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Abstract
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While the effects of structural disorder on the electronic properties of solids are poorly
understood, it is widely accepted that spatially isotropic orbitals lead to robustness against
disorder. In this paper, we use first-principles calculations to show that a cluster of occupied
bands in the coordination polymer semiconductor 5-copper(l) thiocyanate undergo relatively
little fluctuation in the presence of thermal disorder—a surprising finding given that these
bands are composed of spatially anisotropic d-orbitals. Analysis with the tight-binding method
and a stochastic network model suggests that the robustness of these bands to the thermal
disorder can be traced to the way in which these orbitals are aligned with respect to each other.
This special alignment causes strong inverse statistical correlations between orbital—orbital
distances, making these bands robust to random fluctuations of these distances. As well as
proving that disorder-robust electronic properties can be achieved even with anisotropic
orbitals, our results provide a concrete example of when simple ‘averaging’ methods can be
used to treat thermal disorder in electronic structure calculations.
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1. Introduction

With the availability of fast electronic structure codes and
abundant computational resources, reliable electronic band
structures of solid-state materials can now be computed rou-
tinely. However, while a wealth of insights related to charge
transport have been obtained from such calculations, the over-
whelming majority of reported band structures assume that
thermal disorder, arising from the thermal motions of the
atoms, is entirely absent in the system [1, 2]. While this
assumption is tolerable for materials held together by rigid
covalent bonds, it is questionable for materials held together by

1361-648X/20/275701+11$33.00

weaker interactions, such as metal-ligand coordination bonds.
Unfortunately, the effects of thermal disorder on band structure
in such materials remain unclear at present.

One of the simplest methods for incorporating thermal
disorder into band structure calculations is to simulate the
equilibrium dynamics of the material at the temperature of
interest (using molecular dynamics simulation or Monte Carlo
sampling), and average the band structure over the frames
of simulation [3—5]. While this method cannot predict qual-
itative changes of the charge transport mechanism, such
as a transition from band transport to thermally activated
hopping transport, it is useful for exploring charge carrier
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localization, direct-to-indirect transitions, and band gap nar-
rowing are induced by thermal disorder. On the other hand,
because thermal disorder is dynamic, this ‘averaging’ method
is only meaningful when the time-dependent fluctuations of
the band energies about their average value are very small.

For the special cases in which band energies and other elec-
tronic properties are insensitive to disorder (due to thermal
motions, static disorder, or otherwise), it is widely believed
that the insensitivity arises from spatially isotropic s orbitals
[6-9]. This idea, which arises particularly in the context
of non-crystalline semiconductors (such as 2CdO-GeO, and
IGZO [10, 11]), follows from the fact that overlap integrals
between pairs of isotropic orbitals only depend upon the dis-
tances between orbitals, and not upon their relative orientation.
Providing that large variations in the inter-orbital distances
do not occur, electronic bands and conduction pathways com-
posed of isotropic orbitals should not be strongly affected by
the disorder. In the presence of thermal disorder, the ener-
gies of such bands should, therefore, show little fluctuation
about their average values. While this idea is insightful and cer-
tainly reasonable, the requirement of isotropic orbitals restricts
it to a narrow class of materials. For the purpose of under-
standing when the averaging method described in the previous
paragraph can be meaningfully applied, it is useful to con-
sider whether small fluctuations could be possible for bands
composed of anisotropic orbitals as well.

In order to understand how band energies or other elec-
tronic properties fluctuate in the presence of thermal disorder,
it is helpful to consider two contributions: the OO (orbital ori-
entation) contribution, which arises from orientation fluctua-
tions of the orbitals, and the OD (orbital distance) contribution,
which arises from distance fluctuations between orbitals. For
the case of bands arising from isotropic orbitals, the OO con-
tribution is minimized and large band energy fluctuations can
only arise from fluctuations in the orbital—orbital distances. In
this paper, we show that the opposite situation—where the OD
contribution is minimized, and large band energy fluctuations
can only arise from fluctuations in orbital orientations—can
also be realized. More specifically, we use first-principles
calculations to predict a cluster of occupied bands in the
coordination polymer semiconductor 3-copper(I) thiocyanate
(CuSCN) [12—16] whose energies show remarkably little fluc-
tuation in the presence of thermal disorder. These bands are
referred to as ‘hole-transporting bands’, due to the fact that
they reside close to the valance band edge and that CuSCN is a
p-type semiconductor. The negligible fluctuations of the hole-
transporting bands is unintuitive because they are composed of
anisotropic Cu d orbitals which are not expected to lead to a
negligible OO contribution as described above. By construct-
ing a simple tight-binding model for the hole-transporting
bands, we find that the d-orbitals in CuSCN are aligned in
such a way that highly directional o-type interactions between
neighbors dominate in the hole-transporting bands. Analysis
of a stochastic network model then shows a surprising result:
that this specific type of d-orbital alignment causes the OD
contribution to the band fluctuations to become very small. As
well as proving that disorder-insensitive electronic properties

can be achieved even with anisotropic orbitals, this result pro-
vides a specific condition under which the simple ‘averaging’
method described above can be meaningfully applied to under-
stand how thermal disorder affects band structure.

2. Fluctuations of the hole-transporting bands due
to thermal disorder

A mixture of plane-wave density functional theory (DFT) and
Markov chain Monte Carlo (MCMC) calculations were per-
formed in order to study the effects of thermal disorder the
CuSCN band structure. All calculations in this section used
a 2 x 2 x 1 supercell of CuSCN. Plane-wave DFT calcu-
lations were performed using the Vienna Ab Initio Simula-
tion Package (VASP) [17] with the PBE exchange—correlation
functional [18]. Single-point energy calculations (performed
during the MCMC simulations) used a 450 eV basis set cut-
off and I'-centered 2 x 2 x 1 k-points grids. Density of states
calculations were performed with 12 x 12 x 8 k-points grids
and 640 eV basis set cut-offs. Band structure calculations were
performed with 640 eV basis set cut-offs and 100 k-points divi-
sions between high-symmetry points. The 2 x 2 x 1 supercell
was relaxed from a single unit cell starting from the experimen-
tal structure [16]. MCMC simulations were performed using
an in-house R code [19] interfaced with VASP. Trial moves
were obtained by adding Gaussian noise to all atomic coordi-
nates, and the ordinary Metropolis criterion was used to accept
or reject atomic configurations. MCMC simulations were per-
formed for 2 x 107 steps. Under these settings and with our
computational resources, around two months were required to
complete the MCMC simulations and perform all band struc-
ture calculations. When analyzing the output of the MCMC
simulations, the first 5 x 10* steps were removed to minimize
artifacts arising from the equilibration phase, and 10* snap-
shots of the system were randomly selected from the remain-
ing steps for subsequent analysis. Principal components were
computed using the prcomp command from R [19].

The major principal components of the atomic motion at
298 K, as predicted by our calculations, are displayed in
figure 1. Principal components represent collective modes of
motion in the crystal [20], and the ones which are shown in
figures 1(A)—(C) are the three modes which account for the
majority of the thermal motion observed in our calculations.
It can be seen that all atoms in the crystal, including copper,
undergo large and incoherent motions at 298 K. In fact, copper
atoms have mean square displacement of 0.035 A2, compared
0.027 A2 for all atoms (averaged over all directions), show-
ing that Cu tends to undergo slightly larger displacements than
the other atoms. The large motions of the Cu atoms can be
further confirmed by the boxplots in supporting information I
(stacks.iop.org/JPhysCM/32/275701/mmedia).

The 0 K band structure for the CuSCN supercell is shown
in supporting information II. In agreement with the band struc-
tures calculated by other authors [21, 22], it has a valance band
maximum at the I' point, conduction band minimum at the K
point, and an indirect band gap of 2.12 eV. Another conduc-
tion band minimum at the I" point also exists, which is only
0.06 eV higher in energy than the minimum at the K-point.
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Figure 1. 2 x 2 x 1 supercell of 3-copper thiocyanate (CuSCN) (stick representation). Blue, light blue, brown, and yellow represent copper,
nitrogen, carbon, and sulfur atoms, respectively. The red arrows show the ‘principal components’ of the thermal atomic motion at 298 K.
Principle components can be interpreted as collective modes of atomic motion at thermal equilibrium. There are 96 principal components
possible for this system, and figures (A—C) show the ones which account for the most, second most, and third most of the variation in the
atomic positions at equilibrium, respectively.
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Figure 2. (A) Thermally averaged band structure for a2 x 2 x 1 supercell of CuSCN at 298 K. The green color corresponds to the
mean-square displacement (MSD) of the band energies from their average values. The ‘hole bands’ are indicated by the blue bracket on the
right-hand side. The Fermi level is marked by the dotted line. (B) As for A, but zoomed-in on the hole bands. (C) Thermally averaged total
(black) and orbital-projected (colored) density of states for a2 x 2 x 1 supercell of CuSCN at 298 K. The ‘hole bands’ are indicated by the

blue bracket at the top. The Fermi level is marked by the dotted line.

The band gap of 2.12 eV is smaller than the experimental
band gap of 3.7-3.9 eV [12], however this problem is expected
because the DFT calculation was performed with the gen-
eralized gradient approximation [23]. Calculations using the
hybrid functional HSEO06 reported by other authors have pre-
dicted band gaps between 3.00 eV and 3.45 eV, but with-
out notable changes to the band structure compared to that
obtained using the generalized gradient approximation [22,
24]. Figure 2(A) plots the time-averaged folded band struc-
ture of the CuSCN supercell at 298 K (supporting information
IIT shows the same plot over a longer Brillouin zone path).
This band structure has been obtained by averaging over 100
snapshots from the MCMC simulations. Despite the superficial
appearance of more bands (due to thermal disorder breaking
band degeneracy), the averaged band structure is qualitatively
comparable to the 0 K band structure, showing a valance band
maximum at the I' point. However, the conduction band mini-
mum at the I' point sinks below the one at the K point, leading
to a direct band gap of 1.97 eV. This band gap grows to 2.05
eV at the reduced temperature of 150 K, which further verifies
the temperature dependence of the band structure. This inverse
relationship between band gap and temperature is consistent
with the general properties of semiconductors [25].

In figure 2(A), the bands are colored according to the extent
to which they fluctuate about their average value at 298 K, with
black and green representing weakly fluctuating and strongly

fluctuating parts of the band structure, respectively. The extent
of the fluctuations is quantified by their mean-square displace-
ment from their average value. In contrast to many other bands,
it can be seen that the series of bands just below the Fermi
level (the ‘hole bands’) undergo conspicuously little fluctua-
tion. The hole bands are plotted in more detail in figure 2(B).
Figure 2(C) plots the orbital-projected density of states of these
bands, showing that they are formed almost entirely from the
Cu d orbitals, with some minor contributions from the S p
orbitals. The dominance of Cu 3d states has also been sub-
stantiated experimentally by photoelectron spectroscopy [13].
The lack of large fluctuations of the hole bands in the presence
of thermal disorder is surprising, given the anisotropic shapes
of the d orbitals involved. This result becomes more surpris-
ing when we recall figure 1, which showed that the Cu atoms
exhibit large thermal motions.

3. Tight-binding model for the hole bands

In order to explain the absence of large energy fluctuations in
the CuSCN hole bands in the presence of thermal disorder,
we need to examine the atomic orbital interactions in these
bands in more detail. Unfortunately, plane-wave DFT calcula-
tions are not so useful for this purpose, because the plane-wave
basis set does not allow us to quantify interactions between
atomic orbitals. We, therefore, construct a tight-binding model
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Figure 3. (A) Ball-and-stick structure of CuSCN with unit cells indicated by the black lines. Cu and S atomic planes are indicated by the
blue and orange planes, respectively. (B) Hole bands for CuSCN (single unit cell) computed from density functional theory. (C)
Tight-binding model composed of Cu d-orbitals which are coupled predominantly via in-plane o-interactions, and (D) the corresponding
band structure. The dotted green and purple lines indicate two-way (‘A-type’) and four-way (‘B-type’) o-interactions, respectively. As a
guide for the eye, the Cu and S atoms have been colored to match the atomic plane colors in (A).

for the CuSCN hole bands. While the tight-binding model is
too simple to give an accurate description of the hole bands, its
parameters directly quantify the strength of the atomic orbital
interactions, allowing us to clearly visualize the bonding in
the CuSCN hole bands and analyze how they respond to the
thermal disorder.

In order to ensure a minimal model for the hole bands,
we only consider Cu d orbitals when constructing the tight-
binding model. To construct the model, we note that the struc-
ture of CuSCN consists of layers of Cu atoms, and that the unit
cell contains two Cu atoms from adjacent layers. (figure 3(A)).
Referring to these layers as L; and L,, respectively, we write
the state of a single unit cell as a linear combination of Cu d
orbitals, namely

5
‘I']> = Z (Cll;l "U,, rj,L1> —|—Cll;2 "U,, I‘j,L2>) s (1)

pn=l1

where r; is the position vector for the unit cell, |u, rj, L)
and |u, rj, L) represent d-orbitals with magnetic quantum
number g localized on the Cu atom from layers L; and
L,, respectively. The state of the system is given by the
Bloch sum [k) = 3J; exp(ik-r;)|r;). Our Hamiltonian H con-
tains terms for intra-layer and inter-layer coupling between d
orbitals, and only nearest-neighbor couplings are considered
(see appendix A and figure Al for details). In order to deter-
mine the Hamiltonian matrix elements for our model, we apply
the Slater—Koster method [26] (see [27] for a recent appli-
cation of this method). This introduces 11 free parameters
into the model, which can be interpreted as orbital energies
and orbital interaction strengths. These parameters were fit by
minimizing the square deviation of the tight-binding model
band energies from those of the 0 K band structure calcu-
lated by DFT (figure 3(B)) at the high symmetry points of
the Brillouin zone. The fitted parameter values are shown in
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Table 1. Parameters for the tight-binding model. The parameters
(ddo), (ddr), and (ddd) refer to o-, m-, and J-interaction strengths,
respectively. Subscripts 0 and 1 denote the in-plane and
between-plane interactions, respectively. All quantities are in eV.
After computing the band structure these parameters, it was shifted
so that the valance band maximum was at 0 eV.

(ddo)y  (ddm)y  (ddd)o (ddo),

(ddm), (ddd),

0.228 0.060 —0.021 —0.035 —0.001 0.06

supporting information VI and V, with the values for the orbital
interactions shown in table 1. The corresponding band struc-
ture plotted in figure 3(D). The agreement between the tight-
binding model band structure and the DFT-calculated band
structure is good considering the simplicity of the model. The
tight-binding model band structure captures all qualitative fea-
tures of the hole bands (valance band maximum at the I" point
and a series of weakly dispersive bands at lower energies),
although it overestimates the band energies at the corners of
the Brillouin zone.

By interpreting the parameters of the tight-binding model,
we can ascertain how the orbitals are coupled in the hole
bands. According to table 1, the Cu atoms within the layers
are coupled predominantly via o-interactions, whereas the Cu
atoms between layers are coupled via a mixture of o- and J-
interactions. This situation can be realized by considering one
dy_y» orbital on each Cu atom aligned as shown in figure 3(C).
With the d,,_, orbitals aligned in this way, we can see that two
types of o-interactions within the layers are possible: ‘A-type’
interactions (shown by the dotted green line) and ‘B-type’
interactions (shown by the dotted purple lines). The A-type
interactions will dominate over the B-type interactions, due to
the favorable alignment of the orbitals for o-interaction. The
contribution of the d,y, dy, and d,, orbitals can be ignored,
because these lead to in-plane 7- and d-interactions, which are
of relatively little importance according to table 1. The o- and
d-interactions between layers can be accounted for by the d,,
and d_o orbitals, respectively.

4. Analysis with a stochastic network model

In order to explain how the orbital arrangement shown in
figure 3(C) might lead to band robustness to thermal disor-
der, we analyzed band fluctuations on the basis of a stochas-
tic network model. This model describes how fluctuations in
the distances between neighboring d-orbitals contribute to the
fluctuations of the band energies. If we suppose that the mean-
square energy displacement of the hole bands at k-point k can
be written as

MSE (k) = OD (k) + OO (k), 2)

where OD measures the contribution arising from distance
fluctuations between orbitals, and OO measures the contri-
bution arising from orbital orientation fluctuations, then the
stochastic network model can be used to understand OD.

The stochastic network model, which is a quantum version
of the one presented in reference [28], consists of a finite num-
ber of nodes and connections between nodes (figure 4(A)).

The nodes correspond to Cu atoms, and a connection between
nodes represents an interaction between the orbitals of the two
atoms. The nodes are positioned in exactly the same way as
the copper atoms from a single copper plane of CuSCN. At
present, we do not include additional planes in the model,
because the interaction between planes is not expected to be
significant compared to in-plane interactions. Only nearest-
neighbor connections are included in the network. We assume
that only one orbital resides at each node, and let |«) denote
the orbital residing at node «. The ground state of the system

is assumed to be
) = cala), 3)

where the index « runs over all nodes, |«) denotes an orbital
located at node «, and all coefficients ¢, are real-valued and
have the same sign. The latter implies that |¢) is a bond-
ing orbital. The energy of the system, E, can be found by
computing E = (»|H |1}, where the Hamiltonian H is

H=Y cila){al+ gasla) (Bl. S

a~f3

where ¢, is the energy of the orbital at node «, g,3 measures
the coupling strength between orbitals from connected pairs
of nodes « and /3, and the second sum runs over all pairs of
connected nodes. We further assume that the orbital energies
are constant (i.e., €, = €). On the other hand, the coupling
strengths are assumed to explicitly depend upon the distances
rop5 between nodes, i.e.,

8ap = 8 (raﬁ)- (5)

8ap 1s identical for all connections, because r, is fixed at 3.85
A for all connections in the network in figure 4(A). In passing,
note that the Hamiltonian in (3) differs from the one used in the
tight-binding model in the previous section, due to the different
assumptions involved.

We wish to understand how the energy of the system is
affected by random atomic disorder. To incorporate atomic dis-
order into the model, we add a Gaussian random vector to each
node. This causes the position of node i to change from r; to r;
+ X, where the Gaussian random vector X; has components
with the average value of zero and standard deviation o. As a
result of this disorder, the coupling strengths become

g/aﬁ = 80 + R(yﬁArwﬂ (6)

where go = g(ro3 = 3.85 A) is the initial coupling strength,
Ar,s is the change in the a—f distance due to the random
disorder, and R,s measures the sensitivity of the coupling
strength to changes in distance (concretely, R,z = dg(ra.s
+ Arap)dAras|Aras =0). Assuming that the disorder is not
too large (or equivalently, that o2 is small), the Ar,s can be
treated as first-order perturbations. Accordingly, we find that
the energy of the system in the presence of disorder is E + F'.
We find that, £’ has an average value of zero and mean-square
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Figure 4. (A) Illustration of the stochastic network model. Blue spheres correspond to nodes, which are positioned in the same way as the
Cu atoms from a single Cu plane of CuSCN. A single orbital is located at each node, and the connections (dotted lines) indicate
orbital—orbital interactions between nodes. A-type (green) and B-type (purple) connections are shown. (B) Contribution of inter-orbital
distance fluctuations to the band energy fluctuation, as computed with the stochastic network model. ‘A strong B off” means that the
calculation was performed with B connections deleted from the network. ‘A off B strong’ means that A connections were deleted from the
network. ‘A strong, B strong’ means that both connections were present in the network. ‘A strong B weak’ means that both connections
were present in the network, but that the orbital—orbital interactions represented by B connections were weakened. Calculation parameters
(see text): ¢ = 1 A, initial coupling strength = —1 eV (strong connections), —0.25 eV (weak connections), coupling strength sensitivities =

0.1eV A~! (strong connections), 0.025 eV A~ (weak connections).

displacement from zero given by (see appendix B)

2 2 212 2 2
OD =20 g CoCcRs + 0 g CaC3CyRagR3 COS Xapy

a~p
(N
In equation (7), the first sum runs over all pairs of connected
nodes, and the second sum runs over all triplets of nodes a,
B, and v connected sequentially (where « is connected to (3
and 3 connected to 7y). X434 is the angle a37. Note that OD in
equation (7) does not depend upon the wave vector k because
the stochastic network model is not periodic and only consid-
ers a finite number of nodes. Nonetheless, the behavior of OD
in equation (7) should be analogous to the behavior of OD(k)
in equation (2).

To compute OD, we divide these connections into one of
two types (figure 4(A)). ‘A-type’ connections, which run par-
allel to the x-axis, and ‘B-type’ connections, which project
between the x and y axes. We then compute the OD term for
the following four regimes: (i) ‘A strong B off’, which means
that the calculation was performed with B-type connections
deleted from the network, (ii) ‘A off B strong’ which means
that A-type connections were deleted from the network, (iii)
‘A strong B strong’, which means that both types of connec-
tions were present in the network, and (iv) ‘A strong B weak’,
which means that both connections were present in the net-
work, but the strength of the B-type connections was weak-
ened. The parameter choices corresponding to these regimes
are given in the caption of figure 4. The technical details are
discussed in appendix C. As figure 4(B) shows, OD smallest
in the ‘A strong B off’ regime, and second smallest in the ‘A
strong B weak regime’. Thus, the OD term tends to minimize
as A-type connections dominate over B-type connections.

The result in figure 4(B) helps explain the robustness of the
hole bands in CuSCN. As discussed in the previous section, the
tight-binding model predicted that the within-layer d-orbital
interactions were predominantly of the A-type, with a smaller

anfrry

contribution from the B-type (figure 3(B)). Subsequently, the
stochastic network model shows that the OD contribution to
band energy fluctuations is minimized for the case of only A-
type connections, and becomes only somewhat larger when
weak B-type connections are included. This result therefore
suggests that the stability of the hole bands might be traced to
the special way in which the d-orbitals in CuSCN are aligned,
in which A-type connections dominate. This special align-
ment means that fluctuations in the relative orbital distances
do not cause large band energy fluctuations. Instead, large band
fluctuations can only occur due to fluctuations in the relative
orbital orientations (as described by the OO term).

To understand how A-type connections might suppress
band energy fluctuations, we examine equation (7) in detail. In
equation (7), the first term arises from fluctuations of the dis-
tances between pairs of nodes, and is always positive in value.
The second term arises from statistical correlations between
these fluctuations, and can have a positive or negative value.
Importantly, this correlation will not be zero. For example,
consider three nodes «, (3, and v connected sequentially, and
let ro5 and rg, denote the distances between nodes o and /3
and 3 and +y, respectively. Then, if the node £ is shifted due to
atomic disorder, both r,43 and r3, will change simultaneously
and non-independently. This implies a statistical correlation
between r,4 and rg,. Moreover, it can be shown that this sta-
tistical correlation is proportional to cos xas, (see appendix
B, equation (B.17)). Now, for the case of predominantly A-
type interactions between d-orbitals, as in the hole bands of
CuSCN, B-type interactions can be ignored, and we have the
extreme situation where x,3, = 7 for all angles and all cos
Xapy = —1. This causes the second term in equation (7) to
become strongly negative, and makes the OD term small. Thus,
the small OD contribution to the band energy fluctuations in
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CuSCN must arise from strong negative statistical correla-
tions between the orbital—orbital distances during the random
atomic fluctuations.

The physical picture behind these negative statistical cor-
relations is as follows. As before, consider three nodes «, f3,
and ~ connected sequentially, let 5 and 7, denote the dis-
tances between nodes. In the case of only A-type connections,
in which g, = 7 for all connected nodes, it is unlikely that
random fluctuation would cause both r.5 and rg, to increase
simultaneously. In order for this to happen, 8 would need to
be displaced in a direction nearly perpendicular to the con-
nections, which unlikely when the displacement is random.
Moreover, it is not possible for a random fluctuation to cause
both 7,43 and rg, to decrease simultaneously. The probability
that r,3 and rg, can be both large or both small at the same
time is therefore reduced, which implies a negative correlation
between r,g and rg,.

While this analysis strongly suggests that the lack of large
fluctuations in the hole bands of CuSCN is due to the mini-
mized OD contribution, we do not attempt to compare the size
of OD and OO contributions in the present work. Nonetheless,
this shortcoming does not affect our conclusions that the hole
band energies in CuSCN are robust to distance fluctuations
between orbitals, and that large energy fluctuations can only
be due to orbital orientation fluctuations. In future research,
we will attempt to create a simple model to understand the
OO contribution in detail. This should allow us to compare
the OO and OD terms directly and determine whether the hole
band energies are robust to fluctuations in orbital orientation
as well.

5. Conclusions

Band structure averaging, one of the simplest methods for
incorporating the effects of thermal disorder into band struc-
ture calculations, is most applicable when the fluctuations of
the band energies about their average value are small. While
such fluctuations are expected to be minimized for the case
of bands formed from spatially isotropic orbitals, it is desir-
able to elucidate other situations in which the fluctuations are
small as well. In the work above, we used first-principles cal-
culations to predict that a cluster of hole-transporting bands
in the coordination polymer semiconductor CuSCN exhibit
remarkably little fluctuation in the presence of thermal disor-
der, despite being composed of anisotropic d orbitals. Analysis
of the band structure with two simple models (tight-binding
model and the stochastic network model) suggested that the
lack of fluctuations is due to the special row-like alignment
of the d-orbitals in these bands. This special row-like align-
ment causes the orbital-orbital distances to exhibit strong
negative statistical correlations, which makes the hole bands
robust to fluctuations of the orbital—orbital distances. As well
as giving a concrete situation where the band structure aver-
aging method can be meaningfully applied, this result shows
that small band energy fluctuations can also be achieved with
anisotropic orbitals, at least when they are aligned in this par-
ticular way. We expect for this research to inspire the search for
other non-trivial conditions in which negligible band energy

fluctuations can be achieved, and also provide directions for
developing new materials with electronic properties resistant
to thermal disorder.

Acknowledgments

This research was supported by funding for the iCeMS-
VISTEC Smart Materials Reserch Center located at VIS-
TEC, Thailand. P P also acknowledges the support of grant
no. TRG6280013 jointly funded by the Synchrotron Light
Research Institute (SLRI) of Thailand and Thailand Research
Fund (TRF).

Appendix A. Tight-binding model

Our tight-binding model is constructed by noting that CuSCN
consists of layers of Cu atoms, and that the unit cell contains
two Cu atoms from adjacent layers (figure A1(A)). Referring
to these layers as L; and L,, respectively, we write the state
of a single unit cell as a linear combination of Cu d orbitals,
namely

|r] :Z /1 |u”r1’L1

pn=l1

W

+ 2 v, L)) (A.1)

where r; is the position vector for the unit cell, |x, rj, L) and
|, xj, Lp) represent d-orbitals with magnetic quantum number
w1 localized on the Cu atom from layers L; and L,, respectively.
The state of the system is given by the Bloch sum

N

k) = er)),

=1

(A2)

where N is the number of unit cells in the crystal. Substituting

(A.1) into the above shows that (A.2) can be written in the
short-hand notation
k) = aqla),

where the index « runs over all orbitals in the system, and a,, is
an appropriate coefficient (for example, if |o) = |u, xj, L;) for
some j and 4, then a, = ¢,*' exp(ik-r;)). We write the tight-
binding Hamiltonian as

(A.3)

H = Hy, + Hy, + Hj, (A4)

where H\) describes the system when localized at the d orbitals,
H;j describes coupling between neighboring d-orbitals within
the same layer and H; describes coupling between d-orbitals
of adjacent layers. Hy can be immediately deduced as

N
Ho =Y ey (Ipr) Lo) vy L] + |0, o) (o vy, Lol )
j=1
(A.5)
where the expression is implicitly summed over u =1, 2, ...,
5. The term Hy, can be deduced by referring to figure A1(B),
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o | /
o O 4

LF)

Figure A1. (A) Locations of the copper atoms (blue spheres) within
the CuSCN unit cells. Unit cells are indicated by black lines. The
layers L and L, are indicated on the left. a, b, and ¢ are the lattice
vectors. By convention, the Cu atoms located on the bottom plane of
the unit cell are assigned to the unit cell below. (B) Diagram
showing nearest-neighbor positions for Cu atoms within the same
plane. In the figure, the central Cu atom belong to the unit cell
located at 0, the origin of the crystal axes. The atoms labeled as q;,
q2, 93, q4, qs, and q¢ belong to the unit cells located at b, b + a, a,
—b, —b — a, and —a, respectively. (C) and (D) show showing
nearest-neighbor positions for Cu atoms laying in adjacent planes.
In the figure, the central Cu atom belong to the unit cell located at
the origin of the crystal axes. In (C), the central atom lies in the L;
plane, and the atoms labeled as ry, r, 3, 4, I's, and rg belong to the
unit cells located at —b, 0, a, —b — ¢, —c, and a — ¢, respectively. In
(D), the central atom lies in the L, plane, and the atoms labeled as
S1, S2, S3, S4, S5, and sg belong to the unit cells located atb + ¢, —a
+ ¢, ¢, b, —a, and 0, respectively.

which shows the arrangement of nearest-neighbors for each Cu
atom within the same layer. We obtain

H. = Z i \//,rj + q’L1> <,u’ rj’L1| + ‘,u/’rj + q,L2>

x (1, v), La) (A.6)
where the expression is implicitly summed over p =1, 2,...,
54/ =1,2,...,5,andq=b,b + a,a, —b, —a — b, —a,
where a and b are unit cell vectors parallel to the Cu layers.
Here, t,,,9 is a transfer integral for hole transfer from orbital
|p, ¥, Li) to |, ¥, + q, Ly) (or equivalently, from |y, r;, L)
to i/, ¥r; + q. Ly)). Finally, the term H; can be deduced by
referring to figures A1(C) and (D), which show the nearest Cu
atoms from the adjacent layers. We obtain

N

H =Y ( Sy 1T+ ¥, L) (v, Ly | + s, v — v, Ly)
=1
X (X, Lo| + 53,

SV = Lo) (o Ly 45,0

x \u,ri—V+c,L1><u,ri,Lz\) (A7)

where ¢ is the unit cell vector perpendicular to the Cu layers,
and the expression is implicitly summed over = 1,2, ..., 5,
w=1,2,...,5 and v =0, a, —b. The coefficients s/,//,,v‘“ are
the corresponding hole transfer integrals.

The band structure for the tight-binding Hamiltonian in
(A.4) can be found by solving the secular equations

+ g a(y 0/3y

where the indices a and g run over all orbitals in the system,
a, and ag are the coefficients defined in equation (A.3), d,3
the Kronecker delta, and E the k-dependent energy eigenvalue.
Consider the case where 3 = |, x;, L) for some j and 1. Then
equation (A.8) becomes, after substituting in (A.6)—(A.7),

( ik- vs::’,u _|_eik~(v—c)s://—uc) — 0’

(A.9)
where the second two terms are implicitly summed over /' =
1,2,....,5,q=b,b+a,a,—-b, —a — b, —a,and v =0, a,
—b. For the case where 3 = |y, rj, L,), we obtain

H’)’? - E(S(yﬁ’) - Oa (AS)

Ly _ Ly ik-q.9
ch (en )+c e t/”l+c

_ L ik-q.4q Ly —ikv v
e (ep— E) +cge™, +c (e V),

k(v—0)¢ ( ) (A10)
—1K-(v—c¢) ,—(V—C _
+e S ) =0.
These equations can be written in matrix form as
Sc = Ec, (A.11)

— L L L L L L L L L
Wherec - (Cl 15 C2 15 C3 15 C4 15 CS 1, Cl 2, C2 2, C3 2, C4 2,

¢s™2), and the secular matrix has the form

AA AB
S = {BA BB] (A.12)
Here, AA is the 5 x 5 matrix with elements
el i = g
AAy = k " ) (A.13)
e qtﬂ/l otherwise
AB is the 5 x 5 matrix with elements
ABy, = sy, + OOy ¢ (A.14)
BA is the 5 x 5 matrix with elements
—ik- ik- —(v—c¢)
BA,/, = Vs, e 09 Sy ¢ (A.15)

and BB = AA. The matrix elements above are implicitly
summed overq = b, b + a,a, —b, —a— b, —a,and v=20, a,
—b as appropriate. The eigenvalue problem in equation (A.11)
yields 10 bands, each arising from one of the 10 d-orbitals
contained within each unit cell of CuSCN.

The transfer integrals #,,% and s,," are treated as
Slater—Koster integrals [26]. For completeness, the explicit
forms of the transfer integrals used in this paper are shown
in supporting information VI. Our tight-binding model con-
tains 11 free parameters: five d-orbital energies (¢, €2, €3,
€4, €5), three within-layer interaction terms [(ddo)o, (ddm)o,
(ddd)o], and three between-layer interaction terms [(ddo)i,
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(ddm)y, (ddd),]. These parameters were fitted using an in-
house code written in a combination of R and C++ languages.
Eigenvalues of the tight-binding Hamiltonian were computed
using the Eigen library for C++ [29]. Hermiticity of the tight-
binding Hamiltonians was confirmed by checking whether the
imaginary parts of the eigenvalues were O at each k-point.
The fitted values of the parameters are shown in supporting
information V.

Appendix B. Stochastic network model

In this section, we first obtain a general expression for OD,
the mean-square displacement of E’ from zero band energy
displacement in the stochastic network model. Following this,
we reduce the general expression to the specific one shown in
equation (7) of the main paper.

B.1. General expression for the mean square energy
displacement

Letr, s, ..., ry be the positions of the nodes in the absence of
disorder, and let u;, uy, ..., uy be the positions in the presence
of disorder. Explicitly, we have
u; :I','—FX,‘ (Bl)

where X, is a random vector. The components of X; follow a
Gaussian distribution with mean 0 and variance 2. The com-
ponents are assumed to be statistically independent of each
other, with no dependence between random vectors belonging
to different atoms. Because these random vectors are assumed
to be ‘small’ (in the sense that o is small), the Hamiltonian in
the presence of disorder can be written as

H(uj,uy,...,uy)=H(r,ry,...,ry)+H, (B.2)
where H' is a perturbation. Providing that the stochastic net-
work model is set-up in such a way that degenerate states do
not appear (see appendix C), the first-order correction to the
energy E' is E' = (¢ |H'|1), where |1) is the state of the sys-
tem in the absence of disorder. Inserting equation (3) of the
main text gives

N
E = Z cacgH, 5,
a,3=1

(B.3)

Note that the wave function coefficients ¢, are real by
assumption. The mean-square displacement of E’ from 0 is
defined as

OD = (E?), (B.4)

where the angular brackets, which should not be confused
with the angular brackets used to denote quantum states, indi-
cate averaging over all realizations of the structural disorder.
Inserting (B.3) into (B.4), gives

N N N
oD = Z cach <H;25> + Z Z CaChCsCy <H;5H:;A,>
a,B=1 a,f=10y=1

(B.5)

as our general expression for OD. In the language of statis-
tics, the quantities (H'?,5) and (H',3H's,) are referred to
as variances and covariances, respectively. Covariances are
proportional to correlations.

B.2. Perturbation matrix elements

In order to obtain equation (7) from the general expression
(B.5), we need expressions for the perturbation Hamiltonian
matrix elements H',3. To obtain these expressions, note that
in the presence of structural disorder, the full Hamiltonian can
be written in one of two ways. One way is

H(ll],llz,.. .,I‘N)+H/,

Luy) =H(ry,r,.. (B.6)

as in equation (B.2), where (see equation (3) of the main text),

N
H(ry,r,...,r5) = 62 la) (o] + Zg (rap) lov) (8],

a=1 a~f

(B.7)
and the notation o ~ § means that the summation is over all
pairs of nodes which are connected. The other way to write the
full Hamiltonian is (see equation (4) of the main text)

N
H(uj,uy,...,uy) = EZ o) <aH—Zg (rap +Arag) |a) (8]

a=1 a~f
(B.8)
Comparing equations (B.7) and (B.8) shows that
H =" (g (ras + Arap) —g (rap)) [a) (Bl (B.9)

a~f3

An expression for the term in brackets can be found by per-
forming a Taylor’s series expansion. Expanding g to first-order
in the A-terms gives

8 (r(l{)’ + Ar(yﬁ) — 8 (r(yﬂ) - Ra{)’Ar(yﬁa (Blo)

where R,s3 = (dg/dAras)Aras = 0. The perturbation Hamilto-
nian elements are therefore equal to

(B.11)

, RosAr,s  ifa ~ f,
0 otherwise.

B.3. Averaging over the perturbation elements

We now turn to the averages (H'?,3) and (H'.3H's,), which
are contained the general expression in (B.5). From (B.11) we
obtain

(H) =R (Arks) (B.12)

and

(H\3H5, ) = RapRsy (AragArsy) . (B.13)

respectively. The quantities (Arqs?) and (Ar,sAr,s) in
equations (B.12) and (B.13) are computed as follows. By
definition, we have r,3 + Arys = |(ra + Xo) — (ra + Xp)|.
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Expanding the right-hand side of this expression to first-order
in the components of X,, and Xz gives, after some algebra,

Aras = 2 (0 —15) - (Xo — X5) (B.14)

r(l{))
Recalling that the mean and variance of each component of X,
and X3 is 0 and o, respectively, we immediately obtain

(Arag) =0, (B.15)

(Ar2,) =20°. (B.16)

For the case of three nodes «, 3, and y connected sequen-
tially (i.e., «v is connected to (3, and 3 is connected to ), we
obtain

0.2

<Ar(y;9Ar;3~/> = - (r(y - I'g) : (I'g - rﬂ/) - 0,2 COS Xafs

(B.17)
where X.3, is the angle a3y. For the case of two pairs of
distinct nodes («, 3) and (v, §) we have

TapT 3y

(ArgpAry) = 0. (B.18)

Substituting these expressions into (B.12) and (B.13), we
obtain

(Hzs) = 2R3 50° (B.19)
and
2 .
Rm R . COS Xar ifd =
(H, pHy, ) = § 0 om0 €00 Xem 5 (B.20)
0 otherwise

respectively. Substituting (B.19) and (B.20) into (B.5) yields

OD = 2022 ciC%Rm«g +0? Z cacécﬂ,RaﬁgR‘gﬂ, COS Xafbys
a~f3 By

(B.21)

which is equivalent to equation (7) of the main paper. Note

that in (B.21) (or equation (7)), each pair of connected nodes

appears twice in the first sum. Similarly, each triple of nodes

connected in series appears twice in the second sum.

Appendix C. Computation of the OD term

We computed equation (B.21) for three types of networks. The
first type consists of a straight row of 108 nodes connected in
sequence. The second type consists of a single plane of 108
nodes connected in the four-fold pattern shown by the purple
connections figure 4(A). The third type consists of the same
plane of 108 nodes, but connected in the six-fold pattern shown
by the green and purple connections in figure 4(A). The first
two types were used to perform the calculations ‘A strong, B
off” and ‘A off, B strong’, respectively, from figure 4(B). The
third type was used to perform the calculations ‘A strong, B
strong’ and ‘A strong, B weak’. In each case, the Hamiltonian
in equation (4) was calculated with the node energies ¢ set to
0 (which has no effect on the calculation), and the coefficients
of the ground state wave function were obtained by computing

the eigenvectors of the Hamiltonian. For each of the four net-
works considered here, the ground state was not degenerate
and all ground state wave function coefficients had the same
sign, justifying the use of ordinary perturbation theory as well
as the assumptions made on the wave function in equation (4).
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