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Abstract
In this paper, we prove the existence of a new type of relaxation oscillation 
occurring in a one-block Burridge–Knopoff model with Ruina rate-and-state 
friction law. In the relevant parameter regime, the system is a slow-fast ordinary 
differential equation  with two slow variables and one fast. The oscillation 
is special for several reasons: firstly, its singular limit is unbounded, the 
amplitude of the cycle growing like log ε−1 as ε → 0. As this estimate reflects, 
the unboundedness of the cycle—for this non-polynomial system—cannot be 
captured by a simple ε-dependent scaling of the variables, in contrast to e.g. 
Gucwa and Szmolyan (2009 Discrete Continuous Dyn. Syst. S 2 783–806). 
We therefore obtain its limit on the Poincaré sphere. Here we find that the 
singular limit consists of a slow part on an attracting critical manifold, and 
a fast part on the equator (i.e. at ∞) of the Poincaré sphere, which includes 
motion along a center manifold. The reduced flow on this center manifold 
runs out along the manifold’s boundary, in a special way, leading to a complex 
return to the slow manifold. We prove the existence of the limit cycle by 
showing that a return map is a contraction. The main technical difficulty lies 
in the fact that the critical manifold loses hyperbolicity at an exponential rate 
at infinity. We therefore use the method in Kristiansen (2017 Nonlinearity 
30 2138–84), applying the standard blowup technique in an extended phase 
space. In this way, we identify a singular cycle, consisting of 12 pieces, all 
with desirable hyperbolicity properties, that enables the perturbation into an 
actual limit cycle for 0 < ε � 1. The result proves a conjecture in Bossolini 
et al (2017 Nonlinearity 30 2805–34). The Bossolini et al (2017 Nonlinearity 
30 2805–34) also includes a preliminary analysis based on the approach in 
Kristiansen (2017 Nonlinearity 30 2138–84) but several details were missing. 
We provide all the details in the present manuscript and lay out the geometry 
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of the problem, detailing all of the many blowup steps.

Keywords: geometric singular perturbation theory, blowup,  
special loss of hyperbolicity, relaxation oscillations
Mathematics Subject Classification numbers: 34E15, 34A26, 34C26, 70K70, 
86A17

(Some figures may appear in colour only in the online journal)
Contents

1.  Introduction� 3
1.1.  Mathematical modelling of earthquake faulting� 7
1.2.  Previous results on the singular limit of (1.3)� 8
1.3.  Main results� 15

2.  Proof of the main theorem� 16
2.1.  The transition map Π0 : Σ0 → Σ1� 16
2.2.  The transition map Π1 : Σ1 → Σ0� 17

2.3.  Outline� 18
3.  Blowup analysis in chart φ3� 18

3.1.  The blowup method� 20
3.2.  Blowup transformations in chart φ3� 21
3.3.  Local charts and the corresponding directional blowup transformations� 29
3.4.  A summary of the findings in chart φ3� 32

4.  Blowup dynamics in chart φ3� 33
4.1.  Dynamics in (q = 1, w = 1)11� 34
4.2.  Dynamics in (q = 1, ¯̄ε = 1)12� 37
4.3.  Dynamics in (q̄ = 1, ¯̄ε = 1, ¯̄w = 1)122� 38
4.4.  Dynamics in (ε̄ = 1, x̃ = −1, ˜̄q = 1)211� 40
4.5.  Dynamics in (ε̄ = 1, w̃ = 1)21� 42
4.6.  Dynamics in (ε̄ = 1, ˜̄q = 1)22� 46
4.7.  Dynamics in (ε = 1)1: exit of chart φ3� 47

5.  The transition map Π17 : Σ1 → Σ7� 50
6.  Blowup analysis in chart φ1� 51

6.1.  Blowup analysis in chart (z̄ = 1)1� 52
6.1.1. � Local charts and the corresponding directional blowup transformations� 54

6.2.  Blowup analysis in chart (w̄ = 1)2� 55
6.2.1.  Local charts and the corresponding directional blowup transformations� 56

6.3.  Blowup analysis in chart (z̄ = −1)3� 57
6.3.1. � Local charts and the corresponding directional blowup transformations� 58

6.4.  A summary of the findings in chart φ1� 59
7.  Blowup dynamics in chart φ1� 60

7.1.  Dynamics in (z = 1, q = 1, x = 1)111� 60
7.2.  Dynamics in (z = 1, q = 1, w1 = 1)112� 62
7.3.  Dynamics in (z = 1, q = 1, w1 = 1, θ1 = 1)1121� 64
7.4.  Dynamics in (w = 1, θ2 = 1)21� 66
7.5.  Dynamics in (z = −1, θ = 1, w3 = 1)311� 67

8.  The transition map Π70 : Σ7 → Σ0� 72
9.  Discussion� 73
Appendix.  Case α � 1� 75
References� 77

K Uldall Kristiansen﻿Nonlinearity 33 (2020) 2960



2962

1.  Introduction

Relaxation oscillations are special periodic solutions of singularly perturbed ordinary differ
ential equations. They consist of long periods of ‘in-activity’ interspersed with short periods 
of rapid transitions. Mathematically, they are classically defined for slow-fast systems

εẋ = f (x, y, ε),
ẏ = g(x, y, ε),

� (1.1)

as elements Γε of a family of periodic orbits {Γε | ε ∈ (0, ε0]} whose ε → 0 limit (in the 
Hausdorff sense), Γ0, is a closed loop consisting of a union of (a) slow orbits of the reduced 
problem:

0 = f (x, y, 0),
ẏ = g(x, y, 0),

and (b) fast orbits of the layer problem:

x′ = f (x, y, 0),
y′ = 0.

Here ()′ = d
dτ  and (̇) = d

dt are related for ε > 0 by

τ = ε−1t,

τ  is called the fast time whereas t is called the slow time. Obviously, Γ0 should allow for a 
consisting orientation of positive (slow and fast) time. Γ0 is in this case called a singular cycle.

The prototypical system, where relaxation oscillations occur, is the van der Pol system, see 
e.g. [27]. Here the critical manifold C = {(x, y) | f (x, y, 0) = 0} is -shaped and relaxation 
oscillations Γε occur, in generic situations, near a Γ0 consisting of the leftmost and rightmost 
pieces of the -shaped critical manifold C interspersed by two horizontal lines connecting 
these branches at the ‘folds’. See figure 1(a).

But other types of relaxation oscillations also exist. The simplest examples appear in slow-
fast systems in nonstandard form

ż = h(z, ε),� (1.2)

where C = {z | h(z, 0) = 0} is a critical manifold. Here relaxation oscillations may even be 
the union of one single fast orbit and a single slow orbit on S. These oscillations are also called 
two-stroke oscillations, see [18, 29] and figure 1(b). In [15], for example, a planar slow-fast 
system of the form (1.1) is considered. Here limit cycles Γε exist which also have segments 
that follow the different time scales, t and τ . But Γε grows unboundedly as ε → 0+ and the 
limit Γ0 is therefore not a cycle. However, in the polynomial model considered by [15] there 
exists an ε-dependent scaling of the variables that captures the unboundedness and in these 
scaled variables the system is transformed into a system of nonstandard form (1.2). For this 
system, Γ0 becomes a closed cycle, albeit with some degeneracy along a critical manifold. 
Similar (generalised) relaxation oscillations also occur in systems close to piecewise smooth 
limits as ε → 0, see e.g. [19, 21, 25]. In these systems, where the notion of slow and fast 
orbits have to be generalised, (slow) segments of the relaxation oscillation appear close to the 
discontinuity set.

The relaxation oscillations described above can all be analyzed by geometric singular 
perturbation theory (GSPT). The terminology GSPT is frequently used as a reference to a 
collection of theories and methods for studying singularly perturbed ODEs using invariant 
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manifolds. This follows, first and foremost, Fenichel’s original theory [12–14] for the per-
turbation of compact normally hyperbolic critical manifolds and their stable and unstable 
manifolds. Nowadays, following [26], see also [8], GSPT also consists of the blowup method 
as the key technical tool, allowing for an extension of Fenichel’s geometric theory near non-
hyperbolic points. (The GSPT framework also consists of the exchange lemma [20, 38] and 
entry-exit functions, [5, 16, 17], neither of which will be important in the present manuscript.)

In the present paper, we will consider the following slow-fast system

ẋ = −ez (x + (1 + α)z) ,
ẏ = ez − 1,

εż = −e−z
(

y +
x + z
ξ

)
,

� (1.3)

with α > 0, ξ > 0 and 0 < ε � 1. This is a caricature model of an earthquake fault, see sec-
tion 1.1 below. Relaxation oscillations in this system therefore models the seismic cycle of 
earthquakes with years, decades even, of inactivity preceded by sudden dramatic shaking of 
the ground: the earthquake.

Similar to the case in [15], limit cycles of (1.3) also grow unboundedly as ε → 0. But 
in contrary to [15], the right hand side of (1.3) does not have polynomial growth, and as a 
result, the unboundedness of the solutions cannot be captured by a scaling of the variables. 
We will in this paper therefore have to work on the Poincaré sphere. Here we then prove 
the existence of limit cycles Γε, whose limit Γ0 as ε → 0 consists of a single slow orbit on 

Figure 2.  Illustration of model (1.4).

(a) (b)

Figure 1.  In (a): the prototypical example of a relaxation oscillation in a planar slow-
fast system with a folded critical manifold. In (b): example of a relaxation oscillation in 
slow-fast system in nonstandard form.
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Figure 3.  Limit cycles in red for α = 0.8, ξ = 0.5. In (a): ε = 0.01 and in (b): ε = 0.001. 
The motion in the diagrams is clockwise. The black curves are transients showing the 
contraction towards the limit cycle. The orange hyperplane C is the critical manifold, 
see (1.6). The subset of the limit cycles, that is close to this plane, is accurately described 
by the reduced problem, see (1.8). However, away from C, we see that the limit cycles 
initially follow the blue plane L until they return to C again, being attracting to the 
center-like manifold Wcu(Q6) (green).
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(a)

(b)

Figure 4.  x, y  and z (black, red and blue, respectively) in figure 3 as functions of t for 
ξ = 0.5 and α = 0.8. In (a): ε = 0.01. In (b): ε = 0.001. Both solutions are of relaxation 
type (two-stroke) in the sense that long periods of moderate ‘activity’ are interspersed 
with rapid transitions. The effect of decreasing ε is seen to be two-fold: firstly, the 
transitions between the slow phases become sharper and, secondly, the amplitude grows 
(slightly). Notice also how the period of the periodic solution depends upon ε.
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the two-dimensional (2D) attracting critical manifold C = {(x, y, z) | y + (x + z)/ξ = 0}. The 
‘fast’ part of Γ0 occurs at ‘infinity’ (i.e. the equator of the Poincaré sphere) and is non-trivial 
and perhaps even surprising. We uncover this structure by applying the method in [22] to gain 
hyperbolicity where this is lost due to exponential decay of eigenvalues. In particular, Γ0 only 
has desirable hyperbolicity properties upon several blowup transformations. The main theo-
rem, theorem 1.5, proves a conjecture in [3].

1.1.  Mathematical modelling of earthquake faulting

The model we consider, described by the equation (1.3), consists of a single block dragged 
along a frictional surface by a spring, the end of which moves at a constant velocity. We set 
this velocity to 1, without loss of generality. The model is illustrated in figure 2. Here v is the 
velocity of the block and y  is the relative position, measuring the deformation of the spring. 
If the moving spring models a sliding fault, then the system becomes a caricature model 
of an earthquake fault. It is therefore also the extreme case of a single-block version of the 
Burridge–Knopoff model, which idealizes the earthquake fault as a chain of spring-block 
systems of the type shown in figure 2. More importantly, the Burridge–Knopoff model has a 
continuum limit as the distance between the chain blocks vanishes and travelling wave solu-
tions of the resulting PDE system, see [3, section 2.1], are basically solutions of the one-block 
system. See [35] for a different derivation.

The unknown in figure 2, and in earthquake modelling in general, is the friction force F. 
Within engineering, friction is frequently modelled using Coulomb-like laws, e.g. the stic-
tion law or the Stribeck law [2, 11, 31]. However, these laws do not account for any of the 
microscopic processes that are known to occur when surfaces interact in relative motion. 
Consequently, such models cannot produce phenomena known to occur in earthquakes. To 
capture this, one can use rate-and-state friction laws. Such models attempt to account for 
additional physics, like the condition of the contacting asperities [39], by adding additional 
variables, called ‘state variables’, to the problem. The first models of this kind, the Dieterich 
law [6, 7] and the Ruina law [37], were obtained from experiments on rocks. In contrast to 
e.g. Coulomb’s simple model, the friction force in these models depends logarithmically on 
the velocity. (It was only later realized that this decay actually agree with theory of Arrhenius 

Figure 5.  Poincaré compactification of the reduced problem. The point Q6 is not a 
true equilibrium of X̂ , instead it is an essential singularity e‘0/0’. However, subsequent 
‘blowup’ of this point and further desingularization reveal, see [3], that Q6 essentially 
acts like a (nonhyperbolic) saddle (as illustrated in the figure).
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processes resulting from breaking bonds at the atomic level [36].) Recently, these friction laws 
have also been used to describe sea ice friction [30].

In this paper, we consider the Ruina friction law. This gives the following equations for the 
model in figure 2

ẋ = −v (x + (1 + α) log v) ,
ẏ = v − 1,

εv̇ = −y − x + log v
ξ

,
� (1.4)

in its nondimensionalised form. See [3, 10] for further details on the derivation. The variable x 
is a single ‘state variable’. As in [3] we put z = log v and arrive at model (1.3), which we shall 
study in this manuscript as a singular perturbed problem with 0 < ε � 1.

Numerically, existence of relaxation-type oscillations for α > ξ  and small values of ε > 0 
is a well-known fact [10, 35]. See also figure 3, computed in MATLAB using ode23s with 
tolerances 10−12. Figure 4 shows x, y  and z (black, red and blue, respectively) as functions of t. 
Notice the slow-fast, relaxation-type structure of the periodic solutions; y , describing the posi-
tion of the block, for example, decreases moderately everywhere except for tiny time intervals 
where it increases very rapidly. In this paper, we are interested in a rigorous proof of the exist-
ence of these oscillations and en-route on how to apply classical methods of singular perturba-
tion theory to (1.4), or equivalently (1.3), with non-polynomial growth of the right hand side.

1.2.  Previous results on the singular limit of (1.3)

In the following we review some results from [3] on the singular limit of (1.3). Our notation 
will in some places slightly differ from that in [3].

In terms of the fast time τ = ε−1t, the (slow) system (1.3) becomes the (fast) system

x′ = −εez (x + (1 + α)z) ,
y′ = ε(ez − 1),

z′ = −e−z
(

y +
x + z
ξ

)
.

� (1.5)

Setting ε = 0 in (1.5) then gives the layer problem

x′ = 0,
y′ = 0,

z′ = −e−z
(

y +
x + z
ξ

)
,

for which the hyperplane

C =

{
(x, y, z) | y +

x + z
ξ

= 0
}

� (1.6)

is the critical manifold. This manifold is normally hyperbolic and attracting since the linear-
ization about any point C gives

−ξ−1e−z,� (1.7)
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as a single nonzero eigenvalue. However, C is not compact. Fenichel’s theory [14] therefore 
only guarantees the smooth perturbation Sε of fixed compact sub-manifolds (with boundary) 
S0 ⊂ C  for all 0 � ε � 1.

Setting ε = 0 in (1.3), gives a reduced problem on C, which we write in terms of (the physi-
cal meaningful variables) (y, z) as follows

ẏ = ez − 1,
ż = ξ + ez (αz − ξy − ξ)
� (1.8)

with

(a) (b)

(c)

Figure 6.  Phase portraits of the reduced problem on the Poinacaré sphere. In (a): α < ξ , 
in (b): α = ξ  (the Hamiltonian case) and finally in (c): α > ξ . The point Q6 is not a 
equilibrium of X̂ . Instead it is an essential singularity due to e‘0/0’. But the analysis of 
[3] shows that it essentially acts like a nonhyperbolic saddle, having a unique unstable 
manifold Wcu(Q6) (see also lemma 7.6).
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x = m(y, z) := −ξy − z,� (1.9)

using (1.6). Recall that x is a ‘state’ variable describing the friction—it models a combination 
of effects and is difficult to measure and observe in practice, see e.g. [39].

In [3] the authors show that (1.8) has a degenerate Hopf bifurcation at α = ξ , where peri-
odic orbits emerge at once due to a Hamiltonian structure:

(
ẏ
ż

)
= J(y, z)∇H(y, z),� (1.10)

where

J(y, z) =
(

0 ξ−1eξy+z

−ξ−1eξy+z 0

)
,

H(y, z) = −ξe−ξy(y − z + 1 − e−z) + 1 − e−ξy.

The authors of [3] then put the reduced problem (1.8) on the Poincaré sphere in the follow-
ing way: consider S2 = {(ȳ, z̄, w̄) ∈ R3 | ȳ2 + z̄2 + w̄2 = 1} and let φ : S2 ∩ {w > 0} → R2 
be defined by

(ȳ, z̄, w̄) �→
{

y = w̄−1ȳ,
z = w̄−1z̄.

� (1.11)

By pull-back, the vector-field (1.8) gives a vector-field X  on (ȳ, z̄, w̄) ∈ S2 ∩ {w̄ > 0}. (1.11) 
is then also a chart, obtained by central projection onto the hyperplane w̄ = 1, parameterizing 
w̄ > 0 of S2. Let Q6 be defined by (ȳ, z̄, w̄) = (1, 0, 0). Then by appropriate re-parametrizations 
of time—essentially slowing (speeding) time down (up) for z̄ > 0 ( z̄ < 0, respectively)—they 
obtain a well-defined vector-field:

X̂ := r−1X,

on S2 ∩ {w̄ � 0}\{Q6}, that leaves the ‘equator’, i.e. the subset defined by w = 0, invariant. 
Here r = r(ȳ, z̄, w̄) is strictly positive for w > 0, so that X̂  and X  are equivalent on {w > 0}. 
The point Q6 is an essential singularity e‘0/0’ that—loosely speaking—divides the equator into 
points where ez  in (1.8) is ‘exponentially small’ from points were this quantity is ‘exponen-
tially large’. See [19] where similar essential singularities are studied using the same methods.

To describe S2 near the equator w̄ = 0 the authors in [3] studied two separate directional 
charts:

φ1 : S2 ∩ {ȳ > 0} → R2,

φ3 : S2 ∩ {z̄ > 0} → R2,

defined by

(ȳ, z̄, w̄) �→
{

z1 = ȳ−1z̄,
w1 = ȳ−1w̄,

� (1.12)

(ȳ, z̄, w̄) �→
{

y3 = z̄−1ȳ,
w3 = z̄−1w̄,

� (1.13)

respectively. These charts are obtained by central projections onto the hyperplanes tangent 
to S2 at ȳ = 1 and z̄ = 1, respectively. See figure 5. The authors then found three equilibria 
of X̂  within w = 0: Q1 where ȳ = 0, z̄ = 1, Q3 where ȳ−1z̄ = α−1ξ, ȳ > 0, and Q7 where 
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ȳ−1z̄ = −ξ , ȳ > 0. Here Q1 is an attracting hyperbolic node while Q7 is a repelling hyperbolic 
node. The point Q3, on the other hand, is a nonhyperbolic saddle, with a hyperbolic unstable 
manifold along the equator and a nonhyperbolic stable manifold (a unique center manifold), 
which we denote by Wcs(Q3). Finally, using a separate blowup approach, the singular point 
Q6 was found to act like a saddle, with one ‘stable manifold’ along the equator of the sphere, 
and a unique center-like unstable manifold, which we shall denote Wcu(Q6). See also figure 5 
(and lemma 7.6 below for details).

Remark 1.1.  As is standard, we use different arrows to separate center directions from hy-
perbolic ones. As demonstrated in figure 5, see e.g. the nonhyperbolic saddle Q3, center direc-
tions are shown by single-headed arrows whereas triple-headed arrows represent hyperbolic 
directions.

Following [3], we describe the invariant manifolds of Q3 and Q6 using the original coordi-
nates (y, z) of C as follows.

Lemma 1.2.  Consider any α > 0, ξ > 0. Then there exists two unique one-dimensional 
(1D) invariant manifolds Wcu(Q6) and Wcs(Q3) for the reduced flow on C with the following 
asymptotics:

z = − log(y)
(

1 +
α

ξy

)
,� (1.14)

z =
ξ

α
y +

(1 + α)ξ

α2 ,� (1.15)

as y → ∞, respectively. Under the flow of X̂ , the manifold Wcu(Q6) is the set of all trajec-
tories with the asymptotics in (1.14) backwards in time (or simply, the ‘unstable set’ of Q6) 
whereas Wcs(Q3) is the set of all trajectories with the asymptotics (1.15) forward in time 
(or simply, the stable set of Q3). Moreover, for α = ξ , Wcs(Q3) and Wcu(Q6) coincide, such 
that there exists a unique orbit on C with the asymptotics in (1.14)α=ξ in backward time and 
(1.15)α=ξ in forward time, respectively (i.e. a ‘heteroclinic’ orbit of X̂). The intersection is 
transverse in (y, z,α)-space:

	(a)	�For α > ξ: Wcu(Q6) is contained within the stable set of Q1, in such a way that z(t) → ∞ 
and z(t)−1y(t) → 0 with y(t) > 0, in forward time, while Wcs(Q3) is contained within the 
unstable set of (y, z) = (0, 0).

	(b)	�For α < ξ: Wcu(Q6) is contained within the stable set of (y, z) = (0, 0), while Wcs(Q3) is 
contained within the unstable set of Q7 with the asymptotics

z = −ξy,

		 for y → ∞ in backward time.

Proof.  This is essentially [3, proposition 5.1]. Notice, in [3], however, the authors use Mel-
nikov theory and only deduce (a) and (b) locally near α = ξ . To show that these statements 
hold for any α > ξ  and α < ξ , respectively, we simply use that H is a Lyapunov function:

dH
dt

(y, z) = −ξe−ξy(ez − 1)z(α− ξ),
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such that sign
( d

dt H(y, z)
)
= −sign(α− ξ) for all y, z �= 0 and α �= ξ . Therefore for α > ξ , H 

increases monotonically along all orbits ( �= (y, z)(t) ≡ (0, 0)) of (1.8). Therefore limit cycles 
cannot exist. Recall that Q1 is a stable node on the Poincaré sphere, while Q7 is an unstable 
node. By Poincaré–Bendixson, Wcu(Q6) is asymptotic to Q1 when α > ξ . The approach is 
similar for α < ξ .� □ 

By this lemma, we obtain the global phase portraits in figure 6 for the reduced problem 
(1.8).

In [3], the authors also apply Poincaré compactification of the full system (1.3) defining 
Φ : S3 ∩ {w̄ > 0} → R3, S3 = {(x̄, ȳ, z̄, w̄) | x̄2 + ȳ2 + z̄2 + w̄2 = 1} by

(x̄, ȳ, z̄, w̄) �→




x = w̄−1x̄,
y = w̄−1ȳ,
z = w̄−1z̄.

� (1.16)

By (1.11) and (1.9), we obtain

C := {(x̄, ȳ, z̄, w̄) ∈ S3 | ȳ + (x̄ + z̄)ξ−1 = 0, w̄ > 0},� (1.17)

as an embedded ellipsoid (or actually a hemisphere hereof) within S3 = 
{(x̄, ȳ, z̄, w̄) | x̄2 + ȳ2 + z̄2 + w̄2 = 1}, the equator of which, along w = 0, contains the corre
sponding points Q1, Q3, Q6 and Q7 along the boundary

C∞ := {(x̄, ȳ, z̄, w̄) ∈ S3 | ȳ + (x̄ + z̄)ξ−1 = w̄ = 0},� (1.18)

Figure 7.  Illustration of the singular cycle Γ0 on the Poincaré sphere for ξ < α < 1. For 
α = 1, γ7 connects directly to Q6 and therefore γ9 ‘disappears’ whereas for α > 1, γ7 
connects to C∞ with z̄ < 0 so that γ9 gets ‘flipped’ on C∞ relative to Q6. This change in 
the singular cycle can be observed in bifurcation diagrams, see figure 30. In this figure, 
we deviate slightly from the notation in remark 1.1, insofar that we use single-headed 
and tripple-headed arrows to separate ‘slow’ pieces from ‘fast’ ones, respectively. That 
is with respect to t in (1.3), the time spend near γ3 ∪ γ4 ∪ γ7 ∪ γ9 tends to zero as 
ε → 0. However, everything within w̄ = 0 is completely degenerate, and we only obtain 
the ‘fast dynamics’ upon several blowup transformations.
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of C, recall also (1.6). For simplicity, we have here used the same symbols for these points as 
a subset S3.

We use the directional charts

φ1 : S3 ∩ {ȳ > 0} → R3,

φ3 : S3 ∩ {z̄ > 0} → R3,

in the following, defined by

(x̄, ȳ, z̄, w̄) �→





x1 = ȳ−1x̄,
z1 = ȳ−1z̄,
w1 = ȳ−1w̄,

� (1.19)

(x̄, ȳ, z̄, w̄) �→





x3 = z̄−1x̄,
y3 = z̄−1ȳ,
w3 = z̄−1w̄,

� (1.20)

respectively (where we again misuse notation slightly by reusing the symbols in (1.12) and 
(1.13) for the new charts). Notice that the coordinate transformation between φ1 and φ3 can be 
derived from the expressions

x1 = y−1
3 x3,

z1 = y−1
3 ,

w1 = y−1
3 w3,

� (1.21)

for z1  >  0 and y 3  >  0. Furthermore, the coordinates in φ1 and φ3 and the original coordinates 
(x, y, z) are related as follows

x = w−1
1 x1 = w−1

3 x3,

y = w−1
1 = w−1

3 y3,

z = w−1
1 z1 = w−1

3 ,

� (1.22)

using (1.16).
Under the compactification defined by (1.16), the critical manifold C ∪ C∞ is also compac-

tified. However, by working in the directional charts, [3] shows that the manifold is nonhyper-
bolic along its boundary C∞ due to the non-trivial eigenvalue λ → 0, exponentially, as points 
on C approach C∞. See also section 3 below.

Following [3], we define a ‘singular’ cycle as follows:

Definition 1.3 ([3, definition 1]).  Let the points Q1,2,4,5,6 be given by

Q1
3 = (−1, 0, 0),

Q2
3 = (−1 − α, 0, 0),

Q4
3 =

(
−1 − α,

2α
ξ

, 0
)

,
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in the coordinates (x3, y3, w3) of chart φ3, see (1.20),

Q5
1 =

(
− ξ

2α
(1 + α),

ξ

2α
(1 − α), 0

)
,

Q6
1 = (−ξ, 0, 0),

� (1.23)

in the coordinates (x1, z1, w1) of chart φ1, see (1.19). Then for any α > ξ , we define the (sin-
gular) cycle Γ0 as follows

Γ0 = γ3 ∪ γ4 ∪ γ7 ∪ γ9 ∪ Wcu(Q6),� (1.24)

where

	 •	�γ3 connects Q1 and Q2. In the (x3, y3, w3)-coordinates it is given as

γ3
3 = {(x3, y3, w3) | x3 ∈ (−1 − α,−1], y3 = w3 = 0}.� (1.25)

	 •	�γ4  connects Q2 with Q4. In the (x3, y3, w3)-coordinates it is given as

γ4
3 = {(x3, y3, w3) | x3 = −1 − α, w3 = 0, y3 ∈ [0, 2α/ξ)}.

	 •	�γ7 connects Q4 with Q5. In the (x1, z1, w1)-coordinates it is given as

γ7
1 =

{
(x1, z1, w1) | x1 = − ξ

2α
(1 + α),

z1 ∈
(

ξ

2α
(1 − α),

ξ

2α

]
, w1 = 0

}
.

�
(1.26)

	 •	�γ9 connects Q5 with Q6 on C∞. In the (x1, z1, w1)-coordinates it is given as

γ9
1 =

{
(x1, z1, w1) | x1 = −ξ − z1,

z1 ∈
(

0,
ξ

2α
(1 − α)

]
, w1 = 0

}
,

�
(1.27)

		 for 0 < α < 1. For α = 1, γ9
1 is the empty set, and for α > 1 the interval for z1 has to be 

swapped around such that z1 ∈ [ξ(1 − α)/(2α), 0).
	 •	�Wcu(Q6) is the unique center manifold of Q6 for the reduced problem (1.8), described in 

lemma 1.2, connecting Q6 with Q1 (given that α > ξ) in forward (slow) time.

The segment γ4  belongs to a curve L∞, that the authors in [3], upon blowup (using the 
adapted version in [22] to handle the exponentials), identified as a set of partially hyperbolic 
equilibria (see also proposition 4.8 below for further details). In the (x3, y3, w3)-coordinates, 
it is given as the line

L∞,3 = {(x3, y3, w3) | x3 = −1 − α, w3 = 0, y3 ∈ I},� (1.28)

where I ⊂ R is a large interval. γ3 is given by the contraction towards this manifold. The 
segment γ7 connects Q4 on L∞ with a point Q5 on C∞. The final segment γ9 is a segment on 
C∞ following the ‘desingularized’ reduced slow flow on C∞ (basically using the time that 
produces figure 6). We illustrate Γ0 and the segments in figure 7. Here we represent C as a 
disk and the equator sphere w̄ = 0 (locally) as a cylindrical object containing C∞ as a circle.

In figure 3, we illustrate the set L in the (x, y, z)-coordinates obtained by extending (1.28) 
for w3  >  0 sufficiently small and applying the coordinate change (1.22):
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L = {(x, y, z) | x = (−1 − α)z, y/z ∈ I, z � 0}.� (1.29)

The role of this set (and therefore also the role of L∞, given that the amplitude increases as 
ε → 0) is clearly visible in these diagrams.

Remark 1.4.  [3] presents a heuristic argument for how L appears which we for convenience 
also include here. Divide the right hand side of (1.3) by ez  and suppose that e−2z � ε. Then

ẋ = − (x + (1 + α)z) ,
ẏ = 1,
ż = 0
� (1.30)

to ‘leading order’. The set x = (−1 − α)z, producing (1.29), is an invariant set of (1.30), 
along which y  increases monotonically. But notice that this naive approach does not explain 
how orbits leave a neighborhood of L. For this we need a more detailed analysis, which we 
provide in the present paper.

1.3.  Main results

In this paper, we prove the following result, conjectured in [3].

Theorem 1.5.  Fix ξ > 0 and any compact set K in R3. Then for all α > ξ  the following 
holds:

	(a)	�There exists an ε0 > 0 such that system (1.3) has an attracting limit cycle Γε for all 
0 < ε � ε0. Furthermore, no limit cycles exist within K. In particular, Γε �⊂ K .

	(b)	�Moreover, on the Poincaré sphere S3, recall (1.16), Γε converges in Hausdorff distance to 
the singular cycle Γ0 as ε → 0.

Figure 8.  Illustration of the sections Σ0 and Σ1 at y = δ−1 and z = δ−1, respectively, 
used in the proof of theorem 1.5. Both sections are transverse to the reduced flow on 
C and intersect Wcu in their interior. Also Σ1 is small enough so that it does not contain 
Wcs.
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For α < ξ , the omega limit set ω(K) of K is the unique equilibrium (x, y, z) = (0, 0, 0).

Since the statement about α < ξ  follows directly from Fenichel’s theory and the reduced 
problem, see figure 6(a), we will from now on focus on the statements (a) and (b) for α > ξ . 
The main difficulty in proving this result is that C on S3 ∩ {w̄ > 0}, see (1.17), loses hyper-
bolicity at w̄ = 0 due to the exponential decay of the single (recall (1.7)) non-zero eigenvalue. 
To deal with this type of loss of hyperbolicity, we use the method in [22], developed by the 
present author, to gain hyperbolicity in an extended space.

Besides providing all the details of the analysis to obtain a rigorous proof of theorem 1.5 
we also provide a better overview of the analysis and the many blowup steps (we count 16 
in total). We lay out the geometry of the blowups and detail the charts and the corresponding 
coordinate transformations. Also, in the present manuscript we provide a complete analysis of 
the dynamics near Q6 for ε > 0, which is missing at any level of formality in [3]. Our blowup 
approach allows us to identify an improved singular cycle, consisting of 12 segments, with 
better hyperbolicity properties. The additional segments γ1,2,5,6,8,10,11, not visible in the ‘blown 
down’ version of Γ0 in figure 7, see definition 1.3 and (1.24), are described carefully in sec-
tions 4 and 7, see also figures 15 and 25 from the perspective of φ1 and φ3, respectively. A cor-
ollary of our results, is that the amplitude of the relaxation oscillations grows like O(log ε−1) 
as ε → 0, see remark 5.2 for details.

2.  Proof of the main theorem

To prove theorem 1.5, we first consider the reduced problem (1.8) and α > ξ . Then by lemma 
1.2, Wcu(Q6) intersects y = δ−1 in a single point

q0 = (x0, δ−1, z0),� (2.1)

with

z0 ≈ − log(δ−1)

(
1 +

αδ

ξ

)
,

see (1.14), and x0 = m(δ−1, z0), for δ > 0 sufficiently small. Let N0 be a small neighborhood 
of (x0, z0) in R2. We therefore define a section Σ0 as follows

Σ0 = {(x, y, z) | y = δ−1, (x, z) ∈ N0}.� (2.2)

By lemma 1.2 again, Wcu(Q6) also intersects z = δ−1 in a single point q1 = (x1, y1, δ−1) with 
y 1  >  0 and x1 = m(y1, δ−1) for δ > 0 sufficiently small, recall (1.9). See also [3, proposition 
5.2]. Then we define a section Σ1 as follows

Σ1 = {(x, y, z) | z = δ−1, (x, y) ∈ N1},� (2.3)

where N1 is a small neighborhood of (x1, y1) in R2. See figure 8. Notice that (1.5) is transverse 
to Σ0. Also the reduced flow on C is transverse to Σ1.

2.1. The transition map Π0 : Σ0 → Σ1

Let Π0 : Σ0 → Σ1 be defined for 0 < ε � 1 as the transition mapping obtained by the first 
intersection through the forward flow of (1.3). For ε = 0, we similarly define Π0 : Σ0 → Σ1 as 
the composition of the following mappings: (a) the projection (x, δ−1, z) �→ (x, δ−1, m̃(x, δ−1)) 
onto C defined by the stable, critical fibers. Here m̃(x, y) := −x − ξy, obtained by solving 
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the equation (1.9) for z. (b): the mapping obtained from (x, δ−1, m̃(x, δ−1)) ∈ Σ0 by the first 
intersection with Σ1 through the forward flow of the reduced problem on C. Hence Π0 only 
depends upon x for ε = 0:

Π0(x, δ−1, z; 0) = Π0(x, δ−1, m̃(x, δ−1); 0) ∈ C ∩ Σ1,

for all (x, δ−1, z) ∈ Σ0. Notice, we write Π0(·; ε) to highlight the dependency of Π0 on ε (as a 
parameter).

Lemma 2.1.  Suppose α > ξ . Then for N0 sufficiently small there exists an ε0 > 0 such Π0 
is well-defined and Ck�1-smooth, even in ε ∈ [0, ε0]. In particular

Π0(x, δ−1, z; ε) = Π0(x, δ−1, m̃(x, δ−1); 0) +O(ε).

Proof.  The result follows directly from Fenichel’s theory [12–14, 20]. Indeed, following 
the analysis of the reduced problem, the mapping Π0(·; 0) is described over a compact sub-
manifold S0 ⊂ C . Since C is normally hyperbolic, S0 and the smooth foliation of its stable 
manifold therefore perturb by Fenichel’s theory. In particular, there exists a locally invariant 
slow manifold Sε for all 0 � ε � 1 which is diffeomorphic to—and smoothly O(ε)-close to 
S0. The reduced flow on Sε is therefore smoothly O(ε)-close to the reduced flow on S0 given 
by (1.8). Using the smooth fiber projections, the result then follows.� □ 

2.2. The transition map Π1 : Σ1 → Σ0

The main problem of the proof of theorem 1.5 is to prove the following result: let

Π1 : Π0(Σ0) ⊂ Σ1 → Σ0,� (2.4)

be the mapping obtained by the first intersection by the forward flow. Then the following 
result will enable a proof of theorem 1.5:

Lemma 2.2.  There exist a δ > 0, a sufficiently small set N0, and an ε0 > 0 such that the 
mapping Π1(·; ε) is well-defined and C1 for all 0 < ε � ε0. In particular, Π1(x, y, δ−1; ε) is C1 
o(1)-close to the constant function q0 as ε → 0.

Proof of theorem 1.5.  Let Π = Π1 ◦Π0. Then by lemmas 2.1 and 2.2, Π is a contraction 
for ε � 1. The existence of an attracting limit cycle Γε in theorem 1.5(a) therefore follows 
from the contraction mapping theorem—the attracting limit cycle being obtained as the for-
ward flow of the unique fix-point of Π.

The unboundedness of Γε in (x, y, z) follows from the convergence Γε → Γ0 as ε → 0 on 
the Poincaré sphere. The latter—being the content of theorem 1.5(b)—is a consequence of our 
approach. We actually first ‘derive’ an improved version of Γ0 using successive blowup trans-
formations (working in the charts φ3 and φ1) that allow us to prove lemma 2.2 using several 
applications of standard, local, hyperbolic methods of dynamical systems theory. This gives 
Γε as a ‘perturbation’ of (the blown up) Γ0. In more details, we further decompose Π1 into two 
parts Π17 and Π70 where Π17 : D(Π17) ⊂ Σ1 → Σ7 and Π70 : Σ7 → Σ0. Here Σ7 is an appro-

priate 2D-section, transverse to γ7 (1.26), contained within y3 = 2α(1+ν)
ξ  for ν > 0 small, see 

figure 7 for an illustration. We describe these mappings in details in the following sections, see 
lemmas 5.1 and 8.1. Lemma 2.2 is a consequence of these two intermediate results (see end of 
section 8).� □ 
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2.3.  Outline

In the remainder of this paper, we prove lemma 2.2. Following the proof of theorem 1.5, the 
analysis of Π1 is split into two parts: one part in φ3 (relevant for the description of the mapping 
Π17) and another in φ1 (relevant for the description of the other half of Π1, Π70). In section 3, 
we first describe the blowup analysis in φ3, summarizing the results in section 3.4 before pro-
viding all the details of the analysis in section 4. In section 5, we combine the results of the 
analysis into a rigorous statement on the transition map Π17, see lemma 5.1. The blowups we 
describe in section 3 is (in practice) the result of calculations done in charts. However, given 
the complicated nature of the problem and the repeated blowups required, we feel that pre-
senting these transformations—and the associated geometry—in section 3 before the details 
in section 4 is useful for the readability of the paper. In section 6, we adopt a similar approach 
by first describing the blowup analysis in the chart φ1. However, due to the special essential 
singularity at Q6 on C∞, this blowup analysis will be further divided into three separate steps 
following a ‘blowup’ of (ȳ, z̄, w̄) = (1, 0, 0). Again, in section 3.4, the results of the blowup 
analysis are summarized before all the details are provided, see section 7. In section 8, we 
finally combine the results of the analysis into a rigorous statement on the transition map Π70, 
see lemma 8.1. We end this section with a proof of lemma 2.2. In section 9, we discuss some 
consequences of theorem 1.5 and directions for future work on the topic.

3.  Blowup analysis in chart φ3

In this chart, we obtain the following equations

ẋ3 = −ε(x3 + 1 + α) + x3e−2/w3

(
y3 +

x3 + 1
ξ

)
,

ẏ3 = εw3(1 − e−1/w3) + y3e−2/w3

(
y3 +

x3 + 1
ξ

)
,

ẇ3 = w3e−2/w3

(
y3 +

x3 + 1
ξ

)
,

� (3.1)

using the coordinates (x3, y3, w3), recall (1.20). Here we cover the part of the critical manifold 
C (1.6) with z  >  0 as follows

C3 =

{
(x3, y3, w3) | y3 +

x3 + 1
ξ

= 0, w3 > 0
}

.� (3.2)

This manifold is still a normally hyperbolic and attracting critical manifold of (3.1) in the 
present chart: the linearization about any point in C3 gives

−ξ−1e−2/w3 < 0,� (3.3)

for w3  >  0, as a single nonzero eigenvalue. But we now also obtain {w3  =  0}, corresponding 
(by (1.20)) to the subset of the equator S3 ∩ {w̄ = 0} with z̄ > 0, as a set of fully nonhyper-
bolic critical points for ε = 0. Indeed, the linearization about any point in {w3  =  0} only has 
zero eigenvalues for ε = 0. The boundary of C3 along w3  =  0:

C∞,3 =

{
(x3, y3, w2) | y3 +

x3 + 1
ξ

= 0, w3 = 0
}

� (3.4)

is therefore also fully nonhyperbolic for ε = 0. The exponential decay of (3.3) complicates the 
blowup analysis and the study of what happens near {w3  =  0} and C∞,3 for 0 < ε � 1. We 
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follow the blowup approach in [22], also used in [3], and extend the phase space dimension 
by introducing

q3 = e−2/w3 .� (3.5)

By implicit differentiation, we obtain

q̇3 = 2w−2
3 e−2/w3 ẇ3 = 2w−1

3 q2
3

(
y3 +

x3 + 1
ξ

)
.

We therefore consider the extended system

ẋ = −εw(x + 1 + α) + xwq
(

y +
x + 1
ξ

)
,

ẏ = εw2(1 − e−1/w) + ywq
(

y +
x + 1
ξ

)
,

ẇ = w2q
(

y +
x + 1
ξ

)
,

q̇ = 2q2
(

y +
x + 1
ξ

)
,

ε̇ = 0,

� (3.6)

having here dropped the subscripts, introduced ε as a dynamic variable and finally multi-
plied the right hand side by w  =  w3 (to ensure that w  =  0 is well-defined). This multiplication 
‘trick’ is used frequently in the sequel (and in GSPT, in particular blowup, in general [19, 21]).  
It is important to note that it corresponds to a transformation of time for w  >  0, and the sys-
tems are therefore equivalent there. Now, by construction, the set

{(x, y, w, q, ε) | q = e−2/w},� (3.7)

is an invariant set for this system. But this invariance is implicit in the system (3.6) and we 
shall use it only when needed. Now, we (re-)define C by

C =

{
(x, y, w, q, ε) | y +

x + 1
ξ

= 0, w > 0, q > 0, ε = 0
}

,� (3.8)

in the extended system, using, for simplicity, the same symbol. It is still a hyperplane within 
ε = 0 of partially hyperbolic critical points, now of dimension three, since the linearization 
about any point in C has one single nonzero eigenvalue −wq/ξ. Intersecting (3.8) with the set 
defined in (3.7) gives a 2D manifold which projects to (3.2) (upon removing the subscripts) 
in the (x, y, w)-space. Similarly, {w = ε = 0} and {q = ε = 0} are fully nonhyperbolic sets of 
equilibria for (3.6). The system is therefore very degenerate near

C∞ =

{
(x, y, w, q, ε) | y +

x + 1
ξ

= 0, w = q = 0, ε = 0
}

,� (3.9)

where these degenerate objects intersect the boundary of (3.8): C∞ =  
C ∩ {w = ε = 0} ∩ {q = ε = 0}. Notice (3.9) projects to (3.4) (upon removing the sub-
scripts) in the (x, y, w)-space (which is why we use the same symbol in (3.8)). But the system 
(3.6) is now algebraic to leading order and therefore we can (in principle) apply the classical 
blowup method of [8, 26] to study the dynamics near C∞.
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3.1. The blowup method

Before applying the blowup method to (3.6), we will first briefly review this approach in the 
simple context of a nonhyperbolic equilibrium point z  =  0 for a general system ż = h(z) on 
a neighborhood U ⊂ Rn  and where h : U → Rn is smooth. For further details see e.g. [8, 9, 
26, 28]. We assume (after center manifold reduction) that z  =  0 is fully nonhyperbolic with its 
linearization having only zero eigenvalues. In this paper, I will then say that a blowup of z  =  0 
is a generalized polar coordinate transformation Ψ : [0, r0)× Sn−1 → U defined by:

(r, z̄) �→




z1 = rα1 z̄1,
z2 = rα2 z̄2,

...
zn = rαn z̄n,

where

z̄ ∈ Sn−1 :=

{
(z̄1, z̄2, . . . , z̄n) ∈ Rn |

n∑
i=1

z̄2
i = 1

}
,

and the weights: α = (α1, . . . ,αn) ∈ Nn, such that the following holds: there exists a k ∈ N 
so that

ĥ := r−kh, h = Ψ∗h,� (3.10)

is well-defined on [0, r0)× Sn−1; specifically

ĥ|r=0 �= 0.� (3.11)

In (3.10), h  is the pull-back of h by Ψ. Furthermore, the division of h  by rk in (3.10) is called 
desingularization, and ĥ  is said to be the desingularized vector-field. By (3.11), singularities 
of ĥ  will (or more accurately: may, in dimensions n � 3) have improved hyperbolicity proper-
ties, making the analysis of ĥ  simpler than that of h. Notice also that ĥ  and h are equivalent for 
r  >  0, and we can therefore obtain a complete local description of h near z  =  0 by studying ĥ  
with r ∈ [0, r0). The caveat is obviously that we have transformed a local problem near z  =  0 
to a global one on [0, r0)× Sn−1. For the analysis and for computations, one will typically 
describe ĥ  in the local coordinates provided by the directional charts, see section 3.3 below.

I will call the transformation Ψ the blowup transformation (despite the fact that it is Ψ−1

—and not Ψ—that is blowing up z  =  0 to {r = 0} × Sn−1). Any invariant manifold M of ĥ  
on [0, r0)× Sn−1 gives rise to an invariant ‘manifold’ M = Ψ(M) of h on U. We say that M 
becomes M upon blowing down.

If α1 = α2 = · · · = αn (without loss of generality αi ≡ 1 for all i = 1, 2, . . . , n) then Ψ is 
said to be homogeneous. Otherwise it is called quasi-homogeneous. Relevant to the present 
paper, it is also possible to apply the blowup approach to study sets (lines, planes or more 
generally sub-manifolds) of nonhyperbolic points. The procedure is the same, we just apply a 
blowup of each point in the set. In this way, the sets of nonhyperbolic points are blown up to 
generalized cylinders, see e.g. [21, 23, 24].

Upon blowup additional fully nonhyperbolic singularities may be encountered, see [9, 28] 
and [24] for an example. In these situations, blowup has to be used successively. This is 
also the case in the present φ3-chart. In fact, we will have to use five consecutive blowup 
transformations to achieve desirable hyperbolicity properties. In anticipation of the details in 
section 4, we describe these blowup transformations in the following section. In section 3.3, 
we describe the local coordinates used in our analysis. Here we also present two tables, see 
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tables 1 and 2, to help track of the different coordinates, the coordinate changes and the result-
ing differential equations.

3.2.  Blowup transformations in chart φ3

In the first step of our blowup procedure, we blowup the set of degenerate equilibria 
{q = ε = 0} of (3.6). Let

P =
{
(x, y, w, q, ε) ∈ R2 × [0,∞)3} .

P1 =
{
(x, y, w, r, (q̄, ε̄)) ∈ R2 × [0,∞)2 × S1} .

Then we blowup the set {(x, y, w, q, ε) ∈ P | q = ε = 0} to a cylinder through the following 
blowup transformation

Ψ1 : P1 → P,

which fixes x, y  and z and takes

(r, (q̄, ε̄)) �→ (q, ε) = r(q̄, ε̄), r � 0, (q̄, ε̄) ∈ S1.� (3.12)

Clearly, only q̄ � 0, ε̄ � 0 will be relevant. Furthermore, Ψ1 simply corresponds to introduc-
ing polar coordinates in the (q, ε)-plane. We can therefore study a small neighborhood of 
(q, ε) = 0 by studying any (r, (q̄, ε̄)) ∈ [0,∞)× S1 with r � 0 small. But the preimage of 
{q = ε = 0} is a cylinder (x, y, w, (q̄, ε̄)) ∈ R2 × [0,∞)× S1. (This is in the sense that we 
understand blowup.) The mapping Ψ1 produces a vector-field X

1
 on P1 by pull-back of the 

vector-field (3.6) on P. More importantly, the desingularized vector-field X̂1 = r−1X
1
 is well-

defined and non-zero—this is straightforward to see from (3.6). It is therefore X̂1 that we shall 
study in the following.

We illustrate the blowup transformation defined by (3.12) in figure 9. Notice how we artisti-
cally combine the xyw-space into a single coordinate axis. We use red colours and lines, also in 
the following, to indicate what variables and coordinate axes that are included in each blowup 
in figure 9. Specifically, points that are blown up are given red dots. Since we are working in 
five dimensions, some of the figures that will appear in the following will be fairly caricatured. 
We cannot capture everything with these figures. To obtain a more detailed understanding, 
these attempts of ‘global figures’ have to be combined with the ‘local’ ones in section 4.

Now, although the set defined by (q̄, ε̄) = (1, 0), r  =  0 is partially hyperbolic for X̂1 (which 
we will use later in section 4.7, see also figure 20), this set loses hyperbolicity along the line 

Figure 9.  First cylindrical blowup of q = ε = 0.
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defined by x = −1 − ξy, w = 0 for each y  (corresponding to C∞ (3.9)). In the next step, we 
therefore blowup this set. Let

P2 =
{
(y, r, ρ, (x̄, w̄, ¯̄ε)) ∈ R× [0,∞)2 × S2} .

We then apply the blowup transformation

Ψ2 : P2 → P1,

which fixes y  and r and takes

Figure 10.  In these figures, the ‘blown down’ diagrams are on top while the 
corresponding ‘blown up’ pictures are sketched below. A similar convention will appear 
in later figures, although sometimes we will rotate the diagram, recall figure 9. Notice 
that our view is from w  >  0, the w-axis coming out of the picture. The directions of the 
remaining x- and y -axes are indicated. In particular, the x-axis is directed downwards. 
In (a): second blowup of C∞, see (3.9), along q̄ = 1. The spheres indicated below 
are blown versions of the (red) points on C∞ shown on top, each involving the extra 
dimensions due to q and ε, see details in (3.13). The sphere at y   =  0 (enlarged) is extra 
special since this point, corresponding to Q1, is a stable node of the reduced problem. 
The blowup produces normal hyperbolicity of C all the way up to (an improved version 
of) C∞ (indicated by smaller tripple-headed arrows). This enables an extension of the 
slow manifold, in the usual way [26]. In (b): third blowup step. Here we blowup a line of 
equilibria (indicated by red points in the top half of the figure), emanating from the fully 
nonhyperbolic ‘north pole’ of the sphere obtained in the second step, see figure (a). This 
gives rise to a cylinder (also in red in the blowup figure below), its axis being formed by 
the quarter circle with q̄ � 0, ε̄ � 0.
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(y, ρ, (x̄, w̄, ¯̄ε)) �→




x = −1 − ξy + ρx̄,
w = ρw̄,
q̄−1ε̄ = ρ¯̄ε.

ρ � 0, (x̄, w̄, ¯̄ε) ∈ S2.� (3.13)

Clearly, we can study a small neighborhood of x = −1 − ξy, w = 0, (q̄, ε̄) = (1, 0) by 
studying (ρ, (x̄, w̄, ¯̄ε)) ∈ [0,∞)× S2 with ρ � 0 small for any y . As before, the mapping Ψ2 

gives rise to a vector-field X
2
= Ψ2∗(X̂1) on P2 by pull-back of X̂1 on P1. Now, for example 

by working in the local charts described below, we find that X
2
 has ρ  as a common factor and 

we therefore study X̂2 = ρ−1X
2
 in the following. For this X̂2, we find an improved partially 

hyperbolic version of C∞, which allow us to extend the slow manifold up close to Q1, in the 
usual way see [26]. See an illustration of the second blowup step in figure 10(a).

Let

P3 =
{
(y, r, ρ, �, (¯̄x, ¯̄w)) ∈ R× [0,∞)3 × S1} .

Then in the third step, we find that x̄ = w̄ = 0, ¯̄ε = 1, ρ � 0 for each y  is a set of nonhy-
perbolic points within P2 for X̂2. We therefore blowup this set through the following quasi-
homogeneous blowup transformation

Ψ3 : P3 → P2

which fixes y , r and ρ  and takes

(�, (¯̄x, ¯̄w)) �→
{
¯̄ε−1x̄ = �¯̄x,
¯̄ε−1w̄ = �2 ¯̄w,

� � 0, (¯̄x, ¯̄w) ∈ S1.� (3.14)

We illustrate this in figure  10(b). Clearly, we can study a small neighborhood of 
(x̄, w̄, , ¯̄ε) = (0, 0, 1) by studying (�, (¯̄x, ¯̄w)) ∈ [0,∞)× S2 with � � 0 small. Ψ3 gives a vec-

tor-field X
3
= Ψ3∗(X̂2) on P3 by pull-back of X̂2 on P2. The weights on �  in (3.14) are so that 

X
3
 has �  as a common factor and we therefore study the ‘improved’ vector-field defined by 

X̂3 = �−1X
3
.

In the following, we define

Ψ12 : P2 → P
and

Ψ123 : P3 → P
by the compositions

Ψ12 = Ψ1 ◦Ψ2, Ψ123 = Ψ12 ◦Ψ3.

Therefore by (3.12)–(3.14) (see also remark 3.1)

Ψ12 : (y, r, ρ, (x̄, w̄, ¯̄ε)) �→




x = −1 − ξy + ρx̄,
y = y
w = ρw̄,
q = r√

1+ρ2 ¯̄ε2
,

ε = rρ¯̄ε√
1+ρ2 ¯̄ε2

,

� (3.15)
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Ψ123 : (y, r, ρ, �, (¯̄x, ¯̄w)) �→




x = −1 − ξy + ρ�¯̄x√
1+�2¯̄x2+�4 ¯̄w2

,

y = y

w = ρ�2 ¯̄w√
1+�2¯̄x2+�4 ¯̄w2

,

q = r√
1+ ρ2

1+�2¯̄x2+�4¯̄w2

,

ε =
rρ 1√

1+�2¯̄x2+�4¯̄w2√
1+ ρ2

1+�2¯̄x2+�4¯̄w2

.

� (3.16)

Remark 3.1.  The expressions in (3.15) and (3.16) follow from simple calculations. For 
example, given that (q̄, ε̄) ∈ S1, it follows from the last equality in (3.13) that

(q̄, ε̄) =

(√
1 + ρ2¯̄ε2,

ρ¯̄ε√
1 + ρ2¯̄ε2

)
.

Similarly, since (x̄, w̄, ¯̄ε) ∈ S2 we can also write the right hand side of (3.14) as

Figure 11.  In these figures, the ‘blown down’ pictures are on the left, whereas the 
‘blown up’ versions are on the right (as in figure 9). In both figures, we show a view 
from x  <  0, the x-axis ‘entering’ the page. The directions of the remaining axes w and 
y  are indicated by arrows. In (a): fourth blowup step, part a, blowing up C∞ (red points 
in the ‘blown down’ picture on the left), see (3.9), to a cylinder (in red in the ‘blown 
up’ picture on the right). In (b): fourth blowup step, part b. Here we blow up a line of 
equilibria (red points on the left) q̄ = 0, w̃ = 0 on the cylinder (also on the right in 
figure  (a)) producing a new cylinder (also in red on the right) along the negative x-
direction.
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(x̄, w̄, ¯̄ε) =

(
�¯̄x√

1 + �2¯̄x2 + �4 ¯̄w2
,

�2 ¯̄w√
1 + �2¯̄x2 + �4 ¯̄w2

,
1√

1 + �2¯̄x2 + �4 ¯̄w2

)
.

In the fourth step, we first return to P1 near (q̄, ε̄) = (0, 1). Notice that this implies ρ  large 
in (3.13). We therefore proceed as follows in two steps (enumerated a and b). (Eventually in 
lemma 3.3 we will connect these steps with Φ123, see also figure 11(c).) Let

P4a =
{
(y, r,σ, (x̃, w̃), (q̄, ε̄)) ∈ R× [0,∞)2 × S1 × S1} .

Then, we first blowup the set C∞ of nonhyperbolic points of X̂1 defined by x = −1 − ξy, w = 0 
through the blowup transformation

Ψ4a : P4a → P1,

which fixes y , r and (q̄, ε̄) and takes

(y,σ, (x̃, w̃)) �→
{

x = −1 − ξy + σx̃,
w = σ2w̃.� (3.17)

Crucially, the exponents of σ in (3.17) coincide with the exponents on �  in (3.14). For r  =  0, 
(3.17) is still a blowup of C∞. We illustrate the blowup in figure 11(a). Ψ4a gives a vector-field 

X
4a

= Ψ4a∗(X̂1) on P4a by pull-back of X̂1 on P1. Here X
4a

= σX̂4a, with X̂4a well-defined. It 
is X̂4a that we shall study.

Next, let

P4b =
{
(y, r,σ,π, (˜̃w, ˜̄q)) ∈ R× [0,∞)3 × S1} .

Then we blowup the set of nonhyperbolic points for X̂4a defined by x̃ = −1, w̃ = 0, ε̄−1q̄ = 0 
within P4a for each y  through the blowup transformation Ψ4b : P4b → P4a which fixes y , r and 
σ and takes

(π, (˜̃w, ˜̄q)) �→
{

x̃−2w̃ = π ˜̃w,
ε̄−1q̄ = π˜̄q,

π � 0, (˜̃w, ˜̄q) ∈ S1.� (3.18)

Figure 12.  Similar to figure  11(b), but now—following lemma 3.3—using the 
viewpoint in figure 10(b).
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We illustrate the fourth blowup step in figure 11, see also figure 12, using the viewpoint of 
figure 10(b). (See also lemma 3.3 below).

Ψ4b gives X
4b

= Ψ4b∗(X̂4a) on P4b by pull-back of X̂4a on P4a. Now, X
4b

= πX̂4b and it is 
X̂4b that we study.

We now define

Ψ14a : P4a → P, Ψ14a4b : P4b → P,

as the compositions

Ψ14a = Ψ1 ◦Ψ4a, Ψ14a4b = Ψ1 ◦Ψ4a ◦Ψ4b.

Therefore by (3.12), (3.17) and (3.18) (see also remark 3.2)

Ψ14a : (y, r,σ, (x̃, w̃), (q̄, ε̄)) �→





x = −1 − ξy + σx̃,
y = y
w = σ2w̃,
q = rq̄,
ε = rε̄,

and

Ψ14a4b : (y, r,σ,π, (˜̃w, ˜̄q)) �→




x = −1 − ξy + σχ
(
π ˜̃w

)
,

y = y

w = σ2χ
(
π ˜̃w

)2
π ˜̃w,

q = rπ˜̄q√
1+π2˜̄q2

,

ε = r√
1+π2˜̄q2

.

� (3.19)

Here χ : R → (−1, 0) is the unique, negative-valued, smooth function

χ : R → (−1, 0), χ( p) =



−1 if p = 0

−
√√

4p2+1−1
√

2 | p| otherwise
,

satisfying χ( p)2 + χ( p)4p2 = 1.

Remark 3.2.  Notice that since (x̃, w̃) ∈ S1 and (q̄, ε̄) ∈ S1 it follows from simple  
calculations that the right hand side of (3.18) can be written as

(x̃, w̃) =
(
χ
(
π ˜̃w

)
,χ

(
π ˜̃w

)2
π ˜̃w

)
,

(q̄, ε̄) =

(
π˜̄q√

1 + π2˜̄q2
,

1√
1 + π2˜̄q2

)
.

Lemma 3.3.  Let

U3 = {(y, r, ρ, �, (¯̄x, ¯̄w)) ∈ P3 | ρ > 0, � > 0, ¯̄x < 0, ¯̄w > 0},

and

V4b = {(y, r,σ,π, (˜̃w, ˜̄q)) ∈ P4b |π > 0, ˜̃w > 0, ˜̃q > 0}.
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Then there exists a diffeomorphism M : U3 ⊂ P3 → V4b ⊂ P4b such that

Ψ13|U3 = Ψ14a4b ◦ M.

Proof.  Clearly, M fixes y  and r and takes

(r, ρ, �, (¯̄x, ¯̄w)) �→ (σ,π, (˜̃w, ˜̄q)).

We solve for (σ,π, (˜̃w, ˜̄q)) directly using (3.16) and (3.19). This gives,

x−2w =
√

1 + �2¯̄x2 + �4 ¯̄w2ρ−1¯̄x−2 ¯̄w = π ˜̃w,

ε−1q =
√

1 + �2¯̄x2 + �4 ¯̄w2ρ−1 = ˜̄qπ,
� (3.20)

the first set of equalities due to (3.16), the latter ones due to (3.19). Therefore by division

˜̄q−1 ˜̃w = ¯̄x−2 ¯̄w,

and hence we obtain a unique (˜̄q, ˜̃w) ∈ S1 with ˜̄q > 0, ˜̃w > 0 for every (¯̄x, ¯̄w) ∈ S1 with ¯̄x > 0 
and ¯̄w > 0. From here π can be determined by

π = ˜̃w−1
√

1 + �2¯̄x2 + �4 ¯̄w2ρ−1¯̄x−2 ¯̄w,

using (3.20). Finally,

σ = χ(π ˜̃w)−1ρ�¯̄x/
√

1 + �2¯̄x2 + �4 ¯̄w2.

Similar calculations gives the inverse of M on M(U) = V4b.� □ 

This result means that the diagram in figure 13 commutes and that we can study X̂3 on U3 

using X̂4b on M(U3) = V4b since X
4b

= M∗(X
4
) there. The latter property is important for 

connecting results for X̂3 on P3 with results for X̂4b on P4b.
In the analysis of the fourth blowup, we will find that σ eventually increases while π 

remains small. To cover this part, where C∞ plays no role, it is easiest to skip the first part of 
the fourth blowup (3.17), see also local form in (3.29) below, and just do a polar blowup of 
w = 0, (ε̄, q̄) = (1, 0) as follows:

Ψ5 : (µ, (w̃, ˜̄q)) �→ (w, ε̄−1q̄) = µ(w̃, ˜̄q), µ � 0, (w̃, ˜̄q) ∈ S1,

fixing x, y  and r2. Here Ψ5 : P5 → P1 where

Figure 13.  Commutative diagram.
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Figure 14.  Fifth blowup step near L∞, see (3.21), where this blowup is used. We view 
the system from the x  <  0 side, the x-axis ‘entering’ the page. In this picture, we blowup 
w = q̄ = 0 to a circle. Geometrically, this produces the red cylinder and dynamically 
it injects partial hyperbolicity (indicated by black triple-headed arrow) of an improved 
version of L∞. This gives rise to a slow flow on L∞ (indicated by the thick red orbit 
with a single-headed arrow). We also indicate two important planes q̄ = w = 0 (furthest 
away) and ε̄ = w = 0 (nearest) by gray shading. An essential step in our construction 
of the improved singular cycle, will be a transition between these planes. Basically, the 
dynamics near L∞ occurs close to the former whereas the dynamics close to C∞ occurs 
along the latter.

P5 = {(x, y, r2,µ, (w̃, ˜̄q)) ∈ R2 × [0,∞]2 × S1}.

We put Ψ15 = Ψ1 ◦Ψ5. We illustrate this final blowup in figure 14 near

L∞ := {(x, y, w, q, ε) | x = −1 − α, y ∈ I, w = q = ε = 0},� (3.21)

recall also (1.28) and remark 1.4.

3.3.  Local charts and the corresponding directional blowup transformations

We use separate directional charts to describe the blowup transformations defined in the previ-
ous section. For the first blowup Ψ1, for example, we will use two separate charts obtained by 
central projections onto the planes q̄ = 1 and ε̄ = 1, respectively. We call these charts (q̄ = 1)1 
and (ε̄ = 1)2, respectively. The mapping from local coordinates to (q, ε) is obtained by setting 
q̄ = 1 and ε̄ = 1, respectively, in (3.12). These charts therefore give the following local forms 
of the blowup Ψ1:

Ψ1
1 : (r1, ε1) �→

{
q = r1,
ε = r1ε1,� (3.22)

Ψ1
2 : (r2, q2) �→

{
q = r2q2,
ε = r2

� (3.23)
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where (x, y, w, r1, ε1) and (x, y, w, r2, q2) are the local coordinates in the two charts. We can 
change coordinates between these charts through the following expressions:

r2 = r1ε1,

q2 = ε−1
1 ,� (3.24)

for ε1 > 0. For the second blowup Ψ2, described by the equation  (3.13), we work in the 
chart (q̄ = 1)1 such that q̄−1ε̄ = ε1 � 0. Subsequently we then use local charts to describe 
(x̄, w̄, ¯̄ε) ∈ S2 by setting w̄ = 1, ¯̄ε = 1 and finally x̄ = 1. We refer to each of these local charts 
as (q̄ = 1, w̄ = 1)11, (q̄ = 1, ¯̄ε = 1)12 and (q̄ = 1, x̄ = 1)13, respectively. They produce the fol-
lowing local forms of the second blowup Ψ12 = Ψ1 ◦Ψ2:

Ψ12
11 : (y, r1, ρ1, x1, ε11) �→





x = −1 − ξy + ρ1x1,
w = ρ1

q = r1,
ε = r1ρ1ε11,

� (3.25)

Ψ12
12 : (y, r1, ρ2, x2, w2) �→





x = −1 − ξy + ρ2x2,
w = ρ2w2,
q = r1,
ε = r1ρ2,

,� (3.26)

using (y, r1, ρ1, x1, ε11) and (y, r1, ρ2, x2, w2), as the local coordinates in these charts 
(q̄ = 1, w̄ = 1)11, (q̄ = 1, ¯̄ε = 1)12, respectively. We can change coordinates between 
(q̄ = 1, w̄ = 1)11 and (q̄ = 1, ¯̄ε = 1)12 through the following expressions:

ρ2 = ρ1ε11,

x2 = ε−1
11 x1,

w2 = ε−1
11 ,

� (3.27)

for ε11 > 0. We summarize the information about the charts used for the first two blowups in 
table 1.

For the third blowup Ψ3, we work in the chart (q̄ = 1, ¯̄ε = 1)12 where

¯̄ε−1x̄ = x2, ¯̄ε−1w̄ = w2.

Then we plug in ¯̄w = 1 into (3.14) and obtain the chart (q̄ = 1, ¯̄ε = 1, ¯̄w = 1)122, respectively. 
Within this charts we obtain the following local form of the blowup Ψ123 = Ψ1 ◦Ψ2 ◦Ψ3:

Ψ123
122 : (y, r1, ρ2, �2, x22) �→




x = −1 − ξy + ρ2�2x22,
w = ρ2�

2
2

q = r1,
ε = r1ρ2,

� (3.28)

using (y, r1, ρ2, �2, x22) as local coordinates.
For the fourth blowup Ψ4, we first work in the chart (ε̄ = 1)2. Then we plug in x̃ = −1 into 

(3.17) to obtain a chart for the description of (x̃, w̃) ∈ S1 in a neighborhood of (x̃, w̃) = (−1, 0). 
This produces the local chart (ε̄ = 1, x̃ = −1)21 in which Ψ14a = Ψ1 ◦Ψ4a takes the following 
local form

Ψ14a
21 : (y, r2,σ1, w1, q2) �→




x = −1 − ξy − σ1,
w = σ2

1w1,
q = r2q2,
ε = r2,

� (3.29)
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using (y, r2,σ1, w1, q2) as coordinates in this chart. Within (ε̄ = 1, x̃ = −1)21 we have

x̃−2w̃ = w1,

ε̄−1q̄ = q2,

and therefore (3.18) becomes

w1 = π ˜̃w,
q2 = π˜̄q.

We therefore plug in ˜̄q = 1 and obtain the chart (ε̄ = 1, x̃ = −1, ˜̄q = 1)211 and the following 
local form of Ψ14a4b = Ψ1 ◦Ψ4a ◦Ψ4b:

Ψ14a4b
211 : (y, r2,σ1,π1, w11) �→




x = −1 − ξy − σ1,
w = σ2

1π1w11,
q = r2π1,
ε = r2,

� (3.30)

using (y, r2,σ1,π1, w11) as local coordinates.
Following lemma 3.3, we can change coordinates between (ε̄ = 1, x̃ = −1, ˜̄q = 1)211 and 

(q̄ = 1, ¯̄ε = 1, ¯̄w = 1)122 through the following expressions:

π1 = ρ−1
2 ,

r2 = r1ρ2,
σ1 = ρ2�2x22,

w11 = x−1
22

� (3.31)

for ρ2 > 0 and x22  >  0.
We describe the fifth blowup transformation Ψ5 using the chart (ε̄ = 1, w̃ = 1)21 and 

(ε̄ = 1, ˜̄q = 1)22 such that Ψ15 = Ψ1 ◦Ψ5 becomes

Ψ15
21 : (r2,µ1, q21) �→




q = r2µ1q21,
ε = r2,
w = µ1,

� (3.32)

Ψ15
22 : (r2,µ2, w2) �→




q = r2µ2,
ε = r2,
w = µ2w2,

� (3.33)

Table 1.  Details about the charts used for the first two blowups. The second to last row 
(‘Equations’) contains the equation numbers of the local forms of the desingularized 
vector-fields, and the corresponding section numbers where these systems are analyzed. 
The last row (‘Coordinate changes’) contains the equation numbers for the coordinate 
changes between the corresponding columns.

1st blowup 2nd blowup

Charts (q̄ = 1)1 (ε̄ = 1)2 (q̄ = 1, w̄ = 1)11 (q̄ = 1, ¯̄ε = 1)12

Coordinates (x, y, w, r1, ε1) (x, y, w, q2, r2) (y, r1, ρ1, x1, ε11) (y, r1, ρ2, x2, w2)

Local blowup Ψ1
1 (3.22) Ψ1

2 (3.23) Ψ12
11 (3.25) Ψ12

12 (3.26)

Equations (4.19), section 4.7 (4.1), section 4.1 (4.10), section 4.2

Coordinate changes (3.24) (3.27)
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in the local coordinates (x, y, r2,µ1, q21) and (x, y, r2,µ2, w2), respectively. Notice, that we can 
change coordinates between (ε̄ = 1, w̃ = 1)21 and (ε̄ = 1, x̃ = −1, ˜̄q = 1)211 through the fol-
lowing expressions

µ1 = σ2
1π1w11,

q21 = σ−2
1 w−1

11 ,
x = −1 − ξy − σ1.

� (3.34)

Also, between (ε̄ = 1, w̃ = 1)21 and (ε̄ = 1, ˜̄q = 1)22 we have the following equations

µ2 = µ1q21,

w2 = q−1
21 .� (3.35)

We summarize the information about the charts used for the third, fourth and fifth blowup 
in table 2.

3.4.  A summary of the findings in chart φ3

The full details of the analysis of the blowup systems, working in the charts described in sec-
tion 3.3, are available in section 4. Essentially, our approach injects improved hyperbolicity 
properties into parts of the singular cycle visible in the chart φ3. In doing so, we also identify 
segments that are only visible upon blowup. In section 5, we combine the findings of section 4 
into a result, see lemma 5.1, on the transition map Π17. In the following, we will first sum-
marise our findings, focussing in particular on the description of the hidden segments γ1–7 of 
Γ0 obtained upon blowup. (Only γ3 and γ4  are visible upon blowing down, recall figure 7.) 

Figure 15.  Parts of the blown up singular cycle visible in chart φ3. The improved 
hyperbolicity properties of the segments γ1–7 allow us to prove lemma 5.1. In (a): γ1–3 
using the viewpoint in figure 11(c). In (b): γ3–7 using the viewpoint in figure 11(d). 
Notice that in (b), γ3 and γ4  are contained within the plane q̄ = w = 0, whereas γ7 is 
contained within ̄ε = w = 0. γ5 and γ6  connect these orbit segments. Along these orbits, 
ε̄  is therefore decreasing. Essentially, γ1–7 provide a route from ε̄ = 0, into q̄ = 0 and 
back again. Furthermore, the dynamics near q̄ = 0 is dominated by an ‘improved L∞
’ whereas the dynamics within ε̄ = 0 is dominated by an improved version of C∞. See 
further details in section 4; here we will also define qi’s as the points where the γi’s 
‘depart’ from.
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Figure 15 provides an illustration of the blown up cycle using the viewpoints in figures 11(c) 
and (d).

Firstly, by working in the chart (q = 1, w = 1)11 associated with the second blowup trans-
formation Ψ12 and the vector-field X̂2, we are able to extend the hyperbolicity of the critical 
manifold up to a neighborhood of the ¯̄ε = 0-equator of the sphere (x̄, w̄, ¯̄ε) ∈ S2. This enables 
us to extend the slow manifold as a center manifold, in the usual way [26], and hereby guide 
a neighborhood of Wcu(Q6) close to a heteroclinic connection γ1 on the sphere (x̄, w̄, ¯̄ε) ∈ S2, 
see also figure 10(a), section 4.1 and proposition 4.2. In fact, we show that the contraction of 
the slow flow on C towards Q1, recall figure 6, produces a contraction towards γ1 for ε � 1, see 
lemma 4.4. (In turn, this gives rise to the contraction of the full return mapping Π = Π1 ◦Π0, 
which is used to prove the existence of the attracting limit cycle, recall section 2.)

By the third blowup, we gain hyperbolicity of the forward limit point of γ1 and subsequently 
follow a 1D unstable manifold γ2  (defined in (4.12) in the chart (q̄ = 1, ¯̄ε = 1, ¯̄w = 1)122) 
towards (q̄, ε̄) = (0, 1). See section 4.3. We gain hyperbolicity of the forward limit point of γ2  
by the fourth blowup transformation and follow an unstable manifold γ3 (see (4.14)). Then by 
working in the chart (ε̄ = 1, w̃ = 1)21, we find that γ3 is attracted towards a center manifold 
based on L∞ : x = −1 − α, w = 0, y ∈ I , recall (1.28); see also section 4.5. On this center 
manifold, we desingularize the slow flow and follow γ4 . Along γ4 , we find that y  is increasing, 
recall remark 1.4. At y = 2α/ξ, γ4  ends along a line of equilibria of saddle-structure. We sub-
sequently follow the unstable manifold γ5, along which q̄ is increasing. By the fifth blowup, 
we gain hyperbolicity of the forward limit point of γ5 and subsequently follow an unstable 
manifold γ6 . See (4.16) and figure 19. γ6  is asymptotic to a normally hyperbolic set of equilib-
ria defined by (q̄, ε̄) = (1, 0), r  =  0. Upon desingularization, we obtain a slow flow within this 
manifold which produces γ7. These last segments are described by the chart (ε̄ = 1, ˜̄q = 1)22 
and by (ε = 1)1 in section 4.7. γ7 is asymptotic to C∞—where the set (q̄, ε̄) = (1, 0), r  =  0 
loses hyperbolicity—but this part is better described in chart φ1, see section 6.

4.  Blowup dynamics in chart φ3

In this section we describe the dynamics in chart φ3 using the blowup and the charts presented 
in section 3.

Remark 4.1.  In the following, we will need to introduce several new symbols. In general, 
Mi will be reserved to denote center manifold extensions of the slow manifold Sε. Here the 
subscript i will reflect the subscript used in the corresponding chart. However, an Mj with 
j �= i will not necessarily correspond to Mi in a separate chart since the domains for these 

Table 2.  Details about the charts used for the third, fourth and fifth blowup. The 
rows have the same meaning as in table 1. In particular, the last two rows contain the 
equation numbers for the coordinate changes between the corresponding columns.

3rd blowup 4th blowup, part b 5th blowup

(q̄ = 1, ¯̄ε = 1, ¯̄x = −1)122 (ε̄ = 1, x̃ = −1, ˜̄q = 1)211 (ε̄ = 1, w̃ = 1)21 (ε̄ = 1, ˜̄q = 1)22

(y, r1, ρ2, �2, x22) (y, r2,σ1,π1, w11) (x, y, r2,µ1, q21) (x, y, r2,µ2, w2)

Ψ13
122  (3.28) Ψ14a14b

211  (3.30) Ψ15
21 (3.32) Ψ15

22 (3.33)

(4.11), section 4.3 (4.13), section 4.4 (4.15), section 4.5 (4.18), section 4.6

(3.31) (3.35)

(3.34)
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(often local) manifolds will not necessarily overlap. The same applies to other objects Ci , Ni , 
Pi, Li, Hi and Ui  introduced in the following. Here Ci  and Li will be reserved to improved 
versions of C∞ and L∞ (that blow down to these manifolds in the (x, y, w)-space) whereas Pi 
and Hi will refer to various new 2D and 1D invariant manifolds that appear along the way. Im-
portant points and orbits are denoted by q j

i  and γ j
i , where j  is the number system used for the 

segments on the (improved) singular cycle and where i corresponds to the chart. The number 
system we follow is so that γ j

i  (γ j+1
i ) ‘ends’ (‘begins’, respectively) at q j+1

i .

We will also introduce various smooth functions hi and Hi in the following. The functions 
hj  and hi with i �= j will in general denote different functions (as opposed to the same function 
in different coordinates). Same applies to the Hi’s.

4.1.  Dynamics in (q = 1, w = 1)11

In this chart, we obtain the following equations

ẏ = ρ1

(
ε11ρ1F(ρ1) + y

x1

ξ

)
,

ṙ1 = 2r1
x1

ξ
,

ρ̇1 = ρ2
1

x1

ξ
,

ẋ1 = −x1

ξ
− ε11(ρ1x1 − ξy + α) + ρ1ε11ξF(ρ1),

ε̇11 = −ε11
x1

ξ
(2 + ρ1)

� (4.1)

by (3.6) using Ψ12
11, see (3.25). Here F(ρ1) = 1 − e−1/ρ1 . Notice that r1-decouples. At this 

stage, we therefore proceed with the (y, ρ1, x1, ε11)-subsystem only. We notice that the point 
q1

11, defined by (y, ρ1, x1, ε11) = 0, is an equilibrium of the system with −ξ−1 as a single non-
zero eigenvalue. We therefore obtain an extension of the slow manifold as a center manifold 
using standard center manifold theory:

Figure 16.  Illustration of the result in lemma 4.4. Our view is from ρ1 > 0, the ρ1-axis 
‘coming out’ of the page. Within the center manifold M11, the orbit γ1

11,loc, contained 
within ρ1 = 0, is a local unstable manifold of the point q1

11 on the degenerate line 
ρ1 = ε1 = 0, being defined by (y, ρ1, ε11) = (0, 0, 0).
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Proposition 4.2.  Fix η ∈ (0, 1). Then there exists a δ > 0 and a small neighborhood U11 of 
(y, ρ1, ε11) = 0 in R3 such that the following holds. There exists a local center manifold M11 
of q1

11 as a graph

x1 = −ε11ξh11(y, ρ1, ε11),� (4.2)

over (y, ρ1, ε11) ∈ U11. Here h11 is a smooth function of the following form

h11(y, ρ1, ε11) = α− ξy +O(ρ1, ε11).� (4.3)

Furthermore, there exists a smooth stable foliation with base M11 and 1D fibers as leaves of 
the foliation. Within x1 ∈ [−δ, δ], (ρ1, y, ε11) ∈ U11, the contraction along any of these fibers 
is at least e−ηξ−1t .

Remark 4.3.  Notice, as usual [26], that M11 provides an extension of the Fen-
ichel slow manifold as a locally invariant manifold, upon restriction to the invariant set 

{ε = r1ρ1ε11, r1 = e−ρ−1} and blowing down, up to

ε11 = δ ⇔ ε = e−w−1
wδ ⇔ w = W(εδ−1)−1.

Here W in the last expression is the principle-value Lambert W function W: 
(−e−1,∞) → (−1,∞), defined by z  =  W(zez) for all z ∈ (−1,∞). Using the asymptotics

W(w) = logw(1 + o(1)),� (4.4)

of W for w → ∞, see e.g. [32], we realise that the slow manifold by M11 is extended up to 
w ≈ log−1 ε−1.

Now, consider the following sections:

Σ1
11 = {(y, ρ1, x1, ε11) | ρ1 = δ, x1 ∈ [−β1, 0), y ∈ [−β2,β2], ε11 ∈ (0,β3]},

Σ1,out
11 = {(y, ρ1, x1, ε11) | ε11 = ν, ρ1 ∈ [0,β4], x1 ∈ [−β1, 0), y ∈ [−β2,β2]},

transverse to the flow. Notice that ρ1 = δ in Σ1
11 becomes z = 1/δ in the original variables 

using (3.25), in agreement with Σ1, see (5.1).
The 1D manifold

γ1
11,loc := M11 ∩ {ρ1 = y = 0},

is invariant and by inserting x1 = −ε11ξh11(0, 0, ε11) into (4.1), using (4.3), it follows that 
ε11 is increasing along this set for ε11 �= 0. In fact, we shall see that γ1

11,loc is a local unstable 
manifold of the point q1

11 of a desingularized flow on M11.
γ1

11,loc intersects Σ1,out
11  in a point q1,out

11  with coordinates

(y, ρ1, x1, ε11) = (0, 0,−νξh11(0, 0, ν), ν).

We now consider the mapping Π1
11 : Σ1

11 → Σ1,out
11  defined as the first intersection by the for-

ward flow. See figure 16. We have the following.

Lemma 4.4.  The mapping Π1
11 is well-defined for appropriately small δ, ν  and βi > 0, 

i = 1, 4. In particular,
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Π1
11(y, x1, δ, ε11) =

(
y+(y, x1, T(y, x1, ε11)), ρ1+(y, x1, T(y, x1, ε11)),

x1+(y, x1, T(x1, ε11)), ν
)

,

with y + , ρ1+, and x1+ being C1 in each of their arguments:

ρ1+(y, x1, T) =
δ

1 + δT
(1 +O(δ)),

y+(y, x1, T) =
y

1 + δT
+

δ log (1 + δT)
α(1 + δT)

+O
(

δ

1 + δT
, e−ce2T

)
,

x1+(y, x1, T) = −νξh11(ρ1+(y, x1, T), y+(y, x1, T), ν) +O(e−ce2T
),

for some c(δ, ν) > 0 sufficiently small and where T(y, x1, ε11) > 0 is the unique solution of the 
following equation

ε̃11(ρ1+, y+, x1+, ν) = ε̃11(δ, y, x1, ε11)e2T(y,x1,ε11)(1 + δT(y, x1, ε11)).� (4.5)

Here ε̃11(ρ, y, x1, ε11) = ε11(1 +O(x1, ε11ξh11(δ, y, ε11))) is a smooth function.

Substituting (4.2) into (4.1) (with r1 decoupled) and dividing the resulting right hand side 
by ε11h11(ρ1, y, ε11), where h11 is defined in (4.3), produce the following equations

ε̇11 = ε11(2 + ρ1),

ρ̇1 = −ρ2
1,

ẏ = −ρ1F(ρ1)

(
y − ρ1F(ρ1)

h11(ρ1, y, ε11)

)
.

� (4.6)

To prove lemma 4.4 we will then use the following result on this reduced problem on M11.

Fact.  There exists two C1, locally defined functions H11 and H̃11 such that

y �→ ỹ = H11(y, ρ1, ε11) = y +O(ρ1),� (4.7)

with inverse

ỹ �→ y = H̃11(ỹ, ρ1, ε11) = ỹ +O(ρ1),

transforms system (4.6) into

ε̇11 = ε11(2 + ρ1),

ρ̇1 = −ρ2
1,

˙̃y = −ρ1

(
ỹ − ρ1

α

)
.

� (4.8)

Proof of fact.  The transformation (4.7) is composed of two steps. First we notice that 
the set defined by ε11 = 0 is a normally hyperbolic invariant set for (4.6) with smooth un-
stable fibers. We can straighten out these fibers through a smooth transformation of the form 
(ρ1, y, ε11) �→ y1. Then the y 1 equation is independent of ε11:

K Uldall Kristiansen﻿Nonlinearity 33 (2020) 2960



2995

ẏ1 = −ρ1

(
y1 −

ρ1F(ρ1)

h11(ρ1, y, 0)

)
.

The (ρ1, y1)-system therefore decouples, and with respect to the time τ  defined by

dτ
dt

= ρ1

this planar systems has a stable, hyperbolic node at the origin. Therefore we can linearize this 
system by a C1 transformation fixing ρ  and taking (ρ, y1) �→ ỹ1. This gives the desired result.
� □ 

Proof of lemma 4.4.  First, we straighten out the stable fibers of M11 by a smooth trans-
formation fixing x1 and taking (y, ρ1, x1, ε11) �→ (ρ̃1, ỹ, ε̃11) of the form

ρ̃1 = ρ1(1 +O(ρ1)),
ỹ = y +O(ρ1),

ε̃11 = ε11(1 +O(x1, ε11ξh11(ρ1, y, ε11))).

The transformation is close to the identity for ρ1, x1 and ε11 sufficiently small and hence invert-
ible by the inverse function theorem. Then the dynamics of (ρ̃1, ỹ, ε̃11) becomes independent 
of x1. Then upon dropping the tildes and dividing the right hand side by ε11h11(ρ1, y, ε11) 
we finally obtain the equations in (4.6). Following the fact above, we apply the local diffeo-
morphism (ρ1, y, ε11) �→ (ρ1, ỹ, ε11), defined by (4.7), and study (4.8) instead. Integrating this 
equation gives

ρ1(T) =
δ

1 + δT
,

ỹ(T) =
ỹ0

1 + δT
+

δ ln(1 + δT)
α(1 + δT)

,

where T is defined by ε11(T) = ν̃ :

ν̃ = ε̃0e2T(1 + δT).� (4.9)

We now transform T back to the original time. This gives the duration of the transition in terms 
of this time. Using the contraction along the stable fibers, then gives the desired result.� □ 

Now, the function T, given implicitly by (4.9), can be expressed in terms of the smooth 
Lambert W function as follows

T(y, x1, ε11) =
1
2

(
W

(
2ν̃e2δ−1

/ε̃0

)
− 2δ−1

)
.

Using the asymptotics (4.4), we obtain the following asymptotics of T in (4.5) as ε11 → 0:

T(y, x1, ε11) =
1
2
log ε−1

11 (1 + o(1)),

after substituting ν̃ = ε̃11(ρ1+, y+, x1+, ν), ε̃0 = ε̃11(δ, y, x1, ε11). In fact, the partial derivatives 
of T with respect to y  and x1 satisfy an identical estimate. We therefore have the following 
corollary:
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Corollary 4.5.  The mapping (y, x1) �→ Π1
11(y, x1, δ, ε11) is C1 O

(
log log ε11
log ε11

)
-close to the 

constant mapping (y, x1) �→ q1,out
11  as ε11 → 0.

4.2.  Dynamics in (q = 1, ¯̄ε = 1)12

In this chart, we obtain the following equations

ẏ = ρ2

(
ρ2w2

2F(ρ2w2) + yw2
x2

ξ

)
,

ρ̇2 = −2ρ2
x2

ξ
,

ẋ2 =
2x2

2

ξ
− w2 (α− ξy + ρ2x2) + w2

x2

ξ
(ρ2x1 − 1)

+ ξρ2w2
2F(ρ2w2),

ẇ2 = w2
x2

ξ
(2 + ρ2w2),

� (4.10)

from (3.6) using (3.26). We then transform q1,out
11  from above to this chart and obtain q1,out

12  with 
coordinates

(y, ρ2, x2, w2) = (0, 0,−ξh11(0, 0, ν), ν−1),

see (3.27). Setting y = ρ2 = 0 in (4.10) gives

ẋ2 =
2x2

2

ξ
− w2 (α− ξy)− w2

x2

ξ
,

ẇ2 = 2w2
x2

ξ
.

In [3], it was shown, using a simple phase portrait analysis that γ1
12, which is γ1

11 in the present 
coordinates, is asymptotic to the nonhyperbolic equilibrium x2 = w2 = 0 within the invari-
ant subset y = ρ2 = 0. Fix a large T  >  0. Then, by regular perturbation theory, we can map a 
sufficiently small neighborhood of q1,out

12  diffeomorphically onto a neighborhood of φT(q1,out
12 ) 

Figure 17.  Illustration of the result in lemma 4.6. γ1
122 is contained within ρ2 = 0, 

approaching the point q2
122 defined by x22 = −

√
ξα, �2 = ρ2 = y = 0. The orbitγ2

122 is 
the unstable manifold of the point q2

122 and is contained within �2 = 0.
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using the flow φt . Due to the loss of hyperbolicity we apply the third blowup transforma-
tion, see (3.14) and (3.16), of x2 = w2 = 0. We describe this in the following using the chart 
(q̄ = 1, ¯̄ε = 1, ¯̄w = 1)122 and the local form of the blowup (3.28).

4.3.  Dynamics in (q̄ = 1, ¯̄ε = 1, ¯̄w = 1)122

Inserting (3.28) into (3.6) produces the following equations:

ẏ = ρ2�
2
2

(
ρ2�2F(ρ2�

2
2) + y

x22

ξ

)
,

ρ̇2 = −2ρ2
x22

ξ
,

�̇2 =
1
2
�2

x22

ξ

(
2 + ρ2�

2
2

)
,

ẋ22 =
x2

22

ξ
− (α− ξy + ρ2�2x22)

+ �2
x22

ξ

(
1
2
ρ2�2x22 − 1

)
+ ξρ2�2F(ρ2�

2
2).

� (4.11)

Now, γ1
12—in these coordinates—becomes γ1

122 which is asymptotic to the equilibrium q2
122 

defined by x22 = −
√
αξ , y = ρ2 = �2 = 0. This point is a stable node within the invariant 

(�2, x22)-plane. We therefore work in a neighborhood of this equilibrium and consider the 
sections

Σ2,in
122 = {(y, ρ2, �2, x22) | �2 = δ, ρ2 ∈ [0,β1], x22 −

√
αξ ∈ [−β2,β2], y ∈ [−β3,β3]},

and

Σ2,out
122 = {(y, ρ2, �2, x22) | ρ2 = ν, �2 ∈ [0,β4], x22 −

√
αξ ∈ [−β2,β2], y ∈ [−β5,β5]}.

Notice the graph H122, defined by x22 = −
√
ξ(α− ξy), y < α

ξ
, ρ2 = �2 = 0, is a curve of 

equilibria of (4.11). It is normally hyperbolic with a 3D stable manifold Ws(H122) within ρ2 = 0 
and a 2D unstable manifold Wu(H122) defined by x22 = −

√
ξ(α− ξy), �2 = 0, ρ2 � 0, 

y < α
ξ

. In particular,
γ2

122 = {(y, ρ2, �2, x22) | y = �2 = 0, x22 = −
√
αξ, ρ2 � 0},� (4.12)

is contained within the unstable manifold and is invariant. See figure 17.
Consider the local mapping Π2

122 from Σ2,in
122 to Σ2,out

122  obtained from the first intersection by 
following the forward flow.

Lemma 4.6.  Π2
122 is well-defined for appropriately small δ > 0, ν > 0 and βi > 0, 

i = 1, . . . , 5. In particular,

Π2
122(y, ρ2, δ, x22) = (y+(y, ρ2, x22), ν, �2+(

√
ρ2), x22+(y,

√
ρ2, x22)),

with �2+ a C1-function,

x22+(y,
√
ρ2, x22) = H122(y, ρ2) +O(

√
ρ2),

with H122 smooth satisfying H122(0, 0) = −
√
αξ . Also

y+(y, ρ2, x22) = y +O(ln(ρ2)ρ2).
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Furthermore, the remainder terms in x22+ and y + are C1 with respect to x22 and y  and the 
orders of these terms as ρ2 → 0 do not change upon differentiation.

Proof.  We divide the right hand side by −x22/ξ . This gives

�̇2 = −1
2
�2

(
2 + ρ2�

2
2

)
,

ρ̇2 = 2ρ2,

and new equations  for x21 and y . It is possible to C1 linearize the (�2, ρ2)-subsystem by a 
transformation fixing ρ2 and taking (�2, ρ2) �→ �̃2 = �2(1 +O(ρ2)) with (�2, 0) �→ �̃2 = �2. 
Now, for the ρ2 = 0 subsystem y  is constant and x22 = −

√
ξ(α− ξy), �̃2 = 0 is a hyperbolic 

stable node for any y < α
ξ

 sufficiently small. We can therefore linearize this subsystem by a 
C1 transformation fixing �̃2 and taking (�̃2, x22) �→ x̃22. Applying these transformations to the 
full system produces

ẏ = O(ρ2�̃
2
2),

ρ̇2 = 2ρ2,
˙̃�2 = −�̃2,
˙̃x22 = −2x̃22 +O(ρ2�̃2).

Integrating these equations gives

x̃22(T) = e−2T x̃22(0) +
∫ T

0
O(e−2(T−s)e2sρ20e−s�20)ds

=
ρ20

ν
x̃22(0) +O(

√
ρ20�20) = O(

√
ρ20),

y(T) = y(0) +O(ln(ρ−1
20 ρ2)ρ20�

2
20),

using that e2T = νρ−1
20  and hence ρ20eT ∼ √

ρ20 . We obtain similar estimates for the deriva-
tives.� □ 

Notice that Π2
122(0, δ, x22, 0) = γ2

122 ∩ Σ2,out
122  for every x22 −

√
αξ ∈ [−β2,β2]. Now, along 

γ2
122, ρ2 is increasing for ρ2 �= 0. We therefore study the dynamics in a neighborhood of this 

orbit in chart (ε̄ = 1, x̃ = −1, ˜̄q = 1)211.

4.4.  Dynamics in (ε̄ = 1, x̃ = −1, ˜̄q = 1)211

In this chart, we obtain the following equations

ẏ = σ2
1π1w11

(
− y
ξ
+ σ1w11F(σ2

1ρ1w11)

)
,

π̇1 = −2π1

ξ
,

σ̇1 = σ1w11G211(y,π1,σ1, w11),

ẇ11 = w11

(
2
ξ
− w11

(
2G211(y,π1,σ1, w11) + σ2

1
π1

ξ

))
,

� (4.13)
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and ṙ2 = 0. Notice that r2 � 0 decouples and we shall therefore work within the 
(y,π1,σ1, w11)-space. Here

G211(y,π1,σ1, w11) = α− σ1 − ξy − σ1π1(σ1 + 1)− σ2
1ξπ1w11F(σ2

1ρ1w11).

Also γ2
122 from chart (q̄ = 1, ¯̄ε = 1, ¯̄w = 1)122 becomes

γ2
211 = {(y,π1,σ1, w11) |π1 > 0, w11 = 1/(αξ), σ1 = 0, y = 0},

using (3.31). It is contained within the invariant set σ1 = 0 where

ẏ = 0,

π̇1 = −2π1

ξ
,

ẇ11 = 2w11

(
1
ξ
− w11(α− ξy)

)
.

Here the 2D graph P211, defined by w11 = 1/(ξ(α− ξy)), over y < α
ξ

, π1 � 0, is invariant. 
This set is foliated by 1D stable manifolds w11 = 1/(ξ(α− ξy)), y = const, π1 � 0 of points 
on the curve H211 of equilibria, defined by w11 = 1/(ξ(α− ξy)), y < α

ξ
, within π1 = 0. In 

particular, γ2
211 is contained within the stable manifold W s(H211) within y   =  0, being asymp-

totic under the forward flow to the point q3
211 defined by w11 = 1/(αξ), y   =  0, π1 = 0 within 

H211.
Next, within the invariant set π1 = 0 we have

ẏ = 0,
σ̇1 = σ1w11 (α− σ1 − ξy) ,

ẇ11 = w11

(
2
ξ
− 2w11 (α− σ1 − ξy)

)
.

For this subsystem, H211 is of saddle type. Indeed, the linearization about any point in this 
set, gives −2/ξ  and 1/ξ as eigenvalues with the stable space purely in the w11-direction and 
the unstable space contained in the (σ1, w11)-plane. It is possible to write the individual local 
unstable manifolds within as graphs:

w11 = H211(y,σ1),

with H211 smooth, such that H211(y, 0) = 1/(ξ(α− ξy)), for σ1 � ν  with ν > 0 sufficiently 
small. Let γ3

211 be the individual unstable manifold of q3
211. Locally it is given as

γ3
211,loc = {(y,π1,σ1, w11) |w11 = H(0,σ1), 0 � σ1 � ν, y = 0, π1 = 0}.

� (4.14)
Therefore, we consider the following sections transverse to the flow:

Σ3,in
211 = {(y,π1,σ1, w11) |π1 = δ, w11 − 1/(αξ) ∈ [−β1,β1], σ1 ∈ [0,β2], y ∈ [−β3,β3]},

Σ3,out
211 = {(y,π1,σ1, w11) |π1 ∈ [0,β4],σ1 = ν, w11 − 1/(αξ) ∈ [−β1,β1], y ∈ [−β5,β5]}.

Let Π3
211 : Σ3,in

211 → Σ3,out
2  be the associated map obtained by the first intersection by applying 

the forward flow.
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Lemma 4.7.  Π3
211 is well-defined for appropriately small δ > 0, ν > 0 and βi > 0, 

i = 1, . . . , 5. In particular

Π3
211(y, δ,σ1, w11) = (y+(y,σ1, w11),π1+(y,σ1, w11), ν, w11+(y,σ1, w11)),

with

π1+(y,σ1, w11) = O(σ2
1),

w11+(y,σ1, w11) = H211(y, ν) +O(σ2
1),

y11+(y,σ1, w11) = y +O(ln(σ−1)σ2
1).

Furthermore, the remainder terms in π1+, w11+ and y 11+ are C1 with respect to y  and w11 and 
the orders of these terms as σ1 → 0 do not change upon differentiation.

Proof.  The proof is similar to the proof of lemma 4.6, using partial linearization and Gron-
wall-like estimation of the remainder. We leave out the details.� □ 

Notice that Π3
211(δ, w11, 0, 0) = γ3

211 ∩ Σ3,out
211 . See figure 18. Notice also that γ3

211,loc in the 
(x, y, w)-variables becomes:

γ3
loc = {(x, y, w) | x ∈ [−1 − ν,−1], y = w = 0},

using (3.30), in agreement with (1.25). (γ1 and γ2 , on the other hand, both ‘collapse’ to Q1 at 
(x, y, w) = (0, 0, 0) upon blowing down. See also figure 15.) To follow γ3

211 forward, we move 
to chart (ε̄ = 1, w̃ = 1)21, see (3.32).

4.5.  Dynamics in (ε̄ = 1, w̃ = 1)21

In this chart, we obtain the following equations

Figure 18.  Illustration of the result lemma 4.7. γ2
211 is contained within σ1 = 0, 

approaching the point q3
211 defined (y,π1,σ1, w11) = (0, 0, 0, 1/(αξ)). The orbit γ3

211 is 
the unstable manifold of q3

211 and is contained within π1 = 0.
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ẋ = −(x + 1 + α) + xµ1q21

(
y +

x + 1
ξ

)
,

ẏ = µ1F(µ1) + yµ1q21

(
y +

x + 1
ξ

)
,

µ̇1 = µ2
1q21

(
y +

x + 1
ξ

)
,

q̇21 = 2q2
21

(
y +

x + 1
ξ

)
(2 − µ1),

� (4.15)

and ṙ2 = 0. Again, r2 decouples and we shall therefore only work with the (x, y,µ1, q21)-sys-
tem. Also γ3

211,loc becomes

γ3
21,loc =

{
(x, y,µ1, q21) | q21 = σ−2

1 H(σ, 0), x = −1 − σ1, σ1 ∈ (0, ν),

y = 0, µ1 = 0
}

,

using (3.34), in the present chart. It is therefore contained within the invariant set µ1 = y = 0 
where

ẋ = −(x + 1 + α),

q̇21 = 2q2
21

x + 1
ξ

.

Notice, that starting from x = −1 − ν with ν > 0 small, x and q21 are both monotonically 
decreasing towards the equilibrium q4

21 defined by (x, q21) = (−1 − α, 0). Therefore, by 
extending γ3

2,loc by the forward flow, we obtain an orbit that is asymptotic to this point. Since 
the x-direction is a stable space and the q-direction is a center space, the orbit γ3

2 approaches 
q4

21 as a local center manifold x = h(q) over 0 � q � δ  which is flat at q  =  0: h(i)(0)  =  0 for 
all i ∈ N. In fact, we have something similar for any y ∈ I  where I is a open interval contain-
ing [0, 2α/ξ]: the line L21, defined by (x,µ1, q21) = (−1 − α, 0, 0), y ∈ I , is a set of equilib-
ria. The linearization about any point in this set gives one single non-zero eigenvalue  −1. 
Since L21 blows down to L∞ : x = −1 − α, w = 0, y ∈ I  using (3.32), we think of L21 as an 
improved version of this original degenerate line. Then, by center manifold theory, we have 
the following:

Proposition 4.8.  Fix η ∈ (0, 1). Then there exists a δ > 0 and a small neighborhood U21 
of (µ1, q21) = 0 in R2 such that the following holds. There exists a locally invariant center 
manifold N21 as a graph

x = −1 − α+ µ1h21(y,µ1, q21),

over (y,µ1, q21) ∈ I × U21. Here h21 is a smooth function. Furthermore, there exists a 
smooth stable foliation with base N21 and 1D fibers as leaves of the foliation. Within 
x + 1 + α ∈ [−δ, δ], (y,µ1, q21) ∈ U21, the contraction along any of these fibers is at least 
e−ηt .

Remark 4.9.  Center manifold theory is (in general) a purely local result [4], that can be 
applied to any partially hyperbolic equilibrium. However, in proposition 4.8 we use the fact 
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that the center manifold theory can be applied to any point on the line L21. This gives the 
desired ‘global’ center manifold N21 in proposition 4.8 by the same theory (in the same 
way that a slow manifold Sε of (1.1) can be obtained as an ε-section of a center manifold 
{Sε × {ε} | ε ∈ (−ε0, ε0)}, only truly local in ε, of the critical manifold S0 × {0} in the ex-
tended space {(x, y, ε)}, obtained by adding ε′ = 0 to the fast time version of (1.1)).

Next, consider the following sections

Σ4,in
21 = {(x, y,µ1, q21) | q21 = δ, x + 1 + α ∈ [−β1,β1], µ1 ∈ [0,β2], y ∈ [−β3,β3]},

Σ5,out
21 = {(x, y,µ1, q21) | q21 = δ, x + 1 + α ∈ [−β1,β1], µ1 ∈ [0,β4], y − 2α

ξ
∈ [−β5,β5]},

and let Π45
21 : Σ4,in

21 → Σ5,out
21  be the associated mapping obtained by the first intersection of the 

forward flow. By reducing the dynamics to the center manifold N21 (and applying a subse-
quent blowup) we will then show that we can guide the forward flow along the following lines

Figure 19.  Illustration of the result in lemma 4.10. Our view is from µ1 > 0 on top 
and from µ11 > 0 below. In the (y,µ1, q21)-variables, the y -axis is a line of equilibria 
(it is a projection of L21). Upon the blowup (q21,µ11) �→ µ1 = q21µ11, which fixes q21, 
this line has improved hyperbolicity properties, in particular we obtain a heteroclinic 
orbit γ4

21—contained within q21  =  0, see also expression (4.16)—between equilibria 
(0, 0, 0) and q5

21 : (2α/ξ, 0, 0) on this axis. It connects γ3
21 with γ5

21, the former being the 
stable manifold of (0, 0, 0) while the latter is the unstable manifold of (2α/ξ, 0, 0). For 
simplicity, we use the same symbols in the two figures (although the axes are different).
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γ4
21 = {(x, y,µ1, q21) | x = −1 − α, y ∈ [0, 2α/ξ),µ1 = q21 = 0},

γ5
21 = {(x, y,µ1, q21) | x = −1 − α, y = 2α/ξ,µ1 = 0, q21 � 0}.

� (4.16)

See figure 19. Notice that γ4
21 belongs to L21 and is obtained through a desingularized (slow) 

flow on N21, see details below. Recall also figure 7. Then we have

Lemma 4.10.  Π45
21 is well-defined for appropriately small δ > 0, ν > 0 and βi > 0, 

i = 1, . . . , 5. In particular,

Π45
21(x, y,µ1, δ) = (x+(x, y,µ1), y+(x, y,µ1),µ1+(x, y,µ1), δ),

with µ1+ a C1-function with µ1+ = µ1(1 + o(1)),

x+(x, y,µ1) = −1 − α+ µ1+(x, y,µ1)νh21(µ1+(x, y,µ1), δ, y+(x, y,µ1)) +O(e−η/µ1),

y+(x, y,µ1) =
2α
ξ

− y +O(µ1 logµ1),

as µ1 → 0. Furthermore, the remainder terms in x+ and y + are C1 with respect to x and y  and 
the orders of these terms as µ1 → 0 do not change upon differentiation.

Proof.  Working in a small neighborhood of N21, we can straighten out the stable fibers by a 
smooth transformation fixing x and taking (x, y,µ1, q21) �→ (ỹ, µ̃1, q̃21) where

ỹ = y +O(µ1),

µ̃1 = µ1 +O(µ2
1q21),

q̃21 = q21 +O(q2
21).

We drop the tildes henceforth and therefore consider the following reduced system on N21.

ẏ = µ1 (F(µ1) + yq21 (ξy − α+ µ1h2(µ1, q21, y)) /ξ) ,

µ̇1 = µ2
1q21 (ξy − α+ µ1h2(µ1, q21, y)) /ξ,

q̇21 = q2
21 (ξy − α+ µ1h2(µ1, q21, y)) /ξ(2 − µ1).

Here µ1 = q21 = 0, y ∈ I , where I is some appropriate interval, is a line of equilibria (it is a 
projection of L21, so we will use reuse this symbol in the following). It is not normally hyper-
bolic since the linearization about any point in L21 only has zero as an eigenvalue. We can gain 
hyperbolicity by applying the directional blowup, setting:

µ1 = q21µ11.

Inserting this into the reduced equations we obtain

ẏ = µ11 (F(q21µ11) + yq21 (ξy − α+ q21µ11h2(q21µ11, q21, y)) /ξ) ,
µ̇11 = 2µ11 (ξy − α+ q21µ11h2(q21µ11, q21, y)) (−1 + q21µ11)/ξ,
q̇21 = q21 (ξy − α+ q21µ11h2(q21µ11, q21, y)) (2 − µ1)/ξ,
� (4.17)

after division of the right hand side by q21. Now, the line L̂21 defined µ1 = q21 = 0, y ∈ I  is 
an improved version of L21, being normally hyperbolic for any y �= α/ξ. Indeed, the lineariza-
tion about any point gives ±2(ξy − α) as nonzero eigenvalues. Within the invariant set µ1 = 0 
we obtain
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ẏ = 0,
q̇21 = q21 (ξy − α) /ξ.

Along y = α/ξ, q21 � 0 every point is an equilibrium. For y < α/ξ, q21 contracts exponen-
tially towards q21  =  0. On the hand, for y > α/ξ, q21 expands exponentially. Next, within 
q21  =  0 we obtain from (4.17)

ẏ = µ11,
µ̇11 = 2µ11 (ξy − α) /ξ.

Writing

dµ11

dy
= 2 (ξy − α) /ξ,

we realise that every point µ11 = 0, y = y0 < α/ξ , is heteroclinic with µ11 = 0, y = y1 > α/ξ  
where y1 = 2α/ξ − y0. See figure 19.

Now, to describe the mapping Π45
21, we proceed as follows. We first work locally near y   =  0 

and consider a mapping from q21 = δ  to µ11 = ν. From there we then apply a finite time flow 
map by following the heteroclinic orbits within µ11 = 0 up to a neighborhood of the point q5

21 
defined by µ11 = 0, q21  =  0, y = 2α/ξ. From here, we then consider a mapping µ11 = ν to 
q21 = δ  working near the normally hyperbolic line µ11 = q21 = 0, y ≈ 2α/ξ.

For the first part, near y   =  0, we divide the right hand side by

(ξy − α+ q21µ11h2(q21µ11, q21, y)) (−1 + q21µ11)/ξ > 0.

This gives

ẏ = µ11(−1 + q21µ11)
−1

(
(ξy − α+ q21µ11h2(q21µ11, q21, y))−1

ξF(q21µ11) + yq21

)
,

µ̇11 = 2µ11,

q̇21 = q21(1 − q21µ11)
−1(−2 + µ1).

Now we straighten out the unstable fibers within the unstable manifold q21  =  0 by performing 
a transformation of the form (y,µ11) �→ ỹ such that

˙̃y = O(µ11q21),
µ̇11 = 2µ11,

q̇21 = q21(1 − q21µ11)
−1(−2 + µ1).

The y -variables decouples and the (µ11, q21)-subsystem has a saddle at p21 = q21 = 0. We 
can therefore linearize this subsystem through a C1-transformation fixing µ1 and taking 
(µ11, q21) �→ q̃21 = q21(1 +O(µ11)) such that

˙̃y = O(µ11q̃21),
µ̇11 = 2µ11,
˙̃q21 = −2q̃21.
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We then integrate this system from q̃21 = δ̃  to µ11 = ν. This gives

(ỹ,µ11, δ̃) �→ (y +O(µ11 logµ11), ν,µ11ν
−1δ̃).

We then return to (y,µ11, q21), by applying the C1-inverses, and proceed with the second and 
third step. In the third, final step, our approach is identical to the first part, now working near 
the point q5

21 : y = 2α/ξ, µ11 = q21 = 0. We leave out further details, but in combination, this 
gives the desired result.� □ 

4.6.  Dynamics in (ε̄ = 1, ˜̄q = 1)22

In this chart, we obtain

ẋ = w2

(
−(x + 1 + α) + xµ2

(
y +

x + 1
ξ

))
,

ẏ = µ2w2

(
w2F(µ2w2) + y

(
y +

x + 1
ξ

))
,

µ̇2 = 2µ2

(
y +

x + 1
ξ

)
,

ẇ2 = −w2

(
y +

x + 1
ξ

)
(2 − µ2w2) ,

� (4.18)

and ṙ2 = 0. Furthermore, γ5
21 becomes

γ5
22 = {(x, y,µ2, w2) |w2 > 0, x = −1 − α, y = 2α/ξ,µ2 = 0} ,

contained within the invariant set x = −1 − α,µ2 = 0 where

ẏ = 0,

ẇ2 = −2w2

(
y − α

ξ

)

γ5
22 is asymptotic to the point q6

22 defined by (x, y,µ2, w2) = (−1 − α, 2α/ξ, 0, 0) within the 
set P22 of equilibria, defined by µ2 = w2 = 0 and (x, y) in a neighborhood of (−1 − α, 2α/ξ). 
The linearization about any point within this ‘plane’ P22 has ±2 as the only non-zero eigenval-
ues. Consequently, P22 is normally hyperbolic. Within the invariant subset defined by w2  =  0, 
we have

ẋ = 0,
ẏ = 0,

µ̇2 = 2µ2

(
y +

x + 1
ξ

)
.

In particular,

γ6
22 = {(x, y,µ2, w2) |w2 = 0, x = −1 − α, y = 2α/ξ,µ2 � 0} ,

is contained within the unstable manifold of P22 , and is the individual unstable manifold of 
the base point q6

22 ∈ P22 of γ5
22 defined by (x, y,µ2, w2) = (−1 − α, 2α/ξ, 0, 0). We therefore 

consider the following sections
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Σ6,in
22 = {(x, y,µ2, w2) |w2 = ν, x + 1 + α ∈ [−β1,β1], y − 2α/ξ ∈ [−β2,β2], µ2 ∈ [0,β2]},

Σ6,out
22 = {(x, y,µ2, w2) |µ2 = δ, x + 1 + α ∈ [−β3,β3], y − 2α/ξ ∈ [−β4,β4], w2 ∈ [0,β5]},

and let Π6
22 : Σ6,in

22 → Σ6,out
22  the associated local mapping obtained by the forward flow. We 

then have

Lemma 4.11.  The mapping Π6
22 is well-defined for appropriately small ν > 0, δ > 0 and 

βi > 0, i = 1, . . . , 5. In particular,

Π6
22(x, y,µ2, ν) = (x+(x, y,µ2), y+(x, y,µ2), δ, w2+(µ2)) ,

where w2+ is C1 satisfying w2+(µ2) = µ2(1 + o(1)) and

x+(x, y,µ2) = H22(x, δ) +O(µ2 lnµ
−1
2 ),

y+(x, y,µ2) = y +O(µ2 lnµ
−1
2 ),

as µ2 → 0. Here H22 is smooth and satisfies H22(−1 − α, δ) = −1 − α.

Furthermore, the remainder terms in x+ and y + are C1 with respect to x and y  and the or-
ders of these terms as µ2 → 0 do not change upon differentiation.

Proof.  We straighten out the individual stable manifolds of P22 within µ2 = 0 by a trans-
formation fixing y  and w2 and taking (w2, x) �→ x̃ = H22(x, w2). Here by the invariance of γ5

22 
we have H22(−1 − α, w2) = −1 − α for any w2. Then

˙̃x2 = O(w2µ2).

Straightforward estimation gives the desired result.� □ 

See figure 15 for illustration of γ6 .

4.7.  Dynamics in (ε = 1)1: exit of chart φ3

To follow γ6
22 forward, we return to the chart (ε = 1)1 and the coordinates (x, y, w, ε1, r1). In 

this chart, we obtain the following equations

ẋ = w
(
−ε1 (x + 1 + α) + x

(
y +

x + 1
ξ

))
,

ẏ = w
(
ε1wF(w) + y

(
y +

x + 1
ξ

))
,

ẇ = w2
(

y +
x + 1
ξ

)
,

ε̇1 = −2ε1

(
y +

x + 1
ξ

)
.

� (4.19)

Also ṙ1 = 2ε1

(
y + x+1

ξ

)
 but this decouples and we shall therefore (again) just work with the 

(x, y, w, ε1)-subsystem. In these coordinates, γ6
22 becomes

γ6
1 =

{
(x, y, w, ε1) | ε1 > 0, x = −1 − α, y =

2α
ξ

, w = 0
}

.
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It is asymptotic to the point q7
1 with coordinates

(x, y, w, ε1) = (−1 − α,
2α
ξ

, 0, 0).� (4.20)

We work in a neighborhood of this point where

y +
x + 1
ξ

≈ α/ξ > 0.

We therefore divide the right hand side of (4.19) by this quantity and consider the following 
system

ẋ = w

(
−ε1(x + 1 + α)

y + x+1
ξ

+ x

)
,

ẏ = w

(
ε1wF(w)
y + x+1

ξ

+ y

)
,

ẇ = w2,
ε̇1 = −2ε1.

Notice that ε1 = w = 0 is invariant. Also the linearization about any point in this set 
gives  −2 as a single zero eigenvalue. Therefore ε1 = 0, w ∈ [0,β] and (x, y) in a small neigh-

borhood of (−1 − α, 2α
ξ ) is a local center manifold with smooth foliation by 1D fibers, along 

which orbits contract towards the center manifold with e−2t . Therefore there exists a smooth, 
local transformation fixing w and ε1 and taking (x, y, w, ε1) �→ (x̃, ỹ) = (x, y) +O(wε1) such 
that

˙̃x = wx̃,
˙̃y = wỹ.

In the following, fix y1 > 2α
ξ

 and consider the following sections:

Σ7,in
1 = {(x, y, w, ε1) | ε1 = δ, x + 1 + α ∈ [−β1,β1], y − 2α/ξ ∈ [−β2,β2], w ∈ [0,β3]},

Σ7
1 = {(x, y, w, ε1) | ε1 ∈ [0,β4], x + 1 + α ∈ [−β5,β5], y = y1, w ∈ [0,β6]}.

Let Π7
1 : Σ7,in

1 → Σ7
1. Then, by integrating the (x̃, ỹ, w, ε1)-system and transforming the result 

back to the (x, y, w, ε1)-system using the implicit function theorem, we obtain the following:

Lemma 4.12.  Π7
1 is well-defined for appropriately small y1 − 2α

ξ
, δ > 0 and βi > 0, 

i = 1, . . . , 6. In particular,

Π7
1(x, y, w, δ) = (x+(x, y, w), y1, w+(x, y, w), ε1+(x, y, w)),

with x+ , w+ and ε1+ all C1 satisfying

x+(x, y, w) =
xy1

y
(1 +O(w)),

w+(x, y, w) =
wy1

y
(1 +O(w)),

ε1+(x, y, w) = O(e−c/w),
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for some sufficiently small c  >  0.

Define γ7
1,loc by

γ7
1,loc =

{
(x, y, w, ε1) | ε1 = w = 0, x = −ξ(1 + α)

2α
y, y ∈

[
2α
ξ

,
2α(1 + ν)

ξ

]}
.

�

(4.21)

It is obtained from the reduced problem of (4.19) within ε1 = 0:

ẋ = x
(

y +
x + 1
ξ

)
,

ẏ = y
(

y +
x + 1
ξ

)
,

� (4.22)

using x(0) = −1 − α, y(0) = 2α/ξ , see (4.20), upon desingularization through division by w, 
and subsequently letting w  =  0. See figure 20. Then it follows that

Π7
1(x, y, 0, δ) = γ7

1,loc ∩ Σ7
1.

We can extend γ7
1,loc by the forward flow of (4.22) within ε1 = w = 0. We then have

Lemma 4.13.  Under the forward flow of (4.22) within ε1 = w = 0, γ7
1 is bounded if and 

only if α < 1. In the affirmative case, γ7
1 is asymptotic to the point Q5 ∈ C∞ with

x = −1 + α

1 − α
, y =

2α
ξ(1 − α)

.

Figure 20.  Illustration of the result in lemma 4.10. We try to artistically include all the 
four dimensions, our view being from x  <  0. The set {ε1 = 0} is partially hyperbolic 
and attracting within the region y + (x + 1)/ξ > 0. We can desingularize the flow 
within ε1 = w = 0 (shown in yellow) by division by w. This produces (4.22) and γ7

1 (in 
red) as the flow of the base point q7

1 : (x, y, w, ε1) = (−1 − α, 2α/ξ, 0, 0) of γ6
1  (also in 

red). The projection of this point onto (x, y, w) (which we indicate by  ∼) is Q4.
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5. The transition map Π17 : Σ1 → Σ7

We now combine the findings in φ3 into a result on the transition mapping Π17. This map is 
defined by the first intersection of the forward flow of (3.1) from

Σ1 = {(x, y, w) |w = δ, x − 1 − ξy ∈ [−β1, 0), y ∈ [−β2,β2]},� (5.1)

to {y = 2α(1 + ν)/ξ}, with ν > 0 sufficiently small. It will be convenient to write the image 
of this mapping in terms of the coordinates (x, y, w, ε1) in chart (q̄ = 1)1. Consequently, we 
therefore define Π17 : Σ1 → Σ7

1 for 0 < ε � 1 with

Σ7
1 = {(x, y, w, ε1) | y = 2α(1 + ν)/ξ, x + 1 + α ∈ [−β3,β3], w ∈ [0,β4], ε1 ∈ [0,β5]}.� (5.2)

Notice the following:

	 •	�We restrict Σ1 to x − 1 − ξy ∈ [−β1, 0) so that the flow is transverse to the section, see 
(3.1). This is clearly a subset containing Π0(Σ0), recall (2.4).

	 •	�Using (3.5) and (3.22) we have

ε1 = εe2w−1
.

		 By describing the image in the (x, y, w, ε1)-coordinates, we therefore at the same time 
keep track of how small w is. If w were to be too small then ε1 would not be small enough 
for us to compose it with the subsequent mapping Π70, see lemma 8.1.

We then have

Lemma 5.1.  The mapping Π17 is well-defined for appropriately small δ > 0, ν > 0 and 
βi > 0, i = 1, . . . , 5 and all 0 < ε � 1. In particular,

Π17(x, y, δ; ε) = (x+(x, y, ε), 2α(1 + ν)/ξ, w+(x, y; ε), ε1+(x, y; ε)),

where x+ , w+ and ε1+(x, y; ε) are C1-functions in x and y , satisfying the following C1-estimates

x+(x, y; ε) = −(1 + α)(1 + ν) +O(log−1 ε−1 log log ε−1),

w+(x, y; ε) = O(log−1 ε−1 log log ε−1),

ε1+(x, y; ε) = O(e−c log ε−1
),

� (5.3)

for c  >  0 sufficiently small, as ε → 0.

Proof.  The result follows from the series of lemmas: lemma 4.4, see also corollary 4.5, 
lemmas 4.6, lemma 4.7, 4.10–4.12, describing the relevant local transition maps in the local 
charts described in section  3.3 using standard hyperbolic methods to follow the segments 
γ1–7. Notice that the mappings between the different local sections are diffeomorphism that 
do not change the order.� □ 

Remark 5.2.  In C0 the estimate for w+ in (5.3) can be improved to O(log−1 ε−1). In fact, 
this is more or less a direct consequence of our approach: setting q = e−w−1

 and q = εq2 gives 
w = O(log−1 ε−1) for fixed q2 as ε → 0. Similarly, it follows that min w(t) = O(log−1 ε−1) 
along a relaxation oscillation. Since z(t)  =  w(t)−1 for z(t) > 0 this implies (more or less) that 
the amplitude of the limit cycles grow like O(log ε−1) as ε → 0.
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6.  Blowup analysis in chart φ1

In this chart, we obtain the following equations

ẇ1 = −εw2
1F(z1w−1

1 ),

ẋ1 = −ε
(
w1x1F(z1w−1

1 ) + (x1 + (1 + α)z1)
)

,

ż1 = −εw1z1F(z1w−1
1 )− e−2z1w−1

1

(
1 +

x1 + z1

ξ

)
,

ε̇ = 0,

� (6.1)

redefining F(s) = 1 − e−s. Therefore also

F(−s) = −esF(s).

Henceforth we drop the subscripts. In this chart, we then have

C = {(w, x, z, ε) | x = −ξ − z, w > 0, ε = 0},

and

C∞ = {(w, x, z, ε) | x = −ξ − z, w = 0, ε = 0}.� (6.2)

We first notice that e−zw−1
 and e−2zw−1

 appearing in (6.1) are not defined along w  =  0 
for z � 0. We shall therefore introduce a new system by blowing up w  =  z  =  0 by the polar 
blowup transformation

(w, z) = θ(w̄, z̄), θ � 0, (w̄, z̄) ∈ S1,� (6.3)

and apply appropriate ‘desingularization’ of the transformed vector-field to have a well-
defined vector-field within θ = 0. In particular, we will divide the right hand side by e−2̄zw̄−1

 
whenever z̄ < 0.

We will use three separate charts (z̄ = 1)1, (w̄ = 1)2 and (z̄ = −1)3 obtained by setting 
z̄ = 1, w̄ = 1 and z̄ = −1, respectively, so that we have the following local forms of (6.3):

w = θ1w1, z = θ1,� (6.4)

w = θ2, z = θ2z2,
w = θ3w3, z = −θ3,
� (6.5)

where (θ1, w1) ∈ [0,∞)2, (θ2, z2) ∈ [0,∞)× R, and (θ3, w3) ∈ [0,∞)2 are the local coordi-
nates, respectively. We consider each of these charts in the following.

6.1.  Blowup analysis in chart (z̄ = 1)1

Working in the chart (z̄ = 1)1 is similar to the analysis of (3.6) in chart φ3. Indeed, here we 
have e−2zw−1

= e−2w−1
1 , and as in chart φ3, we therefore put

q1 = e−2w−1
1 .� (6.6)
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This gives the following equations

ẋ = −εθ1w1
(
θ1w1xF(w−1

1 ) + (x + (1 + α)θ1)
)

,

θ̇1 = −θ1w1

(
εθ2

1w1F(w−1
1 ) + q

(
1 +

x + θ1

ξ

))
,

ẇ1 = w2
1q

(
1 +

x + θ1

ξ

)
,

q̇ = 2q2
(

1 +
x + θ1

ξ

)
,

ε̇ = 0,

� (6.7)

by implicit differentiation and dropping the subscript on q. Here we have multiplied the right 
hand side by θ1w1 to ensure that θ1 = 0 and w1  =  0 are well-defined. For this system,

C =

{
(x, θ1, w, q, ε) | 1 +

x + θ1

ξ
= 0, w > 0, q > 0, ε = 0

}
,

is a partially hyperbolic set of equilibria, but still not compact. As in chart φ3, the system is 
very degenerate near

C∞ =

{
(x, θ1, w, q, ε) | 1 +

x + θ1

ξ
= 0, w1 = q = 0, ε = 0, θ1 � 0

}
.

Then we proceed as in chart φ3: let P1 = {(x, θ1, w, q, ε) ∈ R× [0,∞)4}, P1
1 =

{(x, θ1, w, r, (q̄, ε̄)) ∈ R× [0,∞)3 × S1} and blowup q = ε = 0 through the blowup transfor-
mation

Ψ1
1 : P1

1 → P1,

which fixes x, θ1 and w and takes

(r, (q̄, ε̄)) �→
{

q = rq̄,
ε = rε̄,

r � 0, (q̄, ε̄) ∈ S1.

Figure 21.  Blowup in chart z̄ = 1 of the line corresponding to C∞ to a line of spheres. 
Our view is from w1  >  0, the w1-axis ‘coming out’ of the page. The gray shaded region 
is w1  =  0 while the orange hyperplane is C. C∞ is the intersection of C with w1  =  0. As 
before, the spheres, seen in red on the right, are the result of blowing up the (red) points 
on C∞ in the picture on the left, each involving the remaining directions due to q and 
ε (not shown), see details (6.8). By this blowup we are able to extend the hyperbolicity 
of C to w1  =  0 for all θ1 > 0 (indicated by the tripple-headed arrows) within ε̄ = 0. The 
sphere at θ1 = 0 (enlarged) is still degenerate.
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Again, only q̄ � 0, ε̄ � 0 is relevant. Notice that we use a notation for the blowups 
(i.e. Ψi

j) that is similar to the one used in section  3. However, we believe it will be clear 
from the context what blowup we are referring to. In the second blowup step, we set 
P2

1 = {(θ1, r, ρ, (x̄, w̄, ¯̄ε)) ∈ R× [0,∞)3 × S2} and blowup C∞ through the transformation

Ψ2
1 : P2

1 → P1
1,

which fixes θ1 and r and takes

(θ1, ρ, (x̄, w̄, ¯̄ε)) �→




x = −ξ − θ1 + ρx̄,
w1 = ρw̄1,
q̄−1ε̄ = ρ¯̄ε,

ρ � 0, (x̄, w̄1, ¯̄ε) ∈ S2.

� (6.8)
See figure 21. Since (q̄, ε̄) ∈ S1 we can write the last equality as

(q̄, ε̄) =

(
1√

1 + ρ2¯̄ε2
,

ρ¯̄ε√
1 + ρ2¯̄ε2

)
.

Let Ψ12
1 = Ψ1

1 ◦Ψ2
1.

Due to the multiplication by θ1 on the right hand side in the derivation of (6.7), the 
resulting system is still degenerate near (x̄, ¯̄ε, w̄1) = (0, 0, 1), θ1 = 0. Therefore let 
P3

1 = {(r, ρ, �, (¯̄x, θ̄1, ¯̄̄ε)) ∈ [0,∞)3 × S2}. Then we apply a final blowup transformation

Ψ3
1 : P3

1 → P2
1,

which fixes r and ρ  and takes

(�, (¯̄x, θ̄1, ¯̄̄ε)) �→





w̄−1
1 x̄ = �¯̄x,

θ1 = �θ̄1,
w̄−1

1
¯̄ε = �¯̄̄ε,

� � 0, (¯̄x, θ̄1, ¯̄̄ε) ∈ S2.� (6.9)

See figure 22. Since (x̄, w̄1, ¯̄ε) ∈ S2 we can write the right hand side as

(x̄, w̄1, ¯̄ε) =

(
�¯̄x√

1 + �2¯̄x2 + �2 ¯̄̄ε2
,

1√
1 + �2¯̄x2 + �2 ¯̄̄ε2

,
�¯̄̄ε√

1 + �2¯̄x2 + �2 ¯̄̄ε2

)
.

Let Ψ123
1 = Ψ12

1 ◦Ψ3
1.

Figure 22.  Blowup in chart z̄ = 1 of point on the sphere at θ1 = 0. This produces a 
cylinder of spheres with improved hyperbolicity properties. Again, the spheres involve 
directions due to q and ε, missing in this sketch.
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6.1.1.  Local charts and the corresponding directional blowup transformations.  To describe 
the blowups Ψ1

1, Ψ
12
1  and Ψ123

1  we again use local directional charts. For Ψ1
1 we will only work 

in the chart (z̄ = 1, q̄ = 1)11 obtained by setting q̄ = 1 so that

Ψ1
11 : (r1, ε1) �→

{
q = r1,
ε = r1ε1,� (6.10)

in the local coordinates (r1, ε1) ∈ [0,∞)2 . Then to describe Ψ12
1 , we use two separate charts 

(z̄ = 1, q̄ = 1, x̄ = 1)111 and (z̄ = 1, q̄ = 1, w̄ = 1)112 obtained by setting x̄ = 1 and w̄1 = 1 in 
(6.8):

Ψ12
111 : (r1, θ1, ρ1, w11, ε11) �→





x = −ξ − θ1 + ρ1,
w1 = ρ1w11,
q = r1,
ε = r1ρ1ε11,

.� (6.11)

Ψ12
112 : (r1, θ1, ρ2, x2, ε12) �→





x = −ξ − θ1 + ρ2x2,
w1 = ρ2,
q = r1,
ε = r1ρ2ε12.

� (6.12)

The coordinate changes between these two charts are given by

ρ1 = ρ2x2,

w11 = x−1
2 ,

ε11 = ε12x−1
2 .

� (6.13)

Remark 6.1.  Notice that there exists a smooth change of coordinates between the coor-
dinates (r1, θ1, ρ1, w11, ε11) in (z̄ = 1, q̄ = 1, x̄ = 1)111 and the coordinates (x, y, w, r1, ε1) in 
(ε̄ = 1)1 (3.22) in φ3 given by

θ1 = y−1,

ρ1 = y−1 + y−1x + ξ,

w11 = ρ−1
1 w,

ε11 = ρ−1
1 ε1.

� (6.14)

(It is easy to see that the r1’s are same as those in (3.22).) This is important when transforming 
the analysis in the exit of φ3 in section 4.7 to the entrance in chart φ1, see section 7.1.

For Ψ123
1 , we will only consider the chart (z̄ = 1, q̄ = 1, w̄1 = 1, θ̄1 = 1)1121 obtained by set-

ting θ̄1 = 1 in (6.9):

Ψ123
1121 : (r1, ρ2, �1, x21, ε121) �→





x = −ξ − �1 + ρ2�1x21,
θ1 = �1,
w1 = �1ρ2,
q = r1,
ε = r1ρ2�1ε121,

� (6.15)

such that
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θ1 = �1,
x2 = �1x21,
ε12 = �1ε121.
� (6.16)

See table 3 for a summary.

6.2.  Blowup analysis in chart (w̄ = 1)2

The analysis in this chart is more standard because here e−zw−1
= e−z2 is regular. We have

ẋ = −εθ2 (θ2xF(z2) + (x1 + (1 + α)θ2z2)) ,

θ̇2 = −εθ3
2F(z2),

ż2 = −e−2z2

(
1 +

x + θ2z2

ξ

)
,

ε̇ = 0,

� (6.17)

after multiplication of the right hand side by θ2 . Within θ2 = ε = 0, we find

ẋ = 0,

ż2 = −e−2z2

(
1 +

x
ξ

)
,

so that ż2 < 0 for x > ξ  and ż2 > 0 for x < ξ . Hence x = −ξ, θ2 = ε = 0, z2 ∈ R 
is a line of degenerate equilibria, which we—for obvious reasons—also call 
C∞. Since it is fully nonhyperbolic we will blowup this set through the following blowup  
transformation Ψ1

2 : P1
2 → P2 , where P2 = {(x, θ2, z2, ε) ∈ R× [0,∞)× R× [0,∞)}, 

P1
2 = {(z2,σ, (x̄, θ̄2, ε̄)) ∈ R× [0,∞)× S2}, which fixes z2 and takes

(z2,σ, (x̄, θ̄2, ε̄)) �→




x = −ξ − σθ̄2z2 + σx̄,
θ2 = σθ̄2,
ε = σε̄,

σ � 0, (x̄, θ̄2, ε̄) ∈ S2.

In this way, we gain hyperbolicity, allowing us to extend slow manifold into this chart, see the 
illustration in figure 23.

Table 3.  Details about the charts used to describe the blowups in φ1. The first row divide 
the table into three parts, corresponding to the three directional charts associated with 
the initial ‘blowup’ (6.3). The remaining rows have the same meaning as in table 1. In 
particular, the last two rows provide the equation numbers for the equations describing 
the coordinate changes between the charts in the corresponding columns.

(z̄ = 1)1 (w̄ = 1)2 (z̄ = −1)3

(·, q̄ = 1, x̄ = 1)111 (·, q̄ = 1, x̄ = 1)112 (·, q̄ = 1, w̄1 = 1, θ̄1 = 1)1121 (·, θ̄2 = 1)21 (·, θ̄3 = 1, w̄3 = 1)311

(r1, θ1, ρ1, w11, ε11) (r1, θ1, ρ2, x2, ε12) (r1, ρ2, �1, x21, ε121) (z2,σ1, x1, ε1) (π1,µ1, x11, ε11)

Ψ12
111 (6.11) Ψ12

112  (6.12) Ψ123
1121(6.15) Ψ1

21 (6.18) Ψ12
311 (6.22)

(7.1), section 7.1 (7.4), section 7.2 (7.7), section 4 (7.10),  
section 7.4

(7.13), section 7.5

(6.13) (6.23)

                           (6.16)
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6.2.1.  Local charts and the corresponding directional blowup transformations.  We only need 
to consider the single chart (w̄ = 1, θ̄2 = 1)21 obtained by setting θ̄2 = 1. This gives the fol-
lowing local form of Ψ1

2

Ψ1
21 : (z2,σ1, x1, ε1) �→




x = −ξ − σ1z2 + σ1x1

θ2 = σ1,
ε = σ1ε1.

� (6.18)

Notice, that we can change coordinates between the chart (z̄ = 1, q̄ = 1, x̄ = 1, θ̄1 = 1)1121 
and (w̄ = 1, θ̄2 = 1)21, using (6.15), as follows

ε1 = exp(−2ρ−1
2 )ε121,

σ1 = �1ρ2,

z2 = ρ−1
2 ,

x1 = x21,

� (6.19)

for ρ2 > 0. See table 3 for a summary.

6.3.  Blowup analysis in chart (z̄ = −1)3

In this chart we have

ẋ = εθ3e−w−1
3

(
θ3w3xF(w−1

3 )− e−w−1
3 (x − (1 + α)θ3)

)
,

θ̇3 = θ3

(
εθ2

3e−w−1
3 F(w−1

1 ) + 1 +
x − θ3

ξ

)
,

ẇ3 = −w3

(
1 +

x − θ3

ξ

)
,

ε̇ = 0,� (6.20)

after division of the right hand side by θ−1
3 e2w−1

3  to ensure that w3  =  0 is well-defined. For the 
analysis in this chart, we will have to keep track of exponentially small remainders in center 
manifold calculations. Standard power series expansion will therefore have to be adapted. For 
this purpose it is useful to again introduce a flat function q(w3) as follows

Figure 23.  Blowup in chart w̄ = 1. Our view is from θ2 > 0, the θ2-axis ‘coming out’ of 
the diagram. We blowup a line corresponding to C∞ to a cylinder of spheres involving 
ε. This enable us to extend the hyperbolicity of C (in orange) up an improved version of 
C∞. This is indicated by tripple-headed arrows. The shaded gray area is θ2 = 0, x > −ξ 
where ż2 < 0, ẋ = 0 as indicated by the single orbit (in black).
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q3 = w−1
3 e−w−1

3 .� (6.21)

It is also possible to use the seemingly more natural choice q3 = e−w−1
3  but the calculations are 

slightly simpler with (6.21). Implicit differentiation of (6.21) gives the following system after 
multiplication by w3 on the right hand side to ensure that w3  =  0 is well-defined:

ẋ = εθ2
3w2

3q (θ3w3x(1 − w3q)− w3q(x − (1 + α)θ3)) ,

θ̇3 = θ3w3

(
εθ2

3w3q(1 − w3q) + 1 +
x − θ3

ξ

)
,

ẇ3 = −w3
3

(
1 +

x − θ3

ξ

)
,

q̇ = −q
(

1 +
x − θ3

ξ

)
(1 − w3),

ε̇ = 0.

Here we have dropped the subscript on q and used (6.21) to write e−w−1
3 = w3q. Let 

P3 = {(x, θ3, w3, q, ε) ∈ R× [0,∞)4}, P1
3 = {(π, w3, q, (x̄, θ̄3, ε̄)) ∈ [0,∞)2 × S2}. Fix any 

w3,q. Then the linearization about any equilibrium point with x = −ξ, θ3 = ε = 0 has only 
zero eigenvalues. We therefore perform a blowup transformation

Ψ1
3 : P1

3 → P3,

of x = −ξ, θ3 = 0, ε = 0, defined by fixing w3 and q and taking

(π, (x̄, θ̄, ε̄)) �→




x = −ξ + πθ̄ + πx̄,
θ3 = πθ̄,
ε = πε̄.

In this way, we gain hyperbolicity of C∞, but w3  =  0 is still degenerate. Subsequently, we 
therefore blowup θ̄−1

3 x̄ = 0, w3 = 0, θ̄−1
3 ε̄ = 0 through the blowup transformation

Ψ2
3 : P2

3 → P1
3,

where P2
3 = {(π,µ, q, (¯̄x, w̄3, ¯̄ε)) ∈ [0,∞)2 × S2}, which fixes π and q and takes

(µ, (¯̄x, ¯̄w, ¯̄ε)) �→





θ̄−1
3 x̄ = µ¯̄x,

w3 = µw̄3,
θ̄−1

3 ε̄ = µ¯̄ε,
µ � 0, (x̄, θ̄, ε̄) ∈ S2.

We illustrate the blowup in figure 24. Let Ψ12
3 = Ψ1

3 ◦Ψ2
3.

6.3.1.  Local charts and the corresponding directional blowup transformations.  To describe 
the blowup Ψ1

3 we will only consider the following chart (z̄ = −1, θ̄3 = 1)31 obtained by set-
ting θ̄ = 1:

Ψ1
31 : (π1, x1, ε1) �→




x = −ξ + π1 + π1x1,
θ3 = π1,
ε = π1ε1,

using the local coordinates π1 � 0, x1 ∈ R, ε1 � 0.
For Ψ12

3  we use the single chart (z̄ = −1, θ̄3 = 1, w̄3 = 1)311 obtained by setting w̄3 = 1:
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Ψ12
311 : (π1,µ1, x11, ε11) �→





x = −µ+ π1 + π1µ1x11,
θ3 = π1,
w3 = µ1,
ε = π1µ1ε11

� (6.22)

using the local coordinates π1 � 0,µ1 � 0, x11 ∈ R, ε11 � 0. Notice that we can write the 
right hand side of (6.22) as

x = −ξ − z + wx11,
ε = wε11,

after eliminating π1 and µ1 and using that θ3 = −z. Notice also that we can change coordinates 
between (w̄ = 1, θ̄2 = 1)21 and (z̄ = −1, θ̄3 = 1, w̄3 = 1)311 as follows

π1 = −σ1z2,
µ1 = −1/z2,
x11 = x1,
ε11 = ε1,

� (6.23)

for z2  <  0. We summarize the results on the charts in table 3.

6.4.  A summary of the findings in chart φ1

The full details of the analysis of the blowup systems in chart φ1 is available in section 7. The 
findings are combined into a result, lemma 8.1, in section 8 below on the transition map Π70. 
Here we will first try to summarize the findings. For simplicity, we restrict to the case where

α < 1.� (6.24)

α > 1 is easier, while α = 1 is a special case, see appendix.
The blowup approach provides improved hyperbolicity properties of parts of the singular 

cycle visible in the chart φ1. We illustrate all the segments, including the new segments only 
visible upon blowup, in figure 25 using the viewpoints in figures 22–24. In figure 25(a) we 
illustrate the parts visible in the chart (z̄ = 1)1. All orbits are contained within the subset 
defined by (q̄, ε̄) = (1, 0) and r  =  0. γ7 is asymptotic to a partially hyperbolic point (1, 0, 0) 
on the sphere (x̄, w̄, ¯̄ε) ∈ S2. From here γ8 is an unstable manifold which is asymptotic to a 

Figure 24.  Blowup in chart z̄ = −1. Our view is from θ3 > 0, the θ3-axis ‘coming out’ 
of the page. The gray shaded region is θ3 = 0 whereas the orange hyperplane is C. In 
diagram, we blowup a degenerate point on the sphere at θ3 = w3 = 0 to another sphere. 
This provides improved hyperbolicity properties of C∞. In fact, the reduced flow on 
this extended critical manifold, produces the set Wcu(Q6) (in green) as a unique center 
manifold.
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point within w̄ = 1 on a center manifold. This center manifold provides an extension of the 
slow manifold in the usual way, see e.g. [26]. By desingularization of the slow flow on this 
center manifold we obtain an orbit γ9 which is asymptotic to a partially hyperbolic equilib-
rium on θ1 = 0. From here γ10 is an unstable manifold that we follow forward into (w̄ = 1)2, 
see figure 25(b), by following the slow flow on the center manifold. This orbit eventually 
brings us into (z̄ = −1)3 where we finally obtain a heteroclinic γ11 connecting the end of γ10 
with Wcu(Q6), obtained as a center submanifold of the reduced problem on the larger center 
manifold (that provided an extension of the slow manifold). In fact, γ11 is only visible upon 
further use of a blowup involving exponentially small terms. The illustration in figure 25(c) is 
therefore (extra) caricatured. We combine the information in each of the charts into a single 
figure in figure 26.

7.  Blowup dynamics in chart φ1

In this section, we describe the dynamics in chart φ1 using the blowup and the charts presented 
in section 6. We follow the notation in remark 4.1.

7.1.  Dynamics in (z = 1, q = 1, x = 1)111

In this chart we obtain, using (6.11), the following equations

Figure 25.  Improved singular orbit segments of the blowup in φ1. In (a)–(c) from the 
viewpoints of the three direction charts associated with (6.3).
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θ̇1 = ρ1w11θ1
(
−1/ξ − ε11θ

2
1ρ1w11F(ρ−1

1 w−1
11 )

)
,

ρ̇1 = ρ1w11G111(θ1, ε11, ρ1, w11),

ẇ11 = −w2
11G111(θ1, ε11, ρ1, w11) + ρ1w2

11/ξ,
ε̇11 = ε11 (−2/ξ − G111(θ1, ε11, ρ1, w11)w11) ,

� (7.1)

where

G111(θ1, ρ1, w11, ε11) = −θ1/ξ − ε11θ1 (−ξ + ρ1 + αθ1) + ε11ρ1w11F(ρ−1
1 w−1

11 )(ξ − ρ1).

In these coordinates, using (6.14), γ7
1 becomes

γ7
111 =

{
(θ1, ρ1, w11, ε11) | ρ1 =

ξ(α− 1)
2α

+ θ1, θ1 ∈
(
ξ(1 − α)

2α
,
ξ

2α

)
, w11 = ε11 = 0

}
,

for α < 1, recall the assumption (6.24). It is asymptotic to the point q8
11 with coordinates

(θ1, ρ1, w11, ε11) =

(
ξ(1 − α)

2α
, 0, 0, 0

)
.� (7.2)

Now, we notice that {ε11 = 0, w11 ∈ [0,β5]}, with β5 > 0 sufficiently small, is an attracting 
center manifold. The (center-)stable manifold has a smooth foliation by stable fibers as leaves 
of the foliation. We can straighten out these fibers through a transformation which fixes ε11 and 
takes (θ1, ρ1, w11, ε11) �→ (θ̃1, ρ̃1, w̃11) = (θ1, ρ1, w11) +O(w11ε11). This gives

θ̇1 = −ρ1w11θ1/ξ,
ρ̇1 = −ρ1w11θ1/ξ,

ẇ11 = w2
11 (θ1 + ρ1) /ξ,

� (7.3)

upon dropping the tildes. We see that w11 is a common factor and therefore divide this out on 
the right hand side. This gives

ρ̇1 = −ρ1θ1/ξ,
ẇ11 = w11 (θ1 + ρ1) /ξ,

θ̇1 = −ρ1θ1/ξ,

Figure 26.  Improved singular orbit segments of the blowup in φ1, combining 
figures 25(a)–(c) into a global picture.
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with respect to the new time. Now, the line H111, defined by ρ1 = 0, w11  =  0, θ1 > 0 is a 
line of equilibria. It is normally hyperbolic, being of saddle type. γ7

111 is contained in the 
stable manifold of H111 within w11  =  0, being asymptotic to the base point q8

111 with ρ1 = 0, 

θ1 = ξ(1−α)
2α , recall (7.2). From this point, there is also an individual unstable manifold within 

Wu(H111):

γ8
111 =

{
(θ1, ρ1, w11, ε11) | ρ1 = ε11 = 0, θ1 =

ξ(1 − α)

2α
, w11 � 0

}
,

of the base point q8
111. In the following, we work in a neighborhood of the point q8

111. Let

Σ8,in
111 =

{
(θ1, ρ1, w11, ε11) | ρ1 = δ, θ1 −

ξ(1 − α)

2α
∈ [−β1,β1], w11 ∈ [0,β3], ε11 ∈ [0,β4]

}
,

Σ8,out
111 =

{
(θ1, ρ1, w11, ε11) |w11 = ν, ρ1 ∈ [0,β5], θ1 −

ξ(1 − α)

2α
∈ [−β6,β6], ε11 ∈ [0,β4]

}
,

transverse to the flow and Π8
111 : Σ8,in

111 → Σ8,out
111  the associated mapping obtained by the first 

intersection of the forward flow. Then we have

Lemma 7.1.  Π8
111 is well-defined for appropriately small δ, ν  and βi > 0, i = 1, 5. In par

ticular,

Π8
111(θ1, δ, w11, ε11) = (θ1+(θ1, w11, ε11), ρ1+(θ1, w11, ε11), ν, ε11+(θ1, w11, ε11)),

where ρ1+, ε11+ and θ1+ are C1 and satisfy

θ1+(θ1, w11, ε11) = θ1 − δ +O(w11),
ρ1+(θ1, w11, ε11) = O(w11),

ε11+(θ1, w11, ε11) = O(ε11e−cw−1
11 ),

for some c  >  0 sufficiently small.

Proof.  We integrate (7.3) from ρ1(0) = δ to w11(T) = ν. This gives

θ1(T(θ1(0), w11(0))) = θ1(0)− T(δ1(0), w11(0)),
ρ1(T(θ1(0), w11(0))) = δ − T(θ1(0), w11(0)),

where

T(θ1, w11) =
1
2
(δ + θ1)−

1
2
(θ1 − δ)

√
1 +

4δθ1w11

ν(θ2
1 − δ2)

.

Notice that T(θ1, 0) = δ. Returning to the original variables gives the desired result upon us-
ing the exponential contraction towards ε11 = 0.� □ 

It follows that the image of γ7
111 ∩ Σ8,in

111 under Π8
111 is γ8

111 ∩ Σ8,out
111 . See figure 27.

7.2.  Dynamics in (z = 1, q = 1, w1 = 1)112

In this chart, we obtain the following:
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θ̇1 = ρ2θ1
(
ρ2θ

2
1ε12F(ρ−1

2 ) + x2/ξ
)

,

ρ̇2 = ρ2
2

x2

ξ
,

ẋ2 = ρ2ε12θ
2
1F(ρ−1

2 )(ξ − ρ2x2)− θ1ε12 (−ξ + ρ2x2 + αθ1)− x2 (θ1 + ρ2x2) /ξ,
ε̇12 = −ε12x2/ξ (2 + ρ2) .
� (7.4)

In these coordinates, γ8
111 takes the following form:

γ8
112 =

{
(θ1, ρ2, x2, ε12) | x2 > 0, ρ2 = 0, θ1 =

ξ(1 − α)

2α
, ε12 = 0

}
,

using the coordinate change x2 = w−1
11  between the charts, recall (6.13). The dynamics on γ8

112 
is asymptotic to the point q9

112 defined by

(θ1, ρ2, x2, ε12) =

(
ξ(1 − α)

2α
, 0, 0, 0

)
.

This point becomes Q5 upon blowing down to (x, z, w), see (1.23). The set C112, defined by 
ρ2 = ε2 = x2 = 0, θ1 ∈ [0,∞), is a line of equilibria for (7.4). Upon blowing down, using 
(6.12) and (6.4), it becomes the subset of C∞, see (6.2), with z � 0. But within this blowup 
chart, the linearization about any point on C112 now has one single non-zero eigenvalue −θ1/ξ 
for θ1 > 0. We therefore think of C112 as an improved version of C∞. This produces an exten-
sion of the slow manifold as an ε-section of a center manifold by standard center manifold 
theory in the usual way (recall remark 4.9):

Proposition 7.2.  Fix a closed interval I ⊂ (0,∞). Then there exists a δ > 0 and a neigh-
borhood U112 of (ρ2, ε12) = 0 in R2 such that the following holds. There exists a locally invari-
ant center manifold M112 of C112 as a graph

Figure 27.  Illustration of the result in lemma 7.1 within ε11 = 0. Our view is from 
w11  >  0, the w11-axis ‘coming out’ of the page. γ7

111 is within the subset w11  =  0, 
approaching the point q8

111 on the line of equilibria defined by ρ1 = w11 = 0. In 
contrast, γ8

111 belongs to ρ1 = 0. The purple point is a partially hyperbolic point on the 
ρ1-axis. The purple orbits shown in the figure, which are relevant for the case α > 1, see 
appendix, are the stable and unstable manifolds of this point contained within w11  =  0 
and θ1 = 0, respectively.
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x2 = ε12ξ
2 (1 − ξ−1αθ1 + ε12h112(ε12, ρ2, θ1)

)
,� (7.5)

over (θ1, ρ2, ε12) ∈ I × U112. Here h112 is a smooth function. Furthermore, there exists 
a smooth stable foliation with base M112 and 1D fibers as leaves of the foliation. Within 
x2 ∈ [−δ, δ], (θ1, ρ2, ε12) ∈ I × U112, the contraction along any of these fibers is at least e−ct 
with c(I) > 0.

The reduced problem on M112 is

θ̇1 = −ρ2θ1

(
1 +

ρ2θ
2
1F(ρ−1

2 )

ξ(1 − ξ−1αθ1 + ε12h112(ε12, ρ2, θ1))

)
,

ρ̇2 = ρ2
2,

ε̇12 = −ε12 (2 + ρ2) ,

� (7.6)

after division of the right hand side by x2/ξ. Notice that by (7.5) this quantity is positive for 
θ1 sufficiently small and ε12 > 0 sufficiently small. For ε12 = 0, (7.6), after division by ρ2 on 
the right hand side, therefore provides a desingularized system on the center manifold, which 
we shall study in the following. Within ε12 = ρ2 = 0, we therefore see that θ1 is decreasing 
and hence we put

γ9
112,loc =

{
(θ1, ρ2, x2, ε12) | θ1 ∈

[
ν,

ξ(1 − α)

2α

]
, x1 = ε12 = ρ2 = 0

}
,

and consider the sections

Σ9,in
112 =

{
(θ1, ρ2, x2, ε12) | x2 = δ, ρ2 ∈ [0,β1], ε12 ∈ [0,β2], θ1 −

ξ(1 − α)

2α
∈ [−β3,β3]

}
,

Σ9,out
112 = {(θ1, ρ2, x2, ε12) | θ1 = ν, ρ2 ∈ [0,β4], ε12 ∈ [0,β2], x2 ∈ [−β5,β5]} ,

and let Π9
112 : Σ9,in

112 → Σ9,out
112  be the associated mapping obtained by the first intersection of the 

forward flow. We then have

Lemma 7.3.  The mapping Π9
112 is well-defined for appropriately small δ > 0, ν > 0 and 

βi > 0, i = 1, . . . , 5. In particular,

Π9
112(θ1, ρ2, ν, ε12) = (ν, ρ2+(ρ2, θ1, ε12), x2+(ρ2, θ1, ε12), ε12+(ρ2, θ1, ε12)) ,

with each ρ2+, x2+, ε12+ being smooth and satisfying

ρ2+(ρ2, θ1, ε12) = O(ρ2),

x2+(ρ2, θ1, ε12) = O(ε12e−cρ−1
2 ),

ε1+(ρ2, θ1, ε12) = O(ε12e−cρ−1
2 ),

for c  >  0 sufficiently small.

Proof.  We consider the reduced problem (7.6). Here the set defined by ε2 = 0, ρ2 ∈ [0,β1] 
is an attracting center manifold with smooth foliation by stable fibers. We straighten out the 
fibers by a transformation fixing ρ2, ε12 and taking (θ1, ρ2, ε12) �→ θ̃1 = θ1 +O(ρ2

1θ
3
1ε12) and 

obtain the following
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ρ̇2 = ρ2,

θ̇1 = −θ1

(
1 +

ρ2θ
2
1F(ρ−1

2 )

ξ(1 − ξ−1αθ1)

)
,

after dropping the tildes. On this time scale, the mapping from Σ9,in
112 to Σ9,out

112  takes O(1) time. 
We now work our way backwards and obtain the desired result.� □ 

See illustration in figure 28.

7.3.  Dynamics in (z = 1, q = 1, w1 = 1, θ1 = 1)1121

In this chart we obtain

ρ̇2 = ρ2
2

x21

ξ
,

�̇1 = −�2
1

(
ρ2x21/ξ + �2

1ρ
2
2ε121F(ρ−1

2 )
)

,

ẋ21 = ρ2�1ε121F(ρ−1
2 )ξ − ε121 (−ξ + ρ2�1x21 + αθ1)− x21/ξ,

ε̇121 = −ε121
(
2x21/ξ − �2

1ρ2ε12F(ρ−1
2 )

)
,

� (7.7)

from (6.7) using (6.15). Here the set C1121, defined by x21 = ε121 = ρ2 = 0, �1 ∈ [0, δ], is a line 
of equilibria. The linearization about any point in C1121 gives on single non-zero eigenvalue 
−1/ξ  for any �1 � 0. Also, since it blows down to C∞, we think of it as an improved version 
of C∞. Furthermore, it agrees upon coordinate transformation with C112 from the previous 
chart. By center manifold theory, we obtain a center manifold—which we shall call M1121

—of partially hyperbolic set C1121. This manifold therefore also provides an extension of the 
center manifold M112 into this chart as follows.

Proposition 7.4.  Fix η ∈ (0, 1). Then there exists a δ > 0 and a small neighborhood U1121 
of (�1, ρ2, ε121) = 0 in R3 such that the following holds. There exists a locally invariant center 
manifold M1121 as a graph

x21 = ε121ξ
2 (1 − ξ−1α�1 + ε121h21(ε121, ρ2, �1)

)
,

over (�1, ρ2, ε121) ∈ U1121. Here h21 is a smooth function. Furthermore, there exists a 
smooth stable foliation with base M1121 and 1D fibers as leaves of the foliation. Within 
x21 ∈ [−δ, δ], (�1, ρ2, ε121) ∈ U1121, the contraction along any of these fibers is at least e−η/ξt .

The reduced problem on M1121 is

ρ̇2 = ρ2
2,

�̇1 = −ρ2�1

(
1 +

ρ2�
2
1F(ρ−1

2 )

ξ(1 − ξ−1α�1 + ε121h21(ε121, ρ2, �1))

)
,

ε̇121 = −ε121

(
2 − �2

1ρ2F(ρ−1
2 )

ξ(1 − ξ−1α�1 + ε121h21(ε121, ρ2, �1))

)
.

� (7.8)

Here ε121 = 0, ρ2 ∈ [0,β1] is a center manifold with smooth foliation by stable 
fibers. We straighten out these fibers by a transformation fixing ρ2, ε121 and taking 
(ρ2, �1, ε121) �→ �̃1 = �1 +O(ρ2

2�
3
1ε121) such that
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ρ̇2 = ρ2,

�̇1 = −�1

(
1 +

ρ2�
2
1F(ρ−1

2 )

ξ(1 − ξ−1α�1)

)
,� (7.9)

after dropping the tilde, and dividing the right hand side by ρ2. In these coordinates, γ9
112,loc 

therefore becomes

γ9
1121 =

{
(ρ2, �1, x21, ε121) | x21 = ε121 = ρ2 = 0, �1 ∈

(
0,

ξ(1 − α)

2α

]}
,

upon using the flow of (7.9) to extend the forward orbit. It is asymptotic to 
x21 = ε121 = ρ2 = �1 = 0 and becomes γ9 in (1.27) upon blowing down using (6.15). From 
(7.9), we have an unstable manifold

γ10
1121,loc = {(ρ2, �1, x21, ε121) | x21 = ε121 = �1 = 0, ρ2 ∈ [0, ν]} ,

with ν > 0 sufficiently small. We therefore consider the following sections

Σ10,in
1121 = {(ρ2, �1, x21, ε121) | �1 = δ, ρ2 ∈ [0,β1], x21 ∈ (β2], ε121 ∈ [0,β3]} ,

Σ10,out
1121 = {(ρ2, �1, x21, ε121) | ρ2 = ν, �1 ∈ [0,β4], ρ2 ∈ [0,β1], x21 ∈ [−β2,β2], ε121 ∈ [0,β3]}

transverse to γ9
1121 and γ10

1121, respectively. We let Π10
1121 be the associated mapping obtained by 

the first intersection of the forward flow.

Lemma 7.5.  Π10
1121 is well-defined for appropriately small δ > 0, ν > 0 and βi > 0, 

i = 1, . . . , 4. In particular,

Π10
1121(ρ2, x21, ν, ε121) = (ν, x21+(ρ2, x21, ε121), �1+(ρ2, x21, ε121), ε121+(ρ2, θ1, ε12)) ,

Figure 28.  Illustration of the result in lemma 7.3 within ε11 = 0. Our view is from 
ρ2 > 0, the ρ2-axis ‘coming out’ of the page. The red shaded region is contained 
within x2  =  0. In particular, γ8

112 is contained within ρ2 = 0, asymptotic to the partially 
hyperbolic point q9

112 along ρ2 = x2 = 0. Notice that this point becomes Q5 in figure 7 
upon blowing down (indicated by  ∼) to the (x, z, w)-space. The segment γ9

112 is an orbit 
segment of a desingularized flow and is contained within ρ2 = x2 = 0.
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with each x21+, �1+, ε121+ being C1 and satisfying

x21+(ρ2, θ1, ε12) = O(ε121e−cρ−1
2 ),

�1+(ρ2, x21, ε121) = O(ρ2),

ε1+(ρ2, θ1, ε12) = O(ε121e−cρ−1
2 ),

for some c  >  0 sufficiently small.

Proof.  Similar to previous results in the manuscript, we perform a C1-linearization of the 
(ρ1, �1)-subsystem in (7.9). Working backwards we then obtain the result.� □ 

Notice that the image of γ9
1121 ∩ Σ10,in

1121 under Π10
1121 is γ10

1121,loc ∩ Σ10,out
1121 , as desired.

7.4.  Dynamics in (w = 1, θ2 = 1)21

In this chart, we obtain the following equations:

σ̇1 = −σ3
1ε1F(z2),

ż2 = −e−2z2 x1/ξ,
ẋ1 = σ1ε1ξ − ε1 (−ξ + σ1x1 + ασ1z2)

− e−2z2 x1/ξ + σ2
1ε1x1F(z2),

ε̇1 = σ2
1ε

2
1F(z2)

� (7.10)

from (6.17) using (6.18). Let I = [−c1, c1] ⊂ R be a fixed, large interval. Then there is a suf-
ficiently small neighborhood U21 of (0, 0) in R2 such that there exists a center manifold M21 
(of an improved version of C∞) as a graph

x1 = ε1e2z2ξ2(1 + σ1F(z2)− ξ−1ασ1z2 + ε1h21(σ1, z2, ε1)),

over (z2,σ1, ε1) ∈ I × U21. This is completely analogous to proposition 7.2, see also remark 
4.9. The center manifold M21 gives an extension of the slow manifold into this chart. On M21, 
we obtain the following reduced problem

σ̇1 = − σ3
1e−2z2 F(z2)

ξ(1 + σ1 − ξ−1ασ1z2 + ε1h21(σ1, z2, ε1))
,

ż2 = −e−2z2 ,

ε̇1 =
σ2

1e−2z2ε1F(z2)

ξ(1 + σ1 − ξ−1ασ1z2 + ε1h21(σ1, z2, ε1))
,

� (7.11)

upon dividing the right hand side by x1/ξ > 0. Clearly, z2 is decreasing. We then get a map-
ping from {z2 = ν−1} to {z2 = −ν−1} using regular perturbation theory. In particular, we 
notice that by using (6.19), γ10

1121 becomes

γ10
21 = {(σ1, z2, x1, ε1) |σ1 = x1 = ε1 = 0, z2 ∈ R} ,� (7.12)

upon extension by the forward flow of (7.11).

7.5.  Dynamics in (z = −1, θ = 1, w3 = 1)311

In this chart, we obtain the following
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ẋ11 = −x11/ξ + ε11µ
2
1q (−ξπ1(1 − µ1q)− q(−ξ + π1µ1x11 − απ1)) ,

π̇1 = π1µ1
(
π2

1ε11µ
2
1q(1 − µ1q) + x11/ξ

)
,

µ̇1 = −µ2
1x11/ξ,

q̇ = −qx11(1 − µ1)/ξ,

ε̇11 = −π2
1µ

3
1qε2

11(1 − µ1q).

� (7.13)

Recall that the equation

q = µ−1
1 e−µ−1

1 ,� (7.14)

defines an invariant set of (7.13), see (6.21) and (6.22). We will work in the extended space 
to do calculations but subsequently restrict to the space defined by (7.14) and project to 
(x11,π1,µ1, ε11). For simplicity, we will use the same symbols in both spaces.

The orbit γ10
21  becomes

γ10
311 =

{
(x11,π1,µ1,µ−1

1 e−µ−1
1 , ε11) |π1 = x11 = ε11 = 0, µ1 > 0

}
,

in the present chart, using (7.12) and the coordinate change described by (6.23). Now, the 
point q11

311, defined by x11 = 0, π1 = µ1 = q = ε11 = 0, is an equilibrium of (7.13). The lin-
earization has −1/ξ  as a single non-zero eigenvalue. Therefore there exists a small neighbor-
hood U311 of (π1,µ1, q, ε11) = 0 in R4 such that there exists a local center manifold M311 of 
q11

311 as a graph

x11 = ξε11µ
2
1qH311(π1,µ1, q, ε11),� (7.15)

over (π1,µ1, q, ε11) ∈ U311. Here

H311(π1,µ1, q, ε11) = −π1ξ(1 − µ1q) + q(ξ + απ1) + ε11µ
2
1qh311(π1,µ1, q, ε11),

�
(7.16)

with h311 smooth. On this center manifold, we obtain the following reduced problem

µ̇1 = −µ2
1H311(π1,µ1, q, ε11),

q̇ = −qH311(π1,µ1, q, ε11)(1 − µ1),

π̇1 = π1µ1
(
π2

1(1 − µ1q) + H311(π1,µ1, q, ε11)
)

,

ε̇11 = −π2
1µ1ε11(1 − µ1q),

� (7.17)

after division on the right hand side by ε11µ
2
1q. For this system, q11

311 : µ1 = q = π1 = ε11 = 0 
is fully nonhyperbolic. In fact, P311 defined by π1 = q = 0 is a set of degenerate equilibria 
(containing q11

311). We therefore apply a subsequent blowup transformation of points in P311, 
setting

π1 = qπ11.� (7.18)

This gives

H311(qπ11,µ1, q, ε11) = qH̃311(π11,µ1, q, ε11),

with

H̃311(π11,µ1, q, ε11) = −π11ξ(1 − µ1q) + ξ + αqπ11 + ε11µ
2
1h311(qπ11,µ1, q, ε11).
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See (7.16). Therefore

µ̇1 = −µ2
1H̃311(π11,µ1, q, ε111),

q̇ = −qH̃311(π11,µ1, q, ε111)(1 − µ1),

π̇11 = π11
(
H̃311(π11,µ1, q, ε11) + π2

1qµ1(1 − µ1q)
)

,

ε̇11 = −π2
11µ1qε11(1 − µ1q),

� (7.19)

after division of the right hand side by q. Now, we have gained hyperbolicity. In particular, 
q11

311 : π11 = µ1 = q = ε11 = 0 (misusing notation slightly) is partially hyperbolic, the linear-
ization having a single non-zero eigenvalue ξ > 0 with corresponding unstable eigenspace 
along the invariant π11-axis. Also, the point q12

311 on M311, defined by µ1 = q = ε11 = 0,π11 = 1, 
is a partially hyperbolic equilibrium and therefore we have the following by standard center 
manifold theory.

Lemma 7.6.  There exists a local center manifold K311 as a graph

π11 = G311(µ1, q, ε11),� (7.20)

over (µ1, q, ε11) ∈ V311, where V311 is a small neighborhood of (0, 0, 0) in R3. Here

G311(µ1, q, ε11) = 1 + ε11µ
2
1h311(0,µ1, 0, ε11) + q

(
α

ξ
+

ξ + 1
ξ

µ1 +O(µ2
1ε11,µ2

1, q)
)

,

is smooth. The function h311 is defined by (7.16).

The submanifold of K311 within the invariant subset {ε11 = 0, q = µ−1
1 e−µ−1

1 }, recall 
(7.14), is a unique center manifold Wcu

311. In particular, its image under the coordinate trans-
formation (µ11,π1) �→ (y, z) defined by (7.18), (6.22), (6.5) and (1.22) produce Wcu(Q6) with 
the asymptotics in lemma 1.2 for y � 1.

See figure 29.
Notice that the invariant graph (7.20) passes through the set of equilibria given as the graph 

π11 = 1 + ε11µ
2
1h311(0,µ1, 0, ε11) over (µ1, ε11) within q  =  0. On the center manifold (7.20), 

we have

H̃311(π11,µ1, q, ε11) = −q
(
µ1 +O(µ2

1ε11,µ2
1, q)

)
.

Therefore, upon returning to the variables (π11,µ1, ε11) and the set defined by q = µ−1
1 e−µ−1

1 , 
recall (7.14), we have

H̃311(π11,µ1, q(µ1), ε11) = −µ1q(µ1) (1 +O(µ1)) ,

and hence obtain the following reduced problem on the center manifold

µ̇1 = µ2
1 (1 +O(µ1)) ,

ε̇11 = −ε11 (1 +O(ε11,µ1)) ,
� (7.21)

after division by µ1q on the right hand side.
Consider the following sections

Σ11,in
311 = {(x11,π11,µ1, ε11) |µ1 = ν, x11 ∈ [−β1,β1], π11 ∈ [0,β2], ε11 ∈ [0,β3]},

Σ0
311 = {(x11,π11,µ1, ε11) |µ1 = δ, x11 ∈ [−β1,β1], π11 − 1 ∈ [−β4,β4], ε11 ∈ [0,β3]},
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and consider the associated mapping Π11
311 : Σ0

311 → Σ11,out
311 . Notice that µ1 = δ in Σ0

311 
becomes y = 1/δ  in the original variables using (6.22) and (1.22), in agreement with Σ0, see 
(2.2). Setting

γ11
311 = {(x11,π11,µ1, ε11) | x11 = 0, π11 ∈ [0, 1), µ1 = 0, ε11 = 0},

we can then describe Π11
311 by following γ10

311, γ
11
311 and Wcu

311(Q
6).

Lemma 7.7.  Π11
311 is well-defined for appropriately small δ > 0, ν > 0 and βi > 0, 

i = 1, . . . , 4. In particular,

Π11
311(x11,π11, ν, ε11) = (x11+(x11,π11, ε11),π11+(x11,π11, ε11), δ, ε11+(x11,π11, ε11)),

with each coordinate function being C1. In particular, these functions satisfy the following 
equalities

x11+(x11,π11, ε11) = ξε11+(x11,π11, ε11)δe−δ−1
H311(π11+(x11,π11, ε11), δ, δ−1e−δ−1

, ε11+)

+O(e−cε−1
11 ec/ log π

−1
11 ),

π11+(x11,π11, ε11) = G311(ε11+(x11,π11, ε11), δ, δ−1e−δ−1
) +O(e−cec/ log π

−1
10 ),

ε11+(x11,π11, ε11) = eδ
−1−ν−1

π11ε11(1 +O(ε11, δe − δ−1))

for c  >  0 sufficiently small.

Proof.  We consider the following system

Figure 29.  Illustration of the result in lemma 7.6 and the reduced problem on M311. 
Our view is from π1 > 0, the π1-axis ‘coming out’ of the page. On the left, we illustrate 
the singular dynamics in the (µ1,π1, ε11)-space obtained upon center manifold 
reduction to M311. To obtain this picture we use that q = q(µ1), see (7.14). The point 
µ1 = ε11 = π1 = 0 projects to Q6. Using the blowup (7.18) of the set of degenerate 
points P311, we gain hyperbolicity and obtain an attracting center manifold K311 (shown 
in green) of the partially hyperbolic equilibrium q12

311, its intersection with ε11 = 0 being 
the unique center manifold Wcu(Q6) in lemma 1.2. The purple orbit is relevant for 
α > 1.
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ẋ11 = −x11/ξ + ε11µ
2
1q (−ξπ1(1 − µ1q)− q(−ξ + π1µ1x11 − απ1)) ,

π̇11 = π11
(
π2

11ε11µ
3
1q2(1 − µ1q) + x11/ξ

)
,

µ̇1 = −µ2
1x11/ξ,

ε̇11 = −π2
11µ

3
1q3ε2

11(1 − µ1q),

with q(µ1) = µ−1
1 e−µ−1

1 , obtained by substituting (7.18) into (7.13). First, we straight-
en out the stable fibers of the center manifold (7.15) through a transformation of the form 
(x11,π11,µ1, ε11) �→ (π̃11, µ̃1) = (π11(1 +O(x11)),µ1(1 +O(µ1x11))). Dropping the tildes 

we then obtain (7.19) after division by ε11µ
2
1q(µ1)

2 = ε11e−2µ−1
1  on the right hand side. We 

further divide the right hand side by

H̃311(π11,µ1, q, ε11) + π2
1qµ1(1 − µ1q) ≈ ξ,

such that

µ̇1 = −µ2
1

H̃311(π11,µ1, q, ε111)

H̃311(π11,µ1, q, ε11) + π2
1qµ1(1 − µ1q)

,

π̇11 = π11,

ε̇11 = − π2
11µ1qε11(1 − µ1q)

H̃311(π11,µ1, q, ε11) + π2
1qµ1(1 − µ1q)

.

We then straighten out the unstable fibers of the local invariant manifold π11 = 0 by a 

transformation fixing π11 and taking (π11,µ1, ε11) �→ (µ̃1, ε̃11) = (µ1(1 +O(µ1π11)),
ε11(1 +O(e−µ−1

1 π2
11)) such that

π̇11 = π11,

µ̇1 = −µ2
1,

ε̇11 = 0,

upon dropping the tildes. Now, we integrate these equations from µ1(0) = ν  to π11(T) = δ  
using π11(0) � β2 � δ. This gives

µ1(T) =
ν

1 + νT
,

for T = log(π11(0)−1δ). Working our way backwards, we realise that the contraction along the 
stable fibers of the center manifold (7.15), during this transition, is at least O(e−c/(ε11(0)π11(0))) 
for some c  >  0 sufficiently small.

Subsequently, from (7.19), we then apply a finite time flow map up close to π11 = 1 − ν. 
From here, we then straighten out the center manifold by a transformation of the form

π11 = 1 + ε11µ
2
1h311(0,µ1, 0, ε11) + q

(
α

ξ
+

ξ + 1
ξ

µ1 +O(µ2
1ε11,µ2

1 + q)
)
+ π̃11.

This gives
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π̇11 = −ξπ11,

µ̇1 = µ2
1

(
µ1q +O(π11,µ2

1q)
)

,

ε̇11 = −(1 +O(ε11µ
2
1, qOπ11))µ1qε11

after a transformation of time and dropping the tilde. Now, we straighten out the stable fibers by a 

transformation of the form (π11,µ1, ε11) �→ (µ̃1, ε̃11) = (µ1(1 +O(µ1π11)), ε11(1 +O(e−µ−1
1 π11))). 

This gives

π̇11 = −ξπ11,

µ̇1 = µ3
1q (1 +O(µ1)) ,

ε̇11 = −(1 +O(µ1))µ1qε11,

upon dropping the tildes. π11 decouples from this system. We therefore consider the (µ1, ε11) 
system. Dividing the right hand side by µ1q(1 +O(µ2

1)), and applying a transformation of the 
form (ε11,µ1) �→ µ̃1 = µ1(1 +O(µ1)) gives

µ̇1 = µ2
1,

ε̇11 = −ε11

upon dropping the tildes. We then integrate this system from µ1(0) = ν10 to µ1(T) = δ taking 
ν10 � δ. This gives

ε11(T) = e−Tε11(0),

with T = 1
ν10

(1 − ν10/δ). Therefore

ε11(T) = e−ν−1
10 (1−ν10/δ)ε11(0).

Working our way backwards, we realise that the contracting along the stable fibers of the 

center manifold (7.20) under this transition is at least O(e−ce1/(2ν10)). Similarly, the contraction 

along the stable fibers of the center manifold K311, see (7.15), is at least O(e−cε−1
10 e2ν−1

10 ). Both 

constants c here are sufficiently small. Now, we combine these estimates to obtain the desired 
result. In particular, the expression for ε11+ follows from the conservation of ε = e−µ1π11ε11. 
Therefore

ε11+ = eδ
−1−ν−1

π−1
11+π11ε11.

Here π11+ = 1 +O(ε11+µ
2
1,µ1e−µ1). We therefore solve this equation for ε11+ using the im-

plicit function theorem.� □ 

8. The transition map Π70 : Σ7 → Σ0

We now combine the findings in φ1 into a result on the transition map Π70. For this, let

Σ7
1 =

{
(x, z, w) | z =

ξ

2α(1 + ν)
, x +

(1 + α)ξ

2α
∈ [−β3,β3], w ∈ [0,β4], ε1 ∈ [0,β5]

}
,
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recall (5.2) and (1.22), and

Σ0 = {(x, z, w) |w = δ, (δx, δz) ∈ N0}.� (8.1)

Here N0 is the small neighborhood of (x0, z0) in (2.2). Notice also that q0 = (δx0, δz0, δ) in our 
present (x, z, w) = (x1, z1, w1)-coordinates, see (2.1) and (1.22). We then define the mapping 
Π70 : Σ7

1 → Σ0 as the first intersection by the forward flow. Then we have

Lemma 8.1.  The mapping Π70 is well-defined for appropriately small δ > 0, ν > 0 and 
βi > 0, i = 1, . . . , 5 and all 0 < ε � 1. In particular,

Π70(x, w, δ, ε1) = (x+(x, w, ε1), z+(x, w, ε1), δ),

where x+ and z+ are C1-functions in x and w, satisfying

x+(x, w, ε1) = δx0 +O(ε1, w),

z+(x, w, ε1) = δz0 +O(ε1, w).

Proof.  The result follows from the series of lemmas: lemmas 7.1, 7.3, 7.5 and 7.7, describ-
ing the relevant local transition maps in the local charts described in section 6 using standard 
hyperbolic methods to follow the segments γ7–11, Wcu(Q6). Notice that the mappings between 
the different local sections are diffeomorphism that do not change the order.� □ 

We are now ready to prove lemma 2.2.

Proof of lemma 2.2.  To prove lemma 2.2 we first write

Π1 = Π70 ◦Π17 : D(Π1) ⊂ Σ1 → Σ0,� (8.2)

in the local charts φ1 and φ3. In particular, Σ1 in (8.2) is defined in φ3, see (5.1), while Σ0 is 
defined in φ1, see (8.1). Then by lemmas 5.1 and 8.1

Figure 30.  Bifurcation diagram of limit cycles for ξ = 0.5 and three different values 
of ε: ε = 0.01 (full line), ε = 0.001 (dashed line), ε = 0.0001 (dash-dotted line), using 
min z as a measure of the amplitude. Around α ≈ 1, we see a dramatic change in min z. 
This transition is captured by the method of the paper.
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Π1(x, y, δ) =
(
δx0 +O(log−1 ε−1 log log ε−1), δz0 +O(log−1 ε−1 log log ε−1), δ

)
,

for all 0 < ε � 1, the estimates being C1-small with respect to x and y . Transforming the re-
sult back to the original variables (x, y, z) completes the proof of lemma 2.2.� □ 

9.  Discussion

In this paper, we proved existence of a new type of relaxation oscillations in a ODE system 
(1.3), being a caricature model of an earthquake fault, with exponential nonlinearities. The 
details were presented in theorem 1.5. Our approach was to use GSPT, specifically applying 
the adapted version of the blowup method in [22]—developed by the present author—to gain 
hyperbolicity where this was lost due to exponential ‘flat’ terms. In this way, we ‘derived’ an 
(improved) singular cycle, consisting of 12 ‘hyperbolic segments’, from which we obtained 
our desired limit cycle as a perturbation for all 0 < ε � 1. The singular cycle was described 
in several figures, see e.g. figures 7, 15, 25 and 26. In [22], the adapted blowup method was 
mainly used on toy examples and the present analysis therefore provides the most important 
application of this new method to obtain rigorous results in singular perturbed systems where 
hyperbolicity is lost in this special way. In [19], the method is used on some planar oscillators 
with exponential nonlinearities.

From the results in the present paper, we deduce the following interesting consequences: 
firstly, in [10] chaos is observed in numerical computations of (1.3) through a period doubling 
cascade of the relaxation oscillation for α > ξ  studied in the present manuscript. A corollary 
of our results, is that this chaos is not persistent within any fixed compact interval I ⊂ (ξ,∞) 
of α-values as ε → 0. Indeed, the limit cycles in theorem 1.5 do not bifurcate for any α > ξ  
and all 0 < ε � 1. In this sense, the period doubling cascade is an ε = O(1) phenomenon.

Secondly: let (x(t), y(t), z(t)) ∈ Γε. Then for α � 1, z(t) attains its minimum close to 
Wcu(Q6), see (1.14) with y � 1. On the other hand, for α > 1, the minimum of z(t) occurs 
at a smaller value, near the line z = ξ(α−1)

2α y on C with y � 1. This follows from (1.27) 
and the statements proceeding it, see also appendix. There is therefore a transition in how 
the minimum of z(t) depends upon ε (and α) when α crosses α = 1. We illustrate this fur-
ther in the bifurcation diagram in figure 30 using min z as a measure of the amplitude for 
ξ = 0.5 and three different values of ε: ε = 0.01 (full line), ε = 0.001 (dashed line), ε = 0.0001 
(dash-dotted line). This diagram was computed using AUTO. It shows that the limit cycles are 
born in Hopf bifurcations near α = 0.5. The amplitudes increase rapidly due to the underly-
ing Hamiltonian structure, recall (1.10), see also [3]. Subsequently they flatten out. This is 
where the connection to the relaxation oscillations, described in theorem 1.5, occurs. Between 
α ≈ 0.5–1.1 the increase in amplitude is more moderate, like min z ∼ logα. Examples of limit 
cycles are shown in figure 3. Beyond this interval of α-values, the amplitudes increase linearly 
in α: min z ∼ α.

In [3] it was conjectured that the relaxation oscillations and the local limit cycles near the 
Hopf bifurcation belong to the same family of stable limit cycles for all 0 < ε � 1, as exem-
plified in figure 30 for particular values of ε. I believe that this result can be proven using the 
methods in the present paper, but it requires a detailed description near Q3 where the trans
ition from small to big oscillations occur. I have not yet pursued such an analysis. On a related 
matter, we highlight that, as a consequence of our approach, Γε attracts a large set of initial 
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conditions. In fact, Γε attracts all initial conditions in K\U where U is a small neighborhood 
of K ∩ Wcs(Q3), recall theorem 1.5. I expect that a detailed analysis near Q3 would reveal that 
Γε attracts all points in K\{0}.

As highlighted in [3], the physical realistic values of ε belong to the interval [10−24, 10−8]. 
Long time numerical computations are not feasible in this interval and I therefore believe that 
theoretical progress is fundamental for the advancement of mathematical modelling in this 
area. In ongoing work, I use methods from the present paper to show a similar result to theo-
rem 1.5 for the spring-block model with the Dietrich friction law:

ẋ = (1 + α)(e−x/(1+α) − ez),
ẏ = ez − 1,

εż = −e−z
(

y +
x + z
ξ

)
.

See also [1]. The set defined by L∞ also plays an important role for this system. In fact, the 
analysis is completely analogous, suggesting something fundamental about this line in rate-
and-state friction models.

However, there are known limitations of the Dieterich and Ruina laws. Basically, experi-
ments suggest that friction should be an -shaped graph of velocity (when the states are in 
‘quasi-steady states’). Dieterich and Ruina only capture parts of this shape, see e.g. [33, fig-
ure 1]. The more recently developed spinodal rate-and-state friction law, see [33] and refer-
ences therein, has been developed to capture the missing pieces of the -profile, producing a 
potentially widely applicable, yet complicated, friction law. In [34], travelling wave solutions 
of a simple model for a thin sliding slab with this friction law were analyzed numerically. The 
results showed a rich bifurcation structure and demonstrated that the spinodal law captures 
the most essential physical phenomena known from friction experiments, also those not pro-
duced by the Ruina or the Dieterich law. Ideally, in the future, we hope that our insight into the 
two simpler models, Ruina and Dieterich, eventually will allow for a detailed analysis of the 
spinodal law and increase our understanding of the numerical findings in [34]. Central to our 
analysis in the present paper, is the existence of reduced models on C and L∞ (or in practice L, 
recall (1.29)). It is reasonable to assume, that by obtaining similar objects for the spinodal law 
we will enhance our understanding of system parameters and in general facilitate the process 
of translating data to parameter estimation.

Appendix.  Case α � 1

First, we describe α > 1. Since the details in chart φ3, in particular the proof of lemma 5.1 is 
unchanged, we will work in the chart φ1 only. We then consider the chart (w̄ = 1, q̄ = 1)11, 
recall (6.10). This gives the following equations:

ẋ = −ε1θ1w1
(
θ1w1xF(w−1

1 ) + (x + (1 + α)θ1)
)

,

θ̇1 = −θ1w1

(
ε1θ

2
1w1F(w−1

1 ) +

(
1 +

x + θ1

ξ

))
,

ẇ1 = w2
1

(
1 +

x + θ1

ξ

)
,

ε̇1 = −2ε1

(
1 +

x + θ1

ξ

)
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r1 decouples as usual and shall therefore be ignored. In this chart γ7 becomes

γ7
11 =

{
(x, θ1, w1, ε1) | x = − ξ

2α
(1 + α), θ1 ∈

(
0,

ξ

2α

]
, w1 = ε1 = 0

}
,

for α > 1, see e.g. (4.21). It is contained within the invariant manifold ε1 = 0. By desingular-
ization through division by w1 within this set, we obtain

ẋ = 0,

θ̇1 = −θ1

(
ε1θ

2
1w1F(w−1

1 ) +

(
1 +

x + θ1

ξ

))
,

ẇ1 = w1

(
1 +

x + θ1

ξ

)
.

The x-axis is therefore a line of equilibria. γ7
11 is asymptotic to (x, θ1, w1) =

(−ξ(1 + α)/(2α), 0, 0) within this set, following the associated stable manifold. Notice here 
that

(
1 +

x + θ1

ξ

)
=

α− 1
2α

> 0,� (A.1)

for x = −ξ(1 + α)/(2α) and θ1 = 0, by assumption. As usual, we can track a small neigh-
borhood of γ7

11 near θ1 = const. > 0 up to w1 = const. > 0 in a C1-fashion by following the 
unstable manifold

γ8
11 =

{
(x, θ1, w1, ε1) | x = − ξ

2α
(1 + α), θ1 = 0, w1 � 0, ε1 = 0

}
.

In fact, the result is almost identical to lemma 7.1. We therefore skip the details.
Next, recall that ε = e−2w−1

1 ε1, see (6.6), so at w1 = const. we have ε1 ∼ ε. We can there-
fore transform the result in (z̄ = 1, q̄ = 1)11 into the chart (w̄ = 1)2, see (6.17), using that 

Figure A1.  Improved singular orbit segments of the blowup in φ1 for α > 1. We show a 
view from the the positive w-axis (‘coming out’ of the page). The directions of the two 
remaining axes x and z are indicated by the arrows. The spheres are blowup of points, 
involving the two remaining dimensions: q and ε.
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z2 = −w−1
1 . The system is a regular perturbation problem in this (w̄ = 1)2-chart. In particular, 

along

γ8
2 =

{
(x, θ2, z2, ε) | x = − ξ

2α
(1 + α), θ2 = 0, z2 ∈ R, ε = 0

}
,

z2 is decreasing. This brings us into the chart (z̄ = −1)3 using the coordinate transformation 
w3 = z−1

2 . The equations in this chart are given in (6.20). The x-axis is again a line of equilib-
ria for this system and γ8

3 is asymptotic to the point (x, θ3, w3, ε) = (−ξ(1 + α)/(2α), 0, 0, 0) 
within this line by following the associated stable manifold. We can (again) track a small 
neighborhood of γ8

3 near w3 = const. > 0 up to θ3 = const. > 0 in a C1-fashion by following 
the unstable manifold

γ9
3 =

{
(x, θ3, w3, ε) | x = − ξ

2α
(1 + α), θ3 =

[
0,

ξ(α− 1)
2α

)
, w3 = 0, ε = 0

}
.

The result is almost identical to lemma 7.1. We skip the details again. Here γ9
3 is asymptotic 

to a point (x, θ3, w3) = (−ξ(1 + α)/(2α), ξ(α− 1)/(2α), 0) on C∞ : x = −ξ − θ3, w3 = 0, 
which is normally hyperbolic in this chart. Following lemma 1.2, see also [3] and figure 6(c), 
we obtain an orbit γ10

3  of the slow flow on C∞

γ10
3 =

{
(x, θ3, w3, ε) | x = −ξ + θ3, θ3 ∈

(
0,

ξ(α− 1)
2α

]
, w3 = 0, ε = 0

}
,

along which θ3 is decreasing. Notice in particular, that for α > 1 the point 
(x, θ3, w3) = (−ξ(1 + α)/(2α), ξ/2α(α− 1), 0) is always contained between Q6 and the 
unstable node Q7, the latter having coordinates x = 0, θ3 = ξ, w3 = 0 in this chart. γ10

3  there-
fore brings us into the chart (z = −1, θ = 1, w3 = 1)311 where the analysis in section 7.5 is 
valid. See figure 29 where γ10

3  is shown in purple. This completes the (sketch of) proof for 
α > 1. We illustrate the singular segments in figure A1.

Up until now our approach is not uniform in α. For α > 1 for example, the approach breaks 
down at α = 1 since the condition in (A.1) is violated (the bracket vanishes). To capture this, 
we may follow the approach in section 7.1, see figure 27. Here both α < 1 and α > 1 are vis-
ible (red and purple in figure 27). However, the w11-axis in figure 27 is degenerate. To obtain 
results uniform in α we therefore blowup this axis by introducing polar coordinates in the 
(ρ1, θ1)-plane. The details are pretty standard so we also leave these out of the manuscript for 
simplicity.
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