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Abstract
We theoretically investigate the four-wave mixing process in Weyl semimetals in a strong
magnetic field using quantum theory. Weyl semimetals in a strong magnetic field have an
extremely high third-order nonlinear optical susceptibility (several orders larger than that of the
usual three dimensional materials) originating from the linear energy dispersion near the Weyl
points. The third-order response of Weyl semimetal is nearly independent on the Fermi level,
which is quite different from the sensitive dependence (on the Fermi level) of the linear response.
The unusual polarization dependent selection rules lead to rich nonlinear optical properties,
which can be tuned by the polarization of the incident light fields and the magnetic fields.
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1. Introduction

Weyl semimetals are examples of Dirac matter in three dimen-
sions whose band structure has pairs of linearly touching con-
duction and valence bands [1–5]. The Weyl nodes behave
like a source or sink of Berry curvature in momentum space.
The Weyl semimetals can be realized from a Dirac system by
breaking either time reversal symmetry or inversion symme-
try. In recent years, a great deal of attention has been attracted
by theoretically predicted and experimentally discovered
topological materials, including Weyl semimetals [6–11]. A
distinctive feature of Weyl semimetals is the anomalous mag-
netotransport phenomena related to the chiral anomaly, which
has been investigated in high energy physics and condensed
matter physics [4, 5, 12–20]. Many studies have shown that
the magnetotransport exhibits strong and anisotropic magnetic
field dependencies [21–25]. These works have been based on
the linear response theory.

With regard to the nonlinear transport and optical response
in Weyl semimetals, photocurrent and second harmonic gen-
eration were studied by some pioneering works [26–39]. In
the absence of external magnetic fields, the photocurrent or
second harmonic generation in Weyl semimetals usually
involved three mechanisms, the injection current, the shift

1 Author to whom any correspondence should be addressed.

current, and the anomalous current contributions. Nonlinear
anomalous current in Weyl semimetals has been studied in
detail in [38]. Under an external weak magnetic field, a pho-
togalvanic effect and the second harmonic generation can
be induced in Weyl semimetals and they are linear with the
magnetic field. Also, the chiral magnetic effect and the opti-
cal activity have contributed to the second nonlinear opti-
cal response [30, 31]. Most importantly, the experimental
results show that Weyl semimetals show larger nonlinear opti-
cal response than any other materials [36]. Also graphene, a
two dimensional Dirac material, shows a high optical nonlin-
earity due to its unusual band structure near the Dirac point
[40–43]. It is important to explore the nonlinear optics of three
dimensional Weyl semimetals and compare with that of two
dimensional Dirac materials.

In this paper, we study the third-order nonlinear optical
responses of Weyl semimetals in a strong magnetic field. The
employed method is based on the quantum mechanical density
matrix formalism [40]. It is found that Weyl semimetals have
a very high nonlinear susceptibility for the four-wave-mixing
process, and the third-order nonlinear susceptibility is nearly
independent on the Fermi level, though the linear absorption
spectrum is sensitive to the Fermi level position. With decreas-
ing the external magnetic field or the Fermi velocity of Weyl
semimetals, the third order nonlinear susceptibility increases.
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The unusual polarization dependent selection rules lead to rich
nonlinear optical properties, which can be tuned by the ellip-
ticity (for elliptically polarized lights) and the polarization
direction (for linearly polarized incident fields).

2. The theoretical formulism, the selection rules
and the linear responses

As the basis for studying nonlinear optics, we first present
the theoretical formulism, the selection rules and the linear
responses.

2.1. Landau levels in Wely semimetals

The Hamiltonian for a generic chiral Weyl node can be
expressed in momentum space as

HW = λ�vFσ · k, (1)

where λ = ±1 is chirality index, vF is the Fermi velocity, σ
is the vector of Pauli matrices, and k is the momentum rel-
ative to the Weyl node. Now we consider a strong magnetic
field that is exerted along the z axis, B = Bẑ. Replacing the
momentum p by the kinetic momentum p → π = p + e

c AB,
with AB = (0, Bx, 0), the Hamiltonian becomes

HB = λvFσ ·
(

p +
e
c

AB
)
. (2)

By solving the Schrödinger equation HBΨn(k, r)
= εn(kz)Ψn(k, r), it can be found that the Landau levels
are given by [25]

εn(kz) =

⎧⎪⎨
⎪⎩

sgn(n)�vF

√
2|n|
l2B

+ k2
z , n �= 0,

−λ�vFkz, n = 0,

(3)

where lB =
√

�c/eB is magnetic length. And the full expres-
sion for eigenstates is

Ψn(k, r) =
Cne−i(kyy+kzz)√

LyLz

(
un sgn(n)i|n|−1φ|n|−1

vni|n|φ|n|

)
, (4)

with

un =

√
1
2

(
1 +

�vFkz

En

)
, vn =

√
1
2

(
1 − �vFkz

En

)
, (5)

Cn =

⎧⎨
⎩

1 n = 0
1√
2

n �= 0
, (6)

φ|n| =

Hn

(
x−l2Bky

lB

)
√

2|n||n|!√πlB
exp

(
−1

2

(
x − l2Bky

lB

)2
)

, (7)

and Hn(x) the Hermite polynomial.
A graphic illustration of the Landau levels is shown in

figure 1 with the Fermi velocity vF = 4.3 × 105 m s−1 and the

magnetic field B = 10 T [25, 44]. The n = 0 Landau levels are
polarized and n �= 0 Landau levels are particle-hole symmet-
ric. The characteristic n = 0 Landau levels play an important
role in the chiral anomaly in Weyl semimentals. Meanwhile,
the structure of the Landau levels controls the shape of the
linear absorption coefficient, as we will elaborate it later.

2.2. Selection rules and the dipole moment matrix elements

We consider an incident field EL(R) = E(ω)e−iωteL(R)

propagating in the z direction. The circular-polarization unit
vectors are defined by eL(R) =

1√
2
(x0 ± iy0), where eL/R corre-

sponds to left/right circular polarization. To include the optical
field in the Hamiltonian, we introduce its vector potential,
E = (−1/c)∂Aopt/∂t. We consider the case with both a dc
magnetic field and an optical field so that the Hamiltonian
becomes

H = λvFσ ·
(

p +
e
c

AB +
e
c

Aopt
)

, (8)

where Hopt = λvFσ · e
c Aopt is the interaction Hamiltonian. The

matrix element of the optical transition between Landau levels
is

〈m, k′z|Hopt|n, kz〉 = − iλvFe
ω

〈m|σxx0 + σyy0|n〉δk′z ,kz
E. (9)

The dipole moment matrix element can be calculated as

μmn =
i�λevF

εnk − εmk′
〈m, k′|σxx0 + σyy0|n, k〉, (10)

where

〈m, k′z|σxx0 + σyy0|n, kz〉

= δk′z ,kz

√
2CmCn

(
umvn sgn(m)i|n|−|m|+1〈φ|m|−1|φ|n|〉eL

+ vmun sgn(n)i|n|−|m|−1〈φ|m||φ|n|−1〉eR

)
. (11)

The nonzero matrix element appears when |m| = |n| − 1
(for left circularly polarized light) and |m| = |n|+ 1 (for right
circularly polarized light). In other words, the selection rules
associated with the left or right-hand circularly polarized light
for inter-Landau level transitions are Δ|n| = ±1 [25], and not
dependent on the chirality of Weyl node. This selection rules
for Weyl semimetals in a strong magnetic field are similar to
that for two dimensional electrons in graphene [40].

2.3. Linear optical responses

The equation of motion of the density matrix is given by

ρ̇nm =− i
�

(εn − εm)ρnm

− i
�

[Hopt(t), ρ]nm − γnm

(
ρnm − ρ(eq)

nm

)
. (12)

Here ρnm denote the elements of the density matrix, and the last
term on the right-hand side is the damping term, which indi-
cates that ρnm relaxes to its equilibrium state ρ(eq)

nm at rate γnm. In
addition, we make the assumption that ρ(eq)

nm = 0 for n �= m. We
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Figure 1. The Landau levels in Weyl semimental and a scheme of the four-wave mixing process in the five-level system of eigenstates with
quantum numbers n = −2,−1, 0,+1,+2 that were renamed as states |1〉, |2〉, |3〉, |4〉 and |5〉 for convenience of notation. Different optical
processes are displayed in (a)–(d). The fields Ei (i = a, b, c, d) are coupled to electric dipole allowed Landau level transitions. The Fermi
velocity vF = 4.3 × 105 m s−1 and the magnetic field B = 10 T.

will seek a solution to the equation (12) in the form of a per-
turbation expansion. One thereby obtain the set of equations

ρ̇(0)
nm = −(iωnm + γnm)ρ(0)

nm + γnmρ
(eq)
nm , (13)

ρ̇(1)
nm = −(iωnm + γnm)ρ(1)

nm − i
�

[Hopt(t), ρ(0)]nm, (14)

where ωnm = (εn − εm)/�.
The density matrix ρ(1)

nm(t) can be obtained as

ρ(1)
nm(t) =

1
�

(ρ(0)
mm − ρ(0)

nn )
∑
ω

μ̃nmE(ω)e−iωt

(ωnm − ω) − iγnm
, (15)

where

μ̃nm =
iλvFe
ω

〈n|σ|m〉. (16)

We define the linear polarization in the form

P(1)(ω) = N tr(ρ(1)μ) = N
∑
nm

ρ(1)
nmμmn, (17)

We assume the relaxation rates between different Landau
levels to be the same γnm = γ [45]. One can obtain from
equation (17) the linear susceptibility

χ(1)(ω) =
N
ε0

∑
nm

[ f (εm) − f (εn)]
μmn[μ̃nm · e]

(�ωnm − �ω) − iγ
, (18)

here ρ(0)
nn follows Fermi distribution f (εn) = 1/[e(εn−μ)/kBT +

1]. We finally obtain the linear optical susceptibility for the
left/right-hand polarizations

χ(1)(ω, eL) =
(evF)2

2π2l2Bε0

∫
dkz(CmCnumvn)2

× f (εn) − f (εm)
ωωnm[(�ωnm − �ω) − iγ]

δ|n|,|m|−1,

χ(1)(ω, eR) =
(evF)2

2π2l2Bε0

∫
dkz(CmCnunvm)2

× f (εn) − f (εm)
ωωnm[(�ωnm − �ω) − iγ]

δ|m|,|n|−1.

(19)

3



J. Phys.: Condens. Matter 32 (2020) 275502 Y Gao et al

Figure 2. The absorption coefficient α as a function of the incident field frequency ω for the transition between Landau levels n = 0 and
n = 1 at zero temperature. For the Fermi energy μ = 0 there is a broad range of frequencies greater than 50 meV when only the left circular
polarization is absorbed. For the Fermi energy μ = ±30 meV there are two strong absorption peak. The other parameters are taken as the
Fermi velocity vF = 4.3 × 105 m s−1, the magnetic field B = 10 T, the relaxation constant γ = 1 meV.

The absorption coefficient can be expressed as

α =
ω

c
Im[χ(1)(ω)]. (20)

For the comparison with the nonlinear optical responses, the
linear absorption coefficient for the transition between Lan-
dau levels n = 0 and n = 1 at zero temperature is shown in
figure 2. One asymmetric peak of the absorption coefficient
with the incident frequency can be seen when the Fermi energy
μ = 0[solid black curve], which comes from the dispersive
structure of the Landau levels. Moreover, the absorption fre-
quency bandwidth can be tuned by adjusting the external mag-
netic fields or Fermi levels position. The Fermi levels for the
two opposite chiralities shift ±30 meV when a constant elec-
tric field is applied parallel to the magnetic field. It is inter-
esting to observe that there exist two peaks of the absorption
coefficient, this method can used for the detection of the chi-
ral anomaly [25, 44]. With increasing the incident optical fre-
quency, a series of absorption peaks have emerged corresponds
to allowed interband transitions in the Landau level structure
[25].

3. The third-order optical responses

3.1. The resonant four-wave mixing

Let us now consider the four-wave-mixing process shown in
figure 1. We take the optical process in figure 1(a) as an
example. The total field consists of the four waves: three pump
fields at frequencies ωa, ωb and ωc resonant to the correspond-
ing transitions between the Landau levels |1〉 → |4〉, |2〉 → |1〉
and |3〉 → |2〉, and one circular polarization signal field at fre-
quencyωd = ωa − ωb − ωc nearly resonant with the transition

from |4〉 to |3〉. The pumping fields are of the form

E = eLEae−iωat + eREbe−iωbt + eREce
−iωct. (21)

We introduce the slowly varying quantity σnm, defined
by ρ41 = σ41e−iωat, ρ43 = σ43e−iωdt, ρ32 = σ32e−iωct and ρ21 =
σ21e−iωbt. In terms of these new quantities, equation (12)
becomes

σ̇nm + Γnmσnm = − i
�

[Hopt(t), ρ]nm, (22)

where the complex de-phasing Γnm = γnm + i(ωnm − ωj), j =
a, b, c, d. We assume that all detunings from resonance are
small. The equations of motion for the density matrix elements
are given explicitly as

σ̇43 + Γ43σ43 = iΩ41σ
∗
31 − iΩ∗

32σ42;

σ̇32 + Γ32σ32 = iΩ32(ρ22 − ρ33) − iΩ∗
21σ31;

σ̇41 + Γ41σ41 = iΩ41(ρ11 − ρ44) − iΩ21σ42;

σ̇21 + Γ21σ21 = iΩ21(ρ11 − ρ22) + iΩ∗
32σ31 − iΩ41σ

∗
42;

σ̇31 + Γ31σ31 =− iΩ21σ32 − iΩ41σ
∗
43 + iΩ32σ21;

σ̇42 + Γ42σ42 =− iΩ∗
21σ41 − iΩ32σ43 + iΩ41σ

∗
21,

(23)

whereΩnm = μ̃nm · Enm/� is the on-resonance Rabi frequency,
and the field amplitude are E21 = Eb, E32 = Ec and E41 = Ea.
The steady state solution can be obtained by setting σ̇nm = 0
in equation (23).

In the four-wave-mixing process shown in figure 1, the
complex amplitude of the component of the nonlinear polar-
ization oscillating at frequency ωd is given by

P(ωd) = N · μ43σ43e−iωdt + c.c. (24)
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Figure 3. The real and imaginary parts of the third-order nonlinear susceptibility χ(3)
43 (ωd) as a function of the output frequency ωd for

different Fermi levels μ at B = 10 T [(a) and (b)] and for different magnetic field B at μ = 0 [(c) and (d)]. The other parameters are taken as
the Fermi velocity vF = 4.3 × 105 m s−1, γ = 1 meV.

By combining equations (23) and (24), we find that the third
order susceptibility is given by

χ(3)
43 (ωd) =

i3N
�3ε0

∑
1,2,3,4

μ43
μ̃41μ̃

∗
32μ̃

∗
21

Γ43

(
−ρ22 − ρ33

Γ∗
32Γ

∗
31

+
ρ11 − ρ22

Γ∗
31Γ

∗
21

+
ρ11 − ρ44

Γ42Γ41
+

ρ11 − ρ22

Γ42Γ
∗
21

)
.

(25)

Here we keep only the terms leading to the third-order nonlin-
ear susceptibility corresponding to the four-wave-mixing (see
figure 1).

In general, the diagonal elements of the matrix density, i.e.,
the populations of the levels are determined by the Fermi level,
which can be tuned by the external field [46, 47]. We assume
the Fermi level is between the landau level n = −1 and lan-
dau level n = 1, which means ρ11 = ρ22 = 1, ρ33 = f (ε0) =
1/[e(ε0−μ)/kBT + 1] and ρ44 = 0.

In the four-wave-mixing process, there is no contribution
for the transition |2〉 → |1〉 because states |1〉 and |2〉 are fully
occupied. Changing from summation to integration, we find
that the third order susceptibility χ(3)

43 is further simplified to

χ(3)
43 (ωd) =

i3N
�3ε0

∫
dkz

2π
μ43

μ̃41μ̃
∗
32μ̃

∗
21

Γ43

×
(
−1 − f (ε0)

Γ∗
32Γ

∗
31

+
1

Γ42Γ41

)
. (26)

Equation (26) can be used in the four-wave mixing process
near the Weyl nodes and away from the band bottom of zero
Landau band in the two-node model [46]. This results also
apply for three-dimensional Dirac semimetals.

3.2. Modulation of the four-wave mixing

Firstly, we analyze the effects of external fields on the non-
linear optics property of Weyl semimetal systems. We know
that Landau levels can be adjusted by external magnetic fields
B and the effective Fermi levels can be adjusted by a constant
electric field E‖B. Figure 3 shows the output frequency depen-
dence of χ(3)

43 in different other parameters which satisfy the
frequency and phase matching condition. From figures 3(a)
and (b), one can see that the real and imaginary parts of χ(3)

43
exhibit a resonance at ωd = ωa − ωb − ωc ≈ 37 meV when
the magnetic field B = 10 T, the Fermi energy μ = 0 and the
relaxation constant γ = 1 meV. The real and imaginary parts
of χ(3)

43 exhibition positive and negative amplitudes because of
the complex denominator functionΓnm contribution to the non-
linear processes. Importantly, the absolute value of χ(3)

43 is sev-
eral orders of magnitude larger than any bulk material we know
[48]. Similarly, graphene, a two dimensional Dirac material,
in a strong magnetic field also has the extremely strong optical
nonlinearity [40–43]. The third order nonlinear susceptibility
χ(3)

43 is different from the linear absorption coefficient α, where
α depends on the Fermi levels for the two opposite chirali-
ties (see figure 2). As seen from figures 3(a) and (b), the χ(3)

43

5
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Figure 4. The third-order nonlinear susceptibility χ(3)
43 as a function of the output frequency ωd for different Fermi velocity vF at γ = 1 meV

[(a) and (b)] and for different relaxation constant γ at vF = 4.3 × 105 m s−1 [(c) and (d)]. The other parameters are taken as B = 10 T, μ = 0.

is nearly independent on the Fermi level showing stable non-
linear optics property. Figures 3(c) and (d) show that when the
Fermi levels μ and relaxation constant γ are fixed, the resonant
peaks of nonlinear susceptibility χ(3)

43 shifted to lower frequen-
cies as a consequence of the decrease of the energy spacing
between the Landau levels. Additionally, one can find that the
absolute value of χ(3)

43 increases with the decrease of magnetic
field.

Figures 4(a) and (b) show the output frequency depen-
dence of the third order nonlinear susceptibility for the differ-
ent Fermi velocity. Because of anisotropy, the Fermi velocity
vF covers a wide range in real Weyl semimetals [49]. When
decreasing the Fermi velocity, the resonant peaks of nonlin-
ear susceptibility shifted to lower frequencies since the energy
between the Landau levels reduces. Moreover, the third order
nonlinear susceptibility peak shows an obvious rise because
of the enhancing of the complex denominator function Γnm

contribution to the nonlinear processes (see equation (26)).
The output frequency dependence of the nonlinear susceptibil-
ity for different relaxation constant γ is shown in figures 4(c)
and (d). With decreasing the relaxation constant, the resonant
peaks in the nonlinear susceptibility increase. This is a uni-
versal phenomenon of the actual relaxation dynamics of elec-
trons [50, 51]. Also the negative imaginary part becomes more
obvious.

From the above analysis, a strong optical nonlinearity could
be achieved for small external magnetic field and Fermi veloc-
ity. Compared with the experimental results in literatures,
the external magnetic field B = 1 T, �vF ∼ 1 − 10 eV Å in

Bi0.97Sb0.03 and Cd3As2 [49]. Taking a reasonable value for
the dephasing rate γ = 1 meV [25], the third order nonlin-
ear susceptibility χ(3)

43 ∼ 10−10 − 10−9 m2 V−2. This result is
surprisingly high, perhaps the highest among known three
dimensional materials.

The nonlinear optical response can be modulated not only
by the magnetic field, but also by the frequency and polar-
ization of the incident fields. Unlike the two-dimensional
graphene, where the Landau levels are flat, the Landau levels
in three-dimensional Weyl semimetals are dispersive, thus it
is possible to tune the resonant four-wave mixing by changing
the frequencies of the incident fields. Moreover, the polariza-
tion plays an important role in the nonlinear responses due
to the polarization dependent selection rules. In general, the
pump fields are of the form

E j = [cos(α j)x0 + eiδ j sin(α j)y0]E0eiω jt−kzz

=
1√
2

[(cos(α j) − ieiδ j sin(α j))eL

+ (cos(α j) − ieiδ j sin(α j))eR ] E0eiω jt−kzz, (27)

where j = a, b, c. Our calculation shows that the out put field

Ed ∝ [cos(αa) cos(αb) + ei(δa+δb) sin(αa) sin(αb)]

× [(cos(αc) + ieiδc sin(αc))eL

+ (cos(αc) − ieiδc sin(αc))eR ] . (28)
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It is seen that the polarization of the output field Ed is deter-
mined by the polarization of the field Ec. The intensity of the
signal field Ed (with frequency ωd) is of the form of

Id ∝2 cos(αa) cos(αb) sin(αa) sin(αb) cos(δa + δb)

+ cos2(αa) cos2(αb) + sin2(αa) sin2(αb), (29)

which can by tuned by changing the polarizations of the fields
Ea, Eb. For the linear polarization with δa = δb = 0, the inten-
sity Id ∝ cos2(αa − αb), depending on the polarization direc-
tion difference of the incident fields Ea and Eb. In particular,
Id vanishes when the polarization direction Ea perpendular to
that of Eb. While for the elliptically polarized pump fields with
δa = δb = π/2, Id ∝ cos2(αa + αb). If αa = αb = π/4 (i.e.,
both fields are left circularly polarized), Id = 0 as a conse-
quence of selection rules (see figure 1). While for αa = −αb

(i.e., the two fields with opposite handness of the polarization),
the maximum output field can be obtained. These rich polar-
ization dependent nonlinear optical properties are due to the
particular selection rules.

4. Conclusion

In summary, we have studied the linear and nonlinear opti-
cal response of Weyl semimetals in a strong magnetic field.
We have obtained analytic formulas for the third-order nonlin-
ear susceptibility and found that the system has a high optical
nonlinearity. While the linear absorption spectrum depends
upon Fermi level position of the Weyl semimetals, it has lit-
tle effect on the third-order nonlinear susceptibility. As the
Fermi velocity decreases, the third-order nonlinear susceptibil-
ity increases. In addition, the nonlinear response can be mod-
ulated by polarization of the pump light fields and magnetic
fields.
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