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Abstract
In case of a spin-polarized current, the magnetization dynamics in nanowires 
are governed by the classical Landau–Lifschitz equation  with Gilbert 
damping term, augmented by a typically non-variational Slonczewski term. 
Taking axial symmetry into account, we study the existence of domain wall 
type coherent structure solutions, with focus on one space dimension and 
spin-polarization, but our results also apply to vanishing spin-torque term. 
Using methods from bifurcation theory for arbitrary constant applied fields, 
we prove the existence of domain walls with non-trivial azimuthal profile, 
referred to as inhomogeneous. We present an apparently new type of domain 
wall, referred to as non-flat, whose approach of the axial magnetization has 
a certain oscillatory character. Additionally, we present the leading order 
mechanism for the parameter selection of flat and non-flat inhomogeneous 
domain walls for an applied field below a threshold, which depends on 
anisotropy, damping, and spin-transfer. Moreover, numerical continuation 
results of all these domain wall solutions are presented.
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1.  Introduction

Magnetic domain walls (DWs) are of great interest both from a theoretical perspective and 
for applications, especially in the context of innovative magnetic storages [1]. Recent devel-
opments in controlled movement of DWs via spin-polarized current pulses in nanomagnetic 
structures, in particular in nanowires, are thought to lead to a new class of potential non-
volatile storage memories, e.g. racetrack memory [1–4]. These devices make use of the fact 
that spin-transfer driven effects can change the dynamics in sufficiently small ferromagnetic 
structures (e.g. nanowires), where regions of uniform magnetization, separated by DWs, can 
appear [5–7]. This motivates further studies of the existence of magnetic domains and their 
interaction with spin-polarized currents as a building block for the theory in this context. In 
this paper we take a mathematical perspective and, in a model for nanomagnetic wires, rigor-
ously study the existence of DWs. This led us to discover an apparently new kind of DWs with 
a certain inhomogeneous and oscillatory structure as explained in more detail below.

The description of magnetization dynamics in nanomagnetic structures, governed by the 
Landau–Lifschitz–Gilbert (LLG) equation, is based on works by Berger and Slonczewski 
assuming a spin-polarized current [8, 9]. In the presence of a constant applied field and a 
spin-polarized current, the dynamics driven by the joint action of magnetic field and spin 
torque can be studied by adding a spin-transfer term in the direction of the current (current-
perpendicular-to-plane (CPP) configuration). In case of a spatially uniform magnetization, 
the resulting Landau–Lifschitz–Gilbert–Slonczewski (LLGS) equation  for unit vector fields 
(m1, m2, m3) = m = m(x, t) ∈ S2 (see figure 1) reads

∂tm − αm × ∂tm = −m × heff + m × (m × J) (LLGS)

with effective field heff, Gilbert damping factor α > 0, and the last term is the so-called polar-
ized spin transfer pseudotorque. Note that the above equation  reduces to the (LLG) equa-
tion for J ≡ 0, see section 2 for more details.

In this paper we consider the axially symmetric case and set

heff := ∂2
x m + h − µm3 e3, J :=

β

1 + ccpm3
e3,� (1)

where h = h e3 with a uniform and time-independent field strength h ∈ R, and m3 = 〈m, e3〉, 
e3 ∈ S2. This effective field heff also includes the diffusive exchange term ∂2

x m, the uniaxial 
anisotropy and the demagnetization field. The special situation we consider in this paper is 
that the parameter µ ∈ R is derived from a first order approximation in the thin film/wire limit 
for a uniformly magnetized body, hence it is a locally approximated demagnetization field 
[6, 10]. In the axially symmetric structure, β � 0 and ccp ∈ (−1, 1) describe the strength of 
the spin-transfer and the ratio of the polarization [7, 11]. The spin-transfer torque term may 
provide energy to the system under certain conditions and counterbalance dissipation associ-
ated to the Gilbert damping term, which gives rise to coherent non-variational dynamics, see 
e.g. [12].

Notably, for β = 0 one obtains the LLG-equation that does not account for spin transfer 
effects. Moreover, as shown in [12], this also holds up to parameter change in case ccp = 0. 
Hence, solutions to the LLGS equation for β = 0 or ccp = 0 are also solutions to the LLG 
equation, so that all the analytical as well as numerical results for ccp = 0 in this paper directly 
transfer to the LLG equation.
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Figure 1.  Homogeneous DW profile (q ≡ 0) with α = 0.5,β = 0.1,µ = −1,  
h = 50, ccp = 0. (a) (m2, m3)-profile. (b) Projection onto S2. (c) Zoom-in on m1 (blue 
solid) and m2 (red dashed).

Figure 2.  Shown are profiles of inhomogeneous DWs m(ξ) computed by parameter 
continuation, see section  4, in ccp to ccp = 0.5 with fixed α = 0.5,β = 0.1,µ = −1. 
((a) and (c)) codim 2 case h = 0.5, s = 0.112 027,Ω = 0.447 173, ((b) and (d)) codim 
0 case h = 50, s = 19.92,Ω = 40.4. (c) magnification of the m1-component; note the 
change of frequency for small versus large ξ. (d) Magnification of m1 (blue solid) as 
well as m2 (red dashed) component.
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A key ingredient for the separation of uniformly magnetized states in space is interfaces 
between two magnetic domains. The most coherent form of such interfaces in the uniaxial set-
ting is relative equilibria with respect to translation and rotation symmetry of the form

m(ξ, t) = m0(ξ)eiϕ(ξ,t), where ξ = x − st and ϕ(ξ, t) := φ(ξ) + Ωt,

with speed s and frequency Ω. Here the complex exponential acts on m0 ∈ S2 by rota-
tion about the e3-axis, i.e. the azimuth, and in spherical coordinates we can choose 
m0(ξ) = (sin(θ(ξ)), 0, cos(θ(ξ))) with altitude angle θ.

We refer to such solutions with m0(ξ) → ±e3 as ξ → ±∞ or ξ → ∓∞ as domain walls. 
A first classification of DWs is based on the local wavenumber q := φ′, which determines φ 
uniquely due to the axial rotation symmetry and satisfies

q(ξ) =
〈(m′

1, m′
2), (−m2, m1)〉
1 − m2

3
(ξ).� (2)

Definition 1.  We call a DW with constant φ homogeneous (hom), i.e. q ≡ 0, and inhomo-
geneous otherwise.

Inhomogeneous DWs have a spatially inhomogeneous varying azimuthal angle, compare 
figures 1 and 2.

In the LLG case, i.e. β = 0, or β �= 0 and ccp = 0 in the uniaxial (LLGS) with an additional 
shift in h as mentioned before, an explicit family of homogeneous DWs was discovered in [13] 
for applied fields with arbitrary strength and time dependence, see figure  1. Furthermore, 
for constant applied fields and in case of ccp �= 0 it was shown in [12] that DWs cannot be 

Figure 3.  PDE stability diagram of homogeneous states ±e3 in h and ccp for 
α = 1,β = 0.5, and µ = −1. State +e3 unstable to the left and stable to the right of 
Γ+, −e3 stable to the left and unstable to the right of Γ−. Homogeneous DWs (hom) 
exist only on the h-axis, i.e. ccp ≡ 0; here ‘codim’ refers to the spatial ODE. See text for 
further explanations. Note that also negative applied fields are shown.

L Siemer et alNonlinearity 33 (2020) 2905
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homogeneous, and the existence of inhomogeneous DWs was proven, whose spatial profile 
slowly converges to ±e3 and where |s| � 1. This latter type of DWs is ‘weakly localized’ 
and has large ‘width’ in the sense that the inverse slope of m3 at m3(0)  =  0 tends to infinity as 
|s| → ∞.

An apparently thus far unrecognized distinction of DWs is based on the convergence 
behavior of q as ξ → ±∞.

Definition 2.  We call a DW flat if |q(ξ)| has a limit on R ∪ {∞} as |ξ| → ∞ and non-flat 
otherwise.

Note that homogeneous DWs are flat ones by definition (recall φ′ = q). Moreover, for all 
DWs m0(ξ) converges to e3 or −e3 as |ξ| → ∞.

The main result of this paper is an essentially complete understanding of the existence 
and the type of DWs near the aforementioned explicit solution family for a nanowire geom-
etry, i.e. µ < 0. This includes the LLG case β · ccp = 0, but our focus is on the spintronic 
case β · ccp �= 0 for which these results pertain 0 < |ccp| � 1 and any value of the (constant) 
applied field h.

The different types of DWs occur in parameter regimes close to ccp = 0 in the (spatial) 
ODE which results from the coherent structure ansatz. Since the parameters α and µ are 
material-dependent we take the applied field strength h as the primary parameter.

In brief, structural stability properties of the steady states ±e3 via the associated stable/
unstable manifold dimensions in the ODE lead to the following cases and existence results for 
localized DWs in nanowires (µ < 0):

	 •	�‘codim-2’ (h∗ < h < h∗) : existence of flat inhomogeneous DWs with s,Ω selected by the 
other parameters,

	 •	�‘center’ (h = h∗ or h = h∗) : existence of flat and non-flat inhomogeneous DWs,
	 •	�‘codim-0’ (h < h∗ or h > h∗) : existence of flat inhomogeneous DWs,

where h∗ := β/α+ 2µ
α2 (1 + α2) and h∗ := β/α− 2µ

α2 (1 + α2). Note that h∗ < h∗ always 
(recall α > 0 and µ < 0). Due to symmetry reasons, we mainly discuss the existence of right-
moving DWs close to the explicit solution family and thus focus on an applied field β/α � h 
(see section 3). The main results can be directly transferred to the case of left-moving DWs 
(h � β/α). Notably, the codim-0 case occurs for ‘large’ magnetic field h above a material 
dependent threshold. In the center and codim-2 cases there is a selection of s and Ω by the 
existence problem.

These ODE structural stability properties of DWs relate to PDE stability properties of 
DWs in the sense of stable or unstable spectrum of the linearisation of the PDE in a DW. The 
basic relations with respect to h and ccp are illustrated in figure 3 for α = 1,β = 0.5,µ = −1 
fixed. Due to the fact that s and Ω are ODE parameters only, the diagram illustrates a slice 
in the four dimensional (h, ccp, s,Ω)-parameter space. Note that homogeneous DWs (hom) 
can occur only on the line ccp ≡ 0 (see [12, theorem 5] for details). The different PDE sta-
bility regions, in the sense of PDE (in)stability of the equilibrium states ±e3, are defined as  
monostable− (blue): +e3 unstable and −e3 stable, bistable (shaded blue): both +e3 and −e3 
stable, monostable+ (red): +e3 stable and −e3 unstable, unstable (shaded red): both +e3 and 
−e3 unstable. For a more detailed stability discussion, see remark 5. Note that the transition 
from bistable to monostable in the PDE in case ccp = 0, hence on the h-axis in figure 3, does 
not coincide with the transition of the homogeneous family from codim-2 to codim-0 in the 
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ODE. In contrast, the analogous transitions occur simultaneously for example in the well-
known Allen–Cahn or Nagumo equation.

In figure 4 below, we present numerical evidence that inhomogeneous DWs are indeed 
also dynamically selected states, especially for large applied fields, also in the LLG case 
(β, ccp = 0).

The understanding of DW selection by stability properties generally depends on the exist-
ence problem discussed in this paper, which is therefore a prerequisite for the dynamical 
selection problem, see remark 5.

To our knowledge, existence results of DWs for ccp �= 0 are new. In more detail, the exist-
ence of localised inhomogeneous, i.e. flat as well as non-flat, DWs for ccp �= 0 and especially 
for ccp = 0 are new results. Indeed, the existence proof of non-flat DWs is the most technical 
result and entails an existence proof of heteroclinic orbits in an ODE between an equilibrium 
and a periodic orbit. These solutions indicate the presence of DWs in other regimes of spin 
driven phenomena and may be of interest for spin-torque transfer MRAM (Magnetoresistive 
random-access memory) systems [14].

Figure 4.  Direct simulation of full PDE (LLGS) for α = 0.5,β = 0.1,µ = −1, h = 50, 
and ccp = 0 with dynamical selection of an inhomogeneous DW. Initial condition near 
homogeneous DW (9) in codim-0 regime (h∗ = 10.2, s0 = 19.92, and Ω0 = 40.04). (a) 
Profile at t  =  20 projected onto the sphere. (b) Speed and frequency of DW over time 
with asymptotic (selected) values s  =  12.5 and Ω = 78.28. (c) Space-time plots of DW 
components (without co-moving frame), range as in black box in (b). Final profile is 
heteroclinic connection in (7), see proposition 2.

L Siemer et alNonlinearity 33 (2020) 2905
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This paper is organized as follows. In section 2, the LLGS equation and coherent structures 
as well as first properties are discussed. Section 3 more precisely introduces homogeneous and 
inhomogeneous as well as flat and non-flat DWs and it also includes the main results of this 
paper (theorems 1–3). The technical proofs of theorem 2 as well as theorem 3 are deferred to 
appendices A.1 and A.2. Section 4 presents results of numerical continuation in parameter ccp 
for the three regimes of the applied field (codim-2, center, and codim-0), where the center case 
is studied in more detail. We conclude with discussion and outlook in section 5.

2.  Model equations and coherent structure form

The classical model for magnetization dynamics was proposed by Landau and Lifschitz based 
on gyromagnetic precession, and later modified by Gilbert [15, 16]. See [17] for an overview. 
The Landau–Lifschitz–Gilbert equation for unit vector fields m(x, t) ∈ S2 in one space dimen-
sion x ∈ R and in terms of normalized time in dimensionless form is

∂tm − αm × ∂tm = −m × heff. (LLG)

Here m = M/MS  represents the normalized magnetization, heff = Heff/MS  the effective field, 
i.e. the negative variational derivative of the total magnetic free energy with respect to m, both 
normalized by the spontaneous magnetization MS. For gyromagnetic ratio γ  and saturation 
magnetization MS the time is measured in units of (γMS)

−1, and it is assumed that the temper
ature of the magnetic body is constant and below the Curie temperature [5]. Finally, Gilbert 
damping α > 0 turns m towards heff and both vectors are parallel in the static solution.

In modern spin-tronic applications, e.g. spin-transfer torque magnetoresistive random 
access memories (MRAM), the spin of electrons is flipped using a spin-polarized current. 
To take these effects into account, the (LLG) equation is supplemented by an additional spin 
transfer torque term. Using a semiclassical approach, Slonczewski derived an extended effec-
tive field

Heff = heff − m × J,

where J = J(m) depends on the magnetization and the second term is usually called 
Slonczewski term [9]. In contrast to the (LLG) equation, which can be written as the gradient 
of free ferromagnetic energy, this generalized form is no longer variational and the energy is 
no longer a Lyapunov functional.

As to the specific form of Heff , including a leading order form of exchange interaction, 
uniaxial crystal anisotropy in direction e3, and Zeeman as well as stray-field interactions with 
an external magnetic field, see e.g. [6], gives the well known form (1).

In this paper we consider a constant applied magnetic field h ∈ R along e3 and uniaxial 
anisotropy with parameter µ ∈ R, for which the anisotropy energy density is rotationally sym-
metric w.r.t. e3. According to the energetically preferred direction in the uniaxial case, minima 
of the anisotropy energy density correspond to easy directions, whereas saddles or maxima 
correspond to medium-hard or hard directions, respectively. Therefore, one refers to µ < 0 as 
easy-axis anisotropy and µ > 0 as easy-plane, both with regard to e3.

As mentioned before, the LLG equation with its variational structure appears as a special 
case of (LLGS) for β = 0 or ccp = 0. While our main focus is the non-variational spintronic 
case β · ccp �= 0, all results contain the case β · ccp = 0 and thus carry over to (LLG).

L Siemer et alNonlinearity 33 (2020) 2905
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It is well-known that (LLGS) admits an equivalent form as an explicit evolution equation of 
quasilinear parabolic type in the form, see e.g. [12],

∂tm = ∂x (A(m)∂xm) + B (m, ∂xm) .

As a starting point, we briefly note the existence of spatially homogeneous equilibrium 
solutions of (LLGS) for which m(x, t) is constant in x and t.

Remark 1.  The only (spatially) homogeneous equilibria of (LLGS) for β > 0 are the con-
stant up- and down magnetization states ±e3. Indeed, setting ∂tm = ∂2

x m = 0 in (LLGS), for 
β �= 0 the last equation implies that m1 = m2 = 0 and thus the only solutions m∗

± ∈ S2 are 
m∗

± = (0, 0,±1)T.

Remark 2.  In case β = 0 as well as |h/µ| < 1 there exist a family of additional homogene-
ous solutions of (LLGS) given by m∗ = (m1, m2, h/µ)T, with m2

1 + m2
2 = 1 − (h/µ)2 . Note 

that similar cases occur for symmetry axis being e1 and e2, respectively (see Brown’s equa-
tions).

2.1.  Coherent structure ODE

Due to the rotation symmetry around the e3-axis of (LLGS), it is natural to use spherical 
coordinates

m =



cos(ϕ) sin(θ)

sin(ϕ) sin(θ)

cos(θ)


 ,

where ϕ = ϕ(x, t) and θ = θ(x, t). This changes (LLGS) to
(
α −1
1 α

)(
∂tϕ sin(θ)

−∂tθ

)
=

(
2∂xϕ∂xθ cos(θ)

−∂2
x θ

)

+ sin(θ)

(
∂2

xϕ+ β/ (1 + ccp cos(θ))

(∂xϕ)
2 cos(θ) + h − µ cos(θ)

)
.

� (3)

Note that the rotation symmetry has turned into the shift symmetry in the azimutal angle ϕ, 
as (3) depends on derivatives of ϕ only.

Recall that DW solutions spatially connect the up and down magnetization states ±e3 in a 
coherent way as relative equilibria with respect to the translation symmetry in x and φ, which 
yields the ansatz

ξ := x − st, θ = θ(ξ), ϕ = φ(ξ) + Ωt.� (4)

Such solutions are generalized travelling waves that move with constant speed s ∈ R in space 
and rotate pointwise with a constant frequency Ω ∈ R around the e3-axis; solutions with 
Ω = 0 are classical travelling waves.

As in [12], applying ansatz (4) to (3) leads to the so-called coherent structure ODE
(
α −1
1 α

)(
(Ω− sφ′) sin(θ)

sθ′

)
=

(
2φ′θ′ cos(θ)

−θ′′

)

+ sin(θ)

(
φ′′ + β/ (1 + ccp cos(θ))

(φ′)2 cos(θ) + h − µ cos(θ)

)
,

� (5)

L Siemer et alNonlinearity 33 (2020) 2905
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where ′ = d/dξ. This system of two second-order ODEs does not depend on φ and thus 
reduces to three dynamical variables (θ,ψ = θ′, q = φ′). Following standard terminology for 
coherent structures, we refer to q as the local wavenumber.

Writing (5) as a first-order three-dimensional system gives

θ′ = ψ

ψ′ = sin(θ)
[
h − Ω+ sq + (q2 − µ) cos(θ)

]
− αsψ

q′ = αΩ− β/(1 + ccp cos(θ))− αsq − s+2q cos(θ)
sin(θ) ψ

,� (6)

and DWs in the original PDE are in 1-to-1-correspondence with the ODE solutions connecting 
θ = 0 and θ = π.

2.1.1.  Blow-up charts and asymptotic states.  As in [12], the singularities at zeros of sin(θ) 
in (6) can be removed by the singular coordinate change ψ := p sin(θ), which is a blow-up 
transformation of the equilibria (0, 0) and (π, 0) in the (θ,ψ)-plane to the lines {θ = 0} and 
{θ = π} in the (θ, p)-plane, respectively, which thus removes the ψ-axis except for the origin. 
The resulting desingularized system reads

θ′ = sin(θ) p
p′ = h − Ω− αsp + sq − ( p2 − q2 + µ) cos(θ)

q′ = αΩ− β/(1 + ccp cos(θ))− sp − αsq − 2pq cos(θ)
.� (7)

The coherent structure system (6) is equivalent to the desingularized system (7) for 
θ �= nπ, n ∈ Z and therefore also for m away from ±e3. Furthermore, the planar blow-up 
charts θ = 0 and θ = π are invariant sets of (7), whose dynamics in terms of the (original) 
m-coordinates is confined to the points ±e3. System (7) has a special structure (see figure 6) 
that will be relevant for the subsequent DW analysis. In the remainder of this section we ana-
lyze this in some detail.

Lemma 1.  Consider the equations for p  and q in (7) for an artificially fixed value of θ. In 
terms of z := p + iq this subsystem can be written as the complex (scalar) ODE

z′ = Az2 + Bz + C,� (8)

where A := − cos(θ), B := −(α+ i)s, and Cθ := h − Ω+ Aµ+ i
(
αΩ− β

1−Accp

)
.

For A �= 0 the solution with z0 = z(ξ0) away from the equilibria zθ+ = − B
2A + iγ

θ

2A  and 

zθ− = − B
2A − iγ

θ

2A , with γθ = γ(θ) :=
√

4ACθ − B2 , reads

z(ξ) =
γθ

2A
tan

(
γθ

2
ξ + δ0

)
− B

2A
,� (9)

where

δ0 = arctan

(
2Az0 + B

γθ

)
− γθ

2
ξ0.

L Siemer et alNonlinearity 33 (2020) 2905
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For A  =  0, the solution away from the equilibrium zπ/2 = −Cπ/2/B is given by

z(ξ) =
(

z0 +
Cπ/2

B

)
eB(ξ−ξ0) − Cπ/2

B
.

Clearly, the solution of (8) relates only to those solutions of (7) for which θ is constant, 
i.e. θ = 0,π . Although we are mostly interested in the dynamics on the blow-up charts, we 
consider θ as a parameter in order to demonstrate the special behaviour of (7) for θ artificially 
fixed. Notably, the equilibria zθ± of (8) for θ �= 0,π  are not equilibria in the full dynamics, due 
to the fact that (7) is only invariant for θ at the blow-up charts.

Proof.  We readily verify the claimed form of the ODE and directly check the claimed  
solutions.� ■ 

Remark 3.  Lemma 1 states in particular that the desingularized ODE system (7) can be 
solved explicitly on the invariant blow-up charts, where θ = 0,π  and thus A = −1, 1, respec-
tively. System (7) possesses two real equilibria on each blow-up chart, Z0

± := (0, p0
±, q0

±)
T 

and Zπ
± := (π, pπ±, qπ±)

T. Here pθ
σ := Re(zθσ), qθσ := Im(zθσ) for θ = 0,π , σ = ± and

z0
+ := 1/2(B − iγ0), z0

− := 1/2(B + iγ0)

and analogously

zπ+ := 1/2(−B + iγπ), zπ− := 1/2(−B − iγπ),

where we set

γ0 := γ
∣∣
A=−1 =

√
−4C0 − B2 and γπ := γ

∣∣
A=1 =

√
4Cπ − B2

with C0 := C
∣∣
A=−1

 and Cπ := C
∣∣
A=1.

Due to the analytic solution (9), we obtain the following more detailed result in case 
θ �= π/2 (see figure 6).

Lemma 2.  The phase plane of (8) consists entirely of heteroclinic orbits between zθ− and 
zθ+ in case Re(γθ) = 0 and Im(γθ) �= 0, or γθ �= 0, except for the equilibrium states. In case 
Im(γθ) = 0 and Re(γθ) �= 0, the phase plane is filled with periodic orbits away from the in-
variant line {q = s

2A}, for which the period of solutions close to it tends to infinity.

Proof.  For θ fixed in (8), consider the case Re(γθ) = 0 and also Im(γθ) �= 0 for A �= 0 
which leads to

z(ξ) = i
Im(γθ)

2A
· tan

(
i
( Im(γθ)

2
ξ + Im(δ0)

︸ ︷︷ ︸
=:ξ̌

)
+ Re(δ0)

)
− B

2A

=
Im(γθ)

2A
·

i sin (2Re(δ0))− sinh
(
2ξ̌
)

cos (2Re(δ0)) + cosh
(
2ξ̌
) − B

2A
.
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For Re(γθ) �= 0 as well as Im(γθ) �= 0, we obtain

z(ξ) =
γθ

2A
tan

(
Re(γθ)

2
ξ + Re(δ0)

︸ ︷︷ ︸
=:ξ̃

+i
Im(γθ)

2
ξ + iIm(δ0)

)
− B

2A

=
γθ

2A
·
sin(2ξ̃) + i sinh

(
2
(

Im(γθ)
Re(γθ)

ξ̃ − Im(γθ)
Re(γθ)

Re(δ0) + Im(δ0)
))

cos(2ξ̃) + cosh
(

2
(

Im(γθ)
Re(γθ)

ξ̃ − Im(γθ)
Re(γθ)

Re(δ0) + Im(δ0)
)) − B

2A
.

The asymptotic states are

Im
(
γθ

)
> 0 : lim

ξ→−∞
z(ξ) = −i

γθ

2A
− B

2A
, lim

ξ→+∞
z(ξ) = i

γθ

2A
− B

2A
,

as well as

Im
(
γθ

)
< 0 : lim

ξ→−∞
z(ξ) = i

γθ

2A
− B

2A
, lim

ξ→+∞
z(ξ) = −i

γθ

2A
− B

2A
,

which simplify in case Re(γθ) = 0 to

Im
(
γθ

)
> 0 : lim

ξ→−∞
z(ξ) =

Im(γθ)− B
2A

, lim
ξ→+∞

z(ξ) = − Im(γθ) + B
2A

,

as well as

Im
(
γθ

)
< 0 : lim

ξ→−∞
z(ξ) = − Im(γθ) + B

2A
, lim

ξ→+∞
z(ξ) =

Im(γθ)− B
2A

.

The last case to consider is Re
(
γθ

)
�= 0 and Im

(
γθ

)
= 0, where the solutions are

z(ξ) =
Re

(
γθ

)
2A

· sin(2ξ̂) + i sinh(2Im(δ0))

cos(2ξ̂) + cosh(2Im(δ0))
− B

2A
,

with ξ̂ := Re(γθ)
2 ξ + Re(δ0) and which leads to periodic solutions of (8) iff

Im(δ0) �= 0 ⇔ 2AIm(z0) + Im(B) �= 0 ⇔ q0 �= s
2A

,

where z0 = p0 + iq0 and recall that B = −(α+ i)s.� ■ 

Based on lemma 2, explicitly on the blow-up chart θ = 0 the heteroclinic orbits are from z0
−

 
to z0

+ in case Im(−4C0 − B2) > 0, or Im(−4C0 − B2) = 0 and Re(−4C0 − B2) � 0, and from 
z0
+ to z0

−
 if Im(−4C0 − B2) < 0 . For θ = π, if Im(4Cπ − B2) > 0, or Im(4Cπ − B2) = 0 and 

Re(4Cπ − B2) � 0 they are connections from zπ− to zπ+, and if Im(4Cπ − B2) < 0 from zπ+ 
to zπ−.
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For A �= 0, the case s  =  0 is a special situation, which will be also discussed in the context 
of DWs in section 3 later. It turns out that on the blow-up charts θ = 0 (or θ = π), the solu-
tion with appropriate initial conditions has a limit as |ξ| → ∞ if and only if Im(

√
−C0) �= 0 

(Im(
√

Cπ) �= 0). In terms of the parameters in (7) and with

β− :=
β

1 − ccp
and β+ :=

β

1 + ccp
,

this leads to the conditions for θ = 0 given by:

Ω �= β+

α
or Ω =

β+

α
and Ω � h − µ,� (10)

and for θ = π given by:

Ω �= β−

α
or Ω =

β−

α
and Ω � h + µ.� (11)

In case ccp = 0, i.e. for the (LLG) equation, the conditions in (10) and (11) reduce to

Ω �= β

α
or Ω =

β

α
and 2µ �

β

α
,

where the latter inequality always holds in case of a nanowire geometry (µ < 0). Hence stand-
ing domain walls in nanowires in case ccp = 0 can only connect equilibria, if they exist.

Lemma 2 also states that the equilibria on the blow-up charts θ ∈ {0,π} are surrounded 
by periodic orbits in case Im(γ0) = 0 and Re(γ0) �= 0 (Im(γπ) = 0 and Re(γπ) �= 0). In fact, 
system (7) is Hamiltonian (up to rescaling) on the blow-up charts for certain frequencies Ω, 
as follows

Proposition 1.  The dynamics of (7) on the invariant blow-up chart θ = 0 in case 

Ω = β+

α − s2

2  possesses the invariant line {q = − s
2} and, after time-rescaling, for q �= − s

2 

the Hamiltonian

H0( p, q) = −p2 + q2 + αsp + sq − h + β+/α+ µ

q + s
2

along solutions of (8). Analogously on the chart θ = π, in case

Ω =
β−

α
+

s2

2
� (12)

possesses the invariant line {q = s
2} and for q �= s/2 the Hamiltonian

Hπ( p, q) =
p2 + q2 − αsp − sq + h − β−/α+ µ

q − s
2

.� (13)

Moreover, each half plane {θ = 0, q � − s
2}, {θ = 0, q � − s

2} 
(
{θ = π, q � s

2} and 
{θ = π, q � s

2}
)
 is filled with periodic orbits encircling the equilibria at z0

± 
(
zπ±

)
 if addition-

ally Ω > h − µ+ s2

4 (α
2 − 1) 

(
Ω < h + µ+ s2

4 (1 + α2)
)
.

L Siemer et alNonlinearity 33 (2020) 2905



2917

Proof.  For the sake of clarity, we will only present the computation for the blow-up chart 
θ = π; the computation on θ = 0 can be done in the same manner. With respect to the param

eters of equation (7), the condition Im(4C − B2) = 0 is equivalent to Ω = β−

α + s2

2  and in this 
case the system (7) on {θ = π} is given by

p′ = p2 − q2 − αsp + sq + h + µ− β−

α − s2

2

q′ = 2pq − sp − αsq + αs2

2

.� (14)

We readily compute that for solutions of this

dHπ

dξ
=

∂Hπ

∂p
p′ +

∂Hπ

∂q
q′ =

q′ · p′ − p′ · q′

(q − s
2 )

2 = 0,

which shows the canonical Hamiltonian structure of (14) up to time rescaling. If additionally 

Ω < h + µ+ s2

4 (1 + α2), it follows from lemma 2 that each half plane is filled with periodic 
orbits.� ■ 

Proposition 1 concerns the special case that β,Ω are such that (12) holds for ccp ∈ (−1, 1), 
which is henceforth referred to as the center-case. In particular, each orbit except the line 
q ≡ s/2 on the blow-up chart θ = π can by identified via the quantity (13), and each equilib-

rium zπ± has a neighborhood filled with periodic orbits if additionally h > β−

α − µ+ s2

4 (1 − α2) 
(see figure 5). Note the relation between the conditions (10) and (11) and the conditions in 
proposition 1 in case s  =  0.

Figure 5.  (a) Phase plane streamplot with Mathematica of (14) around the equilibrium 
zπ−, i.e. (7) at θ = π, for α = 0.5,β = 0.1,µ = −1, h = 10.2, s = 4,Ω = 8.2 and 
ccp = 0, which leads to 

(
pπ−, qπ−

)T
= (1, 0)T. The red solid line marks the trajectory 

with initial condition ( p0, q0) = (7/4, 0) (see plot of solutions in b). (b) Plot of the 
profile for the solution highlighted in (a), where p  (solid blue line) and q (dashed red 
line) are given by (9) for the parameter set as in (a).
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The profile of any DW must converge to a blow-up chart for ξ → −∞ by definition and 
without loss of generality this is θ = 0. We have the following uniqueness result for trajecto-
ries (not necessarily DWs) that converge to the blow-up chart at θ = 0 as ξ → −∞.

Proposition 2.  Suppose Ω < β+

α − s2

2  or Ω = β+

α − s2

2  and Ω � h − µ+ s2

4 (α
2 − 1). 

There is a θ1 ∈ (0,π) such that for any θ0 ∈ (0, θ1] there are unique p0, q0 such that the solu-
tion (θ, p, q)T(ξ), (θ, p, q)T(0) = (θ0, p0, q0)

T satisfies θ(ξ) → 0 as ξ → −∞. Moreover, it 

holds that ( p + iq)(ξ) → z0
− as ξ → −∞. If instead Ω > β+

α − s2

2 , then ( p + iq)(ξ) → z0
+ as 

ξ → −∞.

Proof.  The conditions on Ω are equivalent to Re(γ0) = 0 and Im(γ0) < 0, or γ0 �= 0, in 
lemma 2. Thus, the blow-up chart at θ = 0 is transversely unstable for p   >  0 and stable for 
p   <  0, a solution with θ(0) ∈ (0,π) and θ(ξ) → 0 as ξ → −∞ must have p(ξ) > 0 for all 
ξ < ξ̃  with some ξ̃ ∈ R . The one-dimensional unstable manifold of the equilibrium state Z0

−
 

gives solutions as claimed and it remains to show uniqueness. Note that the unstable manifold 
has strictly monotone θ-component sufficiently close to θ = 0. Suppose that a solution that 
does not lie in this unstable manifold satisfies θ(ξ) → 0 as ξ → −∞. Then this solution must 
eventually lie in the local unstable fibers of the blow-up chart, i.e. p   >  0. The base points of 
these fibers form a solution of the vector field on the blow-up chart. However, by lemma 2 all 

these orbits converge, as ξ → −∞, to z0
−

 which has p   <  0. Analogously in case Ω > β+

α − s2

2 .

� ■ 

Domain walls are heteroclinic orbits between the blow-up charts and decisive for their 
bifurcation structure are the dimensions (and directions) of un/stable manifolds of the equilib-
ria on these charts. Hence, we next discuss the equilibria Z0

± and Zπ
± and their stability.

Transverse to the blow-up charts in θ-direction we readily compute the linearization 
∂θ(sin(θ) p) = cos(θ) p, i.e. the transverse eigenvalue is −Aθ · Re(zθ±) at θ = 0 and π, respec-
tively. The eigenvalues within the blow-up charts are determined by ±iγ. With σ = ±, respec-
tively, the eigenvalues for Z0

σ are

ν0
1,σ = −σiγ0, ν0

2,σ = ν0
1,σ , ν0

3,σ = Re(z0
σ),� (15)

and for Zπ
σ

νπ1,σ = σiγπ , νπ2,σ = νπ1,σ , νπ3,σ = −Re(zπσ).� (16)

Therefore, the signs of the real parts within each blow-up chart are opposite at Zπ
+ com-

pared to Zπ
−

 and determined by the sign of Re
(
ν0,π

1,+

)
. Hence, within the blow-up charts each 

equilibrium is either two-dimensionally stable, unstable or a linearly neutral center point.
For completeness, we next note that the equilibria on both blow-up charts can be neutral 

centers simultaneously (see figure 3). However, this requires a negative spin polarization and 
a small Gilbert damping factor, and is not further studied in this paper.

Remark 4.  The equilibria of both blow-up charts are centers simultaneous-
ly, if and only if Im(±γ0,π) = 0 and γ0,π �= 0 (compare lemma 2). For example if 
α = 0.5,β = 0.1,µ = −1, ccp = −0.99, h = 10
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s2 =
3960
199

, Ω =
β/α

1 − ccp
+

s2

2
=

2000
199

,

we obtain

γ0 = 3.335 51, γπ = 3.274 69.

3.  Domain walls

All domain walls between ±e3 that we are aware of are of coherent structure type, and thus in 
one-to-one correspondence to heteroclinic connections between the blow-up charts {θ = 0} 
and {θ = π} in (7). Typically we expect these to be heteroclinics between equilibria within 
the charts, but this is not necessary. Based on the previous analysis, there are three options 
for heteroclinics between the charts: point-to-point, point-to-cycle, and cycle-to-cycle. We 
study the first two in this section, for which proposition 2 implies uniqueness of the DW (up 
to translations/rotations) for a given set of parameters. The third case can occur at most in a 
relatively small set of parameters (see remark 4). Its analysis is beyond the scope of this paper.

Note that in case of an existing connection between an equilibrium and a periodic orbit (see 
proposition 1), the domain wall is automatically an inhomogeneous non-flat one. Moreover, 
via the singular coordinate change any such heteroclinic solution is heteroclinic between 
θ = 0,π  in (6) and through the spherical coordinates it is a heteroclinic connection between 
±e3 in the sphere, possibly with unbounded ϕ.

3.1.  Homogeneous domain walls

It is known from [13] in case β = 0 and from [12] in case ccp = 0 (and arbitrary β) that (7) 
admits for µ < 0 a family of explicit homogeneous DWs m0 given by



θ0

p0

q0


 =




2 arctan
(

eσ
√
−µξ

)

σ
√
−µ

0


� (17)

and parameterized by Ω = h+αβ
1+α2 , s2 = − (β−αh)2

µ(1+α2)2 > 0, and σ = sgn(s · (αh − β)); the fam-

ily extends to s  =  0 in the limit h → β
α from both sides with scaling of the frequency by 

Ω = β
α +

√
−µ
α s. Hence, for each set of parameters there always exist two homogeneous DWs, 

either one left- and one right-moving, or two stationary ones with s  =  0.
The family of explicit DWs (17) have domain wall width 

√
−µ , a profile independent of 

the applied field h and propagate along a nanowire (µ < 0) with velocity s while precessing 
with azimuthal velocity Ω. Since these are unique up to spatial reflection symmetry, the direc-
tion of motion is related to the spatial direction of connecting ±e3 through σ,

θ(−∞) = 0 θ(+∞) = π ⇔ s > 0 (wall moves to the right)
θ(−∞) = π θ(+∞) = 0 ⇔ s < 0 (wall moves to the left).

� (18)
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To simplify some notation we will focus on the case of right-moving walls including stand-
ing walls (s � 0) and thus make the standing assumptions that h � β/α as well as µ < 0. We 
therefore have a 1-to-1 relation of parameters (α,β, h,µ) and right-moving DWs from

m(ξ, t) = m0(ξ, t;α,β, h,µ)

with speed and frequency given by

s0 = s0(α,β, h,µ) :=
αh − β√

−µ(1 + α2)
, Ω0 = Ω0(α,β, h,µ) :=

h + αβ

1 + α2 ,

� (19)
where the subindex 0 emphasizes that ccp = 0. Since s0 is surjective on R�0 any velocity can 
be realised. Spatial reflection covers the case h � β/α.

Based on lemma 1 as well as remark 3 for ccp = 0 and (homogeneous) speed and frequency 
(19), one readily finds the asymptotic states of (7) given by

E0 := Z0
−
∣∣
(s0,Ω0)

=
(
0,
√
−µ, 0

)T
and Eπ := Zπ

−
∣∣
(s0,Ω0)

=
(
π,

√
−µ, 0

)T
,

with (spatial) eigenvalues (15), (16) given by

ν0
k,− := −αs0 − 2

√
−µ− (−1)k is0, ν0

3,− =
√
−µ,

νπk,− := −αs0 + 2
√
−µ− (−1)k is0, νπ3,− = −

√
−µ,

� (20)

where k = 1, 2. Note that the above equilibria cannot be centers simultaneously (recall µ < 0), 
hence a cycle-to-cycle connection can not exist close to it (see remark 4 for details). For this 
reason, we focus on point-to-point as well as point-to-cycle connections.

3.2.  Inhomogeneous domain walls

Homogeneous DWs exist only in case ccp = 0 [12, theorem 5], are explicitly given by (17) 
and completely characterized by (19). By [12, theorem 6], fast inhomogeneous DW solutions 
with |s| � 1 exist for any ccp ∈ (−1, 1), but in contrast to (17), the gradient of these profiles is 
of order 1/|s| and thus have a large ‘width’. The natural question arises what happens for any 
s in case ccp �= 0.

This section contains the main results of this paper: the existence, parameter selection and 
structure of inhomogeneous DW solutions in case of small |ccp| for any value of the applies 
field h, and thus any speed s. This will be achieved by perturbing away from the explicit solu-
tion m0 given by (17), where the bifurcation structure is largely determined by comparing 
the dimensions of the un/stable eigenspaces at the asymptotic equilibrium states, which are 
determined by (20).

Let W0
s/u and Wπ

s/u denote the stable and unstable manifolds associated to E0 and 

Eπ, respectively, and w0
s/u as well as wπ

s/u be the dimension of these manifolds so that 
w0

s + w0
u = wπ

s + wπ
u = 3. Notably w0

s = 2 and w0
u = 1 for all values of the parameters, and 

wπ
s  is either 1 or 3. Recall the standing assumption s0 � 0.

If wπ
s = 1, the heteroclinic connection of E0 and Eπ generically has codimension-2, 

while for wπ
s = 3 it has codimension-0, and we refer to the transition point between these 
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cases, following the discussion in section  2.1.1, as the center case. From (20) we have 
wπ

s = 1 ⇔ 0 � s0 < 2
√
−µ
α , wπ

s = 3 ⇔ s0 > 2
√
−µ
α  and the center case at s0 = 2

√
−µ
α .

Hence, within the family of homogeneous DWs given by (17) and satisfying (19), the dif-
ferent bifurcation cases have speed and frequency relations

codim-0 : s0 >
2
√
−µ

α
and Ω0 >

β

α
− 2µ

α2 ,

center : s0 =
2
√
−µ

α
and Ω0 =

β

α
− 2µ

α2 ,

codim-2 : 0 � s0 <
2
√
−µ

α
and

β

α
� Ω0 <

β

α
− 2µ

α2 .

Using (19) these can be written in terms of the parameters of (LLGS), which gives the char-
acterization mentioned in the introduction section 1.

Remark 5.  The case distinction is also related to the spectral stability of the asymptotic 
states m = ±e3 in the dynamics of the full PDE (LLGS) which is beyond the scope of this pa-
per, but see figure 3 for an illustration. In short, it follows from, e.g. [12, lemma 1] that e3 is L2-
stable for h > β/α, while −e3 is L2-stable for h < β/α− µ and unstable for h > β/α− µ. 
Based on this, the stability curves in figure 3 are defined as follows

Γ+ :=
β/α

h − µ
− 1, Γ− := 1 − β/α

h + µ
,

which intersect at

h =
β

2α
+

√
β2

4α2 + µ2.

Since the destabilisation of −e3 if β > 0 corresponds to a Hopf-instability of the (purely 
essential) spectrum, it is effectively invisible in the coherent structure ODE, which detects 
changes in the linearization at zero temporal eigenvalue only. Visible from the PDE stability 
viewpoint is a transition of absolute spectrum through the origin in the complex plane of tem-
poral eigenmodes, see [18]. Now in the center case, the state −e3 is already L2-unstable since 
α > 0 as well as µ < 0 and h > β/α implies

h = h∗ =
β

α
− 2µ

α2 (1 + α2) >
β

α
− µ

and therefore that Γ− never intersects the line ccp ≡ 0 at h = h∗.
Moreover, it was shown in [19] that the family of explicit homogeneous DWs (9) is (lin-

early) stable for sufficiently small applied fields, actually for h < −µ/2, in case β = 0, hence 
in the bi-stable case where ±e3 are L2-stable. As mentioned before, β = 0 is equivalent to 
ccp = 0 in the (LLGS) equation with an additional shift in h and β, which leads to the (LLG) 
case. We expect these DWs are also stable for small perturbations in ccp, due to the properties 
of the operator established in [19], but further analysis also on the transition from convective/
transient to absolute instability will be done elsewhere.

With these preparations, we next state the main results, which concern existence of DWs 
in the three regimes.
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Theorem 1.  For any parameter set (α0,β0, h0,µ0) in the codim-0 case, i.e. µ0 < 0 
and h0 > β0/α0 − 2µ0 − 2µ0/α

2
0, the following holds. The explicit homogeneous DWs 

m0 in (9) lies in a smooth family mccp of DWs parameterized by (ccp,α,β, h,µ, s,Ω) near 
(0,α0,β0, h0,µ0, s0,Ω0) with s0, Ω0 from (19) evaluated at (α0,β0, h0,µ0). Moreover, in case 
ccp = 0 and (s,Ω) �= (s0,Ω0) evaluated at (α,β, h,µ), or ccp �= 0, these are inhomogeneous 
flat DWs.

Proof.  As mentioned, in the codim-0 case we have wπ
s = 3 and for all parameters w0

u = 1. 
Due to the existence of the heteroclinic orbit (17), this means W0

u  intersects Wπ
s  transversely 

and non-trivially for ccp = 0 in a unique trajectory. Therefore, this DW perturbs to a locally 
unique family by the implicit function theorem for perturbations of the parameters in (7).

For ccp �= 0 sufficiently small these are inhomogeneous DWs since the derivative of the 
third equation, the q-equation, in (7) with respect to ccp is nonzero in this case; hence already 
the equilibrium states move into the inhomogeneous regime.

For ccp = 0 but (s,Ω) �= (s0,Ω0) at (α,β, h,µ), it follows from [12, theorem 5] that these 
DWs cannot be homogeneous.� ■ 

Next we consider the center case, where h = h∗ = β/α− 2µ− 2µ/α2. We start with a 
result that follows from the same approach used in the codim-2 case and give refined results 
below.

Corollary 1.  The statement of theorem 1 also holds for a parameter set in the center case if 
the perturbed parameters (ccp,α,β, h,µ, s,Ω) satisfy Ω > s2/2 + β−/α. If Ω = s2/2 + β−/α 

and Ω < h + µ+ s2

4 (1 + α2) the same holds except the DW is possibly non-flat.

Proof.  It follows from proposition 1 and the discussion before that Ω > s2/2 + β−/α for 
the parameter perturbation implies that the eigenvalues of the perturbed equilibrium Zπ

− ≈ Eπ 
satisfy Re(νπk,−) < 0, k = 1, 2. Hence, the stable manifold at the target equilibrium is two-
dimensional and lies in a smooth family with the center-stable manifold at the transition point. 
Then the proof is the same as in the codim-0 case. If the perturbation has Ω = s2/2 + β−/α 
then we consider as target manifold the three-dimensional stable manifold of a neighbor-
hood of Zπ

−
 within the blow-up chart θ = 0. This neighborhood consists of periodic orbits by 

proposition 1 if Ω < h + µ+ s2

4 (1 + α2). By dimensionality the intersection with the unsta-
ble manifold of Z0

−
 persists and yields a heteroclinic orbit from the perturbed equilibrium at 

θ = 0 to the blow-up chart at θ = π. Perturbing ccp away from zero moves the left-asymptotic 
state into the inhomogeneous regime and thus generates an inhomogeneous DWs. Note from 
proposition 1 that the right-asymptotic state is either an equilibrium with q �= 0 or a periodic 
orbit along which q  =  0 happens at most at two points.� ■ 

Next we present a refined result in which we show that typical perturbations indeed give 
non-flat DWs, i.e. heteroclinic connections with right-asymptotic state being a periodic orbit. 
The existence of flat DWs for ccp �= 0 is severely constrained, but not ruled out by this result. 
Our numerical results, such as those presented in section 4, always lead to a selected solution 
with a periodic asymptotic state.

In addition, attempts to perform numerical continuation (see section  4) of flat DWs to 
ccp �= 0 failed. Here we added the constraint H̃ = 0 and allowed adjustment the parameters h 
and s, but the continuation process did not converge, which confirms numerically the generic 
selection of a periodic orbit.
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As mentioned before, the right asymptotic state is e3 in either case in the PDE coordinates; 
the difference between flat and non-flat lies in the finer details of how the profile approaches 
e3 in term of p  and also q, which relates to m through (2).

Theorem 2.  Consider the smooth family of DWs from corollary 1 with ccp = 0 for param
eters satisfying (12) with fixed α > 0, β � 0, and µ < 0. Then there is a neighborhood 
(ccp, s, h) of (0, s0, h∗) such that the following holds. Flat DWs occur at most on a surface in 
the (ccp, s, h)-parameter space and, for β �= 0, satisfy |h − h0|2 + |s − s0|2 = O(|ccp|3), more 
precisely (A.10) holds, where h0 = h∗ and s0 = 2

√
−µ/α. Otherwise DWs are non-flat, in 

particular all DWs not equal to m0 for ccp = 0 or β = 0 are non-flat.

Due to its more technical nature, the proof of this theorem is deferred to appendix A.1.
It remains to consider the codim-2 case.

Theorem 3.  For any parameter set (α0,β0, h0,µ0) in the codim-2 case, i.e. µ0 < 0 
and β0/α0 � h0 < β0/α0 − 2µ0 − 2µ0/α

2
0, the following holds. The explicit homogene-

ous DWs m0 in (9) lies in a smooth family of DWs parameterized by (ccp,α,β, h,µ) near 
(0,α0,β0, h0,µ0). Here the values of (s,Ω) are functions of the parameters (ccp,α,β, h,µ) 
and lie in a neighbourhood of (s0,Ω0) from (19). This family is locally unique near m0 and for 
ccp �= 0 consists of inhomogeneous flat DWs.

The proof of theorem 3 is presented in appendix A.2 and is based on the Melnikov method 
for perturbing from m0. As the unperturbed heteroclinic orbit has codimension two, the bifur-

cation is studied in a three-parametric family with perturbation parameters η := (ccp, s,Ω)T, 
which yields a two-component splitting function M(η) that measures the mutual displacement 
of the manifolds W0

u  and Wπ
s .

Due to the fact that Re(νπj,−) < 0 also for β = 0 in the codim-0 regime and the case β = 0 
is included in theorem 2 as well as theorem 3, we immediately get the following result.

Corollary 2.  Inhomogeneous flat DWs also exist in the (LLG) equation (β = 0), which can 
be flat or non-flat, respectively.

Theorem 3 completes the existence study of DWs. Therefore, for any value of the applied 
field h there exists a heteroclinic connection between the blow-up charts with ccp �= 0 and 
q �≡ 0, thus an inhomogeneous (typically flat) DW. Recall that we have focused on right mov-
ing DWs, but all results are also valid for left moving walls due to symmetry. Therefore inho-
mogeneous DWs exist with ccp �= 0 for any value of the applied field h ∈ R.

4.  Numerical results

Numerical continuation for ordinary differential equations is an established tool for bifurca-
tion analysis in dynamical system. In this section we present continuation results to illustrate 
the analytical results discussed in section 3. In particular, we will focus on continuation in 
the parameter ccp in the range of (−0.5, 0.5) as this perturbs away from the known family m0 
from (17) (see figure 1(b)) with speed and frequency determined by (19) for a given applied 
field. Note that we also focus only on right-moving fronts in this section for reasons of clar-
ity. All results were produced by continuation in auto-07p and graphics were created with 
Mathematica as well as matlab.
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Heteroclinic orbits were detected as solutions to the boundary value problem given by the 
desingularized system (7) plus a phase condition and boundary conditions at ξ = −L and 
ξ = L taken from the analytic equilibrium states in p  and q on the blow-up charts (remark 
3). In the codim-2 case, the four required conditions are the p, q values at the charts. In the 
center case, the three required conditions are: (1, 2) the two p, q values at the left chart and (3) 
the energy difference determined by the function (13). In the codim-0 case, the two required 
conditions are the p  values at both charts. Moreover, we found L  =  50 was sufficiently large.

In order to relate to (LLGS), we plot most of the profiles after blowing down to the sphere 
rather than using the ODE phase space.

Following the standing assumption on positive speeds and using ccp as well as h as the main 
parameters, we keep the other parameters fixed with values

α = 0.5,β = 0.1,µ = −1.

The value of the applied field for the center case, given the fixed parameters, is h∗ = 10.2 (see 
section 3.2), which leads to s0  =  4.0 as well as Ω0 = 8.2 (see (19)).

Figure 6.  Phase plane streamplots (with Mathematica) in blow-up charts near the 
equilibrium z0,π

− = (1, 0) for α = 0.5,β = 0.1,µ = −1, ccp = 0, i.e. the second and 
third equation of (7). ((a)–(c)) θ = 0 and ((d)–(f)) θ = π. ((a) and (d)) codim-2 regime, 
((b) and (e)) center case, where Ω = β/α+ s2/2 holds on the chart θ = π, and ((c) and 
(f)) codim-0 regime. The remaining parameters and equilibria in ((a) and (d)): h  =  0.5, 
s0  =  0.12, Ω0 = 0.44, and z0

+ = −1.06 − 0.12i, zπ+ = −0.94 + 0.12i. In ((b) and (e)): 
h  =  10.2, s0  =  4, Ω0 = 8.2, and z0

+ = −3 − 4i, zπ+ = 1 + 4i. In ((c) and (f)): h  =  50.0, 
s0  =  19.92, Ω0 = 40.04, and z0

+ = −10.96 − 19.92i, zπ+ = 8.96 + 19.92i.
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4.1.  Codim-2 case

The lower boundary for values of the applied field h lies in the codim-2 regime and is given 
by h = β/α = 0.2. As a first numerical example we consider the slightly larger value h  =  0.5. 
The results upon continuation in the negative as well as positive direction of ccp are presented 
in figures 2(a), (c) and 7. The inhomogeneous nature of these solutions (ccp �= 0) is reflected 
in the significantly varying azimuthal angles, also visible in the oscillatory nature of the m1 
component in figures 2(c) as well as figure 7(b).

The linear part of the splitting function (A.12) (see theorem 3), which predicts the direction 
of parameter variation for the existence of inhomogeneous DWs (ccp �= 0) to leading order, 
reads in this example

Figure 7.  DWs obtained from continuation of m0 in system (7) in the codim-2 regime 
h  =  0.5 (h∗ = 10.2) with initial speed and frequency s0  =  0.12 as well as Ω0 = 0.44, 
and (ccp, s,Ω) = (−0.5, 0.112 21, 0.440 77). (a) Projection onto the sphere. (b) Zoom-in 
of corresponding q-profile (red) and m1 component (blue).

(a) (b)

Figure 8.  DWs obtained from continuation of m0 in system (7) projected onto 
the sphere in the codim-2 regime h  =  10.1 (h∗ = 10.2) with initial speed and 
frequency s0  =  3.96 and Ω0 = 8.12. (a) (ccp, s,Ω) = (−0.5, 3.995 41, 8.059 73). (b) 
(ccp, s,Ω) = (0.5, 4.080 89, 8.224 02).
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M(ccp, s,Ω) =
(
−0.001 475 67 −0.499 245 0.245 945
−0.000 577 908 −0.245 945 −0.499 245

)
·




ccp

s
Ω


 ,

so that M = (0, 0)T for (s,Ω) = (−0.002 837 44 · ccp, 0.000 240 252 · ccp). For the parameter 
values in figures 2(a) and 7 we obtain, respectively,

M(−0.5,−0.007 788, 0.000 771) = (0.004 815 58, 0.001 819 45)T ,

M(0.5,−0.007 973, 0.007 173) = (0.006 482 48,−0.001 331 22)T .

Note that here the splitting of the (1D) unstable manifold of the left equilibrium and the (1D) 
stable manifold of the right equilibrium differ, i.e. are in opposite directions (signs) in fre-
quency and speed for variations in ccp.

In addition note the decrease in frequency in the m1 component, and thus also in the m2 as 
a result of the increase of the q component towards zero, see figure 7(b). Here, the azimuthal 
angle decreases since φ =

∫
q and q  <  0.

As a further example in the codim-2 regime, we consider h = 10.1 < 10.2 = h∗ near the 
upper boundary of the codim-2 regime in terms of the applied field h. The results of the con-
tinuation in ccp are presented in figure 8. The linear approximation of the splitting in this case 

is given by M(−0.5, 0.035 41,−0.060 27) = (−0.000 175 537,−0.001 043 78)T as well as 
M(0.5, 0.120 89, 0.104 02) = (−0.001 495 19, 0.001 4975)T in (a) and (b), respectively. Note 
that the direction of splitting of the two components in this case is also dependent on the polar-
ity sign, as in the previous example. In both cases (h  =  0.5 and h  =  10.1), the continuation 
results look basically the same in the codim-2 regime, where the solution is, roughly speaking, 
constantly spiraling down from the north to the south pole.

4.2.  Center case

We perform computations in the center case with applied field h = h∗ = 10.2 and fixed fre-
quency Ω = β−/α+ s2/2 (see proposition 1 and its discussion details). Theorem 2 shows 

Figure 9.  DWs obtained from continuation of m0 in system (7) in the center regime 
h = h∗ = 10.2 with s = s0 = 4,Ω = Ω0 = 8.2, and ccp = 0.5. (a) Projection onto the 
sphere. (b) Profile of corresponding q-component.
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Figure 10.  Continuation of m0 in system (7) in the center case with applied field 
h = h∗ = 10.2 and fixed frequency Ω = β−/α+ s2/2; here s0  =  4. Shown is the 
energy difference (solid blue line) between the equilibrium and asymptotic state from 
continuation on right boundary against the continuation parameter ccp in (a), h in (b), 
and s in (c). The red dashed curve in (b) and (c) is the quadratic approximation (21).

(a) (b)

Figure 11.  DWs obtained from continuation of m0 in system (7) projected onto the 
sphere in the codim-0 regime h  =  10.3 (h∗ = 10.2) and initial speed and frequency 
s0  =  4.04 and Ω0 = 8.28. (a) ccp = −0.5. (b) ccp = 0.5.

Figure 12.  DWs obtained from continuation of m0 in system (7) in the codim-0 regime 
h  =  50 (h∗ = 10.2) with initial speed and frequency s0 = 19.92,Ω0 = 40.04, and 
ccp = −0.5. (a) Projection onto the sphere. (b) Zoom-in of the corresponding m1 (solid 
blue) and m2 (dashed red) component.
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that the right asymptotic state is generically a periodic orbit and more precisely that in case 
ccp = 0, no constellation of h and s exists, both not equal to zero, for which the right asymp-
totic state is the (shifted) equilibrium. The results of continuation in ccp projected on the sphere 
look quite the same, which is why only the result for ccp = 0.5 is presented in figure 9. The fact 
that the right asymptotic state is a periodic orbit on the blow-up chart θ = π is reflected by the 
nearly constant oscillations in the q-profile for ξ close to the right boundary (see figure 9(b)).

That the right state is not the equilibrium in the blow-up chart is further corroborated by 
computing the difference in energy H̃  between this equilibrium state (see remark 3) and the 
approximate right asymptotic state obtained from continuation. The analytic prediction of 
this difference up to second order is given by (A.10), which reads, for the chosen parameters,

−0.006 612 + 0.006 73s − 0.001 83s2 − 0.001 34h − 0.000 086h2 + 0.000 77hs.
� (21)

As this analytic prediction is independent of ccp the dependence of H̃  on ccp ≈ 0 is of cubic 
or higher power. Indeed, the results plotted in figure 10(a) suggest an at least quartic depend
ence since a maximum lies at ccp = 0. The asymmetric nature of the graph suggests that odd 
powers appear in the expansion beyond our analysis, but also note the order of 10−6 in H̃ . In 
addition to the dependence on ccp, continuations for ccp = 0 of H̃  in h with fixed s  =  s0  =  4 
and in s with fixed h = h∗ = 10.2 are plotted in figures 10(b) and (c), respectively. Here we 
also plot the quadratic prediction (21).

4.3.  Codim-0 case

Next, we consider an applied field h  =  10.3 in the codim-0 regime, just above the applied 
field value for the center case h*  =  10.2. The results of continuation in ccp are plotted on the 
sphere in figure 11. The azimuthal profile in φ and hence in q are non-trivial as predicted for 
inhomogeneous DWs.

In the ODE, q possesses an oscillating profile and has a monotonically decreasing ampl
itude in both cases. This is a consequence of the proximity to the center case and the conv
ergence to equilibria (see section 3.2 for details). Recall that the speed and frequency are 
not selected by the existence problem during continuation in ccp, but are taken as the fixed 
parameters (s0,Ω0) defined in (19).

The final example is for a relatively large applied field h  =  50 in the codim-0 regime, far 
away from the center case, and the results of continuation in ccp projected on the sphere are 
presented in figure 2(b) as well as figure 12(a). Moreover, the corresponding m1 and m2 pro-
files for ccp = 0.5 are presented in figure 2(d), and for ccp = −0.5, in figure 12(b). As in the 
previous example, the inhomogeneous nature is visible in the non-trivial azimuthal profile.

In summary, switching on the parameter ccp leads to a variety of inhomogeneous flat as well 
as non-flat DW solutions, but also in case ccp = 0 there exist inhomogeneous DWs (see fig-
ure 4) which are much more complex than the homogeneous one given by (9) (see figure 1(b)).

As a last point, we briefly describe the numerical method for time-integration near DWs, 
including freezing of speed and frequency (see figure 4). All calculations were done with the 
(free) software package pde2path which is based on a finite element method (FEM), see 
[20] and the references therein. Time-integration in pde2path with the so-called ‘freezing’ 
method is discussed in [21]. In addition to the phase condition for the speed we added a phase 
condition for the rotation and time-integrated via a semi-implicit Euler scheme.
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5.  Discussion and outlook

We have presented results pertaining the existence of different types of domain walls for the 
(LLG) as well as (LLGS) equation. Our main focus has been on a nonzero polarisation param
eter ccp �= 0 for any value of the applied field, including the high-field case, and thus for any 
domain wall speed. These results extend what is known in particular for inhomogeneously 
structured DWs, and we have discovered an apparently new type of DWs with certain oscilla-
tory tails, referred to as non-flat here.

In detail, we have provided a classification of DWs based on co-dimension properties in a 
reduced (spatial) coherent structure ODE, which relates to stability and selection properties 
that we review next. First, we have proven the existence of inhomogeneous flat DWs in case 
ccp = 0 as well as ccp �= 0 for an applied field above a certain threshold, which is mainly mat
erial depending. To our knowledge, the only previous existence result for ccp �= 0 with ’large’ 
applied fields concerns less relevant non-localized DWs [12]. Here the existence problem does 
not select speed and frequency.

Second, we have discussed the so-called center case, which is characterized by non-hyper-
bolic equilibria in the underlying coherent structure ODE. In this case, we have shown the 
existence of inhomogeneous DWs including the leading order selection mechanism. These 
solutions are non-flat in case ccp = 0 and generically also non-flat for ccp away from zero, 
which was substantiated by numerical results. The fundamental observation has been the 
existence of a Hamiltonian function in a certain parameter regime in the corresponding coher-
ent structure ODE.

Third, we have proven the existence of inhomogeneous DWs in the so-called codim-2 
regime, which is a range of values for the applied field in which the speed s is between zero 
and the center case speed. In this regime, each solution in case ccp �= 0 is uniquely determined 
by its speed as well as frequency. Here we have also presented the leading order selection 
function in the coherent structure ODE variables p  and q, which depends on the speed s, the 
frequency Ω, and is independent of ccp for standing fronts.

We believe that these results are not only interesting and relevant from a theoretical and 
mathematical viewpoint, but also from an application viewpoint. They could help to better 
understand the interfaces between different magnetic domains in nanostructures, e.g. in the 
development of racetrack memories, which are a promising prospective high density storage 
unit that utilize a series of DWs by shifting at high speed along magnetic nanowires through 
nanosecond current pulses.

In order to illustrate and corroborate these theoretical results, we have presented numerical 
computations for a variety of values for the applied field in section 4. On the one hand, the 
examples in essence show that large applied fields lead to more complex profiles of the DWs 
in case ccp �= 0. On the other hand, while in the center case the DWs projected on the sphere 
appear similar to those for small applied fields, these solutions approach the poles in a quali-
tatively different ‘non-flat’ manner—as predicted by our analysis. Moreover, we compared 
the numerical and analytical results of the selection mechanism in the center case, showing 
that the analytical leading order approximation predicts the effect of small perturbations in the 
parameters. Notably, for applied fields above a certain threshold, where the existence analysis 
does not provide a selection of speed and frequency, numerically the DWs selected in the PDE 
dynamics are in the center case, both for ccp = 0 as well as ccp �= 0. Hence, it might be pos-
sible to detect these solutions in a high-field regime in real materials.
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Figure A1.  Contour C in C for the integrals I and J.

One question concerning existence beyond our analysis is whether inhomogeneous (flat or 
non-flat) solutions exist for any value of ccp ∈ (−1, 1), and whether this class could be utilized 
in applications.

A natural step towards the understanding of domain wall motion in nanowires beyond 
the question of existence concerns the dynamic stability. For inhomogeneous solutions there 
appears to be no rigorous result in this direction. In particular for larger applied fields, stability 
results would be an essential step towards understanding the selection mechanism of solutions 
in terms of speed and frequency; our first numerical investigations show that solutions in the 
center parameter regime are selected, i.e. inhomogeneous non-flat DWs.

Moreover, preliminary analytic results, for ccp = 0 as well as ccp �= 0, show that selection 
mechanism is mainly determined by the value of the applied field, where in the bi-stable case 
(±e3 linearly stable) homogeneous DWs are selected, and in the mono-stable case inhomoge-
neous non-flat DWs are selected, which will be studied in detail in an upcoming work.
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Appendix

A.1.  Proof of theorem 2

We use the notation

u = u(ξ; η,α,β,µ) = (θ(ξ; η,α,β,µ), p(ξ; η,α,β,µ), q(ξ; η,α,β,µ))T

and bifurcation parameters η = (ccp, s, h)T, where s0 and h0 = h∗ are defined below (see 
section 3.2 for details). The starting point for our perturbation analysis are the unperturbed 
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parameters and explicit heteroclinic solution in the center case (12), where the frequency is 
Ω0 = s2

0/2 + β/α. These are given by

η0 :=




ccp0

s0

h0


 :=




0
2
√
−µ
α

β
α − 2µ− 2µ

α2




as well as

u0 = u0(ξ; η0,α,β,µ) :=



θ0(ξ; η0,α,β,µ)
p0(ξ; η0,α,β,µ)
q0(ξ; η0,α,β,µ)


 :=




2 arctan (exp(
√
−µ ξ))√

−µ

0


 .

Unless stated otherwise, we suppress the explicit dependence of u on α,β , and µ in the follow-
ing discussion. Let us write Zπ := Zπ

−
 with the notation from remark 3 so that the unperturbed 

right asymptotic state is given by

Zπ(η0) =

(
π,

αs0

2
,

s0

2
−
√
− µ

α2

)T

=
(
π,

√
−µ, 0

)T

and its derivative with respect to η is given by

Zπ
η (η0) =




0 0 0
0 α

2 0
β

2
√
−µ

2+α2

2 − α
2
√
−µ


 .

We write system (7) for brevity as

u′ = f (u; η),� (A.1)

so f (u; η) denotes the right side of (7). The linearization w.r.t. η in the unperturbed hetero-
clinic connection u0, given by (17), is the non-autonomous linear equation

u′η = fu(u0; η0)uη + fη(u0; η0)η,� (A.2)

where uη = (θη , pη , qη)
T. Its homogeneous part is

θ′η =
√
−µ cos(θ0)θη + pη sin(θ0)

p′
η = − (αs0 + 2

√
−µ cos(θ0)) pη + s0qη

q′η = −s0pη − (αs0 + 2
√
−µ cos(θ0)) qη

,� (A.3)

with θ0(ξ) = 2 arctan (exp(
√
−µ ξ)) due to (17). We next solve (A.3) and determine its fun-

damental solution matrix.
The first obvious vector-solution of it is U1 = u′0 = (θ′0, 0, 0) since the second and the third 
equation of (A.3) do not depend on θη. The other solutions can be obtained from U1 and the 
result of lemma 1. Changing to polar coordinates

pη = r cosϕ , qη = r sinϕ,

the equations for pη and qη become

r′ = − (αs0 + 2
√
−µ cos(θ0)) r

ϕ′ = −s0
,
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whose general solution can be written as

pη = r0r(ξ) cos(−s0ξ + ϕ0)

qη = r0r(ξ) sin(−s0ξ + ϕ0)
,

where

r(ξ) = exp

(
−αs0ξ − 2

√
−µ

∫

ξ

cos(θ0(τ))dτ
)

=
(

1 + e2
√
−µξ

)2
e(−2

√
−µ−αs0)ξ,

and r0,ϕ0 are arbitrary integration constants corresponding to suitable initial conditions. Note 

that limξ→±∞ r(ξ) = ∞ for 0 � s0 < 2
√
−µ/α.

Next, the values of the integration constants have to be selected in order for the second and 
the third vector-solutions

U2 =




θ1
1

r1r(ξ) cos(−s0ξ + ϕ1)

r1r(ξ) sin(−s0ξ + ϕ1)


 , U3 =




θ2
1

r2r(ξ) cos(−s0ξ + ϕ2)

r2r(ξ) sin(−s0ξ + ϕ2)


� (A.4)

to be linearly independent. Here θ1
1, θ2

1 are not relevant for what follows. The determinant of 
the fundamental matrix reads

detΦ(ξ) = det (U1(ξ), U2(ξ), U3(ξ)) = r1r2r2(ξ)θ′0(ξ) sin(ϕ2 − ϕ1),

which is non-zero for r1 = r2 = 1, ϕ1 = 0 and ϕ2 = π/2, i.e. detΦ(ξ) = r2(ξ)θ′0(ξ). 
Together, we get the fundamental solution matrix of the homogeneous part as

Φ(ξ) =



θ′0(ξ) θ1

1(ξ) θ2
1(ξ)

0 r(ξ) cos(−s0ξ) −r(ξ) sin(−s0ξ)

0 r(ξ) sin(−s0ξ) r(ξ) cos(−s0ξ)


 .� (A.5)

The derivative of (A.1) with respect to η is given by (A.2) and from the variation of con-
stants formula we get for some ξ0 that

uη(ξ) = Φξ,ξ0 uη(ξ0) +

∫ ξ

ξ0

Φξ,τ fη(u0(τ); η0)dτ ,

where Φξ,τ = Φ(ξ) · Φ−1(τ) is the evolution operator. Using (A.5) we find

Φξ,τ (ξ, τ ; η) =



Θ1 Θ2 Θ3

0 r(ξ)
r(τ) cos (−s0(ξ − τ)) − r(ξ)

r(τ) sin (−s0(ξ − τ))

0 r(ξ)
r(τ) sin (−s0(ξ − τ)) r(ξ)

r(τ) cos (−s0(ξ − τ))


 ,

� (A.6)
where the explicit forms of the functions Θ1,2,3(ξ) are not relevant for the remainder of this 
proof. Since uη(ξ) tends to ∂ηZ0

− for ξ → −∞ the hyperbolicity of Z0
−

 (more precisely the 
resulting exponential dichotomy) implies Φξ,ξ0 uη(ξ0) → 0 as ξ0 → −∞ and so

uη(ξ) =
∫ ξ

−∞
Φξ,τ fη(u(τ ; η0); η0)dτ .� (A.7)

Regarding the limiting behavior as ξ → ∞, recall that corollary 1 states that the right 
asymptotic limit of the perturbed heteroclinic orbit is either the perturbed equilibrium Zπ(η) 
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or a periodic orbit around it in the blow-up chart at θ = π. The integral (A.7) distinguishes 
these case in the sense that either it has a limit as ξ → +∞ so the heteroclinic orbit connects 
the two equilibria, or it does not and the heteroclinic orbit connects to a periodic solution.

We next determine uη(ξ) componentwise

uη(ξ) = v :=




v11 v12 v13

v21 v22 v23

v31 v32 v33


 ,

where vij are the components of (A.7) and index i = 1, 2, 3 relates to θ, p, q as well as j = 1, 2, 3 
to ccp, s, h.

Towards this, we compute

fη(u0(τ), η0) =




0 0 0

−β/α −
√
−µ
α (2 + α2) 1

2β
1+e2

√
−µ τ

√
−µ 0


 ,

and together with (A.7) and (A.6) we obtain

v21 = −β
α IC − 2βJS, v22 = −

√
−µ
α (2 + α2)IC −

√
−µIS, v23 = IC,

v31 = − β
α IS + 2βJC, v32 = −

√
−µ
α (2 + α2)IS +

√
−µIC v33 = IS,

where

IC = IC(ξ) :=
∫ ξ

−∞

(1 + exp (−2
√
−µ ξ))

2

(1 + exp (−2
√
−µ τ))

2 cos (−s0(ξ − τ)) dτ ,

IS = IS(ξ) :=
∫ ξ

−∞

(1 + exp (−2
√
−µ ξ))

2

(1 + exp (−2
√
−µ τ))

2 sin (−s0(ξ − τ)) dτ ,

JC = JC(ξ) :=
∫ ξ

−∞

exp (−2
√
−µ τ) (1 + exp (−2

√
−µ ξ))

2

(1 + exp (−2
√
−µ τ))

3 cos (−s0(ξ − τ)) dτ ,

JS = JS(ξ) :=
∫ ξ

−∞

exp (−2
√
−µ τ) (1 + exp (−2

√
−µ ξ))

2

(1 + exp (−2
√
−µ τ))

3 sin (−s0(ξ − τ)) dτ .

Note that we do not provide explicit formulas for v11, v12 and v13, because they are not needed 
for further computations. This is the reason why we neglected the explicit expressions of 
Θ1,Θ2, and Θ3 before. We now introduce the following complex-valued integrals for further 
computations:

I(ξ) := IC(ξ) + iIS(ξ) =

∫ ξ

−∞

(
1 + e−2

√
−µξ

)2

(
1 + e−2

√
−µτ

)2 exp

(
−i

2
√
−µ

α
(ξ − τ)

)
dτ
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for IC and IS as well as

J(ξ) := JC(ξ) + iJS(ξ) =

∫ ξ

−∞

e−2
√
−µτ

(
1 + e−2

√
−µξ

)2

(
1 + e−2

√
−µτ

)2 exp

(
−i

2
√
−µ

α
(ξ − τ)

)
dτ

for JC and JS. We extend the above integrals to the complex plane and integrate along the 
counter-clockwise oriented rectangular contour C as illustrated in figure A1, and let ξ0 → −∞. 
We will provide the details of the computation of I only, as J can be calculated in a fully analo-
gous way.

The complex integrand of I is

g(z; ξ) :=

(
1 + e−2

√
−µξ

)2

(
1 + e−2

√
−µz

)2 exp

(
−i

2
√
−µ

α
(ξ − z)

)
,

with singularities in C at the points i(π+2kπ)
2
√
−µ

, k ∈ Z, one of which lies in the interior of C, 

namely z0 := iπ
2
√
−µ

. The contour integral I can now be written via the residue theorem as

I1(ξ) + I2(ξ) + I3(ξ) + I4(ξ) = 2πi
∑
intC

Res g (z; ξ) ,

where I1, . . . , I4 are given by

	 I1:	�z  =  x,

I1(ξ0, ξ) =
(

1 + e−2
√
−µξ

)2
exp

(
−i

2
√
−µ

α
ξ

)∫ ξ

ξ0

exp
(

i 2
√
−µ
α x

)

(
1 + e−2

√
−µx

)2 dx,

I(ξ) = lim
ξ0→−∞

I1(ξ0, ξ) =
(

1 + e−2
√
−µξ

)2
exp

(
−i

2
√
−µ

α
ξ

)∫ ξ

−∞

exp
(

i 2
√
−µ
α x

)

(
1 + e−2

√
−µx

)2 dx.

	 I2:	�z = ξ + iy,

I2(ξ) =
(

1 + e−2
√
−µξ

)2
∫ π√

−µ

0

i exp
(
− 2

√
−µ
α y

)

(
1 + e−2

√
−µ(ξ+iy)

)2 dy.

	 I3:	�z = x + π√
−µ

i,

I3(ξ0, ξ) =
(

1 + e−2
√
−µξ

)2
exp

(
−i

2
√
−µ

α
ξ

)
e−

2π
α

∫ ξ0

ξ

exp
(

i 2
√
−µ
α x

)

(
1 + e−2

√
−µξ

)2 dx

= −e−
2π
α I1(ξ0, ξ).

	 I4:	�z = ξ0 + iy,

I4(ξ0, ξ) =
(

1 + e−2
√
−µξ

)2
exp

(
i
2
√
−µ

α
(ξ0 − ξ)

)∫ 0

π√
−µ

i exp
(
− 2

√
−µ
α y

)

(
1 + e−2

√
−µ(ξ0+iy)

)2 dy,

lim
ξ0→−∞

I4(ξ0, ξ) = 0.
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Utilizing the Laurent series of g we obtain

Res g (z; ξ) |z=z0 =
α+ i

2α
√
−µ

e−
π
α

(
1 + e−2

√
−µξ

)2
exp

(
−i

2
√
−µ

α
ξ

)
,

which leads to

I(ξ) =
(

1 − e−
2π
α

)−1
(
πi(α+ i)
α
√
−µ

e−
π
α

(
1 + e−2

√
−µξ

)2
exp

(
−i

2
√
−µ

α
ξ

)
− I2(ξ)

)
.

Now we can write

IC(ξ) = Re I(ξ)

=
π
(

1 + e−2
√
−µξ

)2

α
√
−µ

(
e

π
α − e−

π
α

)
[
− cos

(
−2

√
−µ

α
ξ

)
− α sin

(
−2

√
−µ

α
ξ

)]
− 1

1 − e−
2π
α

Ir
2(ξ)

as well as

IS(ξ) = Im I(ξ)

=
π
(

1 + e−2
√
−µξ

)2

α
√
−µ

(
e

π
α − e−

π
α

)
[
α cos

(
−2

√
−µ

α
ξ

)
− sin

(
−2

√
−µ

α
ξ

)]
− 1

1 − e−
2π
α

Ii
2(ξ),

where Ir
2(ξ) and Ii

2(ξ) are the real and imaginary part of I2(ξ), respectively.
Studying the integral J in a similar fashion, we obtain

JC(ξ) = Re J(ξ)

=
π
(

1 + e−2
√
−µξ

)2

2α2√−µ
(
e

π
α − e−

π
α

)
[
α cos

(
−2

√
−µ

α
ξ

)
− sin

(
−2

√
−µ

α
ξ

)]
− 1(

1 − e−
2π
α

)Jr
2(ξ)

as well as

JS(ξ) = Im J(ξ)

=
π
(

1 + e−2
√
−µξ

)2

2α2√−µ
(
e

π
α − e−

π
α

)
[
cos

(
−2

√
−µ

α
ξ

)
+ α sin

(
−2

√
−µ

α
ξ

)]
− 1(

1 − e−
2π
α

)Ji
2(ξ),

where also here Jr
2(ξ) and Ji

2(ξ) are the real and imaginary part of J2(ξ). Direct computations 
show also that

lim
ξ→+∞

Ii
2(ξ) =

α

2
√
−µ

(
1 − exp

(
−2π

α

))

and

lim
ξ→+∞

Ir
2(ξ) = lim

ξ→+∞
Jr

2(ξ) = lim
ξ→+∞

Ji
2(ξ) = 0.
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Summing up, the second and third component of uη(ξ) · η for sufficiently large ξ are
(

α
2 s

β
2
√
−µ

ccp +
2+α2

2 s − α
2
√
−µ

h

)

+
π

ρ



(
− 1

α
√
−µ

h + 2
α2 s

)
cos

(
− 2

√
−µ
α ξ

)
+
(
− 1√

−µ
h + (3+α2)

α s
)
sin

(
− 2

√
−µ
α ξ

)
(

1√
−µ

h − (3+α2)
α s

)
cos

(
− 2

√
−µ
α ξ

)
+
(
− 1

α
√
−µ

h + 2
α2 s

)
sin

(
− 2

√
−µ
α ξ

)



+O(e−2
√
−µξ),

where ρ := exp(π/α)− exp(−π/α). One readily verifies that the oscillatory part in the 
expression above vanishes if and only if s and h are zero and thus we infer that the heteroclinic 
connection cannot be between equilibria to first order in the parameters.

In order to detect cancellations of these oscillatory parts for higher orders of s and h, we 
next consider the behavior of the quantity (13) with respect to parameter perturbations. With 
slight abuse of notation, for u = (θ, p, q)T we write H(u; η) := H( p, q) evaluated at param
eters η, and other parameters at some fixed value, and we always consider the heteroclinic 
solutions from corollary 1.

Our strategy in the following steps is as follows: we utilize the quantity H because 
limξ→+∞ H  always exists along these solutions. In order to distinguish whether this limit is 
an equilibrium or a periodic orbit, we consider

H̃(u; η) := H(u; η)− H(Zπ; η),

i.e. the difference of the H-values of the (parameter dependent) equilibrium Zπ and the limit 
of u as ξ tends to infinity. Expanding H̃  in the limit ξ → ∞ with respect to the parameter η 
yields conditions for periodic asymptotics. In the following, subindices of H denote partial 
derivatives, e.g. Hu = ∂uH .

Clearly, H(u0; η0) = H(Zπ(η0); η0), thus H̃0 = 0 and, since equilibria are critical points of 
H, we have H̃u(u0; η0) = H̃η(u0; η0) = (0, 0, 0)T. The second derivative is given by

d2

dη2 H̃ = 〈uη , H̃uuuη〉+ 〈uη , H̃uη〉+ 〈H̃ηu, uη〉,� (A.8)

since H̃ηη is the zero matrix, H̃u the zero vector, and H̃uη = H̃T
ηu. Thus

H̃(u0 + uηη; η) =
1
2
(uηη)

T Huu(u0; η0)(uηη) + (uηη)
THuη(u0; η0)η

− 1
2
(
Zπ
η (η0)η

)T
Huu (Zπ(η0); η0)

(
Zπ
η (η0)η

)

−
(
Zπ
η (η0)η

)T
Huη (Zπ(η0); η0) η +O

(
‖η‖3) .

� (A.9)

With the derivatives Huu, Huη in (A.9) given by
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Huu(u; η) =




0 0 0
0 2

q−s/2 − 2p−αs
(q−s/2)2

0 − 2p−αs
(q−s/2)2 2 p2−αsp+h−β−/α+µ−s2/4

(q−s/2)3


 ,

Huη(u; η) =




0 0 0
0 p−αq

(q−s/2)2 0
β/α

(1−ccp)2(q−s/2)2 − p2−αpq−αs
2 p− s

2 q+h−β−/α+µ

(q−s/2)3 − 1
(q−s/2)2


 ,

for the right hand side of (A.9) in the limit ξ → +∞ we obtain

1
2
(uηη)

T Huu(u0; η0) (uηη) + (uηη)
T Huη(u0; η0)η = − αβ2

4µ
√
−µ

c2
cp

+
(4 + 5α2 + α4)(α2ρ2 − 4(1 + α2)π2)

4α3ρ2√−µ
(s − s0)

2 − α4ρ2 − 4(1 + α2)π2

4αρ2µ
√
−µ

(h − h0)
2

− αβ(2 + α2)

2µ
ccp(s − s0) +

α2β

2µ
√
−µ

ccp(h − h0)

+
(2 + α2)(α4ρ2 − 4(1 + α2)π2)

2α2ρ2µ
(s − s0)(h − h0),

as well as

1
2
(
Zπ
η (η0)η

)T
Huu(Zπ(η0); η0)

(
Zπ
η (η0)η

)
+
(
Zπ
η (η0)η

)T
Huη(Zπ(η0); η0)η

= − αβ2

4µ
√
−µ

c2
cp +

α(4 + 5α2 + α4)

4
√
−µ

(s − s0)
2 − α3

4µ
√
−µ

(h − h0)
2

− αβ(2 + α2)

2µ
ccp(s − s0) +

α2β

2µ
√
−µ

ccp(h − h0) +
α2(2 + α2)

2µ
(s − s0)(h − h0).

Therefore, the expansion in the limit ξ → +∞ is independent of ccp and reads

lim
ξ→∞

H̃(u0 + uηη; η) = − (1 + α2)2(4 + α2)π2

α3ρ2√−µ
(s − s0)

2

− 2(1 + α2)(2 + α2)π2

α2ρ2µ
(s − s0)(h − h0)

+
(1 + α2)π2

αρ2µ
√
−µ

(h − h0)
2 +O

(
‖η − η0‖3) .

� (A.10)

Recall ρ = exp(π/α)− exp(−π/α). One readily verifies that the resulting (binary) quad-
ratic form of (A.10) is negative definite for all α > 0 so the only solution to the leading order 
problem

d2

dη2 H̃(u0; η0) = 0

is the trivial one (s, h) = (0, 0), and any non-trivial solution satisfies 
|s − s0|2 + |h − h0|2 = O(|ccp|3).
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In particular, for ccp = 0 there is a neighborhood of (s0, h0) such that the only solution is 
the trivial one, which is therefore also the case in the (LLG) equation. In case ccp �= 0, higher 
orders may lead to a solution with non-zero s and/or h, but there is numerical evidence that 
such solutions do not exist (see section 4 for details).

A.2.  Proof of theorem 3

The idea of the proof is to apply Lyapunov–Schmidt reduction, i.e. to determine a bifurca-
tion equation whose solutions are in one-to-one correspondence with heteroclinic connections 
between equilibria (7) near one of the explicit solutions u0 from (17) connecting the equilibria 

Z0
−

 and Zπ
−

. In the present context this is known as Melnikov’s method, see for example [22].
Recall u0 corresponds to a homogeneous DW for ccp = 0 with speed s0 and rotation fre-

quency Ω0 given by (19). In the present codim-2 parameter regime we will show that the 
bifurcation equation defines a codimension two bifurcation curve in the three-dimensional 
parameter space (ccp, s,Ω), which passes through the point (0, s0,Ω0). The main part of the 
proof is to show the existence of certain integrals for the considered parameter set. These 
integrals are almost identical to the ones studied within the proof of theorem 2 and we use the 
same approach.

In this section we denote the parameter vector by η := (ccp, s,Ω)T ∈ R3, with initial value 
η0 = (0, s0,Ω0)

T corresponding to the unperturbed values. The solutions of the perturbed 
system close to u0 has the form u(ξ; η) = u0(ξ) + uη(ξ; η0)(η − η0) +O(‖η − η0‖2), where 
uη = (θη , pη , qη)T = O(‖η − η0‖).

As discussed in appendix A.1, the linearization (A.2) of system (7) around the unperturbed 
heteroclinic connection u0 has the fundamental solution matrix Φ(ξ) as defined in (A.5). 
In the present codim-2 case with dim(W0

u ) = dim(Wπ
s ) = 1 in R3, the bifurcation equa-

tion M(η) = 0 entails two equations. Here M(η) measures the displacement of the manifolds 

W0
u  and Wπ

s , and we will choose this to be near the point u0(0) =
(
π
2 ,
√
−µ, 0

)T
 in the direc-

tions given by vectors v1(0) and v2(0) from adjoint solutions as detailed below. From the 
Taylor expansion M(η) = Mη(η0)(η − η0) +O(‖η − η0‖2) we infer by the implicit function 
theorem that a full rank of Mη(η0) implies a one-to-one correspondence of solutions to the 
bifurcation equation with elements in the kernel of M(η0).

In order to compute Mη(η0) and its rank, we project onto the transverse directions to u0, 
which means to project the inhomogeneous part of equation (A.2) onto two linearly independ-
ent bounded solutions v1, v2 of the adjoint variational equation v′ = −AT · v, where

AT =



√
−µ cos(θ0) 0 0
sin(θ0) −αs0 − 2

√
−µ cos(θ0) −s0

0 s0 −αs0 − 2
√
−µ cos(θ0)


 .

The solutions are given in terms of (A.4) by

v1 =
U1 × U2

detΦ
=




0
− 1

r(ξ) sin(−s0ξ)
1

r(ξ) cos(−s0ξ)


 and v2 =

U3 × U1

detΦ
=




0
1

r(ξ) cos(−s0ξ)
1

r(ξ) sin(−s0ξ)


 .

Implementing the projection onto these, we obtain the so-called Melnikov integral
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Mη(η0) :=
∫ +∞

−∞
(v1, v2)

T · fη(u0; η0) dξ

=

(
βICC α

√
−µIS −

√
−µIC IS + αIC

βICS −α
√
−µIC −

√
−µIS −IC + αIS

)
,

� (A.11)

where

ICC :=
∫ +∞

−∞

(
1 − e2

√
−µξ

)
eαs0ξ+2

√
−µξ cos(−s0ξ)

(
1 + e2

√
−µξ

)3 dξ,

ICS :=
∫ +∞

−∞

(
1 − e2

√
−µξ

)
eαs0ξ+2

√
−µξ sin(−s0ξ)

(
1 + e2

√
−µξ

)3 dξ,

IC :=
∫ +∞

−∞

eαs0ξ cos(−s0ξ)(
1 + e2

√
−µξ

)
·
(
1 + e−2

√
−µξ

)dξ,

IS :=
∫ +∞

−∞

eαs0ξ sin(−s0ξ)(
1 + e2

√
−µξ

)
·
(
1 + e−2

√
−µξ

)dξ.

We next show that the second and third columns in (A.11) have non-vanishing determinant 
so that the rank is always 2, in particular also for β = 0.

For brevity, we present the calculations of ICC and ICS only, which are based on the same 
idea as the computations in appendix A.1. The solutions for IC and IS can be computed in an 
analogous way.

From appendix A.1 we know that the following integral would not exist in case 
s0 = 2

√
−µ/α and one readily verifies the existence for s0  =  0. Therefore, we first assume 

0 < s0 < 2
√
−µ/α for the moment and discuss the case s0  =  0 later. We set

I :=
∫ +∞

−∞
g(ξ)dξ, g(ξ) :=

(
1 − e2

√
−µξ

)
e(αs0+2

√
−µ)ξe−is0ξ

(
1 + e2

√
−µξ

)3 ,

so that ICC = Re(I) and ICS = Im(I). Utilizing the same idea for the contour integral as in 
appendix A.1 (see figure A1) and the residue theorem, we obtain

I − eαs0
iπ√
−µ · es0

π√
−µ · I = 2πi

∑
Res(g).

The function g has a pole of order three at iπ
2
√
−µ

 and the Laurent series gives

Res(g) = − (α− i)2s2
0

8µ
√
−µ

exp

(
(α− i)

iπs0

2
√
−µ

)
,

and therefore

I =
2πs2

0e
πs0

2
√

−µ

[
−2α cos

(
παs0

2
√
−µ

)
+
(
α2 − 1

)
sin

(
παs0

2
√
−µ

)]

8µ
√
−µ

(
1 − e

πs0√
−µ cos

(
παs0√
−µ

)
− ie

πs0√
−µ sin

(
παs0√
−µ

))

+
i2πs2

0e
πs0

2
√

−µ

[(
1 − α2

)
cos

(
παs0

2
√
−µ

)
− 2α sin

(
παs0

2
√
−µ

)]

8µ
√
−µ

(
1 − e

πs0√
−µ cos

(
παs0√
−µ

)
− ie

πs0√
−µ sin

(
παs0√
−µ

)) .
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Separating the real and imaginary parts of I we get

ICC =
πs2

0
√
−µ e

πs0
2
√

−µ

4µ2 ·
2α

(
1 − e

πs0√
−µ

)
cos

(
παs0

2
√
−µ

)
+
(
1 − α2

) (
1 + e

πs0√
−µ

)
sin

(
παs0

2
√
−µ

)

1 + e
2πs0√
−µ − 2e

πs0√
−µ cos

(
παs0√
−µ

) ,

ICS =
πs2

0
√
−µ e

πs0
2
√

−µ

4µ2 ·

(
1 − α2

) (
1 − e

πs0√
−µ

)
cos

(
παs0

2
√
−µ

)
+ 2α

(
1 + e

πs0√
−µ

)
sin

(
παs0

2
√
−µ

)

1 + e
2πs0√
−µ − 2e

πs0√
−µ cos

(
παs0√
−µ

) .

As mentioned before, one analogously gets

IC =
πs0 e

πs0
2
√

−µ

2µ
·

(
1 − e

πs0√
−µ

)
cos

(
παs0

2
√
−µ

)
− α

(
1 + e

πs0√
−µ

)
sin

(
παs0

2
√
−µ

)

1 + e
2πs0√
−µ − 2e

πs0√
−µ cos

(
παs0√
−µ

) ,

IS =
πs0 e

πs0
2
√

−µ

2µ
·
α
(

1 − e
πs0√
−µ

)
cos

(
παs0

2
√
−µ

)
+
(

1 + e
πs0√
−µ

)
sin

(
παs0

2
√
−µ

)

1 + e
2πs0√
−µ − 2e

πs0√
−µ cos

(
παs0√
−µ

) .

Having the explicit expressions for IC, IS, ICC, as well as ICS, we can study the rank of 
(A.11) in case 0 < s0 < 2

√
−µ/α. The determinant of the second and third column of (A.11) 

simplifies to

(αIS − IC)
2
+ (IS + αIC)

2
=

(
1 + α2)2

π2s2
0e

πs0√
−µ �= 0, ∀s0 �= 0.

Therefore, Mη(η0) has full rank and we obtain

M(η) =

(
βICC α

√
−µIS −

√
−µIC IS + αIC

βICS −α
√
−µIC −

√
−µIS −IC + αIS

)
· (η − η0) +O

(
‖η − η0‖2) .� (A.12)

In the remaining case s0  =  0, which means h = β/α, we have ICC = ICS = IS = 0, 

IC = 1
2
√
−µ

, and thus

Mη(η0) =

(
0 − 1

2
α

2
√
−µ

0 −α
2 − 1

2
√
−µ

)
,� (A.13)

whose rank is always 2. Thus the splitting directions are independent of ccp in first order in 
case h = β/α. Moreover, note that the splitting in s is independent of the anisotropy µ to first 
order in case h = β/α. This completes the proof of theorem 2.
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