work, the Schwarzschild, Reiss-
ner–Nordström, Kerr and Kerr–Newman spacetimes admit only the Lie algebras of Killing
vector fields G as their maximal point symmetry algebras.
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