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Abstract

®

CrossMark

In this work, we report results of extensive computer simulations regarding the phase behavior
of a core-softened system. By using structural and thermodynamic descriptors, as well as
self-diffusion coefficients, we provide a comprehensive view of the rich phase behavior

displayed by the particular instance of the model studied in here. Our calculations agree with
previously published results focused on a smaller region in the temperature—density parameter
space (Dudalov et al 2014 Soft Matter 10 4966). In this work, we explore a broader region in
this parameter space, and uncover interesting fluid phases with low-symmetry local order, that
were not reported by previous works. Solid phases were also found, and have been previously

characterized in detail by (Kryuchkov ef al 2018 Soft Matter 14 2152). Our results support
previously reported findings, and provide new physical insights regarding the emergence of
order as disordered phases transform into solids by providing radial distribution function maps
and specific heat data. Our results are summarized in terms of a phase diagram.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Colloidal nanocrystals are composed by a hard core mate-
rial surrounded by a soft, organic component grafted onto the
core’s surface. The immense number of different organic lig-
ands that can be used to decorate the core material makes
it possible to tailor the effective interactions between these
colloids. In fact, experiments have demonstrated that these
materials can self-assemble into a rich variety of simple and
complex lattices [1-4]. Therefore, providing a platform to
design materials with exquisite functionalities. On the theoret-
ical side, these materials are so complex that a first-principles
approach to predict the mesoscopic ordering, from the chem-
ical details, is utterly hopeless. However, based on effective
interactions and a few parameters, coarse-grained descriptions
can provide useful knowledge toward the understanding of

1361-648X/20/275103+11$33.00

the collective processes leading to the self-assembly of these
materials [5-32].

Indeed, simple coarse-grained models have been used
in the last decades to study mesophase formation and
other collective phenomena [33-36]. A particularly inter-
esting problem is that of two-dimensional (2D) melting.
In three-dimensions the melting of solids is mostly a
first-order phase transition, however the melting transi-
tion for parallel hard cubes in three-dimensions has been
shown to be a second-order transition [37]. For two-
dimensions, different scenarios have been proposed for
melting. The most widely accepted scenario, known as the
Berezinskii—Kosterlitz—Thouless—Halperin—Nelson—Young
(BKTHNY) theory, proposes two continuous transitions
between solid and liquid phases, with an intermediate ther-
modynamic state called hexatic phase [38—42]. On the other
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hand, another scenario introduced by Bernard and Krauth
(BK) proposes a continuous transition between solid and
hexatic phases, and a first-order transition between hexatic
and liquid phases [43—46]. Experimental evidence suggests
that the BK scenario describes the melting process [47]. To
explore this phenomenon, the most commonly used models
are the hard disk (HD) and hard core soft shoulder (HCSS)
potentials.

Inrecent years, a smoothed version of HCSS model has also
been studied, and it is used in this work. The most important
point to highlight is that this model captures the salient fea-
tures of colloidal nanocrystals: a rigid core and a soft shell
composed of the grafted organic ligands. Thus, it is a good can-
didate to explore the self-assembly behavior of these materials.
Previous work using an instance of this model have focused in
the low temperature—high density regime, and have reported
the formation of simple and complex lattices [27]. However,
it is expected that at intermediate densities other mesophases
could appear, and the fluid phase would also display inter-
esting local correlations that are not present in the hard disk
model [16, 17]. This work explores the phase behavior of this
core-softened model, described in detail below, in a broader
region of the temperature—density parameter space. We use
molecular dynamics simulations to study the statistical behav-
ior of this model. To obtain a complete thermodynamic char-
acterization, pressure, internal energy, compressibility factor
and specific heat were computed. Structural information is
obtained by calculating the radial distribution function, orien-
tational order parameters, and structure factor. To complete our
study, we also report the self-diffusion coefficient obtained for
all conditions explored in this work.

2. Model and methods

The repulsive shoulder potential studied in this work is defined
as [26]:

14
u(r) e = (%) + 5 [l = tanh (k(r = 1)1,

D

where r is the distance between two interacting sites, € is the
height of the repulsive shoulder, and ¢ can be considered as
the hard core diameter, whereas o is the characteristic length
scale of the shoulder. The constant k accounts for the steep-
ness of the repulsive shoulder (see figure 1). In this work, we
set 01 = 1.350, ko = 10.0, and we use o and € as length and
energy units, respectively.

The exploration of thermodynamic phases was per-
formed by molecular dynamics simulations in the NVT
ensemble with a Nosé—Hoover thermostat [48, 49].
All calculations were performed using HOOMD-blue
[50, 51]. We consider square simulation boxes with peri-
odic boundary conditions in all directions. The systems
are composed by N =2'5 particles at reduced densities
p* ENO’Z/A, and reduced temperatures T* = kpT/c. We
explored the parameter space (p*,T*), with p* € [0.1,1.0]
and 7°€{0.8,0.6,0.5,0.4,0.3,0.25,0.22,0.2,0.18,0.16,0.14,
0.12,0.1}. The density was varied in steps of dp* = 0.05,
unless otherwise noted. To avoid quenching effects at the
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Figure 1. Soft repulsive shoulder potential (blue line) and associated
force (red line) with parameters o, = 1.350, ko = 10. See text and
equation 1 for details.

lower temperatures, an annealing procedure was used: systems
were prepared at a disordered state at highest temperature first,
and then the final configuration is used as initial configuration
for the next lower temperature, and so on. In every simulation,
the system is equilibrated using 3 x 107 time steps at the
corresponding temperature, then properties are sampled
during the next 7 x 107 time steps. Post-processing of data is
performed by using ten sub-blocks of the whole trajectory. The
reduced timestep was set at 6t* = dry/€/mo? = 0.001, and
the thermostat coupling constant to 7 = \/Q/gksT = 1.0,
where Q is the Nosé mass, g is the number of degrees of
freedom, kg is the Boltzmann constant, and T is the tempera-
ture. It should be highlighted that particle-based simulations
are susceptible to display systematic errors when studying
the phase behavior, due to fact that systems can get trapped
into local free energy minima. Thus, efforts must be done to
minimize such effects. In this work, the use of an annealing
procedure helps in this regard.

The thermodynamic behavior of the system is character-
ized by using the reduced internal energy U* = U/Ne, reduced
pressure P* = Po? /e, compressibility factor Z = P*/(p*T*),
and reduced specific heat ¢!, = C: /N = C,¢*/kgN; where the
heat capacity, C,, is defined by:

(V) - W

C, =
kg T?

(2)
To characterize the symmetry of the equilibrated structures,
we use the bond orientational order (BOO) parameter, and
the structure factor (SF). The global bond orientational order
parameter is computed as [33]:
| >

Np
1 .
Xm = <’N_B; exp(imd) 3)
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Figure 2. Thermodynamic descriptors for different temperatures in the interval 0.8 > 7% > 0.22: (a) internal energy U*, (b) pressure P*, (c)
compressibility factor Z, as functions of density p*. The continuous black line in (c) is the EOS for hard disks proposed by Solana et al [54],
and the continuous blue line is the same EOS but with effective diameter o = 1.35. The error bars in (a)—(c) are smaller than the symbols.
(d) Specific heat ¢}, vs density p*. The error bars are included for reference. Note the change of curvature of the compressibility factor, Z, in
the same region where the specific heat displays a maximum at intermediate densities.

where m is an integer characterizing the symmetry, 6; is the
angle formed between a fixed axis and the bond connecting
the jth pair of particles separated by no more than a distance A;
Npg is the number of neighbor bonds, and the brackets indicate
ensemble average. As described below, at low densities and
temperatures, the shoulder length scale dominates the separa-
tion between particles. At high densities, the hard core length
scale dictates the separation. However, at intermediate den-
sity values, there is an interplay between these two length
scales. Thus, the value of ) is determined as the first minimum
after the global maximum of the radial distribution function,
at a given temperature and density. Note that a local BOO
parameter, Xk, can be obtained using the same expression,

but Ng will now be the number of neighbor bonds of the kth
particle. By taking an average of all local BOO, it is pos-
sible to obtain an insight about the local symmetry of the
small domains formed by an arbitrary particle and its close
neighbors.

The structure factor is given by [52]:

R .
S(k) = NZ exp(ik - 7)), (4)
J

where & is a wave vector, and 7; is the vector position of the
Jjth particle. We also computed the radial distribution function



J. Phys.: Condens. Matter 32 (2020) 275103

L A Padilla and A Ramirez-Hernandez

1 4
0.9 35
0.8 3
0.7

2.5
0.6
% 2
0.5
1.5
0.4
0.3 !
0.2 10.5
0.1 . . + - i o]
0 5 10 15 20 25 30
r*
(a) T* = 0.80

LT 4
0.9 1 35
0.8 3
0.7

25
0.6
* 2
0.5
15
0.4
0.3 !
0.2 1 105
0.1 ! - 5 : —0
Y] 5 10 15 20 25 30
r*
(b) T* = 0.22

Figure 3. Density maps of the radial correlation function 4(r*) = g(r*) — 1 on the (r*, p*) plane at the indicated temperature. Only values
h(r*) = 0 are plotted. In the high temperature case, (a), the particle—particle correlation builds-up as the density increases and long-range
order appears at the highest density. In the low temperature case, (b), long-range order appears at lower densities. For 0.96 > p* > 0.9, a
solid phase with a 12-fold symmetry appears, but at higher densities an hexagonal solid becomes stable. Interestingly, particle—particle
correlations increase in range at intermediate densities, in the same region where the specific heat displays a maximum (see figure 2(d)).

(RDF) as [53]:

AN
g =15 > 0 —ry), (5)

i i
where A is the area of the simulation box, and r;; is the distance

between the ith and jth particles.
Finally, the mean squared displacement (MSD):

N
. S 1 . .

((F0) — 7)) = N; (7i(1) — F(0))?, 6)

and the associated self-diffusion coefficient D were also com-

puted. To obtain D, a linear fit was performed over the MSD vs
tcurves at long times. Then, we used the following relationship

((F(t) — 7)*) = 2aDt, (7)

where d is the dimensionality of the system.

3. Results

3.1. High temperature regime

We start our analysis by presenting the isotherms for internal
energy, pressure, compressibility factor, and specific heat as
functions of density (figure 2) in the high temperature regime,
0.8 > T* > 0.22. In the case of internal energies, U", it is
found that the different isotherms display a similar behavior,
and there is no evidence of discontinuities nor abrupt changes
in the shape of the isotherms (figure 2(a)). The behavior of
the pressure as the density is varied is similar for the different
temperatures (figure 2(b)). However, as the density approaches
p* = 1.0, there is a change in the curvature of the P* vs p*
curve, which we associate with the transition to a solid with
a triangular lattice. This agrees with the findings in reference
[27] at low temperatures.
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Figure 4. Radial distribution function at density p* = 0.5 for
different temperatures 7. Inset: MSD for all temperatures on the
main plot. Note that the range of correlation increases as
temperature decreases, and the system is still in a fluid phase.

On the other hand, the compressibility factor, Z, displays
an interesting behavior (see figure 2(c)). First, note that, as
expected, at low densities (up to p* = 0.3), the behavior of
the system is almost athermal, as in the case of a hard disks
system. For comparison, we have also plotted the equation of
state (EOS) for hard disks proposed by Solana et al [54]. Small
deviations (at low densities) from the HD EOS arise because
of the soft shoulder, which renormalizes the effective particle
diameter. The most interesting behavior occurs at the interval
0.4 < p* < 0.6, where thermal effects become more evident.
In this zone, the compressibility factor increases at a much
faster rate as the density increases. This is, in fact, reflected as
a change in the concavity of the Z vs p* curve (see figure 2(c)).
This behavior suggests a drastic change on the particle config-
urations, and could indicate the presence of a second or higher
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Figure 5. Local bond orientational order as a function of the order
mat T* = 0.25. A snapshot of particle configuration at the indicated
density is displayed below the corresponding curves. The global
BOO vanishes for all m, however these liquids have a local
orientational order.
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Figure 6. Radial distribution function at different densities p*, at
temperature 7 = 0.4. Insets show the associated structure factors.
Note that the system can be seen as composed by particles of sizes o
and o;. The concentration of one component changes as the density
and temperature are varied.

order phase transition. For higher densities, up to p* = 0.85,
the changes in Z are not as strong, thus, phase transitions are
not expected in this thermodynamic region. Finally, at the high
density regime, the compressibility has an abrupt change, as
the one displayed by the pressure, which is an evidence of a
first order phase transition, from the disordered phase to the
hexagonal phase.

The intriguing behavior of Z at intermediate densities moti-
vated us to compute the specific heat for the same temperature
range. As can be seen in figure 2(d), a small hump arises
around p* = 0.45 already for 7* = 0.8. As the temperature
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Figure 7. Self-diffusion coefficient, D*, at different densities p*, at
temperature 7° = 0.25. Insets show representative particle
configurations for p* = 0.3,0.5, 0.7, from top to bottom,
respectively. Anomalous behavior of D* occurs at intermediate
densities where the thermodynamic descriptors display features of
structural changes.
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Figure 8. Radial distribution functions associated to those fluid
states at the minimum and maximum of the D vs p curve shown in
figure 7 (T* = 0.25). As can be seen, at the minimum of D (at

p = 0.5), the local structural order is higher than that presented at
the maximum of D (at p = 0.7), see text for details.

decreases, the hump increases its size drastically, and the local
maximum shifts to slightly higher densities. Two things can
be inferred by this behavior: (a) there are significant structural
changes in the fluid phase that become more noticeable at
lower temperatures (we will discuss these changes below); (b)
the behavior of ¢}, as the temperature decreases (along with
the fact that internal energy and pressure do not display dis-
continuities), suggests that a critical point exists in this region
on the parameter space. Also, note that a second peak starts
to develop at densities around p* = 0.85 at low temperatures,
which corresponds to the region studied by Kryuchkov et al
[27]. In this part of the phase diagram they found square and
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Figure 9. Thermodynamic descriptors for different temperatures in the interval 0.2 > 7% > 0.1: (a) internal energy U*, (b) pressure P*, (c)
compressibility factor Z, as functions of density p*. The error bars in (a)—(c) are smaller than the symbols. (d) Specific heat ¢}, vs density p*.
The error bars are included for reference. The behavior of the specific heat at intermediate densities suggest the existence of re-entrant phase
transitions. At higher densities, the behavior of the pressure indicates a first-order phase transition to solid phases, as shown below.

hexagonal solids, and 12-fold quasicrystals. As we report
below, our calculations agree with their results (see
figures 13(c) and (d)).

The above results suggest that the liquids at intermediate
densities have interesting properties. Thus, we use structural
descriptors to characterize these fluid phases. Figure 3 dis-
plays density maps of the radial distribution function (RDF)
on the (r*, p*) plane. We present only the results for tem-
peratures 7° = 0.8 and 0.22. For the highest temperature,
T* = 0.8, the associated RDF map shows how local order
starts to building-up, and eventually, long-range order appears
for the highest density (see figure 3(a)). BOO parameter and
structure factor indicate that the formed structure at that high

density is a solid phase with hexagonal symmetry (data not
shown). This phenomenology agrees with features observed
on the thermodynamic descriptors presented above. The dis-
continuity in the pressure that appears at high density cor-
relates with the emergence of a dominant symmetry and the
corresponding long-range correlations. As the temperature is
decreased to 7% = 0.22, the RDF map displays more inter-
esting features (figure 3(b)). First, at high densities (above
p* ~ 0.9)itis possible to see the emergence of long-range cor-
relations, and the RDF uncover two different particle arrange-
ments. Indeed, BOO and structure factor indicate that the fluid
transforms into a solid phase with a 12-fold symmetry (data
not shown). This structure corresponds to the dodecagonal
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Figure 10. Thermodynamic descriptors for different temperatures in the interval 0.2 > 7* > 0.1 at intermediate densities 0.65 > p* > 0.4:
(a) internal energy U*, (b) pressure P*, and (c) specific heat ¢}, as functions of density p*. By enlarging this zone, it is clear that the stability
region of the low-density solid phase increases as temperature decreases. Also, note the asymmetry on the behavior of ¢ at low and high

density: for 7* < 0.16, the peak of ¢}, on the right splits into two.
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Figure 11. Color map of global bond orientational order, x,,, on the
(m, p*) plane at 7 = 0.12. The color bar show the correspondence
between color and the value of the bond orientational order. This
plot clearly shows that re-entrant transitions occurs at intermediate
densities, and the existence of a low density solid phase with
six-fold symmetry.

quasicrystal found by Kryuchkov er al [27]. For densities
above p* ~ 0.96 the quasicrystal losses stability, and a solid
with hexagonal order dominates. Interestingly, for the densi-
ties around p* = 0.5, the RDF map shows that the correlation
among particles has a range larger than that displayed by the
isotropic states in the neighboring densities. This coincides
with the bump observed in the specific heat curves on the
same density region (see figure 2(d)). Thus, thermodynamic
and structural descriptors display a signature that indicates a
significant change in the local order, even though there is not
a collective symmetry-breaking process involved at this tem-
perature. These are still (globally) isotropic fluid states, and
the local order arises as a delicate balance between energy and
entropy. At intermediate and low temperatures, some particles
do not have enough energy to overcome the barrier associ-
ated to the shoulder. Thus, the population of nearest neighbors
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Figure 12. Density map of the radial correlation function

h(r*) = g(r*) — 1 on the (+*, p*) plane at temperature 7% = 0.12. We
plot only values i(r*) > 0. Note that long-range correlations appear
at intermediate densities, the region where the global BOO indicates
a phase with a six-fold symmetry.

contains two contributions: one coming from those particles
separated by ~ o, and the other, composed by particles sepa-
rated by a distance ~ o;. The relative weight depends on both
the density and temperature. For example, figure 4 displays the
radial distribution function at p* = 0.5 for different tempera-
tures. As can be seen, by decreasing temperature, the number
of particles able to cross the soft shoulder decreases. At this
density, there is still room to accommodate particles apart by
the soft length scale, so, the system favors a local order where
particles will be placed close to a distance ~ o; from each
other, in average. Indeed, the local BOO spectrum (figure 5)
confirms that, for this density (p* = 0.5), there is a preference
for local order with a six-fold symmetry. However, the global
BOO indicates the lack of a dominant global symmetry. The
MSD curves shown at the insets of figure 4 demonstrate that
the systems display normal diffusion at long times, as expected
for fluid phases. Thus, these are locally ordered liquids.
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Figure 13. Snapshots of a small section of the simulation box for systems at temperature 7* = 0.12 and different densities. The associated
structure factors are shown as insets: (a) six-fold symmetry, (b) four-fold symmetry, (c) 12-fold symmetry, and (d) six-fold symmetry. Note
that, even though there are two hexagonal solid phases, the scattering pattern is different. The lattice constant of the low-density phase is
larger than the corresponding lattice constant at the highest density (see text for details). Note that the scale in the snapshot (c) is different,
to make evident the quasicrystalline organization. All configuration snapshots were created by using Ovito [60].

The distribution of neighbors located at o and o is also
affected by the density. As shown in figure 6, by increasing
density, particles are forced to be closer, and more particles
are located around a distance o from each other. Thus, at these
intermediate densities and temperatures the system can be con-
sidered as a fluid mixture of particles of effective diameters
o and o;. The energetic balance dictates the local order that
these particles will adopt. The red curve in figure 5 shows that,
for p* = 0.7, there is a slight preference for a local order with
a four-fold symmetry. This local orientational order has also
effects on the dynamical behavior of these fluids. We have
computed the self-diffusion coefficient, D* = D/+/0?¢/m, for
temperature 7° = 0.25. As can be seen in figure 7, D* displays
a non-linear behavior at intermediate densities, and that is a
consequence of the local order that arose in these fluids at this
region of the parameter space (see insets in figure 7). In all
cases the global BOO vanishes, but there is still local orien-
tational order. Besides of the local orientational order, local
structural order is present. Figure 8 displays the radial distribu-
tion function, g(r), associated to the fluid states at the minimum

and maximum of the D vs p curve. As can be seen, at the min-
imum of D (at p = 0.5), the local structural order is higher
than that presented at the maximum of D (at p = 0.7). This
anomalous behavior arises because once the density is high
enough such that particles have already overcome the soft bar-
rier, and all coronas are overlapped, the effective repulsion is
smaller. Thus, given place to a less structural order. It should
be also noted that core-softened potentials display several
anomalous behavior [55-57], in particular, a density anomaly
can be present. This anomaly can be seen by analyzing the
density versus temperature isobars when performing NPT
simulations [58].

3.2. Low temperature regime

Next, we study the low temperature regime 0.2 > 7" > 0.1.
The results for the same thermodynamic descriptors used
above are presented in figure 9. To get more details about
the behavior at intermediate densities, we have used a smaller
dp* in that region. As can already be seen in the behavior of
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the internal energy (figure 9(a)), at these temperatures, there
are at least three different phase transitions. Two of them
at intermediate densities (0.4 < p* < 0.6), and one around
p* = 0.8. The latter can be ascribed to the liquid-square solid
transition, already found in reference [27]. Pressure and com-
pressibility curves also display signatures of phase transitions
(see figures 9(b) and (c)). Whereas the transition at high den-
sity (p* ~ 0.8) display a strong first-order character (note the
big jump on the values of pressure or compressibility), it is
hard to infer the order of the transitions at intermediate den-
sities. On one hand, U*, P*, and Z do not display any jumps
or discontinuities at transition points, but just a change in the
slope. Also, the specific heat displays a rapid increase in value
as one approaches the transition points (see figure 9(d)), a fea-
ture of a second-order phase transition. On the other hand,
as can be seen in figures 10(a) and (b), U* and P* seem to
display weak Mayer—Wood loops which can be associated
to first-order phase transitions [59]. Thus, we can not estab-
lish the exact nature of these transitions with the current data.
To address this interesting problem, it is required to perform
analysis of system size effects, calculation of other correlation
functions, etc. This study is left for a future work.

To elucidate the symmetry of the phases found at these
low temperatures, the global BOO parameter spectrum can
be used. For example, at the temperature, 7" = 0.12, it is
possible to observe symmetry-breaking processes, where the
values of x,, are very small for most of the m values, and
one of them, m* (and its integer multiples), dominates the
symmetry of the system. In fact, a square phase (m* =4)
becomes stable between p* ~ 0.75 and p* ~ 0.95, as clearly
seen in the global BOO parameter density map (figure 11). The
liquid—solid transition corresponds to the discontinuity
observed in the pressure (see figure 9(b)). The RDF sug-
gests that this is a solid phase with long-range correlations
(see figure 12). At higher densities, both 12-fold quasicrystal
and hexagonal solids are found (figure 11). Interestingly, the
RDF map indicates that, at intermediate densities, a new phase
with long-range correlations exists (figure 12). The stability
boundaries correspond to the peaks on the specific heat dis-
played in figure 9(d), thus both structural descriptors suggest it
to be a new thermodynamic phase. The global BOO parameter
(figure 11), clearly identifies it as a phase with hexagonal sym-
metry, m* = 6. To complement our analysis we also computed
the structure factor associated to each of the different solid
phases identified on the BOO map. The corresponding struc-
ture factors are shown in figure 13. From these plots we cor-
roborate that the symmetry of low density phase corresponds
to an hexagonal solid, also, it can be seen that the structure
factor is much more diffuse far from the center than the corre-
sponding one for the hexagonal solid at high density, p* = 1.0
(figure 13(d)). Although, the symmetry is the same, these are
different solids: the average distance between particles in this
structure (p* = 0.5) is d* ~ 1.48, whereas in the hexagonal
solid at p* = 1.0 has d* ~ 1.06. Thus, the former solid arises
because at low temperatures the particles do not have enough
energy to overcome the energy barrier associated to the shoul-
der. So, they behave like solid disks with an effective radius
that depends on the density and shoulder range. Both BOO
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Figure 14. Global bond orientational order parameter, Y, as a
function of the density for m = 4,6, 12 at 7* = 0.12. The BOO
associated to the low-density solid phase displays an asymmetric
behavior as it reaches the stability boundaries.

and RDF density maps clearly show the existence of re-entrant
isotropic—hexagonal—isotropic transitions at intermediate den-
sities. Also, the specific heat indicates, as deduced from the
location of the peaks in this function, that the region of sta-
ble hexagonal phase broadens as the temperature decreases
(see figure 10(c)). We should note here that previous works,
with similar models, have found evidence of a low-density
solid [61, 62]. However, such calculations were focused on the
very low temperature limit.

Interestingly, there is an asymmetry on the behavior
of ¢} between the low- and high-density stability limits.
(figure 10(c)). On the low-density side, the peak of ¢} moves
toward smaller densities as the temperature decreases, and
the value of the peak decreases in magnitude. On the high-
density side there is a peculiar behavior: at temperatures lower
than 0.18, the peak of ¢} splits into two peaks (or bumps)
with smaller magnitude. This suggests the existence of another
phase transition, possibly between the hexagonal solid and an
hexatic phase. More work is required to elucidate the nature
of this phase transition. The asymmetry is also reflected on
the behavior of the relevant global BOO parameters. Figure 14
displays x4(p"), x6(p"), and x12(p*) at T* = 0.12. As can be
seen in this figure, on the high-density side, the six-fold order
parameter decays faster than in the other stability boundary.
This interesting result warrant further studies.

We end the analysis by presenting a color map of the self-
diffusion coefficient, D*, computed for all systems studied
in this work (figure 15). As expected, those regions on the
parameter space where solid phases are found have a vanishing
diffusion coefficient, both at high and intermediate densities.
As described above, also note the peculiar behavior displayed
at intermediate densities and temperatures: the self-diffusion
coefficient seems to have a complicated non-linear behav-
ior. This region corresponds to the isotropic liquids with high
local order.
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Figure 15. Color map of the self-diffusion coefficient, D*, on the
(p*, T*) plane, contour lines are also displayed. Note the strong
non-linear behavior of D* at intermediate densities where local order
is stronger. As expected, D* vanishes in those areas where solid
phases appear. The plot also shows the temperature of maximum
(blue) and minimum (black) diffusion coefficients (see figure 7).
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Figure 16. Phase diagram of the system studied in this work in the
p—T plane. We have used data from reference [27] and results
reported in this work. Low and high density hexagonal solids are
indicated by hexagonal 1 and hexagonal 2. Square solids (square)
and quasicrystal with 12-fold symmetry (QC12) are also found. We
have also indicated coexistent regions. The broad white area consists
of isotropic states.

All simulation results obtained in this work are summa-
rized in terms of a phase diagram in figure 16. It should be
noted the great similarity between the phase diagram associ-
ated to this model and that of a hard disk with a soft corona
with a very similar interaction range [63]. In reference [63],
Monte Carlo simulations were performed to study the stabil-
ity of quasicrystals and other lattices, and found square solids
and quasicrystalline states in small regions of the parameter
space. The low-density hexagonal phase has a stability region
around the same thermodynamic parameters in both models.
However, the quasicrystal and square solid appear at higher

densities in the discontinuous model, and they survive at higher
temperatures compared to those present in the model used in
this work (compare phase diagram in this work, figure 16, with
figure 3 in reference [63]). Low-density hexagonal phases have
also been found in other soft models. For example, reference
[55, 56] reported the existence of hexagonal phases at inter-
mediate densities, moreover, one of the models also displayed
square solid phases.

4. Conclusions

We have performed extensive computer simulations of a two-
dimensional core-softened model that displays a rich phase
diagram (figure 16). Including simple and complex lattices at
high densities and low temperatures, and more interestingly,
a re-entrant isotropic—hexagonal—isotropic behavior at inter-
mediate densities and low temperatures. We have also found a
region dominated by fluids with a high local order, although,
there is not a collective dominant symmetry. This anoma-
lous structural behavior also affects the dynamical behavior
as the associated diffusion coefficient displays a complicated
non-linear dependence on temperature and density. The tran-
sition from isotropic and locally structureless fluids to these
fluids with high local order can only be identified by sec-
ond order thermodynamic properties (specific heat), which
show strong variations in this region of the parameter space,
such changes could suggest a high-order transition between
these fluids.

As mentioned in the introduction, the model studied in this
work is a good approximation to colloidal nanocrystals. Thus,
it would be interesting to corroborate if the phases that we have
found are realized experimentally.
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