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1.  Introduction

Lanthanide-based single-molecule magnets (SMMs) [1–13] 
have shown a promising possibility for quantum information 
science applications [14–22]. Among various routes to realize 
quantum bits (qubits) or quantum d-levels (qudits), utiliza-
tion of molecular electronic or nuclear spin levels is unique 
because of large internal and external degrees of freedom for 
tailoring their properties by varying chemical environmental 
factors. Recently, Rabi oscillations of nuclear spin levels [14] 
and their applications to quantum algorithms [17] have been 
experimentally realized in terbium (Tb) based double-decker 

SMMs such as TbPc2 (Pc  =  phthalocyanine) [3]. Furthermore, 
the possibility of strong coupling between the nuclear spin 
qubits of TbPc2 SMMs via a superconducting resonator was 
theoretically proposed [22].

In a TbPc2 SMM, a Tb3+ (4f 8) ion with the spin angular 
momentum S  =  3 and the orbital angular momentum L  =  3 
is sandwiched between two Pc ligand planes [3]. A singly 
charged TbPc2 SMM has the total angular momentum J  =  6 
in the ground state with large magnetic anisotropy. 159Tb iso
tope has natural abundance of 100% [25] with the nuclear spin 
I  =  3/2. Multiconfigurational ab initio studies showed that the 
energy gap between the electronic ground and first-excited 
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quasi-doublet is about 300 cm−1 [26, 27], and that the 159Tb 
nuclear spin is strongly coupled to the electronic orbital and 
spin degrees of freedom with hyperfine coupling constant 
Azz ∼ 500  MHz for the electronic ground quasi-doublet 
Jz = ±6 [28], where the z axis coincides with the magnetic 
easy axis. This result agrees with the experimental data [29].

As an alternative to TbPc2 SMMs, other LnPc2 complexes 
(Ln  =  Nd, Dy, Ho, Er, Tm, and Yb) [1, 3, 7, 30] can be con-
sidered for quantum information science applications. Among 
them, DyPc2 SMMs (figure 1) have some advantages over 
TbPc2 SMMs. Dy element has two different isotopes with 
non-zero nuclear spin. 161Dy and 163Dy have natural abun-
dance of 18.9 and 24.9%, respectively [25]. Both of them 
have the nuclear spin I  =  5/2. The larger nuclear spin sug-
gests more nuclear spin levels that can be used and controlled 
for quantum information applications. Furthermore, Dy ions 
are more susceptible to ligand fields such that the effective 
magnetic anisotropy barrier can be enhanced by more than 
two orders of magnitude by varying the surrounding ligands. 
For example, recently, Dy-based SMMs exhibited magnetic 
hysteresis above liquid nitrogen temperature [12] and effec-
tive magnetic anisotropy barrier over 1000 cm−1 [13].

In a charged DyPc2 SMM, the Dy3+ (4f 9) ion has S  =  5/2 
and L  =  5, giving rise to J  =  15/2 according to Hund’s rules, 
which is confirmed by ab initio calculations [23]. Thus, the 
Kramers theorem is applied to the DyPc2 SMM, which is 
not the case for charged TbPc2 SMMs. The crystal field of 
the Pc ligands splits the ground J  =  15/2 multiplet into eight 
Kramers doublets. Multiconfigurational calculations found 
that the energy gap between the electronic ground and first-
excited doublet (EZFS) for the DyPc2 SMM is about 60 cm−1 
[23] (figure 2), which is about a fifth of the corresponding 
value for the TbPc2 SMM [26, 27]. Considering the hyper-
fine and nuclear quadrupole interactions for 161Dy and 163Dy 
nuclei, each electronic level is split into six (quasi)-doublets. 
Different isotopes have different magnitude and sign of the 
nuclear magnetic moment, which makes interpretation of 
experimental data [29] difficult. So far, there are no ab initio 
studies of the hyperfine interactions of 161DyPc2 and 163DyPc2 
SMMs.

In this work, we investigate the hyperfine and nuclear quad-
rupole interactions of anionic 161DyPc2 and 163DyPc2 SMMs, 
using multiconfigurational ab initio methods including spin–
orbit interaction (SOI) in comparison to those for 159TbPc2 
SMMs. The hyperfine and quadrupole interactions are consid-
ered in the non-relativistic limit. Considering both asymmetric 
and C4 symmetric experimental geometries [23, 24] (figure 
1), we first identify electronic Kramers doublet structures of 
the molecules. Then we extract the hyperfine and quadrupole 
parameters for 161Dy and 163Dy nuclei projected onto the 
electronic ground doublet. Next, the electronic-nuclear levels 
for both Dy isotopes are obtained and compared with exper
imental data for 163DyPc2 [24]. There are no reported exper
imental data for 161DyPc2. Furthermore, we discuss important 
consequences of the electronic Kramers doublet coupled to 
the half-integer nuclear spin on zero-field tunneling splitting 
and Zeeman diagram.

2.  Methodology and computational details

We use SI units and a magnetic coordinate system where the 
g matrix for the electronic ground doublet is diagonal. The 
methodology used in this work was presented in detail in [28, 
31, 32]. Thus, here we briefly explain only the key points and 
specifics for the 161DyPc2 and 163DyPc2 SMMs.

2.1.  Methodology

The hyperfine interactions consist of three components 
[33]: (i) the coupling between the nuclear spin and the elec-
tronic orbital angular momentum; (ii) the dipolar interaction 
between the nuclear spin and the electronic spin; (iii) the con-
tact interaction between the nuclear spin and the electron spin 
density at the nucleus position. The first, second, and third 
components are referred to as the paramagnetic spin–orbital 
(PSO) contribution, the spin-dipole (SD) interaction, and 
the Fermi contact (FC) term, respectively. The microscopic 
hyperfine Hamiltonian ĤMHf  contains all three components. 
The hyperfine interactions are treated in the non-relativistic 
limit. When the electronic ground doublet is well separated 
from the electronic first-excited doublet (figure 2), the effec-
tive hyperfine Hamiltonian ĤA for an electronic pseudo-spin 
S  =  1/2 can be described as:

ĤA = Î · A · Ŝ,� (1)

=
Azz

2
ÎzŜz +

A0

2
Î+Ŝ− + A1

(
Î−Ŝz + ÎzŜ−

)
+

A2

2
Î−Ŝ− + h.c.,

� (2)

where A is the magnetic hyperfine matrix, A0 = 1
2  

(Axx + Ayy), A1 = 1
2 (Axz + iAyz), and A2 = 1

2 (Axx − Ayy) + iAxy.  
For an electronic pseudo-spin S  =  1/2, one can relate ĤMHf  to 
ĤA by using [31, 32]

(AAT)αβ = 2
∑

ij

〈i|ĥα
MHf|j〉〈 j|ĥβMHf|i〉,� (3)

where α,β = x, y, z  and ĥα
MHf ≡ ∂ĤMHf/∂ Îα. The summation 

runs over the ab initio states of the electronic ground doublet 
(i = 1, 2). For the 161Dy nucleus, the nuclear magnetic moment 
mN  (= gNµNI) is antiparallel to I and the nuclear g-factor, gN, 
is  −0.19224 [34], where µN  is the nuclear magneton. For the 
163Dy nucleus, mN  is parallel to I and the nuclear g-factor is 
0.26904 [34]. The sign of A cannot be determined from this 
approach, and so it is chosen from experiment. For example, 
the experimental data for 163DyPc2 [24] indicates a positive 
sign for Azz, and so we choose that Azz  >  0 for 163Dy isotope, 
while Azz  <  0 for 161Dy isotope.

The nuclear quadrupole interaction Hamiltonian is 
described by

ĤQ = Î · P · Î,� (4)

=
3
4

Pzz

[
Î2
z − I(I + 1)

3

]
+ P1

(
ÎzÎ− + Î− Îz

)
+

P2

2
Î2
− + h.c.,

� (5)
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where P is the nuclear quadrupole tensor and 

Pαβ = Q
2I(2I−1) 〈V̂αβ〉. Here Q is the quadrupole constant that 

is 2507.2 (2648.2) mbarn for 161Dy (163Dy) nucleus [35]. 
〈V̂αβ〉 is the expectation value of the electric-field gradient 
operator over the electronic ground doublet. P1 = Pxz + iPyz, 
and P2 = 1

2 (Pxx − Pyy) + iPxy.

2.2.  Computational details

Here we consider two different experimental geometries 
(figure 1): (i) DyPc2 molecule without isotope enriched from 
[23] and (ii) 163DyPc2 molecule with isotope enriched from 
[24]. Henceforth, the former (latter) geometry is referred to as 
M1 (M2). The structure of M1 is significantly deviated from 
D4d symmetry and it does not have any symmetry, whereas 
M2 has exact C4 symmetry.

We perform the ab initio calculations using the MOLCAS 
quantum chemistry code (version 8.2) [36] with the imple-
mentation of the hyperfine interactions as discussed in 
[28]. Scalar relativistic effects are considered in the form of 
Douglas–Kroll–Hess Hamiltonian [37, 38]. For all atoms, 
relativistically contracted atomic natural orbital (ANO-RCC) 
basis sets are used [39, 40]. For the Dy ion, we use polar-
ized valence triple-ζ quality (ANO-RCC-VTZP), and for the 
N and C atoms, we use polarized valence double-ζ quality 
(ANO-RCC-VDZP). For the H atoms, we use valence double-
ζ quality (ANO-RCC-VDZ). Our choice of the basis set is 
very similar to that used for DyPc2 SMM in [23].

In order to compute the electronic structure, we first 
apply state-averaged complete active space self-consistent 

(SA-CASSCF) method [41, 42] to spin-free states, without 
SOI. We consider the complete active space consisting of 
only seven f  orbitals with nine electrons. Our previous calcul
ation [27, 28] on TbPc2 SMMs showed that larger active space 
including ligand orbitals gives rise to a negligible effect on 
the low-energy electronic spectrum and hyperfine interaction 
parameters. With nine electrons on seven f  orbitals, there are 

Figure 1.  Top and side views of the experimental atomic structure of anionic DyPc2 molecules from [23] (a) and [24] (b). The molecule in 
(a) does not have any symmetry, whereas the molecule in (b) has exact C4 symmetry. Blue, gray, maroon, and pale pink spheres represent 
Dy, N, C, and H atoms, respectively. The coordinate system corresponds to magnetic axes obtained by diagonalization of the g-matrix 
calculated for the electronic ground Kramers doublet for each molecule. The magnetic easy axis coincides with the z axis.

Figure 2.  Schematic diagram of the low-energy electronic-nuclear 
energy spectrum for anionic DyPc2 SMMs [23, 24]. The electronic 
ground doublet (|g〉) is separated from the electronic first-excited 
doublet (|e〉) by 59.4 (51.1) cm−1 for figure 1(a) ((b)). The doublet 
|g〉 consists of primarily |MJ = ±13/2〉, whereas the doublet |e〉 
comprises mainly |MJ = ±11/2〉. With the hyperfine interactions, 
each electronic level splits into six (quasi)-doublets |g〉 ⊗ |MI〉, 
considering the Dy nuclear spin I  =  5/2. The separations of the 
nuclear levels are much less than 0.1 cm−1.
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21 spin-free states (or roots) to build electron spin S  =  5/2. 
Once the state-average is performed over the 21 spin-free 
states, we include SOI within the atomic mean-field approx
imation [43], using the restricted active space state-interaction 
method [44]. Then we extract the A matrix from equation (3) 
and the P matrix evaluated over the ab initio electronic ground 
doublet.

3.  Results and discussion

3.1.  Electronic energy spectrum

Our ab initio calculations shows that the ground multiplet 
J  =  15/2 is split into eight Kramers doublets due to the Pc 
ligands. For both experimental geometries, the electronic 
ground doublet |g〉 in the J  =  15/2 multiplet is well separated 
from the first-excited doublet |e〉 (table 1). For M1 (figure 1(a)), 
the doublet |g〉 consists of mainly |MJ = ±13/2〉 with tiny 
contributions from |MJ = ±15/2〉, and |MJ = ±11/2〉, while 
the doublet |e〉 comprises mainly |MJ = ±11/2〉 with very 
small contributions from |MJ = ±15/2〉, and |MJ = ±13/2〉. 
For M2 (figure 1(b)), the two doublets have pure MJ states 
such as |g〉 = |MJ = ±13/2〉 and |e〉 = |MJ = ±11/2〉. The 
calculated EZFS value and the characteristics of the eigenstates 
agree well with the reported ab initio results [23].

Since the energy gap between the ground and first excited 
Kramers doublets is much greater than the scale of the hyper-
fine interaction (∼0.1 cm−1), for the studies of the low-energy 
electronic-nuclear spectrum we can consider only the ground 
Kramers doublet (figure 2). The ground Kramers doublet can 
be represented by a fictitious pseudo-spin S  =  1/2 and the 
pseudo-spin formalism from the previous section can be used 
for description of the hyperfine coupling.

It is convenient to present the calculated A matrix and P 
tensor in the magnetic coordinate system in which the g matrix 
for the ground Kramers doublet is diagonal. The calculated 
eigenvalues of the g matrix are shown in table 1 for both con-
sidered geometries. As expected, the g matrix is highly aniso-
tropic with one large eigenvalue being approximately equal to 
2gJ13/2 ≈ 17.333 (where gJ ≈ 1.33 is the Lande g factor for 
Dy+3 ion). The remaining two eigenvalues are very small but 
they are responsible for quantum tunneling of magnetization 
(QTM) process (which is discussed later). We choose the z 
axis to point along the eigenvector corresponding to the large 
eigenvalue. This direction points approximately perpendicular 
to the ligand planes (see figure 1).

3.2.  Magnetic hyperfine interactions

Table 2 shows the calculated elements of the magnetic hyper-
fine matrix for two I  =  5/2 Dy isotopes using both exper
imental geometries. For the M2 geometry we only show the 
results for 163Dy since this isotope was solely used in the syn-
thesis of M2. In both cases, the Azz element is dominant, while 
the other A matrix elements are close to zero. Similar behavior 
was found for the TbPc2 molecule [28]. However, an impor-
tant difference is that for TbPc2, the Axx and Ayy elements are 
zero [28]. This is a consequence of the fact that Tb+3 is a 
non-Kramers ion and as a result only one eigenvalue of the 
A matrix is non-zero [45]. On the other hand, for DyPc2 with 
Dy+3 being a Kramers ion, all three A matrix eigenvalues are 
non-zero. This is reflected in non-zero Axx and Ayy elements 
(see table 2). While Axx and Ayy are very small (<0.1 MHz), 
they do have an important effect on an energy spectrum and 
magnetization dynamics (see below).

The presence of non-zero Axz and Ayz elements for M1 
geometry is due to slight misalignment between the z axes of 
the g matrix and A matrix coordinate systems. Such misalign-
ment is possible when we have deviations from the C4 sym-
metry and it originates from the interaction of the J  =  15/2 
ground-multiplet with higher multiplets [33]. Since the M2 
geometry has the C4 symmetry, the g matrix and A matrix 
coordinate systems are aligned and all off-diagonal elements 
of the A matrix are zero (see table 2).

Note that while the overall sign of the Azz element is unde-
termined in our calculations, the 161Dy and 163Dy isotopes 
have opposite sign of the Azz element. This is due to opposite 
sign of the nuclear g-factor for these isotopes. The difference 
in nuclear g-factors is also responsible for 163Dy having larger 
magnitude of Azz.

Figure 3 shows PSO and SD contributions to Azz compared 
with its total value. The FC contribution is negligible (less than 
0.1 MHz) and is not shown. As in the case of the TbPc2 mol-
ecule, the magnetic hyperfine interaction is dominated by the 
PSO mechanism due to Dy ion having a large orbital angular 
momentum. The much smaller SD contribution is opposite to 
the PSO part which results in the total Azz value being some-
what smaller than the PSO contribution.

To compare with the experimental value [24], care needs 
to be exercised due to slightly different model Hamiltonians. 
The experimental quantity of Aexp

hf Jz is equivalent to our calcu-
lated quantity of AzzS, where Jz  =  13/2 and S  =  1/2 (electronic 
effective spin in equation  (2)), ignoring the small non-axial 
hyperfine parameters. For 163DyPc2 with M2 geometry, the 
experimental value Aexp

hf = 153 MHz with Jz  =  13/2 [24] is 
comparable to our calculated value of Azz ∼ 2000 MHz with 
an effective electron spin S  =  1/2. Thus, we find good agree-
ment between theory and experiment.

3.3.  Nuclear quadrupole interaction

The calculated elements of the nuclear quadrupole tensor are 
shown in table 3 for the two considered isotopes using both 

Table 1.  Eigenvalues of the g matrix for the electronic ground 
doublet as well as the energy difference between the electronic 
ground and the first-excited doublet, EZFS, for the anionic DyPc2 
SMMs for two different experimental geometries.

Geometry gxx gyy gzz

EZFS 
(cm−1)

M1 ([23]) 0.0003 0.0003 17.4976 59.4
M2 ([24]) 0.0002 0.0002 17.3864 51.4

J. Phys.: Condens. Matter 32 (2020) 274002
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experimental geometries. In all cases the uniaxial quadrupole 
parameter Pzz is around 100  MHz. For M1, the transverse 
quadrupole parameters are of the order of few MHz. On the 
other hand, for M2, the transverse quadrupole parameters are 
identically zero due to C4 symmetry.

To compare with the experimental value [24], similarly to 
the case of the hyperfine interactions, we need conversion due 
to slightly different model Hamiltonians used in theory and 
experiment. The experimental parameter Pexp in equation (1) 
in [24] is equivalent to 3

2 Pzz in our formalism. The exper
imental value Pexp = 420 MHz obtained for 163DyPc2 with 
M2 geometry from fitting the observed steps in the magnetic 
hysteresis loops, is somewhat larger than our calculated value 
3
2 Pzz ∼ 150 MHz. The effect of this discrepancy will be dis-
cussed below.

3.4.  Electronic-nuclear energy spectrum

Using the calculated elements of the magnetic hyperfine 
matrix and the nuclear quadrupole tensor, we calculate the 
low-energy electronic-nuclear spectrum by diagonalizing 
the effective pseudo-spin Hamiltonian. The resulting energy 
levels are shown in figure 4 for both considered isotopes with 
the M1 geometry. The spectrum is composed of six quasi-
doublets. Each doublet can be characterized by the |MS, MI〉 
that has the largest contribution to the quasi-doublet (figure 
4). Due to opposite signs of Azz for the two isotopes, the 161Dy 
and 163Dy nuclei have a reversed ordering of the doublet char-
acters. In particular, for 161Dy, the ground doublet has a main 
contribution from the |±1/2,±5/2〉 states, while for 163Dy, 
the main contribution to the ground doublet comes from 
|±1/2,∓5/2〉 states.

Unlike in the TbPc2 case, the quasi-doublets have non-
zero tunnel splittings due to presence of non-zero Axx and 
Ayy elements. The largest tunnel splitting occurs for the 
|±1/2,∓1/2〉 doublet (∼0.1 MHz). In fact, for the M2 geom-
etry with the C4 symmetry, the |±1/2,∓1/2〉 doublet is the 
only doublet that has non-zero splitting. Deviations from 
the C4 symmetry for the M1 geometry, additionally, lead to 
splitting of the |±1/2,±1/2〉 doublet (∼0.01  MHz), while 
tunnel splittings of other quasi-doublets being significantly 
smaller. Note that for 161Dy with Azz  <  0, |±1/2,∓1/2〉 is 
the 4th lowest quasi-doublet, whereas for 163Dy with Azz  >  0, 
|±1/2,∓1/2〉 is the 3rd lowest quasi-doublet (figure 4). 
These tunnel splittings play an important role in magnetiza-
tion dynamics (see below).

If the quadrupole interaction is neglected, the quasi-
doublets are approximately equidistant with the energy gap 
of 722  MHz and 1011  MHz for 161Dy and 163Dy, respec-
tively. The deviations from the equidistance are very small 
(∼0.01 MHz) and are due to non-zero Axx and Ayy elements. 
The larger gap for 163Dy is a consequence of larger Azz for 
this isotope. When the quadrupole coupling is included, the 
quasi-doublets are no longer equidistant and the gap between 
quasi-doublets increases for higher lying states.

Table 4 shows our calculated gaps between electronic-
nuclear quasi-doublets for both isotopes considering both 
the hyperfine and quadrupole interactions. In table  4 our 
calculations for 163Dy (M2) are in a good agreement with 
experiment for 163Dy (M2) from [24], considering typical 
experimental uncertainty such as about 0.1 GHz (see [14]), 
as well as approximations made in our calculations (see 
section  2.2). There are no reported experimental data for  
161Dy (M1) and 163Dy (M1) molecules. Due to different geom-
etries and different isotope species, we do not expect that the 
calculated values for 161Dy (M1) and 163Dy (M1) molecules 
are the same as that for 163Dy (M2).

3.5.  Zeeman diagram

Let us now study how the electronic-nuclear energy levels 
vary in the presence of an external magnetic field along the 
z axis (Bz). For this purpose we add the Zeeman pseudo-spin 
Hamiltonian ĤZ = µBBzgzzŜz to the magnetic hyperfine and 
nuclear quadrupole terms (equations (1) and (4)) and diag-
onalize the resulting Hamiltonian as a function of Bz. The 
resulting Zeeman diagram is shown in figure 5 for two con-
sidered Dy isotopes using the M1 geometry. The Zeeman dia-
grams for 163Dy isotope for the M1 and M2 geometries are 
similar to each other. Note that the diagram is symmetric with 
respect to Bz → −Bz. The energy levels can be denoted by the 
approximate MS and MI quantum numbers (see the right hand 

Table 2.  Calculated elementsa of the magnetic hyperfine matrix in units of MHz for two Dy isotopes.

Isotope Axx Ayy Azz Axy Axz Ayz |A0| |A1| |A2|

161Dy M1 −0.02 −0.03 −1444.29 0.00 1.16 −0.60 −0.02 0.65 0.00
163Dy M1 0.03 0.04 2021.28 0.00 −1.62 0.84 0.03 0.91 0.00
163Dy M2 0.03 0.03 2005.30 0.00 0.00 0.00 0.03 0.00 0.00

a Used the magnetic coordinate system (figure 1) in which the g matrix for the electronic ground doublet is diagonal.

Figure 3.  Contributions of PSO and SD terms to the total 
calculated hyperfine parameter Azz for 161DyPc2 and 163DyPc2. Here 
the FC term is not shown since the magnitude is about 0.1 MHz for 
both Dy isotopes.

J. Phys.: Condens. Matter 32 (2020) 274002
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side of figure 5). All the levels with MS =↑ linearly vary with 
magnetic field with the same positive slope, while the levels 
with MS =↓ vary with the opposite slope.

At certain magnetic field values, the levels with opposite 
MS appear to cross each other. A crossing point can be char-
acterized by the difference between MI of the two crossing 
levels, ∆MI = M↑

I − M↓
I . Here M↑

I  (M↓
I ) is the MI value for 

the electronic-nuclear level |MS =↑ (↓), MI〉. Some of these 
apparent crossing points can be split and become avoided level 
crossings (ALCs). The ALCs play an important role in mag-
netization dynamics since in their proximity QTM processes 
are possible. (QTM can be used to read the state of the nuclear 

spin levels for quantum information applications [14].) For 
TbPc2 molecules, ALCs (or steps in magnetic hysteresis) exist 
only at non-zero magnetic fields and are caused by transverse 
CF interactions [28, 29]. In this case, ALCs with ∆MI = 0 are 
mainly responsible for QTM (with much smaller contributions 
from ∆MI = ±1,±2 [28, 46]). For DyPc2 molecules, how-
ever, situation is quite different. Here, due to non-zero Axx and 
Ayy elements, magnetic hyperfine interactions, in general, give 
rise to tunnel splitting at crossing points with ∆MALC = ±1 
(squares and triangles in figure  5) with and without Bz 
field. Importantly, tunnel splitting at crossing points with 
∆MALC = −1 (triangles in figure 5) remains non-zero even 
for the C4 symmetry. On the other hand, non-zero splitting at 
crossing points with ∆MALC = 1 (squares in figure 5) requires 
deviations from the C4 symmetry. Therefore, for DyPc2, QTM 
is possible even at zero magnetic field, which is in agreement 
with experiment [24, 29].

Crossing points with ∆MI = 0 (ovals in figure  5) can 
become ALCs in the presence of additional small transverse 
magnetic field (not included in calculations). Such field can 

Figure 4.  The calculated low-energy electronic-nuclear spectra 
of the DyPc2 molecule for two considered Dy isotopes with 
experimental M1 geometry. The approximately equally spaced 
green lines correspond to energy levels found by diagonalization 
of the magnetic hyperfine Hamiltonian. The level characteristics 
are denoted. The red lines correspond to energy levels found 
by diagonalization of the sum of the magnetic hyperfine and 
nuclear quadrupole Hamiltonians. The ith red level has the same 
characteristic as the ith green level.

Table 4.  Calculated and experimentala electronic-nuclear relative 
energy levels in GHz.

Levelsb

161Dy 
(M1)

163Dy 
(M1)

163Dy 
(M2)

Exp. 163Dy 
(M2)

E2 − E1 0.156 0.410 0.395 0.5
E3 − E2 0.436 0.709 0.699 0.7
E4 − E3 0.722 1.010 1.003 1.0
E5 − E4 1.007 1.312 1.306 1.3
E6 − E5 1.292 1.613 1.610 1.5

a Extracted from figure 4(c) from [24].
b Ei denotes the ith lowest electronic-nuclear doublet.

Figure 5.  Zeeman diagram showing the calculated electronic-
nuclear energy levels as a function of magnetic field along the z axis 
(Bz) for the DyPc2 molecule with M1 geometry for 161Dy (top) and 
163Dy (bottom) isotopes. Here |MS, MI〉 represents the approximate 
quantum numbers of the levels. Open ovals, squares, and triangles 
denote avoided level crossing points with ∆MI  equal to 0, 1, 
and  −1, respectively. See the main text for the definition of ∆MI . 
The crossing points for the negative magnetic field are not marked.

Table 3.  Calculated elementsa of the nuclear quadrupole tensor in units of MHz for two Dy isotopes.

Isotope Pxx Pyy Pzz Pxy Pxz Pyz |P1| |P2|

161Dy M1 −47.7 −47.2 95.0 0.9 −3.9 1.3 4.1 0.9
163Dy M1 −50.4 −49.9 100.3 0.9 −4.1 1.4 4.4 1.0
163Dy M2 −50.6 −50.6 101.2 0.0 0.0 0.0 0.0 0.0

a Used the magnetic coordinate system (figure 1) in which the g matrix for the electronic ground doublet is diagonal.
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originate from hyperfine interactions with C and N nuclei or 
from dipolar interactions with different magnetic molecules. 
In the presence of non-zero transverse quadrupole parameters, 
transverse magnetic field can also induce tunnel splitting at 
crossing points with ∆MI = ±2 (not shown) and further 
increase tunnel splitting at ALCs with ∆MALC = ±1. The 
splittings induced by the transverse quadrupole interactions 
are, however, very small.

Table 5 shows non-negative magnetic field values of ALCs 
with ∆MI = 0,±1 for DyPc2 molecule with geometry M1 
for 161Dy and 163Dy isotopes. A hysteresis loop of the DyPc2 
molecule is expected to show steps at the field values listed in 
table 5. For diluted crystals with smaller dipolar interactions, 
the largest steps are expected to occur at field values corre
sponding to ALCs with ∆MI = −1. However, the step size at 
ALCs with ∆MI = 0 can be potentially tuned by application 
of a small transverse magnetic field.

4.  Conclusion

Magnetic hyperfine and nuclear quadrupole interactions for 
anionic 161DyPc2 and 163DyPc2 SMMs with asymmetric and 
C4 symmetric experimental geometries are investigated using 
multiconfigurational ab initio methods combined with an 
effective Hamiltonian for an electronic ground Kramers dou-
blet. For both geometries and both Dy isotopes, our calcul
ations reveal that the hyperfine and quadrupole interactions 
are much smaller than those for 159TbPc2 SMMs. In the case 
of the DyPc2 SMMs, the hyperfine interactions can induce 
tunnel splitting at avoided level crossings even in the absence 
of an external magnetic field, which corroborates the presence 
of steps at zero magnetic field in observed magnetic hysteresis 
loops [24, 29]. This is due to the fact [45] that the hyperfine 
interactions for electronic Kramers doublets can have non-
zero transverse parameters like Axx and Ayy, in contrast to the 
case of electronic non-Kramers quasi-doublets.
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