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Abstract
In the present article, we consider blow-up phenomena appearing in 
k-equivariant harmonic map heat flow from Rd to a unit sphere Sd ⊂ Rd+1:

ut = urr +
d − 1

r
ur −

k(d + k − 2)
2r2 sin(2u), r > 0, t > 0.

Here the scalar variable u stands for latitudinal angle on Sd  from the north 
pole (u = 0) to the south pole (u = π). The integer k � 1 corresponds to the 
eigenvalues associated to eigenmaps Ωk : Sd−1 → Sd−1, that is, harmonic 
maps with constant energy density. We prove constructively the existence of 
asymptotically non-self-similar blow-up solutions with precise description of 
their local space-time profiles. The blow-up solutions arise from, depending on 
the combination of d and k, two different approximations of the nonlinear term: 
either through a Dirac mass supported at the origin or via a Taylor expansion 
around equator map u = π/2. Transition of the blow-up mechanisms arises, 
accordingly.
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1.  Introduction

As a continuation of our previous work [8], we study the singularity formation of harmonic 
map heat flow from Rd to Sd ⊂ Rd+1, i.e. the equation for map F : Rd × R+ → Sd:

∂tF = ∆F + |∇F|2F,� (1.1)

a gradient flow for the Dirichlet energy

E[F] =
1
2

∫

Rd
|∇F|2dx.� (1.2)

Let Ωk : Sd−1 → Sd−1 denote an eigenmap, i.e. a harmonic map with constant energy density 
|∇Ωk|2 = Λk . From the general theory (see [13, chapter VIII]), we know that

Λk = k(d + k − 2)� (1.3)

and Ωk is a d-tuple consisting of eigenfunctions of −∆Sd−1 and represented by homogeneous 
polynomials of order k subject to a condition |Ω|2 = 1. We particularize our analysis here to, 
so called, k-equivariant map:

F(x, t) =
(
Ωk

(x
r

)
sin u(r, t), cos u(r, t)

)
,� (1.4)

where r = |x|, x ∈ Rd. The scalar variable u, on which we assume radial symmetricity with 
respect to x, stands for latitudinal angle on Sd  from the north pole (u = 0) to the south pole 
(u = π). Direct computations then show that

∂rF =∂ru (Ωk cos u, − sin u) ,

∂rrF =∂rru (Ωk cos u, − sin u)− (∂ru)
2
(Ωk sin u, cos u) ,

∇Sd−1 F =((∇Sd−1Ωk) sin u, 0) , ∆Sd−1 F = ((∆Sd−1Ωk) sin u, 0) ,
∂tF =∂tu (Ωk cos u, − sin u) .

The energy density is expressed as

|∇F|2 = |∂rF|2 +
1
r2 |∇Sd−1 F|2 = (∂ru)2 +

Λk

r2 sin2 u.� (1.5)

Using the decomposition of the Laplacian into its radial and transversal parts, we get

∆F = ∂rrF +
d − 1

r
∂rF +

1
r2 ∆Sd−1 F

=

(
∂rru +

d − 1
r

∂ru +
Λk

r2

)
(Ωk cos u, − sin u)− (∂ru)

2
(Ωk sin u, cos u) .

Consequently, the harmonic map heat flow (1.1) is reduced to a k-equivariant ansatz:

ut = urr +
d − 1

r
ur −

k(d + k − 2)
2r2 sin(2u), r > 0, t > 0,� (1.6a)

u(r, 0) = u0(r), r � 0.� (1.6b)

Due to (1.5), the Dirichlet energy E[F] can be written as E[F] = Vol(Sd−1)Ek(u) with

Ek(u) =
1
2

∫ ∞

0

(
(∂ru)2 + k(d + k − 2)

sin2 u
r2

)
rd−1dr.
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The continuity at r  =  0 of the map F(·, t) as in (1.4) imposes boundary condition

u(0, t) = 0.� (1.6c)

As a matter of fact, equation (1.6a) is a gradient flow for Ek(u). As for the initial data, we assume 
that u0 is a nonnegative function such that u0(r) = O(rk) as r → 0. Existence and uniqueness 
of local-in-time classical solution of (1.6a)–(1.6c) is shown by rather standard arguments. See 
[8, proposition 3.1] for the case k  =  1. The proof begins with changing unknown variable as 
Φ1(r, t) = u(r, t)/r  in order to transform equation (1.6a) to another equation with a bounded 
nonlinear term. The same argument works for general k � 1 if we start with the transformation 
Φk(r, t) = u(r, t)/rk. We say that a solution u of (1.6a)–(1.6c) blows up in a finite time T if u 
is smooth in R+ × (0, T) and

lim sup
t↗T

sup
r>0

u(r, t)
rk = +∞.� (1.7)

A blow-up is said to be of Type I if there exists a constant C  >  0 such that

sup
r>0

u(r, t)
rk �

C√
T − t

, t < T ,

and of type II otherwise. Type II blow-up means that the singularity structure is not in accor-
dance with the scaling property of (1.6a). Much effort has been recently paid to determining 
blow-up types for (1.6a) with k  =  1. Despite its apparent simplicity, equation (1.6a) admits 
various blow-up mechanisms depending on the combination of k and d. Below we just review 
some of the known results.

In the two-dimensional case d  =  2, a generic blow-up pattern is of type II and is realized 
by a shrinking harmonic map with finite energy so that the blow-up may be viewed as ‘bub-
bling’ process, where some portion of energy is trapped inside the singularity [3, 31, 32, 39]. 
In dimensions 3 � d � 6, there exist self-similar solutions, which exhibit type I blow-up [14]. 
The shrinking self-similar solutions, together with expanding ones, can be used to describe 
global (possibly nonunique) weak solutions to (1.6a) [5, 6, 18]. Moreover, the stability prop-
erty of the shrinking self-similar solutions constructed in [6] has been shown in [7]. On exist-
ence and regularity of weak solutions for rough initial data of finite Dirichlet energy, readers 
are referred to [10] and the references cited therein. Uniqueness of weak solutions in a class 
that includes blow-up solutions has been studied in [17]. The blow-up solutions constructed in 
[8], however, do not satisfy a condition of the uniqueness result in [17].

In higher dimensions 7 � d, type I blow-up cannot occur [9]. The proof given in [9] is by 
contradiction, and hence no information on actual blow-up rate nor the asymptotic profiles 
is obtained there. We aim at constructing typical examples of type II blow-up solutions with 
quantitative informations about their blow-up rate and profiles. One of the authors described 
in [4] some expected blow-up mechanisms by means of matched asymptotic expansions and 
demonstrated by numerical computations how reasonable they are. While the formal construc-
tions by [4] provide us with useful information about asymptotics of the expected solutions, 
we need extra nontrivial arguments to prove the actual existence of the expected solutions 
with the prescribed asymptotics. In our previous article [8], we have proven that there exist 
a countably many type II blow-up solutions with exact rates, justifying some of the formal 
constructions in [4]. A stability result of such blow-up solutions has been obtained in [19]. For 
further results, see the introduction in [8]. Our goal in the present article amounts to giving a 
rigorous proof of the existence of the solutions suggested by the result of [4] but being beyond 
the scope of [8].
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The key point of the arguments in [8] consists in the linearization of (1.6a), after intro-
ducing backward self-similar variables (Φ; y, s), around the singular map π/2. The operator 
associated to the linearization is formally written as

Av = −1
ρ

∂

∂y

(
ρ
∂v
∂y

)
+

k(k + d − 2)
y2 v, ρ = yd−1e−y2/4.

It is realized as a symmetric operator in L2
r,ρ(Rd) (see (2.4) for the definition). Let us just point 

out the following essential fact:
The linearized operator A is lower semi-bounded in L2

r,ρ(Rd)

if d > d∗(k) := 2 + (2 + 2
√

2)k.

See proposition 2.1 below. The spectrum of Friedrichs’ extension, still denoted by A, con-
sists only of simple eigenvalues {λn}∞n=0 ⊂ R and λn = n − γ/2 (n = 0, 1, ...), where 
γ = γ(k, d) > 0 is the constant defined in (1.9) below. Each blow-up solution constructed in 
[8] is associated to a stable eigenvalue λ� > 0 (for the case k  =  1). However, for each n ∈ N 
there exist k � 1 and d  >  d*(k) such that λn = 0. In the present article we construct blow-up 
solutions associated to the neutral eigenvalues for each k � 1.

In the general case k � 1, Gastel [16] proved the existence of self-similar blow-up solutions 
for d  <  d*(k). So far, regarding rigorously proven results, all the results on type II singularity 
in the high-dimensional case were given only for the case k  =  1. In the case k � 2, there are 
several dimensions where neutral eigenvalues appear. Recall the asymptotic property of the 
stationary solution U1(r) satisfying U1(0)  =  0 and limr→0 U1(r)/rk = 1 [4, 28]: if d  >  d*(k), 
then

U1(r) =
π

2
− hr−γ + O

(
r−γ−ω

)
� (1.8)

as r → ∞, where h is a positive constant and

γ =
d − 2 − ω

2
with ω = ωk,d =

√
(d − 2)2 − 4k(d − 2)− 4k2� (1.9)

is the smaller root of quadratic equation γ2 − (d − 2)γ + k(d + k − 2) = 0.
We are now in a position to state our main results. As a main novelty, we show that type 

II blow-up solutions associated to neutral eigenvalues actually exist and their blow-up mech
anisms are quite different depending on whether 2γ > ω  (i.e. 4γ > d − 2) or 2γ < ω  (i.e. 
4γ < d − 2). The simplest case, λ1 = 0, happens if and only if (k, d, γ) = (1, 7, 2), and hence 
condition 4γ > d − 2 is satisfied. Suppose next that λ2 vanishes. This is true if and only 
if (k, d, γ) = (2, 12, 4) or (3, 27, 4). Notice that condition 4γ > d − 2 holds for the former 
triplet, whereas condition 4γ < d − 2 holds for the latter one. In general, the both situations 
occur in accordance with suitable choice of k � 2 and d  >  d*(k) when a higher eigenvalue λn0 
(n0 � 2) vanishes (see remark 2.2 below).

Theorem 1.1.  Assume that d > d∗(k) = 2 + (2 + 2
√

2)k holds. Suppose that γ = 2n0 for 
some integer n0 � 1. Then there exists a solution u of (1.6a) and (1.6b), with Ek(u0) < ∞, 
that blows up in a finite time T and that fulfills the following properties:

	 (i)	�(Exact blow-up rate) There exists a constant θ ∈ (0, 1) such that the limit

lim
t→T

(T − t)k/2

| log(T − t)|k/δ
u(r, t)

rk with δ = min{2γ,ω}� (1.10)

P Biernat and Y Seki﻿Nonlinearity 33 (2020) 2756
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		 exists and is positive. The convergence is uniform on the set 
{0 < r � C| log(T − t)|−2θ/δ

√
T − t} for every constant C  >  0.

	(ii)	�(Estimates in a neighborhood of the inner layer) There exists a positive smooth function 
ε(s) satisfying, if 2γ > ω ,

ε(s) = Ks−1/ω {1 + o(1)} ,� (1.11a)

ε̇(s) = −K
ω

s−1/ω−1 {1 + o(1)}� (1.11b)

		 and if 2γ < ω ,

ε(s) = K̃s−1/2γ {1 + o(1)} ,� (1.12a)

ε̇(s) = − K̃
2γ

s−1/2γ−1 {1 + o(1)}� (1.12b)

		 as s → ∞ for some constants K, K̃ > 0, and
∣∣∣∣u(r, t)− U1

(
r

ε(s)
√

T − t

)∣∣∣∣ � ε(s)2θΨ

(
r

ε(s)
√

T − t

)
� (1.13)

		 for r � ε(s)θ
√

T − t, t  <  T, where s = | log(T − t)| and Ψ is a positive smooth function 
satisfying

Ψ(ξ) =

{
O(ξk) asξ → 0,
O(ξ−γ) asξ → ∞.

� (1.14)

	(iii)	�(Estimates in self-similar regions) For every M  >  0 there exists a constant CM  >  0 such 
that

∣∣∣∣∣u(r, t)− π

2
+ Dε(s)γ

(
r√

T − t

)−γ

L(ω/2)
n0

(
r2

4(T − t)

)∣∣∣∣∣ � CMε(s)γ+2θ(T − t)γ/2r−γ

forε(s)θ
√

T − t � r � M
√

T − t, t < T ,

� (1.15)

		 where D = hN  with N = N (n0, d) > 0 is a constant and L(ν)
n (x) denotes the associated 

Laguerre polynomial of order n:

L(ν)
n (x) =

x−νex

n!
dn

dxn

(
e−xxn+ν

)
,

		 and where ε(s) is as above.
	(iv)	�(Number of intersections) There exist exactly n0 simple zeros {rj(t)}n0

j=1 of u(·, t)− π/2 in 
(0,∞) for every 0 � t < T , which satisfy rj(t) = O(

√
T − t) as t ↗ T  for j   =  1,...,n0.

Remark 1.2.  It is readily seen that supr>0 u(r, t)/rk is attained in the region where 
r � Cε(s)

√
T − t , C  >  0, for each t ∈ (0, T) and not outside a ball with radius of order greater 

than ε(s)
√

T − t . In particular, there is a constant M  >  0 such that

sup

{
u(r, t)

rk ; ε(s)θ
√

T − t � r
}

�
M| log(T − t)|kθ/δ

(T − t)k/2 .

P Biernat and Y Seki﻿Nonlinearity 33 (2020) 2756
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Remark 1.3.  The constant π/2 is a stationary solution of (1.6a) as well as of the rescaled 
equation (2.1c) below, although it does not satisfy the boundary condition (1.6c). The associ-
ated Laguerre polynomials in (1.15) appear in the expression of the eigenfunctions:

φn0(y) = N y−γL(ω/2)
n0

(
y2/4

)
� (1.16)

for the linearized operator around π/2 in the self-similar variables (see (2.8) below). The even 
integer assumption of γ  is merely for guaranteeing that 0 is an eigenvalue.

We thus complete the first step of our project, which was presented (partly) in [4] by means 
of the formal asymptotic expansions coupled with numerical evidence, prior to the rigorous 
mathematical analysis due to [8] and the present paper. We conjecture that blow-up rate of a 
general blow-up solution of (1.6a) is the same as one of the particular solutions constructed in 
[8] and the present paper. See remark 1.4 below for the detail.

Remark 1.4.  As stated in [8, remark 1.5], there is a striking analogy on singularity forma-
tion between equation (1.6a) and a semilinear heat equation ut = ∆u + u p, p   >  1. For this 
equation Herrero and Velázquez [24, 25] proved the existence of radial type II blow-up solu-
tions {u�,HV}� if N � 11, p > 1 + 4/(N − 4 − 2

√
N − 1) =: pJL

4, which play an essential 
role in the classification of general radial blow-up solutions due to [29, 30]. More precisely, 
the authors of [29] and [30] proved independently that if two radial solutions blow up at the 
same time, with type II regime, and have the same ‘number of vanishing intersections’ then 
the ratio of their maximum is bounded from below and above by positive constants. Although 
type II blow-up solutions are not directly constructed in [29, 30], one can use the HV solutions 
{u�,HV}� to compare with given radial blow-up solutions if p (>p JL) does not coincide with 
certain exceptional values, denoted by { pj}∞j=1. Consequently, they classified all possible rates 
of radial blow-up solutions for p   >  p JL with p �= pj , N � 11. Analogous classification result 
was obtained for a different parabolic problem in [21] based on [20, 34]. Taking account of 
these works, the authors expect that the blow-up solutions as in theorem 1.1 and [8, theorem 
1.1] exhibit all possible blow-up mechanisms of (1.6a) for d  >  d*(k) with k  =  1. The same 
should be true also for k � 2, as [8, theorem 1.1] is extended to the case k � 2 [35], though 
type I blow-up could occur in that case. The information about the number of intersections as 
stated in (iv) of theorem 1.1 should be essential to claim such a statement.

Statement (ii) in theorem 1.1 shows that the leading term near the singularity evolves in 
a non-self-similar scale due to the presence of function ε(s), whereas statement (iii) implies 
that the solution behaves in a self-similar manner in the region r ≈

√
T − t . This fact is a key 

qualitative description of type II singularity. Based on the local estimates in theorem 1.1, we 
may show that it applies also in its derivatives. Moreover, we may obtain the asymptotics of 
the energy density of the corresponding k-equivariant map.

Theorem 1.5.  Assume the same hypotheses as in theorem 1.1. Let u and ε(s) with 
s = − log(T − t) be as in theorem 1.1 and let φn0(y) be the function as in (1.16). Then

	 (i)	�Function (ξ, t) �→ u(ξε(s)
√

T − t, t) is close to U1(ξ) in C2
loc[0,∞) in the sense that

2∑
j=0

sup
ξ�K

∣∣∣∣
∂ j

∂ξj

(
u
(
ξε(s)

√
T − t, t

)
− U1 (ξ)

)∣∣∣∣ → 0 ast ↗ T� (1.17a)

4 For some integer powers p   >  p JL, the existence of nonradial type II blow-up solutions has been proven in [11]. The 
solutions exhibit the same blow-up rates as of {u�,HV}� for such a value of p .
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		 for every K  >  0, and function (y, t) �→ u(y
√

T − t, t) is close to u∗(y, t) := π/2 − Dε(s)γφn0(y) 
in C2

loc(0,∞) in the sense that

2∑
j=0

sup
L�y�M

∣∣∣∣
∂ j

∂yj

(
u(y

√
T − t, t)− u∗(y, t)

)∣∣∣∣ → 0 ast ↗ T� (1.17b)

		 for every M  >  L  >  0.
	(ii)	�Let F(x, t), F1(x, t), F∗(x, t) be the k-equivariant maps defined by (1.4) corresponding to 

u(r, t), U1(r/ε(s)
√

T − t), u∗(r/
√

T − t, t) with r = |x|, respectively. Then:

sup
ξ�K

ε(s)2(T − t)
∣∣∣(|∇F|2 − |∇F1|2

) (
ξε(s)

√
T − t, t

)∣∣∣ → 0 ast ↗ T� (1.18a)

		 for every K  >  0, and

sup
L�y�M

(T − t)
ε(s)2γ

∣∣∣(|∇F|2 − |∇F∗|2
) (

y
√

T − t, t
)∣∣∣ → 0 ast ↗ T� (1.18b)

for every M  >  L  >  0.

Remark 1.6.  Estimates (1.18) show that the leading term of the energy density |∇F|2 in 
the designated regions are precisely given by |∇F1|2 and |∇F∗|2, respectively, since we have

A1 � ε(s)2(T − t) sup
ξ�K

|∇F1|2
(
ξε(s)

√
T − t, t

)
� A2,� (1.19a)

B1 � (T − t) sup
L�y�M

|∇F∗|2
(

y
√

T − t, t
)
� B2� (1.19b)

for some constants A1, A2, B1, B2 > 0. In particular, the energy density |∇F|2 behaves in non-
self-similar manner in the inner region r � ε(s)

√
T − t, but in self-similar manner in the 

self-similar region r ≈
√

T − t .

We just recall a general decay estimate essentially due to [17]. Suppose that initial data 
u0 ≡ h0 satisfies |h0(r)| � M0, r|h′0(r)| � M1 for a.e. r  >  0 for some constants M0, M1 > 0. 
Then any bounded solution h of (1.6a) on [0, T] with h(·, 0) = h0 satisfies

|hr(r, t)| � M2

r
, r > 0,� (1.20)

uniformly on [0, T], where M2  >  0 is a constant depending only on k,d,M0, and M1. The proof of 
(1.20) is given in [17, proposition B.1] for k  =  1 by using a heat kernel estimate, which works 
for any k � 1 without any change. Applying (1.20) as well as the identity (1.5) to our solution 
u in the region {r > ε

√
T − t}, we immediately see that there holds |∇F|2 � C/ε2(T − t), 

whence the following corollary. In particular, the singularities of our solutions are categorized 
into the second kind in terms of Struwe’s classification [38].

Corollary 1.7.  Assume the same hypotheses as in theorem 1.1. Then the energy density of F 
enjoys the following blow-up rate estimate:

C1

ε(s)2(T − t)
� ‖∇F(·, t)‖2

L∞(Rd) �
C2

ε(s)2(T − t)
,� (1.21)

where C1, C2 > 0 are some constants, where ε(s) is the function as in theorem 1.1.
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We finally mention a technical aspect of our approach. Our fundamental tool bases on a 
method of matched asymptotic expansions, which has been used in a number of nonlinear 
problems at least on a formal level, e.g. [4, 15, 36, 39]. This method describes possible sin-
gularity mechanisms, especially locally in space, prior to verifying the actual existence of 
sought-for solutions. On the other hand, the justification of such formal asymptotic expan-
sions is known to be a delicate problem, in general. In semilinear problems, a method of 
linearization about a stationary solution is commonly used. Information in the region away 
from the singularity is given by such a linearized problem. Such an approach has been adopted 
in various nonlinear parabolic problems, e.g. [20, 22, 23, 33, 37] after the pioneering work 
[24, 25]. A related technique was used in [2]. In these works, the leading terms are obtained 
completely on the linear level. In subtler problems, such as the situation where 0 is an eigen-
value, deeper analysis is required. In particular, the situation becomes more complicated in 
a problem where a non-self-similar singularity can arise, because the standard method of 
higher-order approximation may not work. Some (but a few) works deal with such a situation 
[27, 26] in the asymptotic methods, but the authors doubt if it would apply for our problem at 
least not directly. Instead, we adopt here the approach that has been recently developed in the 
second author’s work [34]. See section 3.1.1 for detail.

The plan of the present article is as follows. In section 2 we recall some preliminary results 
and revisit the formal construction of our sought-for solutions presented in [4]. A full proof of 
theorem 1.1 is given in section 3, which consists of six subsections. After some preparations 
in section 3.1, the topological fixed-point argument is carried out in section 3.3 by admitting 
a key a priori estimate. Consequently, theorem 1.1 is proved. The remaining subsections of 
section 3 are devoted to deriving a prior estimates. The most important one is about a bound 
of oscillation near the origin, presented in lemma 3.6 in section 3.3. This leads to sharp esti-
mates suggested by the formal construction as demonstrated in sections 3.4 and 3.5. The sec-
tion ends with the proof of theorem 1.5 in section 3.6.

After completing this work, the authors were informed of very recent results by [12], which 
show the appearance of interesting bubbling phenomena for the two-dimensional case. This 
result yields crucial contribution to the study of the harmonic map heat flow (1.1).

2. The formal construction

In this section we formally derive the main results by means of the matched asymptotic expan-
sions. Such a singularity mechanism was essentially found in [4]. We shall revisit and slightly 
modify the formal argument in that article, so as to estimate the magnitude of the remainder 
terms. No essential change on the most important terms from [4] appears in the final result 
but the reconstruction of the formal solution is convenient to prove the actual existence of the 
sought-for solution.

2.1.  Preliminary results

To study the blow-up asymptotics around (r, t) = (0, T), we use the self-similar variables:

Φ(y, s) = u(r, t),� (2.1a)

y =
r√

T − t
, s = − log(T − t).� (2.1b)
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In the following, let us write Λk := k(d + k − 2) for simplicity. The new unknown function Φ 
then satisfies the rescaled equation:

Φs = Φyy +

(
d − 1

y
− y

2

)
Φy −

Λk

2y2 sin(2Φ) y > 0,− log T < s < +∞,

� (2.1c)
as well as the boundary condition Φ(0, s) = 0. We will construct a solution f  of equation (2.1c) 
that converges to π/2 as s → ∞ in an appropriate manner, setting

v(y, s) = Φ(y, s)− π

2
.� (2.2)

Let us set

ρ(y) = yd−1 exp
(
−y2/4

)
.

It is readily seen that v solves the equation

vs = vyy +

(
d − 1

y
− y

2

)
vy −

Λk

y2 v + f (v)

=
1
ρ

∂

∂y

(
ρ
∂v
∂y

)
− Λk

y2 v + f (v) ≡ −Av + f (v),
� (2.3a)

f (ψ) =
Λk

2y2 (sin(2ψ)− 2ψ) .� (2.3b)

Let us write

L2
r,ρ(Rd) =

{
v ∈ L2

loc[0,∞); ‖v‖2 :=
∫ ∞

0
v2ρdy < ∞

}
,� (2.4)

Hm
r,ρ(Rd) =


v ∈ Hm

loc[0,∞); ‖v‖2
Hm

r,ρ(Rd) :=
m∑

j=0

sup
|α|=j

∥∥Dα
y u

∥∥2
< ∞


 ,� (2.5)

where m = 1, 2, ... These function spaces have Hilbert space structures endowed with canonical 
scalar products, respectively. When d  >  d*(k), a linearized operator A : L2

r,ρ(Rd) → L2
r,ρ(Rd), 

that is initially defined in the set of smooth functions, may be extended to a unique self-adjoint 
operator (Friedrichs’ extension) satisfying

〈Av, v〉 � −γ

2
‖v‖2, v ∈ D(A),� (2.6)

where γ  is the positive constant defined in (1.9). The following lemma was obtained in [8, 
lemma 3.4] for k  =  1 (see also [4]). The proof for k � 2 is entirely similar and thus omitted.

Proposition 2.1.  Assume that d  >  d*(k) holds. Then the spectrum of A consists only of 
simple eigenvalues {λn}∞n=0 ⊂ R with

λn = n − γ

2
, n = 0, 1, 2, . . . ,� (2.7)

Eigenfunctions of A associated to eigenvalues λn are given by

φn(y) = Nny−γL(ω/2)
n

(
y2

4

)
, n = 0, 1, 2, . . . ,� (2.8a)
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where ω = ωk,d, L(ν)
n  denotes the standard associated Laguerre polynomial of order ν , and

Nn = 2−1−ω/2

√
n!

Γ(n + 1 + ω/2)
� (2.8b)

is a normalizing constant so that 〈φn,φm〉 = δn,m. Moreover,

φn(y) = cny−γ(1 + o(1)) asy → 0;� (2.9a)

φn(y) = c̃ny−γ+2n(1 + o(1)) asy → ∞,� (2.9b)

where cn  >  0 and c̃n are constants such that (−1)nc̃n > 0 for n = 0, 1, 2, . . .

Remark 2.2 (The existence of neutral eigenvalues).  It is convenient to make a list 
of triplets (k, d, γ) for which an eigenvalue vanishes. Suppose that λn = 0, i.e. γ = 2n, which 
requires, in view of (1.9), 

√
(d − 2)2 − 4k(d − 2)− 4k2 = d − 2 − 4n. Under the assumption 

d  >  d*(k), the last identity is equivalent to

(k − 2n)(d − 2) + k2 + 4n2 = 0,� (2.10a)

d − 2 − 4n > 0.� (2.10b)

As a matter of fact, there is an infinite number of triplet (k, d, γ) that consists of integers satis-
fying (2.10). Up to n  =  5, the triplets (k, d, γ) producing λn0 = 0 are as follows:

λ1 = 0 ⇐⇒ (k, d, γ) = (1, 7, 2),
λ2 = 0 ⇐⇒ (k, d, γ) = (2, 12, 4), (3, 27, 4),
λ3 = 0 ⇐⇒ (k, d, γ) = (3, 17, 6), (4, 28, 6), (5, 63, 6),
λ4 = 0 ⇐⇒ (k, d, γ) = (4, 22, 8), (6, 52, 8), (7, 115, 8),
λ5 = 0 ⇐⇒ (k, d, γ) = (5, 27, 10), (6, 36, 10), (8, 84, 10), (9, 183, 10).

As already pointed out in section 1, the both cases 2γ > ω  and 2γ < ω  can occur if n0 � 2.

Assumption 2.1.  There exists a neutral eigenvalue: λn0 = 0 for some n0 ∈ N.

2.2.  Derivation of the formal asymptotics

The asymptotic behavior (2.9a) of φn shows that the linearization in pointwise sense does not 
yield adequate first-order approximation for y  close to the origin. This fact indicates the onset 
of inner layer around the origin. We shall denote henceforth the size of inner layer by ε(s) and 
assume that ε(s) > 0 for all s and

lim
s→∞

ε(s) = lim
s→∞

ε̇(s) = 0.

To analyze the behavior in the inner layer we introduce new variables:

ξ =
y

ε(s)
, U(ξ, s) = Φ(y, s).
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Equation (2.1c) then reads

ε(s)2Us = Uξξ +

(
d − 1
ξ

− (ε(s)2 − 2ε(s)ε̇(s))
ξ

2

)
Uξ −

Λk

2ξ2 sin(2U).

It is thus expected, to the leading order, U(ξ, s) behaves asymptotically to a stationary solu-
tion of the original equation: U(ξ, s) ∼ Uα(ξ) as s → ∞ locally uniformly in [0,∞) for some 
α > 0. Here we just recall that the stationary solutions are given by a one-parameter family 
{Uα}. Each function Uα is characterized by the boundary condition:

Uα(0) = 0, lim
ξ→0

Uα(ξ)

ξk = αk.� (2.11)

We shall just summarize some properties of stationary solutions.

Proposition 2.3.  Assume d  >  d*(k). Then any stationary solution Uα(ξ), α > 0, of (1.6a) 
satisfying (2.11) is given by Uα(ξ) = U1(αξ). Moreover, U1(ξ) has the following asymptotics:

U1(ξ) = ξk + O
(
ξ3k) asξ → 0,� (2.12a)

U′
1(ξ) = kξk−1 + O

(
ξ3k−1) asξ → 0;� (2.12b)

U1(ξ) =
π

2
− hξ−γ + O

(
ξ−γ−δ

)
asξ → ∞,� (2.12c)

U′
1(ξ) = hγξ−γ−1 + O

(
ξ−γ−δ−1) asξ → ∞,� (2.12d)

where δ = min{2γ,ω}.

Proof.  The first assertion is a consequence of uniqueness and scale-invariance. The proof 
of (2.12c) is found in [4, 28]. One may easily prove (2.12d) by using (2.12c) and the identity

U′
1(ξ) =

k(d + k − 2)
2ξd−1

∫ ξ

0
rd−3 sin(2U1(r))dr, ξ > 0,

with the help of H’Lôpital rule as well as the quadratic equation satisfied by γ . Similarly, we 
may derive (2.12a) and (2.12b).� □ 

By normalization, we may suppose U(ξ, s) ∼ U1(ξ) as long as ε(s)2ξ = o(1/ξ), i.e. y � 1 
as s → ∞. We thus obtain

Φ(y, s) ∼ Φinn(y, s) := U1

(
y

ε(s)

)
∼ π

2
− hε(s)γy−γ� (2.13)

for ε(s) � y � 1, s → ∞. Expansion (2.13) describes the approximation of out sought-for 
solutions near the origin. We will describe another type of expansions valid for the outside the 
inner region. Let us expand the solution v of (2.3) to a Fourier series:

v(y, s) = a0(s)φ0 + a1(s)φ1(y) + · · ·+ an0(s)φn0(r) + Q(y, s),� (2.14)

where 〈Q(·, s),φ0〉 = · · · = 〈Q(·, s),φn0〉 = 0. Fourier coefficients an, n = 0, 1, ..., solve the 
ODE:

ȧn(s) = −λnan(s) + 〈 f (v(s)),φn〉,� (2.15)
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where f (v) is the function defined in (2.3).
As we have seen in proposition 2.1, the eigenfunctions φj(y) behave as y−γ as y → 0. To 

factor it out, we introduce the following dependent variable:

W = yγv.� (2.16)

Equation (2.3a) then reads:

Ws = Wyy +

(
m − 1

y
− y

2

)
Wy +

γ

2
W + g(W) with m = d − 2γ,

g(W) = yγ f (y−γW) = yγ−2 Λk

2
{
sin(2y−γW)− 2y−γW

}

� (2.17)
(See (2.3)). Since γ = 2n0 by assumption 2.1, it turns out that m is a positive integer. Hence 
the rescaled solution W is canonically identified with a radial solution of m-dimensional equa-
tion. Let us define

−LV = Vyy +

(
m − 1

y
− y

2

)
Vy +

γ

2
V , V ∈ D(L) := H2

r,ρ(Rm).

It is routine to see that the operator L is self-adjoint and its spectrum consists only of eigen-
values. Moreover, the nth eigenvalue is equal to λn, i.e. the nth eigenvalue of the operator A 
defined before. Eigenfunctions ψn of L associated to λn are given by:

ψn(y) = yγφn(y).

Notice that limy→0+ ψn(y) = cn exists for every n, where cn is the positive constant as in 
(2.9a). The following Fourier expansions are then canonically obtained from (2.14):

W(y, s) = a0(s)ψ0 + a1(s)ψ1(y) + · · ·+ an0(s)ψn0(y) + yγQ(y, s).� (2.18)

Let φ be a continuous function on R+ such that φ(y) = O(y−γ) as y → 0 and set 
ψ(y) := yγφ(y). A straightforward computation reveals that

〈g(W(·, s)),ψ〉L2
r,ρ̃(Rm) = 〈 f (v(·, s)),φ〉L2

r,ρ(Rd),� (2.19)

where ρ̃ = ρ̃(y) = ym−1e−y2/4. To estimate an(s) we examine the above amount in detail. Let 
L = L(s) be a continuous function satisfying ε(s) � L � 1 as s → ∞. In order to see the 
contributions of inner and outer parts to 〈g (W(·, s)) ,φ〉, let us divide it as

〈g (W(·, s)) ,ψ〉 =
(∫ L

0
+

∫ ∞

L

)
g(W(y, s))ψ(y)ym−1e−y2/4dy

=: I1 + I2.
� (2.20)

It is crucial to determine the contributions of I1 and I2 as s → ∞, which depend on k and d 
through the amounts ω  and γ .

Since v = Φ(y, s)− π/2 ∼ Φinn(y, s)− π/2 ∼ −hε(s)γy−γ as y → 0, we obtain

I1 =
Λk

2

∫ L

0

1
y2 {sin(2v)− 2v}ψ(y)ym+γ−1e−y2/4dy

∼ Λk

2 · 3!
h3

∫ L

0

(
y

ε(s)

)−3γ

ψ(y)yd−3−γe−y2/4dy as L → 0.

P Biernat and Y Seki﻿Nonlinearity 33 (2020) 2756



2768

We then change the integral variable to the inner scale

ξ =
y

ε(s)
.� (2.21)

Since d − 3 − 4γ = ω − 2γ − 1, the last integral converges if and only if ω < 2γ , whence:

I1 ∼




ψ(0)ε(s)γ+ω

∫ ∞

0
G(ξ)ξd−3−γdξ (ω < 2γ),

Λk

2 · 3!
h3

ω − 2γ
ψ(0)ε(s)γ+ω

(
L

ε(s)

)ω−2γ

(ω > 2γ),
� (2.22)

G(ξ) =
Λk

2
(sin (2U∗(ξ)− π)− (2U∗(ξ)− π))� (2.23)

as L → 0.

Assumption 2.2.  The leading term of W(y, s) in the expansion (2.18) is an0(s)ψn0(y) and 
ε̇(s) = o (ε(s)) as s → ∞.

The inner expansion (2.13) requires

an0(s) = − h
cn0

ε(s)γ + o (ε(s)γ)

as s → ∞. Taylor approximation yields

I2 ∼ −2Λk

3

∫ ∞

L
{W(y, s)}3ψ(y)yd−3−4γe−y2/4dy.

Notice that the last integral diverges as L → 0 if and only if d − 2 < 4γ . We thus obtain



I2 = O

(
ε(s)γ+ω

(
ε(s)

L

)2γ−ω
)

= o (ε(s)γ+ω) (ω < 2γ),

I2 ∼ 2Λk

3
h3ε(s)3γ

∫ ∞

0
{ψn0(y)}3ψ(y)yd−3−4γe−y2/4dy (ω > 2γ).

� (2.24)

It then follows that

〈g (W(·, s)) ,ψ〉 ∼ Dε(s)γ+δ� (2.25a)

with

D =





ψ(0)
∫ ∞

0
G(ξ)ξd−3−γdξ (ω < 2γ),

−2Λk

3
h3

∫ ∞

0
{ψn0(y)}3ψ(y)yd−3−4γe−y2/4dy (ω > 2γ).

� (2.25b)

This last result suggests that the nonlinear term g in (2.17) may be approximated by a Dirac 
mass supported at the origin of Rm when ω < 2γ , whereas by a cubic function of W when 
ω > 2γ . We begin with the former case.
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2.2.1. The case ω < 2γ.

Assumption 2.3.  The nonlinear term g(W) may be replaced by χε(s)γ+ωδ(y) with

χ :=
Λk

2

∫ ∞

0
[sin (2U∗(ξ)− π)− (2U∗(ξ)− π)] ξd−3−γdξ.� (2.26)

Accordingly, the evolution of our sought-for solution is governed by equation

Ws = −LW + c(d)χε(s)γ+ωδ(y)

in a weak sense, where c(d) > 0 is a universal constant depending only on d.

Notice that since G(ξ) is positive everywhere, so is χ. Under the assumption 2.3, the Fourier 
coefficients in (2.18) are approximated as

an(s) ∼ −χcn

∫ ∞

s
eλn(τ−s)ε(τ)γ+ωdτ for n = 0, 1, . . . , n0,

where cn  >  0 is the constant as in (2.9a). As for the remainder term yγQ(y, s), we expect

yγQ(y, s) ∼ c(d)χε(s)γ+ωF(y)

for some smooth function F on (0,∞).
Under the assumption 2.2, the function F satisfies

−
[

F′′ +

(
m − 1

y
− y

2

)
F′ +

γ

2
F
]
= δ(y)−

n0∑
k=0

〈δ,ψk〉ψk =: S(y),� (2.27a)

〈F,ψj〉 = 0 ( j = 0, 1, ..., n0).� (2.27b)

After suitable approximation, we argue with classical Riesz–Schauder theory (see [34, sec-
tion 3.1]) to show that problem (2.27) has a unique solution, which is given by

F(y) =
∑

j�n0+1

〈S,ψj〉
j − n0

ψj(y)

in the dual norm for a suitable weighted Sobolev space. Moreover, the asymptotic behavior of 
F(y) as y → 0 is determined by the Green function of the m-dimensional Laplace equation. 
Namely,

F(y) ∼ b0y−(m−2),� (2.28)

where b0  >  0 is a constant. Since m − 2 = d − 2γ − 2 = ω, it follows that

Q(y, s) ∼ b0c(d)χε(s)γ+ωy−γ−ω as y → 0.

We have therefore obtained the following outer expansions:

Φ(y, s) ∼ π

2
− χ

n0∑
n=0

cn

∫ ∞

s
eλn(τ−s)ε(τ)γ+ωdτ · y−γ + b0c(d)χε(s)γ+ωy−γ−ω

� (2.29)
as y → 0. We just notice that the last term in the right-hand side of (2.29) is apparently large, 
but is in fact small in the intermediate region ε(s) � y � 1, as it can be seen at the points, for 
instance, |y| = ε(s)θ with θ ∈ (0, 1). Matching the both expansions (2.13) and (2.29) in such 
a region, we obtain
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−hε(s)γ = −χ

n0−1∑
n=0

cn

∫ ∞

s
eλn(τ−s)ε(τ)γ+ωdτ − χcn0

∫ ∞

s
ε(τ)γ+ωdτ .� (2.30)

The asymptotic behavior of ε(s) as s → ∞ is then obtained by solving (2.30) asymptotically. 
A dominance balance argument then shows that the first term in the right is negligible. Hence:

ε(s)γ ∼ χcn0

h

∫ ∞

s
ε(τ)γ+ωdτ� (2.31)

as s → ∞. An equivalent asymptotic differential equation is

ε̇(s) ∼ −χcn0

hγ
ε(s)1+ω ,� (2.32)

which agrees with equation (45) in [4] with λN = 0 there. We then solve this equation asymp-
totically, to get

ε(s) ∼ ε0(s) :=
K1

s1/ω as s → ∞,� (2.33)

where K1 = hγ/χcn0 > 0 is a constant. Scaling back to the original variables, we obtain

u(r, t) ∼ U1

(
r

ε(s)
√

T − t

)
for r � ε(s)

√
T − t,� (2.34a)

u(r, t) ∼ π

2
− h

cn0

ε(s)γφn0

(
r√

T − t

)
for ε(s)

√
T − t � r.� (2.34b)

2.2.2. The case ω > 2γ.  In this case the approximation of g(W) by Dirac mass does not yield 
the first order approximation, but instead the cubic approximation dominates:

g(W) ∼ gcub(W) := −by−2γ−2W3χ{y�L} with b =
2Λk

3
,

where χA stands for the indicator function of set A. The dependence of function gcub(W) on 
the space variable y  has not been specified explicitly for simplicity. Assumption 2.3 should be 
then replaced by:

Assumption 2.4.  The nonlinear term g(W) may be replaced by gcub(W). Accordingly, the 
evolution of our sought-for solution W is governed by equation

Ws = −LW + gcub(W).

Assumption 2.2 is kept as is. Consider expansion (2.18). It follows from (2.25) and assump-
tion 2.4 that

an(s) ∼ Dn

∫ ∞

s
eλn(τ−s)ε(τ)3γdτ for n = 0, 1, . . . , n0,� (2.35)

where Dn is the constant obtained by substituting ψ = ψn in (2.25). More explicitly,

an(s) = O
(
ε(s)3γ) for n = 0, ..., n0 − 1,� (2.36a)

an0(s) = −Cε(s)γ(1 + o(1)) with some constant C > 0.� (2.36b)
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Notice that the former estimate is due to integration by parts and assumption 2.2, whereas the 
latter one is due to the matching condition required by the inner expansion (2.13). As for the 
remainder term yγQ(y, s), we expect, up to higher order terms,

yγQ(y, s) ∼ ε(s)�F(y)

for some smooth function F on (0,∞) and � � γ. The function F should then satisfy

�ε(s)�−1ε̇(s)F = −ε(s)�LF + gcub(W)−
n0∑

n=0

〈gcub(W),ψn〉ψn,� (2.37)

〈F,ψn〉 = 0 for n = 0, ..., n0.� (2.38)

Taking the inner product with ψi (i  =  n0  +  1,...) in (2.37) and using (2.25), we obtain

�ε(s)�−1ε̇(s)〈F,ψi〉 = −λiε(s)�〈F,ψi〉+ Dnε(s)3γ

up to higher order terms. Suppose that � < 3γ holds. The last equation then implies 〈F,ψi〉 = 0 
for all i = 0, 1, ..., whence F ≡ 0. Suppose next that � = 3γ holds. It then follows from (2.37) 
that, to the leading term,

F′′ +

(
m − 1

y
− y

2

)
F′ +

γ

2
F = h3by−2γ−2 (1 + o(1)) , L < y � 1.

Hence there holds F(y) ∼ −By−2γ  as y → 0 with y   >  L, where B = h3b/2γ(ω − 2γ) > 0. 
Retuning to the self-similar variables, we obtain the following outer expansions:

Φ(y, s) ∼ π

2
−

[
n0∑

n=0

cnDn

∫ ∞

s
eλn(τ−s)ε(τ)3γdτ +

h3b
2γ(ω − 2γ)

ε(s)3γy−2γ

]
y−γ

� (2.39)
for ε(s) � y � 1, s → ∞, where cn  >  0 are the constants as in (2.9a). Matching the inner 
and outer expansions (2.13) and (2.39) in an intermediate region {ε(s) � y � 1} and using 
(2.36), we obtain

−hε(s)γ = −cn0 Dn0

∫ ∞

s
ε(τ)3γdτ + o (ε(s)γ) .� (2.40)

The asymptotic behavior of ε(s) as s → ∞ is then obtained by solving the ODE corresponding 
to (2.40) asymptotically, which essentially agrees with equation (45) in [4]. The result is:

ε(s) ∼ ε0(s) := As−1/2γ with A =

(
2cn0 Dn0

h

)−1/2γ

� (2.41)

as s → ∞, whence the result.

3.  Full construction

In this section we shall prove the actual existence of blow-up solutions that behave like the 
formal solutions constructed in section 2. Let θ ∈ (0, 1) be a constant satisfying

θ <
1
2
min

{
2γ − ω

2γ − ω + 2
,

γ

γ + 2

}
(2γ > ω),� (3.1a)
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θ <
1
2
min

{
ω − 2γ

ω − 2γ + 2
,

γ

γ + 2

}
(2γ < ω).� (3.1b)

We now state our main results in the self-similar variables as follows:

Theorem 3.1.  Assume that d  >  d*(k). Suppose that λn0 vanishes, i.e. γ = 2n0 for some 
n0 � 1. Let

ε0(s) ≡
{

K1s−1/ω (2γ > ω)

As−1/2γ (2γ < ω),
� (3.2)

where K1 and A are the positive constants as in (2.33) and (2.41), respectively. Then there exist 
initial data Φ0 ∈ L∞(R+) with Φ0(0) = 0 and a positive smooth function ε(s), that depends 
on the order of 2γ  and ω , satisfying

|ε(s)− ε0(s)| � Cε0(s)1+2θ� (3.3)

with some constant C  >  0 such that the solution Φ of (2.1c) with Φ(·, s0) = Φ0 fulfills
∣∣∣∣Φ(y, s)− U1

(
y

ε(s)

)∣∣∣∣ < ε(s)θH
(

y
ε(s)

)
for y � ε0(s)θ;� (3.4)

∣∣∣Φ(y, s)− π

2
+

h
cn0

ε(s)γφn0(y)
∣∣∣ < ε(s)γ+2θy−γ(1 + y2n0+1)

for ε0(s)θ � y < ∞, s0 � s < ∞.
� (3.5)

Here H(ξ) is a positive smooth function on R+ satisfying

H(ξ) =

{
O(ξk) as ξ → 0,
O(ξ−γ) as ξ → ∞.

� (3.6)

In particular, there holds

lim
s→∞

ε(s)kΦ(y, s)
yk = 1 uniformly on the set{y � ε0(s)θ}.� (3.7)

Moreover, the graphs of Φ(y, s) and π/2 intersect transversely exactly n0 times:

Z(0,∞)

[
Φ(·, s)− π

2

]
= n0� (3.8)

and all the zeros lie in (R−1,R) with some large fixed number R  >  0 for all s � s0, where 
Z(0,∞) stands for the number of zeros in (0,∞).

3.1.  Setting of initial data and a basic functional framework

Let ε0(s) be the positive function as in (3.2) and set η(s) = {ε0(s)}−(2/3)(γ+2θ). Let S(y) 
be a nonnegative smooth function such that S(y) = π/2 at y = 2η(s0), π/2 < S(y) < π 
for 2η(s0) < y < 4η(s0)

3, and S(y) ≡ π  for 4η(s0)
3 � y < ∞. For a given parameter 

α = (α0, ...,αn0) ∈ Rn0+1, we define
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φ̃n0(y) =





1
αn0


U1

(
y

ε0(s0)

)
− π

2
−

n0−1∑
j=0

αjφj(y)


 (y � ε0(s0)

2θ)

φn0(y) (ε0(s0)
2θ < y < 2η(s0))

− 1
αn0




n0−1∑
j=0

αjφj(y)− S(y) +
π

2



 (2η(s0) < y < ∞)

� (3.9)
and

Φ0(y) :=
π

2
+

n0−1∑
j=0

αjφj(y) + αn0 φ̃n0(y),

so that

Φ0(y) =




U1

(
y

ε0(s0)

)
(y � ε0(s0)

2θ)

π

2
+

n0∑
j=0

αjφj(y) (ε0(s0)
2θ < y < 2η(s0))

S(y) (2η(s0) < y < ∞).

� (3.10)

Remark 3.2.  Due to the choice of S(y), the initial data has finite energy. In terms of the 
original variables, the initial data u0(|x|) satisfies

u0(0) = 0, lim
|x|→∞

u0(|x|) = π� (3.11)

and ∂xu0(x) ≡ 0 for all sufficiently large |x|. The actually required condition on Φ0 (thus on 
u0) for |y| � η(s0)

3 is merely boundedness, so S(y) ≡ π  there may be replaced by S(y) ≡ nπ  
with n ∈ N ∪ {0}. It means that Φ0(y) gets free of the equator π/2 near ∞.

In terms of W variable, the initial data is rephrased as

W(y, s0) = W0(y) = yγ
[
Φ0(y)−

π

2

]
=

n0−1∑
j=0

αjψj(y) + αn0 ψ̃n0(y)

=

n0−1∑
j=0

aj(s0)ψj(y) + yγE0(y),

where aj(s) = 〈W(·, s),ψ〉 and ψ̃n0(y) = yγ φ̃n0(y). Then there holds

aj(s0) = αj + αn0〈ψ̃n0 ,ψj〉, j = 0, 1, ..., n0 − 1,� (3.12a)

an0(s0) = αn0〈ψ̃n0 ,ψn0〉.� (3.12b)

It is not difficult to check that

|αj||〈φ̃n0 ,φj〉| � Cε(s0)
γ+2mθ, j = 0, 1, ..., n0 − 1,� (3.13a)

|αn0 ||1 − 〈φ̃n0 ,φn0〉| � Cε(s0)
γ+2mθ.� (3.13b)
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Then we have

E0(y) = W0(y)−
n0∑

j=0

aj(s0)ψj(y)

= −αn0

n0−1∑
j=0

〈ψ̃n0 ,ψj〉ψj(y) + αn0

[
ψ̃n0(y)− ψn0(y) +

{
1 − 〈ψ̃n0 ,ψn0〉

}
ψn0(y)

]
,

� (3.14)

and

|E0(y)| �
{

Cε0(s0)
γ for |y| � ε0(s0)

θ

Cε0(s0)
γ+4θ

(
1 + |y|2n0+1/2

)
for ε0(s0)

θ < |y| < ∞.
� (3.15)

3.1.1. The case 2γ > ω.  Let Φ(y, s) = Φ(y, s;α) be the solution of (2.1c) with initial 
data Φ(·, s0) = Φ0, defined for s0 � s � s1 with some s1 > s0. We then define a function 
ε(s) = ε(s : s0, s1,Φ) as a (unique) solution of



χcn0

∫ ∞

s
ε(τ)γ+ωdτ + ϕ(s) = hε(s)γ (s > s0)

ε(s0) = ε0(s0)
� (3.16)

with

ϕ(s) =
{∫ s1

s Y(ε(τ),Φ(·, τ))dτ (s0 � s � s1)

0 (s1 < s),

Y(ε,Ψ(·, s))

= Λk

∫ ε2θ

0

{
cos

(
2U1

(y
ε

)
− π

)
− 1

}{
Ψ(y, s)− U1

(y
ε

)}
ψn0(y)y

d−γ−3e−
y2

4 dy.

� (3.17)

The unique existence of a local solution is shown once we rewrite the integral equation (3.16) 
to an explicit differential equation. The function ϕ(s) may be considered to be a small per-
turbation, so that the equation (3.16) should be a regular perturbation of the equation (2.31) 
in section 2. Indeed, existence and uniqueness of a solution to (3.16) is guaranteed as long 
as |s1 − s0| small enough. Moreover, it can be extended to [s0, s1] with any s1 > s0 provided 
that Φ belongs to A(s0, s1; 1) , where A(s0, s1; 1) is the set of functions defined by (3.22) and 
(3.23) below.

Notice that the as long as ϕ(s) = o (ε(s)γ) in (3.16), there holds

ε(s) ∼ ε0(s) as s → ∞� (3.18)

and the asymptotic identity for the corresponding derivative holds as well (see proposition 3.3). 
Our goal is to show that if Φ(y, s) is a solution of (2.1c), defined for s0 � s � s1, that belongs 
to a certain functional framework, then Φ(y, s) ∼ (y/ε(s))k  for y � ε(s). This amounts to 
showing that the solution Φ may be approximated by the formal solution constructed in sec-
tion 2.2. This last task is accomplished by comparing equations

Ws = Wyy +

(
m − 1

y
− y

2

)
Wy +

γ

2
W + g(W)� (3.19)

with
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Vs = Vyy +

(
m − 1

y
− y

2

)
Vy +

γ

2
W + c(d)χε(s)γ+ωδ(y)� (3.20)

for the same initial data at s  =  s0, where g(W) = yγF(y−γW) and δ(y) denotes the Dirac mass 
supported at the origin of Rm, m = d − 2γ ∈ N. Equation  (3.20) suggests another way of 
defining true size of the boundary layer:

ε1(s)γ :=
1

c(d)χ

∫ ε0(s)θ

0
f (v(y, s))φ(y)yd−1e−y2/4dy.� (3.21)

As a matter of fact, ε(s) �= ε1(s) in general. This idea was adopted by [27, 26] in different 
problems. We do not adopt this approach because it requires a priori pointwise estimates 
of the derivative vs(y, s), which is a hard task in general. Our approach, which comes from 
the second author’s recent work [34], does not need such estimates, but instead sharp error 
estimates on approximate solutions in the inner regions. This last task is accomplished by 
computations based on asymptotic series expansions and the definition of ε(s).

Let A(s0, s1; ν) (0 < ν � 1) be the set of all functions Φ(y, s) on R+ × [s0, s1] satisfying
∣∣∣∣Φ(y, s)− U1

(
y

ε(s)

)∣∣∣∣ < νε(s)θH0

(
y

ε(s)

)
for y � ε0(s)θ;� (3.22)

∣∣∣Φ(y, s)− π

2
+ hε(s)γφn0(y)

∣∣∣ < νε(s)γ+2θy−γ(1 + y2n0+1)

for ε0(s)θ � y < ∞, s0 � s � s1.
� (3.23)

We now define Us0,s1 ⊂ Rn0+1 as the open subset of all points α = (α0, ...,αn0) ∈ Rn0+1 
satisfying

|αj| < ε0(s0)
γ+2θ ( j = 0, ..., n0 − 1),

∣∣∣∣αn0 +
h

cn0

ε0(s0)
γ

∣∣∣∣ < ε0(s0)
γ+2θ

� (3.24)
and

Φ(y, s;α) ∈ A(s0, s1, 1).

We note that

Us0,s0 =
{
α ∈ Rn0+1 : α = (α0, ...,αn0)satisfies (3.24)

}

and is nonempty. By a continuous dependence results, one has

Us0,s1 �= ∅ whenever (s1 − s0) is sufficiently small.

3.1.2. The case 2γ < ω.  Let θ′ ∈ (0, 1) be a constant such that θ′ > 2θ. We denote by gL(W) 
the leading term in the set {y > ε0(s)θ

′} of the nonlinear term g(W) as a function of W:

gL(W) = −by−2γ−2W3χ{y>ε0(s)θ′}.� (3.25)

For a given function Φ, we define a function ε(s) as a solution of

h
cn0

ε(s)γ = χ

(
h

cn0

)3 ∫ ∞

s
ε(τ)3γdτ − ϕ̃(s) (s > s0),� (3.26a)
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ϕ̃(s) =
{∫ s1

s Ỹ(ε(τ),Φ(·, τ))dτ (s0 � s � s1)

0 (s1 < s),
� (3.26b)

Ỹ(ε,Φ(·, s)) = 〈g′L(Wout)(W − Wout)χ{y>ε0(s)θ′},ψn0〉� (3.26c)

Wout(y, s) := a∗n0
(s)ψn0(y) := − h

cn0

ε(s)γψn0(y)� (3.26d)

such that ε(s0) = ε0(s0), where ′ denotes the differentiation with respect to W. The setting 
of initial data, the definitions of A(s0, s1; ν) and Us0,s1 are exactly the same as of section 3.1 
except for the definitions of ε0(s) and ε(s).

3.2. Topological arguments

We begin with showing that the positive function ε(s) defined in (3.16) (or respectively (3.26)) 
behaves as ε0(s) (see (3.2)) to the leading term as well as its first derivative.

Proposition 3.3.  Suppose that a solution Φ of (2.1c) belongs to A(s0, s1; 1) . Then there 
exist constants D, D′ > 0 such that

|ε(s)− ε0(s)| � Dε0(s)1+θ,� (3.27a)

|ε̇(s)− ε̇0(s)| � D′ε0(s)1+ω+θ� (3.27b)

for s0 � s � s1. Moreover, ε̇(s) is Hölder continuous in (s0, s1] for every α ∈ (0, 1) and its 
Hölder norm is locally bounded in (s0, s1] uniformly with respect to s1.

Proof.  We shall state the proof only for the case of 2γ > ω  since the case of 2γ < ω  
is entirely similar. The membership of Φ to A(s0, s1; 1)  and the elementary inequality 
1 − cos x � 2−1x2 (x ∈ R) imply

|Y(ε,Φ(·, s))| �Cε(s)θ+γ+ω

∫ ε(s)θ−1

0
{2U1(ξ)− π}2 H0(ξ)ξ

γ+ω−1dξ

�Cε(s)θ+γ+ω .

� (3.28)

Boundedness of the last integral is a consequence of the asymptotics (2.12c) of U1(ξ) and 
H0(ξ) ∼ hγξ−γ  as ξ → ∞ and the assumption 2γ > ω .

We now begin with the proof of the estimates in (3.27). Differentiating the both sides of 
(3.16), we obtain −χcn0ε(s)

γ+ω − Y(ε,Φ(·, s)) = hγε(s)γ−1ε̇(s), whence:

ε̇(s) =− χcn0

hγ
ε(s)1+ω − Y(ε,Φ(·, s))

hγε(s)γ−1

≡− aε(s)1+ω {1 + f (ε(s))} ,
� (3.29)

where a = χcn0/hγ > 0. Since |f (ε(s))| � Cε(s)θ and ε̇0(s) = −aε0(s)1+ω with 
ε(s0) = ε0(s0), it is rather easy to show that ε̇(s) < 0 and the following rough bounds hold:

1
2
ε0(s) < ε(s) <

3
2
ε0(s) for s0 � s � s1� (3.30)
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as long as ε(s0) is small enough. Taking a difference between the identities satisfied by 1/ε(s)ω 
and 1/ε0(s)ω and using ε(s0) = ε0(s0), we obtain

1
ε(s)ω

− 1
ε0(s)ω

= aω
∫ s

s0

f (ε(τ))dτ� (3.31)

for s0 � s � s1. We now exploit the elementary inequality |t1/ω
1 − t1/ω

2 | �
|t1 − t2| ·min{t1, t2}1/ω−1 (t1, t2 > 0) and use (3.31), to get

|ε(s)− ε0(s)| � aωε0(s)ε(s)ω
∫ s

s0

| f (ε(τ))| dτ .� (3.32)

Since ω � 1 > θ, the error estimate |f (ε(s))| � Cε(s)θ and the rough bound (3.30) yield
∫ s

s0

|f (ε(τ))|dτ � C′ε0(s)θ−ω
� (3.33)

for some constant C′ > 0. The first claim (3.27a) then follows from (3.32) and (3.33).
We then proceed to show the second claim (3.27b). Taking a difference in the differential 

equations satisfied by ε(s) and ε0(s), we obtain, by (3.28),

|ε̇(s)− ε̇0(s)| �a
∣∣ε(s)1+ω − ε1+ω

0 (s)
∣∣+ |Y(ε,Φ(·, s))|

�aε(s)ω |ε(s)− ε0(s)|+ Cε(s)1+ω+θ.

The desired estimate then follows from the first claim (3.27a) and (3.30).
We next estimate a Hölder norm of ε̇(s). To this end, it suffices to show:
For every α ∈ (0, 1), ν > 0 there is a constant C  >  0 independent of s1 such that

|Y(ε(s),Φ(·, s))− Y(ε(s′,Φ(·, s′))| � Cε(s)γ−1|s − s′|α, ∀s, s′ ∈ [s0 + ν, s1].
� (3.34)

We are going to show this claim by applying classical parabolic estimates for equation (2.1c). 
Suppose firstly k � 2. Then for any p   >  d  +  1 there is a constant Cp   >  0 such that

∫ s+1

s
dτ

∫ 1

0

∣∣∣∣
sin(2Φ)

y2

∣∣∣∣
p

yd−1dy � Cp,kε(s)d−2p.� (3.35)

This is readily seen by splitting the space integral as 
∫ 1

0 =
∫ ε

0 +
∫ 1
ε

 with ε = ε(s) and using 
the bound |Φ(y, s)| � 2(y/ε)k  for y � 1. Set Q = B1 × (s0, s1] with Br  =  {|y |  <  r}. Then, due 
to Lp  theory, for any ν ∈ (0, 1) there exists a constant M  >  0 such that

‖Φ‖W2,1
p (Q(ν)) � M

(
‖Φ‖L p(Q) + Cd,p,kε(s)d−2p) ,� (3.36)

where Q(ν) = B1/2 × (s0 + ν, s1]. Notice that ‖Φ‖L p(Q) is bounded by a positive constant de-
pending only on ‖u0‖L∞(0,∞). By a version of Sobolev inequality [1, lemma 4.28, IV], we have

‖Φ‖Cα,α/2(Q(ν))
� C(d, p, k, ν, M)ε(s)d/p−2,
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where Cλ,λ/2(Q) stands for the standard Hölder spaces of order λ ∈ (0, 1) in Q  with respect to 
parabolic distance. It then follows from this and (2.12c) that, for s, s′ ∈ [s0 + ν, s1],

∫ ε(s)θ

0

∣∣∣∣2U1

(
y

ε(s)

)
− π

∣∣∣∣
2

|Φ(y, s)− Φ(y, s′)| yω+γ−1dy

�M‖Φ‖Cα,α/2(Q(ν))
|s − s′|α/2

∫ ε(s)θ

0

∣∣∣∣2U1

(
y

ε(s)

)
− π

∣∣∣∣
2

yω+γ−1dy

�Cν |s − s′|α/2
ε(s)d/p−2ε(s)ω+γ

∫ ε(s)θ−1

0
|2U1(ξ)− π|2 ξω+γ−1dξ � ε(s)γ−1 |s − s′|α/2

since ω � 1. The other terms arising when evaluating the difference Y(s,Φ(·, s))− Y(s′,Φ(·, s′)) 
are easily estimated, whence the result. In the case k  =  1, the tuple satisfying our basic as-
sumption is (d, γ,ω) = (7, 2, 1). We change the dependent variable as Ψ(y, s) := Φ(y, s)/yk  
and argue as before for the equation satisfied by Ψ. The detail is left to the reader (see the 
proof of proposition 3.14 below for a related argument).� □ 

Let

Ψj(s) ≡
{
χcjε(s)γ+ω (2γ > ω)

〈gL(Wout(·, s)),ψj〉 (2γ < ω).� (3.37)

We now define a continuous map P(·; s1) : Rn0+1 → Rn0+1, as

P(α; s1) = ( p0(α; s1), . . . , pn0(α; s1)) ,� (3.38a)

pj(α; s1) =
(
Φ(·, s1;α)− π

2
,φj

)
L2
ρ(Rd)

+

∫ ∞

s
eλj(τ−s)Ψj(τ)dτ .� (3.38b)

When s1 = s0, we have

P(α; s0) = α+ (0, ..., 0, hε0(s0)
γ) + O

(
ε0(s0)

γ+2θ)

for any α ∈ Us0,s0 as s0 → ∞. Thus, in particular, P(α; s0)− (0, ..., 0, hε0(s0)
γ) is a small per-

turbation of the identity map. Let deg stand for the mapping degree of P(·; s1) with respect to 
0 ∈ Rn0+1. The standard homotopy invariance property implies

deg (P(·; s0), 0,Us0,s0) = 1.� (3.39)

We also have deg (P(·; s1), 0,Us0,s1) = 1 as long as Us0,s1 �= ∅.

Lemma 3.4.  The set Us0,s1 is not empty for any s1 ∈ [s0,∞).

Lemma 3.5.  Suppose that α ∈ Rn0+1 belong to the closure of Us0,s1. Then if P(α; s1) = 0, 
it turns out that Φ(y, s;α) ∈ A(s0, s1, 1/2).

In order to keep the flow of the main arguments, we shall postpone the proof of lemma 3.5 
to section 3.5 and admit the claim here.

Proof of lemma 3.4. Suppose that

s∗ := sup {s1 > s0 : Us0,s1 �= ∅} < ∞.� (3.40)

Then there exists a sequence {sn}∞n=0 ⊂ [s0,∞) such that Us0,sn �= ∅ for each n and sn ↗ s∗ as 
n → ∞. Due to the homotopy invariance, there holds
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deg (P(·; sn), 0,Us0,sn) = deg (P(·; s0), 0,Us0,s0) = 1.

Therefore there exists a root αn of P(·; sn) in Us0,sn for each n. Lemma 3.5 then guarantees that 
Φ(y, s;αn) is in A(s0, sn, 1/2). Since {αn}∞n=0 ⊂ Rn0+1 is a bounded sequence, there is a conv
ergent subsequence, still denoted by {αn}∞n=0. Set α∗ = limn→∞ αn. In view of proposition 
3.3, the sequence {εn(s)} ≡ {ε(s, s0, sn,Φ(·;αn))} satisfies

|ε̇n(s)|+ εn(s) � Kε0(s)

with some constant K  >  0 independent of n, thus converging, up to subsequence, to a continu-
ous function ε∗(s) uniformly in [s0,∞) as n → ∞. Let {ϕn(s)} denote a sequence of the func-
tions defined in (3.17) (or respectively, (3.26b)) with (s1,Φ) replaced by (sn,Φ(·;αn)) there. 
By continuous dependence on initial data and the dominated convergence theorem, we have 

limn→∞ ϕn(s) = ϕ∗(s), where ϕ∗(s) =
∫ s∗

s Y(τ ,Φ(·, τ ;α∗))dτ  for s � s∗ and ϕ∗(s) = 0 for 

s  >  s* (see proof of proposition 3.3). Consider the case 2γ > ω . The function ε∗(s) solves

χcn0

∫ ∞

s
ε∗(τ)

γ+ωdτ + ϕ∗(s) = hε∗(s)γ , ε(s0) = ε0(s0).

It then turns out that α∗ belongs to Us0,s∗  and P(α∗; s∗) = 0, whence Φ(y, s;α∗) is in 
A(s0, s∗, 1/2) due to lemma 3.5. Moreover, corollary 3.8 below, (3.12), and (3.13) imply

|α∗
j | < ε0(s0)

γ+3θ ( j = 0, ..., n0 − 1),
∣∣∣∣α∗

n0
+

h
cn0

ε0(s0)
γ

∣∣∣∣ < ε0(s0)
γ+3θ.

� (3.41)
Therefore α∗ lies in Us0,s∗. A continuous dependence result then shows that there exists δ > 0 
such that Us0,s∗+δ �= ∅, which contradicts (3.40). The case 2γ < ω  is similar and thus omitted. 
The proof is complete.

Proof of theorems 3.1 and 1.1. Take a sequence {sn} ↗ ∞. Due to lemma 3.4, there 
exists an αn ∈ Us0,sn such that P(αn; sn) = 0 for each n. Arguing as in the proof of lemma 3.4, 
we may prove that the tuple of ε(s) ≡ ε(s; s0,∞,Φ(·;α∗)) and Φ(y, s) ≡ Φ(y, s;α∗) satis-
fies conditions (3.3)–(3.7). The claim (3.8) is a consequence of (3.5) and the well-known 
zero-number diminishing property for one-dimensional parabolic equation applied to function 
Ψ(y, s) = Φ(y, s)/yk . Consequently, theorem 3.1 is proved. Returning to the variable (r, t) and 
u, we readily verify the claim of theorem 1.1. The proof is complete.

3.3.  A priori estimates in the inner regions

The goal of this subsection is to estimate possible oscillation of Φ(y, s) in the inner region, 
to be presented in lemma 3.6 below. To this end, we prepare some notations. Let us set 
V(ξ, s) = U(ξ, s)− U1(ξ) with U(ξ, s) = Φ(ε(s)ξ, s). We have

V(0, s) = 0, lim
ξ→0

V(ξ, s)
ξk = 0.� (3.42)

The function V  solves

ε(s)2Vs =Vξξ +
d − 1
ξ

Vξ − µ(s)
ξ

2
Vξ −

Λk

ξ2 cos(2U1)V−

− Λk

2ξ2 {sin(2U1 + 2V)− sin(2U1)− 2 cos(2U1)V} − µ(s)
ξ

2
(U1)ξ,

� (3.43)
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where, by (3.16),

µ(s) = ε(s)2 − 2ε(s)ε̇(s)

= ε(s)2
(

1 + O
(

1
s

))
as s → ∞.

� (3.44)

Let us consider a related equation:

0 = V0,ξξ +
d − 1
ξ

V0,ξ −
Λk

ξ2 cos(2U∗)V0 − µ(s)T(ξ),� (3.45a)

T(ξ) :=
ξ

2
(U1)ξ.� (3.45b)

A solution V(ξ, s) is given by V(ξ, s) = µ(s)H(ξ), where function H(ξ) solves

H′′ +
d − 1
ξ

H′ − Λk

ξ2 cos(2U1)H = T(ξ),� (3.46a)

H(0) = 0, H(ξ) = O
(
ξk+2) as ξ → 0.� (3.46b)

Let ᾱ > 0 be a constant. It is readily seen that function

H0(ξ) := ∂αUα(ξ)|α=ᾱ = ξU′
1(ᾱξ)� (3.47)

is a solution of the homogeneous equation with cos(2U1) replaced by cos(2Uᾱ) satisfying

H0(0) = 0, H0(ξ) = (ᾱξ)k(1 + o(1)) as ξ → 0.

By the variation of constant, a unique solution H1(ξ) of (3.46) with cos(2U1) replaced by 
cos(2Uᾱ) is given by

H1(ξ) = H0(ξ)

∫ ξ

0

dν
{H0(ν)}2νd−1

∫ ν

0
ηd−1H0(η)T(η)dη.� (3.48)

Because the asymptotics of H1(ξ) as ξ → ∞ is important in our approach, we shall carefully 
compute the first and the second leading terms of T(ξ) and H0(ξ). We begin with T(ξ). Recall 
the asymptotic expansions of Uα(ξ) (see (2.12c)) as ξ → ∞.

We may differentiate it with respect to ξ and α, respectively, whence:

H0(ξ) = hγᾱ−γ−1ξ−γ + O
(
ξ−γ−ω

)
� (3.49a)

H′
0(ξ) = hγᾱ−γ−1(−γ)ξ−γ−1 + O

(
ξ−γ−ω−1)� (3.49b)

T(ξ) =
1
2

hγξ−γ + O
(
ξ−γ−ω

)
.� (3.49c)

The asymptotics (3.49a) follows from (3.47) and (2.12d), whereas its derivative (3.49b) is 
shown by differentiating (3.47) in ξ and using the differential equation for U1 with asymp-
totics of U1 and U′

1. The asymptotics (3.49c) of T(ξ) is a direct consequence of (2.12d). The 
asymptotics of H1(ξ) as ξ → ∞ may be computed by substituting (3.49) in (3.48) with the 
help of H’Lôpital rule as follows:
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H1(ξ) = C1ξ
−γ+2 +




O
(
ξ−γ−ω+2

)
(ω < 2)

O(ξ−γ log ξ) (ω = 2)
O(ξ−γ) (ω > 2)

as ξ → ∞� (3.50a)

with C1 =
hγ

4(2 + ω)
.� (3.50b)

We just emphasize that the leading term of H1(ξ) does not depend on ᾱ. Formal differentia-
tion of (3.50) suggests

H′
1(ξ) = C1(−γ + 2)ξ−γ+1 + O

(
ξ−γ−ω+1) as ξ → ∞,

which is justified by differentiating (3.48) and using the asymptotics of the resulting functions. 
We are now prepared to state the most crucial results in this section.

Lemma 3.6.  Let θ ∈ (0, 1) be the constant satisfying (3.1a). Then there exists a positive 
smooth function H(ξ) on (0,∞) satisfying

H(ξ) =

{
O(ξk) asξ → 0,
O(ξ−γ) asξ → ∞,

� (3.51)

such that
∣∣∣∣Φ(y, s)− U1

(
y

ε(s)

)∣∣∣∣ � ε(s)2θH
(

y
ε(s)

)

for y � ε0(s)θ, s0 � s � s1.

Proof.  Set

Φout(y, s) =
π

2
+ a∗

n0
(s)φn0(y); a∗

n0
(s) = − h

cn0

ε(s)γ ,� (3.52a)

Φinn(y, s) = U1

(
y

ε(s)

)
.� (3.52b)

In the matching region ε(s) � y � 1, we obtain

Φout(y, s)− Φinn(y, s) = a∗n0
(s)y−γ (ψn0(y)− cn0) + O

((
y

ε(s)

)−γ−δ
)

.

� (3.53)

The explicit formula of the eigenfunctions ψn in proposition 2.1 implies

ψn(y)− cn = cn


 (−n)
(−γ + d/2) · 1!

y2

4
+

n∑
j=2

(−n)j

(−γ + d/2)j · j!

(
y2

4

) j



for all n � 2. Recalling the constant C1 as in (3.50b), we obtain
∣∣Φout(y, s)− Φinn(y, s)− C1ε(s)γy−γ+2

∣∣ � Cε(s)γ+4θy−γ� (3.54)
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for y = ε0(s)θ. Combining (3.54) with the assumption Φ ∈ A(s0, s1; 1), we deduce
∣∣Φ(y, s)− Φinn(y, s)− C1ε(s)γy−γ+2

∣∣ � 2ε(s)γ+2θy−γ

for y = ε0(s)θ, s0 � s � s1. By means of the inner variables, this estimate reads

ε(s)2H1(ξ)− M0ε(s)2θH0(ξ) � U(ξ, s)− U1(ξ) � ε(s)2H1(ξ) + M0ε(s)2θH0(ξ)
� (3.55)

with some constant M0  >  0 for ξ = ε0(s)θ/ε(s), s0 � s � s1.
We will try to construct super- and subsolutions W±(ξ, s) of (3.43) of the form:

V±(ξ, s) := µ±(s)H1(ξ)± Mε(s)2θH0(ξ).� (3.56a)

µ±(s) = ε(s)2 {1 ∓ ε(s)θ
}

.� (3.56b)

We shall first select plus sign from ± of (3.56a) and prove that V = V+ is a supersolution. We 
now particularize the free parameter ᾱ as ᾱ = 2. A direct computation shows that

NV ≡ Vξξ +
d − 1
ξ

Vξ −
Λk

ξ2 cos(2U1)V − µ(s)
ξU′

1

2
− µ(s)

ξVξ

2

− Λk

2ξ2 {sin(2U)− sin(2U1)− 2 cos(2U1)V} − ε(s)2 ∂V
∂s

=
Λk

ξ2

[
{cos(2U2)− cos(2U1)}V − {sin(2U1 + 2V)− sin(2U1)− cos(2U1)2V}

]
� (3.57a)

−µ(s)
ξ

2
[
µ+(s)H′

1 + Mε(s)2θH′
0

]
− ε(s)2

{
µ̇+(s)H1 + M

d
ds

(
ε(s)2θ)H0

}

� (3.57b)

+ {µ+(s)− µ(s)} T .� (3.57c)

The functions in (3.57b) and (3.57c) should be considered as source terms. For instance, we 
have

∣∣∣∣−µ(s)µ+(s)
ξH′

1(ξ)

2

∣∣∣∣ � Cε(s)2+2θ (1 + ξ)
−γ

� (3.58)

for ξ � 2ε0(s)θ−1, s0 � s � s1. Similar estimates for the source terms in (3.57c) may readily 
be obtained. On the other hand, the definition of µ+ implies that

{µ+(s)− µ(s)} T(ξ) ≈ −ε(s)2+θξ−γ as ξ → ∞,

which is larger than the quantity in (3.58) for ξ � 2ε0(s)θ−1. We thus obtain

NV+ �
Λk

ξ2

[
{cos(2U2)− cos(2U1)}V+ − {sin(2U1 + 2V+)− sin(2U1)− cos(2U1)2V+}

]

as long as ξ � 2ε0(s)θ−1, s0 � s � s1. Negativity of this remaining term is verified due to our 
choice ᾱ = 2. Indeed, the asymptotics of Uα(ξ) implies
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U2(ξ)− U1(ξ) = h(−2−γ + 1)ξ−γ + O
(
ξ−γ−ω

)
,

− sin(2U2) = (2U2 − π) + O
(
(2U2 − π)3)

= − 2−γ+1hξ−γ + O(ξ−γ−ω) + O(ξ−3γ).

Since − sin x is monotone increasing in (−π/2,π), we obtain

{cos(2U2)− cos(2U1)}V+ � − sin(2U2) · 2h(−2−γ + 1)
[
ξ−γ + O

(
ξ−γ−ω

)]
· 2V+

� −Dε(s)2θ[ξ−3γ + O
(
ξ−3γ−ω

)
],

where D  >  0 is a constant depending on d, h, γ, M , and C0. On the other hand, we have

sin(2U1 + 2V+)− sin(2U1)− cos(2U1)2V+ =− sin(2U1) · (2V+)
2
+ O

(
(2V+)

3
)

=ε(s)4O
(
ξ−3γ+4)+ ε(s)4θO

(
ξ−3γ)

for 1 � ξ � 2ε(s)θ−1. Notice that

ε(s)4ξ−3γ+4 � Cε(s)2+2θξ−3γ+2 � 4Cε(s)4θξ−3γ

for 1 � ξ � 2ε(s)θ−1, whence NV < 0. As for ξ = O(1), negativity of NV  in any bound-
ed interval is verified by the presence of the term {cos(2U2)− cos(2U1)} · Mε(s)2θH0(ξ). 
Therefore the function V+ is a supersolution for ξ � 2ε0(s)θ−1, s0 � s � s1.

To construct a subsolution, we select minus sign from ± of (3.56). In this case we have

{µ−(s)− µ(s)} T(ξ) ≈ ε(s)2+θξ−γ for ξ � 1

and {cos(2U2)− cos(2U1)} · (−M)ε(s)2θ dominates in any bounded interval, respectively. 
The detail is similar to the construction of the supersolution and is thus omitted.

We just check that the initial condition satisfies
∣∣∣∣Φ0(y)− U1

(
y

ε(s0)

)
− ε(s0)

2H1

(
y

ε(s0)

)∣∣∣∣ � Cε(s0)
2θH0

(
y

ε(s0)

)
� (3.59)

with some constant C  >  0 for y � ε(s0)
θ. This is clearly satisfied for y � ε(s0)

2θ, since 
Φ0(y) ≡ U1 (y/ε(s0)) there and H1(ξ) = O(ξ−γ+2) for ξ � 1. It follows from (3.10) that

|Φ0(y)− Φout(y, s0)| �
n0−1∑
j=0

|αjφj(y)|+
∣∣∣∣αn0 +

h
cn0

φn0(y)
∣∣∣∣ � Cε(s0)

γ+2θy−γ

for ε(s0)
2θ � y � 1. Combining this estimate with (3.50), (3.54), we obtain (3.59). Rewriting 

(3.59) by ξ and choosing constant M  >  0 in (3.56) large enough, we conclude

V−(ξ, s0) < U(ξ, s0)− U1(ξ) < V+(ξ, s0) for ξ � ε(s0)
θ−1.

Comparison principle then concludes the proof.� □ 
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3.4.  A priori estimates of lower Fourier coefficients

Let us write

Φ(y, s) =
π

2
+

n0∑
n=0

an(s)φn(y) + Q(y, s),

where Q(·, s) satisfies the orthogonal condition 〈Q(·, s),φn〉 = 0 for n = 0, . . . , n0.

Lemma 3.7.  Assume that 2γ > ω  holds. Suppose that P(α0, . . . ,αn0 ; s1) = 0 for some 
α ∈ Us0,s1. Then:

∣∣∣∣an(s) + χcn

∫ ∞

s
eλn(τ−s)ε(τ)γ+ωdτ +

∫ s1

s
eλn(τ−s)Y (ε(τ),Φ(·, τ)) dτ

∣∣∣∣

�

{
Cε(s)γ+ω+4θ (n � n0 − 1)
Cε(s)γ+4θ (n = n0)

� (3.60)

for s0 � s � s.

Proof.  We first show:
∣∣〈g(W)− g′(Winn)(W − Winn)χ{|y|�ε(s)2θ},ψn〉 − χcnε(s)γ+ω

∣∣ � Cε(s)γ+ω+4θ.
� (3.61)

Since g′(Winn) = Λky−2 {cos(2y−γWinn)− 1}, it follows that

〈g′(Winn)(W − Winn)χ{|y|�ε0(s)2θ},ψn0〉 = Y(ε(s),Φ(·, s))

and

g(W)− g(Winn)− g′(Winn)(W − Winn)

=
Λk

2
yγ−2 [sin(2v)− sin(2vinn)− cos(2vinn)(2v − 2vinn)] .

Lemma 3.6 implies |v − vinn| � |vinn| for y � ε(s)θ, s0 � s � s1, so
∣∣∣∣∣
∫ ε(s)2θ

0
{g(W)− g(Winn)− g′(Winn)(W − Winn)}ψn(y)ym−1e−y2/4dy

∣∣∣∣∣

�C
∫ ε(s)2θ

0
yγ−2

∣∣∣∣2U1

(
y

ε(s)

)
− π

∣∣∣∣
∣∣∣∣ε(s)2θH

(
y

ε(s)

)∣∣∣∣
2

|ψn(y)| yd−2γ−1ρ(y)dy

�Cε(s)γ+ω+4θ.
� (3.62)

Finiteness of the last integral is a consequence of (3.51), that is,

|2U1 (ξ)− π| |H (ξ)|2 ξd−γ−3 = O
(
ξd−4γ−3) as ξ → ∞

and d − 4γ − 2 = ω − 2γ < 0. A slight modification of the argument in section 2.2 shows
∣∣∣∣∣
∫ ε(s)2θ

0
g(Winn(y, s))ψn(y)ym−1e−y2/4dy − χcnε(s)γ+ω

∣∣∣∣∣ � Cε(s)γ+ω+4θ,

� (3.63a)
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∣∣∣∣∣
∫ ∞

ε(s)2θ
g(W(y, s))ψn(y)yd−2γ−1ρ(y)dy

∣∣∣∣∣ � Cε(s)γ+ω+(1−2θ)(2γ−ω).� (3.63b)

Since (1 − 2θ)(2γ − ω) > 4θ by (3.1a), inequality (3.61) follows from (3.62) and (3.63).

Taking inner products with ψn in (3.19) and integrating the resulting ODE for eλnsan(s) over 
[s, s1], we obtain, for n = 0, . . . , n0,

eλns1 an(s1) + χcn

∫ ∞

s1

eλnτε(τ)γ+ωdτ

= eλnsan(s) + χcn

∫ ∞

s
eλnτε(τ)γ+ωdτ +

∫ s1

s
eλnτ

[
〈g (W(·, τ)) ,ψn〉 − χcnε(τ)

γ+ω
]

dτ .

The left-hand side vanishes by assumption P(α; s1) = 0. It then follows from (3.61) that
∣∣∣∣an(s) + χcn

∫ ∞

s
eλn(τ−s)ε(τ)γ+ωdτ +

∫ s1

s
eλn(τ−s)Y (ε(τ),Φ(·, τ)) dτ

∣∣∣∣

�
∫ s1

s
eλn(τ−s)

∣∣〈g (W(τ))− g′(Winn)(W − Winn)χ{|y|�ε(s)2θ},ψn
〉
− χcnε(τ)

γ+ω
∣∣ dτ

�C
∫ s1

s
eλn(τ−s)ε(τ)γ+ω+4θdτ

�

{
Cε(s)γ+ω+4θ (n � n0 − 1)
Cε(s)γ+4θ (n = n0)

for 1 � s0 � s � s1. The proof is now complete.� □ 

Recalling our definition of ε(s) given in (3.16), we readily obtain the following corollary.

Corollary 3.8.  Under the same assumptions as of lemma 3.7, there holds

n0−1∑
j=0

|aj(s)|+
∣∣∣∣an0(s) +

h
cn0

ε(s)γ
∣∣∣∣ = o

(
ε(s)γ+3θ)� (3.64)

for 1 � s0 � s � s1.

We then proceed to consider the case ω > 2γ .

Lemma 3.9.  Assume that ω > 2γ  holds. Suppose that P(α0, . . . ,αn0 ; s1) = 0 for some 
α ∈ Us0,s1. Then for any ν > 0 there exists s0 large enough such that

∣∣an0(s)− a∗
n0
(s)

∣∣ < νε(s)γ+2θ� (3.65)

for s0 � s � s, where a∗
n0
(s) = − h

cn0
ε(s)γ (see (3.26d)).

Proof.  We first show that there exists δ > 0 such that
∣∣∣〈g(W)− (gL(Wout) + g′

L(Wout)(W − Wout))χ{y>ε0(s)θ′},ψn0〉
∣∣∣ � Cε(s)3γ+(2+δ)θ

� (3.66)

for s0 � s � s, where gL(W) and Wout  are the functions as in (3.25) and (3.26d), respectively. 
Computations similar to those in section 2.2 shows that
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∣∣∣∣∣
∫ ε(s)θ

′

0
g(W(y, s))ψn0(y)y

m−1ρdy

∣∣∣∣∣ � Cε(s)3γ+θ′(ω−2γ),

where the change of variable y = ε(s)ξ has been used. Since 2γ = 4n0 ∈ N, the assumption 
ω > 2γ  actually means ω − 2γ � 1. Our basic assumption Φ ∈ A(s0, s1; 1) implies

|W(y, s)− Wout(y, s)| � Cε0(s)γ+2θ (1 + y2n0+1)� (3.67)

for ε0(s)θ � y < ∞, s0 � s � s1. This last estimate holds also for ε(s)θ
′
� y � ε0(s)θ, 

s0 � s � s1, due to lemmas 3.6 and (2.12c). We then readily see that
∣∣∣〈(gL(W)− gL(Wout)− g′

L(Wout)(W − Wout))χ{y>ε0(s)θ′},ψn0〉
∣∣∣

� Cε(s)3γ+4θ
∫ ∞

0
|ψn0(y)| ym−2γ−3ρdy

and the last integral converges since m − 2γ − 3 = ω − 2γ − 1 > −1 by assumption. The 
error arising in replacing g(W) by its leading term gL(W) in {y > ε0(s)θ

′} is readily estimated 
by Taylor as well as the exponential weight function ρ . The result is:

∣∣∣∣∣
∫ ∞

ε0(s)θ′
{g(W)− gL(W)}ψn0(y)y

m−1ρdy

∣∣∣∣∣ � Cε(s)3γ+2(1−θ′)γ

and 2(1 − θ′)γ > 2θ′ > 4θ. Summarizing these estimates, we obtain (3.66).
Arguing as in the proof of lemma 3.7, we obtain

an0(s1)− χ

∫ ∞

s1

{a∗n0
(τ)}3dτ

=an0(s)− χ

∫ ∞

s
{a∗n0

(τ)}3dτ −
∫ s1

s
〈g′L(Wout)(W − Wout)χ{y>ε0(s)θ′},ψn0〉dτ

+

∫ s1

s
〈g(W)− (gL(Wout) + g′

L(Wout)(W − Wout))χ{y>ε0(s)θ′},ψn0〉dτ .

The assumption P(α; s1) = 0 means that the left-hand side vanishes. Due to the definition of 
ε(s) given in (3.26a), we then obtain, by (3.66),

∣∣an0(s)− a∗n0
(s)

∣∣ =
∣∣∣∣
∫ s1

s
〈g(W)− (gL(Wout) + g′

L(Wout)(W − Wout))χ{y>ε0(s)θ′},ψn0〉dτ
∣∣∣∣

�Cε(s)γ+(2+δ)θ.

The proof is now complete.� □ 
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3.5.  Pointwise bounds for higher Fourier modes

We estimate the higher mode:

E(y, s) = W(y, s)−
n0∑

j=0

aj(s)ψj(y), 〈E(·, s),ψj〉 = 0 for j = 0, . . . , n0,

which solves

Es = ∆yE −
y · ∇yE

2
+

γ

2
E + R,

R = R(y, s) = g(W(y, s))−
n0∑

j=0

〈g(W(·, s)),ψj〉ψj(y).

Here and henceforth, we abuse the notation of y  to denote the variable in Rm with m = d − 2γ  
and the counterparts of the partial derivatives are denoted by ∇y and ∆y, respectively. The 
standard semigroup theory shows

Es = T(s − s0)E0 +

∫ s

s0

T(s − τ)R(·, τ)dτ , s > s0,

with E0 = E(·, s0) and

[T(s)E] (y) =
e(γ/2)s

{4π(1 − e−s)}m/2

∫

Rm
exp

(
−|ye−s/2 − z|2

4(1 − e−s)

)
E(z)dz� (3.68a)

=

∞∑
j=0

e−λjs〈E,ψj〉ψj(y)� (3.68b)

for s  >  0. The convergence of the series are understood in the norm of L2
ρ(Rm) as well as the 

uniform topology in every compact subset of Rm. This last statement is due to uniform bound-
edness of the Laguerre polynomials ψj ( j = 0, 1 . . .).

Our goal in this subsection is to show: if Φ ∈ A(s0, s1; 1), then there holds

|E(y, s)| � ε(s)γ+2θ (1 + y2n0+1) , ε0(s)θ � |y| < ∞, s0 � s � s1.� (3.69)

To this end, we first show (3.69) for short-time s0 � s � s0 + 1 and then extend it to long-time 
s0  +  1  <  s, to get (3.69) for the whole time interval s0 � s � s1. In the following, we always 
assume Φ ∈ A(s0, s1; 1), even if it is not stated explicitly, and the indicator function of interval 
I is denoted by χ(I)(·)

3.5.1.  A priori estimates for short-time interval.

Lemma 3.10.  For any ν > 0 there exists s0 large enough such that

|[T(s − s0)E0] (y)| < νε(s)γ+2θ (1 + |y|2n0+1)� (3.70)

for ε(s)θ � |y| < ∞, s0 � s � s0 + 1.

Proof.  We will estimate the left-hand side of (3.70) by (3.68a). Recall (3.15):
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|E0(y)| �
{

Cε0(s0)
γ for |y| � ε0(s0)

θ

Cε0(s0)
γ+4θ

(
1 + |y|2n0+1/2

)
for ε0(s0)

θ < |y| < ∞.
� (3.71)

The former estimate of (3.71) implies
∣∣[T(s − s0)E0χ([0, ε0(s0)

2θ])
]
(y)

∣∣ � Cε(s0)
γ+mθ

(
1 + |y|2n0+1/2

)

for ε0(s)θ � |y|, since supx>0 xm/2e−x/16 < ∞. It follows from the latter estimate of (3.71) 
that

∣∣[T(s − s0)E0χ([ε0(s0)
2θ, 2η(s0)])

]
(y)

∣∣ � Cε(s0)
γ+4θ

(
1 + |y|2n0+1/2

)

for all y ∈ Rm. As long as the region {|y| < η(s0)} is concerned, there holds ||y| − |z|| � |z|/2 
for |z| > 2η(s0), and hence

|[T(s − s0)E0χ((2η(s0),∞))] (y)| � Cε(s0)
γ exp

(
−η(s)2

8

)
,

whence the desired bound.
We finally consider the region {|y| > η(s0)}. Split the integral as

∫

{|z|>2η(s0)}
=

∫

{|z|>4|y|}
+

∫

{2η(s0)�|z|�|y|/4}
.

The former integral may be estimated as in the previous one. On the other hand, in the region 
of the latter, we have |z|2n0+1/2 � 2−1/2ε0(s0)

(γ+2θ)/3|z|2n0+1, whence:

|[T(s − s0)E0χ([2η(s0), |y|/4])] (y)| � Cε(s0)
γ+(γ+2θ)/3 (1 + |y|2n0+1)

for s0 � s � s0 + 1. Putting these estimates together, we obtain the desired estimate (3.70). 
The proof is complete.� □ 

Lemma 3.11.  For any ν > 0 there exists s0 large enough such that
∣∣∣∣
∫ s

s0

[T(s − τ)R(·, τ)] (y)dτ
∣∣∣∣ < νε(s)γ+2θ (1 + |y|2n0+1)

for ε0(s)θ � |y| < ∞, s0 � s � s0 + 1.

Proof.  Note that
∫ s

s0

T(s − τ)R(·, τ)dτ =

∫ s

s0

T(s − τ)g(W)dτ −
n0∑

j=0

∫ s

s0

T(s − τ)〈g(W),ψj〉ψjdτ .

The second term is easily estimated, since |〈g(W),ψj〉| � Cε(s)γ+min{ω,2γ}. To estimate the 
first term, let us write

g(W) = g(W)χ{|y|�ε(s)θ/8} + g(W)χ{|y|>ε(s)θ/8} =: h1(y, s) + h2(y, s).
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Consider the term involving h1. By the change of variable z = ε(τ)ζ, one has
∫

{|z|�ε(τ)θ/8}
exp

(
−|ye−(s−τ) − z|2

4(1 − e−(s−τ))

)
|g(Winn)| dz

�Cε(τ)m+γ−2
∫

B
exp

(
−|ye−(s−τ) − ε(τ)ζ|2

4(1 − e−(s−τ))

)
|ζ|γ−2 |sin (2U1 − π)− (2U1 − π)| dζ,

where B = {ζ ∈ Rm : |ζ| � ε(τ)−(1−θ)/8} and U1 = U1 (|ζ|). We want to replace ε(τ)ζ by 
0 in the exponential factor. To estimate the error that may arise, we take advantage of an el-
ementary inequality

∣∣∣e−(w−v)2
− e−w2

∣∣∣ � Ce−w2/2|w||v| provided that |v| � 1
2
|w|� (3.72)

with

v =
ε(τ)ζ

2
√

1 − e−(s−τ)
, w =

ye−(s−τ)/2

2
√

1 − e−(s−τ)
.

As a result, we obtain
∫

{|z|�ε(τ)θ/8}
exp

(
−|ye−(s−τ) − z|2

4(1 − e−(s−τ))

)
|g(Winn)| dz

�Cε(τ)m+γ−2
{
exp

(
− |ye−(s−τ)|2

4(1 − e−(s−τ))

)
+ exp

(
− |ye−(s−τ)|2

8(1 − e−(s−τ))

)
ε(τ)2θ|y|e−(s−τ)

1 − e−(s−τ)

}
·

·
∫

{|ζ|�ε(τ)θ−1}
|ζ|γ−2 |sin (2U1 (|ζ|)− π)− (2U1 (|ζ|)− π)| dζ

for ε(s)2θ � |y|, s0 � s � s0 + 1. Since

|sin (2U1 (r)− π)− (2U1 (r)− π)| ∼ 1
3!

|2U1 (r)− π|3 = O
(
r−3γ)

as r → ∞, and γ − 2 − 3γ + m − 1 = ω − 2γ − 1, we obtain
∫ s

s0

1
{1 − e−(s−τ)}m/2

∫

{|z|�ε(τ)θ/8}
exp

(
−|ye−(s−τ)/2 − z|2

4(1 − e−(s−τ))

)
|g(Winn)| dzdτ

�C
∫ s

s0

ε(τ)γ+ω
(
1 + ε(τ)(θ−1)(ω−2γ)

)

{1 − e−(s−τ)}m/2 exp

(
− |ye−(s−τ)/2|2

4(1 − e−(s−τ))

)
dτ

�Cε(s0)
γ+ω

(
1 + ε(s0)

(θ−1)(ω−2γ)
)
|y|−ω ,

� (3.73)

where the change of variable t = |y|2/4(1 − e−(s−τ)) has bee used as well. Since 
|g(W)| � 2g(Winn) due to lemma 3.6, we obtain

∣∣∣∣
∫ s

s0

[T(s − τ)h1(·, τ)] (y)dτ
∣∣∣∣ < Cε(s)γ+(1−θ)δ� (3.74)

for ε0(s)θ � |y| < ∞, where δ = min{2γ,ω}.
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We shall turn our attention to the term involving h2(y, τ). Recall the function 
η(s) = {ε0(s)}−(2/3)(γ+2θ). The function g(W) may be estimated by a cubic function of 
|y|−γW  in {8−1ε0(s)θ � |y| � η(s)} due to the assumption Φ ∈ A(s0, s1; 1) and lemma 3.6. 
We then obtain
∫ s

s0

∣∣[T(s − τ)h2χ([ε(τ)
θ/8, η(τ)])

]
(y)

∣∣ dτ �C
∫ s

s0

ε(τ)γ+2(1−θ)γ−2θdτ
(
1 + |y|2n0+1)

�ε(s)γ+2θ (1 + |y|2n0+1)
� (3.75)

for ε0(s)θ � |y| < ∞, since 2(1 − θ)γ − 2θ > 2θ (see (3.1)). Our next task is to show:
∫ s

s0

|[T(s − τ)h2χ([η(τ),∞))] (y)| dτ < νε(s)γ+2θ (1 + |y|2n0+1)
� (3.76)

for ε0(s)θ � |y| < ∞. Consider first the region {|y| � η(s)/4}, in which |z| − |y| > (3/4)|z| 
for any |z| > η(s), whence:

exp

(
−|ye−(s−τ)/2 − z|2

4(1 − e−(s−τ))

)
� exp

(
− 9|z|2

32(1 − e−(s−τ))

)
exp

(
−9η(s)2

32

)
.

The desired estimate then follows at once. Consider next the region {|y| > η(s)/4}. Split the 
integral as

∫

{|z|�η(τ)}
=

∫

{η(τ)�|z|�4|y|}
+

∫

{4|y|<|z|}
.

The latter part may be estimated as above. As for the former, we have 
|g(W(z, τ))| � C|z|γ−2 � C|z|2n0+1{η(τ)}−3 in the region of integration. Hence (3.76) holds. 
Summarizing, we have obtained

∣∣∣∣
∫ s

s0

[T(s − τ)h2(·, τ)] (y)dτ
∣∣∣∣ < ν2ε(s)γ+2θ (1 + |y|2n0+1)� (3.77)

for ε0(s)θ � |y| < ∞, s0 � s � s0 + 1. Combining (3.74) with (3.77), we conclude the de-
sired estimate. The proof is complete.� □ 

3.5.2.  A priori estimates for long-time interval.  We extend the estimates having been obtained 
in section 3.5.1 to the case s1 > s0 + 1.

Lemma 3.12.  For any ν > 0 there exists s0 large enough such that

|[T(s − s0)E0] (y)| < νε(s)γ+2θ (1 + |y|2n0+1)� (3.78)

for ε0(s)θ � |y| < ∞, s0 + 1 < s � s1.

Proof.  Let K  >  1 be a constant to be specified later. We first show (3.78) in 
[ε0(s)θ, K]× (s0 + 1, s1]. The series expression (3.68b) of the semigroup T(s) yields
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|[T(s − s0)E0] (y)| � CK

∞∑
j=n0+1

e−λj(s−s0) |〈E0,ψj〉| .� (3.79)

Due to (3.14), we have |〈E0,ψj〉| � Cε0(s0)
γ+mθ for some constant C  >  0 independent of j  

and s0. Hence we obtain

|[T(s − s0)E0] (y)| � C′
Kε(s)

γ+mθ

(
ε(s0)

ε(s)

)γ+mθ

e−(s−s0)
∞∑

j=n0+1

e−(λj−λn0+1)(s−s0)

� C′′
Kε(s)

γ+mθe−(s−s0)/4

� (3.80)

for |y| � K , s0 + 1 < s � s1. In particular, (3.78) holds there.
We will extend this bound to unbounded region [K,∞). Consider the function

w(y, s) = e−(1/4)(s−s0)|y|2n0+1.� (3.81)

A simple computation shows that

ws −∆w +
y · ∇w

2
− γ

2
w =

1
4

e−(1/4)(s−s0)
[
|y|2n0+1 − K2|y|2n0−1] ,� (3.82)

which is positive if |y|2 > 4(2n0 + 1)(2n0 + m − 1) =: K2. Namely, w is a supersolution of 
equation vs = ∆v − 2−1(y · ∇v) + (γ/2)v in (K,∞)× (s0, s1). Moreover, we have

|E0(y)| < ν2ε(s0)
γ+2θ|y|2n0+1� (3.83)

for K � |y| < ∞. Furthermore, (3.80) and the corresponding short-time estimate imply

|[T(s − s0)E0] (y)| < ν2ε(s0)
γ+2θe−(1/4)(s−s0)|y|2n0+1

whenever |y| = K , s0 � s � s1. We may now apply comparison principle, to get

|[T(s − s0)E0] (y)| � ν2ε(s0)
γ+2θw(y, s) = ν2ε(s)γ+2θ

(
ε(s0)

ε(s)

)γ+2θ

e−(1/4)(s−s0)|y|2n0+1

< νε(s)γ+2θ|y|2n0+1

for K < |y|, s0 � s � s1, which completes the proof.� □ 

Lemma 3.13.  For any ν > 0 there exists s0 large enough such that
∣∣∣∣
∫ s

s0

[T(s − τ)R(·, τ)] (y)dτ
∣∣∣∣ < νε0(s)γ+2θ (1 + |y|2n0+1)� (3.84)

for ε0(s)θ � |y| < ∞, s0 + 1 � s � s1.

Proof.  The proof is almost the same as of lemma 3.12, so we state only the main points. We 

first notice that 
∫ s

s0
 in (3.84) may be replaced by 

∫ s−1
s0

, since the term corresponding to 
∫ s

s−1 
may be estimated exactly as in the short-time estimates in section 3.5.1. Notice that

|〈R(·, τ),ψj〉| � Cε(τ)γ+ω , j = 0, 1, ....
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Pick τ ∈ [s0, s − 1]. Since 〈R(·, s),ψj〉 = 0 for j   =  0,...,n0, the series expression (3.68b) of the 
semigroup T(s) as well as local uniform bounds of Laguerre polynomials guarantee

|[T(s − τ)R(·, τ)] (y)| � CKε(τ)
γ+ωe−λn0+1(s−τ)

if |y| � K . We now let τ  vary over [s0,s  −  1] and integrate T(s − τ)R(·, τ) there, to get
∣∣∣∣∣
∫ s−1

s0

[T(s − τ)R(·, τ)] (y)dτ

∣∣∣∣∣ � CCKε(s)γ+ωe−(1/4)(s−s0)

for |y| � K , s0 + 1 < s � s1. Notice that

|g(W(y, s))| �
{
ε(s)γ+3θ|y|γ+1 (1 � |y| � 2η(s)),
Cε(s)2(γ+2θ)|y|γ+1 (2η(s) < |y| < ∞),

whence:

|R(y, τ)| < νε(τ)γ+2θ|y|2n0+1� (3.85)

for all |y| > K . Comparison principle as well as integration in τ  then implies
∣∣∣∣∣
∫ s−1

s0

[T(s − τ)R(·, τ)] (y)dτ

∣∣∣∣∣ � Cν2|y|2n0+1
∫ s−1

s0

ε(τ)γ+2θe−(1/4)(s−τ)dτ

< νε(s)γ+2θ|y|2n0+1

for |y| > K , s0 + 1 < s � s1. The proof is now complete.� □ 

Completion of the proof of lemma 3.5. Due to lemmas 3.10–3.13, we conclude the esti-
mate (3.69) on the higher Fourier mode. The a priori estimate Φ ∈ A(s0, s1; 1/2) then follows 
from lemma 3.6, corollary 3.8, and (3.69). The proof is complete.

3.6.  Asymptotic behavior of energy density

Having proved theorems 3.1 and 1.1, we turn our attention to the proof of theorem 1.5.

Proposition 3.14.  Assume the same hypotheses as in theorem 1.1. Let u and ε(s) be as in 
theorem 1.5. Then for every K  >  0 there exists a constant C  >  0 such that

2∑
j=0

sup
ξ�K

∣∣∣∣
∂ j

∂ξ j

(
u
(
ξε(s)

√
T − t, t

)
− U1 (ξ)

)∣∣∣∣ � Cε0(s)2θ
� (3.86)

for T/2  <  t  <  T.

Proof.  We appeal to classical parabolic estimates after performing suitable change of vari-
ables. Without loss of generality, we may assume that K  =  1/4. Recall the notations ξ, U(ξ, s) 
used in section 3.3 (see (3.43)). Let us write

V(ξ, s) = U(ξ, s)− U1(ξ) = ξkZ̃(ξ, τ), τ =

∫ s

s0

ds
ε(s)2 .
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By direct computations, it turns out that Z̃  satisfies the radial version of a (2k + d)-dimension-
al parabolic equation with uniformly bounded continuous coefficients for |ξ| < 1, τ > 0. To 
avoid ambiguity, we shall introduce different notations: Z(η, τ) = Z̃(ξ, τ), η ∈ R2k+d , |η| = ξ. 
The equation for Z̃(ξ, τ) is then recast as

Zτ = ∆ηZ − µ1(τ)

2
η · ∇ηZ +

[
Λk

|η|2
(1 − cos(2U1))−

kµ1(τ)

2

]
Z + F(η, τ),

F(η, τ) = −µ1(τ)
U′

1

2|η|k−1 − Λk

2|η|2+k

[
sin(2U1 + 2|η|kZ)− sin(2U1)− cos(2U1)2|η|kZ

]
,

� (3.87)

where µ1(τ) = µ(s) = ε(s)2 − 2ε(s)ε̇(s), U1 = U1(|η|), U′
1 = U′

1(|η|), and ∇η ,∆η de-
note the counterparts of differential operators in η, respectively. Fix τ∗ > 0 and set 
Q = B1 × (τ∗, τ∗ + 1]. Due to (3.4), there is a constant C  >  0 independent of τ∗ such that

‖Z‖L∞(Q) � Cε1(τ
∗)2θ,� (3.88)

where ε1(τ) = ε0(s), and thus ‖Z‖L p(Q) � Cε1(τ
∗)2θ for every p   >  2k  +  d  +  1. By Talyor 

expansion and proposition 2.3, we readily obtain an L∞-estimate on the forcing term of the 
form ‖F‖L∞(Q) � C′ε1(τ

∗)2θ. Set Q′ = B1/2 × (τ∗ + 1/2, τ∗ + 1]. Lp  theory for linear para-
bolic equations implies

‖Z‖W2,1
p (Q′) � D

(
‖Z‖L p(Q) + ‖F‖L p(Q)

)
� K (C + C′) ε1(τ

∗)2θ,� (3.89)

where D  >  0 is a constant depending only on k, d , and the parabolic distance between Q′ and 
the parabolic boundary of Q. For λ ∈ (0, 1 − (2k + d + 1)/p), let us denote by Cλ,λ/2(Q′) the 
standard Hölder spaces of order λ in Q′  with respect to parabolic distance. Due to a version 
of Sobolev inequalities [1, lemma 4.28, IV] as well as Taylor expansion and proposition 2.3, 
estimate (3.89) implies

‖F‖Cλ,λ/2(Q′) � C′′ε1(τ
∗)2θ,� (3.90)

where C′′ > 0 is a constant depending on C, C′, D, p, k, d  but not on τ∗. Taking account of 
the uniform Hölder estimates for ε̇(s) guaranteed by proposition 3.3, we may verify uniform 
bounds of Hölder norms (independent of τ∗) on coefficients of the linear part of (3.87). Hence 
we may apply Schauder theory. Set Q′′ = B1/4 × (τ∗ + 3/4, τ∗ + 1]. Since ε(τ∗) � 2ε(τ), it 
follows from (3.88)–(3.90) that

‖Z‖C2+λ,1+λ/2(Q′′) � M
(
‖Z‖L∞(Q′) + ‖F‖Cλ,λ/2(Q′)

)
� 2M (C + C′′) ε1(τ)

2θ

for τ∗ + 3/4 < τ < τ∗ + 1. We now let τ∗ vary on (0,∞), to get, in particular,

‖Z(·, τ)‖C2+λ(B1/4)
� 2M (C + C′′) ε1(τ)

2θ, τ > 1.� (3.91)

Notice that V(ξ, s) = |η|kZ(η, τ) satisfies
∣∣∣∣
∂V
∂ξ

∣∣∣∣ �k|η|k−1 |Z(η, τ)|+ |η|k |∇ηZ(η, τ)| ,
∣∣∣∣
∂2V
∂ξ2

∣∣∣∣ �k(k − 1)|η|k−2 |Z(η, τ)|+ (d − 1)|η|k−1 |∇ηZ(η, τ)|+ |η|k |∆ηZ(η, τ)| .
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Estimating the right-hand sides by (3.91), we obtain (3.86). The proof is complete.� □ 

Proof of theorem 1.5.  The claim (1.17a) is a direct consequence of proposition 
3.14. We prove the claim (1.17b), applying (3.5) and parabolic estimates to the function 
E = W(y, s)− an0(s)ψn0(y), where W(y, s) = yγ(Φ− π/2), an0(s) = 〈W(·, s),ψn0〉. A direct 
computation shows that E solves an m-dimensional parabolic equation

Es =∆ζE − ζ · ∇ζE
2

+
γ

2
E + G,

G :=g1(y, W)− 〈g1 (·, W(·, s)) ,ψn0〉ψn0(y),

where ζ denotes space variable in Rm, m = d − 2γ ∈ N, such that y = |ζ| and

g1(y, W) = g(W) =
Λk

2
yγ−2 [sin(2y−γW)− 2y−γW

]
.

Due to (3.5), for every L, M > 0 there is a constant C = C(L, M) > 0 such that

|E(ζ, s)|+ |G(ζ, s)| � Cε(s)γ+2θ (L/2 < |ζ| < 2M, s0 + 1 < s).� (3.92)

A similar argument to (and even simpler than) the proof of proposition 3.14 shows

2∑
j=0

∑
i1+···+im=j

∣∣∣∣∣
∂ jE

∂ζ i1
1 · · · ∂ζ im

m
(ζ, s)

∣∣∣∣∣ � C′ε(s)γ+2θ (L � |ζ| � M, s0 + 1 < s).

Writing this estimate with self-similar variables, we obtain

2∑
j=0

∣∣∣∣
∂ jΦ

∂y j (y, s)− an0(s)φ
( j)
n0

(y)
∣∣∣∣ � C′ε(s)γ+2θ (L � y � M, s0 + 1 < s),

whence the result (1.17b).

The claim (ii) follows from (i) and identity (1.5), i.e. |∇F|2 = (ur)
2 + Λkr−2 sin2 u. In-

deed, for r � Kε(s)
√

T − t, there holds

∣∣(ur)
2 − (u1,r)

2
∣∣ � 2|u1,r| ·

ε0(s)2θ

ε(s)
√

T − t
�

Cε0(s)2θ

ε(s)2(T − t)
,

Λk

r2

∣∣sin2 u − sin2 u1
∣∣ � Λk

r2 · 2|u1(r, t)||u − u1|

�
Λk

r2 · 3
(

r
ε(s)

√
T − t

)k

ε(s)2θH
(

r
ε(s)

√
T − t

)
�

Cε(s)2θ

ε(s)2(T − t)
,

where u1 = u1(r, t) := U1(r/ε(s)
√

T − t). When L � r/
√

T − t � M, we have

∣∣(ur)
2 − (ũ∗r )

2
∣∣ � C(L, M)ε0(s)γ(T − t)−1/2 · |a∗n0

(s)| ε(s)γ√
T − t

�
C(L, M)ε(s)2γ

T − t
,

Λk

r2

∣∣sin2 u − sin2 ũ∗
∣∣ � 2Λk

r2

(
| cos ũ∗||u − ũ∗|+ 1

2!
|u − ũ∗|2

)
�

C(L, M)

T − t
ε(s)2γ+2θ,
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where ũ∗ = ũ∗(r, t) := u∗(r/
√

T − t, t). Therefore the desired estimates follow from (1.5). 
The proof is now complete.� □ 
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