
Classical and Quantum Gravity

Class. Quantum Grav. 37 (2020) 095013 (17pp) https://doi.org/10.1088/1361-6382/ab79d3

Transition from inspiral to plunge
into a highly spinning black hole

Geoffrey Compère1 Kwinten Fransen2,3

and Caroline Jonas1

1 Centre for Gravitational Waves, Université Libre de Bruxelles, International Solvay
Institutes, CP 231, B-1050 Brussels, Belgium
2 Centre for Gravitational Waves, Institute for Theoretical Physics, KU Leuven,
Celestijnenlaan 200D, 3001 Leuven, Belgium

E-mail: gcompere@ulb.ac.be, Kwinten.Fransen@kuleuven.be and
Caroline.Jonas@ulb.ac.be

Received 10 October 2019, revised 13 February 2020
Accepted for publication 25 February 2020
Published 9 April 2020

Abstract
We extend the Ori–Thorne–Kesden procedure to consistently describe the non-
quasi-circular transition around the ISCO from inspiral to plunge into a black
hole of arbitrary spin, including near-extremal. We identify that for moderate
or high spins the transition is governed by the Painlevé transcendent equation
of the first kind while for extremely high spins it is governed by a self-similar
solution to the Korteweg–de Vries equation. We match the transition solution
at leading order in the high spin limit with the analytical quasi-circular inspi-
ral in the near-horizon region. We also show that the central black hole of an
extreme mass ratio binary has a near-extremality parameter that scales at least as
the mass ratio due to superradiant gravitational wave emission, which excludes
extremely high spins.

Keywords: binary black hole dynamics, extreme mass ratio inspiral, transition
from inspiral to plunge, rapidly rotating black hole, ISCO

(Some figures may appear in colour only in the online journal)

A theoretical modeling effort is required in order to produce a database of accurate and faithful
templates for extreme mass ratio inspirals (EMRIs) for the LISA mission [1, 2] or its proposed
extension [3]. In addition to the main science objectives of the mission, intermediate mass
ratio coalescences (IMRACs) which consist in intermediate mass black holes plunging into
supermassive black holes constitute a potential source for LISA [4]. Such sources require an
accurate modeling of the transition from inspiral to plunge since the number of cycles spent in
that latter phase is observationally significant [5].
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Figure 1. Evolution of the near-horizon radius RN in terms of proper time τ during
the inspiral (solid black line) and transition to plunge (dotted-dashed red line) for a
binary with λ = 10−3 and mass ratio η = 10−6. The ISCO lies at RN = 21/3. The final
plunge occurs shortly after reaching the critical angular momentum at τ = τ ∗ = 0 and
is therefore described by a subcritical (� < �∗) geodesic.

The transition from inspiral to plunge was modeled for quasi-circular inspirals in the equato-
rial plane by Ori and Thorne [6] within black hole perturbation theory under some simplifying
assumptions (see also the EOB framework [7] and [8–15] for extensions). Such a transition
occurs around the innermost stable circular orbit (ISCO). One of the original assumptions of
[6] was that the orbit is quasi-circular around the transition. However, such an assumption
was shown to lead to mathematical inconsistencies by Kesden [12], though its analysis has
been overlooked in the subsequent literature. It is therefore required to relax that hypothesis
and consider a non-circular transition motion. The Ori–Thorne–Kesden model applies for all
moderate spins but becomes inconsistent in the high spin regime where λ ≡

√
1 − J2/M4 → 0

[12]. The main purpose of this paper is to complete the Ori–Thorne–Kesden analysis to cover
the high spin regime where new qualitative features arise.

Geometrically thin disks allow to spin up black holes only up to the Thorne bound
λ � 0.06 [16]. Other accretion models might however by-pass this bound since no fundamen-
tal limitation exists on how fast accretion can spin up a black hole [17]. More fundamentally,
the high spin limit λ→ 0 can be viewed as the leading order result of a perturbative expan-
sion for small λ. In the high spin regime, the ISCO lies within the near-horizon region of Kerr
which is described by the near-horizon geometry of extremal Kerr (NHEK) [18] up to O(λ1/3)
corrections and corrections due to the self-force of the incoming compact object. At leading
order in the high spin limit λ→ 0 and neglecting the self-force the physics around the ISCO
is exactly described by physics in the NHEK geometry with appropriate boundary conditions
that relate the near-horizon region to the exterior asymptotically flat region [19–26].
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The boundary conditions at the entry of the near-horizon geometry can be deduced from the
late inspiral in the exterior near-extremal Kerr geometry. In the equatorial plane, an eccentric
inspiral tends to circularize [27] up to a critical radius where the eccentricity start increasing
[28]. Now, that critical radius lies within the NHEK region in the high spin limit though it
remains distinct from the ISCO [28]. If the rate of circularization is sufficiently fast, we can
therefore assume a quasi-circular inspiral entering the near-horizon region, where the non-
quasi-circular transition takes place. Such a quasi-circular inspiral was analytically obtained
in [23]. For LISA sources, the rate of circularization is expected to be such that eccentricity
and inclination will generally be present at the separatrix between bound and unbound motion
[29]. We will only address in the following the transition from a quasi-circular inspiral and
leave the study of the general transition for further work.

At the end of the transition, the radiation reaction becomes negligible for an EMRI and
the motion is geodesic. The final transition motion is therefore described at leading order in
small mass ratio η → 0 and in the high spin limit λ→ 0 by a geodesic plunge in NHEK. The
classification of such trajectories and a derivation of the associated Teukolsky waveforms was
obtained in [25] (see also [30, 31]). In this context, it is natural to ask what the final parameters
of the geodesic plunge are as a function of λ � 1 and of the mass ratio η � 1.

The main result of this paper is the description of the motion of a point particle probe from
the quasi-circular inspiral through the transition and up to the final plunge, at leading order
in the high spin limit of the central black hole. This motion is summarized on figure 1. We
will distinguish the standard high spin case η � λ, the marginal high spin case η ∼ λ and
the extremely high spin case λ � η. We will show that the standard high spin case leads to
a unique matching solution. On the contrary, the marginal and extremely high spin cases will
not match the quasi-circular inspiral. Moreover, the extremely high spin case will be shown to
be inconsistent with the spin evolution of the central black hole.

1. General features of the transition

In the following we consider the probe angular momentum � = L
μM per unit probe mass μ

and rescaled by the central black hole mass M, and the probe energy ẽ = E
μ per unit probe

mass with respect to the Boyer–Lindquist asymptotic timelike Killing vector ∂ t̃. We denote
as r̃ = r/M the adimensional Boyer–Lindquist radial coordinate of Kerr, ã = a/M and the
near-extremality parameter λ =

√
1 − ã2.

Following Ori–Thorne [6] and subsequent work, we assume the following three simplifying
hypotheses:

• The decrease rate of probe angular momentum � per unit dimensionless proper time τ
(proper time divided by M) is equal to the rate of a probe on a circular orbit at the ISCO.

• We neglect the radial self-force.
• The proper time ticks as along a circular orbit.

The first hypothesis is equivalent to a linear decay rate of the probe angular momentum,

�(τ ) = �∗ − κ∗η(τ − τ∗), κ∗ ≡
8σ∗√

3
. (1)

Here �∗ is the probe angular momentum per unit Mμ at the ISCO, η is the mass ratio, σ∗
= σ∗,∞ + σ∗,H is a constant determined by the total angular momentum flux emitted from
a circular orbit at the ISCO reaching infinity and the horizon, and τ ∗ is the proper time at
which one would reach � = �∗. For the Schwarzschild black hole, σ∗ ≈ 0.004 [6] while in the
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extremely high spin limit [23],

σ∗,∞ ≈ 0.987, σ∗,H ≈ −0.133. (2)

The limitations of the second hypothesis were discussed in [32].
During the transition, we do not assume quasi-circularity, as it was shown to be inconsis-

tent [12]. In [6] the decrease rate of probe energy per proper time was fixed in terms of the
corresponding decrease of probe angular momentum after assuming quasi-circularity. Here,
the decrease rate of probe energy is fixed by requirement that a potential exists for the radial
motion. More precisely, assuming no radial self-force, the first and second order radial geodesic
equations take the form

(
dr̃
dτ

)2

= ẽ2 − Ṽ(r̃, ẽ, �), (3)

d2r̃
dτ 2

= −1
2
∂Ṽ(r̃, ẽ, �)

∂ r̃
, (4)

where the radial potential is given by

Ṽ(r̃, ẽ, �) = 1 − 2
r̃
− 2(�− ãẽ)2

r̃3
− ã2(ẽ2 − 1) − �2

r̃2
. (5)

These equations are compatible given the following constraint equation is obeyed

dẽ
dτ

∂(Ṽ − ẽ2)
∂ẽ

+
d�
dτ

∂Ṽ
∂�

= 0. (6)

We impose it as the evolution of the probe energy after substituting (1),

dẽ
dτ

= κ∗η
∂Ṽ/∂�

∂(Ṽ − ẽ2)/∂ẽ
. (7)

In order to describe the transition around the ISCO we define the deviation variables

R̃ ≡ r̃ − r̃∗, (8)

χ ≡ Ω̃−1
∗ (ẽ − ẽ∗), (9)

ξ ≡ �− �∗, (10)

where all quantities r̃∗, Ω̃∗, ẽ∗ , �∗ at the ISCO are detailed in appendix. At the ISCO, we have

∂2Ṽ
∂ r̃2

|∗ = ẽ∗ −
1
2
∂Ṽ
∂ẽ

|∗ −
1
2
Ω̃−1

∗
∂Ṽ
∂�

|∗ = 0. (11)

We now Taylor expand the potential Ṽ at order O(R̃4) and we truncate to linear order in the
deviation parameters ξ, χ. The radial equation (3) and energy evolution equation (7) become

d2R̃
dτ 2

= −α∗R̃
2 + (γ∗R̃ + β∗)ξ −

1
2

(χ− ξ)[c∗R̃ + d∗],

d(χ− ξ)
dτ

= κ∗η
γ∗R̃2 + 2β∗R̃

− 1
2 c∗R̃2 − d∗R̃ + δ∗

, (12)

where the Taylor coefficients are defined as
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α∗ =
1
4
∂3Ṽ
∂ r̃3

|∗, c∗ = Ω̃
∂3Ṽ
∂ r̃2∂ẽ

|∗, (13)

β∗ = −1
2

(
∂2Ṽ
∂ r̃∂�

+ Ω̃
∂2Ṽ
∂ r̃∂ẽ

)
|∗, d∗ = Ω̃

∂2Ṽ
∂ r̃∂ẽ

|∗, (14)

γ∗ = −1
2

(
∂3Ṽ
∂ r̃2∂�

+ Ω̃
∂3Ṽ
∂ r̃2∂ẽ

)
|∗, δ∗ =

∂Ṽ
∂�

|∗. (15)

These equations govern the transition around the ISCO for arbitrary spins. We will check below
that all terms neglected in this Taylor expansion asymptote to zero in an appropriate region
around the ISCO.

2. The Ori–Thorne–Kesden equations

The observation of Ori–Thorne [6] and Kesden [12] is that for standard spins the transition
equation (12) are consistent with the scaling

τ − τ∗ ∼ η−1/5, R̃ ∼ η2/5, χ ∼ ξ ∼ η4/5, χ− ξ ∼ η6/5. (16)

Assuming that scaling, the Taylor terms multiplying γ∗ , c∗ and d∗ are subleading in the small
mass ratio limit η → 0 and can be neglected. At leading order in η the equations reduce to

d2R̃
dτ 2

= −α∗R̃
2 − κ∗ηβ∗(τ − τ∗), (17)

d(χ− ξ)
dτ

= 2κ∗η
β∗
δ∗

R̃, (18)

after using (1). One can set these equations in normalized form including the order of the
subleading correction

d2X
dt2

= −X2 − t + O(η2/5),
dY
dt

= 2X + O(η2/5), (19)

after defining

R̃ =
(β∗κ∗η)2/5

α
3/5
∗

X(t), (20)

τ = τ∗ + (α∗β∗κ∗η)−1/5t, (21)

χ− ξ =
(β∗κ∗η)6/5

α
4/5
∗ δ∗

Y(t). (22)

By construction, these equations are consistent with the first order radial equation

(
dX
dt

)2

= −2
3

X2 − 2Xt + Y + O(η2/5). (23)

The first equation of (19) is the Ori–Thorne equation. We identify it here as the Painlevé tran-
scendent equation of the first kind. It is a typical equation in bifurcation phenomena [33]. We
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will also relate it to the KdV equation (58) later on. It admits a monotonous solution with zero
acceleration (d2X/dt2 = 0) at t →−∞ given by

X =
√
−t +

1
8t2

+ O(t−9/2) + O(η2/5). (24)

The derivation of the equation (19) assumed the scaling (16) and assumed η → 0 with all
independent quantities of order unity. However, in the high spin limit, another small parameter
exists: λ =

√
1 − ã2 → 0. It turns out that the relevant scalings and equations differ depending

whether η 
 λ or λ � η as we now detail.

3. The high spin limit of the Ori–Thorne–Kesden equations

In the high spin limit, the Taylor coefficients are given up to O(λ4/3) corrections by

α∗ = 1 − 4 · 21/3λ2/3, c∗ = 6
√

3

(
1 − 61

12
· 21/3λ2/3

)
,

β∗ =

√
3λ2/3

22/3
, d∗ = − 4√

3

(
1 − 17

4
· 21/3λ2/3

)
, (25)

γ∗ =
√

3

(
1 − 19

2
λ2/3

22/3

)
, δ∗ =

4 · 21/3

√
3

λ2/3.

Assuming the scaling (16), the equations of motion are given at leading order in λ and η by
the high spin limit of the Ori–Thorne–Kesden equations

d2R̃
dτ 2

= −R̃2 −
√

3
22/3

κ∗ηλ
2/3(τ − τ∗), (26)

d(χ− ξ)
dτ

= 2
√

3σ∗ηR̃. (27)

We will now reformulate these equations. Remember that in the high spin regime, the Kerr
metric can be written close to the ISCO as the near-horizon extreme Kerr (NHEK) metric with
O(λ1/3) corrections [18], see [25, 34, 35] for reviews:

ds2 = M2(1 + cos2 θ)

(
−R2

NdT2
N +

dR2
N

R2
N

+ dθ2 +
4 sin2 θ

(1 + cos2 θ)2
(dΦN + RNdTN)2

)
+O(λ1/3).

(28)

The near-horizon coordinates (TN, RN, θ,ΦN) are related to the Boyer–Lindquist coordinates
(̃t, r̃, θ, φ̃) by

t̃ = 2Mλ−2/3TN, (29)

r̃ = 1 + λ2/3RN, (30)

φ̃ = ΦN + λ−2/3TN. (31)

The ISCO is located at RN = R∗
N ≡ 21/3 + O(λ1/3). The NHEK energy eN and radius RN are

therefore related to the asymptotically flat energy and Boyer–Lindquist radius as
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R̃ = (RN − R∗
N)λ2/3,

ẽ =
�

2
+

λ2/3

2
eN. (32)

This implies

χ− ξ =

(
eN +

3
4

21/3 ξ

)
λ2/3. (33)

In terms of the NHEK radius and energy, the high spin Ori–Thorne–Kesden equations can be
therefore reformulated as

d2RN

dτ 2
= −λ2/3(RN − R∗

N)2 − 4 × 21/3σ∗η(τ − τ∗), (34)

deN

dτ
= 2

√
3σ∗ηRN. (35)

So far, we obtained these equations assuming the original scaling (16). More generally, in
the presence of a small parameter λ in addition to η, we need to specify how η scales with λ.
We define ε such that

η ∼ λ1+ε. (36)

There are three possible cases:

• Standard high spin: η � λ (ε > 0);
• Marginal high spin: η ∼ λ (ε = 0);
• Extremely high spin: λ � η (−1 < ε < 0).

In standard astrophysical settings, the spin obeys the Thorne boundλ > 0.06 while η can be
extremely small for extreme mass ratio inspirals. It is therefore natural to consider the standard
high spin scaling in order to model astrophysical scenarios. When ε→∞, we will recover the
Ori–Thorne–Kesden equations as we will detail below. For ε > 0 finite, we can substitute
the coefficients (25) and the redefinition (33) into (12). In order to take the limit λ→ 0 of
(12) we need to specify the scaling of RN, eN and τ in terms of η. The scaling of ξ is then
deduced from (1). We find that the equations (34) and (35) are invariant under the following
scaling

τ − τ∗ ∼ η−
1
5−

2
15(1+ε) , (37a)

RN − R∗
N ∼ η

2
5−

2
5(1+ε) , (37b)

eN ∼ ξ ∼ η
4
5−

2
15(1+ε) , (37c)

eN +
3
4

21/3ξ ∼ η
6
5−

8
15(1+ε) . (37d)

We now check that (34) and (35) can be also obtained from the full equations (4) and (7)
using the scaling (36) and (37). This justifies the neglected terms in the Taylor expansion (12).
The Ori–Thorne scaling (16) is recovered in the limit ε→∞. We have therefore obtained
the Ori–Thorne-Kesden equations in the presence of two small parameters η,λ assuming
η � λ.
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4. Transition equations in the marginal and extremely high spin limit

We found that the scaling (37) applies for all ε > 0. In the marginal high spin case ε = 0 of
(36), namely η ∼ λ, we also find that the scaling solution (37) holds. It reads explicitly as

τ − τ∗ ∼ η−1/3, RN − R∗
N ∼ η0, eN ∼ ξ ∼ η2/3, (38)

or, equivalently,

τ − τ∗ ∼ η−1/3, R̃ ∼ η2/3, χ− ξ ∼ η4/3. (39)

The energy equation (35) is unchanged while the radial equation (invariant under (38)) gets
modified to the ‘marginal extremely high spin radial transition equation’

d2RN

dτ 2
= −λ2/3(RN − R∗

N)2 − 8σ∗η(τ − τ∗)RN +
2√
3

eN. (40)

In the extremely high spin case λ � η (−1 < ε < 0), we find that the scaling (39) remains
consistent. It can also be written as

τ − τ∗ ∼ η−
1
3 , RN − R∗

N ∼ η
2
3−

2
3(1+ε) , eN ∼ η

4
3−

2
3(1+ε) , ξ ∼ η

2
3 . (41)

The radial evolution is now governed by the ‘extremely high spin radial transition equation’

d2RN

dτ 2
= −λ2/3(RN − R∗

N)2 + 4ησ∗(τ − τ∗)R∗
N − 8σ∗η(τ − τ∗)RN +

2√
3

eN,

(42)

and the equation of motion for the energy is still

deN

dτ
= 2

√
3σ∗ηRN. (43)

We checked that these equations can be also obtained from the full equations (4) and (7) using
the scaling (41), which justifies the neglected terms in the Taylor expansion (12).

The extremely high spin radial transition equation (42) together with the energy
equation (43) can only be partly recovered from the NHEK geometry. If we assume the more
restricted scaling regime (that probes a smaller range around the ISCO)

τ − τ∗ ∼ η−1/3, RN − R∗
N ∼ η0, eN ∼ η2/3, ξ ∼ η2/3, (44)

the energy equation remains unchanged while the radial equation (42) simplifies to the ‘NHEK
transition equation’

d2RN

dτ 2
= −8σ∗η(τ − τ∗)RN +

2√
3

eN. (45)

This equation can be obtained from NHEK as we now show. Since λ � η, we can take the
formal limit λ→ 0 first and the O(λ1/3) corrections to the NHEK geometry (28) are negligible.
In the NHEK geometry, the radial geodesic equations read as

(
dRN

dτ

)2

= e2
N − VN(RN, eN, �), (46)
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d2RN

dτ 2
= −1

2
∂VN(RN, eN, �)

∂RN
, (47)

where eN = 2λ−2/3ẽ − λ−2/3� is the energy per unit probe mass per unit mass M associated
with ∂TN . Here the radial potential takes a simple exact form,

VN(RN, eN, �) = −2eN�RN +

(
1 − 3

4
�2

)
R2

N. (48)

These equations are compatible given the following constraint equation is obeyed

deN

dτ
∂(VN − e2

N)
∂eN

+
d�
dτ

∂VN

∂�
= 0. (49)

Up to O(λ1/3) corrections, the evolution equations are therefore given by

d2RN

dτ 2
= eN�+

(
3
4
�2 − 1

)
RN, (50)

deN

dτ
= κ∗ηRN

eN + 3
4�RN

eN + �RN
. (51)

The ISCO has energy, angular momentum and radius eN = e∗N ≡ 0, � = �∗ ≡ 2√
3
+ O(λ2/3)

and RN = R∗
N ≡ 21/3. In the linear approximation in e, � around the ISCO values and using (1),

we finally obtain the NHEK transition equations (43)–(45).
It is important to note that we cannot obtain either (34), (40) nor (42) from motion in the

NHEK geometry since the subleading corrections in λ play a key role in the evolution. This
points to a limitation of the near-horizon methods that use only the leading order near-horizon
geometry (28). In this case, we can only recover a small subregion of the dynamics (42) when
λ � η.

Let us finally discuss the solutions to the equations (40), (42) and (45). The NHEK transition
equations can be easily solved analytically. Taking the derivative of (45) with respect to proper
time and substituting (43) we obtain the closed-form normalized third-order equation

d3RN

dt3
+ (t − t∗)

dRN

dt
+

1
2

RN = 0, (52)

after defining the rescaled time as t = (8σ∗η)1/3τ , t∗ = (8σ∗η)1/3τ∗. This equation admits
analytic solutions in terms of Airy functions

RN = c1Ai

(
t∗ − t
22/3

)2

+ c2Ai

(
t∗ − t
22/3

)
Bi

(
t∗ − t
22/3

)
+ c3Bi

(
t∗ − t
22/3

)2

, (53)

with three real integration constants c1, c2, c3. Despite this simplicity and the fact that it can be
recovered from NHEK, we will see later that (45) cannot be connected to a quasi-circular inspi-
ral and, more fundamentally, the scaling regime whereλ � η is unphysical due to backreaction
on the spin of the black hole.

Less obvious is that (40) relates to a well known, integrable nonlinear differential equation.
With the same procedure as before, combining (40), (43) gives

d3RN

dt3
+

1
2

(
λ

σ∗η

)2/3

(RN − R∗
N)

dRN

dt
+ (t − t∗)

dRN

dt
+

1
2

RN = 0. (54)
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Similarly, for λ � η, combining (42), (43), one finds instead

d3RN

dt3
+

1
2

(
λ

σ∗η

)2/3

(RN − R∗
N)

dRN

dt
+ (t − t∗)

dRN

dt
+

1
2

(RN − R∗
N) = 0. (55)

We will continue the analysis only for (54) but the result can immediately be applied to

(55) by replacing RN with RN − R∗
N and t∗ with t∗ −

(
λ

2σ∗η

)2/3
. We now make the following

substitutions

t − t∗ =

(
2
9
ζ + 2−2/3

) (
λ

σ∗η

)2/3

,

RN =
2
3
ψ(ζ) − 2

3
ζ,

ω2 =
243
4

(σ∗η

λ

)2
, (56)

to obtain

−2
3
ψ − 1

3
ζ

dψ
dζ

+ ψ
dψ
dζ

+ ω2 d3ψ

dζ3
= 0. (57)

This equation can be obtained from the Korteweg–de Vries (KdV) equation for Ψ(s, z) [36]

∂Ψ

∂s
+Ψ

∂Ψ

∂z
+ ω2 ∂

3Ψ

∂z3
= 0, (58)

by using the self similar variables

ζ =
z

s1/3
, ψ(ζ) = s2/3Ψ(s, z). (59)

Note that the first Painlevé equation can also be obtained as a particular reduction of the KdV
equation [36]. Indeed set

Ψ(s, z) = (8ω2)1/5X(t) + s, t = 2(8ω2)−2/5

(
z − s2

2

)
. (60)

The equation following from (58) can then be integrated to find (19).

5. Inspiral in the near-horizon region

The analytic quasi-circular adiabatic evolution in the near-horizon geometry was found in
[23]. We are interested in the region between the ISCO and the boundary of the near-horizon
region, 21/3 < RN � λ−2/3. The analysis starts with the result for the gravitational wave emis-
sion on a circular orbit in the near-horizon region of Kerr. The total energy radiated per unit
Boyer–Lindquist time per probe mass is at leading order in λ given by [19, 22]

− de
d(̃t/M)

= σ∗η (r̃ − 1). (61)

10
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In terms of near-horizon variables, r̃ = 1 + λ2/3RN and at leading order in λ, the latter equation
is equivalent to

d�
dTN

= −4σ∗ηRN. (62)

For a circular geodesic, the angular momentum and energy are given by

�circ =
2√
3
+

4(1 + R3
N)

3
√

3R2
N

λ2/3 + O(λ4/3), (63)

ecirc
N = − 4 + R3

N

2
√

3RN
λ2/3 + O(λ4/3). (64)

At leading order in λ, a circular geodesic in NHEK obeys

dTN

dτ
=

eN

R2
N

+
�

RN
=

2√
3RN

+ O(λ2/3). (65)

The two equation (62)-(65) lead to the linear decay of angular momentum per unit proper time
(1), which is also assumed more generally in the transition region. Substituting (63) into (62)
we obtain

dRN

dTN
= − 1

T in
N

RN

1 − 2R−3
N

, T in
N ≡ λ2/3

3
√

3σ∗η
. (66)

The explicit solution is given by

RN(TN) = R0e
− TN

T in
N e

k
3+

1
3 W

⎛
⎜⎜⎝−ke

3
TN

T in
N

−k
⎞
⎟⎟⎠

, k ≡ 2
R3

0

, (67)

where W is the Lambert or product log function that obeys W(0) = 0 and W(−1/e) = −1. At
radii far from the ISCO but still in the near-horizon region, 21/3 � RN � λ−2/3, the k terms
are negligible and we recognize the exponential decay of the early (−TN 
 T in

N ) near-horizon
quasi-circular adiabatic inspiral.

Combining (65) and (66) we also obtain
(

1 − 2
R3

N

)
dRN

dτ
= − 1

τ in
, τ in ≡

√
3

2
T in

N =
λ2/3

6σ∗η
(68)

which we can integrate to obtain

RN +
1

R2
N

− R0 −
1

R2
0

=
τ0 − τ

τ in
(69)

where RN(τ 0) = R0. The explicit solution for RN(τ ) is the only real cubic root of this equation.
Evaluating at τ ∗, the proper time elapsed between the initial time and reaching the ISCO is4

τ∗ − τ0 = τ in

(
R0 + R−2

0 − 3
22/3

)
. (70)

4 This equation can also be found directly by evaluating (1) at τ = τ0 and using the fact that the initial angular
momentum is given by the circular geodesic expression (63).
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It is straightforward to obtain that the inspiral (69) admits around the ISCO the behavior

RN − R∗
N =

22/3

√
3

√
τ∗ − τ√
τ in

+ O(τ∗ − τ ). (71)

6. Spin evolution during the inspiral

Before presenting the matching with the transition, it is important to first establish to what
extent the probe will spin down the central black hole due to superradiance and, more pre-
cisely, whether a binary system with λ � η can exist. Heuristic formulae for the spin evolution
were derived in [37–41]. Based on these heuristics, it was shown that superradiant scattering
slows down the central black hole during the inspiral [41]. A fundamental derivation that takes
into account the specificities of the near-extremal behavior is however necessary to quantify
this slow down. Such fundamental analysis was performed in [23] using the explicit analyti-
cal quasi-circular inspiral evolution but an error occurred on equation (23). We will therefore
restart the analysis here.

So far we assumed that M and J (and therefore λ =
√

1 − J2/M4) are constant, but in fact
they evolve already at first order in the self-force (which is proportional to μ). We would like
to derive a lower bound on λ. Let us assume that the black hole is exactly extremal (λ = 0)
when the compact object enters the near-horizon region. We further assume that it follows
the quasi-circular inspiral (67) or, equivalently, (69), at the entry of the near-horizon region.
Thanks to the gravitational wave absorption in the near-horizon region, the central black hole
mass evolves as

dM
d̃t

= σ∗,Hη
2(r̃ − 1). (72)

In this case,σ∗,H < 0, see (2), and energy is extracted from the black hole. This is a consequence
of superradiance. The angular momentum obeys

dJ
d̃t

= Ω̃−1 dM
d̃t

, Ω̃ =
1

2M

(
1 − 3

4
λ2/3RN

)
+ O(λ). (73)

This leads to the departure from extremality

dλ
d̃t

= −3λ1/3

2M
σ∗,Hη

2R2
N > 0. (74)

Using t̃ = 2Mλ−2/3TN and (65), the evolution of λ is given in terms of proper time as

λ
dλ
dτ

= −2
√

3σ∗,Hη
2 λ2/3RN. (75)

At the entry of the near-horizon region RN = R0 ∼ λ−2/3. This implies that λ2 will develop a
linear growth proportional to η2 or λ ∼ η, at least. The start of the inspiral evolution therefore
rules out extremely high spin binaries with λ � η. The marginal scaling λ ∼ η is not ruled out
by this argument.

7. Match between the inspiral and the transition

In the standard high spin case η � λ, the transition motion is given by the high spin limit of
the Ori–Thorne–Kesden equations (34) and (35) while the physical quantities scale as (37).

12
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The behavior of the inspiral close to the ISCO is given by (71). It exactly corresponds to the
asymptotic quasi-circular inspiral condition that cancels at leading order the right-hand side
of (34). We can therefore match the transition solution (24) to the τ →−∞ asymptotics (71).
The matching can be performed uniquely for any given set of physical parameters η, λ with
η � λ.

The result is depicted on figure 1 for η = 10−6, λ = 10−3. We fixed the ambiguity in shifting
the proper time by choosing τ ∗ = 0 (i.e. τ = 0 corresponds to � = �∗). The dotted blue curve
is the matching solution

RN = R∗
N +

22/3

√
3

√
τ∗ − τ√
τ in

(76)

that asymptotes at τ → 0 to the inspiral (71) and at τ →−∞ to the transition solution
(24).

The plunge always occurs at τ > τ ∗. The final plunge is therefore a subcritical geodesic
in the sense that � < �∗ . In [25], only critical (� = �∗) and supercritical (� > �∗) geodesics
were described since only geodesics that enter the NHEK region from radial infinity were
considered. Instead, subcritical geodesics only exist up to a finite radius within the NHEK
region. They can be obtained as analytic continuation of the supercritical orbits, as will be
detailed in [31], see also [30].

For the marginal λ ∼ η and extremely high spin case λ � η we find that the solution (76)
is not an asymptotic solution at τ →−∞ of the transition equation (40) or (42) combined with
(43). If one assumes such an ansatz, an overleading τ 3/2 term appears which invalidates the
ansatz. This compounds our earlier observation that the extremely high spin case λ � η is
inconsistent with the spin evolution.

Even in the restricted scaling (44) where the NHEK metric is sufficient to describe the
motion, the NHEK transition equations are inconsistent with the quasi-circular near-horizon
inspiral. Indeed, the NHEK transition equations (43)–(45) do not admit an asymptotic solu-
tion without acceleration, which would have been an analogue of (24). Explicitly, imposing
that the right-hand side of (45) be zero at τ →−∞ leads to R ∼ (−τ )−1/2 which is incon-
sistent since R has to be both positive and monotonous. We deduce that no solution (53)
can be matched into the adiabatically evolving quasi-circular inspiral near the ISCO (71) at
τ →−∞.5

8. Conclusion

We obtained three sets of non-quasi-circular transition equations in the near-horizon region
of the near-extremal Kerr black hole at leading order in the high spin limit that depend
upon the relative scaling between the near-extremality parameter λ and the mass ratio η.
The Ori–Thorne–Kesden transition equations [6, 12] were derived for arbitrary parameters
η � λ � 1 and the radial evolution equation was identified as the Painlevé transcendent
equation of the first kind. For these Ori–Thorne–Kesden transition equations, we found
a unique match with the near-horizon inspiral of [23]. In contrast, we obtained transition
equations for marginal η ∼ λ � 1 and extremely high spin scalings λ � η � 1 that can be

5 This can also be explained by the following argument. The NHEK transition dynamics is defined in terms of finite
λ0 quantities within the near-horizon geometry. In contrast, the quasi-circular near-horizon inspiral is driven by λ2/3

corrections (since all circular orbits have the same energy in the near-horizon region at order λ0). There is therefore
no possible match between these two motions.
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written as the KdV equation with self-similar variables. However, we showed that they cannot
be matched to the near-horizon quasi-circular inspiral of [23].

In fact, we showed that the spin evolution during the near-horizon inspiral drives the
spin of the central black hole away from extremality as λ ∼ η or higher due to superradiant
gravitational wave extraction of angular momentum. This rules out the scaling λ � η which
compounds the absence of a match between the transition equations and the quasi-circular
inspiral for that range of parameters.

While the near-horizon limit was instrumental in formulating the inspiral and transition
motion in the high spin limit, we found that the NHEK metric alone is insufficient to describe
the transition motion even in the high spin regime. Corrections to the near-horizon metric orig-
inating from both the deviation from maximal spin and from the backreaction of the probe play
an essential role in the transition motion of extreme mass ratio coalescences.
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Note added

In the final stages of this work, we became aware of overlapping results that were independently
obtained in [42].

Appendix. Circular geodesics of Kerr

The angular velocity of circular orbits in Boyer–Lindquist coordinates is given by

Ω̃ = (r̃3/2 + ã)−1. (A1)

The angular momentum per unit probe mass and central black hole mass and energy per unit
probe mass is given for circular orbits by

�circ(r̃;λ) =

√
r̃ − 2ã/r̃ + ã2/r̃3/2√
1 − 3/r̃ + 2ã/r̃3/2

, (A2)

ẽcirc(r̃;λ) =
1 − 2/r̃ + ã/r̃3/2√
1 − 3/r̃ + 2ã/r̃3/2

, (A3)

where ã =
√

1 − λ2. The ISCO is located at

r̃∗ = 3 + Z2 − sign(ã)[(3 − Z1)(3 + Z1 + 2Z2)]1/2,

= 1 + 21/3λ2/3 + O(λ4/3) (A4)

14



Class. Quantum Grav. 37 (2020) 095013 G Compère et al

where

Z1 ≡ 1 + (1 − a2)1/3[(1 + ã)1/3 + (1 − ã)1/3], (A5)

Z2 ≡ (3ã2 + Z2
1)1/2.

At the ISCO, the angular velocity is

Ω̃∗ =
1

r̃3/2
∗ + ã

=
1
2
− 3λ2/3

4 × 22/3
+ O(λ4/3) (A6)

and the probe angular momentum and Boyer–Lindquist energy are

�∗ =
6
√

r̃∗ − 4ã√
3r̃∗

=
2√
3
+

24/3

√
3
λ2/3 + O(λ4/3), (A7)

ẽ∗ =
1 − 2/r̃∗ + ã/r̃3/2

∗√
1 − 3/r̃∗ + 2ã/r̃3/2

∗

, (A8)

=
1√
3
+

21/3

√
3
λ2/3 + O(λ4/3) (A9)
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